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Abstract  24 

Molting rate is a key life history parameter in copepods.  Since copepod population growth is an 25 

inherently exponential process, accurate formulation of molting rate is of critical importance. Many 26 

experiments have been conducted to culture different copepod species under varying temperatures 27 

and food concentrations. Probability density functions (PDFs) then were used to estimate the 28 

median development time (MDT) of different copepod stages from the experimental data. These 29 

MDTs are used in copepod population models. Asymmetrical PDFs are widely used to model 30 

molting rate, because the shapes of these curves are similar to laboratory data on cohort 31 

development. In this paper, we developed an individual stochastic model (ISM) to simulate the 32 

molting rate with different PDFs. We showed that there was no connection between the asymmetry 33 

of cohorts and the asymmetry of the molting PDF. Although age-within-stage models have been 34 

widely used to simulate copepod population dynamics, we found that none had used the correct 35 

formulation of molting rate. The population model requires the probability of molting at each time 36 

step, whereas the laboratory-derived PDF is the frequency distribution of stage duration. Therefore, 37 

the PDF cannot be applied directly to the population model. We present here a corrected formula 38 

based on the PDF for use in copepod population models, termed the probability of molting for 39 

remaining individuals (PMR). Despite emphasis on use of the gamma function for copepod molting, 40 

we found simpler functions work equally well, but that prior use of incorrect molting rate functions 41 

in copepod models can seriously overestimate generation time. 42 

 43 

 44 
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 46 

   47 

Introduction 48 

   Development rate of copepods is a key factor regulating their population dynamics (Landry, 1978, 49 

1983; Mclean, 1978; Aksnes and Magnesen, 1983, 1988; Vidal and Smith, 1986; Davis, 1987).  50 

Numerous laboratory experiments have been conducted under controlled conditions with different 51 

temperatures and food concentrations to examine the growth and development of individual species 52 

(Miller et al., 1977; Corkett and McLaren, 1978; Landry, 1978; Vidal, 1980; Thompson, 1982; 53 

Davis, 1983, 1984a; Davis and Alatalo, 1987, Carlotti and Nival, 1991, 1992; Ban, 1994; Klein 54 

Breteler et al., 1994, 1995; Lee et al., 2003; Dzierbicka-Glowacka, 2004; Jimenez-Melero et al., 55 

2005). These experiments can be divided into two groups based on how the animals are raised. In 56 

the first group, copepods were reared in large containers with controlled temperature and food 57 

concentration. The experiment started with a cohort of eggs spawned over a short period of time 58 

(usually less than 24 hours).  At each sampling time, a small portion of well-mixed sample was 59 

taken from each container.  The sample was used to determine the stage composition of each 60 

culture and then was discarded. This method assumes the initial culture is large enough that the 61 

stage composition is not affected by sampling and that the sample size is large enough to reliably 62 

represent the culture.  In the second group of experiments, copepods were reared individually in 63 

small containers under different temperature and food conditions. The experiment was also started 64 

with eggs spawned within 24 hours of each other.  The stage of each animal was determined at 65 

each sample time.  Due to the increased amount of labor inherent in this method, the total number 66 

of copepods being monitored was usually much smaller than the first method. However, since this 67 

method monitored the age and stage of each individual in the culture, it provided the median stage 68 

duration experimentally, without a probability model, as well as providing the stage composition of 69 

the cohort.  70 

 71 

Different approaches have been proposed to estimate the median development time (MDT) from 72 

these experimental data (Landry, 1975, 1983; Uye, 1980, 1988; Vidal, 1980; Peterson and Painting, 73 

1990; Trujillo-Ortiz, 1990; Klein Breteler et al., 1994; Souissi et al., 1997; Souissi and Ban, 2001; 74 

Lee et al., 2003; Jimenez-Melero et al., 2005). The curve describing the proportion of the cohort in 75 

a given life stage versus cohort age (termed “cohort shape”, e.g., Fig. 1A) had a distinctive 76 
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asymmetry, with the mode smaller than the mean.  In addition, asymmetry was observed in the 77 

curve describing the frequency distribution for duration of a given life stage (termed “stage 78 

duration distribution”, e.g., Fig. 1B).  These two asymmetries have been attributed to individual 79 

variability in development time (e.g., Jimenez-Melero et al., 2005) and have often been confused 80 

with each other.  In this paper, we present results from an individual stochastic model of copepod 81 

molting rate, which demonstrates that there is no direct connection between the asymmetries in 82 

cohort shape and stage duration distribution.  83 

 84 

Laboratory results have been used in developing numerous models of copepod population 85 

dynamics (Wroblewski, 1980; Davis, 1984b,c; Sciandra, 1986; Jones and Henderson, 1987; 86 

Carlotti and Sciandra, 1989; Gaedke, 1990; Miller and Tande, 1993; Souissi and Nival, 1997; 87 

Plagányi et al., 1999; Souissi and Ban, 2001). These models can be divided into two categories, 88 

those with and those without age-classes in each stage (Souissi and Ban, 2001).   Despite the 89 

existence of numerous models, we found that the molting rate has yet to be correctly formulated. 90 

The problem is that in the population model, difference equations are formulated on the population 91 

in a certain developmental stage at each time step, while the PDF for molting obtained from 92 

laboratory experiments is based on the whole initial cohort.  For this reason, the laboratory-based 93 

PDF cannot be used directly in the population model. In this paper, we provide a corrected molting 94 

formula for population models, which can utilize the laboratory estimated PDFs.  Use of the proper 95 

molting formulation is important, since it can have a substantial impact on population dynamics. 96 

 97 

Methods 98 

 99 

To find the correct molting rate formulation, we fit distribution functions to copepod data from 100 

published laboratory studies.  We also developed an individual stochastic model (ISM), and used a 101 

200 age-within-stage class model, to study the effect of underlying molting rate functions on cohort 102 

development. 103 

 104 

We first fit probability functions to laboratory molting data for replicate cohorts of the copepod 105 

Pseudocalanus elongatus (Klein Breteler et al., 1994).  Abundance data for each cohort first were 106 

converted to the proportion in each developmental stage. An accumulation sum was calculated for 107 
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every observation time to obtain the proportion of animals which had not passed each 108 

developmental stage.  The resulting proportion in each stage was 1 minus the cumulative density 109 

function (CDF) of development time for that stage (Development time refers to cohort age, i.e. total 110 

age since birth, and is different from stage duration, which refers to the amount of time spent in a 111 

given stage).  According to the law of probability, this resulting function should be monotonically 112 

decreasing, but due to sampling error inherent in the laboratory experiments, data for the first 113 

cohort did not strictly follow this rule. We made a minor modification by setting the trailing data 114 

point to zero when violation of this rule occurred. The PDF was obtained from the resulting CDF.  115 

Finally, we used the functions normfit and gamfit in the Matlab (MathWorks, 2006) statistics 116 

toolbox to fit the PDF.  The resulting PDF can be used to calculate the MDT and probability of 117 

molting in population models.  118 

 119 

Normal, Gamma, and Lognormal distributions 120 

 121 

 The PDF of the normal distribution with mean, µ, and standard deviation, s, is the familiar 122 

Gaussian function of the following form: 123 

.  (1) 124 

The gamma distribution is also characterized by two parameters, called the shape parameter, k, 125 

and the scale parameter, q. The gamma distribution represents the sum of k exponentially 126 

distributed random variables, each of which has mean q.  The PDF of the gamma distribution can 127 

be expressed in terms of the gamma function: 128 

   for x>0, k>0 and q>0.  (2) 129 

 The gamma distribution is often written in terms of a shape parameter a=k and an inverse scale 130 

parameter b=1/q, also called a rate parameter: 131 

   for x>0.   (3) 132 

Due to its asymmetric property, the gamma distribution has been widely used to model the 133 

molting rate function of copepods (Klein Breteler, 1994; Souissi et al. 1997; Souissi and Ban 2001; 134 

Lee et al. 2003; Jimenez-Melero et al. 2005).  135 
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 136 

The lognormal distribution is the probability distribution of any random variable whose logarithm 137 

is normally distributed. A variable might be modeled as lognormal if it is the multiplicative product 138 

of many small independent factors. The lognormal distribution can be written in the following form: 139 

,    (4) 140 

 where µ and s are the mean and standard deviation of the variable’s logarithm. Carlotti and Nival 141 

(Carlotti and Nival, 1991) pointed out that the molting PDF of the copepod Temora stylifera 142 

follows a lognormal distribution (although they used a normal distribution to fit their data). 143 

 144 

 Individual stochastic model 145 

A simple stochastic model was constructed with S developmental stages and N individual animals. 146 

The mean and standard deviation of stage duration were obtained from laboratory experiments 147 

(Carlotti and Nival, 1991).  Normal, gamma, and lognormal distributions were used to simulate the 148 

molting probability for each stage.  The desired PDF and CDF were computed from these means 149 

and standard deviations of each developmental stage at the resolution of the model time step. The 150 

time step of 0.1 day was selected so that there were more than 10 time steps before an animal could 151 

molt to the next stage. The model was initialized such that all the animals were in the first 152 

developmental stage with age of 0. In every time step, each individual animal, ni, was evolved 153 

according to the following rules: 154 

1) generate a uniform random variable v between 0 and 1; 155 

2) if v < pm(ni(t).stage, ni(t).age) and ni(t).stage < S ,  then  156 

    (5a) 157 

    (5b) 158 

      else 159 

    (5c) 160 

   (5d) 161 

    3)  repeat steps 1) and 2) until a total of T steps was reached.   162 

Here i is the index of individuals, t is time, pm(s, a) is the molting probability of the individuals in 163 

stage s and age of a. Each animal ni has two attributes: its development stage and its age in that 164 
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stage. Thus, in the above notation, ni(t).stage and ni(t).age are the stage and age-within-stage, 165 

respectively, of an individual animal ni at time t. 166 

 167 

                                                                                                                    168 

 Age-within-stage model 169 

  We used an age-within-stage model developed by Davis (Davis, 1984b, c) for the copepod 170 

Pseudocalanus to verify our findings. The model includes 13 life stages: 1 egg stage, 6 naupliar 171 

stages, 6 copepodite stages, and the last stage being adult. The state variables (Ni,k) are the number 172 

of individuals which have been in stage i for k days. It evolves according to: 173 

Molting,  174 

   (6) 175 

Not molting, 176 

.  (7)  177 

Where t is time in days, and Pi,k is the probability of molting from stage i age k to stage i+1 age 0. 178 

The probability is calculated according to the formula described below, which is different from the 179 

normal CDF used (incorrectly) in Davis (Davis, 1984b, c).  Different PDFs (normal, gamma, 180 

lognormal) are used for comparison. Ki , the number of age classes in stage i, was 10 for stages 0-181 

11 and 80 for the adult stage, giving a total of 200 age-stage classes. For simplicity, we chose the 182 

survival rate, Si, to be 1 for all the stage classes in order to examine only the effects of molting.  We 183 

only compared the populations within 1 life-cycle, thus reproduction was not included in the model. 184 

    185 

    Derivation of corrected formulation for molting rate 186 

 The PDFs discussed above are all in terms of the proportion of the original population in a given 187 

life stage that will be molting at time t.  However, copepod population dynamics models are often 188 

formulated in terms of the remaining population that is still in stage s. A number of modelers used 189 

a within-stage CDF as the probability of molting in their models (Davis, 1984b, c; Soussi and Ban, 190 

2001).  In Davis (Davis, 984b,c), this CDF had a mean equal to the mean stage duration and a 191 

standard deviation of 0.1 times the mean, which with adjustment gave a reasonable generation time 192 

and spread of the cohort across life stages over time. The CDF, however, tells us what proportion 193 

of the original population has molted by time t, while, in the model, we need the proportion of 194 
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individuals remaining in a certain stage that will molt at time t.  It turns out there is a simple 195 

relationship between the PDF in terms of the original population (fo(t)) and the PDF in terms of the 196 

remaining population (fr(t)).  To be clear, we define “original population” as the total number of 197 

individuals passing through stage i, and the “remaining population” as the number of individuals 198 

remaining in stage i at time t.  The CDF, Fo(t), can be obtained from  fo(t) according to the 199 

following relationship:   200 

.     (8) 201 

 Then fr(t) can be calculated as, 202 

  .    (9) 203 

   204 

This corrected PDF, fr(t), then gives us the desired molting function for the model, and is the 205 

probability of molting for remaining individuals.  We will call this corrected molting function the 206 

Probability of Molting for Remaining animals (PMR) {explain}. 207 

 208 

Results 209 

 210 

 We fit Klein Breteler’s (Klein Breteler, 1994) data set with both a normal PDF and a gamma PDF 211 

(Fig. 2) and found very little difference between the two curves.  This finding was very interesting 212 

because the normal distribution was symmetric and the gamma distribution asymmetric.  The 213 

gamma distribution has been the dominant model used to fit laboratory experimental data, with a 214 

number of studies emphasizing the importance of using the gamma distribution rather than other 215 

distributions (Soussi and Ban, 2001; Jimenez-Melero et al., 2005).  216 

 217 

In order to further confirm our findings, we used a simple ISM with 4 life stages to determine the 218 

difference between gamma and normal molting PDFs on cohort development (with both PDFs 219 

having the same stage-specific mean and variance). The 4 stages included eggs, nauplii, 220 

copepodites CI-V, and adults (ENCA). Cohort shapes produced by the two models are very close to 221 

each other (Fig. 3), indicating little difference between the gamma and normal distribution as the 222 

molting PDF.  The modeling result is consistent with our finding on data fitting. In addition, both 223 

models yield asymmetrical cohort shapes (Fig. 3). This asymmetry is more evident in the later 224 

dxxftF
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stages (copepodites) than the earlier stages (nauplii), which is consistent with the laboratory results.  225 

The asymmetric cohort shapes seen in copepodites from both models appear very similar to the 226 

gamma distribution.  227 

 228 

 Not only have asymmetrical cohort shapes been observed in laboratory experiments, but 229 

asymmetrical molting rates have also been observed.  In order to explore the effect of the 230 

asymmetrical molting probability on population dynamics, we used experimental data from Carlotti 231 

and Nival (Carlotti and Nival, 1991). First, we fit normal, gamma, and lognormal distributions to 232 

data on Temora stylifera copepodites CIII-CV (from Fig. 2 in Carlotti and Nival, 1991) (Figs. 4A-233 

C). We found that none of the probability models fit the data very well. We used Pearson’s chi-234 

square test (Chernoff and Lehmann, 1954) to find the goodness of fit of these three probability 235 

models to the observed histogram data. The null hypothesis is that the observed histogram data 236 

come from the tested distributions. We found no significant fit for any of the models to the CIII (p 237 

<< 0.01 for all the models) or CV data (p <<0.01 for all the models). The gamma and lognormal 238 

distributions fit the CIV data significantly (a=0.05; p=0.57, 0.73 for gamma and lognormal 239 

respectively), while the normal distribution did not (a=0.05; p=0.03).   240 

 241 

We again used our ISM with the mean stage durations and standard deviations for Temora stylifera, 242 

stages CII-CV, taken from Table I of Carlotti and Nival (Carlotti and Nival, 1991), and used 243 

normal, gamma and lognormal distributions as molting PDFs (Fig. 5). We chose a time step of 0.1 244 

day and initialized the model with 1000 CII at age 0.  The stage cohorts from the three statistical 245 

models were not as close as in the hypothetical (ENCA ISM) case in Fig. 3, however, the 246 

differences among the three models were rather small compared to the standard deviations of the 247 

mean duration time from the laboratory experiments. In order to evaluate the results of different 248 

simulations, we compared the MDT predicted from the models to that from the laboratory 249 

experiment (Table I).  The difference between the models and the laboratory data were well below 250 

1 standard deviation of the laboratory experiment. It is interesting to note that the normal 251 

distribution was better at predicting the development time of CIV than the gamma and lognormal 252 

distributions (Table I). 253 

 254 
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The difference between the CDF and PMR as molting rate functions with normal versus gamma 255 

distributions is illustrated in Fig. 6. The CDFs were generated by Matlab functions normcdf and 256 

gamcdf.  The PDFs were calculated as the difference between consecutive values of CDFs. The 257 

PMRs were calculated according to Equation 9. The mean and standard deviation for Eurytemora 258 

affinis were from Table I (N1-N3 group, EXP1) of Souissi and Ban (2001). With this mean and 259 

standard deviation, using the CDF as the molting rate depressed the early molting rate (for both 260 

normal and gamma distributions) compared to the PMR (Fig. 6) 261 

 262 

In order to investigate how much delay was introduced by this treatment, we used the age-within-263 

stage model for Pseudocalanus developed by Davis (Davis, 1984b, c). The parameter values in 264 

Davis (Davis, 1984b, c) were used except we used the PMR as well as the CDF. The model used a 265 

total of 200 age-stage-classes. We grouped them into 4 developmental stages for plotting (Fig. 7). 266 

As expected from Fig. 6A, the CDF molting rate tended to delay each developmental rate 267 

compared to that of PMR. In order to quantify such delay, we compared the MDTs from the two 268 

models to experimental values (i.e. those from the laboratory experiments) (Table II). Our 269 

simulation showed that using the CDF as the molting rate could delay the MDT of Pseudocalanus 270 

more than 12 days. 271 

 272 

Discussion 273 

 274 

We started with data on stage frequency collected from cultured cohorts of Pseudocalanus 275 

elongatus by Klein Breteler et al. (Klein Breteler et al., 1994) and found that symmetrical and 276 

asymmetrical density functions fit the data equally well (they were nearly identical, Fig. 2). In 277 

order to explain asymmetrical cohort shapes found by Sciandra (Sciandra, 1986) for cultured 278 

copepods, we developed the ISM and simulated the molting rate. We found that the asymmetry in 279 

the cultured cohorts was due to the difference in variance of the stage duration for consecutive 280 

development stages. For example, the smaller variance in stage duration for nauplii than 281 

copepodites caused asymmetry in the cohort shape for copepodites (Fig. 3).  This ISM 282 

demonstrated that both symmetrical and asymmetrical PDFs can produce asymmetrical cohort 283 

shapes (Fig. 3).  The model also revealed that the asymmetry of the underlying molting function 284 

made little difference to the cohort shapes or the MDTs (Fig. 3). 285 
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 286 

 In order to explore the effect of the asymmetrical molting probability observed by Carlotti and 287 

Nival (Carlotti and Nival, 1991), we fit their histograms with normal, gamma and lognormal PDFs 288 

(Fig. 4). We found that the difference in median development time estimated from different 289 

probability models is less than 0.5 day, which is well below experimental error. We further used 290 

the simple ISM with the above normal, gamma, and lognormal PMRs and found that the three 291 

models yielded similar cohort shapes (Fig. 5). Furthermore, the normal  PMR model had a closer 292 

agreement to the MDT for copepodite stages from laboratory data than the gamma and lognormal 293 

PMR models.  294 

 295 

 The mean of the molting rate function determines when molting will happen, while variance 296 

controls how fast molting will proceed. For developing stages which are well separated, using an 297 

asymmetrical molting rate function only yields asymmetry on the rising curve of cohorts (i.e. the 298 

rising slope is different than the asymptotic slope).  The nature of asymmetry of cohorts is a result 299 

of the unequal variance between two consecutive stages.  For developing stages which are not well 300 

separated, the variances of two or more consecutive stages determine the cohort shape for a given 301 

stage. 302 

 303 

Neither symmetrical nor asymmetrical distributions fit very well the data on molting rates from the 304 

laboratory experiments in which copepods were reared individually.  We think there are several 305 

causes for this disagreement. First, due to the extensive amount of labor involved in an individual-306 

based experiment, the number of individuals raised was generally small and the sample errors for 307 

each time bin therefore were relatively large.  Thus there is a large amount of uncertainty in the 308 

histogram data (Fig. 4).  Second, the observation intervals were too large, which might have 309 

resulted in many animals molting within same time interval, making it almost impossible for a 310 

smooth PDF to fit the histogram data well.  Third, the molting rate histogram suggested that there 311 

might be two populations in each developmental stage, indicating that we need to use a mixture 312 

model to fit the molting histogram data instead of a unimodal density function.  313 

  314 

In summary, with the corrected formula of the molting PDF, what we have termed the PMR, we 315 

found that the specific shape of the molting density function was not as important as previous 316 
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studies of copepod models have emphasized. Both our data fitting and modeling results suggest 317 

that only the mean and standard deviation of the molting function were important in modeling 318 

copepod molting. Using the same mean and standard deviation, a simple probability distribution is 319 

able to do as well as a complicated one in modeling copepod population dynamics. Our finding 320 

suggests we can use a simpler statistical model for the probability function without sacrificing the 321 

quality of the model.  This correction is applicable to age-dependent copepod models, such as age-322 

within-stage models, individual stochastic models, and individual based models. 323 
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Appendix A  Derivation of corrected formulation of molting rate 454 

 455 

Suppose we have a molting probability density function , and its corresponding cumulative 456 

density function . At time t0, none of the animals has molted from stage k to 457 

stage k+1, and in n time steps, all the animals have molted from stage k to stage k+1. From the 458 

definition, corresponds to the proportion of the original 459 

population that will molt from stage k to stage k+1 from time to 460 

time , and corresponds to the 461 

proportion of the original population that has ALREADY molted to the next stage at time 462 

. From our definition, . At any time interval  to 463 

, the proportion of remaining animals are , and there is  464 

percentage of the original animals that will molt to next stage. Let the molting rate of the remaining 465 

animals be , then 466 

, i.e. 467 

. More generally, we have  468 

. 469 

 470 

  471 

Appendix B MATLAB code for generating corrected molting rate from stage frequency data 472 

Note parameters may vary with different experiment settings.  For experiment with error, data may 473 

need clean up before use following code.  474 

 475 

kdata =importdata(‘copepod.txt’); % load the frequency data 476 

age =kdata.p241(:,1); %  sampling time 477 

stage =size(kdata.p241,1) % number of stages 478 

t=0:.1:25;  % sampling interval of probability density function 479 

offset =5;  % initial age of animals before experiment 480 

for k=1:stage, 481 

)(tfo

ò ¥-=
t

oo dssftF )()(

))1((,),(),( 000 dtntfdttftf ooo ´-++ !

dtntdttt ´-++ )1(,,, 000 !

dtndttdtt ´´++ ,,2, 00 ! )(,),(),( 000 dtntFdttFtF ooo ´++ !

dtntdttt ´++ 000 ,,, ! 0)( 0 =tFo dtjt ´+0

dtjt ´++ )1(0 )(1 0 jtFo +- )( 0 dtjtfo ´+
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 rv=[]; histogram of stage duration time 482 

 pdf=kdata.p241(:,1+k)/sum(kdata.p241(:,1+k)); probability density function 483 

 for j=1:length(age), rv=[rv;age(j)*ones(round(1000*pdf(j)),1)]; end 484 

 [t1, t2] =gamfit(rv); % fit the histogram data with gamma distribution 485 

 fo(k, :)=gampdf(x,t1,t2); % probability density function of Gamma distribution for original 486 

population 487 

 Fo(k, :)=gamcdf(x,t1,t2); % cumulative density function of Gamma distribution 488 

 Fr(k, :)=fo(k, :))./(1-Fo(k,:)); % corrected molting probability density function 489 

end 490 

 491 

492 
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Table and Figure legends 493 

Table I  Differences in the expected and simulated MDT of copepodite Temora stylifera were 494 

below experimental error. The expected values were taken from Table I in Carlotti and Nival 495 

(Carlotti and Nival, 1991). The ISMs with normal, gamma and lognormal distribution, mean and 496 

standard deviation from Table I (Carlotti and Nival, 1991), were simulated. The MDTs were 497 

estimated as the time when 50% of the cohort had passed a given stage. PMR — Probability of 498 

Molting for Remaining animals (Eqn. 8). 499 

 500 

Table II   MDT of Pseudocalanus The expected values were obtained from Davis (Davis, 1984b, c). 501 

The age-within-stage model with normal distribution was simulated with the PMR (PDF) and the 502 

CDF (CDF) as molting rates. A delay in the MDT from the expected occurs when using the CDF, 503 

but not with the PDF.  The MDTs were estimated as the time when 50% of the cumulative 504 

population had past a given stage. 505 

 506 

Fig. 1 Diagram of a typical cohort shape (A) and a stage duration distribution (B) 507 

 508 

Fig. 2 Similarity between normal (dash lines) and gamma (dots) distributions fitted to 509 

Pseudocalanus elongatus data from Fig. 4 in Klein Breteler et al. (Klein Breteler et al., 1994).  510 

Data in his Fig. 4a and 4b are from replicate cultures.  The data points are plotted with different 511 

symbols for each developmental stage. Corresponding figures in Klein Breteler et al. (Klein 512 

Breteler et al., 1994): A) Fig. 4a female; B) Fig. 4a male; C) Fig. 4b female; D) Fig. 4b male. 513 

 514 

Fig. 3 Similarity between the results from simple ENCA ISMs with a normal (solid lines) and a 515 

gamma (circles) PMR molting functions. The mean and variance in the stage durations were the 516 

same for both normal and gamma distributions.  The four curves from left to right correspond to 517 

eggs, nauplii, copepodites CI-CV, and adults. 518 

 519 

Fig. 4 The poor fit of normal (circles), gamma (dashed), and lognormal (solid) distributions to 520 

laboratory data on Temora stylifera from Fig. 2A-C of Carlotti and Nival (Carlotti and Nival, 1991).  521 

A) stage CIII; B) stage CIV; C) stage CV   522 

 523 
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Fig. 5 Comparison of results from ISMs with a normal (solid lines), a gamma (circles), and a 524 

lognormal (dots) distribution as the PMR molting function.  The means and standard deviations for 525 

the stage durations (CII-CV) were taken from Table I in Carlotti and Nival (Carlotti and Nival, 526 

1991).  The ISMs were initialized with 1000 individuals in stage CII. The five stages are, from left 527 

to right, CII, CIII, CIV, CV, and adults respectively.  528 

 529 

Fig. 6  Comparison of CDF (solid), PDF (dot-dashed), and PMR (dashed) molting rate functions 530 

using normal (A) and gamma (B) distributions.  531 

 532 

Fig. 7 Simulated populations using a 200 age-within-stage class model. Normal CDF (solid lines), 533 

gamma CDF (dots), normal PMR (dashed lines), and gamma PMR (diamonds). Both normal and 534 

gamma CDF models overestimated the MDT significantly (cf. Table II).  535 

 536 

537 
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Table I 538 

Life Stage MDT (Days) 

Expected Normal PMR Gamma PMR Lognormal PMR 

CII 2.25 2.25 2.17 2.20 

CIII 4.31 4.37 4.01 4.02 

CIV 6.82 6.90 6.48 6.42 

CV 9.95 10.01 9.60 9.55 

 539 

 540 

Table II 541 

Life Stage MDT (Days) 

Expected PMR CDF 

Egg 4.34 4.77 5.76 

N1-N6 20.99 21.73 28.70 

C1-C5 42.71 43.49 55.39 

542 
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