
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
On the Acceleration of Database Primitives on FPGAs

Permalink
https://escholarship.org/uc/item/9808732c

Author
Romanous, Bashar

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9808732c
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

On the Acceleration of Database Primitives on FPGAs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Bashar Romanous

September 2021

Dissertation Committee:

Professor Walid Najjar, Chairperson
Professor Nael Abu-Ghazaleh
Professor Vassilis Tsotras
Professor Daniel Wong



Copyright by
Bashar Romanous

2021



The Dissertation of Bashar Romanous is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

Obtaining my doctorate degree at UCR has been one of the greatest experiences I had in my life. In

addition to all the invaluable knowledge and experience that I gained, the personal and professional

development as well as the precious friendships that I formed are things that I will always look

fondly upon.

I am very grateful to my advisor, Professor Walid Najjar, for all of his guidance and

advice. He taught me how to conduct research, overcome challenges, and present my work. His

constant motivation and care have gotten me through the most difficult times, especially during the

pandemic. Words cannot express my forever gratitude to you.

I would like to thank every member of my committee: Professor Vassilis Tsotras, espe-

cially for all of his inputs to the VLDB journal. I would like to thank Professor Nael Abu-Ghazaleh,

and Professor Daniel Wong for all of their input, advice, and support of my research. I would

also like to thank Professor Yan Gu for his contributions to the work on sample sort and Professor

Evangelos Papalexakis for his inputs and contributions in my research.

I would like to thank all my friends. Nothing that I can write here can express how much

your friendship means to me. We shared both the good and difficult times together, and I will

forever cherish those memories. It has been my pleasure to share this journey with you. Thank

you: Leen Kawas, Ignacio de Castro Perez, Devashree Tripathy, AmirAli Abdolrashidi, Jason Ott,

Saheli Ghosh, and Ravdeep Pasricha. Also, I would like to acknowledge and thank my friends who

were as my peer mentors as well: Skyler Windh, Jose Rodriguez Borbon, and Prerna Budhkar for

teaching me their knowledge and experience in FPGA prototyping and research. To all of you, I

iv



will always cherish the beautiful memories and conversations we shared. I would also like to thank

all my colleagues in the Embedded Systems lab.

Finally, this dissertation contains parts of two of my previously published works from my

research. The first work explores an in-memory accelerator for hash-join and group-by aggregation

operators using hardware multithreading techniques on FPGAs and was published in The VLDB

Journal. It’s content, with the exclusion of Section 3 and references to hash-join, appears in Chapter

3. Background & related work appear in Chapters 1 & 2 respectively. I would like to thank the

reviewers and publishers for considering the work as well as my co-authors for their contributions.

The full citation and author list is as follows:

Bashar Romanous, Skyler Windh, Ildar Absalyamov, Prerna Budhkar, Robert Halstead,

Walid Najjar, and Vassilis Tsotras. 2021. Efficient local locking for massively multithreaded in-

memory hash-based operators. VLDB J. 30, 3 (May 2021), 333–359.

The second work introduces HARS (Hardware Accelerated Radix Sort), a novel parallel

implementation of radix sort on FPGAs that leverages the on-chip memory. The published material

that appears in IEEE FCCM conference is a short summary of this work. An expansion of the

published work is presented in Chapter 4. I would like to thank the reviewers and publishers for

considering the work as well as my co-authors for their contributions. The full citation and author

list is:

Bashar Romanous, Mohammadreza Rezvani, Junjie Huang, Daniel Wong, Evangelos E.

Papalexakis, Vassilis J. Tsotras, Walid Najjar. 2020. High-Performance Parallel Radix Sort on

FPGA. In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), 224–224.

v



To my parents who their sacrifices and hard work made me who I am.

To my dearest friends who are my family.

This work is dedicated to you.

vi



ABSTRACT OF THE DISSERTATION

On the Acceleration of Database Primitives on FPGAs

by

Bashar Romanous

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021

Professor Walid Najjar, Chairperson

The decreasing cost of DRAM has made possible and grown the use of in-memory databases. How-

ever, memory latency has not kept up with increasing processing speed and has become the limiting

performance factor. Large cache hierarchies are effective in mitigating this large memory latency

for regular applications that exhibit spatial and/or temporal locality. Database operations by their

very nature, rely extensively on indirect addressing of sparse data and hence cannot benefit from

large cache memories.

This dissertation describes the usage of filaments as an approach that focuses on latency

masking rather than latency mitigation. Filaments are lightweight hardware threads that can issue

multiple outstanding memory requests then switch to waiting state and yield control to other fila-

ments that have their data ready. Filaments are implemented and evaluated to accelerate to hash-join

and hash-based group-by aggregation on FPGAs. Content Addressable Memories (CAMs) are used

as a synchronization cache that enables processor-side locking.

Sorting is an essential component in a wide variety of applications including databases,

data analytics, and graph processing. While comparison-based and distribution-based sorting algo-
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rithms are the two common methods of sorting, comparison-based sorting algorithms are the most

common to be accelerated on FPGAs. As the technology evolves and new hardware architectures

and platforms are introduced a re-evaluation of accelerating distribution-based sorting algorithms,

such as Radix sort, using FPGAs is justified.

This dissertation describes a novel parallel in-memory Hardware Accelerated Radix Sort

(HARS), that does not rely on sorting networks and avoids the performance limiting merge steps.

The scalability of datasets is not restricted by the available on-chip memory and does provide con-

stant throughput.

Sorting very large datasets efficiently using limited local memory is a challenging prob-

lem. The common method of sorting a large dataset is to divide it into smaller sub-arrays that can fit

on local memory, sort the sub-arrays and then merge the resulting sub-arrays until the entire dataset

is sorted. The merge steps become memory and performance bottlenecks as the size of merged

sub-arrays grow to exceed the local memory capacity.

This dissertation explores a parallel FPGA implementation of sample sort, a cache-oblivious

sorting algorithm that enables sorting very large datasets using local memory. A set of pivots is

used to distribute keys from sorted sub-arrays into buckets that can fit on local memory. Sorting the

buckets produces the completely sorted set. All steps of sample sort can be performed entirely using

FPGAs local memory. Thus overcoming a limitation of the currently available sorting routines on

FPGAs.
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Chapter 1

Introduction

1.1 Introduction

Fast analytic queries over large collections of customer data is a key workload for any

modern business. As the cost of DRAM has continued to decrease, fairly large datasets can now

be stored and processed entirely in memory. In recent years many database vendors have sprung

up offering their own in-memory database solutions to speed up processing (MemSQL [95], SQL

Server Hekaton [46], SAP HANA [48], Oracle TimesTen [85], IBM DB2 BLU [21]). The main

factor influencing in-memory processing performance is memory bandwidth. Despite the progress

made in multi-core architectures, the major performance limitations come from the memory latency

(known as the memory wall), that restricts the scalability of such memory-bounded algorithms. A

memory access can stall instruction execution for hundreds of CPU cycles.

The most common solution to the memory latency problem is the use of extensive cache

hierarchies. This approach mitigates memory latency by relying on data and program instructions

localities (spatial and temporal). Unfortunately, such solution does not come for free as cache

1



hierarchies can take up to 80% of a typical processor die area, thus limiting the number of cores

that can be accommodated on a single chip and also contributing to energy consumption through

leakage current.

Moreover, there are many irregular applications that do not exhibit such localities [31].

As a result, cache hierarchies do not provide an effective solution for their memory accesses [35,

128]. In particular, irregular applications can be characterized by at least one of the following

patterns: 1) Irregular control-flow which breaks the program locality. This is caused by branches

in the code that invalidate pre-fetched instructions. 2) Irregular data-flow where indirection in the

memory access patterns breaks the data locality and hence causes cache misses. Some database

operators, such as selection, exhibit control flow irregularity, while others, like hash-based group-

by aggregation can demonstrate both [47].

An alternative for dealing with the memory latency problem in irregular applications is

offered by hardware multithreaded execution [83, 127]. This approach relies on the masking of

memory latency by supporting multiple outstanding memory requests and switching to a ready but

waiting thread when the currently executing thread encounters a long latency operation, such as a

main memory access. Hardware multithreading was used in the SUN UltraSPARC architecture (for

example, the UltraSPARC T5 [129]) where it can support eight threads per core and 16 cores per

chip. However, tens of threads are not enough to hide memory latency. Instead we have recently

advocated for massive hardware multithreading implemented on FPGAs (thereafter referred to as

MultiThreaded Processor or MTP) that is able to support deeper pipelining, can maintain hundreds

(instead of tens) of outstanding memory requests across four FPGAs and hence can drastically

increase concurrency and therefore throughput [51, 61, 60].

2



In this dissertation we examine how to use our MTP approach to implement hash-based al-

gorithms for the group-by aggregation [134, 11] operator. Group-by aggregation is a basic building

blocks of relational query processor and various recent works have explored their implementation

tailored to multi-core CPU architectures [40, 151]. A common component in hash-based group-by

aggregation is to efficiently build a hash table, which is later used to return groups in the aggregated

relation (potentially with appropriate aggregates). The hash-based nature of this algorithms incurs

poor spatial locality, thus all the multi-core CPU approaches rely on vast caches to somehow allevi-

ate latency penalty. In order to build a hash table, the MTP execution takes an alternative approach

as it requires massive parallelism to compete with the CPU’s order of magnitude faster clock fre-

quency. In turn, that means many threads must be synchronized and managed locally on the FPGA.

One could instead build a hash table in local on-chip memory (BRAM), as the BRAM’s 1-cycle

latency removes any need for synchronization. However, current FPGAs only have few MBs of

local storage, which limits the hashed relation size only to few thousand records [62].

MTP multithreading was applied in [11] to implement the hash-based group-by aggrega-

tion. As group-by aggregation requires updating the hash table (to update the aggregate as a new

record is added to a group), all writes to a hash table need to be synchronized. This dissertation,

along with [134], extended the hash-based group-by aggregation operator accelerator [11] by explor-

ing how Content Addressable Memories (CAMs) can be leveraged within the MTP multithreaded

designs to enable processor-side locking by acting as a synchronizing cache. These CAMs enforce

locks and merge threads together before they are written to memory thus enabling latency-masking

of threads [133].
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Locks used in [11] were implemented at the level of hash table buckets. These Coarse-

Grained Locks (CGL) limited parallelism - especially in the case of skewed datasets. Fine-Grained

Locks (FGL), proposed in [134], which are locks on the record level instead of the hash table buckets

that reduce locking contention and improve parallelism and throughput.

This dissertation extends the work in [134] by using FGLs to further explore trade-offs

between the sizes of synchronization and locks CAMs on performance and resources utilization.

Furthermore, the design presented in this dissertation enables better utilization of memory channels,

by using only a single memory channel per engine without any significant effect on throughput.

An evaluation of throughput between the design presented in this dissertation and the group-by

aggregation design from [11] demonstrates the performance benefits of this design.

Sorting is a key part in database applications (used in duplicate elimination, sort-merge

joins and group-by aggregations). Sorting billions of records in a fast and energy efficient man-

ner has become a key research challenge. In this dissertation, we explore sorting in-memory using

a parallel version of Radix Sort to build a high-performance hardware accelerator, called HARS

(Hardware Accelerated Radix Sort). Our design enables dividing the unsorted dataset among paral-

lel engines without the need for a merge step. HARS is implemented using Micron’s WX-2000 and

SB-852 FPGA boards.

For very large sorting problems, the scalability the hardware accelerators in FPGA and

ASICs is a significant problem due to the limited size of on-chip memory. The conventional solution

is to divide the dataset into small sub-arrays, sort them and merge the resulting sub-arrays. The

downside of this solution is that the merged sub-arrays size grows to becomes a memory bottleneck.
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This dissertation explores a novel FPGA implementation of the parallel sample sort [25],

a cache-oblivious sorting algorithm that provides a scalable sorting solution for very large datasets

using local memory. After sorting small sub-arrays using local memory, a prefix-sum based on

the a set of pivots that represent the dataset is used to distribute keys from these sorted sub-arrays

into buckets. The resulting buckets are small enough to be sorted using local memory which the

complete sorted set is produced. The sample sort accelerator is implemented entirely using Vits

HLS and deployed on a Xilinx Alveo U280 Data Center accelerator card [146, 144].

1.2 Background

1.2.1 FPGA Heterogeneous Computing

FPGA architectures have evolved from their early stages into large logic arrays capable of

concurrently executing multiple complex instructions. They have historically been used as off-chip

accelerators where CPUs can offload compute intensive workloads, and read back the results. In

recent years the FPGA has been trending closer and closer to the CPU. Xilinx currently offers a Zynq

[149] line of chips that couples the FPGA’s reconfigurable fabric with an ARM processor. While

Intel introduced HARP [118] featuring Xeon+FPGA in a single platform targeting data analysis

acceleration [59].

There has been various architectures where FPGA accesses memory directly, referred to

Near-Data Processing (NDP). Some NDP platforms use FPGA to directly process data stored on

none-volatile memory such as the FPGA-Accelerated flash storage proposed in [71] for sorting.

Another type of NDP platforms focus on using the FPGA for data pre-processing. Thus, reducing

performance bottlenecks caused by limited secondary storage and network bandwidth. Examples

5



of such platforms are Netezza [52] used in data analytics and ExtraV framework [86] used in accel-

erating out-of-memory graph processing. Similar to Netezza, the Aqua platform, used by Amazon

Redshift, a distributed and hardware accelerated cache, is another example of NDP technology

[16, 44]. Nevertheless, it is currently still more common to see the FPGA connected with the CPU

over a PCIe bus.

Microsoft Research incorporated multiple Stratix-V FPGAs into a 48 node server that was

used to accelerate the Bing search engine [107]. Alpha Data announced a CAPI environment, which

allows Xilinx All Programmable devices to connect with IBM Power8 architectures [13]. Multiple

companies are offering FPGA platforms over PCIe, which have been actively used in the research

community to show acceleration and power savings compared to CPUs and GPUs [60, 32].

Different FPGA architectures are optimized for various use cases: HPC computations,

database workloads or packet processing. The design proposed in this dissertation utilize only

the off-chip memory interface, which makes them general enough to be ported between most cur-

rently available FPGA platforms. For simplicity we choose only one platform, the Micron (Convey)

HC-2ex, to implement and run all our designs. The Convey architecture offers a shared global

memory space between hardware and software, which eliminates any variability due to the mem-

ory architecture and allows us to do direct performance comparison against CPU and earlier FPGA

implementations.

1.2.2 Convey Heterogeneous Computing Platforms

The Micron (Convey) HC-2ex is a heterogeneous platform that offers a shared global

memory space between the CPU and FPGA regions. As shown in Figure 1.1a, the memory is
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(a) The Micron (Convey) HC-2ex software and hardware

regions.

(b) Micron (Convey) HC-2ex FPGA AE wrapper.

Figure 1.1: The Micron (Convey) HC-2ex architecture. Separation into software and hardware

regions in shown in (a). In the hardware region each FPGA has 8 memory controllers, which are

split into 16 channels for the FPGA’s logic cells as shown in (b).

divided into regions connected through PCIe with portions closer to the CPU, and portions closer to

the FPGAs. The software region has 2 Intel Xeon E5-2643 processors running at 3.3 GHz with a 10

MB L3 cache. In total the software region has 128 GB of 1600 MHz DDR3 memory. The system

has a peak memory bandwidth of 51.2 GB/s.

The hardware region has four Xilinx Virtex6-760 FPGAs connected to the global mem-

ory through a full crossbar. Each FPGA has 8 64-bit memory controllers running at 300MHz (Fig-
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ure 1.1b). The FPGA logic cells run in a separate 150 MHz clock domain to ease timing and connect

to the memory controllers through 16 channels. These memory channels provide a highly parallel

8,192 simultaneous outstanding requests. The hardware region has 64 GB of 1600 MHz DDR3

RAM. Each FPGA has a peak memory bandwidth of 19.2 GB/s.

The Convey MX, used in our hash-join MTP implementation in [60], has the same hard-

ware layout as the HC-2ex, however the MX has built-in support for atomic instructions directly

in memory. The HC-2ex was used for the MTP group-by aggregation implementation in [11]. In

this paper we use the HC-2ex as the common platform for both MTP hash-join and MTP group-by

aggregation.

1.2.3 Latency-Masking Multithreading

The disparity between main memory latency and processing speed is one of the biggest

challenges in computer design. On traditional CPUs and GPUs, it is addressed, by having very

large cache hierarchies that mitigate the memory latency by exploiting spatial and temporal data

localities. However, large classes of applications have very low levels of data locality, and hence do

not benefit much from these massive cache hierarchies.

Many database operations fall into this category of applications. The objective of la-

tency masking multithreading is to keep the processing unit busy while waiting for memory, thereby

masking its latency. For database operations it is done by fetching and processing as many tuples,

one per cycle, as the memory latency in cycles. In our model we associate a thread with the pro-

cessing of a tuple. A thread is initiated when a tuple is read from memory and terminated when its

processing is completed, whether results are materialized or not. In this paradigm, the processing

of an item (a tuple in our case) is halted whenever a memory access is done and that thread is put
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in a wait state until the result of the memory access is returned. This means that the state of that

thread is put in a queue waiting for memory as shown in Figure 1.2. When the data is returned from

memory, in the case of a memory read, the thread moves to the next stage of its execution and the

process is repeated for every memory access that the thread makes until its completion, i.e. until the

processing of the tuple is completed. The parallelism, in this model, is equal to the number of active

threads. A thread is active if it is either executing or waiting. In this model a thread goes through

an execution pipeline consisting of successions of processing stages and waiting stages. Once this

pipeline is full, the execution reaches a steady state and achieves the maximum throughput of one

result per engine per cycle and memory latency is fully masked.

Figure 1.2: Components of a multithreaded implementation: numbers represent execution steps

performed by a processing unit (PU) of each processing engine (PE). The design is scaled by adding

as many PEs as possible.

Nevertheless, a synchronization mechanism must be provided when threads may write in

memory. The main contribution of this dissertation is a processor-side synchronization mechanism
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relying on Content-Addressable Memories (CAMs) described in the next section. This mechanism

is designed to synchronize all the threads within an engine.

On the Micron (Convey) HC-2ex, the average memory latency is ˜100-200 cycles and

memory accesses are fully pipelined, meaning that the processing unit can issue one memory request

per cycle per memory channel up to the capacity of the memory buffer, which is ˜500 memory

requests. All memory requests, on the same channel, are returned in the order they were issued.

There are three stages in the multithreaded execution that occur in the following order: 1) fill-up,

2) steady-state, and 3) drain-out. In the fill-up stage, the processing pipeline is being filled. Its

duration is determined by the pipeline latency and the service time of each tuple. Conversely, the

drain-out stage is when all the tuples have been read from memory and no new ones are inserted in

the pipeline. When the number of tuples is much larger than the pipeline latency, the duration of the

fill-up and drain-out stages is dwarfed by that of the steady-state, and hence the throughput is closer

to the maximum achievable throughput.

In the experiments described in this dissertation, we implement a number (N ) of engines

on each FPGA. The total number of engines is therefore 4N . Each engine is connected to M mem-

ory channels on its FPGA. The data to be processed is partitioned equally among all the engines.

All the engines operate concurrently and do not interact.

There is an inherent trade-off between the two parameters N and M , as well as with the

allocation of resources on the hardware to implement a given configuration. The choice of these

two parameters is discussed in Section 3.2 for the MTP group-by aggregation.

The maximum achievable throughput in this model is determined by two factors: (1) the

memory bandwidth, and (2) the number of active threads per engine. On the HC-2ex each FPGA
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has 16 memory channels and each channel can support one memory operation per cycle at 150

MHz. Therefore the whole system can achieve a peak of 64 memory operations per cycle, or 9.6

billion memory operations per second. The number of active threads within an engine is limited by

the available resources on the FPGA. In an FPGA design every hardware item must be mapped, by

a software tool, on some logic resources on the FPGA and items are connected together by routing

wires between them. The length of the longest wire determines the clock frequency of the whole

design. A design is said to meet timing if all the wires can be clocked at the target clock frequency.

Selecting the best possible routing for every wire is an NP-complete problem. Very good heuristics

take hours and some times days to achieve a routing that meets timing. The internal architecture of

the Xilinx Virtex 6 FPGA is particularly challenging at meeting timing.

CAM-based synchronization is discussed in Section 3.2 for the MTP group-by aggrega-

tion. In both cases the size of the CAM was the main limitation on the number of active threads.

The limitation on the CAM size comes from the impossibility of meeting timing for larger CAMs.

1.2.4 CAMs as synchronizing caches on FPGAs

A CAM (also known as an associative memory), is an array that can perform efficient

entry-matching (i.e. answer membership queries). Its operation is the inverse of a Random Access

Memory (RAM): when presented with a search word the CAM returns all the locations whose

content matches that word. Each CAM bit consists of a flip-flop with a comparator matching it to

the corresponding bit in the search word. The outputs of all the bit positions in a word are ANDed

to generate the (mis)match for that word. The CAM’s ability to perform a search in unit time comes

at a high cost of area, energy and long clock cycle time (due to the long wires for the bit-wise AND

and propagating the search word to all the entries). A CAM with n entries where each entry is w
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bits, stores n words of w bits, by construction. Each entry has a free bit and the next word to be

inserted in the CAM is inserted in the first free entry and when a word is deleted from the CAM that

entry is marked free. In this dissertation, depth or size of a CAM refer to the number of entries in

the CAM.

As the number of entries in the CAM increases, the achievable clock frequency of the

circuit drops. This limitation either restricts the size of the CAM or increases the number of cycles it

takes to perform an update operation. Nonetheless, CAMs have proven to be very useful in domains

such as networking (e.g. implementing an IP table in a network router). Recently we explored how

CAMs can be used to accelerate the breadth first search algorithm [133]. These applications can

usually tolerate long update latencies because update operations are infrequent.

In a streaming environment CAMs can maintain a cache of recently seen unique items

and allow quick access to them without incurring long ready latency and stalling the pipeline. This

fast cache look-up mechanism can also be used as a fine-grained address-based synchronization

primitive, which avoids long latency trips to main memory and does not require special hardware

synchronization primitives.

Consider the case when a CAM is assigned to guard a particular memory partition. It

can be configured to hold the addresses of the values that need synchronized access. If all memory

requests within a partition are first submitted to the CAM, before being routed to the memory, the

accesses to identical addresses are serialized locally in the CAM. In this case a CAM entry serves

as an exclusive lock, which gets released (flushed from the CAM) after the request(s) completion.

In Section 3.4 we discuss how to use this approach for synchronization in the MTP group-by aggre-

gation algorithm.
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In our previous work [60] we have used atomic operations which were implemented using

locks on individual memory locations, provided by the now discontinued Convey MX architecture

[42]. Leveraging CAMs for synchronization of FPGA algorithms increases the portability of our

design. Locking using generic CAMs means that all synchronization operations are now internal

to the FPGA, and can be done on any architecture where an FPGA with a sufficient area has direct

access to the memory. In addition, this design provides more selective fine-grained synchronization

primitives in comparison to the Convey-MX, which places a lock on all FPGA-memory communi-

cation channels. We discuss resource trade-off for CAMs in Section 3.6. Work on previous FPGA

implementations of CAMs appears in Section 2.2. An excellent description of CAMs and their

applications can be found in [82].
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Chapter 2

Related Work

2.1 Acceleration of Database operations

Commercial in-memory database systems include SAP HANA [48] which relies on multi-

core CPUs, large main memory and caches as well as data compression. IBM BLU [21] attempts

to keep data on the processor and its caches so as to reduce DRAM access as much as possible.

MS SQL Hekaton [46] provides a lock-free data structure to provide high level of concurrency.

Oracle’s TimesTen [85] relies heavily on caches hierarchies. There are also academic research

prototypes such as Peloton [104] which provides autonomous tuning for relational databases. GPU

based solutions have also been proposed such as [63], while other are a hybrid of CPU and FPGA

architectures have been proposed to mitigate long memory latencies [119].

Many recent works have considered the in-memory implementation of join and aggre-

gation relational operators (hash- or sort-based). Sort-merge joins on modern CPUs were initially

considered by Kim et al. [77]. This implementation explored the use of SIMD operations and hy-

pothesized that sort-merge join performance will surpass the hash-based algorithms, given wider
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SIMD registers. Subsequent work [12] implemented a NUMA-aware sort-merge algorithm that

scaled almost linearly with the number of computing cores. This algorithm did not use any SIMD

parallelism, but it was reported to be already faster than its hash join counterparts. Balkesen et al.

[19] reconsidered the issue and found that hash joins still have an edge over sort-merge implementa-

tions even with the latest advance in width of SIMD registers and NUMA-aware algorithms. There

has been a recent interest in tuning the join for specialized processing units such as Intel Xeon Phi

[37]. PolyHJ [75] proposes a hybrid hash join paradigm that can dynamically execute different hash

join models and tackle size skew. The proposed algorithm adapts behavior based on input relation

and hardware characteristics.

In addition to joins, group-by aggregation operator, relying on multi-threaded architec-

tures to boost its performance, was also extensively researched. One of the earliest works [40]

explores different aggregation implementations on chip multiprocessors (CMPs) and concludes that

performance largely depend on input characteristics like key cardinality, thus opting for adaptive

strategy based on sampling.

Follow up work from the same authors [41] specifically explores the partitioning step of

hash aggregation in the same CMP environment and, in line with [90], emphasizes the thread coor-

dination as a key component of this step. The work by Ye et al. [151] considers both partitioning-

based and non-partitioned aggregation implementations and proposes several hybrid approaches,

which outperform previous implementations on Intel Nehalem architecture. In this work, we focus

mainly on non-partitioned versions of algorithms. Wang et al. [131] describes novel NUMA-aware

partitioned in-memory hash aggregation algorithm, which avoids cache coherency misses and min-

imizes locking costs. Finally, more recent work has shown the improvements of using novel CPU
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hardware. Cheng et al. [37] demonstrated a highly parallel in-memory join on the 64-core Intel

Knight’s Landing platform. Pohl et al. [106] have shown how HBM (high bandwidth memory) can

be used as another layer in the storage hierarchy to improve performance. Hash and sort based ag-

gregation are evaluated in [100]. The findings show that both approaches have the same complexity

in terms of cache line transfers. An adaptive algorithmic framework based on sorting by hash value

enables switching between hashing and sorting approaches during run-time based on a criterion of

locality. The framework is cache-efficient and can be tuned depending on the hardware.

While the software community has examined both hash and sort-merge for join and ag-

gregation operators the FPGA community has concentrated on sort-merge approaches. The reasons

for this are twofold. Firstly, sorting and merging implementations are easily parallelized on FPGA

architectures. For example, sorting networks like bitonic-merge [69] and odd-even sort [84] are well

established designs for FPGAs; Casper et al. [32] developed a multi-FPGA sort-merge algorithm,

while other works [112, 137] used sort-merge as part of a hardware database processing system.

Secondly, building an in-memory hash table efficiently is non-trivial task because of the required

synchronization.

An FPGA-accelerated implementation of group-by aggregation was first considered by

Mueller et al. [98]. This work also utilized CAMs in the implementation of the aggregation operator,

but in a very narrow scope, i.e. using CAMs to match an incoming tuple with the appropriate

group. Hence the work continued long tradition of using CAMs to answer set-membership queries

(previously explored in applications like click-fraud, online intrusion detection [20]). Our design

also uses CAMs, but is different from previous approaches in two ways: (i) in addition to the key we

16



store and update the aggregate value locally in the CAM, and (ii) we use CAMs as a synchronization

primitive to resolve conflicts during updates.

Recently we used the MTP execution to accelerate the selection operator [30] by masking

long memory latencies and managing thousands of threads concurrently without using any caches,

as opposed to software CPU-based implementations, which require effective caching to limit mem-

ory requests. Using the MTP approach to implement a given database operator requires a design

specific to the operator’s characteristics. For example, the selection operator applies the query pred-

icate to all the tuples in a relation. This operation is thus partitionable, meaning that each tuple

could be processed independently of the others. Hence checking a predicate on a given tuple is an

independent thread [30]; as a result, there is no need for inter-thread synchronization which is an

important characteristic for both hash-join and group-by aggregation.

Kim et al. proposed BionicDB [78], an FPGA accelerator for OLTP workloads. Similar

to our fine-grained locks, they used locks(implemented in BRAM) on the towers of jump-lists to

improve throughput. Ma et al. [89] demonstrate a similar multithreaded FPGA model in the area of

graph workloads.

2.2 Content Addressable Memories

A CAM is a memory where every bit is paired with a comparator allowing concurrent

matching to a search word. Its ability to perform a search in unit time comes at a high cost of area,

energy and long clock cycle time.

As the number of entries in the CAM increases, the achievable clock frequency of the

circuit drops. This limitation either restricts the size of the CAM or increases the number of cycles
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it takes to perform a search or an update operation. Nonetheless, CAMs have proven to be very

useful in domains such as networking (e.g. implementing an IP table in a network router). Recently

we explored how CAMs can be used to accelerate the breadth first search algorithm [133].

In a streaming environment CAMs can maintain a cache of recently seen unique items and

allow quick access to them without stalling the pipeline. This fast cache look-up mechanism can also

be used as a fine-grained address-based synchronization primitive, which avoids long latency trips

to main memory and does not require special hardware. Consider the case when a CAM is assigned

to guard a particular memory partition. It can be configured to hold the addresses of the values

that need synchronized access. If all memory requests within a partition are first submitted to the

CAM, before being routed to the memory, the accesses to identical addresses are serialized locally

in the CAM. In this case a CAM entry serves as an exclusive lock, which gets released (flushed

from the CAM) after the request(s) completion. In [11] we discuss how to use this approach for

synchronization in the multithreading group-by aggregation algorithm.

To the best of our knowledge all previous FPGA implementations relied on specialized

platform features to provide synchronization primitives. In our previous work [60] we used atomic

operations provided by the now discontinued Convey MX architecture [42]. Each word in memory

maintains a locking bit that can be set by a specialized test-and-set memory instruction. Leveraging

CAMs for synchronization increases the portability of our design by moving all synchronization op-

erations to the FPGA. In addition, this design provides more selective fine-grained synchronization

primitives in comparison to the Convey-MX, which places a lock on all FPGA-memory communi-

cation channels.
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It was shown that implementing fully-associative matching logic for CAMs on both Altera

and Xilinx FPGAs introduces a 60x space overhead compared to regular BRAMs [152]. Dhawan

et al. [45] explored various designs of CAMs and introduced a trade-off between CAM size and

update time.

2.3 Sorting Systems Hardware Accelerators

Sorting very large datasets is an extensively researched problem [67]. Research on sorting

accelerators have targeted various platforms [58] such as FPGA [92, 91, 99, 71, 121, 81, 17], ASICs

[124, 88, 49], GPGPUs [43, 15, 87, 33, 150], CPUs [28] and hybrid platforms [154, 55]. The

most common used sorting algorithm has been merge sort followed by bitonic and even–odd merge

sorting networks.

Near-storage sorting, proposed in [71], is achieved by having a flash expansion card con-

nected directly to the FPGA board via two FMC ports. The proposed accelerator uses sorting

networks and merge-sort units based on [121]. The implied throughput is approximately 14 mil-

lion 16-byte records per second where the key is 80-bit. Unlike the work in [71], HARS targets

in-memory sorting.

A parallel merge-tree proposed in [121] achieves a rate of one key/cycle/sequence.

FPGASort [81] considers different sorting architectures for high scalability algorithm.

FIFO-merge and tree-merge have been utilized such that throughput scales with the number of

memory channels. Partial run-time re-configuration is used to alternate between two merge units,

thus enhancing resources utilization.
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In [122] a bitonic merge network is used to alleviate the bottleneck imposed by serializa-

tion of merge sort in the final stages. A higher throughput is achieved. The sorted data is resident in

on-chip memory and therefore size limited.

Sorting networks are, obviously, the most natural form of sorting architecture on FPGAs

as surveyed in [99]. Even–odd and bitonic merge sorting networks require extensive hardware

resources, hence, the importance of scalability [120].

In [23], eight sorting algorithms are implemented using HLS and compared in terms of

execution time, standard deviation and resource utilization targeting the sorting of 4K keys, stored

in on-chip memory, for real-time avionic systems applications.

Hybrid platforms have been explored to enable sorting of large scale datasets. A CPU-

FPGA heterogeneous platform [154] proposed a “Streaming Merge” algorithm. Implementation tar-

geted Intel HARP [118] which combines Intel Xeon E5-2600 processors with Intel (Altera) Stratix

V FPGA. As FPGA reads and sorts blocks of data from shared global memory, the CPU merges the

sorted blocks. Due to the fixed block size on FPGA, large datasets cause the merge sort on the CPU

to become the performance bottleneck.
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Chapter 3

Enhanced Processor-Side Locking for

In-Memory Operations

3.1 Introduction

Group-by aggregation is a memory intensive operator that is affecting the performance

of relational databases. Hashing is a common approach used to implement this operator. Recent

paradigm shifts in multi-core processor architectures have reinvigorated research into how the join

and group-by aggregation operators can leverage these advances. However, the poor spatial locality

of the hashing approach have hindered performance on multi-core processor architectures which

rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can bet-

ter cope with poor spatial locality by masking memory latency with many outstanding requests.

Nevertheless, the number of parallel threads, even in the most advanced multithreaded processors,

such as UltraSPARC, is not enough to fully cover the main memory access latency. In this chap-
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ter we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that

maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs- drastically

increasing concurrency and throughput.

In this chapter, we present an end-to-end in-memory accelerator for the group-by aggre-

gation operator using FPGAs. The accelerator uses massive multithreading to mask long memory

delays of traversing linked-list data structures, while concurrently managing hundreds of thread

states across four FPGAs locally.

We also explore how Content Addressable Memories (CAMs) can be intermixed within

our multithreaded designs to act as a synchronizing cache, which enforces locks and merges jobs

together before they are written to memory.

The accelerator for the hash-based group-by aggregation operator demonstrates that lever-

aging CAMs achieves average speedup of 3.3x with a best case of 9.4x in terms of throughput over

CPU implementations across five types of data distributions. Fast analytic queries over large col-

lections of customer data is a key workload for any modern business. As the cost of DRAM has

continued to decrease, fairly large datasets can now be stored and processed entirely in memory. In

recent years many database vendors have sprung up offering their own in-memory database solu-

tions to speed up processing (MemSQL [95], SQL Server Hekaton [46], SAP HANA [48], Oracle

TimesTen [85], IBM DB2 BLU [21]). The main factor influencing in-memory processing perfor-

mance is memory bandwidth. Despite the progress made in multi-core architectures, the major

performance limitations come from the memory latency (known as the memory wall), that restricts

the scalability of such memory-bounded algorithms. A memory access can stall instruction execu-

tion for hundreds of CPU cycles.
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The most common solution to the memory latency problem is the use of extensive cache

hierarchies. This approach mitigates memory latency by relying on data and program instructions

localities (spatial and temporal). Unfortunately, such solution does not come for free as cache

hierarchies can take up to 80% of a typical processor die area, thus limiting the number of cores

that can be accommodated on a single chip and also contributing to energy consumption through

leakage current.

Moreover, there are many irregular applications that do not exhibit such localities [31].

As a result, cache hierarchies do not provide an effective solution for their memory accesses [35,

128]. In particular, irregular applications can be characterized by at least one of the following

patterns: 1) Irregular control-flow which breaks the program locality. This is caused by branches

in the code that invalidate pre-fetched instructions. 2) Irregular data-flow where indirection in the

memory access patterns breaks the data locality and hence causes cache misses. Some database

operators, such as selection, exhibit control flow irregularity, while others, like hash-join and (hash-

based) group-by aggregation, can demonstrate both [47].

An alternative for dealing with the memory latency problem in irregular applications is

offered by hardware multithreaded execution [83, 127]. This approach relies on the masking of

memory latency by supporting multiple outstanding memory requests and switching to a ready but

waiting thread when the currently executing thread encounters a long latency operation, such as a

main memory access. Hardware multithreading was used in the SUN UltraSPARC architecture (for

example, the UltraSPARC T5 [129]) where it can support eight threads per core and 16 cores per

chip. However, tens of threads are not enough to hide memory latency. Instead we have recently

advocated for massive hardware multithreading implemented on FPGAs (thereafter referred to as
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MultiThreaded Processor or MTP) that is able to support deeper pipelining, can maintain hundreds

(instead of tens) of outstanding memory requests across four FPGAs and hence can drastically

increase concurrency and therefore throughput [30, 51, 61, 60].

In this chapter we examine how to use our MTP approach to implement group-by aggre-

gation [11] operator. Both operators are basic building blocks of relational query processor and

various recent works have explored their implementation tailored to multi-core CPU architectures

[18, 24, 77, 40, 41, 151]. A key component in group-by aggregation is to efficiently build a hash

table (during the build phase of a join or grouping phase of the aggregation), which is later used to

join with tuples from the second relation or to return groups in the aggregated relation (potentially

with appropriate aggregates). The hash-based nature of these algorithms incurs poor spatial locality,

thus all the multi-core CPU approaches rely on vast caches to somehow alleviate latency penalty.

In order to build a hash table, the MTP execution takes an alternative approach as it requires mas-

sive parallelism to compete with the CPU’s order of magnitude faster clock frequency. In turn, that

means many threads must be synchronized and managed locally on the FPGA. One could instead

build a hash table in local on-chip memory (BRAM), as the BRAM’s 1-cycle latency removes any

need for synchronization. However, current FPGAs only have few MBs of local storage, which

limits the hashed relation size only to few thousand records [62].

This dissertation significantly extends our previous work, where we introduced the hash-

based group-by aggregation operator accelerator [11]. Both works are extended by exploring how

Content Addressable Memories (CAMs) can be leveraged within the MTP multithreaded designs to

enable processor-side locking by acting as a synchronizing cache. These CAMs enforce locks and
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merge threads together before they are written to memory thus enabling latency-masking of threads

[133].

In [11] we applied the MTP multithreading to implement the hash-based group-by aggre-

gation. As group-by aggregation requires updating the hash table (to update the aggregate as a new

record is added to a group), all writes to a hash table need to be synchronized. In [11] we used

locks that were implemented at the level of hash table buckets. These Coarse-Grained Locks (CGL)

limited parallelism - especially in the case of skewed datasets. Instead, our new design introduces

Fine-Grained Locks (FGL), i.e. locks on the record level instead of the hash table buckets, thus

reducing locking contention and improving parallelism and throughput. The FGL provides higher

parallelism and throughput that is 1.6X to 2.1X times better than the work in [11]. Furthermore,

to enable better utilization of memory channels, the new design uses only a single memory chan-

nel per engine without any significant effect on throughput. Finally, we implemented hash-based

group-by aggregation on a common platform, the Micron (Convey) HC-2ex machine and rerun all

experiments on this platform.

3.2 MTP Group-By Aggregation

In our group-by design, we assume the input relation fits in main memory but is too large

to fit locally on the FPGA’s memory. The aggregation engine is implemented with a single memory

channel per engine (PE) M=1 and N=12 PEs. As the results will show, we found that condensing all

engine requests onto a single channel and multiplexing them internally yields the highest utilization.

This prevents stalls in one system component from stopping progress on multiple memory channels.
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It also increases the inter-engine parallelism. The choice of parameters M, N is further discussed in

Section 3.6.

The mixed read-write nature of aggregation in conjunction with multiple outstanding

memory requests requires explicit synchronization to ensure correctness. Atomic operations are

one option, but this approach severely impacts the performance. Moreover, unlike the join operator,

aggregated tuples may exhibit temporal locality.

We propose a novel multithreaded aggregation implementation based on CAMs [11] ex-

tended with fine-grained locks and efficient memory channel allocation. The design leverages ex-

plicit synchronization combined with the caching properties of the CAM. This fits perfectly in the

context of group-by aggregation: Firstly, the latency of a single aggregation thread is hundreds of

cycles, which means many threads can have identical keys. With a CAM we can merge these threads

pre-aggregating the result locally on the FPGA and reduce the number of outstanding memory re-

quests. This merging is achieved by leveraging caching properties of the CAM (allowing us to hold

the aggregate value for a particular key): we call this the Filter CAM. It also allows us to alleviate

skewed data distributions, where a subset of values appears as duplicate more often than the rest.

Secondly, CAMs allow the FPGA to enforce locking on specific memory addresses, therefore de-

crease the granularity of the locks and boost the performance: we call this the Lock CAM. Each

group-by aggregation engine uses one Filter and one Lock CAM. In the following description we

assume a COUNT aggregation as an example. In the original aggregation design [11], our locks

were implemented at the granularity of hash table buckets (Figure 3.1a). This guaranteed that only

one thread was working on a list in the hash table at a time and it was free to modify the list as

needed. With exclusive access to the list, the threads can perform node inserts in sorted order to
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(a) Coarse-grained locks stop threads at the bucket level and prevent concurrent searching through

the linked list.

(b) Fine-grained threads lock at the node level, increasing thread concurrency and only synchronize

structural changes.

Figure 3.1: Coarse-grained vs. Fine-grained locking

improve the merge phase. However, such coarse-grained locking has a big impact on the parallelism

the system is able to achieve. This is especially noticeable on skewed datasets where a majority of

keys might map to the same bucket. All of those threads must stall and wait for the previous thread

to finish. And the wait for each thread increases hundreds of cycles for each node added to the list.

Each thread must pay this penalty even if it is only going to increment the count in a node and not

modify the list structure.
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3.3 Fine-Grained Locks

The first insight motivating the Fine-Grained Locks (FGL) design comes from the benefits

of the top level Filter CAM. All new tuples that enter the aggregation start at the Filter CAM. If the

key already exists, its count is incremented in the Filter CAM and the thread terminates. If the key

does not exist in the Filter CAM and there is space, the key is added and a thread starts the hash

table search. This construction guarantees that all threads searching the hash table are unique - they

will never try to update the count in the same node because they all have different keys. We can

take advantage of this design and move the lock lower to node pointers (Figure 3.1b). This enables

synchronizing where it matters, when a thread wants to insert in the list and make a structural

change.

3.3.1 Lock Free Reads

Since we only lock for structural changes (i.e. inserting a node), that means only writes

need to be protected. This observation raises the question - is it safe for threads to read past a lock?

Consider the possible situations of a thread progressing down a list (Figure 3.2). T1 is a thread

searching the linked list for a key β. T0 is a thread inserting new node with key = C and count =

2. Therefore, the next node field at node 1 is locked for the insertion of a pointer to the new node

containing key =C and count = 2. Since the link-list has key-values sorted, there are three possible

outcomes of T1 traversing the linked list:

1. β > X: There is no conflict between threads T0 and T1. Hence, the lock on the next node

at Node 1 is irrelevant and it is safe for T1 to proceed. T1 will either find a node with a key

equal to key β or it will need to insert a new node with β as the new key later in the list.
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Figure 3.2: Demonstrating lock free reads. While new node is being inserted between Node 1 and

Node 2, thread T1 can traverses the liked list looking for β. If that key is found in the linked list,

the count is updated, otherwise a new node is inserted.

2. β = X: In this case, T1 has found its node, which is Node 2, and can update the count

without synchronization.

3. β < X: Thread T1 has progressed too far and must insert. However, insertion is gated by

the lock on Node 1. T1 will safely synchronize on that lock and will try again after the lock

is free.

There are several benefits to using this design where reads are not locked. First, at no

point does a thread need to stall until it needs to insert. If reads had to wait for the lock, these

fine-grained locks could deteriorate to behavior like the coarse-grained lock - a thread blocks the

start of the list and all work stops. However, the more important benefit comes from the behavior

of the aggregation algorithm. For any given aggregation, the cardinality of the key can be much

smaller than the size of the data table that is being scanned. Therefore, there will be a contentious

period at the beginning of the execution where keys are getting inserted. However, once all keys

have been seen once and inserted in their respective locations in the table, the rest of the execution
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Figure 3.3: A state diagram for threads in the aggregation engine.

will proceed lock free. In the case where the cardinality is on the order of the number of items in the

data-table, there may be no lock-free execution. However, this is still an improvement over coarse-

grained locks since there will still be parallel inserts on the linked lists. As an example, consider

the worst case dataset where all keys hash to the same bucket. With coarse-grained locks every item

will be serialized for insertion by locking the head of the list to do the update. With fine-grained

locks, the number of insert locations increases over time, decreasing contention and increasing the

parallelism. If the keys are sorted, such that each ordered thread needs to append to the list, we lose

the parallelism on insert, but we still gain in the parallel searching of the list for threads to find their

insert location.
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3.4 Aggregation Engine Workflow

Our design of an aggregation operation uses a custom hardware datapath called aggre-

gation engine. Initially each tuple from the relation is streamed from memory, gets assigned to a

separate MTP thread and starts its pipelined execution. Figure 3.3 shows the state diagram for a

single thread inside the aggregation engine. The Filter CAM is used to merge threads with identical

keys, hence reduces the memory request contention and minimizes the synchronization overhead.

When there is a match in the Filter CAM, the thread will increment the key count in the Filter CAM.

The thread that originally created this entry in the Filter CAM will update the HT with the new key

count. However, due to hash collisions, the synchronization cannot be avoided completely; thus the

Lock CAM is used to acquire locks on the hash table, ensuring its integrity. Each engine uses its own

CAM for synchronization. As a result, values are aggregated in separate hash tables, which requires

an extra merging phase at the end of the computation performed by the FPGA. Merging overhead

grows as we increase the number of engines per FPGA, but it is an overhead that is amortized as the

size of the dataset grows.

Table 3.1 shows an example of events and contents of Filter CAM, Lock CAM and main

memory HashTable, while the input stream consists of 5 tuples with the following keys: A, C,

A, B, A. Assume hash(A)=hash(C). Initially both CAMs are empty. The design assumes the

COUNT aggregation function, thus the Filter CAM maintains an occurrence count of duplicate

keys. However, other functions could be potentially applied. Note that operations updating the

CAMs are performed immediately, whereas main memory HashTable accesses (e.g., search, entry

update, entry insert) take hundreds of cycles to finish. For example, Thread 1 sends a request to

search value A in a hash table and gets response only at Cycle3. Lock CAM maintains the locks
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for all addresses which are currently being modified. Notice that all threads only acquire locks after

searching memory. Locks are only needed when creating a new node. Even though both Thread 1

and Thread 2 need to search the same bucket, they won’t synchronize until after finding the list is

empty and trying to add a new node. Thread 1 finishes first and is able to get the lock and Thread 2

finds it must wait in the next cycle. Once a thread completes, it invalidates the record in both CAMs

and frees up resources for other threads. Threads, waiting for a place in a CAM, will continually

cycle through a FIFO until the resource is available. Whenever there is a hit in the Lock CAM the

thread waits until the lock is released, e.g. Thread 2 resumes its work only at Cycle5. Thread 3

provides an example of early termination, because its value was locally aggregated in Filter CAM

in Cycle3. After Cycle5 we see more concurrency as 3 threads are searching the list. Thread

2 provides an example of fine-grained locking in Cycle7. The thread gets to the end of the list

and locks the next pointer of node A. At the same time, Thread 5 is able to find node A in the

list and update its count without any locks. Finally, Thread 4 is able to finish in Cycle10 after a

long memory request and waiting for a free cycle in the Lock CAM. This code can be adapted to

fit other forms of aggregation operations such as SUM(), AVG(), MAX() and MIN(). In order to

support MAX function instead of COUNT, the function in the Filter CAM needs to change from

performing increments by 1 to computing MAX (current max, new value). Both functions would

require reading the current value from memory (COUNT or MAX). While the COUNT always

updates the count in memory, MAX may or may not update the value in memory. As for AVG(), the

Filter CAM is still needed to count and then divide by number of elements. On the software side,

an opcode can be used to activate a different function on the FPGA.

32



3.5 MTP Design Optimizations & Trade-offs

The main factor limiting performance of this memory-bounded problem is the efficient

use of available memory bandwidth. In this chapter we use a Micron (Convey) HC-2ex machine,

but our design is platform independent. In the HC-2ex the communication between the FPGA and

main memory relies on the abstraction called channel. Each channel supports independent and

concurrent read/write accesses to memory.

The original design of our aggregation engine required 4 memory channels: one for

streaming the input tuples, one for accessing the in-memory hash table, and finally two channels

for the bucket lists read/write operations. Since the Micron (Convey) HC-2ex has 16 memory chan-

nels, we replicated 4 engines (164 ) on a single FPGA thus leveraging inter-engine parallelism. Our

original experiments showed that some memory channels were idle for almost 70% of the total

execution time. Since the channels within an engine are statically assigned to perform different

functions of the pipeline, back pressure from some components (e.g. thread waiting through CAM

synchronization) introduces stalls and decreases the effective throughput.

In order to increase memory utilization we then multiplexed a pair of engines on the same

set of memory channels, thus allowing the same channel to be used by two different engines. This

means that the following engine operations: 1) Send and receive tuple request and response, 2)

Read and write respective values to the hash table, 3) Read and write entries into respective bucket

list, can run concurrently on two different engines. The multiplexed design increases the number of

CAMs that could be placed on the FPGA, leading to further improvement in throughput. Unlike the

original design[11], the new multiplexed engine uses 5 memory channels (adding an extra channel

for accessing the in-memory hash table). This enabled 6 engines (2 ∗ b165 c) on a single FPGA.
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In this latest design, to further improve the utilization of memory bandwidth, we have

reduced the number of memory channels down to 1 per engine. For each engine, all requests for

streaming in the tuples, accessing the hash table, and accessing linked lists are multiplexed inter-

nally. This construction enables up to 16 engines per FPGA, however, due to routing constraints

we only implemented 12 engines. While multiplexing more requests over a given channel likely

increases the latency of any given thread, it enables the engine to always have a request available

to issue and can keep the engine in the steady state longer. If the aggregation datapath is working

through requests but cannot take any more tuples from the stream, it is a waste of bandwidth to ded-

icate a channel to streaming tuples. As the percentage of execution time in the steady state increases

relative to the fill-up and drain-out stages, the overall throughput of the system increases.

3.6 Experimental Results

The MTP aggregation implementation is compared in terms of overall throughput against

the best multi-core approaches [40, 151] running on a single processor with 4 parallel threads. A

summary of the various software aggregation algorithms follows, as well as a description of the

datasets used in the experiments.

3.6.1 Software Implementations

In order to evaluate our MTP architecture we have implemented the following state-of-

the-art multithreaded software aggregation algorithms: (i) Independent Tables[40], (ii) Shared Table

[40], (iii) Hybrid Aggregation [40], (iv) Partition with Local Aggregation Table [151] and (v) Parti-
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tion & Aggregate [151]. Here, (i) and (ii) are considered as non-partitioned approaches, while (iii)

and (iv) are hybrid, and (v) is a partitioned approach.

• Independent Tables [40] is the approach most similar to our hardware implementation. The

tuples are evenly split among separate software threads (without partitioning), and each thread

aggregates result into its own hash table. Once the aggregation is complete all tables are

merged together, which requites write synchronization.

• Shared Table (with locking or atomic synchronization) [40] splits the tuples evenly be-

tween threads, but all threads aggregate their results into a single hash table, hence no extra

merge step is required. The algorithm could use different synchronization primitives: either

pthread mutex implementation or Intel-specific hardware atomic instructions. Preliminary

experiments showed that atomic primitives are significantly better on low key cardinalities,

and don’t have any difference from mutexes on medium and large cardinalities, so we choose

atomics as a default synchronization primitive in all further experiments.

• Hybrid Aggregation [40] is a combination of two previous approaches. This algorithm al-

locates a small hash table for each thread. The size of the table is calculated based on the

processor’s L2 size to avoid cache misses. If the local table has enough space for a new value,

or the value already exists in the table, that tuple is locally aggregated. Once the local table

is filled and the next tuple requires a new slot, the oldest entry in the cached table will be

spilled into larger shared table, residing in main memory, thus maintaining only “hot” data

in L2 cache. Once aggregation is complete all small cached tables are merged into the large

shared table. Merge step is synchronized as in Independent Tables case.
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• Partition & Aggregate [151] (also known as count-then-move [41]) uses individual tables

per thread, but before aggregation is performed the tuples are partitioned, in contrast to all

aforementioned approaches. Separate partitioning step makes sure that all threads will work

on non-overlapping values, hence aggregation could be done without any synchronization

and the final tables are simply concatenated, rather than merged. As with the partitioned join

implementations radix clustering algorithm is a backbone of this preliminary step.

• PLAT (Partitioning with Local Aggregation Table) [151] is a combination of two previous

techniques. The algorithm takes advantage of the fact that we are performing an additional

data scan, while doing a pre-processing step. While partitioning tuples into groups with

mutually exclusive keys, each thread tries to aggregate values into its own small L2-resident

table, as in Hybrid Aggregation approach. Values that do not fit into the small table are

partitioned using radix clustering algorithm. Once pre-processing is done standard lock-free

aggregation is applied. To finish, all tables which were produced during aggregation are

concatenated together, while local tables are synchronously merged.

3.6.2 Dataset Description

We use five datasets with various key distributions, namely: Uniform, Heavy Hitter, Mov-

ing Cluster [40], Self Similar and Zipf 0.5.

• In the Uniform dataset all key values are picked from the uint64 key range with uniform

probability. After that generated key/value pairs are randomly shuffled.

• A half of the tuples in the Heavy Hitter dataset [40] share the same a key value. The remain-

ing key values are picked uniformly and evenly distributed throughout the the entire relation.
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• In the Moving Cluster dataset [40] tuples are grouped into clusters depending on their key

values. Lower key values are more likely to appear at the beginning of the relation, whereas

tuples with higher key values are tend to appear at the end of the relation.

• Self Similar uses Pareto rule to model key distribution in a dataset: a single key value is

shared by 20% of the tuples. Of the remaining 80% of tuples 20% of those share another

key value. This process is repeated recursively to generate the relation. Tuples are randomly

shuffled. The generation algorithm is described by Gray et al. [56].

• In the Zipf dataset key values follow the Zipf distribution with a skew coefficient of 0.5. The

generation algorithm appears in aforementioned work[56].

Each dataset consists of several benchmarks with cardinalities ranging from 210 to 222

unique keys. The relation size in all of the experiments was 256 million tuples (in line with previous

research [151]). Each dataset used the same 8-byte wide tuple format, which is commonly used for

performance evaluation of in-memory query processing algorithms [19, 26, 24] and represents a

popular column-wise storage format. The first 4 bytes of the tuple hold the unique primary key,

while the rest is reserved for the grouping key. Since we are only interested in counting records

with the same grouping keys, our tuples do not store any other information. However, none of

the design choices prevent the use of “wide” tuples (i.e. containing fields other than primary and

grouping keys). This could be easily supported by adding a key extraction component into the

MTP design. Moreover experimenting with such “skinny” tuple format yields the best performance

for software implementations, since it minimizes the cache capacity misses, which would decrease

caching effectiveness otherwise.
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(a) Uniform

(b) Heavy Hitter

Figure 3.4: Aggregation throughput of single engine for 256M tuples as the Filter CAM size is

varied from 32 to 256

3.6.3 Effect of Filter CAM Size in MTP Group-By Aggregation

The throughput of a multithreaded engine is determined by the number of threads needed

to fully mask latency. In this FGL engine, one of the key controls on the number of threads con-

currently working is the size of the Filter CAM. Since every entry in the Filter CAM starts a thread

searching the hash table for a node, we started by experimenting on the effect of the CAM size on

throughput. Figure 3.4 shows the throughput as a function of the Filter CAM size for two of the
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data distributions, and illustrates the caching aspect of a CAM. The other distributions show similar

behavior.

For the uniform distribution (Figure 3.4a) there is a sharp drop in throughput where car-

dinality grows larger than the Filter CAM size. As the cardinality increases, there will be little

temporal locality in the tuple stream and pre-aggregation provides little help. CAM sizes of 64 or

128 provide similar throughput, especially for larger cardinality where hash table searching domi-

nates.

For the heavy hitter distribution (Figure 3.4b) there is a similar drop in throughput where

cardinality grows larger than the Filter CAM size. However, in this instance the Filter CAM size

definitely affects the achievable throughput when hash searching dominates. A CAM size of 32

keeps the throughput similar to the uniform distribution. CAM sizes of 64 and above nearly double

the throughput as the Filter CAM is able to exploit locality in the skewed data. As with all caches,

there are diminishing returns for increasing the size. Maintaining locality for larger cardinalities

requires significantly larger CAMs. Considering the diminishing returns of CAM sizes above 64,

our current design uses a Filter CAM size of 128 to ease resource pressure.

3.6.4 Throughput Evaluation

Figures 3.5, 3.6, and 3.7 shows the throughput of group-by aggregation as the key car-

dinality is increased, obtained for various distributions. Throughput was measured for two MTP

engine designs: multiplexed [11] and FGL, and five software implementations: two non-partitioned,

two hybrid and one partitioned. Throughput for the skewed Heavy Hitter dataset Figure 3.6b resem-
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bles the results for Self Similar dataset Figure 3.5b, while the throughput for moderately skewed

data Zipf 0.5 shown in Figure 3.7 is similar to the results obtained for Uniform dataset Figure 3.5a.

Software implementations demonstrate the best performance on Moving cluster dataset Figure 3.6a

due to the property of the data distribution: similar grouping keys appear in the input stream clus-

tered together, increasing CPU-cache hit rates.

Despite all the differences in data distribution, the CPU aggregation performance is mainly

determined by the dataset’s key cardinality. When the number of unique keys is low, hash tables can

fit into the CPU cache entirely. However, as the cardinality increases, cache misses start to hamper

the throughput due to high latency memory round-trips. Software performance severely deteriorates

at cardinalities higher than 218 on all datasets for all algorithms. Another trend, which appears in all

experiments, is that the Independent Tables approach yields the best result across all software algo-

rithms. Nevertheless, that algorithm exhibits poor scalability, since the amount of memory needed

for aggregation processing grows linearly with the number of parallel threads and the key cardi-

nality. As the number of parallel threads increases, the amount of available memory could quickly

become a bottleneck. We could also see that hybrid algorithms (PLAT and Hybrid Aggregation)

outperform traditional partitioned (Partition & Aggregate) and non-partitioned (Shared Table) ap-

proaches by amortizing the cache miss cost and sustain a throughput around 400 MTuples/sec. This

trend continues for cardinalities up to 216, which marks the end of L3-cache residency. After that

point the performance advantage of hybrid algorithms vanishes and drops below 100 MTuples/sec.

The throughput of the MTP designs also drops as the key cardinality increases, however,

this effect is much less profound. Unlike the software throughput, this drop is explained by the

overhead, introduced by the post-processing merge step.
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The most striking aspect of the MTP throughput is that it is mostly constant across the

range of cardinality dropping by a factor of two at the most while the software one drop by factors in

the 100s. The results clearly show the benefits of the FGL MTP design over the multiplexed one. An

important detail to note is that the FGL implementation is only using 12 engines, and thus only using

75% of the available memory bandwidth. Even with this handicap in bandwidth, FGL design is able

to outperform the multiplexed design. The increased throughput comes from three main factors.

First, reducing the number of channel allocations lets us use more engines and hence see increased

inter-engine parallelism. Second, because we are multiplexing more requests over the same channel,

this design is able to use the available bandwidth more efficiently. This better efficiency improves

the latency-masking and increases throughput. Last, the fine-grained locks mean that we only need

to do locking in the beginning of execution while the first nodes are being inserted. The remainder

of the execution is lock free.

3.6.5 Trade-Offs

For a given workload, as the number of engines in the machine increases, the work done in

each engine decreases and the time spent by this engine in the steady state, at maximal throughput,

is reduced, hence the overall throughput is reduced as more time is spent in the fill-up and drain-out

stages.

We varied the number of engines per FPGA from 1 to 12 (4-48 total engines), and tested

it with Uniform key distribution on 256M tuples dataset. The results in Figure 3.8 show that the

throughput is linear with the number of engines. As the number of engines grows higher, the

bandwidth starts to saturate, causing the gain in throughput to decrease. The gain in throughput
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when going from 40 engines to 48 engines is less than that when going from 32 engines to 40

engines.

The comparison of the FGL throughput to that of the multiplexed design appears in Fig-

ures 3.5, 3.6 and 3.7. The following factors contribute to the decline in throughput:

1. The locking ratio increases with cardinality, taking up a much larger portion of the execution

time.

2. FGL MTP design has 12 engines versus 6 in the multiplexed MTP design, which means each

engine has less data to work on.

3. FGL MTP design has a smaller Lock CAM of depth 32 compared to 128 in the multiplexed

MTP design. It was not possible to place and route 12 engines with the larger CAMs on the

Xilinx Virtex6-760 FPGA.

We note that a newer FPGA could fit a larger CAM and 12 engines eliminating the drop in through-

put.

Discussion

The performance benefits of the MTP approach come not from architecture-specific fea-

tures of the FPGA devices, but from the massive multithreading that enables the MTP engine to

better utilize the available memory bandwidth while masking latency. Figure 3.9 depicts the ratio of

effective average memory bandwidth to peak theoretical memory bandwidth for the best software

(Independent Tables) and the MTP implementations while varying the dataset sizes and key cardi-

nalities. The MTP approach allows the FGL MTP to keep the ratio almost constant, irrespective of
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the dataset size or key cardinality. Since the FPGA’s and CPU’s memory bandwidth are 38.4 GB/s

and 51.2 GB/s respectively then ratio 1 in Figure 3.9 corresponds to 38.4 GB/s on the HC-2ex and

51.2 GB/s on the CPU.

For the software implementation, at low cardinality the aggregated relation and hash table

are mostly in the cache hierarchy and there are almost no memory accesses, hence the ratio ap-

proaches zero. The ratio peaks at around 0.5 for cardinality 218, but drops significantly for higher

key cardinalities.

The effective memory bandwidth of the CPU implementation tends to grow as the size of

the relation increases (from 16M to 128M), whereas the MTP approach is less susceptible to data

size variations. For average cardinalities, the FGL MTP implementation is almost 30 times higher.

For very large cardinalities, the FGL MTP implementation ratio drops due to the small

Lock CAM as explained in Section 3.6.5. Yet, the ratio is still about 2.5 times higher on average

than the software.

3.6.6 Fine-Grained Locks versus Coarse-Grained Locks

The performance benefits of FGL compared to the CGL [11] is shown in Figures 3.10a

(for the Uniform key distribution dataset) and 3.10b (for the Heavy Hitter key distribution dataset).

For this experiment, both FGL and CGL designs have the same number of engines and the same

sizes of Filter and Lock CAMs. The throughput is normalized over the available bandwidth. The

FGL design normalized throughput is 4 times higher than that of CGL design demonstrating the

reduction of the locking overhead as discussed in Section 3.3.
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3.6.7 Effects of the Merge Operation

Figure 3.11 shows aggregation throughput while the size of the datasets having Uniform

key distribution is increased. The parallel MTP aggregation step has almost constant throughput

of about 820 MTuples/sec, which drops on very high cardinalities due to the usage of a small

Lock CAM as explained in 3.6.5. The effect of a small Lock CAM size is less pronounced on

larger datasets as the engines spend more time in the steady state. The merge step introduces an

overhead, however it comes at a fixed price. This cost depends solely on the key cardinality because

aggregation reduces the initial input into a constant number of streams which should be merged.

Hence, as the size of the relation grows the merge step overhead gets amortized.

3.6.8 FPGA Resources Utilization

Table 3.2 shows the resource utilization (registers, LUTs, and BRAMs used) for the two

MTP aggregation designs (multiplexed, FGL) as the number of engines is scaled up. The biggest

drivers of resource usage in these engines are the CAMs. The CAMs are the largest components in

the engines and dictate size and timing constraints. It’s interesting to note that the 8 engine FGL

design is comparable to the previous design, showing that the increased complexity of the lower

level locks is not too complex to implement in hardware. We were also able to save significantly

in BRAM usage as well. The aggregation design uses only 62% of the available resources showing

there is still room to incorporate other relational operations on the FPGA fabric.
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3.7 Conclusion

In this chapter, we implemented and evaluated hash-based group-by aggregation, using

hardware multithreading techniques on FPGA hardware accelerators. The data structures are kept

in global memory, which increases the access latency compared to on-chip BRAMs, but allows us

to tackle much larger problem sizes. Multithreading allows the MTP design to mask the longer

latency by issuing hundreds of threads across four FPGAs.

Multithreading techniques are used to implement a group-by aggregation function on the

MTP design. Aggregation is a complex operation because threads can either update an existing

node, or create a new node. We evaluate the FGL MTP design against five software approaches

(both partitioned, and non-partitioned) over five different datasets. Experiments show a sharp de-

cline in performance for the software approaches as the cardinality increases. The FGL MTP de-

sign’s throughput is unaffected by the benchmark’s cardinality, and can sustain between 500 and

1,500 MTuples/sec depending on the key distribution, achieving an average of 3.3x speedup over all

CPU implementations. Due to the limited clock frequency, memory bandwidth,and limited on-chip

memory of the FPGA platform relative to state-of-the-art multi-core CPUs, we cannot demonstrate

superior raw throughput. However, this proof-of-concept work demonstrates throughput improve-

ments achieved by efficient memory bandwidth utilization using latency-masking threads.
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Cycle Key Filter CAM Lock CAM HashTable Comments

1 A Miss, Insert (A,1) {} {} Request to search key A in HT is sent

{(A,1)}

2 C Miss, Insert (C,1) {} {} Request to search key C in HT is sent

{(A,1),(C,1)}

3 A Hit, Update A Miss, Thread 1 locks

hash(A)

{}
Key A not found in HT,

Buckethash(A) is locked

4 Thread 1 clears

key A

Hit, hash(A)=hash(C) {(A,2)} Create new entry (A,2) in HT

{(C,1)} {hash(A)}
Key C not found in HT,

Thread 2 waits for lock

5 B Miss, Insert (B,1) Thread 1 frees lock on

hash(A)

{(A,2)} Request to hash(C) in HT is sent

{(C,1),(B,1)} {} Thread 2 restarts at previous address

6 A Miss, Insert (A,1) {(A,2)} Request to search key B in HT is sent

{(C,1),(B,1),(A,1)} {} Thread 2 reaches end of list

7 Thread 2 locks

node(A).next

{(A,2)} Request to search key A in HT is sent

{(C,1),(B,1),(A,

1)}

{node(A).next} node(A).next is locked

8 Thread 2 clears

key C

Thread 2 frees lock for

key C

{(A,2),(C,1)} Create new entry (C,1) in HT

{(B,1),(A,1)} {} Key B not found in HT, CAM busy

9 Thread 5 clears

key A

Thread 4 locks hash(B) {(A,3),(C,1)} Key A found

{(B,1)} {hash(B)} Update key A in HT to (A,3)

10 Thread 4 clears

key B

Thread 4 frees lock for

key B

{(A,3),(C,1),(B,1)} Create new entry (B,1) in HT

{} {}

Table 3.1: Example showing the contents of the Filter CAM, Lock CAM and HashTable (HT) and

modifications altering all of them.
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(a) Uniform

(b) Self Similar

Figure 3.5: Aggregation throughput of hardware and software approaches for datasets with 256M

tuples. Y-axes are logarithmic.
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(a) Moving Cluster

(b) Heavy Hitter

Figure 3.6: Aggregation throughput of hardware and software approaches for datasets with 256M

tuples. Y-axes are logarithmic.
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Figure 3.7: Aggregation throughput of hardware and software approaches for Zipf 0.5 dataset with

256M tuples. Y-axes are logarithmic.

Figure 3.8: The effect of varying the number of engines on throughput from 4 to 48 engines on all

4 FPGAs for Uniform key distribution dataset with 256M tuples. Y-axis is logarithmic.
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Figure 3.9: Ratio of average effective memory bandwidth to peak theoretical bandwidth achieved

by the Independent Tables software algorithm and the FGL design for varying dataset sizes and key

cardinalities.

# PEs Registers LUTs BRAMs

Original 1 99,597 (11%) 87,194 (18%) 126 (17%)

MUX 6 179,641 (18%) 200,175 (42%) 250 (34%)

FGL 12 240,118(25%) 296,778 (62%) 192 (26%)

Table 3.2: Per-FPGA resource utilization for aggregation

engines.
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(a) Uniform

(b) Heavy Hitter

Figure 3.10: Aggregation throughput normalized against available bandwidth of CGL and FGL

approaches for Uniform key and Heavy Hitter key distribution datasets with 256M tuples.
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Figure 3.11: Effect of varying relation sizes on the MTP aggregation throughput for datasets with

Uniform key distribution. Solid lines represent throughput of the aggregation step (without merge

operation), while dashed lines represent end-to-end (aggregation followed by the merge) throughput.
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Chapter 4

High-Performance Parallel Radix Sort

on FPGA

4.1 Introduction

Sorting large datasets remains one of the classic challenges for high-performance comput-

ing. The familiarity of sorting algorithms belies its importance in many crucial applications in the

age of big data. Comparison-based and distribution-based sorting algorithms are the two common

methods of sorting. Merge sort, an example of the comparison-based approach, has O(N logN)

time complexity while radix sort, an example of the distribution-based sorting, has O(N ∗B) com-

plexity where B is the number of iterations needed to sort a key.

As the technology evolves, new hardware architectures and platforms induce a re-evaluation

of sorting algorithms and their implementations on these new architectures. Because the parallel

versions of radix sort rely on building and storing a histogram for each Processing Element, it was
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considered unsuitable for FPGA acceleration as it required too many, costly, reads and writes to

memory. However, new FPGA architectures such as the Xilinx UltraScale+ series [10] and the In-

tel Stratix 10 DX [3] and Agilex I-Series [2] come with very large on-chip storage that makes it

worthwhile to re-evaluate radix sort on FPGAs. In this chapter we describe, implement and evalu-

ate Hardware Accelerated Radix Sort (HARS), a parallel implementation of radix sort on an FPGA

that takes advantage of this large on-chip storage. Our design enables dividing the unsorted dataset

among parallel engines without the need for a merge step. HARS is implemented on Micron’s SB-

852 FPGA board using Xilinx UltraScale+ XCVU7P FPGA with 64 GB of on-board memory. For

in-memory sorting, HARS achieves a throughput of 44 Million 128-bits records per second and is

1.4x faster than a Xeon E5-2640 CPU. Because a GPU, in this case the Nvidia TITAN X Pascal,

enjoys a memory bandwidth that is much higher than that on the FPGA board, the raw throughput

is about 5.4x that of HARS. However, when normalized to the available memory bandwidth, HARS

achieves 1.36x higher throughput.

The main contributions of this chapter are:

• A novel parallel in-memory radix sort implementation on FPGA that does not rely on sorting

networks and avoids a final, performance limiting, merge step.

• The size of the sorted data is not restricted by the available on-chip memory.

• A constant throughput that is not dependent on the size of data being sorted and scales with

on-chip memory and bandwidth.
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4.2 FPGA-based Radix Sort Accelerator

Our proposed hardware accelerator is based on a parallel version of the serial Radix Sort

algorithm [153]. Our targeted dataset is randomly generated records that consist of key-value pairs.

We sort two types of 128-bit records: 1) 80-bit key and 48-bit value (or pointer). 2) 64-bit key and

64-bit value. The Indy category of the Terasort [70] considers records of fixed size of 100 byte

records where the keys are 80 bits. Previous work on FPGA-based sort accelerator [71] has consid-

ered using a 48-bit pointer to the 90 byte value instead of moving the actual value. This reduces the

problem of sorting each 100 byte record into sorting a 16 byte record. The only disadvantage is the

number of extra cycles needed to de-reference the pointer to access the data.

4.2.1 Parallel Radix Sort Algorithm

Radix sort is based on using Counting Sort as a subroutine. Unlike comparison based

sort which has O(n log n) time complexity, Counting Sort has a linear time complexity. Sorting N

k-bit keys requires 2N storage space and a 2k deep histogram. The time complexity of radix sort is

related to: 1) the number of keys to be sorted; 2) the number of digits or bits per key k, and; 3) the

radix r.

In Radix Sort, a set of N keys where each key is composed of k-bits is sorted by dividing

it into a radix of r-bit and sorting the keys based on r-bit per iteration until all k-bits have been

scanned. The Radix parameter r controls how many iterations are needed to sort k-bit keys. For

instance, sorting 80-bit key is done by dividing it into 16-bit digits, radix 16. In the first iteration

keys are sorted based on the first 16-bit, starting from LSB, then they will be sorted based on the
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next 16-bit and so on until all 80-bit are scanned after five iterations (Equation 4.1).

Iterations =
⌈

Total number of bits per key (k)
Number of radix bits (r)

⌉
(4.1)

Each iteration in our parallel Radix Sort consists of three stages shown in Figure 4.1.

Stage I: Stream subset of keys – Build local 
histogram – Write histogram to global memory

Stage II: Stream all histograms from global 
memory – Build globally-aware local histogram

Stage III: Stream subset of records from global 
memory – write sorted records to new 

positions in global memory 

Repeat 
“Iterations”

times

Figure 4.1: The three stages of each iteration in radix sort where the number of iterations is deter-

mined by Equation 4.1

The parallel Radix Sort algorithm, executing on P Processing Engines (PEs), is described

in Algorithm 1. It consists of three stages:

• Stage I, shown in Algorithm 2, pSize keys (where pSize = N/P ) are streamed from the

global memory to each PE in order to build the histogram table in the local memory. At the

end of this stage, all the local histograms are written back to the global memory. The time

complexity is O(N/P ).
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• Stage II, shown in Algorithm 3, each PE reads all the locally generated histograms to its own

local memory performing a prefix sum on all the histograms. Each PE re-streams the his-

tograms of subsequent PEs and adds them as an offset to its histogram. The time complexity

is O(P2r). For r � N the time complexity of stage II is negligible.

• Stage III, shown in Algorithm 4, each PE streams again its subset of both keys and values.

The radix bits of each key are compared against the updated local histogram per PE and the

new write location is calculated. The write address of key-value pair can be anywhere in the

global memory. It is not restricted to the range of data subset assigned to the PE. The Time

complexity is O(N/P ).

Example: Let the set KEYS be an unsorted dataset, N = 8, k = 4, and r = 2. Sort-

ing this set requires two iterations. Two PEs that share the same memory space will be used to

demonstrate the algorithm. Each PE also has its own local memory.

KEYS = {0110, 1101, 1010, 1110, 1010, 0111, 0110, 1100}

In iteration 1, the first two least significant bits of each key are scanned to construct a local

histogram in each PE. The depth of the histogram table per PE is 2r = 4.

Stage I: this stage begins with each PE streaming its subset of pSize = 4 keys. PE 1

streams:

KEYS[0→ 3] = {0110, 1101, 1010, 1110}

While PE 2 streams:

KEYS[4→ 7] = {1010, 0111, 0110, 1100}
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Table 4.1 shows the final local histogram of PEs 1 & 2. All PEs write their local his-

tograms to the global memory at the end of the first stage.

Pattern Count PE 1 Count PE 2

00 0 1

01 1 0

10 3 2

11 0 1

Table 4.1: Local Histogram for PEs 1 & 2

Stage II: all local histograms have to be exchanged between the PEs. Each PE builds

a local histogram that is aware of the other PEs’ histograms. This ensures that keys are sorted in

global scope without any conflict in ordering. Hence, eliminating the need for merging the sorted

P subsets at the end. At the end of stage II, each PE will have completed building a local globally-

aware table.

Pattern Count PE 1 Count PE 2

00 0 0

01 1 2

10 2 5

11 7 7

Table 4.2: Updated Local Histogram, PE 1 & PE 2
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Stage III: both keys and values are streamed as shown in Algorithm 4. The first two bits

per each key are compared against the corresponding entry in the local histograms shown in Table

4.2 in PE 1 and PE 2. For example in PE1, when key[0] = 0110 is streamed, the entry in Table 4.2

for bits 10 is 2. So, key[0] = 0110 will be written to global memory at location 2 and the entry for

bits 10 is incremented to 3. key[1] will be written to location 1 and key[2] to location 3 in global

memory. When key[3] = 1110 is streamed, the entry table for bits 10 is now 4. So, key[3] will be

written to location 4 in the global memory. The same process happens simultaneously in PE2.

After all PEs have completed their writes, the second iteration begins. Each PE steams

the same range and size of keys from the memory location where previous writes took place. PE 1

streams:

KEYS[0→ 3] = {1100, 1101, 0110, 1010}

while PE 2 streams:

KEYS[4→ 7] = {1110, 1010, 0110, 0111}

The same three stages are executed in a second iteration to sort the records based on next

and final two bits. At the end of the second iteration the set KEYS is fully sorted.

KEYS = {0110, 0110, 0111, 1010, 1010, 1100, 1101, 1110}
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4.2.2 FPGA Platforms

Two platforms were used in evaluating the proposed hardware accelerator HARS: the

Micron WX-2000, hereafter referred to Wolverine I (or W1), and the SB-852 here called Wolverine

II (or W2).

In both boards, the virtual address space is shared between the host and the co-processor,

through Globally Shared Virtual Memory, and appears to the x86 host’s memory system as another

processor connected over PCIe bus. Table 4.3 highlights the main differences between two boards.
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The larger overall on-chip memory available on W2 permits using higher radix for the

sort and hence reduces the number of required iterations. The UltraRAM on the W2’s Xilinx Ultra-

Scale+ [9] is used for this purpose. W1 and W2 have the same architecture. Figure 4.2 shows the

architecture of W2. The architecture of W1 is identical but using Xilinx Virtex 7 chip with DDR3

memory instead.

In both platforms the co-processor, a single Xilinx FPGA chip, is connected to its global

on-board memory through a distributed crossbar; four memory controllers manage 32 half-duplex

Memory Channels (MCs), as shown in Figure 4.3.

61



W1 (XC7V2000T) W2 (XCVU7P)

On-chip

Memory (Mb)

Total 45.4 230.6

BRAM 45.4 50.6

URAM N/A 180

Global Memory (GB) 32 DDR3 64 DDR4

Clock Freq. (MHz) 168.7 266.67

Bandwidth

(GB/s)

Peak 42 64

Measured 32 42

Table 4.3: Characteristics of Micron’s W1 and W2 boards

In both W1 & W2, the host server has two Intel Xeon E5-2640 processors running at 2.60

GHz with 20 MB L3 cache and 128 GB of DDR4 RAM.

4.2.3 HARS’ Architecture

Our proposed accelerator HARS is a set of PEs implemented on the FPGA as illustrated

in Figure 4.3. Each PE is capable of executing all three stages of the Radix Sort algorithm.
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Intel 
Xeon 

E5-2640

Intel 
Xeon 

E5-2640

1,866 MT/sec DDR4 128 GB 1,984 MT/sec DDR4 64GB

Xilinx UltraScale+ VU7P 
Clocked at 266.67 MHz

PCIe

Crossbar

Figure 4.2: Host and accelerator in Micron’s Wolverine II (W2) platform

The number of possible PEs is determined by the number of available MCs on the FPGA.

In order to produce an output every cycle, 2 MCs per PE are needed hence 16 PEs can be synthesized

on the FPGA. All local histograms are implemented using on-chip memory shown in Table 4.3.

Figures 4.4, 4.5, and 4.6 show the implementations of the three stages that correspond to

the Algorithms 2, 3, and 4 respectively.

The host server orchestrates the sequencing of the three stages as shown in Figure 4.1.

The host application acts as threads barrier ensuring that all PEs have completed executing the same

stage before initiating the next one.

Stage I Circuit (Building Local Histograms) Data flow for this circuit is shown in Figure 4.4.

Each PE has a local histogram of depth 2r and width of 32-bit. W1 platform is limited to a his-

tograms of size 14 × 214 bits per PE. In W1, the histograms are built entirely using BRAM. W2
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Memory 
Controller 0

PE0 – PE3

DIMM 0

PE4 – PE7 PE8 – PE11 PE12 – PE15

Memory 
Controller 1

Memory 
Controller 2

Memory 
Controller 3

DIMM 1 DIMM 2 DIMM 3

Memory 
Channels 
0-7

Crossbar
(binary 

interleave)

FPGA 
Chip

Memory 
Channels 
8-15

Memory 
Channels 
16-23

Memory 
Channels 
24-31

Figure 4.3: Accelerator’s system architecture

platform has local histograms with 16 × 216 bits per PE built using a mix of BRAM and URAM

blocks. In both designs, about a third of the BRAM resources are used in building the accelerator’s

memory and PCIe interfaces.

Upon receiving the starting signal, read requests for keys are issued continuously as long

as there is space in the input FIFO and there is no memory stall request. Keys are continuously

popped from the input FIFO and shifted based on r to extract the pattern scanned for that specific

iteration from the key. The pipelined design ensures that while a key is being read from the input

FIFO, a bin is being read from memory based on a previous key while another bin in memory is

being incremented. Read after write data hazard is handled in the design. Once all the keys have

been processed in a PE, the local histogram is written to the global memory.
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Global Memory

Generate 
memory 

read 
requests 
for keys

WR 
responses 

counter

Build local 
histogramBRAM/URAM

Write 
histogram 

to 
memory 

MC0MC1

RD/WR

RD

RD requests are complete

FIFO empty

Data

Keys

Count

FIFOFIFO

Count

FIFO 
empty

Complete

Done

Figure 4.4: Data-flow for Stage I per PE: building and writing the local histogram

Stage II Circuit (Building Local Globally-Aware Histograms) The data flow for this circuit is

shown in Figure 4.5. Each PE rebuilds a new histogram such that the new histogram contains the

offsets needed to sort the assigned subset of keys in accordance with their order in the global dataset.

Stage III Circuit (Compare & Write) The data flow for this circuit is shown in Figure 4.6. Each

PE generates stream requests for all key-value pairs in its pSize subset, calculates the new address

of the key-value pair, and issues the write request.

4.2.4 Resources Utilization

Table 4.4 shows the resource utilization (registers, LUTs,and memories used) for HARS

on the W2 platform. HARS utilizes most available on-chip Block and Ultra memory for a radix
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FIFO

Data
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Complete

FIFO 
empty

Control

Control

Done

Figure 4.5: Data-flow for Stage II per PE: synchronizing and updating histograms

value of r = 16. The next radix value that reduces the number of iterations is r = 20 which exceeds

the total memory resources available on-chip.

4.3 Performance Evaluation

HARS was implemented on both the W1 and W2 FPGA boards. Since HARS is designed

as an in-memory sorting application, all measurements were done after the data was loaded to global

memory.

4.3.1 Sorting on FPGA and CPU

The CPU software evaluation was performed on the host server described in 4.2.2 us-

ing single CPU chip with two configurations: 8 and 4 cores. In our experiments, the frequency
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Figure 4.6: Data-flow for Stage III per PE: compare & write

scaling is switched off and the maximum frequency of 2.6 GHz is used. For the CPU implementa-

tion, we use gnu parallel::sort which is a widely-used parallel software implementation of C++

STL’s std::sort() based on libstdc++. The C++ STL sort routine has an average time complexity of

O(N logN) [8]. GNU G++ 4.8.5 with C++11 standard is used to compile the host application with

OpenMP and optimization flags -fopenmp and -O3. The host server runs CentOS 7.6.

The average throughput for various sizes of data sets is examined in order to determine

the effect on throughput across FPGA and CPU implementations. When considering data sets of

128-bit records with 80-bit keys, Figures 4.7 and 4.8 show that the average throughput increases

with the size of data sets for both CPU and FPGA implementations respectively. For the CPU,

the throughput peaks around 536M records at 33.5M rec/sec for the 8 cores configuration. The

throughput starts to decline slowly after 536M records. The same trend is observed with 4 cores.

Doubling the number of CPU cores from 4 to 8 results in 1.6x higher throughput on average. Sorting
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Resource Available (%) Utilization (%) Utilization

Blocks Total Per PE

Registers 1,576K 25.79 1.6

Lookup Tables (LUT) 788K 34.04 2.1

LUT RAMs 395K 13.51 0.8

Block RAMs 1,440 75 4.7

Ultra RAMs 640 20 1.3

Memory Channels 32 100 2

Table 4.4: Post P&R Resources Utilization

throughput for FPGA is stable at 43M rec/sec and increases linearly as the data set size increases.

No tests beyond 2B records were possible on the FPGA due to the size of available memory on W2

board.

To evaluate the effect of key size on sorting time we experimented sorting datasets with

key sizes 64 bits and 80 bits as shown in Figure 4.9.

Both HARS and the CPU show better performance for smaller key sizes. On the CPU,

sorting 64-bit keys is 1.3x faster than 80-bit keys, while on HARS it is 1.25x faster. A smaller key

size for the same radix implies fewer iterations in radix sort (Equation. 4.1).

The differences between the W1 & W2 platforms are shown in Table 4.3. Table 4.5 shows

the variation in HARS performance on W1 & W2. The 1.5x gain in performance is due to three
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Figure 4.7: Average sorting throughput on both 8 and 4 cores CPU

factors: (1) larger on-chip memory enables the use of higher radices and hence fewer iterations and

shorter sort time; (2) higher clock frequency; and (3) higher memory bandwidth.

Figure 4.10 shows the stable throughput of HARS when implemented on W2 compared

with two CPU configuration. HARS is 1.4x and 2.2x faster than CPU with 8 & 4 cores respectively.

Platform Radix
Throughput

(million records/sec)

W1 14 29

W2 16 44

Table 4.5: Throughput comparison between HARS on W1 & W2 FPGA platforms
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4.3.2 Sorting on GPU

GPU experiments were performed on Nvidia TITAN X Pascal, running at 1,417 MHz [5].

On GPUs, there are two widely used sorting routines from Thrust library: (1) Thrust::sort

which sorts keys only, and (2) Thrust::sort by key which sorts key-value pairs.

Thrust::sort can be used to sort key-value pairs by defining keys using CUDA built-in

vector type ulong2 that is 128-bit which stores both key and value. Sorting is done using mask

along with a user-defined compare function that is passed to Thrust::sort. Our experiments indi-

cate that using thrust::sort in the aforementioned configuration yields throughput that is 1.7x higher

than that when Thrust::sort by key is used so we use Thrust::sort to produce the GPU throughput

results. When using ulong2 datatype and user-defined compare function in thrust::sort, thrust li-

brary switches from radix sort to merge sort. The GPU software was compiled with NVCC version

10.0.130.
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Table 4.6 shows a comparison in capabilities between W2, CPU 8-cores, and GPU plat-

forms. The overhead of moving data between the host and GPU main memory is not considered

when evaluating GPU performance. In terms of throughput per second, Table 4.7 shows that the

GPU has the highest throughput comparing to both W2 and CPU. Since each of the platforms used

in the comparison runs on a different clock frequency, examining throughput in terms of record-

s/cycle illustrates which platform has higher efficiency per cycle. Figure 4.11 shows the sorting

throughput on the same dataset normalized to clock frequency for GPU, W2 and CPU. GPU &

HARS nearly have the same throughput despite the GPU having 7.5X more bandwidth.

Since GPU has much higher memory bandwidth, the throughput in Figure 4.12 is normal-

ized by bandwidth in order to measure the efficiency of each platform. Even GPU throughput per

second is 5.4X higher than that of W2, when throughput is normalized by bandwidth, W2 is 1.2X
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Figure 4.10: Throughput of HARS and 8 & 4 cores CPU (2B records)

and 1.36X higher than CPU and GPU respectively. HARS uses both bandwidth and clock cycles

more efficiently than both CPUs and GPUs

4.3.3 Lessons Learned

The availability of on-chip memory makes it possible to store the histograms locally and

reduce the traffic to/from on-board global memory. Using higher radices (r) reduces the number

of required iterations in the radix sort algorithm, but increases the sizes of the local histograms.

Having more PEs increases the parallelism but requires more area on the FPGA(s).

Our experimental evaluation has shown that:

• HARS delivers a constant throughput irrespective of the dataset size, unlike the CPU (Figures

4.7 & 4.8). HARS is therefore more scalable than the CPU implementation.
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• The HARS throughput, measured in records/cycle, is comparable to that of the GPU and

16.4x times larger than that of the CPU hence demonstrating the computational efficiency of

the HARS approach (Figure 4.11).

• Similarly, when throughput is normalized by bandwidth, HARS is more bandwidth efficient

than either the CPU or GPU implementations (Figure 4.12) demonstrating HARS’s effective-

ness in using the available bandwidth.

The Xilinx UltraScale+ XCVU7P used in our evaluation has 230.6 Mb on-chip memory (combined

BRAM & URAM). The 345.9 Mb on-chip memory available on the Xilinx UltraScale+ XCVU13P

would enable using r = 20 radix which would increase the throughput by 1.25x over that of W2.

73



Th
ro

ug
hp

ut
 n

or
m

al
iz

ed
 to

 b
an

dw
id

th

0

0.175

0.35

0.525

0.7
W2 CPU 8 cores GPU CPU 4 cores

Figure 4.12: Throughput normalized by bandwidth for HARS, GPU and 8 & 4 cores CPU (268M

records)

4.4 Conclusion

In this chapter we have introduced HARS (Hardware Accelerated Radix Sort) a novel par-

allel implementation of radix sort on FPGAs that leverages the on-chip memory to locally store the

necessary histograms thereby drastically reducing the traffic to/from on-board memory and hence

improving the throughput. For in-memory sorting, HARS achieves a throughput of 44 Million 128-

bits records per second and is 1.4x faster than the CPU (Xeon E5-2640). Because a GPU, in this

case the Nvidia TITAN X Pascal, enjoys a memory bandwidth that is much higher than that on the

FPGA board, the raw throughput is about twice that of HARS. However, when normalized to the

available memory bandwidth, HARS achieves 1.36x higher throughput.
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Peak Bandwidth

(GB/sec)

Global Memory

(GB)

Freq.

(MHz)
Execution Units

GPU TITAN X Pascal 480.4 12 1,417 3,584

CPU E5-2640 v3 59 128 2,600 8

W2 64 64 267 16

Table 4.6: Comparison of Platforms

GPU TITAN X Pascal CPU 8 cores W2

million records/sec 235.5 33 43.5

records/cycle 0.17 0.01 0.16

Table 4.7: Sorting results for dataset of 268M records for GPU, CPU and W2
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Chapter 5

HLS Sample Sort Implementation on

FPGA

5.1 Introduction

Sorting accelerators are indispensable component in hardware database processing sys-

tems such as [113, 138]. Various optimizations of sorting software implementations for CPUs

[38, 68, 88] and GPUs [15, 55, 43] have been proposed. Several hardware sorting accelerators have

been proposed, some utilize sorting networks [99, 130, 92, 34], while others target comparison-

based sorting [103, 115, 91] as well as a hybrid of sorting networks and comparison-based sort

[71, 122]. Distribution-based sorting on FPGA such as radix sort has also been explored [22].

A common challenge with hardware sorting accelerators is the difficulty in scaling the

accelerators for very large datasets. This is due to the limited memory available on chip in embedded

system and re-configurable platforms. Traditional methods of sorting a large dataset is to divide the
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set into smaller sub-arrays such that a sub-array fits in cache memory. Sorted sub-arrays are then

merged into larger sub-arrays until the final complete sorted array is produced. The size of merged

sub-arrays grow with each merge step until the data cannot fit in cache memory.

The regularity of data access is another challenge in sorting algorithms. In HARS, pre-

sented in Chapter 4, the distribution of the keys to the buckets, at each radix, is very irregular, i.e

does not exhibit any spatial locality. The FPGA platforms used to implement HARS, Micron’s W1

& the W2, both provided a reasonably high throughput for irregular memory accesses because the

full crossbar network connecting the FPGA to the global memory. The Xilinx Alveo U280 Data

Center accelerator card is designed to support large burst memory accesses [146, 144]. Its mem-

ory bandwidth degrades by 92.5% for memory accesses with very large strides [132]. A further

evaluation of irregular memory accesses was done by building a histogram using 4-Byte bins. The

maximum achievable bandwidth was 13.27 GB/s, a reduction of 95.5% of the maximum achievable

bandwidth with regular memory accesses.

This chapter explores a parallel FPGA implementation of sample sort [25], a cache-

oblivious sorting algorithm that enables sorting very large datasets using local memory. Sample

sort enables all steps to be performed on data small enough to fit in cache memory. It avoids pro-

ducing large sub-arrays that can not be merged in local memory. In addition, sample sort exhibits

only serial memory accesses which makes it suitable for acceleration on the Xilinx Alveo U280

FPGA board. In sample sort, a set of pivots that represents the dataset is utilized to distribute keys

from sorted sub-arrays into buckets that can fit on local memory. Finally, sorting the resulting buck-

ets produces the completely sorted set. The new Xilinx FPGA programming environment Vitis

supports High-Level Synthesis (HLS) [147, 148] and provides a library of pre-implemented sorting
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APIs [139, 140, 141, 142]. Sample sort is implemented entirely using Vitis HLS and deployed on

Xilinx Alveo U280 Data Center accelerator card.

The contributions of this chapter can be summarized as follows:

• A novel parallel implementation of sample sort on FPGA.

• The exclusive use of Vitis HLS to implement the sample sort.

• An exploration of the capabilities of Vitis HLS and the Xilinx Alveo board to support this

large none-trivial application.

5.2 Background

5.2.1 Sample Sort

Sample sort is a cache-oblivious sorting algorithm [53, 108] its parallel version is de-

scribed in [25]. The key advantage of sample sort is enabling sorting very large sets by dividing the

work to operate on small sub-sets of data that fit entirely on local memory, e.g. caches in CPUs/G-

PUs or on-chip memory in FPGAs and ASICs. In this section we will refer to any type of local

memory as cache memory.

The main steps of sample sort (Figure 5.1) are summarized as follows:

1. Divide unsorted data-set located on off-chip memory into a set of sub-arrays where a sub-

array or more fit in cache (Figure 5.1a).

2. Sort each sub-array in locally using a sorting sub-routine (Figure 5.1b).

3. Generate and sort a set of pivots represent that the data.
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N keys

N/T keys

T subarrays

(a) Divide the set of N keys into equally sized T

sub-arrays

N keys

Sorted subarray of N/T keys

T Subarrays

(b) Sort all T sub-arrays & build the histogram

matrix

Sorted subarrays of N/T keys each

≤ "! < ≤ "" < ≤ "#$! <

Bucket 1 Bucket 2 Bucket T

(c) Distribute keys from each sub-array into their

corresponding buckets using prefix-sum

≤ "! < ≤ "" < ≤ "%$! <

Bucket 1 Bucket 2 Bucket T

N keys sorted

(d) Sort buckets & concatenate them according

to the pivots order

Figure 5.1: The main steps of sample sort

4. Use the pivots to build a histogram for each sub-array.

5. Transpose the histogram matrix (divide-and-conquer matrix-transpose algorithm [54]).

6. Prefix-sum is computed from the transposed histogram matrix.

7. Keys are distributed from each sub-array to their corresponding buckets using the prefix-sum

(Figure 5.1c).

8. Sort the buckets using a sorting sub-routine.
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9. Sorted buckets are concatenated according to the pivots order (Figure 5.1d).

Pivots selection is a key component in sample sort. Deterministic and randomized meth-

ods of selecting pivots are proposed in [25]. The optimal pivots set would partition the keys into

equally sized buckets. Another criterion for the pivots selection is that the resulting buckets should

fit in cache or local memory. In a deterministic selection of pivots, the set is split into
√
n sub-arrays,

each has
√
n keys. Each (log n)-th key from each sorted sub-array is selected for the samples set.

After sorting the sample set, pivots are chosen by selecting each
√
n-th key from the set.

In this chapter we have focused on deterministic pivot selection. Because sample sort

does not incur random memory accesses and is highly parallelizable, it is suitable for FPGA imple-

mentation.

5.2.2 Xilinx Alveo U280 Data Center Accelerator Card

The Xilinx Alveo U280 Data Center accelerator card is one of the new generation of

FPGA cards with PCIe interface to the host. The Alveo U280 features an FPGA chip (Figure 5.2)

that is built using Stacked Silicon Interconnect (SSI) technology. It consists of three stacked silicon

dies, each die is called a Super Logic Region (SLR). SLRs are connected using Super Long Lines

(SLL) routing resources [147]. The FPGA chip is divided into two regions: 1) A fixed static region

which contains the board’s interface and is configured once during the setup of the board. 2 )

A dynamic re-configurable region where the user’s logic and memory interfaces are implemented

[144]. The default clock frequency for FPGA kernels is 300 MHz, while the maximum supported

clock frequency is 450 MHz [146].
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Reconfigurable 
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DDR[1]
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HBM[0:31]

256 MB per bank
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DDR[0]

~13.45 MB

~13.30 MB

~13.50 MB

1 to 32 ch

xcu280-fsvh2892-2L-e chipSLR: Super Logic Region
SLL: Super Long Line
HBM: High Bandwidth Memory

SLL routes

SLL routes

Figure 5.2: Floorplan of U280 FPGA chip. The chip consists of three stacked silicon dies called

SLRs. The chip consists of two regions: 1) A static region that contains the board’s interface and

needs to be configured once. 2 ) A dynamic re-configurable region where the user’s kernels and

memory interfaces are implemented [144]. SLR0 connects to one bank of DDR4 and all 32 banks

of HBM2. SLR1 connects to one bank of DDR4, while SLR2 is not connected to any off-chip

memory resources. SLRs are connected by SLL routes. Total on-chip memory (BRAM & URAM)

shown on each SLR is extrapolated from [146].

The Alveo U280 card features two types of global off-chip memory: 1) Two banks of

DDR4, each bank is 16 GB. 2) Two stacks of HBM2, each bank is 4 GB. Each HBM2 stack is

divided into 16 banks, each bank is 256 MB. Each HBM2 bank is interfaced with the FPGA using a

Pseudo Channel (PC). Global connection between any AXI port to any HBM bank is made possible

by a partial crossbar (switch). A full mini-switch connects each group of four AXI channels with

four PCs. Thus, each group of four HBM2 banks can be accessed using a single AXI memory
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channel without loss in bandwidth. [145, 135, 132]. On the other hand, the bandwidth between an

AXI channel and a bank outside the mini-switch it’s connected to is significantly reduced.

Each of the three SLRs has a subset of the global off-chip memory interfaces. SLR0 has

the interface to all 32 HBM2 banks as well as one interface to bank #0 of DDR4. SLR1 has one

interface to the bank #1 of DDR4. SLR2 does not have any memory interfaces. Placing instances

of kernels on the same SLR that contains the memory interfaces used by the kernel doe not require

any SLR crossings. SLR crossings use the limited SLL routes which are more expensive than the

standard intra-SLR routing [147]. When SLR crossings are unavoidable, instances should be placed

on an SLR that reduces the length and number of these crossings as much as possible. For a clock

frequency of 450 MHz, the DDR4 memory has a total throughput of 36 GB/s, while the HBM2’s

total throughput is 425 MHz [132].

The AXI interface has independent reading and writing channels. Read and writes re-

quests are queued in the memory controllers as only one command can be serviced at one time. The

AXI memory protocol used to interface the FPGA chip with DDR4 and HBM2 memories requires

linear (consecutive) access to enable high performance [144].

5.2.3 Xilinx Vitis High-Level Synthesis

Xilinx FPGA kernels can be written using Vitis HLS tool which enables converting C,

C++ and OpenCL codes to SystemVerilog HDL RTL [148, 147]. Examples of projects using Vitis

HLS include building communication primitives for a TCP/IP network stack using HLS [64] and

developing HBM Connect an FPGA to HBM interface written in HLS that increases the memory

bandwidth [39]. A Sobel algorithm accelerator design using HLS OpenCL was explored in [97].

A proposed probabilistic model to the processes scheduler allows it to explore further scheduling
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approaches [36]. An assessment of Vitis HLS in terms of ease of programming and profiling accel-

erators using Himeno Benchmark is done in [29].

The evaluation in [29] demonstrated that programmer’s understanding of how to trans-

form the code into a dataflow style, usage of Xilinx’ HLS IDE, and deep knowledge of the board’s

hardware were necessary to develop efficient accelerators. One of the objective of this paper is to

also experimentally evaluate writing a large application entirely in HLS while incorporating APIs

from the new Vitis libraries. In addition, this work provides an opportunity to evaluate the capabili-

ties of the Alveo U280 board.

5.2.4 Xilinx Vitis Sorting Libraries

The Vitis library includes four sorting APIs written in Xilinx HLS C/C++. The version

used in this work is v2020.2. The sorting APIs are:

• Bitonic-Sort [139]: Sorting network that is highly parallelizable. It has time complexity of

O(n log(n)2). Bitonic-Sort provides very high throughput, but consumes large amount of

FPGA resources. As the number of keys double, resources needed for the implementation

quadruple. Experimental results show that the high resources utilization for a number of keys

higher than 128 is inconceivable.

• Insert-Sort [140]: In-place sorting algorithm. It is Highly efficient for sorting small sets with

a time complexity of O(nk). k is the maximum number of steps, any key must move to

reach its correct position. The hardware implementation is resource efficient for maximum

sort size of 1024 keys. The size of the internal shift register array is limited to 1k as this is the

maximum size for array partitioning in HLS.
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• Merge-Sort [141]: Merges two sorted streams of keys into one sorted stream. It has a time

complexity of O(n log(n)).

• Compound-Sort [142]: Combines insert and merge sort implementations in one API. It con-

sists of one insert sort module and multiple merge sort modules. Merge sort is used to merge

the sorted 1k sequences produced by the insert sort module. The hardware implementation

supports a maximum sorting size of 2M keys.

Evaluating the Vitis sorting routines showed that compound sort is the most suitable in terms sup-

porting a large sorting size, while having a acceptable resources utilization. Its implementation is

discussed further in Section 5.3.1.

5.3 Sample Sort Accelerator Design

The FPGA implementation of Sample sort accelerator is divided into four kernels: Kernel

A sorts the sub-arrays and building the histogram matrix. Kernel B implements the transpose of

the histogram matrix and the prefix-sums calculations. Kernel C implements the distribution of the

keys from each sub-array into their corresponding buckets. Kernel D sorts the buckets.

5.3.1 Sorting the Sub-Arrays

Kernel A (Fig. 5.3) sorts the initial sub-arrays using the Vitis library compound sort

(module E, Fig. 5.4). Module E uses two sorting sub-routines: insert sort and merge sort. The

compound sort library can sort up to 1M keys [142]. However, due to the its very high resources

84



Read keys 

module

Histogram builder

module

Histogram builder 

module

Compound sort

module

Write histogram 

module

Write sorted keys 

module
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All sequences FIFO + control 
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Kernel A: Sorting & 
Histogram Engine
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Control only

Even sequence FIFO + control 

Module HModule I

Figure 5.3: Kernel A - Each loop iteration sorts one sub-array and builds its histogram: a copy of

each key is sent to the compound sort module (E) and to the histogram module (I).

utilization, it is not practical to implement an instance of module E with an array larger than 512K

keys. In our implementation, module E is configured to support a sorting length of 256K keys.

Module E, uses the dataflow optimization to create concurrent processes [148], it is com-

posed of modules F & G both executing in a dataflow fashion.

Module F (Fig. 5.5a) sorts and stores each 8K keys on-chip using URAM memory. The is

done by using a single instance of insert sort module that sorts each 1K keys and passes that sorted

sequence to the merge wrapper (module H, Figure 5.6) that contains seven instances of the merge

sort module. Module H receives a sorted 1K sequence and pushes it in the next available FIFO.
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Sort part 1

Sort part 2

Module E: Compound sort module

Figure 5.4: Module E - The Vitis compound sort module is composed of two modules: F: sorts each

8K keys and stores them on FPGA’s URAM. G: merges all sorted 8K stream int one sorted stream.

The output of the final merge sort instance in module H is a sorted 8K sequence that is stored in a

partitioned array of on-chip URAM. The URAM array is divided into 32 partitions, each partition

can store up to 8K of sorted keys.

Module G (Fig. 5.5b), is composed of five merge wrapper instances. Keys are read from

each of the 32 URAM memory partitions into the 32 inputs merge sort wrapper instance. The

first merge wrapper instance, merges 32 streams of keys into 16 sorted streams. The final merge

wrapper instance produces the sorted stream of keys. Sorted keys are written back to the same

memory location in HBM2 replacing the unsorted sub-array with the sorted one.

Both read and write AXI interfaces in this design have the maximum data-width size of

512 bits since the loop sizes are known at synthesis time. Each instance of kernel A can be connected

to one or more HBM2 banks. A single AXI memory channel is synthesized to connect the kernel to

four HBM2 banks. Thus, enabling each kernel to sort 1GB of data i.e. 256M of 4-byte keys.
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5.3.2 Building Histogram

The histogram building module (module I, Fig. 5.7) executes concurrently with module E;

it has an Initiation Interval (II) of two cycles to aid the design in meeting timing, hence two instances

of module I are instantiated in kernel A. The histogram matrix is built using sets of registers. The

AXI write interface uses the maximum data-width size of 512 bits.

5.3.3 Matrix Transpose & Prefix-Sum

Kernel B (Fig. 5.8) transposes the histogram matrix and builds a number of the prefix-

sums that is equal to the number of parallel write channels available to the FPGA. The histogram

matrix is read and each bin is stored in the transposed order in the on-chip memory. Random

access to on-chip memory does not incur any additional delays, thus enabling efficient writing of

the histogram in a transposed order. The parallel distribution of the buckets (kernel C) requires a

prefix-sum for each parallel partial bucket writing process. For 16 parallel distribution processes,

16 sequences of prefix-sums are computed in a pipelined fashion and written back to the HBM2

memory. Both read and write AXI interfaces have the maximum data-width size of 512 bits.

5.3.4 Distribution of Keys

Kernel C (Fig. 5.9) distributes keys from each sub-array to their corresponding buckets.

The kernel reads and distributes keys from one sub-array at a time to partial buckets stored in a mix

of BRAM and URAM memories. When the entire sub-array has been processed, its partial buckets

are ready to be written back to a new locations on the HBM2 memory. Writing all partial buckets
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serially to a single HBM2 bank would prevent any opportunity for parallelism. Alternatively, issu-

ing parallel writes to multiple memory channels to the same bank would divide the available write

bandwidth by the number of parallel write requests. Parallelism in kernel C is made possible by

connecting it to 16 HBM2 banks with 16 parallel processes reading 16 partial buckets from on-chip

memory and writing them simultaneously to 16 HBM2 banks. The limit on the number of paral-

lel write processes is dependent the available number of HBM2 memory banks and the resources

needed for implementing the channels to each bank. A vector of the buckets sizes, computed in

kernel C, is also written back to HBM2 memory and used by Kernel D. The read AXI interface has

the maximum data-width size of 512 bits, while the write interface is 32 bits due to the variable

sizes of the partial buckets.

5.3.5 Sorting The Buckets

Kernel D (Fig. 5.10) sorts the buckets. This kernels relies on module E. However, since

the buckets have a variable size, module E is configured to support the largest possible size of a

bucket for a given distribution of keys. Hence, the data-width for reads and writes AXI interfaces is

32 bits.

5.4 Experimental Evaluation

In this design, it is not possible to use all three SLRs at the same time since only SLR0

has an interface to the HBM2 memory banks. Therefore, placing instances of kernels on SLR1 &

SLR2 causes routing conflicts due to the scarcity of the SLL routing resources (discussed in Section

5.2.2). Hence, the FPGA is reconfigured three times during the sample sort implementation: the
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FPGA is initially configured with instances of kernel A, then with instances of kernels B & C, and

finally with instances of kernel D.

5.4.1 Kernel A

Four configurations of kernel A were tested (Table 5.1). In all four configurations, the

sub-arrays in the dataset are divided such that each sub-array has 256K keys (1 MB). Module E

(compound sort) in kernel A is configured to support a maximum sorting size of 256K of 32-bit

keys. Resources utilization, clock frequency, kernel’s latency and throughput for all configurations

are shown in Table 5.2.

Table 5.1: Specifications of kernel A configurations

Instances # Banks per instance #

Config 1 1 2

Config 2 1 4

Config 3 2 2

Config 4 2 4

In configurations 1 and 2 have a single instance of kernel A, while in configurations 2

and 4 have two instances. In configurations 1 and 3, an instance is connected to two HBM2 banks

(512 MB) using a single AXI channel. Thus, an instance is sorting and building the histogram for

512 sub-arrays. In configurations 2 and 4, each instance is connected to four HBM2 banks (1 GB)

using a single AXI channel. Therefore, an instance is sorting and building the histogram for 1K

sub-arrays.
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Table 5.2: Resources Utilization for four configurations of kernel A on SLR0

CLB

[%]

CLB

LUTs

[%]

CLB

Reg

[%]

BRAM

[%]

URAM

[%]

Clock

Freq.

[MHz]

Latency

[ms]

Throughput

[MB/sec]

Config 1 54.16 26.15 16.12 13.39 10 298 925 540

Config 2 65.89 30.53 16.86 13.39 10 232 2,375 420

Config 3 88.97 48.87 27.96 22.69 20 247 1,114 900

Config 4 95.48 55.01 35.20 22.40 20 223 2,483 800

Table 5.2 shows that connecting two more HBM2 banks to an instance slightly increases

the total CLB utilization while significantly decreasing the achievable clock frequency of the kernel.

URAM utilization, used to store the sorted 8K sequences, changes linearly with the number of

instances. The very high CLB utilization in configurations 3 and 4 mainly is attributed to module E.

With an average of 90% CLB utilization, no more instances or any other user’s logic can be placed

and routed on SLR0. Because of this high CLB utilization, placing instances of kernel A on SLR1

or SLR2 was not feasible as the routing from these SLRs to the HBM2 interface on SLR0 becomes

impossible. Configuration 3 provides the highest throughput for this step in sample sort.

5.4.2 Kernels B & C

An instance of kernel B is implemented on SLR0, while an instance of kernel C is imple-

mented on SLR1. Table 5.3 shows the resources utilization, clock frequency, kernel’s latency and

throughput for two configurations of kernel B. Configuration 1 uses on-chip registers and BRAM
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for storage of the transposed histogram matrix transpose, while configuration 2 relies on URAM

resources for the storage. The higher storage capability of URAM allows for better utilization of

the HBM2 bandwidth.

Table 5.3: Resources Utilization for kernel B on SLR0

Resources/

Config.

CLB

[%]

CLB

LUTs

[%]

CLB

Reg

[%]

BRAM

[%]

URAM

[%]

Clock

Freq.

[MHz]

Latency

[ms]

Throughput

[MB/sec]

Config. 1 19.28 6.68 6.86 40.33 0 310 0.9 278

Config. 2 17.21 5.93 5.88 22.17 80 272 12 333

Kernel C is implemented on SLR1 and utilizes both BRAM & URAM to to provide

sufficient storage for the partial buckets before writing them to 16 HBM2 banks in parallel. In spite

of the moderate utilization of CLBs, clock frequency is limited. This is due to the high utilization

of both types of memory resources.

Table 5.4: Resources Utilization for kernel C on SLR1

CLB

[%]

CLB

LUTs

[%]

CLB

Reg

[%]

BRAM

[%]

URAM

[%]

Clock

Freq.

[MHz]

Latency

[ms]

Throughput

[MB/sec]

Utilization 41.95 17.47 14.21 81.03 80 224 739 347
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5.4.3 Kernel D

Similarly to kernel A, four configurations of kernel D were tested (Table 5.5). However,

Kernel D is sorting variable sized buckets and does not include any instances of module I (histogram

building). Module E here is configured to support a maximum sorting size of 512K of 32-bit keys.

Hence, sorting buckets with a size larger than that of a sub-array is supported. Resources utilization,

clock frequency, kernel’s latency and throughput for all configurations are shown in Table 5.6.

Table 5.5: Specifications of kernel D configurations

Instances # Banks per instance #

Config 1 1 2

Config 2 1 4

Config 3 2 2

Config 4 2 4

Table 5.2 shows better throughput in configurations of kernel D comparing to those of

kernel A (Table 5.2). Comparing to kernel A, higher clock frequency is achievable in kernel D since

no resource is utilized over 65%. The routing algorithm targets a preset high clock frequency and

when it fails to meet timing, it automatically scales down the clock frequency to meet timing.

5.4.4 FPGA Reconfiguration

Since it is not possible to fit all kernels on the FPGA chip, reconfiguration between steps

is needed. FPGA reconfiguration time ranges from 3 to 9 seconds depending on the size of the bit-
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Table 5.6: Resources Utilization for four configurations of kernel D on SLR0

CLB

[%]

CLB

LUTs

[%]

CLB

Reg

[%]

BRAM

[%]

URAM

[%]

Clock

Freq.

[MHz]

Latency

[ms]

Throughput

[MB/sec]

Config 1 36.26 23.45 12.39 6.47 20 313 894 573

Config 2 37.03 23.26 12.38 6.47 20 300 2,217 461

Config 3 63.72 43.17 20.60 9.45 40 294 956 1,071

Config 4 63.73 43.18 20.59 9.45 40 289 1,945 1,053

stream. Reconfiguring the FPGA chip on the Xilinx Alveo platforms causes all data on the board’s

memory to be lost. Hence, data must be moved back to the host after all instances complete running

and copied again to the HBM2 banks after reconfiguration of the new instances is complete. The

need to copy data from off-chip memory back and forth for FPGA reconfiguration is a limitation

that should be mitigated in future platforms. The write bandwidth from host to HBM2 is 10 GB/sec,

while the read bandwidth from HBM2 to host is 9 GB/sec. Table 5.7 shows a breakdown of the

latency for data movement, kernel configuration and execution for a 1 GB dataset. We can see that

while the data transfer time between the host and the FPGA is relatively small, the reconfiguration

time is more than twice the total execution times of all four kernels.

5.4.5 Throughput comparison

A parallel software implementation of sample sort included in ParlayLib [6] is used to

evaluate the performance of the proposed sample sort accelerator. ParlayLib is a lightweight C++
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Table 5.7: Latency breakdown for each step of the execution of sample sort accelerator for a dataset

of 1 GB

Write

host to HBM2

[ms]

Reconfigure

FPGA

[ms]

Kernel Exe.

Time [ms]

Read

HBM2 to host

[ms]

Kernel A 134 3,000 1,114 122

Kernels B & C 135 9,000 2,963 123

Kernel D 134 3,00 956 122

Total 403 12,300 5,033 367

header-only library that can be used for developing parallel applications on shared-memory multi-

core machines. The CPU used to run the software implementation is an Intel Xeon CPU E5-2640 v3

clocked at 2.6 GHz. It has two sockets, eight cores per socket and two threads per core. The L1 data

and instruction caches is 32KB for each. L2 cache is 256KB and L3 cache is 20MB. Two configu-

rations of the CPU are used. A configuration with 32 cores (32 threads) and another configuration

uses eight cores (eight physical cores). Table 5.8 show the latency, throughput and throughput per

core (for CPU) and per engine (for FPGA). The throughput of a single FPGA engine is 5.7x higher

than that of a CPU core. When we get FPGAs that are large enough to fit everything, not counting

the change in clock frequency it will be furthermore competitive.
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Table 5.8: Latency & throughput comparison between various platforms and sorting algorithms.

Dataset is 256M recordsa.

Platform
Latency

[sec]

Throughput

[Million Rec/sec]

Throughput per eng./core

[Million Rec/sec]

FPGA (2 engines) 5 54 27

CPU (32 cores) 1.8 149 4.7

CPU (8 cores) 3.5 77 9.6

5.5 Conclusion

In this chapter, a novel parallel sample sort has been presented. Sample sort is a cache-

oblivious sorting algorithm that enables sorting large datatsets using the limited local memory. The

implementation is done entirely using Vitis HLS. The design explore the capabilities of Vitis HLS

and the Xilinx Alveo U280 board to build a none-trivial application. The design is divided into four

type of kernels that are reconfigured in three steps in order to accommodate their placement to be

closer to the global memory resources. Experimental evaluation comparing the FPGA throughput

to that of a parallel software implementation on CPU shows that the throughput of a single FPGA

engine is 5.7x higher than that of a CPU core.

95



Gen data module

Insert sort 
module

Write URAM 
module

Merge wrapper 
(8 streams into 4 
streams) module

Module F: Sort part 1 module

Module H
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merges every eight sorted 1K streams

into a 8K stream. The final mod-

ule stores each sorted 8K stream on a

URAM partition.

Merge wrapper (4 streams 

into 2 streams) module 

Merge wrapper (32 streams 

into 16 streams) module 
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into 8 streams) module
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into 1 stream) module 

Write stream module

Read from URAM into 32 streams 
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Merge wrapper (8 streams 

into 4 streams) module

Module G: Sort part 2 module

(b) Module G - The first module reads

sorted keys from the 32 URAM parti-

tions and distributes them to the 32 in-

puts of the next merge instance. All 32

streams are merged to produce the final

sorted sequence.

Figure 5.5: Modules F & G
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Merge 2 
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Regular FIFOs + control 

Module H: Merge 8 streams into 1 module

Figure 5.6: Module H - The merge sort wrapper is made up of seven merge sort modules. The

converter module receives sorted keys and stores each 1K stream in the next available FIFO. Eight

FIFOs, each 2K deep, prevent a stalling of pipeline. This module produces a stream of 8K sorted

keys.
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Figure 5.7: Module I - The histogram building module within kernel A has an initiation interval of

2. Two instances of module I are simultaneously active insuring full throughput.
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Start
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Calculate 16 vectors of 

prefix-sums

Write prefix-
sums

Loop

Transpose index & store 
bins in local memory 

Loop

End

Kernel B: Histogram matrix transpose & prefix-sums computations module

Figure 5.8: Kernel B: Transposing the histogram matrix is done on the fly as bins are being read.

The entire transposed histogram matrix fits on local memory. Each bin that has been read is stored

in its new location on on-chip memory. 16 sequences of prefix-sum are needed for parallel writing

of 16 buckets in the keys distribution step. Prefix-Sums bins are sent to writing FIFO as soon as

they are computed.
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Figure 5.9: Kernel C - Parallel distribution of keys. Keys from each sub-array, opne per iteration,

are read and distributed to partial buckets stored on chip using a mix of BRAM & URAM. Two

loops read keys in parallel from 16 partial buckets and write the partial buckets in parallel to 16

HBM2 banks.
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Figure 5.10: Kernel D sorts the buckets. Module E is the main component in Kernel D. The sorting

size of each bucket is required and read from HM2.
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Chapter 6

Conclusions

Driven by the decreasing cost of DRAM, in-memory processing is becoming more com-

mon to store and process large datasets. This dissertation explores FPGA-based in-memory accel-

eration for two database primitives which are group-by aggregation and sorting.

In Chapter 3, a hardware multithreading approach has been explored for the hash-based

group-by aggregation. Group-by aggregation, do not exhibit control flow or data localities. To

overcome this issue, latency masking is achieved by issuing hundreds of hardware threads across

four FPGAs. The FGL MTP design presented in this dissertation reduces contention among locks

and enables higher parallelism and throughput that is 1.6X to 2.1X times better than the previous

work. The FGL MTP design is compared against five software approaches (both partitioned, and

non-partitioned) over five different datasets. Unlike the software approaches, the FGL MTP design’s

throughput is unaffected by the benchmark’s cardinality achieving an average of 3.3x speedup over

all CPU implementations.
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In chapter 4, a novel in-memory parallel implementation of radix sort HARS is presented.

HARS utilizes the large on-chip memory available on the new the Xilinx UltraScale+ series to store

the histograms on the FPGA’s local memory. This design significantly reduces the number of mem-

ory requests between the FPGA and off-chip memory. Thus, improving the sorting throughput.

HARS achieves a throughput of 44 Million 128-bits records per second and is 1.4x faster than the

CPU. Te raw throughput for GPU is about twice that of HARS due the GPU’s much higher mem-

ory bandwidth. When normalising the throughput by the platform’s available memory bandwidth,

HARS achieves 1.36x higher throughput.

Finally, in chapter 5, a novel sample sort which is a cache-oblivious sorting algorithm.

Sample sort enables sorting very large datasets using the platform’s local memory by dividing the

sorting steps and the dataset into operations on data small enough to fit on the FPGA’s local mem-

ory. The design presented in this dissertation is done completely using Vitis HLS. The design is

divided into four type of kernels that are reconfigured in three steps in order to accommodate their

placement to be closer to the global memory resources. The design enables sorting large datasets

without the need for large merge steps used in traditional sorting methods. Experimental evaluation

comparing the throughput a parallel software implementation of sample sort on CPU to the FPGA

implementation presented in this dissertation shows that the throughput of a single FPGA engine is

5.7x higher than that of a single CPU core.
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