Lawrence Berkeley National Laboratory

LBL Publications

Title

AC vs. DC Boost Converters: A Detailed Conduction Loss Comparison

Permalink

https://escholarship.org/uc/item/97v3035x

Authors

Gerber, Daniel Musavi, Fariborz

Publication Date

2019-05-20

Peer reviewed

AC vs. DC Boost Converters: A Detailed Conduction Loss Comparison Daniel Gerber (dgerb@lbl.gov), Fariborz Musavi (fariborz.musavi@wsu.edu)

Motivation

Background

- DC power distribution has the potential for efficiency savings, improved power quality, ease of islanding, reduced costs, and combined data/power
- US Department of Energy focuses on quantifiable efficiency comparison
- Numerous studies compare efficiency of AC and DC buildings
- Most loss occurs at the load input converters

Gaps in Prior Research

- In all prior research, converter efficiency is based on product data. It is hard to compare AC and DC converters using product data because:
 - Requires a lot of data, which is often unavailable

Component Currents

Parameter	AC/DC PFC	DC/DC	min(P _{Loss,AC} /P _{Loss,DC})
$\begin{bmatrix} I_{L,rms} \\ I_{B,rms} \end{bmatrix}$	$\frac{\sqrt{2}P_o}{V_{pk}}$	$\frac{P_o}{V_{pk}}$	2
$I_{B,avg}$	$\frac{4}{\pi} \frac{P_o}{V_{pk}}$		
$I_{Q,rms}$	$\frac{P_o}{\sqrt{V_o}V_{pk}}\sqrt{2V_o-\frac{16}{3\pi}V_{pk}}$	$\frac{P_o}{\sqrt{V_o}V_{pk}}\sqrt{V_o-V_{pk}}$	2
$I_{D,rms}$	$\frac{4}{\sqrt{3\pi}} \frac{P_o}{\sqrt{V_o V_{pk}}}$	$\frac{P_o}{\sqrt{V_o V_{pk}}}$	$\frac{16}{3\pi} \approx 1.70$
$I_{D,avg}$	$\frac{P_O}{V_O}$	$\frac{P_O}{V_O}$	1

- Products only use standard inputs such as 120 V AC or 48 V DC. Highvoltage converters are often more efficient regardless of AC or DC
- Different products use different components with different parasitics

Project Goal

- Develop a detailed loss model of a boost converter
- Compare AC/DC PFC boost and DC/DC boost converter with the same voltage and same components

Deriving the Conduction Loss Model

Boost Converter Circuit Model (AC)

Inductor Current

$\frac{P_o}{V_o\sqrt{V_{nk}}}\sqrt{\frac{16}{3\pi}V_o - V_{pk}} \quad \left| \frac{P_o}{V_o\sqrt{V_{nk}}}\sqrt{V_o - V_{pk}} \right|$ $\frac{16}{3\pi} \approx 1.70$ $I_{C,rms}$

- Component current expressions for simple model (without ripple). Expressions for model with inductor current ripple are in the paper
- Currents are all in terms of output power P_O , output voltage V_O , and peak input voltage V_{pk} (= V_{in} for DC/DC)
- min(P_{Loss,AC}/P_{Loss,DC}) is the theoretical smallest possible ratio of component loss between the AC/DC boost and DC/DC boost

Simulation, Experiment, and Results

Experimental Validation Setup

How to find converter loss?

- Determine steady state currents in each component
- For resistive loss elements:

$$P_{Loss,R} = R_R * I_{rms}^2$$

• For diode loss elements:

 $P_{Loss,D} = V_D * I_{ave} + R_D * I_{rms}^2$

- R_R , R_D , and V_D from component datasheet **Resistive loss element currents**
- Inductor (L): $I_{L,rms}$
- Switch (Q): $I_{O,rms}$
- Capacitor (C): *I_{C,rms}*

Diode loss element currents

- Bridge Diode (B): $I_{B,rms}$, $I_{B,avg}$
- Boost Diode (D): $I_{D,rms}$, $I_{D,avg}$

Model assumptions

- Continuous conduction mode
- Unity power factor
- No output voltage ripple
- 100% efficiency for determining currents
- No switching and gate-drive losses... for now

$I_{D,avg}$	0.733	0.733	0.733	0.781
$I_{C,rms}$	1.165	1.171	1.171	

1.381

1.382

1.376

 $I_{D,rms}$

 Model is validated through PSIM simulation and experiment • Experiment has parasitic wire runs that cause oscillations and increase input current; this will be improved in future work

1.323

- Parametric model runs with V_{Ω} = 200-400 V and P_{Ω} = 100-500 W
- In this range, AC/DC boost has 2.9 to 4.2 times the loss of DC/DC
- Loss analysis shown for $V_{pk} = 170$ V and $V_0 = 400$ V

How to find component currents?

- Take RMS or AVG for two timescales:
 - Switching frequency (i.e. 65 kHz)
 - AC 60 Hz time scale (not necessary for DC-DC boost)
- On the switching timescale, every current can be represented by either:
 - A bilateral triangle (inductor, bridge)
 - An elevated right triangle (switch, boost diode, capacitor)
- Use orthogonality to combine waveforms of different frequency:

Future Work

Efficiency Curve Models

- Derive a switching loss model, which will curve at low power
- Extend the model to an inverter and 2. flyback. These should cover most types of converters in a building
- Redo boost experiment with a PCB 3.
- Perform experimental validation for the 4. inverter and flyback

Efficiency (%)