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Impact of the Implementation of MPI Point-to-Point
Communications on the Performance of Two General Sparse
Solvers*

Patrick R. Amestoy! [ain S. Dufff Jean-Yves L’Excellent? and Xiaoye S. Li¥

October 19, 2001

Abstract

We examine the send and receive mechanisms of MPI and how to implement message
passing robustly so that performance is not significantly affected by changes to the
MPI system. We discuss this within the context of two different parallel algorithms
for sparse Gaussian elimination: a multifrontal solver (MUMPS), and a supernodal one
(SuperLU). The performance of our initial strategies based on simple MPI point-to-point
communication primitives is very sensitive to the MPI system, particularly the way MPI
buffers are used. Using more sophisticated nonblocking communication primitives
improves the performance robustness and scalability, but at the cost of increased code
complexity.
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1 Introduction

This paper discusses our understanding and experience of using MPI for message passing
in the context of the implementation of sparse direct solvers on multiprocessor machines.
In particular, we study ways of making the message passing much more robust with
respect to MPI system releases or use of MPI internal buffers and consider in detail the
kind of algorithmic changes that are required to enable this robustness. We feel that
the lessons that we have learned are very useful to share with the community who use
MPI for message passing in addition to those writing sophisticated numerical packages for
distributed memory machines.

The direct solution of sparse linear systems using (Gaussian elimination has a clear
advantage over iterative methods in terms of numerical robustness and it remains the
method-of-choice for many ill-conditioned systems. However, it is very challenging
to implement such methods efficiently even on a single processor never mind on
multiprocessor machines. Omne of the main reasons is because of fill-in in the matrix
factorization. Moreover, numerical pivoting will involve dynamically tracking the fill-
ins that are generated in somewhat unpredictable way. Handling highly irregular data
access and computation is further compounded by sophisticated computer architectures
with several layers of memory hierarchy. We have parallelized two different algorithms
to perform sparse (Gaussian elimination for distributed memory architectures where
communication is by message passing using MPI. One is a multifrontal solver called
MUMPS [3, 1], the other is a supernodal solver called SuperLU [9]. MUMPS and SuperLU use
different algorithms but are representative of a wide range of sparse direct solvers. With
regard to parallelization, MUMPS adopts a fully asynchronous approach, whereas SuperLU
uses a loosely synchronous approach. Despite the differences, we found that their parallel
performance was influenced by the MPI implementation in somewhat similar way. A
detailed quantitative comparison of the two solvers has appeared elsewhere [4]. In this
paper, we focus only on the factorization phase in which the performance is affected most
by the MPI implementation.

In both solvers, the initial parallel strategies were based on simple MPI point-to-
point communication primitives. With such approaches, the parallel performance of both
codes is very sensitive to the MPI implementation, the use of the MPI internal buffer in
particular. We then modified our codes to use more sophisticated nonblocking versions of
MPI communication. This significantly improved the performance robustness (independent
of the MPI buffering mechanism) and scalability, but at the cost of the increased code
complexity.

The rest of the paper is organized as follows. Section 2 gives the characteristics of our
parallel algorithms and presents the test environment used. In Section 3 we discuss the
MPI point-to-point communication primitives used in the solvers. We discuss these aspects
in detail for MUMPS in Section 4 and for SuperLU in Section 5. In Section 6, we present
some general conclusions.

2 Parallel algorithms and test environment

The multifrontal algorithm used in MUMPS and the supernodal algorithm used in SuperLU
are two representative algorithms to perform sparse Gaussian elimination. In this section,



we briefly describe the main characteristics of the algorithms and highlight the major
differences between them.

Both algorithms can be described by a computational graph [7] whose nodes represent
computations and whose edges represent transfer of data. In the case of the multifrontal
method, MUMPS, this graph is a tree. Some steps of Gaussian elimination are performed on
a dense frontal matrix at each node of the tree and the Schur complement (or contribution
block) that remains is passed for assembly at the parent node. In the case of the supernodal
code, SuperLU, the distributed memory version uses a right-looking formulation which,
having computed the factorization of a block of columns then immediately sends the data
to update the block columns in the trailing submatrix.

There are some common aspects in both solvers. Firstly, in the preprocessing phase,
we first use row or column permutations to permute large entries onto the diagonal (the
code for this is MC64 from HSL [8]). For MUMPS, it reduces the number of off-diagonal pivots
and the number of delayed pivots and may also increase the structural symmetry. For
SuperLU, it should reduce the need for small diagonal perturbations and the number of
iterative refinement steps. After this step, a symmetric ordering (e.g., minimum degree or
nested dissection based on the graph of A + AT) is used to preserve sparsity. Secondly, in
the postprocessing phase, iterative refinement can be invoked to improve the accuracy of
the solution. MUMPS rarely needs it; SuperLU sometimes needs it, and one step of refinement
often suffices.

The main differences between the two codes lie in the factorization phase. These are
outlined below:

e MUMPS

— multifrontal based on elimination tree [10] of A 4+ AT
— partial threshold pivoting

— partial static mapping using elimination tree (1D for the frontal matrices and
2D for the root)

— asynchronous, dynamic distributed scheduling (in part because of the fact
that numerical pivoting causes a delay in pivot selection with consequent
modification of data structures during the numerical factorization).

e SuperLU

supernodal fan-out based on elimination DAGs [7]
— static pivoting with possible half-precision perturbations on the diagonal
— static 2D irregular block-cyclic mapping using supernode structure
— loosely synchronous scheduling with pipelining.
Throughout this paper, we will use a set of test problems to illustrate the performance

of our algorithms. Our test matrices come from the forthcoming Rutherford-Boeing Sparse
Matrix Collection [6] !, the industrial partners of the PARASOL Project?, and the EECS

Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2EU ESPRIT IV LTR Project 20160



Department of UC Berkeley®. The PARASOL test matrices are available from Parallab,
Bergen, Norway™.

Real Unsymmetric Assembled (RUA)

Matrix name | Order | No. of entries | StrSym®™) | Origin

BBMAT 38744 1771722 0.54 Rutherford-Boeing (CFD)
ECL32 51993 380415 0.93 EECS Department of UC Berkeley
INVEXTR1 30412 1793881 0.97 PARASOL (Polyflow S.A.)
MIXTANK 29957 1995041 1.00 PARASOL (Polyflow S.A.)

Real Symmetric Assembled (RSA)

Matrix name | Order No. of entries Origin

BMWCRA_1 | 148770 5396386 PARASOL (MSC.Software)
BMW3_2 227362 5757996 PARASOL (MSC.Software)
CRANKSG2 63838 7106348 PARASOL (MSC.Software)
sa1p_003 121728 4103881 PARASOL (Det Norske Veritas)

Table 1: Test matrices. *) StrSym is the number of nonzeros matched by nonzeros
in symmetric locations divided by the total number of entries (so that a structurally
symmetric matrix has value 1.0).

Note that SuperLU cannot exploit the symmetry and is unable to produce an LDL”
factorization. So symmetric matrices are only used for performance results with MUMPS.
Matrices MixTank and INVEXTR1 have been modified because of underflow values in the
matrix files. To keep the same sparsity pattern, we have replaced all entries with exponents
smaller than -300 by numbers with the same mantissa but with exponents of -300. For
each linear system, the right-hand side vector is generated so that the true solution is a
vector of all ones.

All results presented in this paper have been obtained on the Cray T3E-900 (512
DEC EV-5 processors, 256 Mbytes of memory per processor, 900 peak Megaflop
rate per processor) from NERSC at Lawrence Berkeley National Laboratory. The
peak interprocessor communication bandwidth is 300 Mbytes/s, and the latency is 4
microseconds. Although we only study the results on this one machine, our codes are
designed to be portable to any system supporting MPI and indeed have been run on many
other systems. For the purposes of this exercise, it suffices to study the performance on
this one machine since the buffering ideas are common to all MPI implementations even
if the quantification of the effects, as well as the precise implementation of nonblocking
communications may vary.

3 MPI point-to-point communication

In both solvers, the factorization algorithms almost only use MPI point-to-point
communication primitives, that is, one process sends a message and another
process receives the message. The send and receive operations are either blocking
(mpi_send/mpi.recv) or nonblocking (mpi_isend/mpi_irecv). In the blocking version, the

*Matrix ECL32 is included in the Rutherford-Boeing Collection
*Web page http://www.parallab.uib.no/parasol/



send call blocks until the send buffer can be reclaimed, and the receive call blocks until
the receive buffer contains the message. The nonblocking functions come in two parts: the
posting functions that initiate the operations and the test-for-completion functions that
complete the requested operations. This allows the possible overlap of message transmittal
with computation, or the overlap of multiple message transmittals with one another.

However, the actual semantics of the primitives depend on the underlying protocols
that implement them. This usually amounts to a trade-off between buffering/copying and
synchronization. For example, if a protocol attempts to minimize buffering and copying
of data, the semantics for blocking calls might be handshaking. But if a protocol attempts
to minimize a process’ amount of blocking time, it might use buffering semantics. Here is
how the MPI standard defines mpi_send semantics [11, pp. 32]:

“... It does not return until the message data and envelope have been safely
stored away so that the sender is free to access and overwrite the send buffer.
... The message might be copied directly into the matching receiver buffer, or
it might be copied into a temporary system buffer. In the first case, the send
call will not complete until a matching receive call occurs. In the second case,
the send call may return ahead of the matching receive call, allowing a single-
threaded process to continue with its computation. The MPI implementation
may make either of these choices. It might block the sender or it might buffer
the data. ”

Very often, an MPI implementor chooses to use two different protocols depending on
the length of the message:

e Short protocol (eager protocol) for small messages.
The sender copies the data into the system buffer, and returns immediately without
waiting for the matching receive. The additional copying usually increases the
message transfer overhead. However, in many asynchronous algorithms the effect
of this overhead may be greatly reduced by overlapping the computation with the
communication.

e Long protocol for large messages.
The sender first sends a “request-to-send” message to the receiver, then waits for the
receiver to send back a “ready-to-receive” message. The sender now transmits the
message data directly into the receiver’s user space without buffering. This protocol
requires handshaking of the sender and receiver, but the message transfer overhead is
smaller than for the short protocol because we do not pay the extra cost of copying.

Although with the short protocol, there is an extra cost associated with copying,
if the algorithm is well designed, this cost can be offset by the overlapped computations.
Whether a message is short or long is usually determined by its size relative to a threshold.
For example, on the Cray T3E, the user may adjust this by setting an environment variable
MPI BUFFER MAX. If a message length exceeds this value, the long protocol will be used;
otherwise, the short protocol with an internal MPI buffer is used. Table 2 lists the default
values of MPT _BUFFER MAX with various versions of the MPT implementation in the Cray’s
Message Passing Toolkit (MPT). Note that, on the T3E, the total amount of memory
available for message buffering (maximum size for internal MPI buffers on one processor)



is controlled by MPI_BUFFER_TOTAL which is, by default, unlimited. The memory used for
MPI internal buffers will then depend on the size and amount of short messages waiting to
be received, and could be large depending on MPI_BUFFER MAX.

Note that we refer here to MPI internal buffers. There can also be a buffer defined by
the user which may be a separate staging area or may be directly in the working space of
the user process. In the following, we will always prefix the term buffer by MPT when we
mean the MPI internal buffers so that the use of the term buffer, without this prefix, will
always refer to the user-defined buffer space.

MPT version Year default MPI_BUFFER_MAX
1.3.0.3 September, 1999 unlimited
1.3.04 February, 2000 4 Kbytes
1.4.0.0 August, 2000 0

Table 2: MPI default message length under which the short protocol is used on the Cray

T3E.

In this paragraph, we recall what is specific to a CRAY T3E implementation of
MPI communications that will be relevant to the analysis of the performance of our
sparse solvers. We focus on the differences between standard blocking communications
(mpi_send and mpi_recv) and nonblocking communications (mpi_isend and mpi_irecv). On
the CRAY T3E, only MPI receive buffers (no MPI send buffer) are used to implement the
short protocol. If the message length is smaller than MPI_BUFFER_MAX (see default value in
Table 2), then the sender writes directly in the MPI receive buffer of the destination process.
Note that this will occur independently of the way the send is actually performed (mpi_send
or mpi_isend) and the receiver performs the reception (mpi_recv or mpi_irecv). When the
receive process actually issues a reception, only copying from the MPI buffer to the user
space will be involved. For large messages (larger than MPI_BUFFER_MAX) then no MPI buffer
is used. The communication of the effective data will only start when the receiver posts the
receive instruction (mpi_recv or mpi_irecv). Note that with a threshold MPI_BUFFER_MAX
set to “unlimited”, we would expect communications based on standard sends and
receives (mpi_send and mpi.recv) to perform very similarly to asynchronous immediate
communications (mpi_isend and mpi_irecv). However, with immediate communications,
performance should not depend on MPI buffering and, if MPI_BUFFER MAX is set to 0, the
memory associated with the MPI buffer and the copy from the MPI buffer to the user space
could be avoided.

4 MPI tuning for MUMPS

The initial version of MUMPS will be referred to as Version 4.0 whereas the modified version
will be referred to as Version 4.1.

In Version 4.0, the communications are fully asynchronous and are based on an
immediate send (mpi_isend). The receiver normally matches the asynchronous send with
a test for the availability of the message, potentially followed by an effective reception
of the message (mpi_recv). A problem with this mechanism occurs for large messages.
In this case, independently of the time difference between the issue of the send and



the issue of the receive, almost all the data to be exchanged will start to be sent only
when the receive process actually issues a receive instruction providing the user space
required for the communication to proceed. This can very significantly affect the potential
algorithmic overlapping between computation and communication, and thus delay the
effective reception of messages. However, if we can use an immediate receive (mpi_irecv),
which can ideally be interpreted as having a separate “spawned” process implementing the
reception, the reception can progress in parallel with the process that issued the mpi_irecv,
so that potentially the receive can have completed (that is the complete message is available
in the user space of the process issuing the mpi_irecv) at the time when we test for the
availability of the message. Note that, by doing so, when the MPI buffer is used (short
protocol) we have also overlapped the copying from the MPI buffer to the user space.

We illustrate, in Table 3, the impact of the MPI BUFFER MAX threshold on the
performance of our algorithm on a large matrix from our test set. The standard receive
(mpi_recv) is used to match the immediate send mpi_isend. Onme first sees that, on our

MPI_BUFFER MAX (in bytes)
0 128 512 1K 4K ® 64K 512K 2Mega 8Mega
37.7 37.0 37.4 383 37.6 32.8 283 264 264

Table 3: Influence of MPI_BUFFER MAX on the time (in seconds) for the factorization of
matrix CRANKSG2 on 8 processors. mpi_recv is used to match mpi_isend. *) default value
with version MPT 1.3.0.4.

example, the protocol used for communication (short or long) strongly influences the
factorization time. Secondly, with the Version 1.3.0.4 default value of MPI _BUFFER MAX
(4 Kbytes), the use of a standard receive (mpi_recv) to match an immediate asynchronous
send (mpi_isend) does not lead to a good overlapping of communication with computation.
As we explained before, matching the immediate sends (mpi_isend) with immediate receives
(mpi_irecv) should address both issues (that is, independence with respect to the protocol
used and communication overlapping).

Although, in the context of MUMPS, the use of an immediate receive seems quite natural,
we explain in Section 4.1, why it required more algorithmic developments than might have
been expected. The main issue with using an immediate receive in our very asynchronous
environment is that we cannot tell a priori which message we are receiving. That is, the
mpi_irecv request must be sent to receive any type of message from any source. In our
implementation, we avoid some possible added complications by restricting ourselves to
a single mpi_irecv pending request. In Section 4.2, we study in more detail the benefit
coming from our main algorithmic modification (that is, the use of asynchronous immediate
receives) and explain the performance gains. We study the performance obtained on
large symmetric and unsymmetric matrices and illustrate, using vampir traces, the gains
obtained on one of our largest problems.

4.1 Introducing immediate receives during factorization

In this section, we describe the modifications required for our introduction of asynchronous
immediate receives in MUMPS Version 4.0. For the sake of clarity, we first describe how we



modify the reception of messages involved during dynamic scheduling. We then show how
to modify this solution to handle all type of receptions involved in the MUMPS code.

As we mentioned in the previous sections, in MUMPS Version 4.0, communications
are asynchronous. They are based on immediate sends with explicit buffering in user
space. A Fortran module was designed for this purpose and is briefly described in [3].
On the destination process, the reception of the messages will be the key point for the
synchronization and scheduling of the work. In fact, message reception can be invoked in
the following three situations :

1. Dynamic scheduling:
Blocking and non-blocking receives are used to drive the scheduling of the tasks on
each process.

2. Task ordering:
A process may have to receive and treat a “late” message to be able to finish its
current task.

3. Insufficient space in send buffer:
To avoid deadlock, the corresponding process tries to receive messages until space
becomes available in its local send buffer.

In order to avoid the drawback of centralised scheduling, MUMPS uses distributed
dynamic scheduling: all tasks ready to be activated by a process are stored in a pool
of tasks local to the process. Each process then executes Algorithm 1.

Algorithm 1 Dynamic scheduling

While not all nodes processed
If [ local pool empty | Then
blocking receive for a message; process the message
Else If [ message available ( — mpi_iprobe — ) | then
receive and process message
Else
extract work from the pool, and process it
End If
End While

To modify the dynamic scheduling algorithm in the context of immediate receives, we
introduce in Algorithm 2 the procedure Try_to_receive_and_process_message for which the
parameter blocking indicates whether we want to wait for the arrival of a message or not.

The procedure Try_to_receive_and_process_message is described by Algorithm 3. We
differentiate between the cases of a receive request pending and of the blocking wait for a
message. Finally, we always receive all short messages related to dynamic scheduling (one
integer holding the updated load of the other processes) that are ready to be received before
reactivating an immediate receive request. This information is used so that tasks generated
during the computation can dynamically be affected to the less loaded processes, where
the load of a process is defined as the total number of operations ready to be performed on



Algorithm 2 Dynamic scheduling with immediate receive

While not all nodes processed
blocking = false
If [local pool empty | blocking = true
Try_to_receive_and_process_message ( blocking )
If [ no message received and pool not empty | Then
extract work from the pool and process it
End If
End While

this process. In fact, since a maximum of one mpi_irecv request is pending at a given time,
part of the benefit of issuing mpi_irecv might be lost if one does not force, at this point of
the algorithm, the reception of these short and trivial to process messages (in fact, they
are really used to emulate an mpi_put in a portable way). If we take the example of a large
message following a single dynamic scheduling message then, until the small message is
processed, it is not possible to have the mpi_irecv active on the large message. The start
of the mpi_irecv on the large message is thus postponed which might cause a delay in the
sending process because of situation 3. A delay in the sender could then cascade causing
a blocking receive because of a “late message” as in situation 2. An immediate receive
request will thus be issued each time a message is received and processed.

Algorithm 3 Try_to_receive_and_process_message ( blocking )

If [ Receive request pending | Then
If [ blocking | Then
Wait for the end of pending receive request (— mpi_wait -)
Process message
Else If [ Message in buffer (- mpi_test -) | Then
Process message
End If
Else
If [ blocking | Then
Blocking receive for any message ( — mpi_recv —)
Process message
Else If [ Message ready to be received ( — mpi_iprobe —) | Then
Receive message in buffer (— mpi_recv — )
Process message
End If
End If
If [ No receive request pending | Then
process all ready-to-be-received short messages related to the load of other processes
Reactivate an immediate receive request (— mpi_irecv — )

End If



Actually, Algorithm 3 should also be designed to handle messages corresponding to
situation 2 (task ordering). During task ordering, we need to perform a blocking receive
on a so called “late message”. Such cases are illustrated in [2, 3] and are due to the
fact that, although the algorithm is asynchronous, we still have to maintain a partial
order between the tasks. Our asynchronous algorithm has been designed so that, when
a “late message” needs to be received, we can guarantee that this message has already
been sent. A blocking receive on this message can thus safely be performed. Note that in
Algorithm 3, the parameter blocking only specifies that we are blocked until the reception
of any message.

The main difficulty introduced by the use of a blocking receive on a given message in
Algorithm 3 is that a “wrong” message might already be in our receive buffer because
of an asynchronous pending receive request. Algorithm 4 shows how we have modified
Algorithm 3 to solve this problem. An additional parameter LateMessage has been
introduced to characterise the expected message. Combined with blocking set to true,
LateMessage indicates the type of message (process source and message label) that is
expected. Setting LateMessage to “any message” will enable us to perform a blocking
receive on any message as required by the dynamic scheduling Algorithm 2.

For the sake of clarity, two new local variables have been introduced in Algorithm 4.
MessRecv indicates that a message has been received during the pending receive request.
RightMessage is true when the message received is the expected one (that is has the same
characteristics as LateMessage). Comments are in parentheses using small and slanted
fonts. Note that, if LateMessage is true in a call to Algorithm 4, then blocking must
also be true.

Between lines 5 and 8 of the algorithm we are, in the case mentioned before, in the
situation of having already received a message in our local buffer which is not the expected
one. Since we know that the expected message has been sent we can do a blocking probe
on the expected message (line 7) and force the current process to wait for the availability
of the late message before processing the current message in the buffer. This will enable
us to perform a non-blocking probe on the expected message at line 16 and conclude at
line 18 that the message must have been processed if it is not ready to be received. In
fact, we must also guarantee that the expected message has not be stored in the receive
buffer by an immediate receive request. Therefore, we must be sure that between lines 7
and 16 another immediate receive has not been issued. The only place which could cause
the activation of an immediate receive is at line 13 where Algorithm 4 might be called
recursively. A receive can be issued during the processing of almost any message giving
rise to a situation 2 (task ordering) or 3 (insufficient space in the send buffer). To avoid
such an occurrence, we suspend the activation of immediate receives at line 12 and only
reactivate it again at line 15. At line 31, we must then test whether activation of an
immediate receive is authorised.

One final minor problem introduced by the use of immediate receive is that it must now
be the responsibility of the sending process to decide if the receive buffer of the destination
process is large enough to process it. In Version 4.0 of the code, the destination process
always checked the size of the message to be received before receiving it. The maximum
size of the receive buffer can only be estimated during the analysis phase because of the
delay in selecting pivots caused by numerical pivoting for stability.

Using immediate receive, we explain in the following why one can expect better



Algorithm 4 Try_to_receive_and_process_message( blocking, LateMessage )
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MessRecv=false; RightMessage=true
If [ Receive request pending | Then
If [ blocking | Then

Wait for the end of pending request; (— mpi_wait — )
MessRecv=true ( — message is in buffer — )
If [ The message received # LateMessage | Then
RightMessage=false
Blocking probe for expected message ( — mpi_probe — )
End If
Else If [ Message in buffer | MessRecv=true
End If

If [ MessRecv | Then
If [ Not RightMessage | Suppress activation of immediate receive
Process the message already in buffer
If [ Not RightMessage | Then
Re-authorise activation of immediate receive
If [ LateMessage ready to be received (— mpi_iprobe — ) | Then
Receive and process it
Else (* expected message is already received and processed — )

End If
End If
End If
. Else
If [ blocking | Then
Blocking receive for any message ( — mpi_reco —)
Process message
Else If | Message ready to be received ( — mpi_iprobe —) | Then
Receive message in buffer (— mpi_recv — )
Process message
End If
. End If
. If [ No receive request pending and Immediate receive authorised | Then
Receive and process all ready-to-be-received messages related to dynamic scheduling
Reactivate an immediate receive request (— mpi_irecv — )

End If

10



overlapping of communication and computation. In this context, a message is said to
be large if it is larger than MPI _BUFFER MAX. For large messages, we see two reasons for
obtaining an improvement. (For short messages we do not expect much improvement.)
First, with no immediate receive, if a large message is to be received then the message
might actually finish being transferred/sent only when the receiver actually performs the
reception. Second, using immediate receive, the space in the send buffer becomes free
earlier. Less idle time in the sending process, as in situation 3, might be expected if the
send buffer is not saturated.

4.2 Performance analysis

Matrix Ordering | mpi_irecv Number of processors
4 8 16 32 64
BMWCRA_1l | MeTiS OFF — — 24.7 20.4 114
ON — — 22.7 16.6 9.6
BMW3_2 MeTiS OFF — | 246 16.4 9.2 6.2
ON — | 226 15.9 8.2 5.7
CRANKSG2 | MeTiS OFF — | 37.6 22.1 13.3 8.9
ON — | 264 18.1 11.3 8.0
sHip_003 MeTiS OFF — — 37.3 24.5 17.9
ON — — 30.8 21.1 15.7
BBMAT AMD OFF 46.0 | 25.7 19.9 17.2 12.9
ON 45.2 | 24.7 18.0 15.2 12.5
ECL32 AMD OFF 56.7| 38.4 26.5 19.9 15.3
ON 54.0| 35.4 23.4 18.4 15.7
INVEXTR1 | AMD OFF 3771 26.9 19.4 21.6 20.0
ON 36.8| 25.6 19.5 21.3 18.9
MIXTANK AMD OFF 57.3 36.7 25.4 23.2 17.1
ON 52.9| 33.5 24.1 19.7 16.9

Table 4: Influence of the use of mpi_irecv on the time (in seconds) for factorization of
MUMPS using MPT version 1.3.0.4 (MPI_BUFFER_MAX is 4K bytes). — means not enough
memory.

On our largest test matrices we show, in Table 4, the impact of using immediate
receive during the factorization phase. MUMPS with the same tuning of machine dependent
parameters has been used to get all the results (with and without immediate receive)
reported in Table 4. The default size of our send buffer is twice the size of the largest
message. The results shown in this section were obtained with release 1.3.0.4 of the
CRAY operating system for which the threshold under which messages are buffered
(IVIPI_BUFFER_IVIAX) is 4 Kbytes.

One can see that usually relatively larger gains are obtained on a smaller number
of processors. Symmetric matrices seem to benefit more from this modification. Node
parallelism involves a relatively larger number of messages on symmetric matrices than
on unsymmetric matrices that might saturate more the send buffer and the internal MPI
buffers.

In Table 5, we show the maximum size of the messages and the average volume of
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Matrix Ordering | Number of processors
4 | 8 |16 [32]64
Maximum message size
BMWCRA_l | MeTiS — | — | 73|27]|22
BMW3_2 MeTiS — 1100 22(1.2]1.3
CRANKSG2 | MeliS — | 7.014.0(21|1.6
saip_003 MeTis — | —|5h6]26]2.1
BBMAT AMD 48| 3.0 26|25]24
ECL32 AMD 129 6.1 3.4(3.4|3.2
INVEXTR1 | AMD 72| 51| 34128|25
MIXTANK AMD 16.0] 7.3]14.313.9(3.9
Average Communication volume
BMWCRA_l | MeTiS — | — 34| 33| 18
BMW3_2 MeTisS — | 25| 25| 17| 9
CRANKSG2 | MeTiS — | 31| 30| 23| 18
sair_003 MeTisS — | —| 65| 60| 34
BBMAT AMD 35| 35| 33| 32| 19
ECL32 AMD 64| 63| 56| 45| 26
INVEXTR1 | AMD 60| 43| 33| 28| 15
MIXTANK AMD 771 1151109 93| 51

Table 5: Maximum message size (in Mbytes) and average volume of communication per
processor (in Mbytes) during factorization. — means not enough memory.

communication. One can see that, because of node level parallelism, the maximum size of
the messages generally decreases when increasing the number of processors [1]. It explains
why, for a fixed problem, larger relative gains are obtained in Table 4 on a smaller number
of processors. We also see that the total volume of messages can also be a good indicator
of the gain that can be expected from the use of immediate receives.

To further analyse the gain due to the use of immediate receives, we show in Figures 1
and 2 the execution traces for the factorization of matrix craNksG2 (using 8 processors of
the CRAY T3E). Messages have been suppressed to see better the proportion of execution
time used by MPI communications. One can see that MPI takes significantly more time
when immediate receive is off than when it is on. The summary chart of the same traces
in Figure 3 shows that using immediate receives reduces the time spent in MPI calls by
almost a factor of three.

To conclude this study, we show (compare the results in Tables 3 and 6), as one
might expect from the previous discussion, that the new code based on immediate receives
(mpi_irecv) is very much less sensitive to the use of the internal MPI buffer than the initial
version based on standard receives (mpi_recv).

12



Figure 1: Immediate receive OFF; Trace of the factorization phase of matrix cranksG2
using 8 processors of the CRAY T3E with MPI_BUFFER MAX set to 4Kbytes. Black areas
correspond to the time spent in MPI.
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Figure 2: Immediate receive ON; Trace of the factorization phase of matrix crRANKSG2
using 8 processors of the CRAY T3E with MPI_BUFFER MAX set to 4Kbytes. Black areas
correspond to the time spent in MPI.
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Figure 3: Summary chart on the use of immediate receive during the MUMPS factorization
phase (Matrix craNksG2, ND ordering, 8 processors with MPI_BUFFER_MAX set to 4Kbytes).
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MPI_BUFFER MAX (in bytes)
0 128 512 1K 4K ®) 64K 512K 2Mega 8Mega
27.1 27.3 265 26.6 264 262 262 264 262 |

Table 6: Influence of MPI_BUFFER MAX on the time (in seconds) for the factorization of
matrix cRANKsG2 on 8 processors using MPT version 1.3.0.4. mpi_irecv is used to match
mpi_isend. *) default value on the CRAY T3E.

5 MPI tuning for SuperLU

5.1 Static partition

In order to understand the parallel factorization algorithm used in SuperLU, we first explain
how we partition the matrix into blocks of submatrices, and how the blocks are assigned
to the processes.

Our matrix partitioning is based on the notion of an unsymmetric supernode introduced
in [5]. The supernode is defined over the matrix factor L. A supernode is a range (7 : s)
of columns of L with the triangular block just below the diagonal being full, and the same
nonzero structure elsewhere (this is either full or zero). This supernode partition is used
as the block partition in both row and column dimensions. If there are N supernodes
in an n-by-n matrix, there will be N2 blocks of non-uniform size. Figure 4 illustrates
such a block partition. The off-diagonal blocks may be rectangular and may not be full.
Furthermore, the columns in a block of U do not necessarily have the same row structure.
We call a dense subvector in a block of U a segment. The P processes are also arranged
as a 2D mesh of dimension P, x P. = P. By block-cyclic layout, we mean block (/,.J)
(of L or U) is mapped onto the process at coordinate ((/ — 1) mod P, (J — 1) mod
P.) of the process mesh. During the factorization, block L(I,.J) is only needed by the
processes on the process row ((I — 1) mod P,). Similarly, block U(7,.J) is only needed by
the processes on the process column ((J —1) mod P.). This partitioning and mapping can
be controlled by the user. First, the user can set the mazimum block size parameter. The
symbolic factorization algorithm identifies supernodes, and chops the large supernodes
into smaller ones if their sizes exceed this parameter. The supernodes may be smaller
than this parameter due to sparsity and the blocks are then formed along the supernode
boundaries. Second, the user can set the shape of the process grid, such as 2 x 3 or 3 x 2.
Better performance is obtained when we keep the process row dimension slightly smaller
than the process column dimension.

5.2 Pipelining and nonblocking send and receive

In this subsection, we first describe in detail how the parallel factorization algorithm
utilizes the pipeline effect. Then we discuss how to improve the performance robustness
by introducing immediate sends and receives. The following notation will be used in
Figures 5 and 6, and throughout the discussion. Matlab notation is used for integer ranges
and submatrices.

e Process IDs
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Figure 4: The 2D block-cyclic layout and the data structure used in SuperLU.

Global Matrix Process Mest

12 01 20 012
01 ﬂoﬂ 1J2 o
3FF 5 45 3

— PROC(K) : the set of column processes that own block column K

For example, in Figure 4, PROC.(3) = PROC.(6) = {2,5}.

PROC,(K) : the set of row processes that own block row K
For example, in Figure 4, PROC,(1) = PROC,(3) = {0,1,2}.

— Pg41 @ the process in PROC.(K +1)N PROC,(K +1)

— me : the process rank as illustrated in Figure 4

o Tasks labelled in Figure 6

— F (...) : Factorize a block column or a block row®
— S (...) : Send a block column or a block row
— R (...) : Receive a block column or a block row

— U®)(..)) : Update the trailing submatrix using L(:, K) and U(K,:)

Figure 5 outlines the parallel sparse LU factorization algorithm. There are three steps
in the K-th iteration of the loop. In step (1), only processes PROC.(K) participate in
factoring block column L(K : N, K). In step (2), only processes PROC,(K) participate
in factoring block row U(K,K + 1 : N). The rank-b update by L(K + 1 : N, K) and
U(K,K+1:N)in step (3) represents most of the work and also exhibits more parallelism
than the other two steps, where b is the block size of the K-th block column/row.

For ease of understanding, the algorithm presented in Figure 5 has been simplified.
The actual implementation uses a pipelined organization so that processes PROC.(K + 1)
will start step (1) of iteration K + 1 as soon as the rank-b update (step (3)) of iteration
K to block column K + 1 finishes, before completing the update to the trailing matrix
A(K+1:N,K+2: N)owned by PROC.(K+1). Figure 6 illustrates this idea using Steps
K and K + 1 of the algorithm. In the figure, we show the activities of the four process

®There is also communication involved in this task, but it is negligible, and so is omitted in the
discussion.
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groups along the time line. The path marked with the dashed line represents the critical
path, that is, the parallel runtime could be reduced only if the critical path is shortened.
The block factorization tasks “I (...)” are usually on the critical path, whereas the update
tasks “U (...)” are often overlapped with the other tasks. There is lack of parallelism for
the “F (...)” tasks in Steps (1) and (2), because only one set of column processes or row
processes participate in these tasks. This pipelining mechanism alleviates this problem.
For instance, on 64 processors of the Cray T3E, we observed speedups of between 10%
and 40% over the non-pipelined implementation.

Figure 5: Outline of the parallel factorization algorithm used in SuperLU.

for block K =1 to N do
(1) if [ me € PROC,.(K) ] then
Factorize block column L(K : N, K)
Send L(K : N, K) to the processes in my row who need it
else
Receive L(K : N, K) from one process in PROC(K) (if T need it)
endif
(2) if [ me € PROC,(K) ] then
Factorize block row U(K, K +1: N)
Send U(K,K +1: N) to processes in my column who need it
else
Receive U(K, K + 1 : N) from one process in PROC,(K) (if T need it)
endif
(3)for J =K +1to N do
for /= K+ 1to N do
if [ me € PROC,(I) and me € PROC.(J)
and L(I,K) # 0 and U(K,J) # 0] then
Update trailing submatrix A(I,J) — A(I,J)— L(I,K) -U(K,J)
endif

end for

end for
end for

In an earlier version of the code, we used MPI’s standard send and receive operations
mpi_send and mpi_recv for the message transfer tasks “S (...)” and “R (...)”. In Figure 6,
we see idle time (longer send) during the sending of “S (L(:, i 4+ 1))” for process Pg 41 on
the critical path. This could happen if the sender and receiver are required to handshake
before proceeding, as is the case with large messages using long protocol. That is, process
Px 41 posts mpi_send long before processes PROC,(K) post the matching mpi_recv, and
the sender must be blocked to wait for mpi_recv.

We have observed big differences in performance between setting MPI_BUFFER _MAX to
“unlimited” and to 4 Kbytes. Here, “unlimited” means that all messages use the short
protocol. Table 7 shows the timing differences. For this experiment, the matrices are
obtained from the 11-point discretization of the Laplacian operator on 3D cubic grids.
The grid sizes are increased with increasing number of processors so that the number of
operations per processor is roughly constant. The table shows that the most dramatic
difference is on 2 processors, where the smaller buffer results in 74% speed loss. This

16



Figure 6: Illustration of the pipeline at Steps K and K 41 during the SuperLU factorization.
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is because on 2 processors, more messages are larger than MPI BUFFER MAX, and their
transfers have to use the long protocol. With more processors, the average message size
becomes smaller, and there is more chance to use the short protocol.

For comparison, in Table 8, we also give the timings of the improved code after
introducing mpi_isend and mpi_irecv. The detailed algorithmic change will be described
in the following. We see that the performance of the new code is not constrained by the
MPI buffer size. In fact, the performance is comparable with MPI_BUFFER_MAX set to either
4 KB or “unlimited”. Compared to Table 7, the performance is also comparable to the
old code using the value “unlimited”.

Nprocs 1 2 4 8 16 32 64 128
Grid size 29 33 36 41 46 51 57 64
MPI _BUFFER_MAX

unlimited | 57.0 62.3 53.3 615 627 65.7 76.2 80.7
4 Kbytes [57.9 108.2 92.4 102.5 104.2 101.6 119.3 111.0

Table 7: SuperLU factorization time in seconds for the cubic grid problems with
MPI BUFFER MAX set to unlimited and to 4Kbytes. MPT version 1.3.0.4 is used.

It is very unpleasant that the performance of our code depends on the use of MPI system
buffers. The cure for this problem is to use the nonblocking send and receive primitive,
mpi_isend and mpi_irecv as follows. This requires reorganizing the pipeline structure of
the code. The basic ideas are as follows.

e For the sender, we simply replace mpi_send by mpi_isend. This could eliminate the
idle time during the send “S (L(:, K 4+ 1))” shown in Figure 6.

e For the receiver, we will post mpi_irecv much earlier than we actually need the data.
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Nprocs 1 2 4 8§ 16 32 64 128
Grid size 29 33 36 41 46 51 57T 64
MPI _BUFFER_MAX

unlimited | 55.9 61.8 53.4 61.3 62.9 66.0 76.8 75.9
4 Kbytes | 55.9 62.8 53.8 624 64.2 68.5 78.3 77.0

Table 8: SuperLU factorization time in seconds for the cubic grid problems with
MPI BUFFER MAX set to unlimited and to 4Kbytes. MPT version 1.3.0.4 is used. mpi_isend
and mpi_irecv are used.

For example, for processes PROC,(K) in Figure 6, we could post “R (L(:, K 4+ 1))”
before “U (A(K+1: N,K+1:N))”. That is, as soon as we have received a message
using mpi wait, we will post the mpi_irecv for the next message, before performing
the local computation with the just-arrived message.

To implement this idea, we need to provide user-level buffer space to accommodate
the messages in transit. Since for each process, there is only one outstanding message
to be received, we only need one extra buffer. Figure 7 sketches the modified pipelining
algorithm using mpi_-isend and mpi_irecv. Comparing the loop bodies of Figures 5 and
7, we see that Step (2) remains the same. The main difference is in Step (3). In the
new algorithm, the original Step (3) is split into two substeps (3.1) and (3.2). Step (3.1)
implements a look-ahead scheme. Here, we only update the (K +1)-th block column, then
immediately factorize this column and post send and receive of the factorized column for
the (K + 1)-th iteration of the loop. This message transfer will overlap with the rest of
the trailing submatrix update appearing in Step (3.2). In Step (1), the processes wait for
the posted send and receive to complete. In particular, mpi wait in line 9 is matched with
the posted mpi_isend in line 23 (and 3); mpiwait in line 11 is matched with the posted
mpi_irecv in line 25 (and 5).

In Table 9, we illustrate the performance gain with the new code, when the default
value for MPI_BUFFER MAX is 0 Bytes in the latest MPT release (no short protocol). Table 10
shows the maximum size of all the messages during the factorization. Clearly, the amount
of gain is matrix dependent, and mainly depends on the message size. With an increasing
number of processors, the message size is usually decreasing, and the performance gain is
less dramatic than on a smaller number of processors. The peak performance gain occurs
on 4 processors where the new code is almost twice faster than the old code.

6 Conclusions

In this paper, we have studied in detail how we can design a message passing code that
is robust against changes in MPI release and MPI buffering mechanisms and have indicated
the algorithmic changes necessary in two sparse direct codes to achieve this. Our main
technique is to use mpi_irecv as well as mpi_isend but we show that, whether the underlying
algorithm is asynchronous or essentially synchronous, significant changes are required to
use these protocols.

Our application of solving large sparse systems is a significant one and inter alia we
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Figure 7: Modified SuperLU factorization algorithm with nonblocking send and receive.

/* — Set up the initial stage for the pipeline — */
1. if [ me € PROC,(1) ] then

2. Factorize block column L(1: N, 1)

3. Post send L(1: N, 1) to the processes in my row who need it (— mpi_isend — )

4. else

5. Post receive L(1 : N, 1) from one process in PROC.(1) (if T need it) (- mpi_irecv — )
6. endif

/* — Main pipeline loop — */
7. for block K =1 to N do
8. (1)if [ me € PROC,(K) ] then

9. Wait for the posted send of L(K : N, K) to complete (- mpi_wait — )
10. else
11. Wait for the posted receive of L(K : N, K) to complete (- mpi_wait — )
12. endif
13. (2) if [ me € PROC,(K) | then
14. Factorize block row U(K,K +1: N)
15. Send U(K, K +1: N) to processes in my column who need it
16. else
17. Receive U(K, K + 1 : N) from one process in PROC,(K) (if T need it)
18. endif
19. (3.1)if [ K+ 1 < N ] then
/* — Factor-ahead scheme — */
20. if [ me € PROC,(K + 1) ] then
21. Update (K + 1)-th column A(:, K+ 1) — A, K+ 1)—L(;,K) - UK, K +1)
22. Factorize block column L(:, K + 1)
23. Post send L(:, K + 1) to the processes in my row who need it (- mpi_isend — )
24. else
25. Post receive L(:, K 4+ 1) from one process in PROC (K + 1) (- mpi_irecv — )
26. endif
27. endif
28. (3.2)for J = K+ 2to N do
29. for /=K +1to N do
30. if [ me € PROC,(I) and me € PROC.(J)
31 and L(I,K) #0 and U(K,J) # 0] then
32. Update trailing submatrix A(I,J) — A(I,J)— L(I,K) -U(K,J)
33. endif
34. end for
35. end for
36. end for
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Matrix Ordering | mpi_isend/ Number of processors
mpi_irecv 4 8 16 32 64
BBMAT AMD OFF 113.1| 57.2 3.7 17.2 11.3
ON 64.7| 36.6 21.3 12.8 9.2
ECL32 AMD OFF 194.7| 97.3 51.1 27.3 17.1
ON 106.8 | 56.7 31.2 18.3 12.3
INVEXTRI | AMD OFF 88.1| 44.2 23.9 12.9 8.3
ON 49.71 30.0 16.5 10.1 7.1
MIXTANK | AMD OFF 131.2| 65.8 34.5 18.4 11.0
ON 70.8| 38.2 21.1 11.9 7.9

Table 9: Influence of the use of mpi_isend/mpi_irecv on the time (in seconds) for
factorization of SuperLU. MPT version 1.4.0.0 (latest) is used, where the default
MPI_BUFFER MAX is 0 Byte.

Matrix Ordering Number of processors

4 8 16 | 32 | 64
BBMAT AMD 0.19(0.18 10.09]0.090.05
ECL32 AMD 0.3210.32|0.16 | 0.16 | 0.09

INVEXTR1 AMD 0.2410.2410.12]0.12(0.07
MIXTANK AMD 0.3210.33(0.17(0.16 { 0.09

Table 10: Maximum message size (in Mbytes) during SuperLU factorization.

show the complexity of this problem when implementing such codes on distributed memory
computers.

We hope that our findings will be of interest both for those concerned with the efficient
use of MPI and for the sparse matrix community.
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