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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Spectrally encoded single-pixel machine vision using 
diffractive networks
Jingxi Li1,2,3*, Deniz Mengu1,2,3*, Nezih T. Yardimci1,3, Yi Luo1,2,3, Xurong Li1,3, Muhammed Veli1,2,3, 
Yair Rivenson1,2,3, Mona Jarrahi1,3, Aydogan Ozcan1,2,3†

We demonstrate optical networks composed of diffractive layers trained using deep learning to encode the spa-
tial information of objects into the power spectrum of the diffracted light, which are used to classify objects with 
a single-pixel spectroscopic detector. Using a plasmonic nanoantenna-based detector, we experimentally vali-
dated this single-pixel machine vision framework at terahertz spectrum to optically classify the images of hand-
written digits by detecting the spectral power of the diffracted light at ten distinct wavelengths, each representing 
one class/digit. We also coupled this diffractive network-based spectral encoding with a shallow electronic 
neural network, which was trained to rapidly reconstruct the images of handwritten digits based on solely the 
spectral power detected at these ten distinct wavelengths, demonstrating task-specific image decompression. 
This single-pixel machine vision framework can also be extended to other spectral-domain measurement systems 
to enable new 3D imaging and sensing modalities integrated with diffractive network-based spectral encoding of 
information.

INTRODUCTION
Engineering of materials and material properties has opened a myriad 
of new opportunities for designing new components and devices with 
unique functionalities that were not possible before (1–10). Precise 
control of light-matter interaction at different scales has been the 
key behind the success of these engineered material systems, in-
cluding, e.g., plasmonics, metamaterials, and photonic crystals, which 
led to various new capabilities for nanoscopic imaging and sensing 
as well as light generation, modulation, and detection (11–20). This 
quest to harness engineered light-matter interactions has also led to 
all-optical processors that perform a desired computational task 
through wave propagation within specially designed materials (21–23). 
All the way from solving equations to performing statistical infer-
ence and machine learning, these approaches highlight the emer-
gence of engineered and trained matter as a building block of optical 
computation. Considering the rapid advances being made in, e.g., 
autonomous vehicles, robotic systems, and medical imaging, there is 
a growing need for performing computation optically to benefit 
from the low power, low latency, and scalability that passive optical 
systems can offer.

Here, we report deep learning–based design of diffractive networks 
that perform machine vision and statistical inference by encoding 
the spatial information of objects into optical spectrum through 
learnable diffractive layers that collectively process the information 
contained at multiple wavelengths to perform optical classification 
of objects using a single-pixel detector (Fig. 1A). Unlike convention-
al optical components used in machine vision systems, we use dif-
fractive layers that are composed of two-dimensional (2D) arrays of 
passive pixels, where the complex-valued transmission or reflection 
coefficients of individual pixels are independent learnable parameters 
that are optimized using a computer through deep learning and error 

backpropagation (24). The use of deep learning in optical informa-
tion processing systems has emerged in various exciting directions 
including integrated photonics solutions (25–32) and free-space 
optical platforms (33–42) involving, e.g., the use of diffraction 
(21, 43–46). In this work, we harnessed the native dispersion properties 
of matter and trained a set of diffractive layers using deep learning to 
all-optically process a continuum of wavelengths to transform the 
spatial features of different object classes into a set of unique wave-
lengths, each representing one data class. This enabled us to use a 
single-pixel spectroscopic detector to perform optical classification 
of objects based on the spectral power encoded at these class-specific 
wavelengths. It should be emphasized that the task-specific spectral 
encoding provided through a trained diffractive optical network 
is a single shot encoding for, e.g., image classification, without the 
need for variable or structured illumination or dynamic spatial light 
modulators.

We demonstrated this novel machine vision framework by de-
signing broadband diffractive optical networks that operate with 
pulsed illumination at terahertz wavelengths to achieve >96% blind 
testing accuracy for optical classification of handwritten digits (never 
seen by the network before) based on the spectral power at 10 dis-
tinct wavelengths, each assigned to one digit/class. Using a plasmonic 
nanoantenna-based source and detector as part of a terahertz time-
domain spectroscopy (THz-TDS) system (47, 48) and 3D printed dif-
fractive models, our experiments provided very good match to our 
numerical results, successfully inferring the classes/digits of the in-
put objects by maximizing the power of the wavelength correspond-
ing to the true label.

In addition to optical classification of objects through spectral 
encoding of data classes, we also demonstrate a shallow artificial 
neural network (ANN) with two hidden layers that is successively 
trained (after the diffractive network training) to rapidly recon-
struct the images of the classified objects based on their diffracted 
power spectra detected by a single-pixel spectroscopic detector. Using 
only 10 inputs, one for each class-specific wavelength, this shallow 
ANN is shown to successfully reconstruct images of the input ob-
jects even if they were incorrectly classified by the trained diffractive 
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network. Considering the fact that each image of a handwritten digit is 
composed of 784 pixels, this shallow image reconstruction ANN, 
with an input vector size of 10, performs a form of image decom-
pression to successfully decode the task-specific spectral encoding of 
the diffractive network (i.e., the optical front-end). Despite being a 
modest ANN with two hidden layers, the success of this task-specific im-
age reconstruction network, i.e., the decoder, also emphasizes the 
vital role of the collaboration between a trainable optical front-end 
and an all-electronic ANN-based back-end (39, 44). Our results also 
demonstrate that once the reconstructed images of the input objects 
that were initially misclassified by the diffractive network are fed 
back into the same network as new inputs, their optical classification 
is corrected, significantly improving the overall inference accuracy 
of the trained diffractive network.

We believe that the framework presented in this work would 
pave the way for the development of various new machine vision 
systems that use spectral encoding of object information to achieve 
a specific inference task in a resource-efficient manner, with low la-
tency, low power, and low pixel count. These features are particular-
ly important since large pixel count of optical sensor arrays can put 
a burden on computational resources such as the allocated mem-
ory and the number of multiply-accumulate units required for statis-
tical inference or classification over a large image size; furthermore, such 

high-resolution image sensors are not readily available at various 
parts of the electromagnetic spectrum, including, for example, far/
midinfrared and terahertz bands. The teachings of this work can also 
be extended to spectral domain interferometric measurement sys-
tems, such as optical coherence tomography (OCT), Fourier 
transform infrared spectroscopy (FTIR), and others, to create fun-
damentally new 3D imaging and sensing modalities integrated with 
spectrally encoded classification tasks performed through trained 
diffractive networks. While the presented approach used solely the 
native dispersion properties of matter, we also envision harnessing 
metamaterials and their engineered dispersion to design diffractive 
spectral encoding systems with additional degrees of freedom.

RESULTS
Figure 1 illustrates our machine vision framework for spectral en-
coding of spatial information. A broadband diffractive network 
composed of layers is trained to transform the spatial information of 
the objects into the spectral domain through a preselected set of 
class-specific wavelengths measured by a single-pixel spectroscopic 
detector at the output plane; the resulting spectral class scores are 
denoted by the vector s = [s0, s1, …, s9] (Fig. 1A). Since, in this work, 
the learning task assigned to the diffractive network is the optical 

Fig. 1. Schematics of spectral encoding of spatial information for object classification and image reconstruction. (A) Optical layout of the single-detector machine 
vision concept for spectrally encoded classification of objects, e.g., the images of handwritten digits. As an example, a handwritten digit 8 is illuminated with a broadband 
pulsed light, and the subsequent diffractive optical network transforms the object information into the power spectrum of the diffracted light collected by a single detec-
tor. The object class is determined by the maximum of the spectral class scores, s, defined over a set of discrete wavelengths, each representing a data class (i.e., digit). 
(B) Schematic of task-specific image reconstruction using the diffractive network’s spectral class scores as input. A separately trained shallow artificial neural network 
(ANN; with two hidden layers) recovers the images of handwritten digits from the spectral information encoded in s. Each reconstructed image is composed of >780 pixels, 
whereas the input vector, s, has 10 values.
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classification of the images of handwritten digits [Modified National 
Institute of Standards and Technology (MNIST) database] (49), af-
ter its training and design phase, for a given input/test image, it 
learns to channel relatively more power to the spectral component 
assigned to the correct class (e.g., digit “8” in Fig. 1A) compared to 
the other class scores; therefore, max(s) reveals the correct data class. 
As demonstrated in Fig. 1B, the same class score vector, s, can also be 
used as an input to a shallow ANN with two hidden layers to recon-
struct an image of the input object, decoding the spectral encoding 
performed by the broadband diffractive network.

On the basis of the system architecture shown in Fig.  1A, we 
trained broadband networks by taking the thickness of each pixel of 
a diffractive layer as a learnable variable (sampled at a lateral period 
of min/2, where min refers to the smallest wavelength of the illumi-
nation bandwidth) and accordingly defined a training loss (ℒD) for a 
given diffractive network design

	​​ ℒ​ D​​  = ​ ℒ​ I​​ +  ⋅ ​ℒ​ E​​ +  ⋅ ​ℒ​ P​​​	 (1)

where ℒI and ℒE refer to the loss terms related to the optical infer-
ence task (e.g., object classification) and the diffractive power effi-
ciency at the output detector, respectively. The spatial purity loss, 
ℒP, on the other hand, has a rather unique aim of clearing the light 
intensity over a small region of interest surrounding the active area 
of the single-pixel detector to improve the robustness of the machine 
vision system for uncontrolled lateral displacements of the detector 
position with respect to the optical axis (see the Supplementary 
Materials for detailed definitions of ℒI, ℒE, and ℒP). The hyperpa-
rameters,  and , control the balance between the three major 
design factors, represented by these training loss terms.

To exemplify the performance of this design framework, using 10 
class-specific wavelengths uniformly distributed between min  = 
1.0 mm and max = 1.45 mm, a three-layer diffractive optical net-
work trained with  =  = 0 achieves >96% blind testing accuracy for 
spectrally encoded optical classification of handwritten digits (see 
Table 1, fourth row). Fine tuning of the hyperparameters,  and , 
yields broadband diffractive network designs that provide improved 
diffractive power efficiency at the output detector and partial insen-
sitivity to misalignments without excessively sacrificing the infer-
ence accuracy. For example, using  = 0.03 and  = 0.1, we achieve 
95.05% blind testing accuracy for spectrally encoded optical classifi-
cation of handwritten digits with ~1% inference accuracy drop 
compared to the diffractive model trained with  =  = 0 while at the 
same time achieving approximately eightfold higher diffractive power 
efficiency at the output detector (see Table 1). Figure 2B illustrates 
the resulting layer thickness distributions of this diffractive network 
trained with  = 0.03 and  = 0.1, setting a well-engineered example 
of the balance among inference accuracy, diffractive power efficiency at 
the output detector, and misalignment resilience of the diffractive 
network.

Next, we fabricated these diffractive layers shown in Fig. 2B 
(trained with  = 0.03 and  = 0.1 to achieve 95.05% blind testing 
accuracy) together with 50 handwritten digits (five per digit) ran-
domly selected from the correctly classified blind testing samples 
using 3D printing (see Fig. 2A for the resulting diffractive network). 
Figure 2C also shows the THz-TDS setup with a plasmonic photo-
conductive detector that we used for the experimental validation of 
our machine vision framework (also see Materials and Methods). In 
this setup, the pulsed light emerging from a plasmonic photoconductive 

terahertz source is collimated and directed toward a square aperture 
with an area of 1 cm2 (Fig. 2D), which serves as an entrance pupil to 
illuminate an unknown input object to be classified. As shown in 
Fig. 2D, we do not have any optical components or modulation layers 
between the illumination aperture and the object plane, indicating 
that there is no direct mapping between the spatial coordinates of 
the object plane and the spectral components of the illumination 
beam. On the basis of this experimental setup, the comparison be-
tween the power spectrum numerically generated using our trained 
forward model (dashed line) and its experimentally measured counter-
part (straight line) for three fabricated digits, as examples, is illus-
trated in Fig. 3A, providing a decent match between the two and also 
revealing the correct class inference in each case through max(s). De-
spite 3D fabrication errors, possible misalignments, and other sources 

Table 1. Numerical blind testing accuracies of different diffractive 
network models and their integration with decoder image 
reconstruction ANNs. The diffractive optical networks presented in the 
first three rows were trained with different (, ) pairs for experimental 
validation, resulting in different diffractive power efficiencies at the 
output detector, while the model in the fourth and fifth row was trained 
with  =  = 0. The mean diffractive power efficiencies () of the diffractive 
network models were calculated at the output detector, considering the 
whole testing dataset, represented with the corresponding standard 
deviations (see the Supplementary Materials for details). MAE, mean 
absolute error; BerHu, reversed Huber; SCE, softmax cross-entropy. 

Diffractive 
network

Diffractive 
power 

efficiency at 
the output 

detector:  (%)

Testing 
accuracy: 

max(s) (%)

Testing 
accuracy: 

max(s ′ ) (%)

10 wavelengths,  
 = 0.4,  = 0.2 
(Fig. 5); s = [s0, s1, 
…, s9]

0.966 ± 0.465 84.02

MAE: 84.03

MAE + SCE: 
91.29

BerHu + SCE: 
91.06

10 wavelengths,  
 = 0.08,  = 0.2 
(fig. S4); s = [s0,  
s1, …, s9]

0.125 ± 0.065 93.28

MAE: 91.31

MAE + SCE: 
94.27

BerHu + SCE: 
94.02

10 wavelengths,  
 = 0.03,  = 0.1 
(Fig. 3 and fig. S3); 
s = [s0, s1, …, s9]

0.048 ± 0.027 95.05

MAE: 93.40

MAE + SCE: 
95.32

BerHu + SCE: 
95.37

10 wavelengths,  
 =  = 0 (fig. S5); 
s = [s0, s1, …, s9]

0.006 ± 0.004 96.07

MAE: 94.58

MAE + SCE: 
96.26

BerHu + SCE: 
96.30

20 wavelengths 
(differential),  
 =  = 0 (fig. S8); 
sD = [s0+, s0−, s1+,  
s1−, …, s9+, s9−]; 
s = s = [s0, s1,  
…, s9]

0.004 ± 0.002 96.82

MAE: 90.15

MAE + SCE: 
96.81

BerHu + SCE: 
96.64
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of error in our setup, the match between the experimental and nu-
merical testing of our diffractive network design was found to be 88% 
using 50 handwritten digits that were 3D printed (see Fig. 3B).

For the same 3D printed diffractive model (Fig. 2, A and B), we 
also trained a shallow, fully connected ANN with two hidden layers 
to reconstruct images of the unknown input objects based on the 
detected s. The training of this decoder ANN is based on the knowl-
edge of (i) the class scores (s = [s0, s1, …, s9]), resulting from the 
trained diffractive network model, and (ii) the corresponding input 
object images. Without any fine tuning of the network parameters 
for possible deviations between our numerical forward model and 
the experimental setup, when this shallow ANN was blindly tested 
on our experimental measurements (s), the reconstructions of the 
images of the handwritten digits were successful, as illustrated in 
Fig. 1B (also see fig. S6), further validating the presented framework 
and the experimental robustness of our diffractive network model 
(see the Supplementary Materials for further details). It should be 
emphasized that this shallow ANN is trained to decode a highly 
compressed form of information that is spectrally encoded by a dif-
fractive front-end and that it uses only 10 numbers (i.e., s0, s1, …, s9) 
at its input to reconstruct an image that has >780 pixels. Stated dif-
ferently, this ANN performs a form of task-specific image decom-
pression, the task being the reconstruction of the images of handwritten 
digits based on spectrally encoded inputs (s). In addition to per-
forming task-specific image reconstruction, the presented machine 
vision framework can possibly be extended for the design of a 

general-purpose single-pixel imaging system based on spectral en-
coding; although, here, in this work, we focused on the reconstruc-
tion of the classified object images (i.e., handwritten digits).

In addition to the diffractive network shown in Fig. 2 that 
achieved a numerical blind testing accuracy of 95.05%, we also 
3D-fabricated and experimentally tested two additional diffractive 
network models to further evaluate the match between our numeri-
cal models and their experimental/physical counterparts. By using 
different (, ) pairs for the loss function defined in Eq. 1, the 
balance between the optical inference accuracy and the two practical 
design merits, i.e., the diffractive power efficiency at the output de-
tector and the insensitivity to misalignments, is shifted in these two 
new diffractive designs in favor of experimental robustness. Per-
formance comparisons of these diffractive network models are sum-
marized in Table  1 and Fig.  3C; for example, using   =  0.4 and 
 = 0.2, the blind testing accuracy attained by the same three-layer 
diffractive network architecture decreased to 84.02% for the hand-
written digit classification task, while the diffractive power efficiency 
at the output detector increased by a factor of ~160 and the match 
between our experimental and numerical testing results increased to 
96%. These results, as summarized in Fig.  3C and Table  1, further 
demonstrate the trade-off between the inference accuracy and the 
diffraction efficiency and experimental robustness of our diffractive 
network models.

To provide a mitigation strategy for this trade-off, next, we intro-
duced a collaboration framework between the diffractive network 

Fig. 2. Experimental setup. (A) A 3D printed diffractive network. (B) Learned thickness profiles of the three diffractive layers in (A). (C) Photograph of the experimental 
setup. (D) Top: Physical layout of the diffractive optical network setup; zoomed-in version of the bottom part. The object is a binary handwritten digit (from MNIST data), 
where the opaque regions are coated with aluminum to block the light transmission. Bottom: Schematic of the THz-TDS setup. Red lines depict the optical path of the 
femtosecond pulses generated by a Ti:sapphire laser operating at 780-nm wavelength. Green lines indicate the optical path of the terahertz pulse (peak frequency, 
~500 GHz and observable bandwidth, ~5 THz), which is modulated by the 3D printed diffractive neural network to spectrally encode the task-specific spatial information 
of the objects. Photo credit (A and C): Jingxi Li, UCLA.



Li et al., Sci. Adv. 2021; 7 : eabd7690     26 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 11

and its corresponding reconstruction ANN. This collaboration is 
based on the fact that our decoder ANN can faithfully reconstruct 
the images of the input objects using the spectral encoding present 
in s, even if the optical classification is incorrect, pointing to a wrong 
class through max(s). We observed that by feeding the decoder 
ANN’s reconstructed images back to the diffractive network as new 
inputs, we can have it correct its initial wrong inference (see Fig. 4 
and fig. S2). Through this collaboration between the diffractive network 

and its decoder ANN, we improved the overall inference accuracy of 
a given diffractive network model as summarized in Fig. 3C and 
Table 1. For example, for the same, highly efficient diffractive network 
model that was trained using  = 0.4 and  = 0.2, the blind testing 
accuracy for handwritten digit classification increased from 84.02 to 
91.29% (see Figs. 3C and 5B), demonstrating a substantial improve-
ment through the collaboration between the decoder ANN and the 
broadband diffractive network. A close examination of Fig. 5 and the 
provided confusion matrices reveal that the decoder ANN, through 
its image reconstruction, helped correct 870 misclassifications of the dif-
fractive network, resulting in an overall gain/improvement of 7.27% 
in the blind inference performance of the optical network. Similar 
analyses for the other diffractive network models are also presented 
in figs. S3 to S5.

In this collaboration between the diffractive network and its cor-
responding shallow decoder, the training loss function of the latter 
(ANN) was coupled to the classification performance of the diffrac-
tive network. In other words, in addition to a structural loss function 
(ℒS) that is needed for a high-fidelity image reconstruction, we also 
added a second loss term that penalized the ANN by a certain weight 
if its reconstructed image cannot be correctly classified by the dif-
fractive network (see the Supplementary Materials). This ensures 
that the collaboration between the optical encoder and its corre-
sponding decoder ANN is constructive, i.e., the overall classification 
accuracy is improved through the feedback of the reconstructed im-
ages onto the diffractive network as new inputs. On the basis of this 
collaboration scheme, the general loss function of the decoder ANN 
can be expressed as

	​​ ℒ​ Recon​​  =   ∙ ​ℒ​ S​​(​O​ recon​​, ​O​ input​​ ) + (1 −  ) ∙ ​ℒ​ I​​​	 (2)

where ℒS refers to a structural loss term, e.g., mean absolute error 
(MAE) or reversed Huber (“BerHu”) loss (50, 51), computed through 
pixel-wise comparison of the reconstructed image (Orecon) with the 
ground truth object image (Oinput) (see the Supplementary Materials 
for details). The second term in Eq. 2, ℒI, refers to the same loss func-
tion used in the training of the diffractive network (front-end) as in 
Eq. 1, except this time, it is computed over the new class scores, s′, 
obtained by feeding the reconstructed image, Orecon, back to the 
same diffractive network (see Fig. 5 and fig. S1). Equation 2 is only 
concerned with the training of the image reconstruction ANN, and 
therefore, the parameters of the decoder ANN are updated through 
standard error backpropagation, while the diffractive network model 
is preserved.

Table 1 summarizes the performance comparison of different loss 
functions used to train the decoder ANN and their impact on the 
improvement of the classification performance of the diffractive net-
work. Compared to the case when  = 1, which refers to independent 
training of the reconstruction ANN without taking into account ℒI, 
we see substantial improvements in the inference accuracy of the 
diffractive network through max(s′) when the ANN has been penal-
ized during its training (with, e.g.,  = 0.95) if its reconstructed im-
ages cannot be correctly classified by the diffractive network (refer to 
the Supplementary Materials for details). Stated differently, the use 
of the ℒI term in Eq. 2 for the training of the decoder ANN tailors the 
image reconstruction space to generate object features that are more 
favorable for the diffractive optical classification while also retaining 
its reconstruction fidelity to the ground truth object, Oinput, by the 
courtesy of the structural loss term, ℒS, in Eq. 2.

Fig. 3. Spectrally encoded optical classification of handwritten digits with a 
single detector. (A) Experimentally measured (blue solid line) and the numerically 
computed (blue dashed line) output power spectra for optical classification of 
three different handwritten digits, shown as examples. The object class is deter-
mined by the maximum of the spectral class scores, s, defined over a set of discrete 
wavelengths, each representing a digit. (B) Top: Confusion matrix summarizing the 
numerical classification performance of the diffractive optical network that attains 
a classification accuracy of 95.05% over 10,000 handwritten digits in the blind test-
ing set. Bottom: Confusion matrix for the experimental results obtained by 3D 
printing of 50 handwritten digits randomly selected from the numerically successful 
classification samples in the blind testing set. An 88% match between the experi-
mentally inferred and the numerically computed object classes is observed. (C) Com-
parison of three different diffractive networks that were trained, fabricated, and 
experimentally tested in terms of (i) their numerical blind testing accuracies (blue 
solid squares), (ii) the match between experimentally measured and numerically 
predicted object classes (orange solid circles), and (iii) the inference accuracy 
achieved by feeding the decoder ANN’s reconstructed images back to the diffrac-
tive network as new inputs (blue dashed triangles).



Li et al., Sci. Adv. 2021; 7 : eabd7690     26 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

The performance of the presented spectral encoding–based ma-
chine vision framework can be further improved using a differential 
class encoding strategy (45). For this aim, we explored the use of two 
different wavelengths to encode each class score: Instead of using 10 
discrete wavelengths to represent a spectral class score vector, s = [s0, 
s1, …, s9], we considered encoding the spatial information of an ob-
ject into 20 different wavelengths (s0+, s0−, s1+, s1−, …, s9+, s9−) that are 
paired in groups of two to differentially represent each spectral class 
score, i.e., ​∆​s​ c​​  = ​ ​s​ c,+​​ − ​s​ c,−​​ _ ​s​ c,+​​ + ​s​ c,−​​​.​ In this differential spectral encoding strate-
gy, the trained diffractive network makes an inference based on 
max(∆s) resulting from the spectral output at the single-pixel detec-
tor. With this spectrally encoded differential classification scheme, 
we numerically attained 96.82% optical classification accuracy for 
handwritten digits (see Table 1 and fig. S8).

As an alternative to the shallow decoder ANN with two hidden 
layers used earlier, we also explored the use of a much deeper ANN 
architecture (52) as the image reconstruction network in our spec-
trally encoded machine vision framework. For this, the output of the 
two hidden layer fully connected network (with an input of s) is fur-
ther processed by a U-Net–like deep convolutional ANN with skip 
connections and a total of >1.4 million trainable parameters to re-
construct the images of handwritten digits using s. We found out 
that the collaboration of the diffractive networks with this deeper 

ANN architecture yielded only marginal improvements over the 
classification accuracies presented in Table 1. For example, when the 
diffractive optical network design shown in Fig. 2B ( = 0.03,  = 0.1) 
was paired with this deep decoder ANN (through the feedback de-
picted in Fig. 4), the blind classification accuracy increased to 95.52% 
compared to the 95.37% provided by the shallow decoder ANN with 
two hidden layers. As another example, for the diffractive optical 
network trained with  = 0.4 and  = 0.2, the collaboration with the 
deep convolutional ANN provides a classification accuracy of 
91.49%, which is a minor improvement with respect to the 91.29% 
accuracy produced through the shallow ANN, falling short to justify 
the disadvantages of using a deeper ANN-based decoder architec-
ture in terms of its slower inference speed and more power con-
sumption per image reconstruction.

The function of the decoder ANN, up to this point, has been to 
reconstruct the images of the unknown input objects based on the 
encoding present in the spectral class scores, s. Therefore, note that, 
in these earlier results, the classification is performed optically, 
through the spectral output of the diffractive network, and the func-
tion of the decoder ANN is not to infer a data class but rather to re-
construct the image of the object that is classified by the diffractive 
optical network using max(s). As an alternative strategy, we also ex-
plored making use of the decoder ANN for a different task: to 

Fig. 4. Illustration of the coupling between the image reconstruction ANN and the diffractive network. Four MNIST images of handwritten digits are used here for 
illustration of the concept. Two of the four samples, “0” and “3”, are correctly classified by the diffractive network based on max(s) (top green lines), while the other two, 
“9” and “5”, are misclassified as “7” and “1”, respectively (top red lines). Using the same class scores (s) at the output detector of the diffractive network, a shallow decoder 
ANN digitally reconstructs the images of the input objects. Next, these images are cycled back to the diffractive optical network as new input images, and the new spectral 
class scores s′ are inferred accordingly, where all of the four digits are correctly classified through max(s′ ) (bottom green lines). Last, these new spectral class scores s′ are 
used to reconstruct the objects again using the same image reconstruction ANN. The blind testing accuracy of this diffractive network for handwritten digit classification 
increased from 84.02 to 91.29% using this feedback loop (see Figs. 3C and 5B). This image reconstruction decoder ANN was trained using the MAE loss and softmax 
cross-entropy loss (see Eq. 2).
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Fig. 5. Blind testing performance of an efficient diffractive network and its coupling with a corresponding decoder ANN. (A) Experimentally measured (blue solid 
line) and the numerically computed (blue dashed line) output power spectra for optical classification of three different handwritten digits, shown as examples. (B) Top 
left: Confusion matrix summarizing the numerical classification performance of the diffractive network that attains a classification accuracy of 84.02% over 10,000 hand-
written digits in the blind testing set. Top right: Confusion matrix for the experimental results obtained by 3D printing 50 handwritten digits randomly selected from the 
numerically successful classification samples in the blind testing set. A 96% match between the experimentally inferred and the numerically computed object classes is 
observed. Bottom left: Confusion matrix provided by max(s′ ), computed by feeding the reconstructed images back to the diffractive network. A blind testing accuracy of 
91.29% is achieved, demonstrating a substantial classification accuracy improvement of 7.27% (also see Fig. 4). Bottom right: Confusion matrix for the experimental re-
sults using the same 50 digits. (C) Left: Same as the bottom left matrix in (B) but solely for the digits that are correctly predicted by the optical network. Its diagonal entries 
can be interpreted as the digits that are retained to be correctly predicted, while its off-diagonal entries represent the “losses” after the image reconstruction and feedback 
process. Right: Same as the left one but solely for the digits that are incorrectly classified by the optical network. Its diagonal entries indicate the optical classification 
“corrections” after the image reconstruction and feedback process. The number NC − NL = 727 is the classification accuracy “gain” achieved through max(s′ ) , correspond-
ing to a 7.27% increase in the numerical testing accuracy of the diffractive model (also see Fig. 3C).



Li et al., Sci. Adv. 2021; 7 : eabd7690     26 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 11

directly classify the objects on the basis of the spectral encoding (s) 
provided by the diffractive network. In this case, the decoder ANN is 
solely focused on improving the classification performance with re-
spect to the optical inference results that are achieved using max(s). 
For example, on the basis of the spectral class scores encoded by the 
diffractive optical networks that achieved 95.05 and 96.07% blind 
testing accuracy for handwritten digit classification using max(s), a 
fully connected, shallow classification ANN with two hidden layers 
improved the classification accuracy to 95.74 and 96.50%, respec-
tively. Compared to the accuracy values presented in Table 1, these 
numbers indicate that a slightly better classification performance is 
possible, provided that the image reconstruction is not essential for 
the target application, and can be replaced with a shallow classifica-
tion decoder ANN that takes s as its input.

In the earlier machine vision systems that we have presented so 
far, the diffractive optical network and the corresponding back-end 
ANN have been separately trained, i.e., after the training of the dif-
fractive network for optical image classification, the back-end ANN 
was trained on the basis of the spectral encoding of the converged 
diffractive network model, yielding either the reconstruction ANN 
or the classification ANN, as discussed earlier. As an alternative 
strategy, such hybrid systems can also be jointly trained through the 
error backpropagation between the electronic ANN and the diffrac-
tive optical front-end (44, 53). Here, we demonstrated this opportu-
nity using the MNIST dataset and jointly trained a diffractive 
network with an image reconstruction ANN at the back-end; in the 
next paragraphs, the same approach will also be extended to jointly 
train a diffractive network with a classification ANN at the back-
end, covering a different dataset [Extended MNIST (EMNIST)] (54). 
In our joint training of hybrid network systems composed of a dif-
fractive network and a reconstruction ANN, we used a linear super-
position of two different loss functions to optimize both the optical 
classification accuracy and the image reconstruction fidelity; see eq. 
S22 and table S2. Through this linear superposition, we explored 
the impact of different relative weights of these loss functions on (i) the 
image classification accuracy of the diffractive network and (ii) the 
quality of the image reconstruction performed by the back-end 
ANN. For this goal, we changed the relative weight () of the optical 
classification loss term to shift the attention of the hybrid design be-
tween these two tasks. For instance, when the weight of the optical 
classification loss is set to be zero ( = 0), the entire hybrid system 
becomes a computational single-pixel imager that ignores the opti-
cal classification accuracy and focuses solely on the image recon-
struction quality; as confirmed in figs. S11 and S12 and table S2, this 
choice ( = 0) results in a substantial degradation of the optical im-
age classification accuracy with a considerable gain in the image re-
construction fidelity, as expected. By using different relative weights, 
one can achieve a sweet spot in the joint training of the hybrid net-
work system, where both the optical image classification accuracy 
and the ANN image reconstruction fidelity are very good (see, e.g., 
 = 0.5 in table S2 and figs. S11 and S12).

We also investigated the inference performance of these hybrid 
systems in terms of the number of wavelengths that are simultane-
ously processed through the diffractive network. For this, we jointly 
trained hybrid systems that assign a group of wavelengths to each 
data class; inference of an object class is then based on the maximum 
average power accumulated in these selected spectral bands, where 
each band represents one data class (see the Supplementary Materi-
als for further details). Our results, summarized in table S2, reveal 

that assigning, e.g., five distinct wavelengths to each data class 
(i.e., a total of 50 wavelengths for 10 data classes), achieved a similar 
optical classification accuracy compared to their counterparts that 
encoded the objects’ spatial information using fewer wavelengths. 
This indicates that the diffractive networks can be designed to 
simultaneously process a larger number of wavelengths to success-
fully encode the spatial information of the input field of view into 
spectral features.

To further explore the capabilities of the presented single-pixel 
spectroscopic machine vision framework for more challenging 
image classification tasks beyond handwritten digits, we used the 
EMNIST dataset (54), containing 26 object classes, corresponding to 
handwritten capital letters (see fig. S13). For this EMNIST image 
dataset, we trained nondifferential and differential diffractive classi-
fication networks, encoding the information of the object data classes 
into the output power of 26 and 52 distinct wavelengths, respectively. 
Furthermore, to better highlight the benefits of the collaboration 
between the optical and electronic networks, we also jointly trained 
hybrid network systems that use a shallow classification ANN (with 
two hidden layers) described earlier to extract the object class from 
the spectral encoding performed by the diffractive optical front-end, 
through a single-pixel detector, same as before. Table S1 summarizes 
our results on this 26-class handwritten capital letter image dataset. 
First, a comparison between the all-optical diffractive classification 
networks and the jointly trained hybrid network systems highlights 
the importance of the collaboration between the optical and elec-
tronic networks: The jointly trained hybrid systems (where a dif-
fractive network is followed by a classification encoder ANN) can 
achieve higher object classification accuracies (see table S1). For ex-
ample, a jointly trained hybrid network using 52 encoding wave-
lengths that are processed through three diffractive layers and a 
shallow decoder ANN achieved a classification accuracy of 87.68% 
for EMNIST test dataset, which is >2% higher compared to the infer-
ence accuracy attained solely by an optical diffractive network design 
based on differential spectral encoding using the same 52 wave-
lengths (table S1). The results presented in table S1 further reveal 
that both the jointly trained hybrid systems and the optical diffrac-
tive classification systems that use 52 distinct wavelengths to encode 
the spatial information of the objects achieve higher classification 
accuracies compared to their counterparts that are designed to pro-
cess 26 wavelengths.

DISCUSSION
Although Eq. 1 tries to find a balance among the optical inference 
accuracy, detector photon efficiency, and resilience to possible de-
tector misalignment, there are other sources of experimental errors 
that contribute to the physical implementations of trained diffrac-
tive networks. First, because of the multilayer layout of these diffrac-
tive networks, any interlayer misalignments might have contributed 
to some of the errors that we observed during the experiments. In 
addition, our optical forward model does not take into account mul-
tiple reflections that occur through the diffractive layers. These are 
relatively weaker effects that can be mitigated by, e.g., time gating of 
the detector output and/or using antireflection coatings that are 
widely used in the fabrication of conventional optical components. 
Moreover, measurement errors that might have taken place during 
the characterization of the dispersion of the diffractive-layer mate-
rial can cause our numerical models to slightly deviate from their 
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physical implementations. Furthermore, 3D fabrication errors stem-
ming from printing overflow and cross-talk between diffractive fea-
tures on the layers can also contribute to some of the differences 
observed between our numerical and experimental results. Figure S14 
illustrates a comparison between one of the 3D printed diffractive 
layers and its numerical design, exemplifying some of these fabrication-
related imperfections that are experimentally observed.

The negative effects of some of these experimental errors out-
lined above can be mitigated by modeling undesired physical system 
variations over random variables that are incorporated as part of the 
optical forward model used in the deep learning–based training of 
the diffractive network (53, 55). Thereby, the evolution of the parameter 
space of the underlying diffractive layers can be regulated to preserve 
their collective inference accuracy despite, e.g., misalignments. We 
explored the impact of this idea for building misalignment resilience 
in jointly trained, hybrid MNIST classification networks formed by 
a three-layer spectral encoder diffractive front-end and a shallow 
classification ANN (with two hidden layers). On the basis of this test 
bed, we modeled the lateral misalignments of the spectral encoder 
diffractive layers by defining two independent, uniformly distribut-
ed random variables per layer, ​​D​x​ l ​~U(− ​​x​ l ​, ​​x​ l ​)​ and ​​D​y​ l ​~U(− ​​y​ l ​, ​​y​ l ​)​, 
representing the displacement of layer l with respect to its ideal loca-
tion in x and y directions, respectively. The hyperparameters, ​​​x​ l ​​ and 
​​​y​ l ​​, determine the range of the positioning error along the corre-
sponding axis. During the training (tr) phase, ​​D​x​ l ​​ and ​​D​y​ l ​​ were ran-
domly updated at each iteration, uniformly taking random values 
from the range set by ​​​x​ l ​  = ​ ​y​ l ​  = ​ ​tr​ 

l  ​​. Such a training strategy (which 
we term as vaccination) introduces new perturbed diffractive layer 
locations at each update step and, as a result, guides the evolution of 
the spectral encoder diffractive layers to a solution that is more resil-
ient against misalignments, allowing the diffractive networks to 
maintain their optical inference accuracy over larger margins of 
physical misalignments.

To demonstrate the impact of the outlined training strategy, we 
quantified the blind inference accuracies achieved by various vacci-
nated and nonvaccinated diffractive single-pixel machine vision sys-
tems under a series of misalignments, as shown in fig. S15. In fig. 
S15A, we report that the vaccination results when only the middle 
diffractive layer (l = 2) is misaligned from its ideal location, meaning 
that the centers of the first and third diffractive layers coincide with 
the optical axis, i.e., ​​​x​ 1​  = ​ ​y​ 1​  = ​ ​test​ 

1 ​   = ​ ​tr​ 
1 ​  =  0.0​ and ​​​x​ 3​  = ​ ​y​ 3​  = ​

​test​ 
3 ​   = ​ ​tr​ 

3 ​  =  0.0​. In fig. S15B, on the other hand, all three diffrac-
tive layers experience random lateral shifts along both x and y axes 
during the testing phase. In our analyses, we also investigated the 
effect of the single-pixel detector size on the misalignment resilience 
of these hybrid neural network systems and accordingly trained vac-
cinated and nonvaccinated single-pixel spectral encoder diffractive 
systems, each with a detector active area of 2 mm by 2 mm, 4 mm 
by 4 mm, and 8 mm by 8 mm. As depicted in fig. S15 (A and B), al-
most independent of the active area of the single-pixel detector, the 
classification accuracy of the nonvaccinated hybrid networks (blue) 
are rather sensitive to mechanical misalignments of the diffractive 
network layers. The vaccinated networks, on the other hand, can 
maintain their blind inference accuracy over a wider range of mis-
alignments, which is confirmed in both panels A and B of fig. S15. 
Furthermore, a comparison of the classification accuracies provided by 
the vaccinated hybrid network systems reveals that the design with a 
larger active area (8 mm by 8 mm) single-pixel detector achieves bet-
ter resilience over misalignments (see fig. S15B).

Without loss of generality, in this work, we used a three-layer 
diffractive network architecture to encode the spatial features of the 
object field of view into the output power spectrum for single-pixel 
machine vision. Note that if the material absorption of the diffrac-
tive layers is lower and/or the signal-to-noise ratio of the single-pixel 
detector is increased, then the optical inference accuracy of the 
presented network designs could be further improved by, e.g., in-
creasing the number of diffractive layers or the number of learnable 
features (i.e., neurons) within the optical network (44, 56). Com-
pared to using wider diffractive layers, increasing the number of 
diffractive layers offers a more practical method to enhance the in-
formation processing capacity of diffractive networks since training 
higher–numerical aperture diffractive systems through image data 
is, in general, relatively harder (56). Despite their improved general-
ization capability, such deeper diffractive systems composed of larg-
er numbers of diffractive layers would partially suffer from increased 
material absorption and surface backreflections. However, note that 
the optical power efficiency of a broadband network also depends on 
the size of the output detector. For example, the relatively lower 
power efficiency numbers reported in Table 1 are by and large due to 
the small size of the output detector used in these designs (2 × min) 
and can be substantially improved by using a detector with a much 
larger active area (57).

In conclusion, we demonstrated an optical machine vision sys-
tem composed of trained diffractive layers to encode the spatial in-
formation of objects into the power spectrum of diffracted light, 
which is used to perform optical classification of unknown objects 
with a single-pixel spectroscopic detector. We also showed that shal-
low, low-complexity ANNs can be used as decoders to reconstruct 
images of the input objects based on the spectrally encoded class 
scores, demonstrating task-specific image decompression. Although 
we used terahertz pulses to experimentally validate our spectrally 
encoded machine vision framework, it can be broadly adopted for 
various applications covering other parts of the electromagnetic 
spectrum. In addition to object recognition, this machine vision 
concept can also be extended to perform other learning tasks such as 
scene segmentation and multilabel classification, as well as to design 
single-pixel or few-pixel, low-latency superresolution imaging sys-
tems by harnessing the spectral encoding provided by diffractive 
networks coupled with shallow decoder ANNs. We also envision 
that dispersion-engineered material systems such as metamaterials 
will open up a new design space for enhancing the inference and 
generalization performance of spectral encoding through diffractive 
optical networks. Last, the methods presented in this work would 
create new 3D imaging and sensing modalities that are integrated 
with optical inference and spectral encoding capabilities of broad-
band diffractive networks and can be merged with some of the exist-
ing spectroscopic measurement techniques, such as OCT, FTIR, and 
others, to find various new applications in biomedical imaging, ana-
lytical chemistry, material science, and other fields.

MATERIALS AND METHODS
THz-TDS setup
The schematic diagram of the THz-TDS setup is shown in Fig. 2D. We 
used a Ti:sapphire laser (Coherent Mira-HP) in a mode-locked 
operation mode to generate femtosecond optical pulses at a center 
wavelength of 780 nm. The laser beam was first split in two parts. 
One part of the beam illuminated the terahertz source, a plasmonic 
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photoconductive nanoantenna array (48), to generate terahertz pulses. 
The other part of the laser beam passed through an optical delay line 
and illuminated the terahertz detector, which was another plasmonic 
photoconductive nanoantenna array offering high-sensitivity and 
broadband operation (47). The generated terahertz radiation was col-
limated and guided to the terahertz detector using an off-axis parabol-
ic mirror. The output signal as a function of the delay line position, 
which provides the temporal profile of the detected terahertz pulses, 
was amplified using a current preamplifier (Femto DHPCA-100) and 
detected with a lock-in amplifier (Zurich Instruments MFLI). For 
each measurement, 10 time-domain traces were captured over 5 s and 
averaged. The acquired time-domain signal has a temporal span of 400 
ps, and its power spectrum was obtained through a Fourier transform. 
Overall, the THz-TDS system offers signal-to-noise ratio levels of >90 
dB and observable bandwidths exceeding 5 THz.

The 3D printed diffractive optical network was placed between 
the terahertz source and the detector. It consisted of an input aper-
ture, an input object, three diffractive layers, and an output aperture, 
as shown in Fig. 2D, with their dimensions and spacing annotated. 
Upon their training in a computer, the diffractive optical networks 
were fabricated using a 3D printer (Objet30 Pro, Stratasys Ltd.) with 
an ultraviolet curable material (VeroBlackPlus RGD875, Stratasys 
Ltd.). A 1 cm–by–1 cm square aperture was positioned at the input 
plane serving as an entrance pupil for the subsequent optical system. 
The terahertz detector has an integrated Si lens in the form of a 
hemisphere directly attached to the backside of the chip. This Si lens 
was modeled as an achromatic flat Si slab with a thickness of 0.5 cm 
and a refractive index of 3.4 in our optical forward model. During 
the experiments, a 2 mm–by–2 mm output aperture was placed at 
the output plane, right before the terahertz detector, to shrink the 
effective area of the Si lens, ensuring that the uniform slab model 
assumed during the training forward model accurately translates 
into our experimental setup. The input and output apertures and the 
3D printed objects were coated with aluminum to block terahertz 
radiation outside the transparent openings and object features. Fur-
thermore, a 3D printed holder (Fig. 2A) was designed to support and 
align all of the components of the diffractive setup.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/13/eabd7690/DC1
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