UC Berkeley

Technical Completion Reports

Title
Optimal Determination of Stratified Groundwater Basin Characteristics

Permalink
https://escholarship.org/uc/item/97v8p6dy

Authors

Shephard, Ronald W
Todd, David K.

Publication Date
1970-07-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/97v8p6dv
https://escholarship.org
http://www.cdlib.org/

UCAL-WRC ~W264
G402
Xuz-17

10, A4 TECHNICAL  COMPLETYON REPORT
on

Project W 264

OPTIMAL DETERMINATION OF STRATIFIED GROUNDWATER
BASIN CHARACTERISTICS

WATER RESOUKUES CENTER
University of California

(Optimal Identification of Groundwater Regservoir Parameters
by Nonlinear Decomposition - John Labadie )

Submitted by

Ronald W, Shephard and David K. Todd
University of California

JULY 1970

WATER RESOURCES CENTER AR
CHIVES
e



. ~§
T. THE PROBLEM ///f

Tn order to predict future water level response to well pumpage in large

groundwater basins, aquifer characteristics must be known to a reasonable degree

of'accurgcy. Optimal pumping policies can then be developed on the basis of the

following criteria:

1. Meet all future water demand.

2, MWinimize pumping costs (which are directly related to depth of water level
or drawdown).

3. Guard against harmful “mining" of the groundwater resource, with land
gubsidence and irreversible loss of storage potential as inevitable

consaquences,

A partial differential equation has been derived which describes the unsteady

response of water level or head (if groundwater 18 under pressure) to well pumpage

(Davis and DeWiest [2]):

2 .
3 h 1 3h S dh
S it T T
ar
lim h{t,r) = lim hit,r) = ho
0 T

lim r(ih> = wgh

) 3t 4T

where

h{t,r) = water level or head (L)

]

t time (T)

r = radial distance from the pumping well (L)

Q(t) = pumping rate (L3/T}
§ = coefficient of storage {related to porosity)

e - 2
T « rransmissivity (related to permeability) {(1L.7/T)



4 good aguilfer must have relatively high wvalues of both 8§ and T . For

example, clay can have a higher porosity then sand, but is a poorer aquifer since

it allows very little seepage, Considerable water may be in storage, but it cannot

be pumped out.

The solution to Equation 1 is

(2) h(e,r) = h, - e au
' ? 0 47T u
2
Sr
4T

the dntegral can be expanded into a convergent series,

_Q_ u2 u3 u4
(3) hit,r) = hO pliyer ~.5772 = lnut u - 55T T 33T T TeAT

where drawdewn d(t,7) = ho = Wity and
2
_ fr
w ¢TI

There are essentlally two kinds of aquifers: unconfined and confined (where

water ilg under pressure):
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FIGURE l: TYPES OF AQUIFERS



For confined aquifers, transmissivity T is relatrively constant, whereas
T = Kh for unconfined agulfers. If the amount of drawdown is small, a reasonable

approximation for T would be
(8) T = Kh
where

K = the constant coefficient of permeability (L/T)

h = the average drawdown over a period of time (L) .
The important assumptions associated with equations 2 and 3 include (Todd [8]):

1. The aguifer is of iInfinite extent,
2. The aquifer is homogeneous and isotropic.
3. The well ccmpletely penetrates the aquifer.

4, Water is removed instaneously from storage.

The usual method of determining or "identifying" aquifer parameters 5 and
T 4is to perform a "pumping test." A& constant flow of water is discharged during
a short period of time, and the change in water level at a nearby observation well
noted continuously or at discrete intervals. The parameters in Equation 3 are then
varied until the closest possible fit is obtained between the computad head
h(t,r) (where r is the radial distance from the pumping well to the observation
well) and the actual observed drop in head hit,r) .

The standard pumping test will generally achileve ; much smaller drawdown than
that observed during actual operation of the well., In many cases, the result is an
inadequate representation of parameter values. The difficulty in using historical
records compiled during actual operation of a well can be seen in Figure 2. Large
drawdown will result in considerable interraction between adjacent pumping wells.

The resulting water table is obtained by superposition of the uninfluanced ''cones of

depression' for each well.
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When a large number of wells (say N) are involved, the overall identification

problem can become unwieldy. Using the standard least-square ceriterion for closest

fit, the problem 1s posed as follows (assuming M + 1 discrete observations):

N M N 2
(6) minimize E = min d.{t, ,r..01 ~ a.(t, ,r,,
- Tl,IS 121 k-z—-O Lél (e = St rll)]
1
NN A A A
.. where d; H‘k\"“) = ho_ hi (TK\YH\
TN’SN

where riJ 1g the distance from well 1 to well 3 and ¥, is the radius of

well 1 .
The parameters Ti and Si now take on a slightly different interpretation.

Assumption 2 stated that the aquifex must be homogeneous and isotropic. This

assumption 1s obviously violated since there is little chance that all of the
oblem of Equation 6 will turn out to be

parameters computed from the minimization pr



the same for a realistic problem. With violation of assumption 2 , Ti and Si
lose some of their physical significance and are interpreted more as 'black box"
parameters whose primary function is the prediction of output (water level raesponse)
from input or excitation (well pumpage). On the other hand, the result is an
increase in realism since groundwater basins are generally nonhomogeneous and
nonisotropic.

" The parameters Ti and Si are now interpreted as those values found from
observations on well i which are uninfluenced by adjacent pumping. The fact that

the actual observations ﬁi(tk;r Yy ,di=1, ..., ¥, k=0, ..., M, are indeed

ii
influenced by adjacent pumping gives rise to the complication and high dimensionality
of this minimization problem,

If N dis very large, an algorithm for solving Equation 6 should take advantage
of the fact that a particular well will only be directly influenced by the few wells
surrounding it. As shown in Figure 3, historical records can verify that, with a

high probability, beyond a certain range the uninfluenced cones of depression of

adjacent wells will never reach well i .

maximum area of
RS < inFluence for
well

FIGURE 3: LARGE GROUNDWATER BASIN



Haimes, et. al. [10], have used a decomposition approach to identifying
aquifer parametersby comsidering that a hypothetical "no-flow' line can be
mathematically comstructed between wells. Each well is then contained in a
wedge, within which aquifer characteristics are assumed to be homogeneous. The
parameters, as well as the positions of the 'mo-flow'" lines, are optimally
determined from well records.

A groundwater basin can be considered as a discrete distributed parameter
system, where wells are analogous to spacially distributed nodes. Nenuniqueness of
parametric estimation is always a possibility when attempts are made to surmise
continuous properties from spacially discrete data. The approach presented here
makes no such attempt. In the following sections, a promising decomposition
algorithm for large nonlinear problems, developed mainly by Lasdon [6], is
discussed and applied to an example problem,

As mentioned previously, the parameter T for unconfined aquifers is actually
a variable, which renders impossible an explicit solutlon of Equation L. Future
reports will deal with this problem, but at present, the emphasis is on confined
aguifers. In addition therg will Be consideration of stratified groundwater basins

where parameters vary with depth as well as spacially.



IT. SEPARABILITY OF LARGE PROBLEMS

The essential idea behind nonlinear decomposition is to write a Lagrangian
for the large nonlinear programming problem and then decompose the, Lagrangian into
smaller problems which can be solved Independently. It is essential that the
objective function and constraints are additively separable. It will be subsequently
shown, however, that this requirement presents no real difficulty if some non-
separable compling does occur in the objective function and/or constraints,

Conslder the following large nonlinear problem.

{1 . Minimize F(x)
(2) . ‘Subject to gi(x) <0 i=1, (v, m

(3) X e § sC R,
The Lagrangian can be defined as

4y . L{x,u) = £(x) + ug(x)

whexre

u = (ul, ceey um)

g(x) = (2,00, vy g )

Suppose that the above problem is to be decomposed into p subproblems,

where p < n, Separability requires that
D
(5) £(x) = ) £ (x)
- d=l1 -
P

where



X = (Xl’x2’ iy xp)

xi € Si

S = ves
Sl pe S2 b'd X SP

The Lagrangian can now be separated into p independent subproblems

. it
(7) ’ min {fk(xk) + z uigik<xk)} ’ k=1, ..., p
X, €5 i=1
k™ k
If Wy i=1, .., m, can be found such that Equation 2 is satisfied, then the

orlginal problem has-been solved (Equations 1-3).

Suppose that the objective function £(x)} 1is not completely scparable, or
that some variables must be shared between subproblems. It will now be shown that
complete separability can be attained at the expense of an increase in dimensionality
of the subproblems, This procedure can also be applied to problems with nonseparable
constraints. However, for the purposes of illustration, the constraints are assumed
to be properly separable and so will be temporarily ignored (without loss of
generality). |

Examination of f(x) indicates that the vector x can be partitioned into

two wvectors

(8) | “[y;z]

where
n"
y 1s in R * and each component is associated with only cne subproblem.
2
z is in R and each component Is associated with two or more subproblems.
{9) n, +n, =n .

The vector =z is the troublesome coupling wvector. If n, = 0, then f{x) is

completely separable,



Define the following:

p = the total numnber of subproblems.

c = ]Ecij‘l is a p x p matrix of 0's and 1's which specifies the
coupling Letween subproblems 1 and j ; with Ciy ™ 0O ,1i1=1, ..., p
P
8, = ) C 42, are the vectors directed to subproblem 1 from other
=1
it]
n
subproblems ;(si eT, , TGR , T= Ty % e X Tp) .

fi(yi,zi,si) = the objective function associated with subproblem 1 .
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FIGURE 4: COUPLED SUBPROBLEM

The original problem 1s still intact, since coupling has not been broken.
Decomposition is carried out by designating the vectors S, i=1, ..., D , as
pseudo~variables which are independent of the vectors incoming from other sub-

problems (Baumann [1] and Wismer [S]).
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FIGURE 5: UNCOUPLED SUBPROBLEM

The following new problem is now defined:

b
{10) min 'Z fi<yi’zi’si)
¥,2,5 1=1
subject to
(11 E c, 42, =8, =0 L=1, ..., p
421 1373 i
And,
B P
(12) min E fi(yi,zi,si) ) min fi(yi,zi,si) .
y,2,5 1=l i=1 yi,zi,si

The addition of Equation 11 establishes the equivalence between this problam

and the original coupled problem, Define



‘ P P

{13) L = igl fi(yi’zi’si> + iz
where AE s =1, ..., p, are Lagrange multipliers of the same dimension as
s, ,1=1, ..., p .

For fixed values of Ai » L is to be minimized. If there exist
A, s =1, ..., p , such that Eguation 1l is satisfied, then the original problem
is solved (such Az may not exist, however).

The problem'at hand is to decompose Equation 13 into p separate subproblems

{Lasdon and Scheoeffler [7])

p > P o]
(L4) 21 Ai[jﬁ ey %y ~ siJ = E ‘l Aleg 2,0 - z A8

(15) ? E [ 1 § g {
15 AMle,,z2.] = A, le, .2
a1 jm1 ORI gly gl PR LG

L
]
~rd
P

Switching 1 and j din Equation 15 gives

Define
(16) Y, = E. Ae,,
i jo1 3731
The Lagrangian i1s
4
(17) L = iél {fi + Y%y T Aisi}



(18) Li=fi+yizi-—)\isi i=1, ..., p .

Separabillity has been attained through addition of pseudo-variables
§,,1=1, ..., p . The constraints (Equation 2) can now be incorporated into

the following new problem,

m
1 { = 'l 8 - = 1
{19) min Lk min fk(xk,sk) + Y2k Aksk + .Z uigik(xk) k=1, ..., p
X, ES i=1
k™ "k
ske’l‘k
7
where X = =1 - For the more general case where nonseparable coupling occurs
I

in rhe constraints also, the same procedure of adding appropriate pseudo-variables
applies,

Figure 6 illustrates a two-level scheme for adjusting Ai and u, o, =1, ..., m,
until the coupling constraints ' (Egquation 11) and problem constraints (Equation 2)
are eventually satisfied. The 2nd level controller passes down initial guasses
A(O) . u(o) to the subproblems. The subproblems (Equation 19) are then solved
and the results passed back to the 2nd level. The error across the cuts and the
values of g(x} are computed and a new set of prices generated such that the

coupling error is reduced and g(x) moves closer to being nonpositive. This

process continues until all constralnts are satisfied.

Decomposition Principle:

£ %
If those A and u are founé such that each subproblem attains a global

optimum and all problem constralnts and coupling constraints are satisfied, then
a global optimum has been found for the overall problem. (Note: if one or more

of the subproblems attain only local optima, then the overall optimum is also locall)
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FIGURE 6: DECOMPOSITION

If the number of Lagrange multipliers becomes excessive for large problems,
a hierarchy of control can be developed. Each controller can then be concerned

with adjusting a limited number of multipliers.
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FIGURE 7: MULTI-LEVEL DECOMPOSITION



In the feollowing section conditions are specified which guarantee convergence
* ® 1
of the second-level controller to A and u . As pointed out by Everett [3],
however, it is usually valuable to attempt this method even though these conditions

cannot be properly met., In many cases, upper and lower bounds on the overall

solution can be determined, if not the sclution itself.



III. CONVERGENCE QF THE 2ND LEVEL PROBLEM

In order to simplify the following treatment, consider the following

primal problem (note: min or max will always be assumed to exist):

(1 Minimize f£(x)

(2> Subject to gi(x) <0 ,1i=1, ..., m
(3 X € S s« rM .

It 1s easy to show that the following results are equally valld 1f equalicy
constraints are added to the primal problem,

Define the dual function as

(4) hiu) = min L(x,u}
%xe8 :

where
{3) L{x,u) = £(x) + ug(x)

u = (ul’ sy Um)

ueDd

D = {u L u> 0, min L(x,u) exists
xe8

g(x) = (8,0, -ovs g G0)

Theorem 1:

h{u) < £(x) for all x satisfying Equations 2 and 3, for all ueD .



Proof:

hiu) = min (£{x) + ug(x))
xeSs
< £(x) + ug(x) xelS,uebd,

For all x € S satisfying g(x) =0,

(6) hiw < £(x) . ||

L

A duality gap exists if h(u) < £(x) . Therefore,

min max L(x,u) = max min L{x,u}
xeS u>d u>0 xe8

if and only if there exists a saddle point (Lasdon [6] and Karlin [5]).
Theorem 2:(Lasdon [6})
The dual functien h{u) 1is concave over any convex subset of 1ts domain D ,

Proof:

Let D be a convex subset of D and let u; o, U, ® D, ace [0,1) . Then

h{au, + (1 -~ o)u,) = min L(x,au, + (1 - a)u.)
1 2 XES 1 2

L(x,ou

1 ¥ (1 - a)uz) = £(0) + (ouy + (1 - adudegle)

= of(x) + aulg(x) + (1 - a)E(x) + (L~ ayg(x)

therefore,



h(oml + (1 - a)uz) = 1::;: [uL(x,ul) + {1 - u)L(x,uz)]

> o min L(x,u.) + (1L - &) min L(x,u,)
- 1 2
xeS XeS

= ah(ul) + (1 =~ a)h(uz) e

i

Having established the concavity of the dual function {even rhough £ and g

may be nonconvex), it is clear that maximization of h(u) over D will yield a
global answer, Equation 6 says that this answer will be at least a lower bound

for f(x) . It remains to specify the conditiocns under which a saddle polnt is

assumed to exist,

pefine the nonincreasing fuaction w(y) as

(7} wiy) = min {f(x) { g(x) <y , x & S},
The domain of w(y) 1s

(8) F={y|3xesSsgx <y}
Theorem 3:

1f £, g, and § are convex, then w(y) is convex over F .

*
Proof: ({+} refers to the global optimum)

Define
) wiyD) = min (£G0 | 800 <y}
xes
where x* = xl s yl e F
2 , 2
(10) wiy™) = min {(£(x) | g(x) <y}

#£8



* 2 2
where x = x" , y" ¢ F . ¥or any ace [0,1] ,

(1) W(dyl + (1~ G)Y2> = min {£(x) | g(x) 5_ayl + (1 - a)yz}
xe§

glox™ + (1 = )x2) < ag(x’) + (1 = a)g(x2)
(12) . ,
<ay” 4 (1~ a)y

then uxl + (L - ou)x2 satisfiles the constraints in Equation 11. Hence
- 1 2
(13) Flx) < £ox™ 4+ (1 =~ a)x)

(14) Elaxd + (1 - a)xD) < af(xY) + (1 — a)£(xd)

therefore,

2 1 2
(15) _ w(uyl A=y < oaw(yT) * (1 - wwlyTy .|
Consider the get of peoints R in Rm+l on and above the graph of w{y)
(16) R={y o») | ve Ry 2 win?

Theorem 4: (Lasdon [6])

1 x° solves the primal problem, then there exist u° > 0 such that
minimizes L(x,uo) over S5 if and only if the set R (Equation 10) has a

supporting hyperplane at point (f(xo),g(xo))

X

o
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Figure 6 1llustrates Theorem 4 for the case where w(y) is strictly convex.
The primal problem 1ls to minimize the Yo intercept of the points in R , while
the dual problem is to maximize the Yo intercent of the supporting hyperplanes
for R . The Lagrange multipliers u are the slones of the hyperplanes, and
are always nonnegative since w{y) 1s nonincreasing.

The dual problem corresponds teo the problem of the second-level contyoller.
Concavity of the dual function assures that the second-level controller will
converge to a global answer. Convexity of w{y) guarantees that this answer is
a saddle point. Some nonconvex problems can be solved through use of the dual
function as long as a saddle point exists (d.e., a supporting hyperplane for R
exists at the optimal primal solution). Otherwise, a duality gap exists, which
corresponds to the inability of the secoﬁdw$evel controller to equalize flows

across all the "cuts" In the large problem.



Since the dual function is to be maximized with respect to multipliers u
conditions under which the gradient exists must be specified.
Theorem 5: {(Lasdon [6])

T¢ (1) S is closed and bounded and (ii) f£(x) and g{x) arg continuous
-

on $ , then the dual function n(v) is differentiable at point L if and only

if each gi(x) is constant over x(u) , where

(17) X(W) = {x | x minimizes L{x,u) over S}

In this case-

gh = -
(18) _ u, gi(x) v x ¢ X{(u)
u=a
The gradient of h with respect to uy is simply gi(x) ., Continuocus

st . .
1 partial derivatives are not required. Under the given assumptions, any number
of algorithms utilizing this gradient will converge to the optimal dual solution

and hence, 1f a saddle point exists, the optimal primal solution,

An Alternative 2nd-level Controller

An alternative Znd-level controller to the previous one proposed by Lasdon [6]
offers considerable reduction in dimensionality of the individual subproblems.
The basic difference is that the pseudo=~variables & utitized for uncoupling
subproblems arve treated as parameters rather than variables. Equation ILI-19

from the previcus section is written as

m

-I 1 =2 . \ -—

(19) min Lk nin fk(xk’sk> + Vi + .Z uigik(xk) k=1, «vu, D
xkssk i=1

y .
where =[—£§~] . Note that the 3rd term in Equation 1I-19 has been canceled
I



since both Ak and s, ~are parameters. In addition to the assumptions listed
: 1

in Theorem 5, this algorithm requires that £ belong to class C° . If

pseudo-varlables are also required to uncounle the constraints g , then g must

alsoc possess continuous lst partial derivatives. Assume for now that g is

separable,

Procedure:

©) (0, .,
? i L]

bl

1. The 2nd level controller sends initial guesses séo),h

k
L =1, «v., m , to the subproblems. Set £ = 1.
% oSk l
2, Each subproblem computes % using Egquation 19 and ) using
A PooLF
k%
Equation II-19 from the previous sectien (k= 1, ..., p) where
(20) ask ) Bsk ask ‘ ask
) T s ey T
SO PSRN g ()
1 2 T
and
-1
38 oL ol
ke k ~k
(21) = * i 1, ey P
0 S PN
X 1

3, The second-level utilizes any efficient algorithm for maximizing the
Lagrangian functicn = preferably in the direction of the gradient.
specified by Theorem 5. Appropriate changes in the multipliers,

) * *
A and Au

i y k=1, ..., p ,i=1, ..., m , result.
(a+1) (2 * N
Ak —-Ak + Akk k=1, ..., 79

WD @)

H



5.(52,+l)

\ %
X Ah e

= séﬂ) + B

(22) ' "k

4, Is the Lagrangian maximized with respect to uw and A 7
Yes: Stop.
Ne: Continue.

3, 4 a4+

Go to 2,

It is conceivable that with careful selection of step sizes 6
this algorithm can maximize the dual as rapidly as Lasden's method, and yet
require much less computation at the lst level (subproblem level) due to decreased
dimensionality. Since, however, the changes in pseudo-variables s, are linear
approximations to the actual changes vhich would occur if 8, were treated as

b i .
subproblem variables, Axk must be small enough to avoid large inaccuracies.



IV, APPLICATION TO THE GROUNDWATER PROBLEM

Consider a system of four wells, as shown in Figure 9,
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FIGURE 9: 4~WELL SYSTEM

The circle surrounding well 4 depicts the expected maximum extent of the

cone of depression for well 4 , 4 =1, ..., 4 . Notice that well 2 is affecred
by well 1, but not vige versa. Also, well 2 affects wells 3 and 4.
For purposes of illustration, assume that parameters Ti s L= 1, L., 4,

are accurately known, The primal problem is

&4 M1 o4 2
(1) min E = min .; 1; _Z &ﬂj(tk,rij)} - ai(tk,rii)
Sl""’84 i=1 k=0 j=1
Decomposition is accomplished by introducing pseudo-variables o, , i =1, .

where



1 1
{(2) ‘ 82 -0, = 0
82 - 03 = {

From Egquation II-18 in Section II, the subLagranglans are

M 2
(3 Ly (8320 = kZO I:dl(tk’rll;sl> - dl(tk’rll)} + A8
N . 2
k=0 L
(@)
+ (>\2 + )\3)82 - J\lcl
. y A )
L3(8350550) = 1 [d-z(tk’r:sz”’z) +dytyorayi8y) - ‘53(%'*33}]
k=0
(5)
" A%
M 2
L, (3,,0550) = ) [a. (£ o7 0309) +d, (87,380 = &,(x,, 44]
k=0
(6)
- A363 .

The original 4~dimensilonal problem has been decomposed into three 2-dimensional
problems and one l-~dimensional problem, plus a 3-dimensional concave dual prcblem,
Lasdon's gradient controller was utilized for the 2nd level or dual problem

of adjusting A =1, ..., 3 s0 as to maximize L with respect to A or

i. »

minimize the total error across the cuts,
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FIGURE 10: DECOMPOSED GROUNDWATER PROBLEM

(n+1) = . (w Ao
(7 A =+ el[sl “1]
(ntl) _ . (n) oK
(8} A = Ay 0+ 0, [32 UZJ
’ (2 _ () x K]
€D Mg = Ayt 93[52 o

where ei >0 ,4d=1, ..., 3

The éubproblem minimizations (Equations 3 to 6) were carried out by a 2nd-

crder gradient search procesdure.’
Hypothetical field data for the system of wells of Figure 9 are given in

Tables 1 and 2, Initlal guesses for parameters

0 .
Sg ) are given, as well as the

)

"o ~
known values for parameters Ti . Drawdowm observations (ho - h) are used

instead of water head h .

"subroutine HO CAL WMIN, Computer Center Library, University of California, Berkaley.



Computation results are illustrated in Figures 10 and 11, Figure 10
depicts the maximlzation of the dual or 2nd-level problem, Convergence I1s not
momotonic until after the 3rd itexation, due to rather large step sizes initially.
Figure 11 indicates that a saddle point was found since the total absolute

error across the cuts

|el 3 |S=‘c 7‘:1 + IS* >'<1 + !Sk :'-rl
=8y ol F S, T ol Ty T 0y
converged to zero,
The initial set of multipliers were set equal to zero - lio) =0 , 4 =1, ...,

The £inal optimal values were

¥ 4

Al = 7.368 = 10

* 3
hy = 1.0028 x 10

® 3

XS = 1,0028 x 107 ,

*
Tghle 3 lists the optimal parameter solutions S.j , =1, +.., & , and final

drawdown values. The final squared-error between computed and observed drawdown was

* 2
£ = 8.5106 £t



TABLE 1

GROUNDWATER BASIN DATA

WELL
i=1 [i=2 | i=3]1=4%
hol{ft) 1600 1000 1000 | 1000
b(ft) 50 50 50 50
r,, (£t) 1 1 1 L
Qi(gal/min) 1000 600 450 350
sio) 00042 1 ,00048 | .0072 | .0072
Ti(ﬁi%§§1) 9250 | 6500 | 4850 | 4025
TABLE 2
DRAWDOWN OBSERVATIONS (h - R (fr.)
Time WELL
{days) i o= 1 i =2 i =3 i= 4
30 236 194 1 145 150
45 241 203 152 157 |
- 60 245 210 157 162
90 250 219 164 170
180 258 234 177 183
360 267 250 191 197
720 275 266 206 211
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FIGURE 10: MAXIMIZATION OF THE 2ND LEVEL PROBLEM
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FIGURE 11: MINIMIZATION OF TOTAL CUT EREOR



TABLE 3

OPTIMAL SQLUTIONS

Time WELL

(days) i=1 1i=21i=3]41=4
30 235.9 | 194.1 | 145.9 | 150.5
45 240.9 | 203.1 | 152.3 | 157.6
60 264.4 | 209.5 | 157.3 | 162.8
50 249.5 | 218.7 | 164.6 | 170.4
180 258.1 | 234.5 | 178.0 | 184.0
360 266.6 | 250.3 | 192.0 | 197.8
720 275.2 | 266.2 | 206.3 | 211.9
: 000445 | .00718 | 064 | 020




V. DISCUSSION

A generalized decomposition approach to the solution of large nonlinear
programming problems hag been presented and applied to the optimal ddentification
problem in groundwater hydrolegy. In addition, a new 2nd level algorithm has
been proposed which offers further reduction of dimensionality in a decomposition
Iramework,

Computational experience has revealed the following:

1. After the first iteratrion of the second-level controllier, subproblem
solutions converge more rapidly. Solutions from previous iteracions are
uttlized as accurate injftial approximations for first level solutions
in succeeding iteraricns.

Z., TFor intermediate fterations of the second level, it seems unnecessary
that subproblem solutions converge to highly accurate values. Toral
computation time can be slgnificantly lessened by allowing subproblem
solutions to fall within some ¢ neighborhood of the true optimum,

Then as the second level problem beging to converge, let e = 0 . Thig
ldea raises some interesting questions of stabllity and trade off berween

decreased subproblem computational times and increased inaccuracies,



REFRRENCES

Baumann, Edward James, "Multilevel Cptimization Technigues with Application
to Trajectory Decomposirion,' Ph.D. Dissertation, Department of
Engineering, University of California, Los Angeles, {1965).

Davis, 8., N, and R. J. M. DaWiest, HYDROCEOLOSY, John Wiley and Sons, Inc.,
New York, (1966).

Everett, M., "Generalized Lagrange Multiplier Method for Solving Problems of
Optimum Allocation of Resources," Operations Research, Vol. 11,
pp. 399-417, (1963).

Geoffrion, A, M., "Elements of Large~Scale Mathematical Programming,"
Report #R-481-PR, RAND Corporation, Santa Menica, California, (November
1969) .

Karlin, S., MATHEMATICAL METHODS AND THEORY IN GAMES, PROGRAMMING AND
ECONOMICS, Vol. 1, Addison-Wesley, Reading, Massachusetts, (1959).

Lasdon, L, $., "Duality and Decomposition in Mathematical Programming,"
IEEE Transactions on Systems Science and Cybernetics, Vol. S$5C-4,
No, 2, pp. 86-100, (July 1968).

Lasdon, L, 8. and J. D. Schoeffler, "Decentralized Plant Control,"

I1SA Tramsactions, Vol. 5, pp. 175-183, (april 1966).

Todd, D, K., GROUND WATER HYDROLOGY, John Wiley and Sons, Inc., New York, {1058),

Wismer, D. A, (Ed,), OPTIMIZATION METHODS FOR LARGE-SCALE SYSTEMS, forthcoming.

{10} Haimes, Y. Y., R. L. Perrine and D. A. Wismer, "Identificatdon of Aquifex

Parameters by Decomposition and Multilevel Cptimization,' Presented at
the British-Israeli Colloquium on QOperational Research, Haliifa, Israc’,
{December 1967),





