UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Humans aren’t enough:Providing access for simulated participants to behavioral
experiment software

Permalink

btt_gs:Mescholarship.orq/uc/item/97v637sr‘r’]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors

Veksler, Vladislav D
Buchler, Norbou
Lebiere, Christina

Publication Date
2018

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/97v637sm
https://escholarship.org/uc/item/97v637sm#author
https://escholarship.org
http://www.cdlib.org/

Humans aren’t enough:
Providing access for simulated participants to behavioral experiment software

Vladislav D. Veksler (vdv718@gmail.com)
DCS Corp, U.S. Army Research Laboratory

Norbou Buchler
U.S. Army Research Laboratory

Christian Lebiere, Don Morrison
Carnegie Mellon University

Abstract

Behavioral studies often warrant the inclusion of computa-
tional participants in addition to humans. However, connect-
ing computational cognitive or Al frameworks to GUI-based
software developed for human use is extremely difficult. This
results in researchers either (1) diving into software code to
append an API for computational participants, (2) developing
two separate versions of task code — one for human and one for
computational participants, (3) cherry-picking research tasks
that already include both a GUI and an API, or (4) finding a
way to publish the research “as is” without the potentially use-
ful results from running simulated participants on task. The
seemingly minor nuisance of the API-GUI dichotomy in to-
day’s world of software development is, in fact, responsible
for reduction in scientific progress. This work proposes a
functional-essence approach to software development, and the
use of STAP (Simple Task-Actor Protocol) as a standard Ul
interaction language, for overcoming the API-GUI dichotomy
and enabling access to the same software for both human and
computational participants. We envision the adaptation of the
proposed methodology to enable selection of off-the-shelf be-
havioral tasks, decorative templates, and cognitive/Al frame-
works for a more efficient path to research results.

Keywords: behavior research methods; simulations; cognitive
modeling; synthetic users; simulated humans; standards

Introduction

Cognitive Science research often warrants the inclusion of
both human and computationally simulated participants in the
same experiments. Computational participants may be neces-
sary in behavioral studies for deriving baseline performances
or behavioral predictions, for model comparison, or for per-
formance evaluation. Simulated human users may also be re-
quired in multi-user tasks and multi-player games, especially
where adding human participats becomes prohibitively ex-
penses. Similarly, in studies focused on Al development, hu-
man users may be required for establishing or validating be-
havioral predictions, functional Turing testing', performance
evaluation, and to participate as teammates/adversaries/filler
in multi-agent scenarios. Research efforts in fields involving
human-computer interaction — decision aids, education and
training aids, automation, and human-agent teaming, among
others — all warrant the ability for computational agent access
to human user interfaces.

Providing access for computational agents to task software
that was designed for human participants is often a compli-
cated process. The status quo is either (1) to develop two

separate versions of a given task — one for human partici-
pants and another for computational ones, or (2) to develop
two separate interfaces to the task — a GUI (graphical user
interface) for human participants and an API (application
programming interface) for computational ones. Oftentimes
software development is interface-centric to such a degree
that it makes more sense to go with the first of these options.
However, even in the case

where both GUI and API ac-

. . (]

cess is available for the same

underlying task logic, the two m} = "?J
interfaces often provide dis-

similar experiences for human

and computational users, which can be detrimental to the very
purposes of providing access to both user types.

To make matters worse, enabling machine access to a task
is often a one-off process. That is, there is no standard means
through which a computational user may connect to human-
centric software. Most task-software APIs are unique, and
connecting a computational agent to ten different tasks often
requires ten separate and non-trivial software development ef-
forts. If a research effort requires connecting three different
agent frameworks to these ten tasks (e.g. for model compari-
son), the effort is further tripled.

The seemingly minor nuisances of the API-GUI dichotomy
and of dealing with varied and often idiosyncratic task inter-
faces has become a major limiting factor for progress in be-
havioral research. A given empirical study may benefit from
a complementary computational simulation, but the benefits
often do not merit the effort needed to try and connect a cogni-
tive or behavioral simulation framework to the software used
in the human study. In another case, a new computational
model of cognitive processes may benefit from evaluation
across a wide variety of task software where behavioral data
are known and prior modeling results exist, but the devel-
opment effort needed to parse each task interface (or to re-
develop each task for the purposes of having access to their
interfaces) is prohibitive. The development effort needed for

"Whereas the traditional Turing test is an evaluation of confu-
sion between human and computational participants in the context
of verbal communication, functional Turing testing is more general
in that it examines human/computer confusability in any domain of
interest.

2615

exhaustive model comparison across a battery of behavioral
tasks is almost always prohibitive, as is the effort needed to
evaluate a decision aid or a cognitive training dummy or any
agent software. Lowering the bar to entry for connecting
computational agent frameworks to a battery of behavioral
software — the same software that is employed in human stud-
ies — would enable a better quality of research.

The goal of the current work is to enable plug-and-play in-
terconnectivity between the task software employed in human
studies and varying computational agent and behavioral/cog-
nitive modeling frameworks. We will refer to this goal as
generalized task access.

In this paper we describe a functional-essence approach to
task development as a necessary component for enabling gen-
eralized task access, outlining the benefits of the proposed
approach for enabling symmetric human and computational
user access across tasks. We describe the pluses and mi-
nuses of some existing methodologies for generalized task
access. Finally we propose use of the Simple Task-Actor Pro-
tocol (STAP) as a standard API that adheres to the functional-
essence approach and enables generalized task access.

A functional-essence approach to task
development

Oftentimes spacing, layout, button styles, font types, sizes,
colors, and other visual aspects of the graphical user inter-
face (GUI) are tangential to the purpose of the task being per-
formed. For example, in a simple addition task the participant
may be presented with two numbers and required to type the
sum of those two numbers in a textbox and click a “Submit”
button. The style of the “Submit” button, the font style, back-
ground color, and spacing are all arbitrary choices from the
perspective of users participating in this task. As long as all
aspects are clearly visible to the participant, the functional
essence of the task is preserved regardless of whether the
numbers are displayed in “Times”, “Tahoma”, or “Courier”.

There is, of course, work that may specifically focus on
the differences between “Times”, “Tahoma”, and “Courier”.
However, even in the cases where font-type differences are
central to the research or to task functionality, there may be
many other visual specifications for the GUI (e.g. button
size and color, margin size, button spacing) that are arbitrary
choices from the perspective of task goals.

The problem is that there is no clear separation between
task-essential affordances and arbitrary design choices in ei-
ther the source code or the display interface of most software
(unfortunately, the use of CSS in HTML is no exception, see
Current approaches to generalized task access section be-
low). Moreover, many programming paradigms force the de-
veloper to make arbitrary design choices throughout the de-
velopment process. Even in the cases where design decisions
aren’t forced on the developer explicitly, these are implicitly
warranted so as to avoid an “ugly” or “dated” look and feel,
as this may give human users the suggestion that the software
is poorly supported and insecure.

This state of UI development is not problematic when de-
signing behavioral study software exclusively for human par-
ticipants, but it becomes highly limiting when simulated par-
ticipants are warranted. It is not realistic to expect that be-
havioral researchers will be developing computational mod-
els and agents that are capable of dealing with all of the vi-
sual information that human participants are exposed to. In-
stead, researchers either pick and choose task software that al-
ready provides an Application Programming Interface (API),
or develop task software with this capability. An API pro-
vides agents with task-essential information without any ar-
bitrary style choices, reducing the noise in the interface and
enabling more robust, generic, useful computational models
and agents.

For example, if the task of interest is a game of chess,
the 8x8 chessboard layout is task-essential, whereas board
size in pixels is not, all ‘white’ pieces being distinguish-
able via some common feature from ‘black’ pieces is task-
essential, whereas whether that distinguishing feature is color
and whether that color happens to be white is not, and so on.
Thus, whereas human data collection may involve human par-
ticipants interacting via a rich visual display and fancy graph-
ics, behavioral simulation software may interact entirely over
a stripped-down API comprising only figure identifications
and grid locations.

The result of the GUI/API duality is that tasks created
for human participants are not readily accessible to compu-
tational participants, and vice versa. In the scenario where
human-accessible tasks have API’s for access by computa-
tional models and agents, those API’s often provide human
and computational participants with different information and
capabilities, sometimes hindering computational participants
as compared to their human counterparts, and sometimes giv-
ing them an unfair advantage, making it impossible to run a
fair human-model comparison, or to gather correct behavioral
predictions.

m- computational
i participant
task logic l l API D
to human
GUl gm) participant

Figure 1. API-first approach to task development. This ap-
proach focuses on separating out the functional-essence of the
task from the tangential design choices that can be relegated
to the API-to-GUI layer.

We propose a task-development methodology that flips the
GUI-first-API-second process on its head. We propose an
API-first approach, where tasks are developed for interac-
tion with machine participants, and human interaction is en-
abled via a separate API-to-GUI software layer (see Figure
1). The focus on a machine-readable API serves to separate
out the functional-essence features of the user interface from
non-essential visual design choices. The non-essential design
choices may be appended for human participants via optional

2616

templates without increasing any noise in the UI for compu-
tational participants.

It may be impossible to completely separate out function-
ally essential interface features from those that are decora-
tive. For example, if the task describes a visual object, and
the color of the object is important, the developer may still be
required to specify object size, even if it is irrelevant to task
goals. It may also be the case that developers disregard the
functional essence doctrine, employing the methodology we
are proposing here in unintended ways. This, however, is not
a reason to abandon the goals being pursued here. More im-
portantly, putting the functional essence approach at the core
of the API and the surrounding technology will serve to push
developers in the intended direction, reducing the noise in the
interface and enabling more robust agent development.

The functional essence API-first concept is similar to a
setup that may be employed in web applications (web-apps)
where server-side scripts execute task logic and pass task-
essential information in a standard machine-readable format
(HTML) either to computational participants or to human par-
ticipants. Human participants in this setup require a sepa-
rate standard API-to-GUI software layer (the web browser)
to interpret and interact with the HTML-formatted task inter-
face. Additionally, CSS templates may be used to make non-
essential visualization choices for human participants, but can
be ignored by the computational participants.

This described web-app setup makes for a good example
to ground the proposed functional-essence approach. To be
clear, however, we are not arguing for HTML and GET/POST
requests as the solution for enabling generalized task access.
HTML focuses more on document formatting than on inter-
active task functionality, and requires client-side JavaScript
code for many task-types. In short, existing web-app method-
ology is not compatible with the suggested functional-essence
approach (we will discuss this in more detail in the Current
methods for generalized task access section below).

The proverbial “baby” among the web-app “bathwater” is
the use of a standard API (i.e. W3C standards) and a cross-
platform API-to-GUI software layer (i.e. web browsers). The
described API-first approach is only possible if the API is
standardized; otherwise, the API-to-GUI layer must be reim-
plemented separately for each task. A standardized API pro-
vides the additional benefit of lowering the bar of entry for
connecting varying computational model/agent frameworks
to multiple tasks.

In sum, a functional-essence, API-first approach to task
development would enable near-symmetric experience for
human and computational participants. In the cases where
a standard Ul interaction language may be employed, a
functional-essence approach could greatly reduce develop-
ment costs for both GUI and computational model and agent
development. This approach would provide a solution for
generalized task access, and promote a library of tasks that
may be used in a plug-and-play fashion for behavioral re-
search with both human and computational participants.

On a final note, the functional-essence approach is neces-
sary, but not sufficient for generalized task access. The other
necessary component for this blue-sky vision is a standard
API that is generic enough to represent a majority of po-
tentially desired tasks, and simple enough that any research
group could add an interpreter for it within their computa-
tional model or agent framework. The following sections de-
scribe some ways in which current methodologies for gener-
alized task address, or fail to address these challenges, and
propose the use of Simple Task-Actor Protocol (STAP) as the
API designed specifically to address these challenges.

Current approaches to generalized task access
Screen pixels

The most universal approach for connecting computational
models and agents to GUI-based software is to change noth-
ing in task software, relying on near-future developments
in computer vision for parsing pixel-by-pixel display in-
formation. There have, in fact, been many prior attempts
for cross-task agent evaluation that relied on pixel-by-pixel
screen reading, including a PEBL-based cognitive decathlon
(Mueller, 2010) and the Atari game set used to examine
Google’s DeepMind Al (Mnih et al., 2015). In theory, this
seems like the best and only approach for providing a sym-
metric experience for human and computational users. It may
be even be argued that any imposition of abstraction in the
form of an API could prevent the kind of deep synergy be-
tween perception, cognition, and action that might be a key
enabler of the robustness of human behavior.

In practice, however, there are two major problems with
this approach. First, computer vision does not promise
to be good enough in the near future to enable behavioral
researchers to connect computational participants to GUI-
centric software in a plug-and-play fashion. At best, we
may see rapid advances in computer vision research that
enable screen-scraping libraries for popular computer lan-
guages. However, the integration and customization of com-
puter vision libraries with the models/agents developed for
behavior research will require non-trivial expertise and de-
velopment efforts.

Second, as we have mentioned in the previous section, the
pixel-by-pixel approach makes no distinction between task-
essential and tangential visual information. The lack of such
a distinction will lead researchers to custom-build computa-
tional models and agents for the specific idiosyncrasies of a
given interface. The overly task-specific nature of such mod-
els and agents will lead to more arduous development, less
generic and less useful results, and brittle simulations that
may fail when faced with UI perturbations as slight as font
changes.

HTML and web-app technology

Web application technology is the golden standard for
machine-readable cross-platform interface interaction spec-
ification. Without the need for scraping screen pixels, a com-

2617

putational user can view the same documents as a human user.
These documents are translated into visual format for hu-
man users via standard API-to-GUI software (web browsers).
Computational agents are able to parse such documents di-
rectly, as these are in machine-readable format.

The web-app technology comprises multiple standards, in-
cluding HTML (hyper-text markup language) for specifying
document format and interactive elements, CSS (cascading
style sheets) for specifying additional custom style choices,
and JavaScript for specifying additional custom interaction
and content. The more recent version of these standards is
often referred to as HTMLS5.2

In fact, HTMLS5 enables much of what we want to accom-
plish in this paper in providing universal access to human
and machine task participants. First, it is a well-documented,
standard, cross-platform, machine-readable format. Second,
style-sheets (CSS) allow developers to completely separate
visualization choices from actual task logic. Finally, a major
strength of HTMLS is that it enables just about any visualiza-
tion and event capturing that a task might require. Moreover,
as human experiment participation over the web has become
more prevalent, more and more behavioral research experi-
ment software is already being written in HTMLS5 format.

An obvious question becomes — why are there no com-
putational modeling and agent frameworks that are able to
connect to and interact with off-the-shelf web-apps? The an-
swer to this question has to do in part with the complexity of
HTMLS5, and in part with the fact that this technology does
not aid much with the separation of signal and noise in the
interface.

Unfortunately for our purposes, HTMLS is based on
HTML, which, at its root, is not a task-interface standard,
but rather a document-markup standard. That is, HTML is
all about structure and references, in the service of format-
ting. The addition of JavaScript brought client-side logic,
interactions, and often task-irrelevant visualization choices.
As the web matured to allow in-browser applications, CSS
was added to separate out visualization choices from task
logic, but actual web applications often employ HTML, CSS,
JavaScript, and separate server-side code interchangeably to
accomplish various task-essential functionality and decora-
tive visualizations.

There are myriads of ways to indicate the same infor-
mation and functionality in HTML5. For example, the
<select multiple> tag gives the participant multiple boolean
choices. The same thing is often accomplished via a series of
<input type=checkbox> tags. These two control types are
functional synonyms — they only differ in how they appear,
not in their function. Whether a developer decides on one
method over another is a matter of taste, rather than a matter
of user affordances.

HTMLS5 contains many functional synonyms. To make
matters worse, oftentimes web development involves the ad-
dition of JavaScript code to provide the same functionality
that may be provided via an existing tag. For example, the

above is often accomplished via a series of <button> tags
with “onclick” attributes that employ JavaScript to change the
style of the <button> when it’s clicked. Oftentimes the class
of the button is changed rather than its style attribute, or a new
class is appended to the list of classes, depending on what the
CSS specifications allow. Oftentimes, it is not a <button>
tag, but an <input> or <div> or tag that is employed
for the same purpose. Sometimes each user choice is imme-
diately sent to the server where task logic resides, sometimes
the user has to click the Submit button for the information to
be sent, and sometimes no information is sent at all because
some or all of task logic is embedded in HTMLS. To interact
with this set of boolean choices, and to comprehend that it is
a decision-point in the first place, a computational participant
must be able to account for a virtually infinite set of such pro-
gramming choices, and to consider other surrounding HTML
tags (e.g. <form>, <div>).

This overabundance of task-development methodologies
makes it very difficult to develop computational cognitive
agents/models that will interact meaningfully across different
web-tasks. To put it plainly, developing a model/agent that
can interact meaningfully with off-the-shelf HTMLS web-
apps would be a Herculean effort.

Another non-trivial problem is that HTML is bulky (as
compared to protocols such as JSON), and thus it is not a
preferable format for real-time task-to-user display updates.
The GET/POST requests used to send data from user back
to the task in modern web-apps are not efficient for real-
time task interactions either. This greatly limits the use of
HTMLS for dynamic simulations and massive faster-than-
real-time parameter searches.

Despite these shortcomings, HTMLS web-app develop-
ment provides a strong foundation for separation of functional
affordances from tangential visual design choices (e.g. CSS),
using a machine-readable API to interface between task and
users (i.e. HTML), and using widely available API-to-GUI
software (i.e. the web browser) to enable human interactions
with said API.

Generic game playing protocols

There have been several efforts to create standard API’s for
generic game playing (GGP; Thielscher, 2010). For exam-
ple, GDL (game description language; Thielscher, 2010) de-
scribes which moves are legal, which objects an agent ‘sees’,
and what the goals are, but the translation from these descrip-
tions to a graphical display suited for human users seems dif-
ficult to achieve. The GDL website includes a visualization
(API-to-GUI layer) for this protocol, though it is not clear
how simple or general it is (http://gamemaster.stanford.edu).

2We employ the term HTMLS5 to signify the combination of
HTML, JavaScript, and CSS because this bundle has become a
standard in practical use, but the W3C HTMLS specifications
(https://www.w3.org/TR/html5/) are actually semi-agnostic about
scripting and style languages. The type attribute of the <script>
tag defaults to “text/javascript”, and the type of the <style> tag de-
faults to “text/css”, but JavaScript and CSS are not actually a part of
official W3C HTML specifications.

2618

Another API, VGDL (video game description language;
Schaul, 2013) describes a top-down description of a game
grid. VGDL API-to-GUI layer is simple and generic, as it is
based on Pygame (a popular graphics and interactions library
for the Python programming language), and the description
language itself lends itself to direct translation to a graphical
display.

GGP protocols were all developed with the purpose of
computational agent interaction, and thus they all subscribe to
the functional-essence task development methodology. The
major problem with all GGP protocols is that these focus en-
tirely on game-play, and do not consider non-game tasks that
may be of importance to behavioral researchers. For example,
there is no way that a grid-description language like VGDL
can describe a generic form display with buttons, checkboxes,
selectors, and text inputs.

Moreover, these protocols lack a standard means for spec-
ifying stylistic choices that is often desired by task develop-
ers. Functionally-tangential stylistic choices may be viewed
in theory as excessive frills. In practice, however, design
choices turn out to be extremely important in conveying
standard interaction functionality to human participants (e.g.
clickable links are usually blue and underlined), and in pro-
viding users and experiment participants with confidence that
the task software is up to date, bug-free, and secure. In this
sense, the HTML/CSS generic approach and flexibility pro-
vides something that GGP protocols tend to lack.

Summary of current limitations to generalized task
access

In the sections above we discuss the limitations of some cur-
rent approaches to generalized task access for human and ma-
chine agents. We highlight pixel-by-pixel screen-scraping,
HTMLS web apps, and Generic Game Play protocols, as
these are among the most successful and well-known ap-
proaches in the domain. There exist many other current and
past approaches for enabling human users and various com-
putational agent interactions with task software. These in-
clude real-world embodiment (i.e. robotics), virtual-world
embodiment (e.g. Minecraft, Second Life, Unity 3D, Unreal
engine, Gazebo, Visual Robotics Toolkit, OpenAl Gym), and
OS-specific primitive interaction capture routines (e.g., Neth,
Patton, Banas, Schoelles, & Gray, 2008).

Almost all of these approaches are overly generic to the
point that they suffer from the same noisy-display problem
as pixel-scraping. Task-essential information is not distinct
from task-tangential visual noise, which hinders model and
agent development. In the cases where task-essential infor-
mation may be siphoned via an API, there are often issues
of symmetry between computational and human user experi-
ences (e.g. virtual world API’s provide different information
to human users than they do to computational agents).

There are also many approaches to generalizing task access
that are tied to some specific behavioral simulation software
framework. That is, the task development process is some-
what altered, such that the GUI for human use includes hooks

that translate it for computational users, as long as those com-
putational users are built on top of a specific Al or cognitive
theory and framework. The reason such methodology is not
widely adopted is that tying exploratory research a priori to
a specific theory and system is, at best, inefficient, and, at
worst, it is bad science.

Of the methods discussed, HTML5 and GGP protocols
seem to hold the most promise for generalized task access.
As we mention above, HTMLS is overly generic in its ability
to describe display and interactions, whereas GGP protocols
are not generic enough. However, HTMLS provides a good
example for side-loading task-tangential style information via
CSS and a widespread API-to-GUI software layer (i.e. the
web browser), and the API-first focus of GGP protocols en-
ables the reduction of noise in display. Optimally, to achieve
generalized task access we would like to marry some of the
elements of GGP protocol methodology with those of web-
app technology.

Simple Task-Actor Protocol (STAP)

The Simple Task-Actor Protocol (STAP) is a standard for-
mat for serializing and communicating task-essential user-
interface (UI) changes and user interactions. STAP messages
are consistent regardless of whether the user is a human or
a computational participant. STAP message format is ag-
nostic of the operating system and programming paradigm
employed on either the task-software side or the user/agent -
software side. The aim of STAP is to address generalized task
access. This section provides a brief introduction to STAP
and some examples of STAP UI interactions (based on the
latest major release, STAP 7.0). The full specifications for
STAP, along with task and agent software sample code, may
be found in the STAP and stapjs github repositories [see the
links at vdv7.github.io/stap].

Much like GGP protocols, STAP aims at the API-first ap-
proach, where messages specifying Ul changes contain only
task-essential information. Unlike GGP protocols, and much
like HTML, STAP enables the specification of a separate
style-sheet for task-tangential GUI decoration. Also in keep-
ing with HTML, and unlike GGP protocols, STAP enables
specification of standard software Ul elements (e.g. buttons,
text inputs, vector graphics). Unlike HTML, STAP UI op-
tions are minimal, avoiding functional synonyms where pos-
sible, and enabling a clear separation between task logic and
UI functionality.

STAP is meant to maximize the symmetry between human
and computational user experiences, but also to enable expe-
riences that are unique to these two groups of users — faster
than real-time or slower than real-time simulations for com-
putational models and agents, and aesthetic design choices for
human visualization. STAP is meant to be a suitable interface
language for both symbolic and graphics-intensive tasks, al-
lowing for consistent interpretation for both task types. Fi-
nally, STAP is meant to be simple, consistent, and easily
parsable by all modern programming languages, such that

2619

STAP interpretation modules may be added easily, piecemeal
to existing Al and computational cognitive modeling frame-
works.

STAP messages adhere to a widely employed standard
called JSON (JavaScript Object Notation; json.org). JSON
is a simple data format that can contain hierarchies and se-
quences of values. It is likely that all computational model
and agent frameworks will be able to interact with task soft-
ware via JSON-compliant messages, since almost every mod-
ern programming language has core libraries that can serial-
ize to and deserialize from JSON strings.

As an example, our recent work involved connecting three
popular cognitive frameworks to STAP-compliant tasks —
ACT-R (Anderson, 2007; Anderson & Lebiere, 1998), Soar
(Laird, 2012), and PyIBL (Gonzalez & Dutt, 2011; Morrison
& Gonzalez, 2016) examples. These frameworks are devel-
oped in LISP, JAVA, and Python, respectively (moreover, the
models written for these systems are often executed on all
three major PC operating systems). All three of these pro-
gramming languages include libraries for serializing and de-
serializing JSON messages into native types, making it very
easy to recognize and parse STAP messages.

For human users it is possible to customize any look
and feel features (that do not change the functional-essence
of the task) via optional templates. In the case of the
API-to-GUI software layer in the stapjs github repository
[github.com/vdv7/stapjs], the optional look and feel may be
specified via standard CSS. For example, Figure 2 shows a
sample GUI generated via the same STAP messages (adding
“Hello, World!” text and a container titled “Click a button”
with two buttons), but rendered via three different templates.

9]
5
Butonl Button2
-

Figure 2. Same text and buttons Ul rendered via three differ-
ent templates.

. |
Hello, World! (2=l k] Hello World!

Click a button:
rek @ buszen Click a button:

[Button 1] [Button 2]

Button i Button 2

Summary

This paper proposes the functional-essence approach to soft-
ware development as a necessary component for enabling
symmetric task access for human and computational par-
ticipants to the same applications. At the core of this ap-
proach is the separation of functional affordances necessary
for the software to run in intended ways and arbitrary decora-
tive choices. We argue that the decorative choices sprinkled
throughout the software may serve an important purpose for
human participants, but actually detract from the ability to
connect computational participants to the same software.
Additionally, we suggest the use of the Simple Task-Actor
Protocol (STAP) as a standard UI language that promotes
the functional-essence methodology and enables generalized
task access. Much like web-app technology (i.e. HTMLYS),

STAP is machine-readable, platform-independent, and en-
ables specification of any GUI elements and functionality
needed for behavioral study software. Unlike web-app tech-
nology, and more akin to generic game-playing protocols,
STAP is an API-first approach that focuses entirely on de-
scribing functionally-relevant UI properties (though enabling
specification of decorative choices via separate style tem-
plates).

We envision that the use of STAP and the functional-
essence approach to experimental software development in
behavioral sciences will enable a faster path to more rigor-
ous scientific research. Specifically, we envision a library
of STAP-compliant task software and a library of commonly
used decorative templates for running behavioral experiments
with human users. Furthermore, we envision that major com-
putational cognitive architectures and Al frameworks will in-
clude modules for interacting with STAP UI primitives, en-
abling behavioral scientists to quickly and easily develop
models and agents to interact with the same task software
that human participants (and other models) are able to inter-
act with. Future work includes the development of such mod-
ules for ACT-R, Soar, and other major behavioral/cognitive
modeling frameworks, the development of a battery of STAP-
compliant behavioral experiments that may be employed to
assess human and computational participants alike, and fur-
ther improvements to the stapjs API-to-GUI software layer
and templates.

References

Anderson, J. R. (2007). How can the human mind exist in the phys-
ical universe? Oxford University Press.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of
thought. Mahwah, NJ: Lawrence Erlbaum Associates Pub-
lishers.

Gonzalez, C., & Dutt, V. (2011, oct). Instance-based learn-
ing: integrating sampling and repeated decisions from ex-
perience. Psychological review, 118(4), 523-51. doi:
10.1037/a0024558

Laird, J. E. (2012). The Soar cognitive architecture. MIT Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... Others (2015). Human-level con-
trol through deep reinforcement learning. Nature, 518(7540),
529-533.

Morrison, D., & Gonzalez, C. (2016). http:/pyibl.ddmlab.com. Re-
trieved 2016-01-01, from http://pyibl.ddmlab. com/

Mueller, S. T. (2010). A partial implementation of the BICA cog-
nitive decathlon using the Psychology Experiment Building
Language (PEBL). International Journal of Machine Con-
sciousness, 2(02), 273-288.

Neth, H., Patton, E. W., Banas, S., Schoelles, M. J., & Gray, W. D.
(2008). Integrated Semantic and Visual Aspects of Online
Information Search. In 30th annual meeting of the cognitive
science society2. Austin, TX.

Schaul, T. (2013). A video game description language
for model-based or interactive learning. In leee confer-
ence on computatonal intelligence and games, cig. doi:
10.1109/CIG.2013.6633610

Thielscher, M. (2010). A general game description language for
incomplete information games. In Proceedings of the twenty-
fourth aaai conference on artificial intelligence (aaai-10)

(pp. 994-999).

2620

