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I. THE PROBLEM

In order to predict future water level response to well pump age in large

ground,vater basins, aquifer characteristics must be known to a reasonable degree
"of accuracy. Optimal pwnping policies can then be developed on the basis of the

following criteria:

1. Meet all future water demand.
2. Minimize pumping costs (vmich are directly related to depth of water level

or drawdown) .
3. Guard against harmful "mining" of the groundwater resource, with land

subsidence and irreversible loss of storage potential as inevitable

consequences.

A partial differential equation has been derived which describes the unsteady

response of wat er level or head (if groundwater is under pressure) to we Ll, pUlnpage

(Davis and DeWiest [2]):

(1)
a2h 1 ah C S 3h--+--= T at3r2 r ar

lim h(t,r) lim h(t,r) hO
t"rO r-+oo

lim r(~~)
.-L

r+O 41[T

where

h(t,r) = water level or head (L)

t time (T)
r = radial distance from the pumping well (L)

Q(t) = pumping rate (L3/T)
S coefficient of storage (related to porosity)

T transmissi vity (related to permeabili t y) (L
2
/T)



A good aquifer must have relatively high values of both Sand T. For

example) clay can have a higher porosity then sand) but is a poorer aquifer since

be pumped out.

it allows very little seepage. Considerable water may be in storage, but it cannot

The solution to Equation 1 is

() fhO -W
2Sr

4Tt

(2) h(t,r)
-u

_e_ du
u

the integral can be expanded into a convergent series.

(3) h(t,r) '"hO - ~[-.5772 - lnu+ u - 2~~! + 3~~1 - 4~~! •. .J

where d ~a.w cloWYl

(4)

water is under pressure) :

There are essentially two kinds of aquifers: unconfined and confined (where

T
ho

FIGURE 1: TYPES OF AQUIFERS



For confined aquifers, transmissivity T is relatively constant, whereas

T = Kh for unconfined aquifers. If the amount of drawdown is small, a reasonable

approximation for T would be

(5) T '"Kh

where

K '"the constant coefficient of permeability (L/T)

h '"the average drawdown over a period of time (L)

The important assumptions associated with equations 2 and 3 include (Todd [8]):

1. The aquifer is of infinite extent.

2. The aquifer is homogeneous and isotropic.

3. The well completely penetrates the aquifer.

4. Water is removed instaneously from storage.

The usual method of determining or i1identifying" aquifer parameters Sand

T is to perform a "pumpLng test. II A constant flow of water is discharged during

a short period of time, and the change in water level at a nearby observation well

noted continuously or at discrete intervals. The parameters in Equation 3 are then

varied until the closest possible fit is obtained between the computed head

h(t,r) (where r is the radial distance from the pumping well to the observa.tion

well) and the actual observed drop in head h(t,r)

The standard pt~ping test will generally achieve a much smaller drawdown than

that observed during actual operation of the well. In many cases, the result is an

inadequate representation of parameter values. The difficulty in using historical

records compiled during actual operation of a Hell can be seen in Figure 2. Large

drawdown will result in considerable interraction between adjacent pumping we Lls ,

The resulting Hater table is obtained by superposition of the un:i.nfluenced"cones o f

depression" for each well.
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FIGURE 2: INTERRACTION BETWEEN TWO PUMPING WELLS

When a large number of wells (say N) are involved) the overall identification

problem can become unwieldy. Using the standard least-square criterion for closest

fit) the problem is posed as follows (assuming M + 1 discrete observations):

(6)
N

minimize E ~ min I
T
l
)81 i=l

d . (t, ,r. .)l2
~ ic a i, 'J

I\.

ho - hi CtK ,Yi'l ')

where rij

well i.

is the distance from well i to vJell j and is the radius of

Assumption 2 stated that the aquifer must be homogeneous and isotropic. This
The parameters T1

and 8
1

now take on a slightly different interpretation.

assumption is obviouslY violated since there is little chance that all of the

parameters computed from the minimization problem of Equation 6 will turn out to be



the same for a realistic problem. With violation of assumption 2 , T.~ and s.~
lose some of their physical significance and are interpreted more as "black box"

parameters whose primary function is the prediction of output (water level response)

from input or excitation (well pumpage). On the other hand, the result is an

nonisotropic.

increase in realism since ground~yater basins are generally nonhomogeneous and

The parameters Ti and s.~ are now interpreted as those values found from

observations on well i which are uninfluenced by adjacent pumping. The fact that

the actual observations hi(tk;rii) , i ~ 1, "', N , k = 0, ,.., M , are indeed

influenced by adjacent pumping gives rise to the complication and high dimensionality

of this minimization problem.

If N is very large, an algorithm for solving Equation 6 should take advantage

of the fact that a particular well will only be directly influenced by the few Hells

surrounding it. As shown in Figure 3, historical records can verify that, Hith a

high probability, beyond a certain range the uninfluenced cones of depression of

adjacent wells will never reach well i.

o

FIGURE 3: LARGE GROUNDWATER BASIN



Haimes~ et. aZ. [10] ~ have used a decomposition approach to identifying

aquifer parametersby considering that a hypothetical "no+fLow " line can be

mathematically constructed be tween "ells. Each well is then contained in a

Hedge, Hithin which aquifer characteristics are assumed to be homogeneous. The

parameters, as well as the positions of the "no-flow" lines, are optimally

determined from well records.

A groundwater basin can be considered as a discrete distributed parameter

system, where wells are analogous to spacially distributed nodes. Nonuniqueness of

parametric estimation is always a possibility when attempts are made to surmise

continuous properties from spacial1y discrete data. The approach presented here

makes no such attempt. In the following sections, a promising decomposition

algorithm for large nonlinear problems, developed mainly by Lasdon [6], is

discussed and applied to an example problem.

As mentioned previously, the parameter T for unconfined aquifers is actually

a variable, which renders impossible an explicit solution of Equation 1. Future

reports will deal with this problem, but at present, the emphasis is on confined

aquifers. In addition there will be consideration of stratified groundwater basins

where parameters vary with depth as well as spacially.



II. SEPARABILITY OF LARGE PROBLEMS

The essential idea behind nonlinear decomposition is to write a Lagrangian

for the large nonlinear programming problem and then decompose the.Lagrangian into

smaller problems which can be solved independently. It is essential that the

objective function and constraints are additively separable. It will be subsequently

shown, however, that this requirement presents no real difficulty if some non-

separable compling does occur in the objective function and/or constraints.

Consider the following large nonlinear problem.

(1)

(2)

Minimize f (x )

Subject to g. (x) < 0~ i == 1, "') m

(3) X £ S

The Lagrangian can be defined as

(4) L(x,u) c f(x) + ug(x)

where

Tg (x) '" (gl(x) , ••• , gm (x) .

Suppose that the above problem is to be decomposed into p subproblems,

where p < n. Separability requires that

(5)
P

£(x) I £i (xi)
i=l

p
gi (x) I g. ~ (Xl)

k=L ~K K(6)

whe r e



., .. "

The Lagrangian can now be separated into p independent subproblems

(7) k 1) ••. ) P .

*If u. ) i ~ 1) "') m , can be found such that Equation 2 is satisfied) then the~

original problem has been solved (Equations 1-3).
Suppose that the objective function f(x) is not completely separable, or

that some variables must be shared between subproblems. It will now be shown that

complete separability can be attained at the expense of an increase in dimensionality

of the subproblems. This procedure can also be applied to problems ~o/ithnonseparable

constraints. However) for the purposes of illustration) the constraints are assumed

to be properly separable and so will be temporarily ignored (without loss of

generali ty) •

Examination of f(x) indicates that the vector x can be partitioned into

two vectors

( 8)

where

n,
y is in R .•.. and each component is associated with only one subprob lem.

is in
n2 and each is associated with subproblems.z R component tw or more

(9) n .

The vector z is the troublesome coupling vector. If o , then is
completely separable.



Define the following:

.. p ~ the total nwnber of subproblems.

c I ]cijl I is a p x p matrix of O's and lIs which specifies the

coupling between subproblems i and j with c .. '" 0 i '" 1, ... , P
11

,
P

Si L C. -\z , are the vectors directed to subproblem i from other
j=l 1.., J

ifj
b bl ( T 'T' C Rn .•T T T )sup ro ems.: si E:: i' - = 1 x .,. x p .

fi(Yi'Zi,si) = the objective function associated with subproblem i.

IIou.t put II (to othe. r
Su.bfl-O b\e..m os)

S u.b r ro b \e...WI

Min 1-(~i'~1)$\)

FIGURE 4: COL~LED SUBPROBLEM

The original problem is still intact, since coupling has not been broken.

Decomposition is carried out by designating the vectors si' i = 1, ..., P , as

pseudo-variables which are independent of the vectors incoming from other sub-

problems (Baumann [1] and Hismer [9]).
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FIGURE 5: UNCOUPLED SUBPROBLEM

The following new problem is nOH defined:

(10)

subject to

(ll)

(12)

~min L
y,2,S 1=1

£.(y. ,2, ,s.)~ ~ ~ ~

i=l, .•.,p.

p

1 min f ,(Yi ,z.,s,) .~ ~ ~i=l yi,2i,s1

The addition of Equation 11 establishes the eqUivalence between this problem

and the original coupled problem. Define

, ," I



(13)

where T i 1,;\ , , '" ..... .):l.

s, , i 1, .. , -' P:l.

P , are Lagrange multipliers of the same dimension as

For fixed values of Ai' L is to be minimized. If there exist
l~

Ai ' i = 1, "', p , su·ch that Equation 11 is satisfied, then the original problem
is solved (such ,',A. may not exist, however).a,

The problem at hand is to decompose Equation 13 into p separate subproblems

(Lasdon and Schoeffler [7])

(15)

p {L - Si] r I p

I c1jZj Ai[cijZj] - I A1sii=l 1=1 j=l 1=1

p r u r ~ [E ACi}I -. [ci{j] = r AilC, ,Zj] .
1=1 j""l j=l i=l - :l.J j=l 1=1 :l. J J

Switching 1 and j in Equation 15 gives

Define

(16) A ,c, ,
J J:l.

The Lagrangian is

(17) L



(18) Li ~ f + Y Z - A siii i i i~l, •..,p.

Separability has been attained through addition of pseudo-variables

si ' i :0 1, ..,; p, The constraints (Equation 2) can now be incorporated into
the following new problem,

(19) min L :0
k

m
ykzk - Aksk + L

i-I 1, ''', p

where x =; [_Y_k.-J . For the more general case where nonseparable coupling occursk· Z
k

in the .;:onstraintsalso, the same procedure of adding appropriate pseudo-variables
applies,

Figure 6 illustrates a two-level scheme for adjusting Ai and ui ' i = 1, ..., m,

until the coupling constraints (Equation 11) and problem constraints (Equation 2)

are eventually satisfied. The 2nd level controller passes down initial guesses

A(o) ,u(o) to the subproblems. The subproblems (Equation 19) are then solved

and the results passed back to the 2nd level. The error across the cuts and the

values of g(x) are computed and a new set of prices generated such that the

coupling error is reduced and g(x) moves closer to being nonpositive. This

process continues until all constraints are satisfied.

Decomposition Principle:

* ,,<
If those )., and u are found such that each subproblem attains a global

optimum and all problem constraints and coupling constraints are satisfied, then

a global optimum has been found for the overall problem. (Note: if one or more

of the subproblems attain only local optima, then the overall/optimum :i.salso local.)



C.ONTROI-L.ER

If the number of Lagrange multipliers becomes excessive for large problems,

FIGURE 6: DECOMPOSITION

a hierarchy of control can be developed. Each controller can then be concen1ed

with adjusting a limited number of multipliers.

~

J I
I f: I

I 2. J

I I

:.~
I ""

I

FIGURE 7: l1ULTI-LEVEL DECOHPOSITION
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In the following section conditions are specified which guarantee convergence

* *of the second-level controller to A and u As pointed out by Everett [3},

however, it is usually valuable to attempt this method even though these conditions

cannot be properly met. In many cases, upper and lower bounds on the overall

solution can be determined, if not the solution itself.

"I'



III. CONVERGENCEOF THE 2ND LEVEL PRO~

In order to simplify the f ollowf.ng treatment, consider the folloHing

primal problem (note: min or max Hill a]~ays be assumed to exist):

(1)

(2)

Minimize f(x)

Subject to g. (x) < aa i '" 1, ... , m

(3) X E: S

It is easy to show that the folloHing results are equally valid if equality

constraints are added to the primal problem.

Define the dual function as

(4) h(u) min L(x,u)
XE:S

where

(5) L(x,u) '"f(x) + ug(x)

u = • f." u )
m

U E: D
min L(x, u)
XES

eXists}

g(x)
T(g1(x), "" gm (x))

Theorem 1:

h(u) < f(x) for all x satisfying Equations 2 and 3, for all U ED.



Proof:

h(u) min (f(x) + ug(x»
XES

< f(x) + ug(x) XES , U ED.

For all XES satisfying g(x) < ° ,
(6) h(u) .:.. f (x) . II

A duality gap exists {f h(u) < f(x) . Therefore,

min max L (x .u)
XES u::'O

max min L(x,u)
u>o XES

if and only if there exists a saddle point (Lasdon [6) and Karlin [5).

Theorem 2:(Lasdon [6)

The dual function h(u) is concave over any convex subset of its domain D •

Proof:

Let D be a convex subset of D and let ul ' Uz £ D , a £ [0,1) . Then

h(au
1

+ (1 - u)u2) ~ min L(x,au1 + (1 - a)u2)
XES

~ af(x) + au1g(x) + (1 - a)£(x) + (1 - a)g(x)

theref ore,



h(au1 + (1 - a)uZ) m min [aL(x,u1) + (1 - a)L(x,uZ)]xeS

~ a min L(X,u1) + (1 - a) min L(x,u2)XES xeS

Having established the concavity of the dual function (even though f and

may be non convex) , it is clear that maximization of h(u) over D I,ill yield a

global answer. Equation 6 says that this answer ,vil1 be at least a Lotce r bound

for f(x) . It remains to specify the conditions under which a saddle point is

assumed to exist.

Define the nonincreasing function w(y) as

(7) w(y) min {f(x) I g(x) ~y , x E; S} •

The domain of w(y) is

( 8) F "" {y :Ix E; S ~ g(x) ,~y}

Theorem 3:

If f, g ,and S are convex, then w(y) is convex over F.

*Proof: «.) refers to the global optimum)

Define

1 1

(9) w(y ) "" min {f(x) I g(x) < y-'-}
-XES

i< 1 1where x x y E; F

(10) 2 {£ (x) I
2w(y ) 0= min g(x) ~ Y }

xsS



* 2 2where x •• x Y E: F For any 0. E: [O,l} ,

(11) 1 2
{f (x) g(x) 1 2w(o.y + (1 - o.)y ) min < ay + (1 - 0.) y }-xsS

~twhere x ••x Since

(12)
1 2 1 2g(o.x + (1 - a)x ) ~ o.g(x ) + (1 - o.)g(x )

1 2.::. ay + (1 - o.)y

then o.x1+ (1 - o.)x
2 satisfies the constraints in Equation 11. Hence

(13) 1 2f(~) .::. f(ax + (1 - c) x )

(14)

therefore,

(15) 1 2 1 2w(o.y + (l - a)y ) .::. o.w(y ) + (1 - o:)w(y ) • I!

Consider the set of points R . RlTt+1• ~n on and above the graph of w(y)

( 16) R •• {(y ,y)
a y sF, Y >~" (y) }o -

T~~m 4: (Lasdon [6])

If ox solves the primal problem, then there exist such that ox

minimizes oL(x,u ) over S if and only if the set R (Equation 10) has a
supporting hyperplane at point o 0(f(x ),g(x» .



--------------:>",...........t....---h-(-C.-)-------------eo~ j

.+.
0\

FIGURE 8; SUPPORTING HYPERPLANE FOR SET R

Figure 6 illus trates Theorem 4 for the case whe re w(y) is strictly convex.

The primal problem is to minimize the Yo intercept of the points in R, while

the dual problem is to maximize the Yo intercept of the supporting hyperplanes

for R. The Lagrange multipliers u are the slopes of the hyperplanes, and

are always nonnegative since w(y) is nonincreasing.

The dual problem corresponds to the problem of the second-level controller.

Concavity of the dual function assures that the second-level controller will

converge to a global answer. Convexity of w(y) guarantees that this ariswe r is

a saddle point. Some nonconvex problems can be solved through use of the dual

function as long as a saddle point exists (i.e., a supporting hyperplane for R

exists at the optimal primal solution). Ot.herw.Lse , a duality gap exi.s t s , whi.ch

corresponds to the inability of the second-level controller to equalize f Lows

across all the "cuts" in the large problem.



Since the dual function is to be maximized wiLh respect to multipliers u ,

conditions under which the gradient exists must be specified.

Theorem 5: (Lasdon [6])

If (i) S is closed and bounded and (ii) f(x) and g(x) are continuous
v.~,

on S , then the dual function h(u) is differentiable at point u if and only

if each gi(x) is constant over X(~) ,where

(17) x(~) ~ {x I x minimizes L(x,u) over S} •

In this case

(18) -~~.\~,
u~u

The gradient of h with respect to u·
i

is simply g. (x) •~
Continuous

1st partial derivatives are not required. Under the given assumptions, any number

of algorithms utilizing this gradient will converge to the optimal dual solution

and hence. if a saddle point exists, the optimal primal solution.

An Alternative 2nd-level Controller

An alternative 2nd-level controller to the previous one proposed by Lasdon [6J

offers considerable reduction in dimensionality of the individual subproblems.

The basic difference is that the pseudo-variables s utilized for uncoupling

subproblems are treated as parameters rather than variables. Equation 11-19

from the previous section is Hritten as

(19) min L ••
k

1, ... , p

Hhere ~ ~[-:~-J.Note that the 3rd term in Equation 11-19 has been canceled



since both \k and 8k are parameters. In addition to the assumptions listed

in Theorem 5, this algorithm requires that f belong to class Cl If

pseudo-variables are also required to uncouple the constraints g, then g must

also possess continuous 1st partial derivatives. Assume for now that g is

separable.

Procedure:

1. The 2nd level controller sends initial guesses s (0) \(0) u(o)-k
k 'k 'i '

1, ... , p ,

i '" 1, "', m , to the subproblems. Set £ ~ 1

2. Each subproblem computes using Equation 19 and
8sk I
d),(£)! *

IX ""X
k k

using

Equation 11-19 from the previous section (k 1, "', p) where

(20)

and

(21)
dSk [3Lkf dL,

i<'
i 1, r.

8\~.Q,) '" • 8A~'Q,) "" P .dS,
II II +,

K~ ~

3. The second-level utilizes any efficient algorithm for maximizing the

Lagrangian function - preferably in the direction of the gradient

specified by Theorem 5. Appropriate changes in the multipliers,

*A\k and *Llu
i
; k ;:;1, ... , p , i = 1, ... , m , r e s ul, t.

k 1, ... , p

i 1, ... , m



T
.(HI) (9.)

* ['s, ]sk sk + 8k '.Li/.: • -bT
dA *

(22) xkcxk
r(

[Li A~ , .~J8k > 0 LiA "', LlA;

k '" 1, ''', p .

4. Is the Lagrangian maximized with respect to u and A?
Yes: Stop,

No: Continue.

5.9.+9.+1

Go to 2.

It is conceivable that with careful selection of step sizes Gk• k = 1, "', P
this algorithm can maximize the dual as rapidly as Lasdon's method, and yet

require much less computation at the 1st level (subproblem level) due to decreased
dimensionality. Since, however, the changes in pseudo-variables S1 are linear

K

approximations to the actual changes which would occur if were treated as
subproblem variables, ~~

LlA1 must be small enough to avoid large inaccuracies.
K



IV. APPLICATION TO THE GROUNDHATER PROBLEM

Consider a system of four wells, as shown in Figure 9.

/ .... --- _.
;' ...•.•.

/ "1/\
i '\

I

I
\
\
\
'<,

"-

rl2. = 5000 {to
r2.3 3500 .{'-t- ..
.1'"2.4 :=" 2.500 ·tt.

FIGURE 9: 4-WELL SYSTEM

The circle surrounding well i depicts the expected maximum extent of the

cone of depression for well i , i ~ 1, ...,4. Notice that well 2 is affected

by well 1, but not vice versa. Also, well 2 affects wells 3 and 4.

For purposes of illustration, assume that parameters T.J. i 1, ... , 4 ,

are accurately known. The primal problem is

(1) min E ••
4

min L
51, ••• ,54 d.=L

M [ 4 ] 2)' I [d , (t., ,r
i
,) J - d, (t, ,r, ,)

1:0 .-1 J K J 1. K J.1.
L(- J-

Decomposition is accomplished by introducing pseudo-variables a,J.. i 1, . ~., 3

where



(2) o

o

and separating the Lagrangian into four independent problems

4LeI Li.i=l

From Equation 11-18 in Section II, the subLagrangians are

(3)

M 2
LZ(S2'O'l;A1'\Z'\3) '" I [d1(tk,rZl;ol) +d2(tk.r2Z;S2) -JZ(tk,r22)] +

(4) k=O

+ (\2 + 1..3)82 - \10'1

(5)

(6)

The original 4-dimensional problem has been decomposed into three 2-dimensional

problems and one I-dimensional problem, plus a 3-dimensional concave dual problem.

Lasdonts gradient controller was utilized for the 2nd level or dual problem

of adjusting Ai' i = 1, ...• 3 so as to maximize L with respect to A or

minimize the total error across the cuts.
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FIGURE 10: DECOMPOSED GROlJNDHATER PROBLEM

(7) A(n+L) A (VI) + 81[S;. - o:J1 1

A (rr+L) A (n) 82[s; - ~~]'" + °22 2

A (n+L) A (n) [ * -:
3 3 + 83 S2 - °3J

(8)

(9)

Hhere 8i>0,1"'1, ...,3.

The subproblem minimizationS (Equations 3 to 6) were carried out by a 2nd-

order gradient search procedure. '

Hypothetical field data for the system of wells of Figure 9 are given in

Tables 1 and 2. Initial guesses for parameters are given, as well as the

known values for parameters *T,
J. Drawdown observations are used

instead of water head h .

'I'. Subroutine HO CAL NMIN, Computer Center Library, University of California, Berkeley.



Computation results are illustrated in Figures 10 and 11. Figure 10

depicts the maximization of the dual or 2nd-level problem. Convergence is not

monotonic until after the 3rd iteration, due to rather large step sizes initially.

Figure 11 indicates that a saddle point was found since the total absolute

error across the cuts

converged to zero.
The initial set of multipliers were set equal to zero - \(0) '" 0 , i

i
1, "" 3 .

The final optimal values were

~( 104A1 7.368 x

* 103A2 '" 1.0028 x

* 103\3 '" 1.0028 x .

*Table 3 lists the optimal parameter solutions Si' i '" 1, .•., 4 , and final

drawdown values. The final squared-error between computed and observed drawdo~nl was



;.

,.. .
TABLE 1

GROUNDWATER BASIN DATA
HELL

I i '"1 I i '"2 I i '"3 i == 4

I I
I

ho(ft) 1000 1000 I 1000 1000
bUt) 50 I 50 I 50 50i

I·
i I Irii (It)

I

1 1 I 1 I 1I
II

!

I i IQi(gal/min) 1000 I 600 450 350I I
S (0) .00042 0000481 .0072 .0072~

«ga}~day) I
i I

9250 6500 i 4850 4025
1 I

TABLE 2
DRA~~O~~ OBSERVATIONS (h - h) (ft.)o

Tin1e. \~TELL
t

(days) i 1 i. '" 2 i 3 -r '" 4 I

- j30 I 236 I 194 i 145 I 150I I i iI
1

,
I4S I i 203 I I! 241 i i 152 ! 157 Ii ! I

1
I

I I
60 245 ! 210 I 157 162,

Ii I I

90 I 250 i 219 I 164 I 170I I I,
II I i

180 I 258 234 i 177 I 183 II Ii i I 1360 i 267 250 191 197i I I ii

I I I
I

720 275 266 206 I 211! !

~..'
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FIGURE 10: MAXIMIZATION OF THE 2ND LEVEL PROBLEH
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FIGURE 11: MINIMIZATION OF TOTAL CUT ERROR



TABLE 3

OPTIMAL SOLUTIONS
Time I HELL
t

I(days) i :=: 1 I i ""2 I i '" 3 i :=: 4
I !
1

I
, I I30 235.9 I 194.1 i lL15.9 I 150.5

I

4S 240.9 1 203.1 I 152.3 157.6i
I

I
!

157.3 I 162.860 244. tj 209.5 I

!

I
I

218.7 I 164.6 I90 249.5 I 170.4
I .

i
,

178.0 II180 258.1 I 234.5 I 184.0 II

360 I 266.6 I 250.3 I 192.0 ! 197.8I ! I
I

J
! i720 I 275.2 266.2 ! 206.3 I 211.9

I

,~
I

I i IS. .000449 I .00718 i .064 .020
J. ! t

I !



J~J..§...CUSSION

A generalized decomposition approach to the solution of large nonl:!..near

prog-ramming problems has been presented and applied to the optimal identification

problem in groundwater hydrology. In addition, a n0.l,2nd level algorithm has

been proposed which offers further reduction of dj.mensionality in a de composi t for,

framework.

Computational experience has revealed the followi.ng:

1. After. the first iteration of the second-level controller, subprobLam

solutions converge more rapidly. Solutions from previous iterations are

utilized as accurate initial approximations for first level solutions
in succeeding iterations.

2. For intermediate iterations of the second level, it seems unnecessary

that subproblem solutions converge to highly accurate values. Total

computation time can be signi.ficantly .lessened by a'Ll.owf.ng subproblem

SOlutions to fall within some s neighborhood of the true optimum.

Then as the second l.evel problem begins to converge, Le t s -+ O. Th i.s

idea raises Some interesting questions of stability and trade off between

decreased subproblem computational times and increased inaccuracies.



REFERENCES

[lJ Baumann, Edward James, "Multilevel Optimization Techniques with Appliea t i on
to Trajectory Decomposition, 1I Ph .D. Dissertation, Dap ar tmenr of
Engineering, Uni ve r s it)' of Calif orn i a , Los Angeles, (1966).

[2} Davis, S. N. and R. J. M. DeHies t, HYDROGEOl.OGY,John \~Hey and Sons, In c , ,
New York, (1966).

[3] Everett, H., "General.ized Lagrange Mu1tiplier ~!ethod for Solving Problems of
Optimum Allocation of Resources, ,t Operations Re~.earch, Vol. 1.1.,
pp. 399-417, (1963).

[4J GeoffrJon, A. N., "Elements of Large-Scale MathemaU.cal Pr ogr ammf.ng;"
Report fIR-tI81-PR, Rk'{D Corporation, Santa Monica, Cal.Lf orn La , (Novcmbe r
1969) •

[5J Karlin, S., MATHEMATICAl.~fETHODSA:\iD THEORYIN GA~lliS, PROGR.O\HmNGAND
ECONOMICS, Vol. 1., Addison-Wesley, Readi.n g , Massachusetts, (1959).

[6J Lasdon, L. S., "Dua Li.t y and Decomposi.tion in Mathematical Programm:.Lng,"
IEEE Transac.tions on Systems Science and Cybernetics, Vol. 55C-4,
NZ~,pp~8-6 -lOO;-TJ L!}~Y·-i96f3f~-·----~~~-'-·

(7J Lasdon,1. S. and J. D. Schoeffler, "Decentralized Plant Ccn c ro L;"
ISA Transac~~~, Vol. 5, pp. 175-183, (April 1966).

[8} Todd, D. K., GROUNDHATER HYDROLOGY,John ~nley and Sons) Inc., Ne\y York, (:'.959>.

[9 J Wismer) D. A. (Ed.), OPTIHIZATION ~rsTHODS FOR LARGE-SCALE SYSTEMS, f or t hc ouri n: .

[10] Haimes, Y. Y., R. L. Perrine and D. A. \Hsmer, "Lden t Lf i.c at Lon of Aqu.i f er
Parameters by Decomposition and ~l\.l1.tilevel Optimization," Pr es en t ec' a t
the British-Israeli Colloquium on Operational Research) Eaiffn, Ls r ae :")
(December 1967).




