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SUMMARY

Focal epilepsies represent approximately half of all diagnoses, andmore than one-third

of these patients are refractory to pharmacologic treatment. Although resection can

result in seizure freedom,many patients do not meet surgical criteria, as seizures may

bemultifocal in origin or have a focus in an eloquent region of the brain. For these indi-

viduals, several U.S. Food and Drug Administration (FDA)–approved electrical stimu-

lation paradigms serve as alternative options, including vagus nerve stimulation,

responsive neurostimulation, and stimulation of the anterior nucleus of the thalamus.

All of these are safe, flexible, and lead to progressive seizure control over time when

used as an adjunctive therapy to antiepileptic drugs. Focal epilepsies frequently involve

significant comorbidities such as cognitive decline. Similar to antiepilepsy medications

and surgical resection, current stimulation targets and parameters have yet to address

cognitive impairments directly, with patients reporting persistent comorbidities asso-

ciated with focal epilepsy despite a significant reduction in the number of their sei-

zures. Although low-frequency theta oscillations of the septohippocampal network

are critical for modulating cellular activity and, in turn, cognitive processing, the coor-

dination of neural excitability is also imperative for preventing seizures. In this review,

we summarize current FDA-approved electrical stimulation paradigms and propose

that theta oscillations of the medial septal nucleus represent a novel neuromodulation

target for concurrent seizure reduction and cognitive improvement in epilepsy. Ulti-

mately, further advancements in clinical neurostimulation strategies will allow for the

efficient treatment of both seizures and comorbidities, thereby improving overall

quality of life for patients with epilepsy.

KEY WORDS: Epilepsy, Electrical stimulation, Deep brain stimulation, Theta oscilla-

tions, Medial septal nucleus.

Epilepsy, as defined by the presence of spontaneous
recurrent seizures, has an estimated lifetime prevalence of

1–5% globally, making it the fourth most common neuro-
logic disorder.1–5 Within the United States alone, there are
approximately 3 million adults and 470,000 children cur-
rently diagnosed with epilepsy.6 As of 2017, epilepsy syn-
dromes are operationally classified as focal (partial),
generalized, or unknown onset.7 The origin of focal seizures
can be subdivided by topographic location (i.e., subcortical,
temporal, frontal, occipital, or parietal lobe epilepsy). Col-
lectively, focal-onset epilepsies represent more than half of
all diagnoses8; among these, temporal lobe epilepsy (TLE)
is the most prevalent.

Pharmacoresistance is most common in focal epilepsies
such as TLE.8 In fact, ~40% of patients with TLE are refrac-
tory to medical intervention and have persistent seizures.8,9
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Patients whose seizures cannot be controlled have higher
rates of morbidity and mortality, including trauma, suicide,
and sudden unexpected death in epilepsy.10,11 For refractory
patients, resection of the seizure focus is a potential treat-
ment option. However, eligibility for resection depends on
location of the seizure focus, including the surgeon’s ability
to identify and safely remove the epileptic tissue. Further-
more, of those patients receiving resective surgery, only 50–
70% become seizure-free.12,13 Therefore, there is a clear
need to develop additional adjunctive therapies for the treat-
ment of refractory epilepsy.

Over the last 50 years, neurostimulation has been estab-
lished across multiple preclinical and clinical trials as a safe
and reversible surgical option that can be combined with tra-
ditional medical interventions to significantly reduce sei-
zures. Currently, there are 3 U.S. Food and Drug
Administration (FDA)–approved neurostimulation para-
digms: vagus nerve stimulation (VNS), responsive nerve
stimulation (RNS), and deep brain stimulation (DBS). How-
ever, there is still room for optimization of neurostimulation
for epilepsy, specifically in terms of improving seizure
reduction and treating common comorbidities of epilepsy,
such as cognitive dysfunction.14 This review will address
current FDA-approved neurostimulation treatment strate-
gies. Furthermore, we will discuss evidence supporting the
hypothesis that driving theta oscillations via stimulation of
the medial septal nucleus (MSN) has the potential to both
reduce seizures and improve cognitive outcome. Ultimately,
the development of a range of tools, including neurostimula-
tion, maximizes our ability to achieve seizure freedom and
improve quality of life for patients with refractory epilepsy
disorders.

Primary Treatment Strategies

for Focal Epilepsies

Anti-epileptic drugs
The first line of treatment for epilepsy is administration

of antiepileptic drugs (AEDs). There are multiple pharma-
cologic strategies targeting a range of ion channels and
receptors, each with the goal of modulating the balance of

synaptic excitation and inhibition.15,16 Approximately 47%
of patients achieve seizure freedom with one AED; how-
ever, if ineffective, adding a second drug (serially or in com-
bination) yields only an additional 11% remission rate, and
subsequent addition of drugs contributes less than a 3%
improvement in efficacy.9,17 Ultimately, only ~60% of
patients respond to AEDs. Epilepsy is considered refractory
or pharmacoresistant when administration of 2 AEDs, either
serially or combined, fails to achieve seizure freedom after
2 years.8,17,18 Patients experiencing years of seizures, and
those who develop structural abnormalities, are 50% more
likely to become refractory to medication. Refractory
patients account for 80% of the total (direct plus indirect)
cost of epilepsy in the United States, which is estimated to
be over $15.5 billion annually.19,20

Pharmacoresistance is most common in focal epilep-
sies8,21 and is frequently associated with cognitive decline.
For example, approximately 70% of patients with TLE exhi-
bit memory impairment.14 Furthermore, unmanaged epi-
lepsy can result in increased rates of morbidity/mortality
and decreased quality of life, as patients may be legally
unable to drive and socially unable to conduct normal voca-
tional and recreational activities.11,22,23 Even in cases of
pharmacoresponsive epilepsy, the adverse side-effects of
AEDs can impair quality of life, as drugs that reduce
excitability and seizures are associated with exacerbation of
cognitive and mood comorbidities.24–27 Moreover, drug–
drug interactions with other important medications, such as
birth control,28 can impair quality of life, even in the context
of reduced seizures.27 Over 80% of patients taking more
than one AED report an average of 6–7 medication-related
adverse effects,26 leading to a 20% noncompliance rate.29–
31 Ultimately, noncompliance can result in uncontrolled sei-
zures in patients who choose to discontinue AED use.

Resection
The only curative option for focal epilepsy is resection,

which is effective in 50–70% cases, depending upon epi-
lepsy type, focus, and patient age.12,13 Among all epilepsies,
surgical treatment is most commonly used for and effica-
cious in treating TLE. However, surgically eligible patients
often wait more than 20 years for resection, during which
time they continue to have seizures.32,33 In addition, some
patients, such as those with generalized or multifocal epi-
lepsy, or those with an epileptic focus in a key language
area, are ineligible for resection.34 Even when surgery is
curative, removal of temporal lobe tissue can have deleteri-
ous effects on cognitive function.35–39 Therefore, too many
patients taking AEDs for focal epilepsy, and particularly
TLE, continue to experience uncontrollable seizures, persis-
tent comorbidities, and drug-related side effects. This
emphasizes a clear need for alternative therapies, such as
neurostimulation, that can be applied in combination with
AEDs to better reduce seizures and seizure-related comor-
bidities.

Key Points

• Electrical stimulation is indicated for patients with
medically refractory epilepsy who do not qualify for
surgical resection

• Vagus nerve stimulation, responsive neurostimula-
tion, and stimulation of the anterior nucleus of the tha-
lamus reduce seizures by 50–70%

• Theta stimulation of the medial septum represents a
potential therapy to reduce seizures and improve cog-
nition in temporal lobe epilepsy
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Neurostimulation to Treat

Epilepsy

Neurostimulation involves the delivery of a stimulus
(electrical or magnetic) to specific targets within the central
or peripheral nervous system, which modulates a pathologic
substrate to yield a therapeutic effect. The first neurostimu-
lator was implanted in 1967 as an analgesic therapy.40 Since
then, stimulation of the central nervous system has been
indicated for treatment of many conditions (Fig. 1), includ-
ing neuropathic and ischemic pain (reviewed in41), motor
disorders,42–48 obsessive compulsive disorder,49 Tourette
syndrome,50 depression,51 obesity,52,53 and medically
refractory epilepsies.54–56

Neurostimulation is a safe, effective option for patients
with intractable epilepsy who fail to meet surgical criteria.
Current is delivered at a customizable frequency, amplitude,
and pattern (i.e., continuous, cycled, or triggered), which
can be tailored to the individual and subsequently discontin-
ued if determined to be deleterious.57,58 Three types of neu-
rostimulation—VNS, RNS, and DBS of the anterior nucleus
of the thalamus (ANT)—are FDA-approved for the treat-
ment of medically refractory epilepsy.54,59,60 In the follow-
ing sections, we discuss preclinical and clinical evidence for
the safety and efficacy of each of these paradigms, focusing
primarily on the most recent reports from long-term studies.

It is important to note that these still ongoing trials (over
7 years) are open-label, uncontrolled trials, and therefore
there may be some limitation in our ability to interpret the
data. For example, it would be difficult to assess the relative
roles of continued medical management and potential pla-
cebo or lesion effects of the implantation on seizure control.
However, these therapies have also been evaluated in short-
term, randomized, and double-blinded pivotal stud-
ies.56,61,62 Moreover, most of these patients did not respond,
either actively or with placebo, to an average of 20 years of
pharmacologic management. Critically, each of the FDA-
approved neurostimulation therapies, whether indepen-
dently or in conjunction with continued medical manage-
ment, results in a significant reduction of seizures in the
majority of patients.

Vagus nerve stimulation
Current developments of clinical targets for modulation

have been, and continue to be, guided by preclinical animal
research. As early as 1937, animal studies have indicated
that stimulation of the vagus nerve has the potential to
desynchronize electroencephalography (EEG) activity as a
result of widespread cortical connections mediated by vagal
afferents that terminate in the nucleus of the solitary
tract.63–66 Subsequently, studies in multiple models, ranging
from rats induced with pentylenetetrazol (PTZ) and

Figure 1.

Clinical applications of invasive,

central neurostimulation.41–56,170–173

Therapeutic neuromodulation is the

targeted injection of an electrical,

chemical, or other nonelectrical

stimulus to a specific region.

Neurostimulation at multiple central

nervous system targets has been

FDA-approved for a variety of clinical

indications and is under

consideration (*) for several others.
Epilepsia Open ILAE
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maximal electroshock to nonhuman primates exhibiting
spontaneous seizures, have demonstrated the safety and
efficacy of VNS for preventing or interrupting ictal activ-
ity.63,67,68

Since the first human implantation in the late 1980s,69

VNS has been approved as an adjunct therapy for medically
refractory epilepsies in adults and children (>12 years), par-
ticularly when resection is contraindicated or fails to reduce
seizures.54,70 A programmable pulse generator is implanted
subcutaneously and connected to the left vagus nerve via a
tunneled bipolar stimulation lead.61 Stimulation is delivered
in an open-loop manner (continuous or cycled, e.g., 1 min-
ute on, 5 minutes off) but can also be triggered by changes
in cardiac rhythm71 or with a handheld magnet.72 Initial
studies demonstrated that higher frequency (20–50 Hz)
stimulation was more effective than low frequency (1–
2 Hz) stimulation for seizure reduction.61,73 In longitudinal
trials (Table 1), VNS yields a median responder rate of
22.1–44.4% after 1 year, 38.1–54.4% after 2 years,74–76

and 43.8–58.9% by the end of year 5.74,75 In addition, 3.3%
of the patients were seizure-free after 2 years, and 5.5%
achieved seizure freedom after 5 years.75 A common criti-
cism of the clinical trials for neurostimulation, however, is
that the effects of stimulation cannot be evaluated indepen-
dently of AEDs because patients remain on pharmacother-
apy. For example, VNS patients, on average, had an
increase in their AED regimen 2 and 5 years following
implantation.74 However, there was no difference in effi-
cacy between VNS responders who remained on a stable
course of AEDs throughout the 5-year period and those
whose medication regimen was decreased during the trial.74

Adverse effects associated with VNS implantation most
commonly include implant site infection (7%), vocal cord
paresis (5.6%), and device-related complications such as
VNS lead fracture and malfunction (16.8%).77 Very rarely,
stimulation of the left vagus nerve can be associated with
bradycardia and/or asystole, although this has been reported
mostly intraoperatively, and instances of late-onset brady-
cardia or arrhythmias are infrequent.77–80 Although out-
comes can vary, VNS remains an option for patients with

epilepsy, and the only neuromostimulation therapy
approved for children that can reduce seizure frequency and
severity without requiring cranial surgery.

Responsive neurostimulation
Several preclinical studies have investigated the efficacy

of closed-loop stimulation, aiming to better predict ictogen-
esis while minimizing stimulation exposure. For example,
Wagenaar and colleagues designed an in vitro closed-loop
feedback system in which the firing rate of cultured neurons
was monitored in real-time and used to optimize stimulation
parameters to efficiently suppress synchronized bursts.81 In
an in vivo model of pilocarpine-induced epilepsy, seizures
were predicted based on pre-ictal synchronization, and the
centromedian nucleus of the thalamus was stimulated at
high frequency to prevent seizures.82 Predictive stimulation
resulted in significant seizure reduction in 33% of rats, com-
pared to only 17% of rats receiving open-loop (prepro-
grammed) stimulation. Furthermore, stimulation success
was correlated with desynchronization of brain activity.82

In a separate study, Liang and colleagues aimed to develop
a highly accurate seizure prediction algorithm in Long-
Evans rats exhibiting both spontaneous and PTZ exposure–
associated spike-wave-discharges.83 Frontal lobe seizure
activity was accurately predicted in approximately 92% of
instances. Furthermore, 800 Hz stimulation of the zona
incerta occurred within 0.6 seconds of detection and suc-
cessfully interrupted ictal activity.83 Collectively, these
experimental studies provide evidence in support of the
clinical viability for closed-loop (responsive) stimulation in
epilepsy.

The NeuroPace RNS stimulator is an FDA-approved,
closed-loop neurostimulation device for patients with
intractable epilepsy associated with one or 2 seizure
foci.55,60,62,84,85 The RNS device continuously monitors
EEG, and when an abnormal pattern is identified (according
to criteria that are programmed and can be modified by the
physician), high-frequency stimulation pulses are delivered
immediately to the seizure focus.62 This device is fully pro-
grammable and is connected to 2 electrodes (depth or

Table 1. Longitudinal efficacy of neurostimulation therapies.

Year 1 Year 2 Year 5/6

n

Median

seizure

reduction

Responder

rate

Seizure

freedom n

Median

seizure

reduction

Responder

rate

Seizure

freedom N

Median

seizure

reduction

Responder

rate

Seizure

freedom

VNS 90 NR 44.4% 0% 87 NR 58.9% 3.3% 90 55.9% 64.4% 5.5%

RNS 197 44% 43% NR 174 53% 54% 9% mTLE: 106 70% 66% 20.8%

Neocortical: 90 55% 77% 26%

DBS 105 41% 43% NR 82 56% NR NR 83 69% 68% 16%

VNS efficacy was evaluated 1, 2, and 5 years into the open-label period.75 RNS efficacy was reported at 1 and 2 years postimplantation.55 Specific efficacy in
mTLE was reported in year 6, and seizure freedom rate was based on the previous 6 months.84 Year 6 efficacy in neocortical epilepsy was based on the previous
3 months.85 DBS efficacy was evaluated in years 1, 2, and 5 of the open label-period, and seizure freedom rates were based on the previous 6 months.59
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subdural), with placement depending on an estimated sei-
zure focus based on prior intracranial monitoring. Each
electrode has 4 contacts, which can each be used for both
recording and stimulation.62 During the open-label period,
RNS resulted in median seizure reductions of 44% and 53%
at the end of the first and second years, respectively.62 After
6 years of evaluation, 84% of patients had some seizure
reduction, of which 60% were responders (≥50% reduction)
and 16% were seizure-free.60 Of interest, follow-up studies
reported that patients with focal epilepsy responded differ-
ently depending on seizure focus (Table 1). TLE patients
treated with RNS had a median seizure reduction of 70%,
and the responder rate was 66%.84 In patients with neocorti-
cal epilepsy, the median reduction was 55%, and the respon-
der rate was 77%.85

Adverse side effects associated with RNS included
implant site infections (11.7%), resulting in 9 explants and 7
(6.3%) device lead replacements, and a 2.7% risk of
intracranial hemorrhage.84 Patient-reported adverse events
related to depression and memory impairment in the RNS
trial were 1.8% and 6.3%, respectively.84

Deep brain stimulation
Although DBS has been investigated in various brain

structures in preclinical models of epilepsy, the ANT has
drawn significant interest, as it is reciprocally connected
with the hippocampus and limbic structures and has been
hypothesized to drive synchronization during ictal activ-
ity.86–88 Accordingly, lesions to the ventral anterior thala-
mus significantly reduced ictal frequency in felines
experiencing acute epilepsy (tungstic acid gel) and also in a
nonhuman primate model of chronic epilepsy (aluminum
hydroxide gel).89 DBS paradigms, such as high-frequency
stimulation of the ANT, have been shown to increase sei-
zure threshold in rats with acute PTZ-induced seizures.90

Similarly, bilateral stimulation of the ANT significantly
delayed the development of acute pilocarpine-induced sei-
zures and status epilepticus, with both high- and low-fre-
quency stimulation (130 vs. 20 Hz) exhibiting similar
inhibitory effects.91–93 Separate studies have also demon-
strated reduced ictal activity resulting from ANT stimula-
tion in both kainic acid94 and kindling rodent models95 of
chronic TLE. Although these animal studies represent only
a small subset of the preclinical evidence in support of DBS,
they provided specific support to drive the translation of
current clinically indicated stimulation paradigms.

DBS uses an open-loop stimulator56,59 connected to depth
electrodes implanted in the bilateral ANT. The stimulator is
programmed to deliver continuous or cycled, high-fre-
quency stimulation rather than responding to ictal activity.56

One year after implantation, patients experienced median
seizure reductions of 44% for temporal lobe seizures and
53% for frontal lobe seizures.59 By 5 years, median reduc-
tions improved to 76% in temporal lobe seizures and 59%
for frontal lobe seizures. It is important to note that after

5 years, 16% of patients had demonstrated seizure freedom
in the previous 6 months (Table 1).59 In a separate study of
29 patients followed for 11 years, DBS of the ANT resulted
in a median 70% reduction in total seizures.96

Similarly to RNS, the DBS trial reported implant site
infections in 10% of patients; however, the authors also
reported incorrect lead position in 8.2% of the cases (possi-
bly due to variability between frame and frameless implan-
tation procedures).97 In addition, a 7-year mood and
memory outcome study in the DBS trial revealed that 14.8%
and 13% of the active stimulation group reported an adverse
event related to depression and memory, respectively.7 Crit-
ically, many patients in this study had a history of depres-
sion and cognitive impairment prior to implantation, and
investigators found no significant difference between base-
line and follow-up measures of neuropsychological scores
and neurobehavioral function.98

Cognitive Dysfunction in Focal

Epilepsies

The association between focal epilepsies and cognitive
impairments, although not well-characterized, is multifacto-
rial and not limited to a specific focal seizure classification
(focal seizures with awareness vs. focal seizures with
impaired awareness, i.e., simple vs. complex).7,99,100 Fac-
tors contributing to cognitive deficits can include age at sei-
zure onset,101 duration of intractable seizures,102 number/
intensity of seizures,103 lateralization of seizures,104 abnor-
mal electrical activity,105 hippocampal sclerosis,106,107

impairments resulting from resection of ictal foci,39 and the
side effects of AEDs.25,26,108 Patients with TLE exhibit
impairments in multiple memory domains, including spatial
working memory104,107,109 and subsets of declarative mem-
ory, such as episodic memory.110,111 For example, in a vir-
tual reality spatial task, patients were instructed to identify
the location of spatially distributed reward boxes that were
dispersed among empty boxes.109 Through 10 successive
trials, patients with TLE made more errors and traveled
longer distances (i.e., less efficient) to locate the reward
boxes, as compared to controls.109 In addition, visuospatial
working memory was impaired in TLE patients tested on a
nonvirtual task called the 9-box maze.107 Notably, deficits
were significantly correlated with medial temporal lobe
damage, including hippocampal sclerosis.107 In sum, these
data suggest a direct relationship between TLE and signifi-
cant cognitive disability.

A critical shortcoming of all current treatment paradigms
for focal seizures, including AEDs, resection, and neu-
rostimulation, is that treatment efficacy is defined primarily
in terms of seizure control in the absence of significant side
effects; none of these strategies directly target comorbidities
such as cognitive decline.24–26,39 AEDs are associated with
exacerbation of cognitive and mood comorbidities,24–27 and
resection of temporal lobe tissue can have lasting effects on
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cognitive function, such as decline in verbal or visuospatial
memory,35–39 particularly depending on the size and loca-
tion of the lesion. Furthermore, although each of the 3 neu-
rostimulation paradigms result in significant seizure
control, only modest improvements in specific measures of
learning and memory are apparent in a small fraction of
patients. Others continue to report cognitive dysfunction
and, in some cases, further decline. In a recent follow-up
study in patients implanted with the RNS system, patients
with neocortical seizures, but not those with temporal sei-
zures, demonstrated improved performance on the Boston
Naming Test.112 In contrast, only patients with temporal sei-
zures demonstrated improved verbal memory as tested on
the Auditory Verbal Learning Test.112 Similarly, although
there were no significant impairments to cognition over
7 years in the DBS trial, improved patient scores in cogni-
tion were reported in only specific measures of attention
and executive function.98 The minimal changes to cognition
in these paradigms may be attributed to the fact that stimula-
tion target and parameters were specifically optimized with
only seizure reduction in mind.

Novel Stimulation Parameters

for Cognition and Epilepsy

The septohippocampal circuit and theta oscillations
Separate studies using unique anatomic targets have

demonstrated the potential for neurostimulation to improve
cognition in patients with neurologic disorders.113,114 It is
worth noting, however, that these studies yielded mixed
results. Suthana and colleagues demonstrated that 50 Hz
DBS of the entorhinal cortex resulted in improved spatial
memory, whereas direct hippocampal stimulation did not.114

However, in a study designed to validate these findings, stim-
ulation of either entorhinal or hippocampal foci significantly
impaired verbal and spatial memory.115 Several other studies
applying direct hippocampal stimulation also observed sig-
nificant impairments to verbal memory.116,117 In summary,
although there has yet to be a major breakthrough, consider-
able effort has been directed at modulating cognitive function
in patients with cognitive disability. However, these efforts
have focused exclusively on improving cognition and have
made no attempt to treat the underlying neurologic condi-
tions, such as epileptic seizures.

One key to developing a successful intervention that can
target both the underlying neurologic disorder and common
comorbidities, such as spontaneous seizures and cognitive
dysfunction in epilepsy, is to identify a single target that can
modulate both processes. Several approaches using a single
target have been considered. The hippocampus is a potential
target to modulate seizures and cognition; in particular, it is
a potential origin of temporal lobe seizures. However, this
complex structure has multiple efferents and afferents and is
a center for coordinating learning and memory-related

information. Therefore, one of the complications of stimu-
lating the hippocampus (or other inputs carrying complex
and diverse information, such as the entorhinal cortex) is
that stimulation may entrain one function while simultane-
ously silencing or interrupting others. For example, stimula-
tion of either the hippocampus or entorhinal cortex can
impair multiple measures of cognitive function.115–117

Therefore, we propose that indirect circuit modulation may
provide an effective alternative to entrain hippocampal
activity, which can reduce seizures and promote cognition
without silencing or otherwise altering other necessary pro-
cesses. In fact, several studies have demonstrated some
memory improvements resulting from hypothalamic/fornix
stimulation.113,118,119 Three critical findings resulted from
these studies of alternate stimulation targets: (1) stimulation
of the hypothalamus/fornix drives neural activity in struc-
tures important for learning and memory; (2) specific cogni-
tive processes, such as autobiographical memory and spatial
memory, can be improved as a result of stimulation; and (3)
specific stimulation parameters (e.g., fornix/hypothalamus,
high/low/theta burst frequencies) may be critical for certain
brain processes.113,118,119 Together, these experiments high-
light the importance of adopting a network-level approach
to identify alternative targets for stimulation and to focus on
developing neurostimulation parameters that, combined
with a common target, will improve both seizure control
and cognitive outcome.120

Although the fornix includes fibers from multiple nuclei,
one can also modulate one of the specific efferent hippocam-
pal pathways contained within the bundle directly by stimu-
lating the neurons within the MSN.121–123 Fibers from the
MSN project through the fornix into the hippocampus, with a
reciprocal connection via the lateral septum.121,124–128 In
addition to neuronal intraconnectivity within the MSN and
interconnectivity with the hippocampus, the combination of
the septal nuclei and the hippocampus also projects broadly
tomany cortical and subcortical locations.121,129–131

One physiologic signature of the septohippocampal cir-
cuit that is observed across many regions related to seizures
and cognition is the theta oscillation.132 Theta oscillations
(typically described as 3–8 Hz field potentials in humans,
6–10 Hz in a rat) result from synchronized changes in ionic
movements and are known to play a key role in both seizure
states and cognitive processes.133–138 In a healthy brain, the
septohippocampal circuit is one of the key modulators of
theta oscillatory activity and is important for modulating
both hippocampal excitation and inhibition.122,139–141

There is considerable evidence for the role of septohip-
pocampal theta oscillations in cognitive processes in both
rodents and humans. For example, in rodents, disruption of
the MSN leads not only to reduced theta oscillations but also
deficits in cognition.136,142 Specifically, pharmacologic
inactivation of the MSN using the anesthetic tetracaine sig-
nificantly attenuates hippocampal theta power and is corre-
lated with deficits in spatial tasks, such as the continuous
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spatial alteration task on the T-maze,137,143 the radial arm
maze,135 and the Morris water maze.136 Recent work has
demonstrated that theta oscillations are also critical for cog-
nitive processes in humans.144–147 For example, just as rats
exhibit an increase in theta oscillations during spatial
mazes, patients with implanted recording electrodes demon-
strate increased hippocampal theta activity during virtual
navigation tasks and episodic recall.148,149 Similarly, hip-
pocampal and parahippocampal theta oscillations are
increased during goal-seeking navigation in a virtual ver-
sion of the Morris water maze.150 Notably, in a separate vir-
tual reality task, patients continued to oscillate in theta
frequency as they were teleported between known locations,
receiving no visual information related to movement.146

These data suggest that oscillations can be related to spatial
processing in the absence of actual visual input or move-
ment. In sum, there is clear evidence of a relationship
between slow wave theta oscillations and cognitive pro-
cesses not only in the rodent but also in humans.

The same circuit that is critical for the presence of theta
oscillations and intact cognition is compromised in animals
with epilepsy. Significant degeneration of septohippocam-
pal neurons, specifically c-aminobutyric acid (GABA)ergic
interneurons, is evident both acutely following status
epilepticus and chronically in animals treated with chemical
convulsants such as pilocarpine.151,152 Our lab has repli-
cated key findings151,153–156 that chronic EEG recordings
from pilocarpine-treated epileptic rats implanted with depth
electrodes in the hippocampus reveal a significant reduction
in the power of hippocampal theta oscillations

approximately 6 weeks following pilocarpine exposure
(Fig. 2). Furthermore, there is evidence that the phase rela-
tionship between neurons of the septum and the hippocampal
theta rhythm becomes uncoupled.151,157–159 It is notable that
altered oscillations coincide with impaired performance in
spatial memory tasks, both acutely following induction of sta-
tus epilepticus and at the chronic stage of epilepsy.155,156,160–
162 These results suggest that the theta oscillations critical for
learning and memory are disrupted in epilepsy.

Antiepilepsy characteristics of theta oscillations
Previous studies have demonstrated the relationship

between the presence of theta oscillations and reduced
hyperexcitability in the septohippocampal circuit.134,153

Injection of carbachol, a cholinergic agonist, induced theta
oscillations and reduced both seizures and interictal spikes
in rats exhibiting acute PTZ-induced seizures and chroni-
cally epileptic rats treated with pilocarpine.134,153 In addi-
tion, in the PTZ model, stimulation of the MSN reduced
ictal activity, whereas lesions to the same region increased
seizure likelihood.134 Epileptic spikes were also decreased
as a result of physically (via rodent tail pinch) and electri-
cally evoked theta oscillations.153

Stimulation of theMSN to reduce seizures and improve
cognition

Because altered theta oscillations are apparent within the
hippocampus of epileptic animals, we hypothesized that
restoring oscillations via theta frequency stimulation
(7.7 Hz) of the MSN could both be antiepileptic and

Figure 2.

Power analyses of experimental groups consisting of surgical controls labeled “Sham” (n = 5) and pilocarpine-induced epileptic animals

labeled “Epileptic” (n = 7). All animals were implanted with tungsten electrodes in the MSN (stimulating) and the ventral hippocampus

(recording). One week later, status epilepticus was induced via pilocarpine injection (350 mg/kg) 30 minutes following injection of scopo-

lamine methyl nitrate (1 mg/kg). Convulsive seizures were terminated after 4 hours with injection of diazepam (8 mg/kg). All animals

exhibited spontaneous recurring seizures in the weeks following pilocarpine injection. On day 45 following pilocarpine injection, baseline

estimates of power were computed across a 5-minute behavioral test with animals exploring 2 novel objects. A, The group-averaged

spectrogram for sham animals during specific 3-second epochs (1 second before and 2 seconds after interaction with an object) demon-

strates increased power in the theta band relative to baseline. B, The group-averaged spectrogram for epileptic animals during compara-

ble 3-second exploratory epochs did not demonstrate similar power in the theta band as compared to sham. C, Power spectral density

plots are shown for both sham and epileptic animals. There was a significant difference in theta power as compared to baseline between

sham and epileptic rats (t(10) = 2.89, P < 0.05).
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improve cognition. Our hypothesis stemmed from 2 lines of
preclinical studies: those demonstrating the ability to specif-
ically drive hippocampal theta oscillations163–167 and sepa-
rate experiments focused on septal stimulation in animals
with attenuated theta (either via chemical lesion or brain
injury).134,136,168,169 For example, Gray and Ball demon-
strated that 7.7 Hz stimulation of the MSN represents the
lowest threshold for driving hippocampal theta oscilla-
tions.164 In addition, McNaughton and colleagues were able
to evoke hippocampal theta oscillations and improve spatial
learning via theta frequency stimulation of the fornix in rats
with tetracaine-induced lesions to the MSN.136 We have
also previously demonstrated improved learning and mem-
ory as a result of 7.7 Hz MSN stimulation in the fluid per-
cussion model of traumatic brain injury (TBI), although we
did not show evidence of hippocampal oscillations during
septal stimulation.168,169 Theta frequency stimulation of the
MSN in rats acutely following pilocarpine treatment, prior
to the development of epilepsy, improved Barnes maze spa-
tial navigation as compared to nonstimulated rats.156 In a
separate study, rats exhibiting spontaneously recurring sei-
zures in the weeks following pilocarpine-induced status
epilepticus were similarly tested on the Barnes maze spatial
navigation task. To quantify seizure threshold, convulsive
seizures were induced by exposure to flurothyl (bis(2,2,2-
trifluroethyl) ether, a volatile GABAA antagonist. Critically,
theta frequency stimulation of the MSN improved perfor-
mance on the Barnes maze and concurrently increased sei-
zure threshold during the flurothyl assay (Izadi, In Review).
In addition, a 2015 review of MSN stimulation for TLE simi-
larly supported septal neurostimulation for epilepsy, hypothe-
sizing that stimulation of this region can prove effective in
patients with refractory TLE.97 Based on all of the reported
data, we propose that the MSN represents a potential target,
and theta a specific frequency, with the potential to both
reduce seizures and improve cognitive outcome.

It is important to consider the variables associated with
translating potential therapeutic paradigms from bench-
to-bedside. For example, each of the 3 FDA-approved neu-
rostimulation devices resulted in some degree of plasticity,
as is suggested by improved seizure control over time. Criti-
cally, in patients with these devices, stimulation did not
enhance the epileptic pathology, for example, by increasing
lesion size or leading to enhanced seizures over time. Fur-
thermore, in each of the devices that have been translated,
the investigators have catalogued patients’ responses not
only in terms of seizures but also regarding common comor-
bidities such as cognition, mood disorders, and depression,
as well as sudden unexpected death. Although there is evi-
dence that stimulating theta oscillations can acutely pro-
mote cognition and reduce seizures, questions remain about
chronic theta stimulation across the multiple domains of
interest. It is critical to closely examine the risks and out-
come measures of any new stimulation paradigm, septal or

other, and to compare these with existing medical, surgical,
and neurostimulation therapies.

Conclusion

More than one-third of patients with epilepsy, particu-
larly focal epilepsies such as TLE, are refractory to pharma-
cologic treatment. Although resection remains the primary
option for curative treatment, many patients do not meet
surgical criteria, as they are multi-focal or have a seizure
focus in a part of the brain that cannot be resected. Clinically
approved stimulation paradigms such as VNS, RNS, and
DBS represent reversible surgical interventions with the
flexibility to treat many of the patients who do not meet
resection criteria. Neurostimulation is a safe, well-tolerated
treatment paradigm that progressively reduces seizures over
time. Although neurostimulation therapies are effective at
reducing seizures, they rarely eliminate them and should be
considered therapeutic but not curative. To date, there is no
stimulation target that can both reduce seizures and amelio-
rate epilepsy-related comorbidities such as cognitive dys-
function. In this review, we have proposed that modulating
theta oscillations via MSN stimulation has the potential to
reduce seizures, as well as to improve cognitive function.
Ultimately, continued research into the optimization of
potential neurostimulation paradigms will advance our abil-
ity to treat patients with refractory epilepsy by reducing sei-
zures, ameliorating comorbidities, and improving overall
quality of life.
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