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Abstract 
During collaborative problem solving (CPS), coordination 
occurs at different spatial and temporal scales. This multiscale 
coordination should, at least on some scales, play a functional 
role in facilitating effective collaboration outcomes. To 
evaluate this, we conducted a study of computer-based CPS 
with 42 dyads. We used cross-wavelet coherence as a way to 
examine the degree to which movement coordination is 
evident at a variety of scales and tested whether the observed 
coordination was greater than both the amount expected due 
to chance and due to task demands. We found that 
coordination at scales less than 2s was greater than expected 
due to chance and at most scales (except 16s, 1m, and 2m) 
was greater than expected due to task demands. Lastly, we 
evaluated whether the degree of coherence at scales less than 
2s, and the form of coordination (in terms of relative phase), 
were predictive of CPS performance. We found that .25s and 
1s scales were predictive of performance. When including 
relative phase, our results suggest that higher in-phase 
movement coordination at the 1s scale was the strongest 
predictor of CPS performance. We discuss these findings and 
detail their relevance for expanding our knowledge on how 
coordination facilitates CPS.     

Keywords: coordination; collaboration; problem solving; 
team performance; dynamical systems; synchrony. 

Introduction 
Collaborative problem solving (CPS) is a cognitive skill 
pervasive in many human interaction contexts ranging from 
everyday life to highly complex work environments. CPS is 
defined as “a process whereby two or more agents attempt 
to solve a problem by sharing the understanding and effort 
required to come to a solution and pooling their knowledge, 
skills and efforts to reach that solution” (OECD, 2015, p. 6). 
Given the increasing complexity of problems in 
contemporary societal practices, and the need for multiple 
disciplines to solve them, CPS has been recognized as an 
essential 21st century skill. However, while some research 
has examined CPS in a variety of laboratory (e.g., Berg, 
Johnson, Meegan, & Strough, 2003; Roschelle & Teasley, 
1995) and naturalistic contexts (e.g., Fiore, Wiltshire, 
Oglesby, O’Keefe, & Salas, 2014; Jordan & McDaniel Jr, 
2014), the state of the science is still limited. In this paper, 
we explore the implications of the notion that CPS is a 
multiscale phenomenon, and investigate the degree to which 
movement coordination, at various scales, plays a functional 
role in effective CPS.  

Human interaction in any context is a dynamic, multiscale 
phenomenon (e.g., Dale, Fusaroli, Duran, & Richardson, 

2013; Steffensen & Pedersen, 2014). For example, during a 
conversation, neural events transpire on the order of 
milliseconds, speech production and gestures over seconds, 
and the conversation itself on the order of minutes (Hasson, 
Ghazanfar, Galantucci, Garrod, & Keysers, 2012). This 
point, while oversimplified, illustrates the fact that human 
interaction involves a variety of temporal and spatial scales 
(e.g., neural, physiological, bodily). Recognizing human 
interaction as multiscale, especially during CPS, implies 
that coordination, both intra- and inter-personally, must 
span a variety of these spatial and temporal scales in order 
to effectively accomplish joint goals (Eiler, Kallen, 
Harrison, & Richardson, 2013).  

Indeed, a common question, particularly in the movement 
sciences, has been to understand how systems with high 
degrees of freedom, are able to functionally coordinate (e.g., 
Mitra, Amazeen, & Turvey, 1998). Coordination in this 
context is simply the ways in which components and 
processes of a system change together over time (Butner, 
Berg, Baucom, & Wiebe, 2014). In an interpersonal context, 
a wide variety of terms have been used to describe different 
forms of coordination (Butler, 2011) such as 
synchronization, co-regulation, entrainment, and coupling. 
Evidence for many forms of interpersonal coordination are 
quite pervasive amongst differing modalities (Fusaroli & 
Tylén, 2016; Louwerse, Dale, Bard, & Jeuniaux, 2012) and 
contexts (Palumbo et al., 2016). But, while many different 
forms of coordination have been discovered, the ways in 
which they facilitate effective interaction outcomes is less 
studied (cf., Timmons, Margolin, & Saxbe, 2015), 
particularly in collaborative contexts.   

Prior research has suggested that coordination is required 
for the accomplishment of joint goals (Mills, 2014) and that 
stronger coordination should contribute to better 
collaborative results (Barron, 2000). Findings so far have 
been mixed, though, with regard to how coordination, albeit 
in different modalities and scales, relates to optimal 
performance on joint tasks (Gallotti, Fairhurst, & Frith, 
2017). In one example, performance on a dyadic movement 
task was predicted by a measure of coordination that 
reflected interaction across multiple time scales (Davis, 
Brooks, & Dixon, 2016). In another example, Abney, 
Paxton, Dale, and Kello (2015) found that stronger 
coordination in bodily movements were associated with 
poorer performance on a movement-based dyadic problem 
solving task. Louwerse et al. (2012) found that as task 
difficulty increased, so too did coordination. Further, 
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coordination of bodily movements in psychotherapy, a 
highly collaborative endeavor (Tryon & Winograd, 2011), 
were shown to link to effective treatment outcomes  
(Ramseyer & Tschacher, 2011). While not related to 
performance specifically, a number of interactional benefits 
have been observed following periods of interpersonal 
coordination such as increased affiliation (Hove & Risen, 
2009) and cooperative behavior (Valdesolo, Ouyang, & 
DeSteno, 2010; Wiltermuth & Heath, 2009).   

Given the extant research, briefly reviewed here, we 
expect that multiscale coordination of bodily movements 
should have a functional relationship with performance in 
complex, CPS. Relatedly, a recent theoretical account of 
dialog proposed that high coordination in lower level 
behaviors (e.g., posture) may provide a necessary 
foundation for more variability and complementarity at 
higher levels of dialog  (Fusaroli, Rączaszek-Leonardi, & 
Tylén, 2014). So, a key aspect that distinguishes the present 
work from prior research is that we focus on movement 
coordination in a challenging computer-based CPS context.  

The Current Study 
The present work is part of a larger study examining team 

interaction dynamics during a dyadic CPS task (Wiltshire, 
2015; Wiltshire, Butner, & Fiore, 2017). Whereas in prior 
work, we have examined how transitions in communication 
structures and their complexity relate to CPS performance 
(Wiltshire et al., 2017), here we focus on coordination of 
bodily movements at various time scales and how that 
coordination relates to CPS performance.  

We utilize cross-wavelet coherence as a way of 
examining coordination of human interaction that is largely 
unstructured, at least when compared to rhythmic movement 
tasks (Fujiwara & Daibo, 2016; Issartel, Bardainne, Gaillot, 
& Marin, 2015). This method allows for evaluation of the 
degree of coordination of two continuous time series and 
whether that coordination is in-phase or anti-phase. One of 
its key strengths is that it retains a high level of precision in 
both the time and frequency domains (Issartel et al., 2015). 
This method has been used previously to examine 
movement coordination in a variety of interactive contexts 
such as the exchange of jokes (Schmidt, Morr, Fitzpatrick, 
& Richardson, 2012), dialog (Fujiwara & Daibo, 2016), the 
coordination of jazz musicians (Walton, Richardson, 
Langland-Hassan, & Chemero, 2015), and dancers 
(Washburn et al., 2014).  

We expect that the coordination of bodily movements will 
serve a functional role in facilitating effective CPS 
performance. However, we also expect that this functional 
role will vary based on time scales. In other words, 
movement coordination at some time scales should be more 
relevant to CPS than others. We thus adopt an exploratory 
approach to determine what scales are important in 
predicting effective CPS performance. Given the nature of 
the task, it is likely that smaller time scale movements will 
matter such as those that occur while controlling the 
computer-based task as well as during speech. When 

examining interpersonal coordination dynamics, it is 
essential to demonstrate that the observed coordination is 
greater than can be expected due to chance alone (Ramseyer 
& Tschacher, 2010), and that it is not solely due to task 
constraints (Strang, Funke, Russell, Dukes, & Middendorf, 
2014). Thus, we advance the following research hypotheses 
(H) and research questions (RQ): 
• H1: Movement coordination will be greater than 

chance, at least at lower scales. 
• H2: Movement coordination will be greater than can be 

expected due to task constraints. 
• RQ1: At what scales does movement coordination 

predict CPS performance? 
• RQ2: Does the form of coordination (e.g., in-phase, 

anti-phase) at these scales relate to performance? 

Method 

Participants 
84 undergraduate students (31 female, Mage =19.2 years, 
range 18-28 years; ~ 67% White, 8% Black, 10% Hispanic, 
10% Asian, and 5% other) from a large United States 
university voluntarily participated in this experiment 
comprising 42 dyadic teams. There were five female-only 
teams, 17 male-only teams, and 20 mixed-gender teams. 
Participants must have had general video game experience 
using a mouse and keyboard for third-person video games, 
no prior history of seizures, no experience using the 
Moonbase Alpha simulation, and no prior acquaintance. 

Materials 
Participants sat face-to-face with each other with two 
desktop computers offset to one side. This setup allowed 
them to view the other’s face and torso. The computer 
screens were placed back-to-back. A Logitech HD webcam 
model C615 was used to record the participants from a 
profile view. All videos were collected in 720p resolution. 

Task 
NASA’s Moonbase Alpha is a complex, CPS task (NASA, 
2011) that places team members in a simulated scenario 
where a meteor strike damages critical life support systems 
of a moonbase. The goal of the Moonbase Alpha task is for 
participants to fully restore oxygen to the settlement in 25 
minutes or less. Both team members must work together to 
solve the problem by figuring out how to fix and/or replace 
damaged components of the life support system such as 
solar panels, power cables, couplers, and a power 
distributor. A variety of tools and coordination strategies 
must be employed to complete the task; however, there are 
no predefined guidelines for how to completely repair the 
settlement in the given timeframe. 

Procedure 
Participants were briefed about the nature of the experiment 
and asked to introduce themselves to each other by 
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providing a greeting and sharing their name with the other 
participant. Participants were then given an informed 
consent document to review and asked to complete a 
biographical questionnaire.  

Participants were then provided a PowerPoint tutorial that 
covered the basics of the Moonbase Alpha simulation, 
which were derived from the simulation’s instruction 
manual (NASA, 2011). Further, participants were told that 
they would be tested on the content. After completing the 
PowerPoint, they received a 10-item multiple-choice 
knowledge assessment (see Wiltshire, 2015).  

After completion of the knowledge assessment, the 
necessity for communication to complete the task was 
reiterated. Participants were then instructed to begin the 
simulation. A short video introduced the problem (i.e., the 
moonbase was damaged by a meteorite and life support 
functions need to be restored) before participants began the 
25-minute task. The task was considered complete either 
when time ran out or once participants fully restored 
oxygen, whichever came first.  

CPS Performance 
Problem solving performance was determined by a rescaled 
combination of three variables: (a) the total time taken to 
restore life support (0-25 minutes), (b) the total percentage 
of oxygen restored (0-100%), and (c) a ratio of completed 
object repairs to the total possible repairs (0-25; only for 
teams that restored zero oxygen). The rescale function in 
R (R Core R Core Team, 2016) was used to place teams 
whose performance restored no oxygen at all into a range of 
0-33 as a function of their ratio of object repairs/total 
possible object repairs. Those teams that restored some, but 
not all, oxygen were rescaled to fit a range of 34-66. Lastly, 
for those teams that restored all oxygen, the time to 
complete the task was inversely rescaled to fit the range of 
67-100 (with lower times leading to higher scores). 

Analytic Strategy 
Frame-Differencing We used Paxton and Dale’s (2013) 
video frame-differencing technique to extract a time series 
representing the level of bodily movement for each 
participant from all videos at an 8 Hz sampling rate. For the 
current task, this measure of bodily movement captures 
behaviors such as speech, postural sway, gestures, 
adjustment of position, hand movements controlling the 
mouse and keyboard, and shifting of the legs and/or feet. In 
general, this technique provides an objective measure of the 
amount of movement a given participant is exhibiting 
moment-by-moment over the duration of the task with 
higher values corresponding to more movement. The trade-
off when using this type of method is that there is a loss of 
specificity with regard to the types of movements that are 
coordinated, but movement can be extracted with relatively 
little effort and time compared to more specific movement 
coding systems (cf. Louwerse et al., 2012; Paxton & Dale, 
2013).  
 

Cross-Wavelet Coherence We examined dyadic movement 
coordination with the cross-wavelet transformation method 
by using the wtc function from the biwavelet package 
(Gouhier, Grinsted, & Simko, 2016) in R. This is a spectral 
decomposition method that allows for examination of time 
localized oscillations in a variety of frequencies and how the 
spectrum changes in those frequencies over time (Issartel, 
Marin, Gaillot, Bardainne, & Cadopi, 2006). This method is 
known to be robust to nonstationary time series (Issartel et 
al., 2015). We extracted the average coherence and average 
relative phase values from the following frequency ranges: 
.25s, .5s, 1s, 2s, 4s, 8s, 16s, 32s, ~1m, ~2m, and ~4.5m 
within +/- .5 scales (frequency scales are converted to time 
domain by multiplying them by the 8 Hz sampling rate and 
dividing by 60 for minutes). Coherence is the spectral 
equivalent to a cross-correlation. Values of 0 convey no 
coordination and a value of 1 conveys absolute coordination 
(Schmidt, Nie, Franco, & Richardson, 2014). Relative phase 
indicates whether the oscillations are in-phase (0°), anti-
phase (180°), or exhibiting a lag (between 0° and 180°).   

Surrogate and Virtual Pairs Analyses Surrogate analysis 
was conducted by computing a shuffled transformation of 
each observed movement time series and repeated the cross-
wavelet analyses for each dyad. This effectively destroys the 
temporal pattern in the data while preserving the 
distributional properties (Louwerse et al., 2012). Any 
measures of coordination applied to these are widely 
interpreted as the degree of coordination expected due to 
chance (Ramseyer & Tschacher, 2010). 

For the virtual pairs analysis, 42 randomized 
combinations of individuals who did not interact together 
were created. Because these individuals did not interact with 
each other, but were performing the same task, coordination 
measures calculated from virtual pairs have been interpreted 
as the coordination that can be expected due to the task 
demands (Strang et al., 2014). Thus, cross-wavelet analyses 
were conducted on these virtual pairs. Where time series 
were of unequal length, the longer time series was truncated 
to the length of the shorter series. Separate paired-sample t-
tests were used to compare between observed coherence and 
surrogate coherence as well as between observed coherence 
and virtual pairs coherence for each time scale.  

Examining Relationship Between Coordination and 
Performance Our approach to answering RQs 1 and 2 was 
exploratory based on the results from H1. Specifically, we 
first conducted a linear multiple regression model with the 
observed coherence values at scales that were significantly 
greater than chance as predictors of performance. Then, we 
took those values that were significant predictors of 
performance and included them in a second multiple 
regression model with the relative phase values for those 
respective scales. 

Results 
In order to examine H1, that the observed coordination 
would be greater than chance at some scales, the coherence 

1347



values for the surrogate data were compared to the 
coherence of the observed data. Results (see Table 1) 
suggested that coherence was significantly greater than 
chance at the .25s, .5s, 1s, and 2s frequency scales.  

Table 1: Paired sample t-tests comparing observed to 
surrogate coherence and to virtual pairs coherence. 
 

Freq. 
Scale 

Observed 
Coherence 

Surrogate 
Coherence 

Virtual Pairs 
Coherence 

.25s 0.84 (.04) 0.30 (.02)*** 0.72 (.05)*** 

.5s 0.93 (.03) 0.54 (.09)*** 0.79 (.17)*** 
1s 0.42 (.06) 0.29 (.02)*** 0.30 (.01)*** 
2s 0.37 (.05) 0.33 (.03)*** 0.30 (.03)*** 
4s 0.28 (.02) 0.29 (.01) 0.26 (.02)*** 
8s 0.28 (.03) 0.29 (.04) 0.26 (.02)** 
16s 0.30 (.04) 0.31 (.04) 0.29 (.04) 
32s 0.32 (.07) 0.31 (.07) 0.29 (.06)* 
1m 0.33 (.08) 0.34 (.08) 0.31 (.07) 
2m 0.38 (.13) 0.36 (.11) 0.33 (.11) 
4.5m 0.48 (.18) 0.43 (.21) 0.36 (.17)* 
Note. Values are mean and standard deviation. * p < .05; 
** p < .01; ***; p < .001 

 

 
Figure 1: Cross-wavelet coherence plots for a high 

performing team (top) and low performing team (bottom). 
Likewise, in order to examine H2, that the observed 

interpersonal movement coordination would be greater than 
due to task demands and environment, the coherence values 
for the virtual pairs data were compared to the coherence of 

the observed data. Results (see Table 1) suggested that 
coherence was significantly greater than could be expected 
due to task demands and environment alone for all 
frequency scales except 16s, 1m, and 2m.  

To better understand the relationship between coherence 
and performance, we present two examples of cross-wavelet 
coherence plots in Figure 1. The top example is derived 
from the top performing team and the bottom example is 
derived from the lowest performing team. The y-axis 
corresponds to the frequency scale (which when divided by 
8 can be related to time in seconds). The x-axis corresponds 
to the time on task with each point corresponding to 1/8 of a 
second (or one video frame). The colors correspond to the 
amount of coherence with warmer colors indicating high 
coherence. Arrows indicate phase relationships with right 
arrows conveying in-phase and left arrows conveying anti-
phase. Arrows shifted up or down convey a lag in the 
oscillations between participants.  

Next, we turn to RQs 1 and 2. In our first model, we 
included the four scales that were significantly more 
coordinated than expected due to chance alone as predictors 
of CPS performance (.25s, .5s, 1s, and 2s). Overall, this 
model accounted for a significant 30.2% (R2

adj = .226; 
F(4,37) = 4.00, p = .009) of the variability in CPS 
performance with coherence at the .25s (β = -.584, p = .017) 
and 1s scales (β = .789, p = .003) as significant predictors of 
performance. The .5s and 2s scales were not significant (ps 
> .05). Regarding RQ1, these results suggest that whereas 
stronger movement coordination at the 1s scale is a strong 
predictor of better CPS performance, stronger coordination 
at the .25s scale is associated with poorer performance.   

Next, we sought to better understand the form of 
coordination at these scales. Thus, we conducted a second 
model that included coherence as well as relative phase at 
.25s and 1s scales. This model accounted for a significant 
34.6% (R2

adj = .276; F(4,37) = 4.90, p=.003) of the 
variability in CPS performance with coherence (β = .614, p 
= .007) and relative phase (M = 3°, SD = 2°; β = -.294, p = 
.038) at the 1s scale as significant predictors of 
performance. Now, however, coherence at .25s was not 
significant (β = -.412, p = .06) nor was relative phase at .25s 
(p = .24). Thus, these results suggest that movement 
coordination at the 1s scale is a primary predictor of 
performance and further, that relative phase values at the 1s 
scale closer to 0° (more in-phase) are associated with better 
CPS performance.  

Discussion 
In this work, we investigated the multiscale, movement 
coordination dynamics that emerge in computer-based CPS. 
We found that movements in .25s-2s scales were 
significantly more coordinated than chance and that all but 
the 16s, 1m, and 2m scales were more coordinated than 
expected due to task demands. We also observed that where 
coordination was greater than chance, both .25s and 1s were 
associated with CPS performance. However, when also 
accounting for relative phase, it appeared that higher in-
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phase coordination at the 1s scale was the best predictor of 
CPS performance. Thus, some significant variability in CPS 
performance, in this context, appears to be explained by 
specific, low-scale patterns of coherence.  

Given the low specificity of the movement data extracted 
from video, the question remains as to what is coordinated 
at these low scales and why they matter. In general, 
interactional phenomena that play out on (and below) a .25s 
timescale differ qualitatively from phenomena at a .5s 
timescale and beyond. For example, how interlocutors 
orient to each other’s behavior as meaningful for the 
interaction depends on timing. Short pauses in interaction 
(typically < .25s) are treated as idiosyncratic variation in 
speech; pauses around .5s mark a transition space where the 
next speaker can take the word; and longer pauses (> 1s) 
“are often treated as flagging something unusual or 
troublesome about the interaction” (Mushin & Gardner, 
2009, p. 2035). Although, in addition to capturing these 
aspects of dialog, the observed coordination also captures 
mouse and keyboard movements, which likely unfold at 
these low scales as well. In general, many of the modalities 
captured by our movement measure can be argued to be task 
relevant as they capture dialogical events and computer 
input required for collaboration, but future work could 
consider more specific modalities such as how mouse 
movements are coordinated.  

As far as future work is concerned, it is important to note 
some observable differences in coherence between the high 
and low performing teams in Fig. 1. There appear to be 
differences at higher scales, although average coherence 
was not generally above chance at these scales. However, 
we can speculate that participants’ performance may reflect 
their ability to create functional coherence across scales 
(e.g., between bodily ability and task demands), which 
could be assessed with fractal analyses (Davis et al., 2016). 
Further, it may be that successful CPS performance relies on 
higher-order transitions (Wiltshire et al., 2017) in 
coordination at one or more slow scales, as could be 
tenuously suggested by the pattern of high-low-high 
coherence near the 2m scale across the duration of the task. 
Thus, future work should also consider extracting not only 
specific scales, but also time ranges that could be 
theoretically important to CPS. 

More generally, research of this nature is important 
because it advances an efficient means of unobtrusively 
examining coordination processes during collaboration with 
a goal of working toward systems that can elicit forms of 
coordination that enable effective collaboration (Fiore & 
Wiltshire, 2016; Kim, Chang, Holland, & Pentland, 2008; 
Wiltshire & Fiore, 2014). However, more work is necessary 
to understand if movement coordination is related to CPS 
performance in larger teams (de Montjoye, Stopczynski, 
Shmueli, Pentland, & Lehmann, 2014), with different roles 
and disciplinary expertise (Bergmann, Dale, Sattari, Heit, & 
Bhat, 2016), and when the teams are not co-located. Of 
course, such pursuits may require considering alternative 
modalities in which multiscale coordination might also 

occur. We expect that such endeavors are essential to 
advancing our knowledge of the way that coordination 
during human interaction relates to collaborative cognition.   
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