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Professor Veronica Wendy Setiawan, Co-Chair 

 

Quantitative treatment of uncontrolled bias in observational research is a neglected matter.  In the 

dawn of the era of “big data”, this is of particular concern because systematic error, as a portion 

of total error, can be greatly magnified when sample sizes increase.  Unfortunately, considerable 

statistical road blocks exist between performing a basic multivariable analysis of an exposure-

disease relationship and the thorough consideration of the direction and magnitude of 

uncontrolled bias.  Most published literature points to the use of external formula adjustment for 

a thorough treatment of bias, but the formulas are often too simple (and thus unrealistic) or too 

complex (and thus unwieldy).  A practical solution might be to perform the bias adjustment in the 

data, before analysis is performed.  This solution would be especially useful in pooled data 

consortium projects, which are becoming increasingly popular as a way to investigate rare 
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exposures and disease subtypes in cancer epidemiology, and often employ one shared data source 

used by multiple investigators simultaneously.  Record-level data augmentation for bias analysis 

is central to a pooling project because it allows for multiple bias parameters to be placed directly 

in this data source.  In this work we utilize causal theory, Monte-Carlo methods, and the missing 

data framework to contribute the literature of quantitative bias modeling, via flexible algorithms 

that may be used to translate bias adjustment for unmeasured confounding and non-response 

directly into the data source, before the analysis stage.  We provide proof of concept for these 

methods via a series of simulation studies, and demonstrate their utility in a large multi-center 

pooled study of the epidemiology of endometrial cancer, employing both fixed hypothetical and 

probabilistic empirical priors for our bias parameters.  Moving bias adjustment to the pre-

analytic stage opens the door for an augmented data set to be analyzed in any conventional way, 

with no need for a working knowledge of the complex methodology behind existing external 

formula adjustments.  A thorough, accessible, quantitative bias analysis can then serve as a tool 

to guide qualitative discussions about the impact of systematic error in multi-study data projects.  
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1. INTRODUCTION 

1.1. ENDOMETRIAL CANCER 

Endometrial cancer is the most common gynecological cancer in the western world, and it affects 

more than 40,000 women in a year in the US.  Even so, it is still a rare cancer, accounting for 

only 4% of all cancers worldwide.  Most of the time, prognosis is very good, with a 5-year 

survival rate of 70-80% in western countries [1].  Incidence rates as well as survival rates are 

highest in Caucasian women in developed countries.  Endometrial cancer incidence is highest in 

peri- and post-menopausal women, between the ages of 45 and 70.  Black women have lower 

incidence than Caucasian women, but their 5-year case survival rates are lower.  One explanation 

is that black women may be diagnosed with later stage tumors on average, but it is possible that 

their prognosis profile is substantially different from white women as well [2].  Less is known 

about how the risk profiles may differ among minorities such as Asians, Pacific Islanders, and 

Native Americans, due to typically low representation of these groups in observational studies.  

Generally endometrial cancer is understood to be caused by unopposed estrogen exposure, either 

through early age of menarche, nulliparity, late age at first birth, estrogen only hormone therapy, 

or high dose estrogen in oral contraceptive pills [3].  Obesity, as measured by BMI as well as 

anamorphic measurements, is also a major risk factor for endometrial cancer, but the molecular 

mechanism is different for pre- and post-menopausal women.  In pre-menopausal women, 

obesity leads to increased insulin, progesterone deficiency, and thus a reduced ability to oppose 

free estrogens [4]. In post-menopausal women obesity leads to endometrial cancer through 

increases in free floating estrogens. Endometrial cancer is one of the only neoplasms for which 
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smoking is protective.  The biological mechanism for this is thought to be related to increases in 

estrogen-opposing progesterone [5].  Other protective factors include normal weight, weight loss, 

physical activity, grand multiparity and exogenous hormones that include a cycle of 

progesterone, such as combination hormone replacement therapy and modern low dose estrogen 

and progesterone combination oral contraceptive pills.  In addition to being risk factors for 

disease, exogenous hormones are strong modifiers of the BMI effect, often with paradoxical 

results.  Overweight women who have previously taken exogenous hormones tend to experience 

less risk in higher BMI categories than overweight women who have not taken exogenous 

hormones [6].   Other risk factors (not related to the estrogen pathway) include family history of 

endometrial cancer and increasing age. 

The most common histological types of endometrial tumors are endometrioid adenocarcinomas 

which constitute 80% of all endometrial cancer, and are collectively referred to as Type I.  Type I 

tumors are generally considered to be estrogen-dependent, and they are associated with 

endometrial hyperplasia, hyperlipidemia, and obesity. Type II tumors are mainly serous and clear 

cell carcinomas, as well as sarcomas, and some mixed tumor types.  Type II tumors are more 

aggressive clinically, arising from the atrophic endometrium in elderly women [7-10].  Due to 

the small number of cases, historically, all endometrial cancer histology types have been 

considered together in epidemiologic research.  Recent work has found evidence that the risk 

profiles of cases with type II tumors may differ from those women with type I, especially with 

regard to sex steroids and body size [11].  More research is needed to fully characterize the risk 

profile of type II endometrial cancer as it compares to type I.   
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Since 2005, there has been a slight increase in incidence of endometrial cancer in the US.  While 

more data is needed before this can be confirmed as an upward trend, there is some indication 

that the western lifestyle, in particular lack of physical activity and excess body weight may be 

causing a rise in this type of cancer.  Obesity is by far the strongest risk factor for Endometrial 

cancer, with reported relative risk of 2-5 times that of normal body weight in both pre- and post-

menopausal women [12].  In many studies, the risk of cancer increases linearly with BMI, but in 

younger, pre-menopausal women the risk has occasionally been reported only in obese weight 

categories [13, 14].  The prevailing hypothesis to link excess body weight to endometrial cancer 

is through endogenous hormones of estrogen, progesterone, and insulin, exposure to which are 

also independent risk factors for endometrial cancer.  These hormones each play a role in the 

regulation of cell proliferation, differentiation, and apoptosis.  Increased proliferation can result 

in increases in cell mutations.  Decreased differentiation and apoptosis improves the local 

environment for a growing tumor cell.  Excess body weight alters the balance of these 

endogenous sex steroids.  As would be expected, other exogenous factors that affect the balance 

of sex steroids and are also related to body weight are considered to be confounders of the BMI 

and endometrial cancer relationship.  For example, exposure to estrogen-only hormone 

replacement therapy is related to an increase in body weight, and an increase in endometrial 

cancer risk.  Oral contraception with a progesterone component is slightly protective for 

endometrial cancer, but is often associated with weight changes.  Smoking causes reduced body 

weight, and is protective for endometrial cancer, both via the endogenous estrogen pathway as 

well as reduced inflammation.      

Due to the rare nature of this disease, there are a lot of knowledge gaps concerning its complex 

etiology.  The genetic basis for the established risk factors has not yet been clearly defined, nor 
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has much work been done to explore gene-gene interactions or gene-environment interactions. 

Additionally, the risk factors for rarer histological types (type II) cancers are largely unknown, 

and for some ethnic minorities the risk profile may also be different.  The major limitation to 

exploring these gaps has always been lack of sample size.  There are a lot of small studies 

evaluating risk of endometrial cancer, but few have the statistical power to perform these 

investigations due to low cases numbers and/or homogenous populations.   

1.2. CANCER POOLING PROJECTS 

Cancer is a rare disease.  Because of its rarity, observational researchers often resort to pooling 

data to achieve the power needed for studies of exposure-disease associations.  A major example 

of this is the Genome Wide Association Study (GWAS) trend, which has become very popular in 

the past 5 years.  A pooled data analysis is the combining of raw data from multiple studies, 

recoding to fit a single pooled “standardized” database, and then analyzing all studies as one.  

This is different from a traditional meta-analysis of point estimates, which just involves 

extracting point estimates from published literature and then summarizing over the extracted 

point estimates.  The advantages of pooling are vast.  Consortium projects that combine multiple 

studies can vastly increase power and efficiency of their desired investigations.  This allows for 

less prevalent exposures to be studied as risk factors, as well as the investigation of interactions 

between multiple risk factors in predicting disease risk. Additionally, pooling projects allows for 

the study of risk factors in populations that are often underrepresented in epidemiology, such as 

minority ethnicities.  When compared with the meta-analysis of point estimates, standardized 

pooling allows for better control of systematic biases, as well as careful investigation and 

explanation of the heterogeneity within and across studies.  Pooling can also provide an 
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opportunity to estimate effect measures that may not have been reported originally for all the 

individual studies [15].  Pooling data from various studies and sources is not without its 

limitations, however.  Studies of different design types are often combined and treated as the 

same design, methods of variable measurement may vary from study to study, and important risk 

factors or confounding variables may not be collected in all of the pooled studies.  The creation 

of a standardized database may result in the loss of information when partially unmeasured 

variables are dropped across studies, or when categories are collapsed to fit a standardized 

framework of variable definition.  All of these limitations are likely to result in bias.   

1.3. BIAS ANALYSIS 

Almost all sources of bias can be subsumed under the bias due to uncontrolled confounding, 

selective non-response bias, and measurement error [16]. Confounding is the mixing of effects, 

when the apparent effect is distorted by the effect of extraneous factors.  Specifically, when one 

or more variables affects both the exposure and the outcome, but is not itself affected by either 

the exposure or the outcome, the presence of such a variable can bias an estimate upward or 

downward, or produce an non-null estimate when the exposure and outcome are unrelated [16].  

Selection bias is the distortion of effect that results from subject selection procedures or 

participation rates.  Specifically, if diseased and non-diseased persons participate, or choose to 

stop participating at different rates, selection bias can occur.  This bias can be insurmountable if 

participation is also decided as a direct result of the exposure of interest, such bias is referred to 

as differential selection bias [16].  Measurement error, or classification error, occurs when one or 

more variables (exposure, outcome, or covariates) are measured with error.  This type of error 

can result in an information bias that can distort effect estimates, often unpredictably depending 
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on the magnitude of error and the variables affected.  While it is an important consideration when 

evaluating the validity of a study, bias from measurement error will not be a focus of this 

dissertation.   

Historically, most published epidemiologic studies include a qualitative treatment of how 

potential bias sources may be influencing the effect estimates in the discussion section of the 

paper.  While this is often sufficient for small or low powered studies, larger studies and/or 

pooled studies warrant a quantitative treatment of potential biasing factors.  Quantitative bias 

analysis is the quantitative (as opposed to qualitative description) treatment of uncertainty in 

nonrandomized research.  It is often used to hypothesize the magnitude and direction of bias, and 

produce bias adjusted point estimates and confidence intervals that represent both the random 

error as well as the hypothesized systematic error in the model.  There are a number of ways, 

ranging from simple to very complex, to carry out a bias analysis.  The traditional “simple” 

sensitivity analysis aims to determine if the treatment-outcome association could be explained by 

one or more confounding variables. This sensitivity analysis is performed on the resulting 

association estimates for a fixed level of bias and then repeated over and over to determine the 

bias required to approach a null point estimate, for instance [16-19].  Adding a probabilistic 

component to the simple sensitivity analysis allows the prior specifications (or hypotheses about 

the bias effect) to take on distributions in the way real observational data would behave, and 

allow adjustment of systematic error as well as random error.  Probabilistic sensitivity analysis 

can be performed using Monte Carlo methods, or in a semi- or full Bayesian analysis, if all 

parameters are specified by prior distributions [20-22].  Most published methods of bias analysis 

are based on external adjustment – which often requires either simple (but unrealistic) 

calculations, or very complex (although more realistic) formulas and must be repeated for each 
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target parameter, stratification level, treatment categorization, and so on.  Additionally, bias 

formulas for external adjustment are always model specific – each modeling strategy requires a 

slightly different form of the adjustment formula [21, 23-25]. 

1.4. GAPS IN THE BIAS ANALYSIS LITERATURE 

There are very few published instances of quantitative bias modeling in a cancer epidemiology 

pooling project, and none that employ a unified bias model across a consortium of investigators.  

Indeed, some of the methods (especially complex external adjustment) are very cumbersome and 

implementing them across multiple investigators in a consortium might prove difficult, 

especially because each study in the pool might contribute a slightly different level of bias 

depending on the population or study conduct. One possible solution for this would be a data 

augmentation approach, where the bias analysis parameters are used to simulated record-level 

data on missing confounding variables or selection probabilities in the database before any 

statistical modeling is performed.  This could be performed using fixed or probabilistic bias 

modeling techniques, using internal or external priors for the bias parameters and Monte Carlo 

methods, but instead of adjusting model-based point estimates post hoc, each individual in the 

study gets a priori a set of augmented variable(s) that can be used in any subsequent statistical 

analysis.  This type of “record-level” variable data imputation for bias analysis is very rare in the 

current epidemiologic literature.  It has been briefly described [16, 26] and demonstrated as a 

method to adjust for misclassification bias [27, 28]. It has not been applied in a bias model for 

uncontrolled confounding or non-response bias; it also has not been formalized using missing 

data methods or the graphical language of causal theory.  
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1.5. THIS DISSERTATION 

Large pooling projects are one of the most important areas of epidemiology for a thorough bias 

analysis.  Unfortunately, bias analysis is uncommon in pooling projects; this is worrisome 

because larger sample sizes increase the chance of systematic error while decreasing those of 

sampling errors [16].  Additionally, accessible methodologic literature on how to handle bias in 

pooling projects is limited.  Small p-values and tight confidence limits that come from a pooled 

analysis can often lead to overconfidence in results that may actually be a reflection of serious 

systematic bias rather than true effect estimates.  Even quantitative treatment of one bias at a 

time might not suffice when multiple biases are acting congruently, as the combined bias often 

exceeds that of the individual biases.  Thus, it is very important to express uncertainties in pooled 

estimates given the limitations associated with forming a standardized database for use in large 

pooling projects, and to explore these biases as acting simultaneously.  Further, the bias analysis 

methods should be accessible to the Epidemiology community and integrated with the record 

level data used routinely, i.e., in the standardized database, before any statistical modeling is 

performed.   

The risk factor profiles for rare types of endometrial cancer and for high-risk populations are not 

well characterized.  The data source for this dissertation, the Epidemiology of Endometrial 

Cancer Consortium (E2C2) has been established to contribute to this characterization, yet it is 

likely that it may suffer from some of the limitations inherent in rare cancer pooling projects.  It 

will be important not only to evaluate the risk factors discovered, but also to evaluate them for 

sensitivity to biasing factors that are a result of the pooling structure as well as the limitations of 

the individual contributing studies.  In a large consortium such as the E2C2, with multiple 
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investigators using the same standardized database, it would also be beneficial to incorporate 

bias analysis parameters into the standardized database so that such sensitivity analyses can be 

decentralized and easily accessible to all contributing investigators. Therefore, the objectives of 

this research project will be to develop, and formalize bias modeling methods for probabilistic 

data imputation for analysis of uncontrolled confounding and non-response bias in rare cancer 

pooling projects, and to demonstrate these methods using data from the Epidemiology of 

Endometrial Cancer Consortium (E2C2).  The project will be broken into four studies, each with 

its own specific aim: 

1.5.1. SPECIFIC AIMS OF THE DISSERTATION 

Study 1: To develop and formalize bias modeling methods by probabilistic data imputation for 

analysis of uncontrolled confounding using a missing data framework, joint probabilities, 

directed acyclic graphs, and simulation studies. 

Study 2: To develop and formalize bias modeling methods by probabilistic data imputation for 

analysis of selection (non-response) bias using a missing data framework, joint probabilities, 

directed acyclic graphs, and simulation studies. 

Study 3: To demonstrate the aforementioned method for addressing bias due to uncontrolled 

confounding using the Epidemiology of Endometrial Cancer Consortium (E2C2) data, by 

investigating the relationship between BMI and type I endometrial Cancer and potential 

confounding by partially measured smoking status, comorbid diagnosis of diabetes, and ever use 

of exogenous estrogen-only hormones.  
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Study 4:  To demonstrate the aforementioned method to correct for bias due to non-response 

using the Epidemiology of Endometrial Cancer Consortium (E2C2) data, by investigating the 

relationship between BMI and type I endometrial Cancer and varying response rates in cases and 

non-cases for contributing case-control studies. 
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2. STUDY 1 

 

SENSITIVITY ANALYSIS FOR UNCONTROLLED CONFOUNDING, WITHOUT BIAS 

FORMULAS 
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2.1. ABSTRACT 

Background: Quantitative analysis of the bias due to uncontrolled confounding in observational 

research is becoming increasingly important, especially given the rise of “big data” in which 

such bias or systematic error can become greatly magnified with increasing sample sizes.  

Unfortunately, considerable statistical obstacles exist between performing a multivariable pre-

adjusted analysis of an exposure-outcome association and a thorough quantitative bias analysis 

for uncontrolled confounding.  Most published literature points to the use of bias formulas for 

external adjustment of such bias, but the formulas are often too simple or complex.  We 

introduce and demonstrate an alternative approach that simulates or imputes the unmeasured 

confounding variable(s) with the working dataset for use in any subsequent analysis.   

Methods: We used directed acyclic graphs, probability language, and Monte Carlo simulations 

to recast and impute unmeasured, uncontrolled confounding variable(s) which can be seen as 

missing data used to augment the observed data. We illustrate the technique for unmeasured 

dichotomous, trichotomous, and continuous confounding variables singly and together which 

were imputed using observed data and prior information of the plausible associations between 

the unmeasured variables and the observed data. The new augmented dataset could subsequently 

be used in the planned analysis stage. We illustrate this method via a series of simulation studies. 

Results: In a series of illustrative simulation studies, we could recreate and control for 

hypothetically unmeasured confounding variables using the “true” priors for their conditional 

associations with the other study variables. When used with the observed data, we could estimate 

fully adjusted effect estimates. Once simulation is set up as imputation equations, the input priors 

could easily be varied or updated to reflect other and new background information. 
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Conclusion: Moving bias adjustment to the pre-analytic stage by first imputing the unmeasured 

confounder(s) using observed data and plausible priors opens the door for the augmented data set 

to be analyzed in any conventional way, without resorting to complex bias formulas for external 

adjustment. 

2.2. INTRODUCTION 

Quantitative analysis of the bias due to uncontrolled confounding in observational research is 

becoming increasingly important, especially given the rise of “big data” in which such bias or 

systematic error can become greatly magnified with increasing sample sizes.  Unfortunately, 

considerable statistical obstacles exist between performing a multivariable pre-adjusted analysis 

of an exposure-outcome association and a thorough quantitative bias analysis for uncontrolled 

confounding.  Most published literature points to the use of bias formulas for external formula 

adjustment of uncontrolled confounding [17-19, 21, 25, 29-31], but the formulas are often either 

simple (and thus unrealistic) or too complex (and thus unwieldy).  There is thus a need for a 

solution that neatly integrates any planned data analysis with bias analysis, preferably within the 

working dataset. Moving bias adjustment to the pre-analytic stage opens the door for an 

augmented data set to be analyzed in any conventional way, with no need for a working 

knowledge of the complex methodology behind existing bias formulas for external adjustments.  

We used directed acyclic graphs, probability language, and Monte Carlo simulations to recast 

and impute unmeasured, uncontrolled confounding variable(s) which can be seen as missing data 

used to augment the observed data. We illustrate the technique for unmeasured dichotomous, 

trichotomous, and continuous confounding variables singly and together which were imputed 

using observed data and prior information of the plausible associations between the unmeasured 
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variables and the observed data. The new augmented dataset could subsequently be used in the 

planned analysis stage. We illustrate this method via a series of simulation studies. The method 

described in this paper avoids external adjustment formulas; bias parameters are used to generate 

record-level data in the database before any planned statistical analysis is performed. 

2.3. METHODS 

We demonstrate record-level imputation for uncontrolled confounding variables.  First we will 

define and formalize the problem of uncontrolled confounding using directed acyclic graphs 

(DAGs). The use of DAGs to express these causal relationships imparts a basic set of rules, 

which have been extensively described for use in causal analysis elsewhere [32-36].  Referring to 

figure 2.1, where X is an exposure, Y is the outcome of interest, and U is an unmeasured 

confounding variable, the relationship of interest is the effect of X on Y conditional on U.   

 

Figure 2.1 U is an unmeasured variable that confounds the relationship between X and Y. 

 

The joint probability that can be read off the DAG in figure 2.1 is given by 

(1) P(    u)  P( |  u)P( |u)P(u) 

However, since U is unmeasured, we can use probability rules to rewrite the joint probability 

recasting U as a conditional probability involving the observed x and y: 

(2) P(    u)  P(u|   )P( | )P( ) 
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In equation 2 we have reordered the conditional probability equations to isolate what we need - 

P(u|x,y)  - from what we know - P(y|x) and P(x).  Having not measured U, we can redefine P(u|x, 

y) as a modeled expectation or probability using our measured variables X and Y, depending on 

the variable type.  For a binary variable, the imputation would take on the following 

parameterization:   

(3) P(u|   )    p t(                   ) 

Where    is the background prevalence of U (setting X=Y=0),     is the log odds ratio relating 

the U and X among Y=0,     is the log odds ratio relating U and Y when X=0, and      is the 

logarithm of the ratio of the odds ratios (such as the ratio of the U-Y association when X=1 to the 

ratio of the U-Y association when X=0).  Equation (3) requires a fully saturated model because 

of the invocation of Bayes‟ theorem.  As we will see in the illustration, this latter point becomes 

important when there are multiple confounder variables in the assumed causal structure. 

2.3.1. ILLUSTRATION 

2.3.1.1. MONTE CARLO SIMULATIONS  

We performed a series of simulation studies to demonstrate and evaluate the bias model 

performance under varying confounding scenarios. For each study, we simulated a large cohort 

(N=10,000) with one dichotomous exposure variable (X), two dichotomous confounding 

variables (Z1 and Z2), one continuous confounding variable (Z3), one trichotomous confounding 

variable (Z4), and a dichotomous outcome (Y).  The data generating mechanism was based on the 

relationships between these variables as depicted in the causal structures in figures 2.2 and 2.3.  

In scenario A (figure 2.2), Y is independent of X conditional on Z1-Z4, and in scenario B (figure 

2.3), X causes Y. 
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Figure 2.2 Scenario A – A DAG representing marginally independent X and Y with 4 confounding variables Z1, Z2, 

Z3, and Z4. 

 

 

Figure 2.3 Scenario B – A DAG representing marginally dependent X and Y with 4 confounding variables Z1, Z2, 

Z3, and Z4. 
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Z1 and Z2 were generated by random draws from independent Bernoulli distributions with 

probabilities of success of P(Z1=1) and P(Z2=1) respectively. We varied P(Z1=1) and P(Z2=1)  

depending on the simulation trial.  Z3 was generated from the normal distribution such that 

Z3 ~N(0 1).  Z4 was generated from two conditional Bernoulli distributions such that the 

resulting two indicator variables combined made an exclusive trichotomous categorization with 

mean population distributions depending on the simulation trial. The probability of exposure was 

generated as a function of variables Z1-Z4, and the exposure variable was generated from random 

draws from a corresponding Bernoulli distribution.  The outcome variable was generated from 

random draws from a Bernoulli distribution as a function of the background risk of outcome 

(varying according to simulation trial), the exposure status, and Z1-Z4. 

The simulation studies were conducted in two stages: derivation of empirical priors from the 

simulated cohort, and then imputation of the “missing” confounder and bias modeling.  For the 

first stage, we used the complete simulated cohort to derive prior inputs for the bias model.  In 

the second stage, we deleted one or more known confounder variables from our dataset and 

attempted to re-create those data using the variable imputation method, and our empirical priors 

from stage 1.  We then compared outcome model results between those using the true confounder 

and those using the imputed confounder.  This was repeated for each imputation strategy (i.e., 

imputing a dichotomous, continuous, or trichotomous confounding variable.)  There were a total 

of 14 trials per scenario (28 studies in all).  The trials were designed to evaluate the bias model 

performance under varying background prevalence of exposure and outcome and prevalence and 

strength of confounding.    

2.3.1.2. IMPUTING A DICHOTOMOUS CONFOUNDING VARIABLE 
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In order to derive empirical priors from our simulated cohort, Z1 and Z2 were each modeled 

twice, as a function of the other DAG variables (X, Y, Z1, Z3, and Z4) according to the following 

fully saturated logistic regression equations.   

For investigating our bias model by imputing a single dichotomous confounder: 

(1)  o  t(P(Z  1|        3   )

                               3                           

         3                              3                      3

                     3                         3             

             3                          3               3

                         3               3                 3

                             3                 3                 3  

                 3   

 (2)  o  t(P(Z  1|        3   )

                               3                           

         3                              3                      3

                     3                         3             

             3                          3               3

                         3               3                 3

                             3                 3                 3  

                 3   

And for imputing Z1 and Z2 simultaneously, we performed two steps sequentially: 
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(3)  o  t(P(Z  1|     3   )

                       3                          3

                   3                    3             3

                       3             3               3   

(4)  o  t(P(Z  1|        3   )

                               3                           

         3                              3                      3

                     3                         3             

             3                          3               3

                         3               3                 3

                             3                 3                 3  

                 3   

Using Monte-Carlo methods, we generated new versions of each confounding variable, Z ̂ and 

Z ̂, by repetitively (repetitions=1,000) drawing from a Bernoulli distribution defined by 

functions of the retained β coefficients from equations (1-4) combined with the actual values 

each variable. 

The resulting replicate dataset consisted of 1,000 copies of the known variables, and imputes of  

Z ̂ and Z ̂.  To investigate the imputed variables performance as substitutes for the original 

confounder variables Z1 and Z2, we modeled the outcome Y as a logistic function of  Z ̂ and Z ̂ 

as well as the other known variables (X, Z3, and Z4) by replicate.   

2.3.1.3. IMPUTING A CONTINUOUS CONFOUNDING VARIABLE 
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In order to derive empirical priors from the simulated cohort, Z3 was modeled as a linear 

function of the other DAG variables (X, Y, Z1, Z2, and Z4) according to the following fully 

saturated expectation: 

  (5)  3                                                           

                                                                        

                                                                          

                                                                      

                                                                

                                                        ε   

Using Monte-Carlo methods, we generated new versions of the continuous confounding variable 

Z3̂ by repetitively (repetitions=1,000) drawing from a normal distribution defined by the sum of 

the retained beta coefficients from equation (5) and individual data values. 

The resulting replicate dataset consisted of 1,000 copies of the known variables, and the imputes 

of  Z3̂.  To check the imputed variables performance as substitutes for the original confounder 

variable Z3, we modeled the outcome Y as a logistic function of  Z3̂ as well as the other known 

variables (X, Z1, Z2, and Z4) by replicate.   

2.3.1.4. IMPUTING A TRICHOTOMOUS CONFOUNDING VARIABLE 

In order to derive empirical priors from the simulated cohort, two mutually exclusive indicator 

variables, Z41 and Z42 were modeled as a function of the other DAG variables (X, Y, Z1, Z2, and 

Z3) according to the following fully saturated logistic regression equations, first for all 

individuals: 
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(6)  o  t(P(Z   1|           3)

                                              3          

                                3                       

          3                          3             3              

                         3                              3

              3                              3               3

                3                                  3                 3

                  3                   3                     3 

And then restricted to those individuals who were not classified as Z41=1: 

(7)  o  t(P(Z   1|           3)

                                              3          

                                3                       

          3                          3             3              

                         3                              3

              3                              3               3

                3                                  3                 3

                  3                   3                     3 

Using Monte-Carlo methods, we generated new versions of the indicator variables  Z  ̂ and Z  ̂ 

using retained coefficients from equation (7) combined with individual level data, over 1,000 

repetitions. 
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The resulting replicate dataset consisted of 1,000 copies of the known variables, and imputes of 

Z  ̂ and Z  ̂.  To investigate the imputed variables performance as substitutes for the original 

confounder variable Z4, we modeled the outcome Y as a logistic function of  Z  ̂ and Z  ̂ as well 

as the other known variables (X, Z1, Z2, and Z3), by replicate.   

2.3.2. EVALUATING MODEL PERFORMANCE 

Bias adjusted estimates were extracted by finding the median of the estimated coefficients of the 

target X-Y relation.  These were compared to results from the true outcome model, and the 

unadjusted (biased) outcome model.  All bias-adjusted estimates were compared to the true fully 

adjusted estimates to calculate bias and root mean squared error (RMSE) and 95% confidence 

interval coverage of the bias modeling simulations.  All simulations and statistical analyses were 

performed using SAS (version 9.3; SAS Institute, Cary NC).   

2.3.3. A NOTE ON OUR USE OF FULLY SATURATED MODELS 

Non-parametrically, the fully saturated bias model form is the most accurate in recreating each 

unmeasured variable.  However, due complexities of fitting the fully saturated models such as 

computational limitations, and the practical considerations of supplying external bias parameters 

to for 2-way, 3-way, 4-way, and 5-way product terms, we also demonstrate that a reduced model 

form, such as the less flexible model containing only XY product term, will be sufficient to 

control for bias in non-extreme scenarios.  As such, the results of this paper will first demonstrate 

comparability between the two model forms, and subsequently, all further results will use the 

reduced model form.   
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2.4. RESULTS 

Here we provide results from trials 1-5 for two scenarios, which correspond to figures 2.2 and 

2.3.  Table 2.1 provides actual characteristics of each cohort.  Table 2.2 provides the bias model 

performance statistics (bias and root mean squared error) for the selected trials comparing fully 

saturated to unsaturated models.  Selected trials using unsaturated models are provided in table 

2.3.  Full simulation results, including planned characteristics of each cohort and true, biased, 

and bias adjusted point estimates for all 24 trials (using non-saturated models) are available the 

appendix tables 7.1-7.6.  The results were as would be expected mathematically – accurate and 

unbiased.  Reduced model forms performed as well as the fully saturated forms, although the 

latter were less biased, results were comparable in simulation trials.  Across all simulations, no 

bias levels were recorded above 0.10, and coverage was 100% for all studies performed.  
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Table 2.1 Actual characteristics of the trial cohorts (N=10,000) 

Trial P(Z1) P(Z2) 
Mean 

(Z3) 
SD(Z3) 

P(Z4) 

P(X0=1)1 P(Y0=1)2 ORYX|Z1, 

Z2, Z3,Z4 

ORXZ1|Y, 

Z2, Z3,Z4 

ORXZ2|Y, 

Z1, Z3,Z4 

ORXZ3|Y, 

Z1, Z2,Z4 

ORXZ4|Y, Z1, 

Z2,Z3 
ORYZ1|X, 

Z2, Z3,Z4 

ORYZ2|X, 

Z1, Z3,Z4 

ORYZ3|X, 

Z1, Z2,Z4 

ORYZ4|X, Z1, 

Z2,Z3 

Z4=1 Z4=2 Z4=1 Z4=2 Z4=1 Z4=2 

                    

1a 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 0.95 3.20 1.83 2.11 1.92 2.93 2.75 5.15 2.02 1.95 3.07 

2a 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.48 0.97 3.18 1.81 2.10 1.91 2.91 2.96 5.30 1.97 2.14 2.93 

3a 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.70 0.96 3.18 1.81 2.10 1.91 2.91 3.06 5.72 1.98 2.14 3.15 

4a 0.29 0.30 0.01 1.00 0.40 0.30 0.49 0.31 0.97 3.06 2.00 2.07 2.15 3.54 2.73 5.13 2.01 1.94 3.06 

5a 0.29 0.30 0.01 1.00 0.40 0.30 0.72 0.27 1.05 3.37 2.06 2.04 2.10 3.22 2.70 5.09 1.99 1.92 3.02 

                    

1b 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 1.91 2.88 1.58 1.96 1.77 2.60 2.86 4.98 1.97 1.98 2.96 

2b 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.48 1.93 2.98 1.67 2.01 1.82 2.71 3.03 5.53 2.01 2.17 3.20 

3b 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.70 1.94 2.63 1.60 1.89 1.94 3.07 3.35 5.91 1.99 2.13 3.08 

4b 0.29 0.30 0.01 1.00 0.40 0.30 0.49 0.31 2.01 2.90 1.65 1.86 1.87 2.77 2.90 5.10 1.91 1.97 2.74 

5b 0.49 0.30 0.01 1.00 0.40 0.30 0.72 0.27 2.12 2.76 4.21 1.91 1.87 2.70 2.86 5.22 1.92 2.14 2.97 

                    
1P(X0=1) is the background exposure prevalence P(X=1|Z1=Z2=Z3=Z4=0) 
2P(Y0=1) is the background risk of disease P(Y=1|X=Z1=Z2=Z3=Z4=0)  
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Table 2.2 Bias model performance for scenarios a and b using saturated versus unsaturated models  

Model form Trial 

Imputing for Z1 

Only 
Imputing for Z2 Only 

Imputing for Z1 and 

Z2 simultaneously 
Imputing for Z3 Imputing for Z4 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

            

Saturated 1a -0.0006 0.0500 -0.0000 0.0499 0.0267 0.0564 0.0017 0.0500 0.0006 0.0500 

Unsaturated 1a 0.0020 0.0500 0.0001 0.0500 -0.0019 0.0500 0.0027 0.0500 0.0039 0.0501 

            

Saturated 1b -0.0024 0.0512 -0.0024 0.0512 0.0371 0.0630 0.0064 0.0515 0.0015 0.0512 

Unsaturated 1b 0.0031 0.0512 -0.0052 0.0514 -0.0086 0.0519 0.0016 0.0512 0.0044 0.0513 

            
1Bias=True OR – Bias adjusted OR 
2 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
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Table 2.3 Bias model performance for selected trials with varying inputs, using reduced model form 

Trial 

Imputing for Z1 

Only 

Imputing for Z2 

Only 

Imputing for Z1 and 

Z2 simultaneously 
Imputing for Z3 Imputing for Z4 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

Bias
1 

RMSE
2 

           

1a 0.0020 0.0500 0.0001 0.0500 -0.0019 0.0500 0.0027 0.0500 0.0039 0.0501 

2a 0.0027 0.0552 -0.0028 0.0553 -0.0008 0.0552 0.0049 0.0553 0.0049 0.0554 

3a 0.0054 0.0680 -0.0032 0.0680 0.0024 0.0679 0.0091 0.0683 0.0055 0.0681 

4a 0.0037 0.0539 0.0051 0.0540 0.0035 0.0539 0.0052 0.0541 0.0123 0.0551 

5a 0.0039 0.0650 0.0031 0.0649 0.0012 0.0649 0.0053 0.0650 0.0089 0.0654 

           

1b 0.0031 0.0512 -0.0052 0.0514 -0.0086 0.0519 0.0016 0.0512 0.0044 0.0513 

2b 0.0087 0.0605 -0.0112 0.0610 -0.0060 0.0602 0.0083 0.0604 0.0066 0.0602 

3b 0.0047 0.0779 -0.0167 0.0797 -0.0057 0.0780 0.0082 0.0782 0.0082 0.0782 

4b 0.0097 0.0549 0.0011 0.0541 0.0021 0.0541 0.0122 0.0554 0.0174 0.0567 

5b 0.0104 0.0656 0.0016 0.0648 0.0044 0.0651 0.0154 0.0666 0.0156 0.0667 

           
1Bias=True OR – Bias adjusted OR 
2 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)   
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2.5. DISCUSSION 

We have introduced a simple method of bias adjustment that is based on imputation via 

simulation of missing data on the unmeasured confounder(s).  We used the assumed causal 

structure and a variety of choices for priors about the bias parameters to impute missing data on 

each unmeasured confounding variable for every individual in the dataset. This method is based 

on repairing the joint distribution using what is known about the individual to simulate (impute) 

what is unknown.  The priors can be derived from a complete case sub-population, a prior data 

analysis that included the unmeasured confounding variable, or literature sources that could even 

be integrated to reflect differing opinions of multiple collaborating investigators.  Under normal 

(not extreme) examples of unmeasured confounding and compatible prior specification, we 

demonstrated this method as valid in providing adjusted point estimates, without external 

adjustment formulae or other complex model-specific bias adjustment approaches.  The validity 

was extended to imputation models that were not fully saturated for all variables.  This represents 

a typical roadblock that may be encountered during routine use of this type of algorithm: when 

fully saturated models may be unwieldy or sample sizes prohibit using them, under some basic 

assumptions of no extreme non-null product terms, the more restrictive model forms will 

perform as well as the fully flexible.  This algorithm provides the advantage of predicting the 

unmeasured confounding variable in the source dataset, before any outcome models are run, and 

the augmented dataset can be used in any statistical package or with any modeling strategy.  This 

moves bias analysis tasks to the end user, and can be particularly helpful in research settings 

where multiple analysts are working with the same data.    
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Bias modeling is an exercise in quantitative skepticism that is wholly dependent on latent 

characteristics of a causal system – namely the assumed causal structure, prevalence of the 

unmeasured variable, and the magnitude and direction of the confounding bias.  In this study, we 

used hypothetical data generated directly from our assumed causal structure and prior inputs 

empirically derived from the hypothetical cohort.  Outside of a simulation study, these items 

would be specified and varied through careful consideration of expert opinion, literature review, 

and (ideally) statistical modeling using similar studies for comparison.  Indeed, the method 

described here was developed for initial use in a large pooled epidemiologic study – where prior 

distributions can be derived by study, study type, geographical location, demographic 

distribution of the study population, etc., which will allow for a realistic treatment of the 

potential bias over a series of probabilistic sensitivity analyses.  In the absence of such data this 

method will perform as well as external adjustment under realistic hypothetical priors – with the 

added benefit of being approachable to the end-user, as the complexities of this method are 

embedded in the imputation step, before any statistical analysis is undertaken.  As with any bias 

modeling strategy, unrealistic priors will produce unrealistic results.   
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3. STUDY 2 

 

SELECTION BIAS MODELING USING OBSERVED DATA AUGMENTED WITH 

IMPUTED RECORD-LEVEL PROBABILITIES  
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3.1. ABSTRACT 

Introduction: Selection bias is a form of systematic error that can be severe in compromised 

study designs as in case-control studies with inappropriate selection of cases or control series 

(e.g., Berksonian bias or non-response bias) or in follow-up studies that suffer from extensive 

loss of contact with participants (e.g., loss to follow-up, follow-up bias).  External adjustment for 

selection bias in the form of a sensitivity analysis is commonly undertaken when such bias is 

suspected, but methods to perform such an analysis are often complex and unwieldy.  In this 

work, we introduce a flexible method of record-level data augmentation that can be used in both 

case-control and follow-up studies in order to perform sensitivity analysis for selection bias 

without the use of external formula. 

Methods: Through a series of simulation studies, we demonstrate how investigators can use 

externally obtained bias parameters in easy-to-implement equations combined with data on 

respondents or uncensored to simulate or impute the corresponding selection probability for each 

respondent under the assumed selection and data generating mechanism, as would be depicted in 

a directed acyclic graph (DAG). Selection bias can then be adjusted using inverse probability of 

selection weighted fitting of any planned outcome regression. 

Results: In simulation studies, we successfully demonstrated the ability to recapture the true 

odds ratio in an observational study analyzing only those in the selected strata (responders) by 

assigning weights based the probability of selection, which were simulated on the basis of an 

assumed causal structure.   

Conclusion: We elucidated a flexible method of selection bias modeling that uses existing data 

and internal or external bias parameters to simulate selection.  This record-level technique is 
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applicable to any type of observational study.  It is especially desirable for use in pooled studies 

that combine studies that may be affected by varying levels of selection bias with other studies 

that may not be affected by selection bias.   

3.2. INTRODUCTION 

Selection bias is a form of systematic error that can be severe in compromised study designs as 

in case-control studies with inappropriate selection of cases or control series (e.g., Berksonian 

bias or non-response bias) or in follow-up studies that suffer from extensive loss of contact with 

participants (e.g., loss to follow-up, follow-up bias). Adjusting for selection bias in a study 

requires knowledge of or plausible assumptions about the factors that affect the selection 

mechanism.  If the parameters of the selection mechanism are known or can be assumed 

reasonably, a selection factor can be used to adjust the biased measure of association, typically 

the sample odds ratio [29, 37-39].  This method is formulaic, requiring external adjustment to 

each outcome model in a sensitivity analysis.  In studies affected by follow-up bias, inverse 

probability of censoring weighted (IPCW) fitting of the target model can be used to create a 

pseudo-population that mimics the underlying cohort (including those who were lost to follow 

up) [40].  This entails modeling censoring as a function of last fully observed exposure and 

measured risk factors that affect both censoring and the endpoint under study, which requires 

having the said factors measured for both the censored and uncensored. This method generates 

record-level selection probability and its inverse can be used as a weighting factor incorporated 

into the analytical dataset before any outcome models are run.  A distinct advantage to record-

level estimation of the selection probabilities is the possibility for a variety of bias parameters to 

be applied to a single or combined dataset, such as one which is composed of multiple studies. 

Additionally, record-level data augmentation for bias analysis can allow end-users to conduct 
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different analyses without and with adjustment for selection bias for different association or 

effect measures of interest using shared datasets, own statistical software and regression methods 

of choice, without resorting to cumbersome and repetitive formula-based external adjustments.  

Nonetheless, it is often harder for investigators who do not have additional data on variables that 

predict selection among the censored or non-respondents to conduct meaningful bias analysis, 

without resorting simplistic or unwieldy bias formulas. 

In this paper, we demonstrate how investigators can use externally obtained bias parameters in 

easy-to-implement equations combined with data on respondents or uncensored to simulate or 

impute the corresponding selection probability for each respondent under the assumed selection 

and data generating mechanism, as would be depicted in a directed acyclic graph (DAG). 

Selection bias can then be adjusted using IPCW fitting of any planned outcome regression. This 

record-level technique is applicable to any observational study.  It is especially desirable for use 

in pooled studies that combine studies that may be affected by varying levels of selection bias 

with other studies that may not be affected by selection bias.  We formalize this technique using 

DAGs and probability and illustrate its use with a series of simulation studies. 

3.3. NOTATION AND METHODS 

Let X be a binary exposure, Y a binary disease outcome, Z be a set of confounding variables that 

are common causes of both X and Y, and S be a binary selection factor affected by both X and Y, 

such that exposure in the population can be represented by the probability of P(X=1|Z=z), 

prevalence of disease among the unexposed can be represented by the probability P(Y=1|X=x, 

Z=z), and those selected into the study population can be represented by the probability 
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P(S=1|X=x, Y=y, Z=z).  Assuming no unmeasured confounding, the causal odds ratio of Y on X 

can be represented by the conditional odds ratio, ORYX|Z .  

In the language of DAGs, selection bias is the result of collider bias, which occurs when the 

exposure (or cause of the exposure) and outcome (or cause of the outcome) both directly or 

indirectly affect selection into the study.  The use of DAGs to express these causal relationships 

imparts a basic set of rules that have been extensively described elsewhere [32-36].  The minimal 

structure for collider bias is depicted in figure 3.1. 

 

Figure 3.1 A DAG representing marginally independent but conditionally (on S=1) dependent X and Y; a simple 

example of collider bias. 

 

This figure shows that the marginally independent exposure X and outcome Y can become 

conditionally dependent given selection S=1. Figure 3.2 shows another example. 
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Figure 3.2 A DAG representing marginally independent but conditionally (on S=1) dependent X and Y, another 

example of collider bias as a result of uncontrolled common causes of X-S and Y-S     

 

Figure 3.3 Scenario A – A DAG representing marginally independent but conditionally (on S=1) dependent X and 

Y, with 4 confounding variables Z1, Z2, Z3, and Z4. 

 

 

Figure 3.4 Scenario B – A DAG representing marginally dependent X and Y with additional conditional (on S=1) 

dependency (collider biasing path) and 4 confounding variables Z1, Z2, Z3, and Z4. 
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Figures 3.3 and 3.4 show scenarios where the selection caused by exposure X, confounding 

variable set Z (= Z1, Z2, Z3, and Z4) and outcome Y. In either scenario, the joint probability of 

S=1, y, x, and z is given by: 

(1) P(S  1      )  P(S  1|     )P( |   )P( | )P( )  

The term P(S=1|y,x,z) is the probability of selection given the observed data on Y, X and Z.  To 

obtain the selection-bias-free joint probability P(y, x, z) or P(S=1)P(y, x, z), we weight the 

observed P(S=1, y, x , z) by the inverse of P(S=1|y,x, z) or P(S=1|y,x, z)/P(S=1). This entails 

weighting all records in the S=1 sample by either 1/P(S=1|y,x, z) or P(S=1)/P(S=1|y,x, z) in a 

procedure known as inverse-probability-weighting. We will call this procedure inverse-

probability-of-selection-weighting (IPSW) to generalize the notion of IPCW. 

The conditional probability of selection P(S=1|y,x, z) is unknown, but it can be modeled using a 

logistic equation with bias parameter set 𝜷 as follows: 

(2)  o  t(P(S  1|        )                                          

         

where    is the log odds of selection S=1 when Y=0, X=0 and Z=0 (indicating a degree of 

selection that is independent of Y, X, and Z);     is the log odds ratio (OR) relating selection S 

and Y when X=Z=0;     is the log odds ratio relating S and X when Y=Z=0;     is the log odds 

ratio relating S and Z when Y=X=0;      is the logarithm of the ratio of (i) the odds ratio 

relating S and Y among X=1 and Z=0 to (ii) the odds ratio relating S and Y among X=0 and Z=0 

(that is, log(ORSY|X=1,Z=0/ORSY|X=0,Z=0) = log(ORSX|Y=1,Z=0/ORSX|Y=0,Z=0), by the symmetry of the 

odds ratio);    𝐙 is the logarithm of the ratio of (i) the odds ratio relating S and Y when Z=1 and 
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X=0 to (ii) the odds ratio relating S and Y when Z=0 and X=0  (that is, log(ORSY|Z=1,X=0/ ORSY| 

Z=0,X=0) = log(ORSZ| Y=1,X=0/ORSZ| Y=0,X=0));    𝐙 is the logarithm of the ratio of (i) the odds ratio 

relating S and X when Z=1 and Y=0 to (ii) the odds ratio relating S and X when Z=0 and Y=0  

(that is, log(ORSX|Z=1,Y=0/ORSX| Z=0,Y=0) = log(ORSZ| X=1,Y=0/ORSZ| X=0,Y=0)); and     𝐙 is the 

logarithm of the ratio of two ratios, namely the ratio of (i) the ratio of the odds ratio relating S 

and Y when X=1 and Z=1 and the odds ratio relating S and Y when X=0 and Z= 1 to (ii) the ratio 

of the odds ratio relating S and Y when X=1 and Z=0 and the odds ratio relating S and Y when 

X=0 and Z= 0 (that is, log[(ORSY|X=1,Z=1/ORSY|X=0,Z=1)/(ORSY|X=1,Z=0/ORSY|X=0,Z=0)]). This     𝐙 is 

alternatively given by log[(ORSX|Y=1,Z=1/ORSX|Y=0,Z=1)/(ORSX|Y=1,Z=0/ORSX|Y=0,Z=0)] = 

log[(ORSZ|Y=1,X=1/ORSZ|Y=0,X=1)/( ORSZ|Y=1,X=0/ORSZ|Y=0,X=0)]. 

The expit transform expit(logit(P(S=1|y,x, z))) yields the selection probability P(S=1|y,x, 

z) for each actually selected (S=1) record in the dataset conditional on their Y, X and Z values 

and given the externally obtained 𝜷 above. An important advantage of using the logistic model to 

estimate the selection probability is that it will be bounded by 0 and 1, as a probability should. In 

some scenarios, the product term parameters might be presumed to be null, but misspecification 

of it as null in a selection mechanism that involves product terms might result in insufficient bias 

adjustment. These bias parameters should be defined using knowledge of the selection process, 

or the underlying source population. In most cases, these parameters will not be known, and any 

selection bias adjustment attempt will need to use a range of plausible priors for the bias 

parameters to conduct robust sensitivity analysis. We reiterate that the key difference between 

this technique (IPSW) and the established IPCW used in longitudinal data with censoring is that 

the betas or bias parameters are supplied to the dataset in our technique while they are estimated 

from the observed data in IPCW. 
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3.3.1. ILLUSTRATION 1: PROOF OF CONCENT SIMULATION USING 

“CORRECT” BIAS PARAMETERS  

The aim of illustration 1 was to provide a proof of principle using a valid, empirically derived set 

of bias parameters from a hypothetical cohort in which both strata S=1 and S=0 were simulated.  

Using the equation in expression (2), and IPSW techniques, we demonstrate the ability to 

recovery of the true ORYX in an analysis involving only the S=1 stratum.  To do this, we 

simulated a large cohort study (N=100,000) with one dichotomous exposure variable (X), two 

dichotomous confounder variables (Z1 and Z2), one continuous confounder variable (Z3), one 

trichotomous confounder variable (Z4), and a dichotomous disease outcome (Y).  The data 

generating mechanism was based on the relationships between these variables as depicted in the 

causal structures, figure 3.3 and 3.4.  In scenario A (figure 3.3) Y is marginally independent of X, 

and in scenario B (figure 3.4), X causes Y. 

Z1 and Z2 were generated by random draws from independent Bernoulli distributions with 

success probability of P(Z1=1) = 0.3 and P(Z2=1)=0.3.  Z3 was generated from the normal 

distribution such that Z3 ~N(0 1).  Z4 was generated from two conditional Bernoulli 

distributions such that the resulting two indicator variables combined made an exclusive 

categorization with mean population distributions P(Z4=1)=0.4, P(Z4=2)=0.3 and P(z=0)=0.3.  

The probability of exposure was generated as a function of variables Z1-Z4, and the exposure 

variable was generated from random draws from a corresponding Bernoulli distribution. 

The disease variable was generated from random draws from a Bernoulli distribution as a 

function of the background risk of disease (P(Y=1|X=0,Z1=0,Z2=0,Z3=0,Z4=0)=0.3), the 

exposure status, and Z1-Z4. 



38 
 

Finally S was generated as by drawing from a Bernoulli distribution as a function of X and Y 

according to the expression (1) with varying levels of P(S=1|Y=0,X=0, Z1=0,Z2=0,Z3=0,Z4=0) 

according to the simulation trial. 

Next, we ran logistic regression of Y on X, Z1, Z2, Z3, and Z4 for the entire cohort to determine 

the “true” OR relating Y and X conditional on Z1, Z2, Z3, and Z4 (ORYX|z).  We then fit a binary 

logistic model for S=1 as a function of the other DAG variables in the full cohort, including all 

2-way, 3-way, 4-way and 5-way product terms according to expression (2).  We then restricted 

the cohort to only subjects where S=1 and ran logistic regression of Y on X, Z1, Z2, Z3, Z4 to 

determine the biased OR relating Y and X conditional on Z among the S=1 records, ORYX|z,S=1.  

Finally, we generated each selected records‟ P(S=1|y, x, z) using the bias parameters (β) 

estimated from the full data as described above.  

We then ran logistic regression of Y on X, Z1, Z2, Z3, and Z4 using data on the S=1 records, with 

1/ P(S=1|y, x, z) as the regression weight to estimate the “adjusted” ORYX|z,S-adj.  We repeated this 

illustration for different hypothetical data with different selection bias scenarios by varying the 

effect of X and Y on selection.  Trials 1a-8a correspond to figure 3.3, trials 1b-8b correspond to 

figure 3.4 with no modification by X on the S-Y relationship, and trials 1c-4c correspond to 

figure 3.4 with an added parameter for the modification by X on the S-Y relationship in the data 

generation process.  We evaluated model performance by calculating bias and RMSE comparing 

“true” ORYX|z and “adjusted” ORYX|z,S-adj.  

3.3.2. ILLUSTRATION 2: PERFORMANCE OF A REDUCED ALGORITHM 

The aim of illustration 2 was to evaluate the performance of the algorithm applied in illustration 

1 under less flexible equations that do not account for any 2-way, 3-way-, 4-way, 5-way, or 6-
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way interaction coefficients other than 𝛽𝑆𝑌𝑋 in the bias parameter set (β). To this, we repeated the 

DAG-directed simulation of our probability selection weights for the hypothetical population 

described in illustration 1, excluding all interaction terms in our modeling of P(S=1) from the 

full cohort, using the following modified version of equation (2): 

(3)  o  t(P(S  1|         )                  𝐙          

This resulted in a reduced bias parameter set βr which was used in the IPSW process to weight 

the outcome model in the S=1 stratum.  As in illustration 2, we ran logistic regression of Y on X, 

Z1, Z2, Z3, and Z4 using data on the S=1 records, with 1/ P(S=1|y, x, z) as the regression weight to 

estimate the “adjusted” ORYX|z,S-adj.  We repeated this illustration for different hypothetical data 

with different selection bias scenarios by varying the effect of X and Y on selection.  Trials 1a-8a 

correspond to figure 3.3, trials 1b-8b correspond to figure 3.4 with no modification by X on the 

S-Y relationship, and trials 1c-4c correspond to figure 3.4 with an added parameter for the 

modification by X on the S-Y relationship in the data generation process.  We evaluated the 

reduced model algorithm performance by calculating bias and RMSE comparing “true” ORYX|z 

and “adjusted” ORYX|z,S-adj.  

3.3.3. ILLUSTRATION 3: MISSPECIFIED PRIORS 

The objective of illustration 3 was to demonstrate the performance of the algorithm using 

external bias parameters that are an imperfect measure of the true bias.  We repeated the DAG-

directed simulation of our probability of selection weights for a hypothetical population 

(N=100,000) corresponding to the DAG in figure 3.4, assuming a true causal relationship 

between X and Y (ORYX|z = 2).  This time we applied bias parameters with slight 

misspecification (-20% to +20%) of the true empirical bias parameters.  For this illustration, true 
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prevalences in the hypothetical population were held constant as follows:  P(S=1) = 0.2, 

P(X=1|z=0) = 0.3 and P(Y=1|x=0, z=0) =0.5.  The trials were performed twice, once with a 

strong level of selection bias:  βSX = 5,   βSY= 5 and  βSYX = 5 (scenario d), and once with a weak 

to moderate level of selection bias:  βSX = 2 and  βSY= 2 and  βSYX= 0.8 (scenario e). In both 

scenarios, these 3 parameters were “misspecified” by multiplying or dividing by 0.1 and 0.2 to 

represent the bias adjustment under incorrect externally applied bias parameters. This resulted in 

a total of 34 trials, which comprised scenarios d and e.  As in scenarios a-c, we evaluated model 

performance by calculating bias and RMSE comparing “true” ORYX|z and “adjusted” ORYX|z,S-adj.  

3.4. RESULTS 

In table 3.1 we simulated populations from the DAGs pictured in figures 3.3 and 3.4 and 

attempted to use inverse probability weighting to correct for the selection bias effect that was the 

result of conditioning on the collider at the S node. All prior inputs were correctly specified from 

the underlying hypothetical population. Generally, we observed a downward bias in any model 

that included a positive relationship between exposure and selection and disease and selection.  If 

a negative parameter were included for one of these direct effects, the bias was upward.  Bias 

adjustment was adequate (all bias levels were <.10) in all models.  Variation in the population 

characteristics P(S=1), P(X=1|Z=0), and P(Y=1|X=0, Z=0) did not result in any discernible 

pattern of bias adjustment accuracy.  Increasing the  βSX and  βSY resulted in slightly reduced 

accuracy of the bias adjustment.  Addition of the interaction parameter,  βSYX, also slightly 

degraded bias adjustment performance. 

In table 3.2 we carried forward the simulation from DAG 3b, this time including a varying 

degree of misspecification of the prior inputs (-20% to +20%).  We did this twice, once for a 
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strong selection bias (scenario d) and once for a moderate to weak selection bias (scenario e).  In 

both scenarios, misspecification of the    or the  βSYX  parameters did not greatly inhibit bias 

adjustment.  Misspecification of the  βSX and  βSY resulted in inadequate bias adjustment in the 

presence of strong selection bias (scenario d). 
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Table 3.1 Correctly specified priors for adjustment of collider bias in a cohort (N=100,000) defined by the DAGs in figure 3.3 and 3.4 

Trial P(S=1) P(X=1|z=0) P(y|x=0, z=0) 𝐞  𝐗 𝐞  𝐘 𝐞  𝐘𝐗  

True 

ORYX|z 

Biased 

ORYX|z,S=1 

Bias adjusted 

ORYX|z,S-adj 
Bias

1 
RMSE

2 

            

1a 0.10 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.59 (0.55, 0.63) 1.01 (0.98, 1.05) 0.0037 0.0178 

2a 0.20 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.57 (0.54, 0.60) 1.01 (0.98, 1.04) 0.0014 0.0174 

3a 0.50 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.70 (0.67, 0.73) 1.01 (0.97, 1.04) -0.0002 0.0174 

4a 0.70 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.81 (0.78, 0.84) 1.01 (0.97, 1.04) -0.0008 0.0174 

5a 0.10 0.3 0.5 0.7 0.7 1 1.01 (0.97, 1.04) 0.99 (0.88, 1.12) 1.01 (0.98, 1.05) 0.0046 0.0180 

6a 0.10 0.5 0.5 10 0.5 1 1.00 (0.96, 1.03) 1.25 (1.13, 1.39) 0.99 (0.96, 1.03) -0.0042 0.0186 

7a 0.10 0.5 0.5 10 5 1 1.00 (0.96, 1.03) 0.44 (0.41, 0.47) 0.99 (0.96, 1.03) -0.0018 0.0182 

8a 0.10 0.5 0.5 10 10 1 1.00 (0.96, 1.03) 0.33 (0.30, 0.35) 0.99 (0.96, 1.03) -0.0032 0.0183 

            

1b 0.10 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.14 (1.06, 1.23) 1.98 (1.90, 2.05) 0.0026 0.0190 

2b 0.20 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.10 (1.04, 1.17) 1.97 (1.90, 2.05) 0.0017 0.0189 

3b 0.50 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.37 (1.31, 1.43) 1.97 (1.90, 2.05) -0.0001 0.0188 

4b 0.70 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.58 (1.52, 1.65) 1.97 (1.90, 2.05) -0.0015 0.0189 

5b 0.10 0.3 0.5 0.7 0.7 1 1.97 (1.90, 2.05) 1.96 (1.71, 2.24) 1.99 (1.92, 2.06) 0.0144 0.0237 

6b 0.10 0.5 0.5 10 0.5 1 1.97 (1.90, 2.04) 2.47 (2.22, 2.75) 1.97 (1.90, 2.04) 0.0009 0.0189 

7b 0.10 0.5 0.5 10 5 1 1.97 (1.90, 2.04) 0.86 (0.79, 0.93) 1.96 (1.89, 2.04) -0.0037 0.0193 

8b 0.10 0.5 0.5 10 10 1 1.97 (1.90, 2.04) 0.64 (0.59, 0.69) 1.96 (1.89, 2.04) -0.0050 0.0196 

            

1c 0.20 0.3 0.5 5 5 0.4 1.97 (1.90, 2.05) 0.91 (0.86, 0.96) 1.97 (1.90, 2.05) -0.0003 0.0188 

2c 0.20 0.3 0.5 5 5 0.8 1.97 (1.90, 2.05) 1.07 (1.00, 1.13) 1.97 (1.90, 2.05) 0.0018 0.0189 

3c 0.20 0.3 0.5 5 5 2.0 1.97 (1.90, 2.05) 1.19 (1.12, 1.26) 1.97 (1.90, 2.05) 0.0017 0.0189 

4c 0.20 0.3 0.5 5 5 5.0 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.97 (1.90, 2.05) 0.0018 0.0189 

            
1Bias=True OR – Bias adjusted OR 
2 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
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Table 3.2 Reduced models with correctly specified priors for adjustment of collider bias in a cohort (N=100,000) defined by the DAGs in figure 3.3 and 3.4 

Trial P(S=1) P(x=1|z=0) P(Y=1|X=0, Z=0) 𝐞  𝐗 𝐞  𝐘 𝐞  𝐘𝐗  

True 

ORYX|z 

Biased 

ORYX|z,S=1 

Bias adjusted 

ORYX|z,S-adj 
Bias

1 
RMSE

2 

            

1a 0.10 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.59 (0.55, 0.63) 1.00 (0.97, 1.04) -0.0047 0.0181 

2a 0.20 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.57 (0.54, 0.60) 1.00 (0.97, 1.04) -0.0055 0.0183 

3a 0.50 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.70 (0.67, 0.73) 1.01 (0.98, 1.04) 0.0014 0.0174 

4a 0.70 0.3 0.5 5 5 1 1.01 (0.97, 1.04) 0.81 (0.78, 0.84) 1.01 (0.98, 1.05) 0.0042 0.0179 

5a 0.10 0.3 0.5 0.7 0.7 1 1.01 (0.97, 1.04) 0.99 (0.88, 1.12) 1.04 (1.00, 1.07) 0.0265 0.0317 

6a 0.10 0.5 0.5 10 0.5 1 1.00 (0.96, 1.03) 1.25 (1.13, 1.39) 0.98 (0.94, 1.01) -0.0162 0.0243 

7a 0.10 0.5 0.5 10 5 1 1.00 (0.96, 1.03) 0.44 (0.41, 0.47) 0.97 (0.94, 1.01) -0.0230 0.0293 

8a 0.10 0.5 0.5 10 10 1 1.00 (0.96, 1.03) 0.33 (0.30, 0.35) 0.97 (0.94, 1.01) -0.0244 0.0304 

            

1b 0.10 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.14 (1.06, 1.23) 1.94 (1.87, 2.01) -0.0315 0.0367 

2b 0.20 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.10 (1.04, 1.17) 1.95 (1.88, 2.03) -0.0191 0.0268 

3b 0.50 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.37 (1.31, 1.43) 1.98 (1.91, 2.05) 0.0042 0.0193 

4b 0.70 0.3 0.5 5 5 1 1.97 (1.90, 2.05) 1.58 (1.52, 1.65) 1.98 (1.91, 2.05) 0.0040 0.0192 

5b 0.10 0.3 0.5 0.7 0.7 1 1.97 (1.90, 2.05) 1.96 (1.71, 2.24) 2.05 (1.97, 2.12) 0.0731 0.0755 

6b 0.10 0.5 0.5 10 0.5 1 1.97 (1.90, 2.04) 2.47 (2.22, 2.75) 1.93 (1.86, 2.01) -0.0335 0.0385 

7b 0.10 0.5 0.5 10 5 1 1.97 (1.90, 2.04) 0.86 (0.79, 0.93) 1.90 (1.83, 1.97) -0.0672 0.0698 

8b 0.10 0.5 0.5 10 10 1 1.97 (1.90, 2.04) 0.64 (0.59, 0.69) 1.91 (1.84, 1.98) -0.0576 0.0607 

            

1c 0.20 0.3 0.5 5 5 0.4 1.97 (1.90, 2.05) 0.91 (0.86, 0.96) 1.91 (1.84, 1.98) -0.0605 0.0634 

2c 0.20 0.3 0.5 5 5 0.8 1.97 (1.90, 2.05) 1.07 (1.00, 1.13) 1.92 (1.85, 1.99) -0.0530 0.0563 

3c 0.20 0.3 0.5 5 5 2.0 1.97 (1.90, 2.05) 1.19 (1.12, 1.26) 1.92 (1.85, 2.00) -0.0490 0.0525 

4c 0.20 0.3 0.5 5 5 5.0 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.93 (1.86, 2.01) -0.0405 0.0447 

            
1Bias=True OR – Bias adjusted OR 
2 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)   
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Table 3.3 Misspecified priors for adjustment of collider bias in a cohort (N=100,000) defined by the DAG in figure 3.4
1 

Trial 
True Bias Parameters Mis-

specified 

Parameter 

Degree of mis-

specification 

True 

ORYX|z 

Biased 

ORYX|z, S=1 

Bias adjusted 

ORYX|z,S-adj 
Bias

2 
RMSE

3 

   𝐞  𝐗  𝐞  𝐘  𝐞  𝐘𝐗  

            

1d 0.20 5 5 5 None None 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.97 (1.90, 2.05) 0.0018 0.0189 

2d 0.20 5 5 5    -20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.98 (1.91, 2.06) 0.0106 0.0227 

3d 0.20 5 5 5    -10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.98 (1.91, 2.06) 0.0114 0.0225 

4d 0.20 5 5 5    +10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.95 (1.89, 2.03) -0.0187 0.0260 

5d 0.20 5 5 5    +20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.92 (1.86, 1.99) -0.0502 0.0532 

6d 0.20 5 5 5  βSX -20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.72 (1.66, 1.79) -0.2498 0.2505 

7d 0.20 5 5 5  βSX -10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.85 (1.78, 1.92) -0.1237 0.1251 

8d 0.20 5 5 5  βSX +10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 2.10 (2.02, 2.18) 0.1253 0.1268 

9d 0.20 5 5 5  βSX +20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 2.22 (2.14, 2.30) 0.2455 0.2462 

10d 0.20 5 5 5  βSY  -20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.72 (1.66, 1.78) -0.2546 0.2553 

11d 0.20 5 5 5  βSY  -10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.85 (1.78, 1.92) -0.1260 0.1274 

12d 0.20 5 5 5  βSY  +10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 2.10 (2.02, 2.18) 0.1274 0.1288 

13d 0.20 5 5 5  βSY  +20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 2.22 (2.14, 2.31) 0.2493 0.2500 

14d 0.20 5 5 5  βSYX -20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 2.00 (1.93, 2.08) 0.0305 0.0358 

15d 0.20 5 5 5  βSYX -10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.99 (1.92, 2.06) 0.0147 0.0239 

16d 0.20 5 5 5  βSYX +10% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.96 (1.89, 2.04) -0.0087 0.0207 

17d 0.20 5 5 5  βSYX +20% 1.97 (1.90, 2.05) 1.24 (1.17, 1.32) 1.96 (1.89, 2.04) -0.0087 0.0207 

            

1e 0.20 2 2 0.8 None None 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.98 (1.91, 2.06) 0.0112 0.0219 

2e 0.20 2 2 0.8    -20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.97 (1.90, 2.05) 0.0009 0.0206 

3e 0.20 2 2 0.8    -10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.98 (1.90, 2.06) 0.0067 0.0208 

4e 0.20 2 2 0.8    +10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.99 (1.92, 2.06) 0.0144 0.0230 

5e 0.20 2 2 0.8    +20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.99 (1.92, 2.06) 0.0165 0.0237 

6e 0.20 2 2 0.8  βSX -20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.95 (1.88, 2.02) -0.0218 0.0284 

7e 0.20 2 2 0.8  βSX -10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.97 (1.90, 2.04) -0.0055 0.0193 

8e 0.20 2 2 0.8  βSX +10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.00 (1.93, 2.08) 0.0283 0.0341 
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Trial 
True Bias Parameters Mis-

specified 

Parameter 

Degree of mis-

specification 

True 

ORYX|z 

Biased 

ORYX|z, S=1 

Bias adjusted 

ORYX|z,S-adj 
Bias

2 
RMSE

3 

   𝐞  𝐗  𝐞  𝐘  𝐞  𝐘𝐗  

9e 0.20 2 2 0.8  βSX +20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.02 (1.94, 2.10) 0.0457 0.0496 

10e 0.20 2 2 0.8  βSY  -20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.95 (1.88, 2.03) -0.0190 0.0266 

11e 0.20 2 2 0.8  βSY  -10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.97 (1.90, 2.04) -0.0041 0.0191 

12e 0.20 2 2 0.8  βSY  +10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.00 (1.93, 2.08) 0.0268 0.0328 

13e 0.20 2 2 0.8  βSY  +20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.02 (1.94, 2.09) 0.0427 0.0467 

14e 0.20 2 2 0.8  βSYX -20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.92 (1.85, 2.00) -0.0495 0.0529 

15e 0.20 2 2 0.8  βSYX -10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 1.95 (1.88, 2.03) -0.0196 0.0272 

16e 0.20 2 2 0.8  βSYX +10% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.02 (1.94, 2.09) 0.0428 0.0467 

17e 0.20 2 2 0.8  βSYX +20% 1.97 (1.90, 2.05) 1.63 (1.53, 1.75) 2.02 (1.94, 2.09) 0.0428 0.0467 

     
       

1Simulated prevalences (probabilities) in the hypothetical population were held constant as follows: P(S=1) = 0.2, P(X=1|Z=0) = 0.3 and P(Y=1|X=0, Z=0) = 0.5. The true ORYX|Z was simulated as 2.0. 
2Bias=True OR – Bias adjusted OR 
3 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
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3.5. DISCUSSION 

We have demonstrated a method of selection bias control using record level data augmentation 

instead of external formula adjustment, which is based on principals of DAGs and the 

recoverability of the odds ratio from an identified causal structure [41].  We used inverse 

probability of selection weighting (IPSW) to create a pseudo population that resembled both the 

selected and non-selected strata, and were able to produce unbiased estimates of the causal odds 

ratio using only the selected stratum.  This method is distinct from IPCW because it need not be 

based on data from censored individuals in the underlying cohort, and thus may be applicable to 

case-control studies.  Another benefit to this method is that the individual level data 

augmentation is flexible to allow for varying bias parameters, which is especially advantageous 

in combined data sources where some, but not all, studies are suspected to be affected by 

selection bias.   

Simulation scenarios demonstrate adequate performance of this bias adjustment method under 

empirically derived priors, but the simple framework of the method lends itself easily to use of 

external bias parameters.  Performance is best using fully saturated models, but the reduced 

model forms perform comparably, and with much simpler computational execution.  Application 

of this method under prior misspecification demonstrated that (as would be expected intuitively) 

reweighting the population according to bias parameters that are slightly invalid produces invalid 

results.    

Although this method performs adequately in our simulation scenarios, it is highly dependent on 

accurate or plausible characterization of the magnitude and direction of the bias, most of which 

we derived empirically from the underlying source population.  Under extreme levels of 
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selection bias, upon even slight misspecification of these parameters the bias adjustment 

degrades, and although we did not present examples of it, gross misspecification, or 

misspecification of multiple priors simultaneously could result in entirely invalid adjusted 

estimates.  Even in a detailed sensitivity analysis, inference would be speculative at best if little 

is known about the selection forces in the underlying population. 

We detected a discernible pattern of bias direction in our simulations. When both the exposure 

and disease were positively associated with selection, the bias direction was downward. When 

one was positive and the other was negative, the bias direction was upward.  If the overall 

magnitude of bias was small, this rule of directionality was not as evident.  A thorough 

evaluation of the expected magnitude and direction of selection bias has not yet been published 

in the epidemiologic literature. Suspected examples of severe Berksonian bias have been shown 

to cause extreme downward bias,  to 10-fold decrease in effect estimate [42].  Exploration of the 

potential impact of selection bias in the EMF leukemia literature demonstrated that this type of 

bias could result in a 2-fold increase in effect estimates [43].  Further research and simulation 

studies may be warranted in this area, especially to uncover the pre-requisites for downward vs. 

upward bias in collider-type selection bias.    
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4. STUDY 3 

 

CONFOUNDING BIAS DUE TO UNMEASURED LIFESTYLE AND HORMONAL 

CHARACTERISTICS IN THE INVESTIGATION OF BMI AND TYPE I 

ENDOMETRIAL CANCER: THE EPIDEMIOLOGY OF ENDOMETRIAL CANCER 

CONSORTIUM (E2C2) 
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4.1. ABSTRACT 

Introduction: Modern epidemiologic investigations of the etiology of rare cancers have given 

rise to a flurry of cancer pooling projects, in which multiple studies are combined to enhance 

precision and investigate rare exposures and sub-types of disease. Pooling data from various 

studies can introduce multiple forms of systematic error as a result of combining studies of 

different design types, which utilize different methods of variable measurement, or including one 

or more studies with missing important confounding variables.  As such, when conducting a 

large consortium studies, some attention should be paid to conducting a meaningful quantitative 

sensitivity analysis for bias as a way to guide qualitative interpretation of results.  In this paper, 

we consider the issue of unmeasured confounding in the Epidemiology of Endometrial Cancer 

Consortium (E2C2), and demonstrate the use of a simple algorithm that allows for a quantitative 

bias model to be implemented at the record-level in a study database, rather than by employing 

complex, unwieldy bias formulas for external adjustment. 

Methods: We used directed acyclic graphs (DAGs) and Monte-Carlo methods to perform 

empirical prior model-based simulation and subsequent imputation of three partially measured 

important confounding variables (smoking status, ever use of estrogen-only hormone 

replacement therapy, and diabetes) for the relationship between BMI and type I endometrial 

cancer (EC) in the E2C2 pooled database.  We performed routine, complete case statistical 

analysis of the relationship between BMI and type I EC and compared this to bias adjusted 

estimates generated using the imputed data.    

Results: After adjustment for each confounding variable individually, and all three 

simultaneously, we noted small to moderate attenuations in the odds ratio estimates for the BMI 
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type I EC relationship in pooled and by-study analyses.  These attenuations were most notable in 

studies with larger proportions of missing confounding variables. 

Conclusion: We provide a very detailed demonstration of the bias model performance in a large, 

multi-study epidemiologic investigation of endometrial cancer.  We also found evidence that, 

assuming a valid causal model, the relationship between BMI and type I EC in this study is 

robust to the influence of partially measured confounding by smoking, estrogen-only hormone 

replacement therapy, and diagnosis of diabetes. 

4.2. INTRODUCTION 

Given the rarity of some cancers, epidemiologists and other health researchers often resort to 

pooling data to achieve the power needed for studies of rare outcomes associations. A pooled 

data analysis is the combining of raw data from multiple studies, recoding to fit a single pooled 

“standardized” database, and then analyzing all studies as one.  This is different from a 

traditional meta-analysis of point estimates, which involves extracting point estimates from 

published literature and then summarizing over the extracted point estimates.  The advantages of 

pooling are vast. Consortium projects that combine multiple studies can vastly increase power 

and efficiency of their desired investigations.  This allows for less prevalent outcomes to be 

studied as risk factors, as well as the investigation of effect heterogeneity. Additionally, pooling 

projects allow for the study of risk factors in populations that are often underrepresented in 

epidemiology, such as minority ethnicities. When compared with the meta-analysis of point 

estimates, standardized pooling allows for better control of systematic biases, as well as careful 

investigation and explanation of the heterogeneity within and across studies.  Pooling can also 

provide an opportunity to estimate effect measures that may not have been reported originally for 
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all the individual studies [15].  Pooling data from various studies and sources is not without its 

limitations, however.  Studies of different design types are often combined and treated as the 

same design, methods of variable measurement may vary from study to study, and important risk 

factors or confounding variables may not be collected in all of the pooled studies.  The creation 

of a standardized database may result in the loss of information when partially unmeasured 

variables are dropped across studies, or when categories are collapsed to fit a standardized 

framework of variable definition. All of these limitations are likely to result in bias.   

Historically, most published epidemiologic studies include a qualitative treatment of how 

potential bias sources may be influencing the association estimates in the discussion section of 

the papers.  While this is often sufficient for small or low powered studies, larger or pooled 

studies can benefit from a quantitative treatment of potential bias due to uncontrolled 

confounding, measurement error or selective (non)response. Unfortunately, accessible 

methodologic literature on how to handle bias in pooling projects is limited.  Indeed, some of the 

bias formulas for external adjustment are very cumbersome and implementing them across 

multiple investigators in a consortium might prove difficult, especially because each study in the 

pool might contribute a slightly different level of bias depending on the population or study 

conduct.  

In this paper, we consider the issue of uncontrolled confounding in cancer pooling studies. 

Recognizing that uncontrolled confounding can be cast a missing data problem [5], one possible 

solution to using flexible but unwieldy external adjustment bias formulas is to create an 

imputation or simulation model that generates the unmeasured confounding variables for each 

record in the standardized database that can then be used like other variables in subsequent 

statistical analysis undertaken by the consortium. Previous work has described a simple Monte 
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Carlo algorithm based on assumed underlying causal structure and „repair‟ of the joint 

probability distribution of the unmeasured confounding variables given the observed data and 

assumed relationships between the unmeasured and measured variables. The technique is flexible 

to the varying study designs and levels of bias that may be encountered in a data pooling project 

and can be applied to the shared database prior to running any statistical models [Thompson CA, 

Arah OA: Sensitivity analysis for uncontrolled confounding, without bias formulas 

(manuscript)]. The purpose of this paper is to demonstrate this novel method of adjustment for 

uncontrolled confounding, using data from the Epidemiology of Endometrial Cancer Consortium 

(E2C2), and to evaluate the relationship between BMI and type I endometrial cancer, before and 

after adjustment for unmeasured confounding by smoking status, ever use of estrogen-only 

hormone replacement therapy, and the comorbid diagnosis of diabetes. 

4.3. MATERIALS AND METHODS 

4.3.1. DATA SOURCE: THE EPIDEMIOLOGY OF ENDOMETRIAL CANCER 

CONSORTIUM (E2C2) 

The Epidemiology of Endometrial Cancer Consortium (E2C2) is a formally designated NCI 

consortium to study rare cancer.  The objective of the consortium is to pool as many studies of 

endometrial cancer as possible, with goals to study genetic variation, gene-gene interactions, 

gene-environment interactions, diet, and risk profiles of rarer histologic subtypes and 

underrepresented minorities [44].  This project includes 24 studies, 10 prospective cohort studies 

and 14 case-control studies.  Participating cohort studies were included in the database via nested 

case-control sampling: each case and up to four randomly selected controls (who had an intact 

uterus and no evidence of endometrial cancer at the date of the index case diagnosis) were 

matched on age, and in some cases other variables such as race.  In total, there are 17,000 

endometrial cancer cases and 39,384 control subjects.  Studies vary in their design, population 
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size, matching variables, sampling strategies, inclusion criteria, population ethnicities, participant 

ages, matching criteria, and recruitment periods.  The dataset utilized for this study is the core 

risk factors database, which includes all E2C2 study participants and values for all major risk 

factors for endometrial cancer (BMI, weight change, reproductive variables, menopausal status, 

use of hormone replacement therapy and oral contraception, smoking, chronic comorbidities, 

physical activity), as well as demographic characteristics.  Some important risk factors are not 

collected in every study however, which makes this pooling project an ideal example for 

exploration of new bias analysis techniques.  For example one large case control study does not 

have information on smoking, and several studies do not have data on three important 

confounding variables: comorbidity of diabetes, or ever use of estrogen-only hormone 

replacement therapy.  A list of participating studies including study type, location, sample sizes, 

ethnicity distributions, mean age of cases and controls, and extent of missingness for these three 

confounding variables is provided in table 4.1.   
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Table 4.1 Participating studies: location and population description 

Study Site Location 
% 

White 

Total No 

Cases 

Mean age 

cases (SD) 

Total no 

Controls 

Mean age 

controls 

% missing 

Smoking 

% missing 

EHRT 

% 

missing 

Diabetes 

Cohort Studies          

MEC/USC Hawaii, California 26.7 515 65.5 (8.6) 2623 65.9 (8.7) 2.1 5.5 0.0 

NHS 11 US states 94.9 581 61.1 (8.3) 1641 60.7 (8.1) 2.6 0.0 0.0 

CSDLH Canada 96.8 643 60.0 (8.1) 3072 59.9 (6.4) 0.0 24.3 100.0 

CPS-II 21 US states 98.7 572 69.0 (6.4) 2664 63.3 (6.2) 1.9 3.2 14.0 

NLCS Netherlands 100.0 402 70.0 (6.0) 864 69.6 (6.0) 0.0 4.4 0.0 

CTS California 91.2 682 65.6 (10.7) 3010 65.7 (10.6) 0.4 6.8 0.0 

IWHS Iowa 98.4 466 71.5 (6.4) 2212 71.7 (6.5) 1.5 29.6 0.8 

NIH-AARP 8 US areas 93.5 1506 67.5 (5.8) 7400 67.5 (5.8) 2.9 19.0 0.0 

SMC Sweden 100.0 329 70.0 (9.3) 1412 70.3 (9.3) 2.8 46.5 94.7 

BCDDP 29 US clinics 93.2 423 64.4 (7.7) 2418 65.6 (8.3) 14.0 49.7 19.5 

Case control Studies         

Edge New Jersey 90.2 418 60.6 (9.8) 467 64.2 (11.4) 0.0 0.0 0.0 

WISE Philadelphia 79.2 552 62.6 (8.1) 1583 61.3 (8.1) 0.1 28.3 0.0 

Hawaii case-

control 

Hawaii 
23.5 432 57.5 (12.0) 511 56.6 (12.2) 2.9 37.3 2.9 

SECS China 0.0 1071 54.5 (8.5) 1212 54.6 (8.5) 0.0 0.0 0.9 

PECS Poland 100.0 435 60.9 (8.1) 1925 56.3 (10.2) 0.0 0.1 0.9 

US Case-control 5 US clinics 92.2 332 59.3 (10.1) 320 57.9 (10.5) 3.7 13.5 0.8 

Alberta Canada 94.8 474 58.3 (9.5) 1032 58.1 (10.1) 0.0 45.0 0.1 

BAWHS California 90.3 429 61.7 (9.9) 470 61.6 (10.7) 100.0 5.9 100.0 

USC LA Los Angeles 100.0 787 63.0 (5.3) 791 63.1 (5.4) 0.0 0.0 0.0 

ANECS Australia 88.3 740 60.7 (9.4) 1125 61.1 (9.9) 0.1 14.8 0.2 

PEDS New York 97.0 541 62.4 (11.3) 468 63.2 (11.1) 0.2 12.1 89.1 

WNYDS New York 100.0 232 63.5 (9.4) 639 55.9 (10.6) 0.0 0.0 0.1 

Turin Italy 100.0 249 61.3 (7.4) 307 60.4 (7.7) 4.7 24.5 4.9 

CECS Connecticut 93.4 588 60.2 (9.6) 665 61.5 (10.8) 0.0 2.8 0.0 
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The primary objective of this study to demonstrate the use of record-level bias adjustment in the 

E2C2 risk factors database.  We have chosen BMI as the exposure of interest, and we will focus 

on type I endometrial cancer cases only.  We will attempt to adjust for three partially, measured 

confounders: smoking status (never smoker, previous smoker, current smoker), ever use 

estrogen-only hormone replacement (EHRT) therapy and diagnosis of the comorbid condition of 

diabetes.  Based on our understanding of the disease mechanism, we expect the data generating 

mechanism to resemble the DAG in figure 4.1. 

 

Figure 4.1 Suspected measured and partially unmeasured confounding variables in the relationship between BMI 

and type I endometrial cancer (EC) 

 

4.3.2. SIMULATING UNMEASURED CONFOUNDING VARIABLES 

The bias adjustment process used in this study is based on probabilistic missing data imputation 

algorithms based on variable simulation and resampling, for sensitivity analysis of uncontrolled 

confounding.  The method is based on the idea that uncontrolled confounding can be seen as 

missing data [16, 45].  Uncontrolled confounding is an example of all study participants missing 

data on one or more variables needed for confounding control. Selective nonresponse is an 

example of missing all data for invited study participants who did not respond or dropped out. 

Extending this, bias analysis can be recast as a missing data problem, and approached through 
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common methods for data imputation or simulation, provided the analysis is performed under the 

right assumptions [30]. Conventional statistical analysis involves data reduction to equations in 

order to estimate their parameters, but it is also possible to use those equations and parameters to 

produce the data that would have yielded these equations had they not been missing. This 

perspective allows us to generate the missing data that would have been observed had 

unmeasured confounders been absent under the assumed causal structure. This is done by 

repetitively sampling from the “repaired” joint distribution of the observed data and the 

unmeasured confounding variables. This joint distribution is “repaired” using the pre-specified 

equations based on the bias parameters linking the missing data to the non-missing data.  

The underlying causal structure used to guide imputation of the missing confounding variables 

will be visualized using directed acyclic graphs, or DAGs for short. DAGs are directed, not 

cyclic, path diagrams that depict the variables and relationships between those variables in a 

causal epidemiologic investigation.  The use of DAGs to express these causal relationships 

imparts a basic set of rules, which have been extensively described for use in causal analysis 

elsewhere [32-36]. Briefly, in a DAG, nodes are occupied by variables. An arrow originating 

from a node or variable X and pointing to another node Y indicates a direct causal relationship 

between X and Y. Y is also a child or consequence of X. If variables X and Y are caused by 

another variable Z, Z is a common cause of X and Y and thus confounding variable for the 

relationship between X and Y. This common cause path starting from X through Z and on to Y is 

a biasing path between X and Y as it does not represent a (direct or indirect) causal effect of X on 

Y. Without controlling for the confounding variable Z, the path between X and Y is open and 

biasing.   

The data source for this study, the E2C2, lends itself particularly well to the record-level variable 

simulation for eventual bias adjustment because it is a very large database, and all target 
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confounding variables are partially unmeasured.  As such, the biasing parameters can be derived 

empirically from the complete case subjects in the database using a carefully specified model 

designed to capture as much of the variability in the confounding variables as possible.  The 

parameters from this model can then be utilized in a Monte-Carlo simulation step that fills in 

values for the unmeasured confounders repetitively based on the empirical bias parameters and 

the values of the measured variables (i.e., using what has been measured to work back to what 

was unmeasured).  Averaging across the repetitions will allow us to repair the joint distribution 

of the full covariate list, as if the partially measured confounding variables had been measured in 

full. 

4.3.3. STATISTICAL ANALYSES 

We restricted the data to type I endometrial cancer cases and controls.  After describing the 

analytical dataset by study, and participant, including details on the extent of missingness in the 

imputation variables estrogen-only hormone replacement therapy, smoking status and diagnosis 

of diabetes, we generated priors empirically from the data on complete subjects using the 

following DAG variables (age at reference, BMI, race, age at menarche, parity, ever use of 

estrogen-only hormone replacement therapy, ever use of oral contraception, smoking status, and 

case/control status) and all 2-way interactions involving categorical or binary variables to model 

our three imputation variables: smoking status, ever use of estrogen-only hormone replacement 

therapy, and diagnosis of diabetes.  All three models were fit by study type (case-control or 

cohort) because we assumed the bias parameters to be distinct by this variable, and they included 

a random effect for study site.  For ever use of estrogen-only hormone replacement therapy and 

diabetes status, we used a mixed binomial logistic regression model, for smoking status we used 

a mixed multinomial cumulative logistic regression model.  Parameters from these models were 

used to supply probabilistic priors for our variable imputation step, which were then applied via 
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Monte Carlo simulation (replicates=1,000) to fill in missing values for smoking status (first), 

then estrogen-only hormone replacement therapy, then diabetes diagnosis, according to the 

methods described in paper 1 [Thompson CA, Arah OA: Sensitivity analysis for uncontrolled 

confounding, without bias formulas (manuscript)].  Estrogen-only hormone replacement therapy 

was imputed using smoking status imputes when applicable (i.e., if a subject was missing both 

the smoking and EHRT status), and diabetes was imputed using smoking and EHRT imputes 

when applicable (i.e., if a subject was missing all three variables). 

After imputation, the complete case restricted dataset was analyzed for the effect of BMI on type 

I endometrial cancer using conditional logistic regression (matching factors of study site and 

reference age in 5-year increments) controlling for race, age at menarche, parity, ever use of 

estrogen-only hormone replacement therapy, ever use of oral contraception, and smoking status.  

This was then compared to the same analysis using the imputed variables for smoking status 

estrogen-only hormone replacement therapy and diabetes, using lognormal prior distributions of 

the log odds ratios generated from the models for smoking, EHRT and diabetes from complete 

case data; these were considered the “bias-adjusted” estimates.  Since the imputation was done 

using MC methods, the model was fit by repetition, and odds ratio estimates are accompanied by 

simulation intervals (2.5, 50, 97.5 percentiles) of the estimate distributes were generated.  

Complete case (which included only those subjects who were not missing the imputation 

initially) odds ratios and 95% confidence intervals versus “bias-adjusted” (including complete 

case subjects as well as all subjects for whom imputation was performed) odds ratios and 

simulation intervals are shown per 5 kg/m
2
 increase in BMI, overall and by study, as well as by 

categories of BMI (underweight versus normal, overweight versus normal, obese class I versus 

normal and obese class II versus normal).  The latter categorical BMI analysis was also stratified 
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by study type (case versus control) as well as race (whites versus nonwhites).  All statistical 

analyses were performed in SAS version 9.3 (SAS Institute; Cary, NC). 

4.4. RESULTS 

24 studies were included in the analysis, 10 cohort studies and 14 case control studies.  These 

studies varied significantly in the % white population and levels of missingness of the target 

confounding variables (Table 4.1).   

In total, 13,711 cases and 38,519 were eligible for analysis, among them, 140 (1.0%) cases and 

174 (0.5%) controls were excluded for missing race, 239 (1.7%) cases and 713 (1.9%) controls 

were excluded for missing BMI, 159 (1.2%) cases and 421 (1.1%) controls were excluded for 

missing age at menarche, 328 cases (2.4%) and 805 controls (2.1%) were excluded for missing 

parity, and 144 cases (1.1%) and 422 controls (1.1%) were excluded for missing ever use of oral 

contraception. Among cases, we observed higher percentages of women in obese class I (17.4% 

compared to 11.3% among controls), obese class II&III (18.3% compared to 5.3% among 

controls), nulliparity (17.8% compared to 11.9% among controls), higher percentage of ever use 

of estrogen only hormone replacement therapy (12.0% compared to 7.7% among controls), 

slightly lower history of ever use of oral contraception (35.1% compared to 39.4% among 

controls), and a higher percentage of diabetes diagnosis (13.8% compared to 7.8% among 

controls) (Table 4.2).
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Table 4.2 Subject characteristics 

Characteristic Cases Controls 

  N= 13,711 N=38,519 

Race, n (%) 
  

   White 11,317 (82.5) 33,120 (85.9) 

   Black 309 (2.3) 1,518 (3.9) 

   Asian 1,543 (11.3) 2,494 (6.5) 

   Hawaiian/Pacific Islander 100 (0.7) 319 (0.8) 

   Other 302 (2.2) 894 (2.3) 

   Missing/unknown 140 (1.0) 174 (0.5) 

 
  

BMI, mean (SD) 29.0 (7.5) 25.8 (5.2) 

BMI categories, n (%)   

Underweight (<18.5) 176 (1.3) 787 (2.0) 

Normal (18.5-<25) 4,561 (33.3) 18,889 (49.0) 

Overweight (25 to <30) 3,843 (28.0) 11,741 (30.5) 

Obese Class I (30 to <35) 2,386 (17.4) 4,333 (11.3) 

Obese Class II & III (35+) 2,506 (18.3) 2,056 (5.3) 

Missing/unknown 239 (1.7) 713 (1.9) 

Age at menarche, n (%)   

<11 918 (6.7) 1,775 (4.6) 

11-12 2,781 (20.3) 7,687 (20.0) 

13-14 8,127 (59.3) 23,451 (60.9) 

15+ 1,726 (12.6) 5,185 (13.5) 

Missing/unknown 159 (1.2) 421 (1.1) 

Parity, n (%)   

0 2,440 (17.8) 4,592 (11.9) 

1 2,113 (15.4) 4,880 (12.7) 

2 3,828 (27.9) 10,911 (28.3) 

3-4 4,015 (29.3) 13,120 (34.1) 

5+ 987 (7.2) 4,211 (10.9) 

Missing/unknown 328 (2.4) 805 (2.1) 

HRT ever users, n (%)   

   Yes 5,033 (36.7) 13,813 (35.9) 

   No 8,269 (60.3) 23,580 (61.2) 

   missing/unknown 409 (3.0) 1,126 (2.9) 

ET ever users, n (%)   

   Yes 1,648 (12.0) 2,970 (7.7) 

   No 9,977 (72.8) 29,094 (75.5) 

   Missing/unknown 2,086 (15.2) 6,455 (16.8) 

OC ever users, n (%)   

   Yes 4,818 (35.1) 15,173 (39.4) 

   No 8,749 (63.8) 22,924 (59.5) 

   Missing/unknown 144 (1.1) 422 (1.1) 
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Characteristic Cases Controls 

Diabetes diagnosis, n (%)   

   Yes 1,895 (13.8) 3,017 (7.8) 

   No 9,811 (71.6) 29,211 (75.8) 

   Missing/unknown 2,005 (14.6) 6,291 (16.3) 

Smoking, n (%)   

   Never 8,104 (59.1) 20,022 (52.0) 

   Past 3,761 (27.4) 11,485 (29.8) 

   Current 1,242 (9.1) 5,694 (14.8) 

   Missing/unknown 604 (4.4) 1,318 (3.4) 

  
  

 

In complete case analysis for all studies combined, we observed an OR = 1.62 (95% CI 1.59–

1.65) for type I endometrial cancer per 5 kg/m2 increase in BMI.  Adjustment for missing 

smoking status (Table 4.3) did not affect the pooled point estimate, OR = 1.61 (95% SI 1.58-

1.64).  In study specific estimates of this bias adjustment when smoking missingness was high, 

we observed slight attenuation of results: for the cohort study BCDDP (16.9% missing) the OR 

decreased from 1.63 (95% CI 1.38-1.92) to 1.59 (95% SI 1.36-1.86).  In one study in which 

smoking status was never measured, we observed an OR = 1.25 (9%% SI 1.12-1.39) following 

imputation.  

Adjustment for missing estrogen-only hormone replacement therapy (Table 4.4) in the pooled 

analysis also slightly attenuated the per 5 kg/m
2
 OR = 1.58 (95% SI 1.56-1.62).  This attenuation 

was consistently observed in studies with higher levels of estrogen missingness, in the cohort 

studies: CSDLH (24% missing) the per 5 kg/m2 OR was adjusted from 1.74 (95% CI 1.56-1.71) 

to 1.52 (95% SI 1.40-1.68), in IWHS (29.8% missing) the per 5 kg/m2 OR was adjusted from 

1.97 (95% CI 1.76-2.21) to 1.68 (95% SI 1.53-1.84), in SMC (26.6% missing) the per 5 kg/m2 

OR was adjusted from 2.03 (95% CI 1.66-1.92) to 1.67 (95% SI 1.45 to 1.93), and in BCDDP 

(51.7% missing) the per 5 kg/m2 OR was adjusted from 1.63 (95% CI 1.38-1.92) to 1.24 (95% 
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SI 1.11-1.38); in case-control studies: WISE (28.4% missing) the per 5 kg/m2 OR was adjusted 

from 1.75 (95% CI 1.54-1.99) to 1.68 (95% SI 1.51-1.87), in Alberta (44.6% missing) the per 5 

kg/m2 OR was adjusted from 1.75 (95% CI 1.54-1.96) to 1.62 (95% SI 1.48-1.77), in ANECS 

(14.5% missing) the per 5 kg/m2 OR was adjusted from 1.82 (95% CI 1.65-2.01) to 1.72 (95% 

SI 1.58-1.88), and in Turin (20.5% missing) the per 5 kg/m2 OR was adjusted from 1.70 (95% CI 

1.36-2.11) to 1.65 (95% SI 1.35-2.01).  In a comparison analysis using ever use of any type of 

hormone replacement therapy as a confounder substitute for ever use of estrogen-only hormone 

replacement therapy, complete case analysis results were comparable to the bias adjusted results. 

In the diabetes adjustment analysis (table 4.5), sample sizes and complete case results were 

distinct from those presented in tables 4.3 and 4.4 because of the added required covariate of 

diabetes diagnosis.  In the pooled analysis, additional adjustment for diabetes in the complete 

case population resulted in a per 5 kg/m
2
 OR of 1.58 (95% CI 1.55-1.61) which was shifted 

slightly upwards, OR = 1.60 (95% SI 1.57-1.63) after bias adjustment for 10% missingness in the 

diabetes status variable.  However, in studies with extreme levels of diabetes missingness, the 

pattern of bias adjustment was clearly that of attenuation: in the cohort study SMC (93.8% 

missing) the OR was adjusted from 3.84 (95% CI 1.31-11.21) to 2.03 (95% SI 1.64-2.50), and in 

the case control study PEDS (88.7% missing) the OR was adjusted from 1.85 (95% CI 1.13-

3.01) to 1.66 (95% SI 1.46-1.89).  

After adjusting for all 3 confounding variables (table 4.6), some marked attenuation in the per 5 

kg/m
2
 odds ratios were observed in studies with high levels of missingness in one or more 

variables.  In the cohorts studies: for IWHS (31.1% missing) the OR shifted from 1.96 (95% CI 

1.74-2.21) to 1.67 (95% SI 1.52-1.84), for BCDDP (63.4% missing) the OR shifted from 1.70 

(95% CI 1.41-2.05) to 1.27 (95% SI 1.14-1.41); in the case-control studies: for WISE (28.5% 
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missing) the OR shifted from 1.72 (95% CI 1.51-1.95) to 1.63 (95% SI 1.46-1.82), for Alberta 

(44.7% missing) the OR shifted from 1.74 (95% CI 1.54-1.97) to 1.61 (95% SI 1.47-1.77), and 

for PEDS (90.1% missing), the OR shifted from 1.85 (95% CI 1.13-3.01) to 1.67 (95% SI 1.47-

1.89).  In one case control study from Hawaii, which had 35.8% subjects missing one or more 

imputation variables, the bias adjustment resulted in an increased point estimate of 1.70 (95% SI 

1.48-1.96) compared to the complete case OR 1.46 (95% CI 1.22-1.75).  Some marked changes 

after bias adjustment were also observed in the BMI categorical analysis (table 4.7), especially in 

the high BMI categories. In the obese class II/III, the pooled OR shifted from 5.98 (95% CI 5.50-

6.50) to 5.79 (95% SI 5.38-6.23), and similar patterns of attenuation were seen in the study type 

stratification analysis and among white women.  Stratification among non-white women in the 

bias adjusted estimates resulted in an increase of effect in both obese categories: in obese 

category I the OR shifted from 2.09 (95% CI 2.54-3.76) to 3.25 (95% SI 2.71-3.93) and in obese 

category II/II the OR shifted from 7.36 (95% CI 5.77-9.37) to 7.48 (95% SI 5.99-9.35).   

Full descriptions of the models used for empirical prior generation from complete case data as 

well as the parameters generated from them are provided in the appendix tables 7.7-7.9. 
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Table 4.3 Smoking bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

Smoking
4
 

OR
1
 per 5 kg/m

2
 increase Bias adjusted sample 

size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

Complete case analysis 
Bias Adjusted

3
 for 

Smoking 

    
  

All studies combined 10,558 / 29,353 3.4 1.62 (1.59, 1.65) 11,025 / 30,306 1.61 (1.58, 1.64) 

      

Cohort Studies      

MEC/USC 468 / 2,352 0.7 1.57 (1.45, 1.71) 470 / 2370 1.57 (1.45, 1.70) 

NHS 538 / 1,541 2.2 1.48 (1.35, 1.61) 552 / 1,573 1.49 (1.37, 1.63) 

CSDLH 314 / 1,944 0.0 1.74 (1.56, 1.94) 314 / 1,944 1.74 (1.56, 1.94) 

CPS-II 508 / 2,377 1.7 1.56 (1.42, 1.71) 511 / 2,423 1.55 (1.41, 1.70) 

NLCS 351 / 766 0.0 1.50 (1.28, 1.76) 351 / 766 1.50 (1.28, 1.76) 

CTS 580 / 2,516 0.2 1.34 (1.23, 1.45) 582 / 2,521 1.34 (1.24, 1.45) 

IWHS 276 / 1,523 1.4 1.97 (1.76, 2.21) 279 / 1,545 1.96 (1.75, 2.12) 

NIH-AARP 1,124 / 5,588 2.5 1.53 (1.46, 1.60) 1,146 / 5,739 1.52 (1.45, 1.60) 

SMC 159 / 692 2.2 2.03 (1.66, 2.49) 163 / 707 2.06 (1.68, 2.52) 

BCDDP 125 / 1036 16.9 1.63 (1.38, 1.92) 135 / 1262 1.59 (1.36, 1.86) 

      

Case control Studies      

Edge 414 / 464 0.0 1.60 (1.42, 1.79) 414 / 464 1.59 (1.42, 1.79) 

WISE 402 / 1,115 0.1 1.75 (1.54, 1.99) 402 / 1,117 1.75 (1.54, 1.99) 

Hawaii case-control 282 / 305 0.0 1.55 (1.30, 1.85) 282 / 305 1.55 (1.30, 1.85) 

SECS 1,060 / 1,207 0.0 1.78 (1.59, 1.98) 1,060 / 1,207 1.77 (1.59, 1.98) 

PECS 427 / 1,832 0.0 1.45 (1.30, 1.62) 427 / 1,832 1.45 (1.30, 1.61) 

US Case-control 275 / 265 2.7 1.56 (1.37, 1.78) 282 / 273 1.56 (1.37, 1.78) 

Alberta 259 / 567 0.0 1.74 (1.54, 1.96) 259 / 567 1.74 (1.54, 1.96) 

BAWHS
 

0 / 0 100.0 - 426 / 399 1.25 (1.12, 1.39) 

USC LA 787 / 791 0.0 1.46 (1.33, 1.60) 791 / 787 1.46 (1.33, 1.60) 

ANECS 884 / 556 0.0 1.82 (1.65, 2.01) 884 / 556 1.82 (1.65, 2.01) 

PEDS 365 / 437 0.3 1.66 (1.46, 1.88) 366 / 438 1.66 (1.47, 1.88) 
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Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

Smoking
4
 

OR
1
 per 5 kg/m

2
 increase Bias adjusted sample 

size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

Complete case analysis 
Bias Adjusted

3
 for 

Smoking 

WNYDS 232 / 639 0.0 1.74 (1.52, 2.00) 232 / 639 1.74 (1.52, 2.00) 

Turin 160 / 209 0.3 1.70 (1.36, 2.11) 160 / 210 1.70 (1.36, 2.12) 

CECS 568 / 631 0.0 1.68 (1.52, 1.84) 568 / 631 1.67 (1.52, 1.84) 

      
1Conditional logistic regression, adjusted for age, race, parity, smoking status, age at menarche, ever use of oral contraception,  

ever use of estrogen-only hormone replacement therapy. 
2Conditional logistic regression, adjusted for age, race, parity, imputed smoking status, age at menarche, ever use of oral contraception, and ever use of estrogen-only hormone replacement therapy. 
3Smoking imputation using probabilistic priors based on study, study type, case/control status, BMI, age, race, parity smoking status, age at menarche, ever use of oral contraception.  
4% missing calculated out of complete case sample size for all other covariates.  
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Table 4.4 Estrogen-only hormone replacement therapy bias adjusted estimates for the effect of BMI (per 5 kg/m

2
 increase) on type I endometrial cancer 

Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

EHRT
5
 

OR
1
 per 5 kg/m

2
 

increase Bias adjusted 

sample size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

OR
2
 per 5 kg/m

2
 

increase 

Complete case 

analysis 

Bias Adjusted for 

EHRT 

Adjusted for HRT 

(confounder 

substitute) 

 

  

 

   

All studies combined 10,558 / 29,353 16.0 1.62 (1.59, 1.65) 12,395 / 35,123 1.58 (1.56, 1.62) 1.58 (1.55, 1.61) 

       

Cohort Studies       

MEC/USC 468 / 2,352 2.7 1.57 (1.45, 1.71) 480 / 2,419 1.56 (1.44, 1.69) 1.60 (1.48, 1.74) 

NHS 538 / 1,541 0.0 1.48 (1.35, 1.61) 538 / 1,541 1.48 (1.35, 1.61) 1.50 (1.36, 1.66) 

CSDLH 314 / 1,944 24.0 1.74 (1.56, 1.94) 473 / 2,497 1.53 (1.40, 1.68) 1.56 (1.42, 1.72) 

CPS-II 508 / 2,377 3.2 1.56 (1.42, 1.71) 527 / 2,452 1.53 (1.39, 1.67) 1.58 (1.44, 1.74) 

NLCS 351 / 766 4.1 1.50 (1.28, 1.76) 365 / 800 1.51 (1.29, 1.77) 1.50 (1.28, 1.76) 

CTS 580 / 2,516 5.7 1.34 (1.23, 1.45) 612 / 2,671 1.34 (1.24, 1.45) 1.34 (1.34, 1.45) 

IWHS 276 / 1,523 29.8 1.97 (1.76, 2.21) 451 / 2,111 1.68 (1.53, 1.84) 1.74 (1.59, 1.91) 

NIH-AARP 1,124 / 5,588 19.0 1.53 (1.46, 1.60) 1,404 / 6,884 1.46 (1.40, 1.52) 1.49 (1.42, 1.55) 

SMC 159 / 692 46.6 2.03 (1.66, 2.49) 300 / 1,294 1.67 (1.45, 1.93) 1.68 (1.45, 1.94) 

BCDDP 125 / 1,036 51.7 1.63 (1.38, 1.92) 384 / 2,020 1.24 (1.11, 1.38) 1.31 (1.17, 1.46) 

       

Case control Studies       

Edge 414 / 464 0.0 1.60 (1.42, 1.79) 414 / 464 1.59 (1.42, 1.79) 1.60 (1.43, 1.79) 

WISE 402 / 1,115 28.4 1.75 (1.54, 1.99) 546 / 1,574 1.68 (1.51, 1.87) 1.66 (1.49, 1.85) 

Hawaii case-control 282 / 305 35.7 1.55 (1.30, 1.85) 403 / 510 1.79 (1.56, 2.05) 1.53 (1.30, 1.81) 

SECS 1,060 / 1,207 0.0 1.78 (1.59, 1.98) 1,060 / 1,207 1.77 (1.59, 1.98) 1.77 (1.59, 1.98) 

PECS 427 / 1,832 0.1 1.45 (1.30, 1.62) 427 / 1,833 1.45 (1.30, 1.61) 1.46 (1.31, 1.63) 

US Case-control 275 / 265 12.8 1.56 (1.37, 1.78) 314 / 305 1.60 (1.41, 1.82) 1.59 (1.40, 1.81) 

Alberta 259 / 567 44.6 1.74 (1.54, 1.96) 468 / 1,024 1.62 (1.48, 1.77) 1.62 (1.48, 1.77) 

BAWHS
 

399 / 426 5.9  423 / 451   

USC LA 787 / 791 0.0 1.46 (1.33, 1.60) 787 / 791 1.46 (1.33, 1.60) 1.51 (1.37, 1.65) 
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Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

EHRT
5
 

OR
1
 per 5 kg/m

2
 

increase Bias adjusted 

sample size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

OR
2
 per 5 kg/m

2
 

increase 

Complete case 

analysis 

Bias Adjusted for 

EHRT 

Adjusted for HRT 

(confounder 

substitute) 

ANECS 884 / 556 14.5 1.82 (1.65, 2.01) 1016 / 669 1.72 (1.58, 1.88) 1.74 (1.59, 1.90) 

PEDS 365 / 437 12.5 1.66 (1.46, 1.88) 420 / 496 1.62 (1.44, 1.82) 1.63 (1.45, 1.83) 

WNYDS 232 / 639 0.0 1.74 (1.52, 2.00) 232 / 639 1.74 (1.52, 2.00) 1.74 (1.52, 2.00) 

Turin 160 / 209 20.5 1.70 (1.36, 2.11) 197 / 267 1.65 (1.35, 2.01) 1.66 (1.36, 2.03) 

CECS 568 / 631 2.7 1.68 (1.52, 1.84) 577 / 655 1.70 (1.55, 1.87) 1.67 (1.52, 1.84) 

       
1Conditional logistic regression, adjusted for age, race, parity, smoking status, age at menarche, ever use of oral contraception,  
ever use of estrogen-only hormone replacement therapy. 
2Conditional logistic regression, adjusted for age, race, parity, smoking status, age at menarche, ever use of oral contraception, and imputed ever use of estrogen-only hormone replacement therapy. 
3Estrogen imputation using fixed priors based on study, study type, case/control status, BMI, age, race, parity, smoking status, age at menarche, ever use of oral contraception; imputed values for 
smoking status used when necessary. 
4Estrogen imputation using probabilistic priors based on study, study type, case/control status, BMI, age, race, parity, smoking status, age at menarche, ever use of oral contraception. 
5% missing calculated out of complete case sample size for all other covariates. 
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Table 4.5 Diagnosis of diabetes bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

Diabetes
4
 

OR
1
 per 5 kg/m

2
 increase Bias adjusted sample size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 increase 

Complete case analysis Bias Adjusted for Diabetes
3
 

 

  

 

  

All studies combined 9,686 / 25,885 10.9 1.58 (1.55, 1.61) 10,558 / 29,353 1.60 (1.57, 1.63) 

      

Cohort Studies      

MEC/USC 468 / 2,352 0.0 1.57 (1.45, 1.71) 468 / 2,352 1.57 (1.45, 1.71) 

NHS 538 / 1,541 0.0 1.45 (1.33, 1.59) 538 / 1,541 1.45 (1.33, 1.59) 

CSDLH 0 / 0 100.0 - 314 / 1,944 1.73 (1.55, 1.93) 

CPS-II 446 / 2061 13.1 1.54 (1.34, 1.75) 508 / 2,377 1.55 (1.41, 1.71) 

NLCS 351 / 766 0.0 1.51 (1.28, 1.77) 351 / 766 1.51 (1.28, 1.77) 

CTS 580 / 2,516 0.0 1.33 (1.23, 1.44) 580 / 2,516 1.33 (1.23, 1.44) 

IWHS 271 / 1,517 0.6 1.96 (1.74, 2.21) 276 / 1,523 1.95 (1.73, 2.19) 

NIH-AARP 1,124 / 5,588 0.0 1.52 (1.44, 1.59) 1,124 / 5,588 1.52 (1.44, 1.59) 

SMC 17 / 36 93.8 3.84 (1.31, 11.21) 159 / 692 2.03 (1.64, 2.50) 

BCDDP 111 / 908 12.2 1.70 (1.41, 2.05) 125 / 1,036 1.61 (1.36, 1.92) 

      

Case control Studies      

Edge 414 / 464 0.0 1.57 (1.40, 1.76) 414 / 464 1.57 (1.40, 1.76) 

WISE 402 / 1,115 0.0 1.72 (1.51, 1.95) 402 / 1,115 1.72 (1.51, 1.95) 

Hawaii case-control 281 / 305 0.2 1.46 (1.22, 1.75) 282 / 305 1.46 (1.22, 1.75) 

SECS 1,049 / 1,200 0.8 1.72 (1.54, 1.93) 1,060 / 1,207 1.73 (1.54, 1.93) 

PECS 420 / 1,820 0.8 1.40 (1.52, 1.57) 427 / 1,832 1.39 (1.24, 1.55) 

US Case-control 275 / 265 0.0 1.53 (1.34, 1.75) 275 / 265 1.53 (1.34, 1.75) 

Alberta 259 / 566 0.1 1.74 (1.54, 1.97) 259 / 567 1.74 (1.54, 1.97) 

BAWHS
 

0 / 0 100.0 - 399 / 426  

USC LA 787 / 791 0.0 1.45 (1.32, 1.59) 787 / 791 1.45 (1.32, 1.59) 

ANECS 883 / 555 0.1 1.80 (1.63, 1.99) 884 / 556 1.78 (1.61, 1.97) 

PEDS 40 / 51 88.7 1.85 (1.13, 3.01) 365 / 437 1.66 (1.46, 1.89) 

WNYDS 231 / 639 0.11 1.68 (1.46, 1.94) 232 / 639 1.68 (1.46, 1.94) 
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Study 

Complete case 

analysis sample size 

(cases / controls) 

% Missing 

Diabetes
4
 

OR
1
 per 5 kg/m

2
 increase Bias adjusted sample size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 increase 

Complete case analysis Bias Adjusted for Diabetes
3
 

Turin 160 / 209 0.0 1.76 (1.40, 2.20) 160 / 209 1.76 (1.40, 2.20) 

CECS 568 / 631 0.0 1.67 (1.51, 1.84) 568 / 631 1.67 (1.51, 1.84) 

      
1Conditional logistic regression, adjusted for age, race, parity, smoking status, age at menarche, ever use of oral contraception,  

ever use of estrogen-only hormone replacement therapy. 
2Conditional logistic regression, adjusted for age, race, parity, smoking status, age at menarche, ever use of oral contraception, ever use of estrogen-only hormone replacement therapy, and imputed 

diabetes status. 
3Diabetes imputation based on study, study type, case/control status, BMI, age, race, parity smoking status, age at menarche, ever use of oral contraception, ever use of estrogen-only hormone 
replacement therapy. 
4% missing calculated out of complete case sample size for all other covariates.  
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Table 4.6 All three variable (smoking, EHRT, diabetes) bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Complete case 

analysis sample 

size 

(cases / controls) 

% Missing 

one or more 

variables
4
 

OR
1
 per 5 kg/m

2
 increase 

Bias adjusted sample 

size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

Complete case analysis 

Bias Adjusted for 

EHRT, smoking, and 

diabetes 

 
  

 

  

All studies combined 9,686 / 25,885 27.7 1.58 (1.55, 1.61) 12,918 / 36,309 1.56 (1.53, 1.59) 

      

Cohort Studies      

MEC/USC 468 / 2,352 3.6 1.57 (1.45, 1.71) 484 / 2,442 1.56 (1.44, 1.69) 

NHS 538 / 1,541 2.2 1.45 (1.33, 1.59) 552 / 1,573 1.47 (1.34, 1.61) 

CSDLH 0 / 0 100.0 - 473 / 1,833 1.54 (1.40, 1.70) 

CPS-II 446 / 2061 17.3 1.54 (1.34, 1.75) 530 / 2,501 1.54 (1.41, 1.69) 

NLCS 351 / 766 4.1 1.51 (1.28, 1.77) 365 / 800 1.51 (1.29, 1.77) 

CTS 580 / 2,516 6.0 1.33 (1.23, 1.44) 615 / 2,677 1.34 (1.24, 1.45) 

IWHS 271 / 1,517 31.1 1.96 (1.74, 2.21) 455 / 2,141 1.67 (1.52, 1.84) 

NIH-AARP 1,124 / 5,588 21.2 1.52 (1.44, 1.59) 1,431 / 7083 1.45 (1.39, 1.51) 

SMC 17 / 36 96.8 3.84 (1.31, 11.21) 308 / 1,322 1.69 (1.46, 1.96) 

BCDDP 111 / 908 63.4 1.70 (1.41, 2.05) 410 / 2,375 1.27 (1.14, 1.41) 

      

Case control Studies      

Edge 414 / 464 0.0 1.57 (1.40, 1.76) 414 / 464 1.57 (1.40, 1.76) 

WISE 402 / 1,115 28.5 1.72 (1.51, 1.95) 546 / 1,576 1.63 (1.46, 1.82) 

Hawaii case-control 281 / 305 35.8 1.46 (1.22, 1.75) 403 / 510 1.70 (1.48, 1.96) 

SECS 1,049 / 1,200 0.8 1.72 (1.54, 1.93) 1,060 / 1,207 1.73 (1.54, 1.93) 

PECS 420 / 1,820 0.9 1.40 (1.52, 1.57) 427 / 1,833 1.39 (1.24, 1.55) 

US Case-control 275 / 265 15.4 1.53 (1.34, 1.75) 324 / 314 1.55 (1.37, 1.76) 

Alberta 259 / 566 44.7 1.74 (1.54, 1.97) 468 / 1,024 1.61 (1.47, 1.77) 

BAWHS
 

0 / 0 100.0 - 423 / 451 1.25 (1.12, 1.40) 

USC LA 787 / 791 0.0 1.45 (1.32, 1.59) 787 / 791 1.45 (1.32, 1.59) 

ANECS 883 / 555 14.7 1.80 (1.63, 1.99) 669 / 1,016 1.68 (1.53, 1.83) 
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Study 

Complete case 

analysis sample 

size 

(cases / controls) 

% Missing 

one or more 

variables
4
 

OR
1
 per 5 kg/m

2
 increase 

Bias adjusted sample 

size 

(cases / controls) 

OR
2
 per 5 kg/m

2
 

increase 

Complete case analysis 

Bias Adjusted for 

EHRT, smoking, and 

diabetes 

PEDS 40 / 51 90.1 1.85 (1.13, 3.01) 421 / 497 1.67 (1.47, 1.89) 

WNYDS 231 / 639 0.1 1.68 (1.46, 1.94) 232 / 639 1.68 (1.46, 1.94) 

Turin 160 / 209 20.7 1.76 (1.40, 2.20) 197 / 268 1.74 (1.42, 2.14) 

CECS 568 / 631 2.7 1.67 (1.51, 1.84) 577 / 655 1.70 (1.54, 1.87) 

      
1Conditional logistic regression, adjusted for age, race, parity, smoking status, diabetes, age at menarche, ever use of oral contraception,  
ever use of estrogen-only hormone replacement therapy. 
2Conditional logistic regression, adjusted for age, race, parity, imputed smoking status, diabetes, age at menarche, ever use of oral contraception, and ever use of estrogen-only hormone replacement 

therapy. 
4% missing calculated out of complete case sample size for all other covariates. 
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Table 4.7 Categorical BMI – with all bias adjustment (ERT, smoking status, diabetes), by study type and white vs. 

non-white ethnicity 

BMI category 

Complete 

case analysis 

sample size 

(cases / 

controls) 

Complete case 

OR
1
 (95% CI) 

Bias adjusted 

sample size 

(cases / controls) 

Bias Adjusted 

for EHRT, 

smoking, and 

diabetes
 

OR
2
 (95% SI) 

All studies 
  

  

Underweight (<18.5) 122 / 546 0.84 (0.69, 1.03) 165 / 752 0.83 (0.70, 0.99) 

Normal (18.5 to <25) 3,115 / 12,610 1.00 4,363 / 18,109 1.00 

Overweight (25 to <30) 2,794 / 8,118 1.49 (1.40, 1.58) 3,705 / 11,319 1.44 (1.37, 1.51) 

Obese Class I (30 to <35) 1,747 / 3,076 2.60 (2.42, 2.80) 2,281 / 4,156 2.53 (2.38, 2.70) 

Obese Class II & III (35+) 1,908 / 1,535 5.98 (5.50, 6.50) 2,404 / 1,973 5.79 (5.38, 6.23) 

Cohort Studies     

Underweight (<18.5) 43 / 281 1.01 (0.73, 1.41) 64 / 428 0.92 (0.70, 1.20) 

Normal (18.5 to <25) 1,103 / 7,284 1.00 1,817 / 11,431 1.00 

Overweight (25 to <30) 995 / 4,837 1.39 (1.26, 1.53) 1,482 / 7,208 1.32 (1.22, 1.42) 

Obese Class I (30 to <35) 663 / 1,833 2.45 (2.18, 2.74) 909 / 2,585 2.28 (2.08, 2.50) 

Obese Class II & III (35+) 656 / 989 4.59 (4.06, 5.20) 821 / 1,258 4.35 (3.91, 4.84) 

Case-control studies     

Underweight (<18.5) 79 / 265 0.75 (0.57, 0.98) 101 / 324 0.79 (0.62, 1.00) 

Normal (18.5 to <25) 2,012 / 5,326 1.00 2,254 / 6,678 1.00 

Overweight (25 to <30) 1,799 / 3,281 1.49 (1.37, 1.61) 2,223 / 4,111 1.46 (1.36, 1.57) 

Obese Class I (30 to <35) 1,084 / 1,243 2.51 (1.37, 1.61) 1,372 / 1,571 2.49 (2.28, 2.73) 

Obese Class II & III (35+) 1,252 / 546 6.87 (6.08, 7.76) 1,583 / 715 6.48 (5.82, 7.22) 

White women     

Underweight (<18.5) 90 / 406 1.01 (0.80, 1.28) 126 / 586 0.95 (0.78, 1.17) 

Normal (18.5 to <25) 2,373 / 10,537 1.00 3,551 / 15,700 1.00 

Overweight (25 to <30) 2,158 / 6,779 1.43 (1.34, 1.53) 3,020 / 9,798 1.38 (1.31, 1.46) 

Obese Class I (30 to <35) 1,460 / 2,590 2.52 (2.33, 2.74) 1,953 / 3,602 2.44 (2.28, 2.61) 

Obese Class II & III (35+) 1,660 / 1,277 5.79 (5.29, 6.34) 2,101 / 1,669 5.59 (5.17, 6.04) 

Non-white women 
  

  

Underweight (<18.5) 32 / 140 0.54 (0.36, 0.81) 39 / 166 0.58 (0.40, 0.85) 

Normal (18.5 to <25) 742 / 2,073 1.00 812 / 2,409 1.00 

Overweight (25 to <30) 636 / 1,339 1.80 (1.57, 2.07) 685 / 1,521 1.79 (1.57, 2.04) 

Obese Class I (30 to <35) 287 / 486 2.09 (2.54, 3.76) 328 / 554 3.25 (2.71, 3.91) 

Obese Class II & III (35+) 248 / 258 7.36 (5.77, 9.37) 303 / 304 7.48 (5.99, 9.35) 
1Conditional logistic regression, adjusted for age, race, parity, smoking status, diabetes, age at menarche, ever use of oral contraception,  
ever use of estrogen-only hormone replacement therapy. 
2Conditional logistic regression, adjusted for age, race, parity, imputed smoking status, imputed diabetes, age at menarche, ever use of oral 

contraception, and imputed ever use of estrogen-only hormone replacement therapy
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4.5. DISCUSSION 

We utilized a large pooled database to demonstrate a novel bias modeling technique that uses 

prior parameters from complete subjects and available data from all subjects to impute missing 

confounding variables based on the underlying assumed causal structure.  After deriving 

empirical priors from the complete pooled database by taking into account important modifiers 

of the causal relationships such as study type and the chosen model covariates, we applied these 

priors in an imputation step that resulted in some measurable sample size gains and, mostly, 

attenuated results compared to the complete case odds ratios.   

Generally endometrial cancer is understood to be caused by unopposed estrogen exposure, either 

through early age of menarche, nulliparity, late age at first birth, estrogen only hormone therapy, 

or high dose estrogen in oral contraceptive pills [3].  Obesity, as measured by BMI as well as 

anamorphic measurements, is one of the most important modifiable risk factors for endometrial 

cancer, but the molecular mechanism is different for pre- and post-menopausal women.  In pre-

menopausal women, obesity leads to increased insulin, progesterone deficiency, and thus a 

reduced ability to oppose free estrogens [4]. In post-menopausal women obesity leads to 

endometrial cancer through increases in free floating estrogens. Endometrial cancer is one of the 

only neoplasms for which smoking is protective.  The biological mechanism for this is thought to 

be related to increases in estrogen-opposing progesterone [5].  Other protective factors include 

normal weight, weight loss, physical activity, grand multiparity and exogenous hormones that 

include a cycle of progesterone, such as combination hormone replacement therapy and modern 

low dose estrogen and progesterone combination oral contraceptive pills.  In addition to being 

risk factors for disease, exogenous hormones are strong modifiers of the BMI effect, often with 

paradoxical results.  Overweight women who have previously taken exogenous hormones tend to 

experience less risk in higher BMI categories than overweight women who have not taken 
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exogenous hormones [6].   Other risk factors (not related to the estrogen pathway) include family 

history of endometrial cancer and increasing age. 

Since high BMI is a very strong predictor of type I EC and the confounding variables we 

examined are not as strong risk/protective factors for this disease, the bias adjustment we 

observed was mostly subtle, and towards the null.  According to the DAG structure and direction 

and magnitude of the relationships described within, the bias adjustment was in line with our 

expectations.  Smoking is a protective factor for type I EC, and it also reduces (or maintains low) 

BMI.  Unmeasured smoking would thus produce a positive bias away from the null because it is 

a protective common cause of both BMI and type I EC.  Estrogen-only hormone replacement 

therapy increases risk of type I EC, and may be associated with decreased BMI, although the 

direction of the relationship between these latter two variables is debatable.  Increased BMI 

results in increased endogenous estrogen production, which may alleviate the need for hormone 

replacement therapy due to menopausal symptoms [REF]. If the DAG edge connecting these two 

variables points from BMI to EHRT, this variable would be considered an intermediate on the 

causal pathway.  Under a certain set of assumptions, controlling for an intermediate could result 

in an attenuation of the point estimate, as was seen in our bias adjusted estimates.  However 

these assumptions are often violated when there is unmeasured confounding of the intermediate-

disease relationship [46, 47].  Diabetes diagnosis and BMI are closely associated within the 

constellation of diseases known as metabolic syndrome.  Many of the individual components of 

metabolic syndrome, including diabetes have been shown to be associated with higher incidence 

of type I EC [48, 49].  Diabetes is also independently associated and with higher BMI [50], but, 

like EHRT, the directionality of the relationship between BMI and diabetes is debatable, and it 

may differ between the type of diabetes diagnosis (type I vs. type II), the details of which were 

unavailable in the pooled database used for this study.  This points to an important consideration 
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in this study, and in pooling projects in general, which is that misclassification of the 

confounding variables may produce bias that is difficult to predict in magnitude or direction [51].  

Indeed, ever use of a medication is often a poor classifier for actual exposure, and self-reported 

exposure (which is usually the data collection method in epidemiologic studies) adds an 

additional caveat to interpreting these results.  If the complete case population measure of EHRT 

or diagnosis of diabetes was a poorly classified one, the bias adjustment parameters may suffer 

from inadequacy to control for the unmeasured confounding as a consequence.  Use of the 

random effect models for empirical prior generation would help to alleviate this concern, 

especially if one study was severely misclassified, the clustering of such misclassification would 

be taken into account.    

Some caution should be taken when interpreting the study-specific bias-adjusted estimates 

presented in this paper. Because the bias model is designed to take study-level and participant-

level characteristics into account, we have provided the study-specific estimates as instructive for 

the bias model demonstration.  However, in cases where missingness is extreme (e.g., table 4.6, 

study SMC) the level of missingness would render the imputations performed inappropriate for 

reporting (and interpreting) anything other than the bias-adjusted pooled estimates. 

Another important consideration for the results of this study is that missing data bias in general 

may be stronger than any confounding bias we observed.  Because BMI is such a strong 

predictor of type I EC, the sample size gains in some of the individual studies may be the sole 

reason for observing marked shifts in the odds ratio estimates.  However, this is clearly an 

argument in favor of data imputation for large pooling projects as missingness can be pervasive 

and complete case results may not reflect the true effect estimates, sometimes in counterintuitive 

ways.  The benefits of the method we have demonstrated include record-level imputation that 

reflects a complex structure bias adjustment algorithm that can be easily implemented in a 
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standardized database for analysis by multiple consortium investigators simultaneously.  We 

utilized internal parameters for our bias adjustment models, but the algorithm can also be fit 

using external parameters, based on expert knowledge or validation sub-studies.   
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5. STUDY 4 

 

A SENSITIVITY ANALYSIS FOR SELECTION BIAS IN A LARGE POOLED STUDY 

OF BMI AND TYPE I ENDOMETRIAL CANCER: THE EPIDEMIOLOGY OF 

ENDOMETRIAL CANCER CONSORTIUM (E2C2) 
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5.1. ABSTRACT 

Introduction: Selection or non-response bias occurs when participation in an observational 

study is directly (or indirectly) affected by the exposure and outcome.  In population-based and 

hospital-based case-control studies, a relationship between the disease outcome and participation 

is unavoidable, so even a weak relationship between exposure and selection, either via 

uncontrolled common causes or a direct relationship can introduce bias into effect estimates. 

External formula guided sensitivity analysis for the influence of selection bias can be useful in 

etiologic studies, especially if a selection bias is suspected based on study conduct or recruitment 

of participants.  When more than one study is combined, however, such as in a pooled database, 

using external adjustment techniques can be a challenge, especially if selection bias is suspected 

in some, but not all contributing studies.   

Methods: In this study we demonstrate the use of record-level techniques for the simulation of 

selection probabilities to facilitate adjustment for non-response bias using a large multi-study 

pooled data source, the Epidemiology of Endometrial Cancer Consortium (E2C2).  Using as an 

example the well characterized relationship between BMI and type I endometrial cancer, we use 

known data values under an assumed causal structure to recreate selection probabilities reflective 

of the underlying source population in a full sensitivity analysis. 

Results: We found that the BMI and endometrial cancer relationship, one of the strongest 

predictors of type I EC, is robust to small to moderate levels of the type of selection bias we 

simulated, but in the presence of larger effects, or substantial heterogeneity, unadjusted results 

may underreport the true magnitude of the effect. 
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Conclusion: Record-level data augmentation for selection bias modeling, in comparison to 

external formula adjustment, is a flexible approach that provides the option for bias parameters 

to be applied in a study-specific fashion, taking into account suspected selection bias as a result 

of control recruitment, refusal rates, and the ethnic distribution of the source population.  It also 

incorporates bias parameters into the source database, prior to analysis, improving accessibility 

to quantitative bias modeling for observational research. 

5.2. INTRODUCTION 

Selection or non-response bias occurs when participation in an observational study is directly (or 

indirectly) affected by the exposure and outcome.  In population-based and hospital-based case-

control studies, a relationship between the disease outcome and participation is unavoidable, so 

even a weak relationship between exposure and selection, either via uncontrolled common 

causes or a direct relationship can introduce bias into effect estimates. Sensitivity analysis for the 

influence of selection bias can be useful in etiologic studies, especially if a selection bias is 

suspected based on study conduct or recruitment of participants.  In its most rudimentary form, 

selection bias sensitivity analysis may be accomplished using external adjustment formulas to 

adjust the outcome models in a given analysis [26, 29, 37, 38].  When more than one study is 

combined, however, such as in a pooled database, using external adjustment techniques can be a 

challenge, especially if selection bias is suspected in some, but not all contributing studies.  

Internal adjustment for selection bias, or the record-level weighting known as inverse probability 

of censoring weighting (IPCW) is commonly used in follow-up studies.  This technique uses 

individualized weights to create a pseudo-population that mimics the underlying cohort, 

including those who were censored, in order to produce estimates reflective of the entire cohort 

rather than just the selected strata [40].  IPCW is not an appropriate technique for retrospective 
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case control studies because it relies on information collected on both censored and retained 

cohort members, over time.  If some basic knowledge of the selection mechanism is available, 

however, the basic premise behind this technique can be applied using a reasonable set of prior 

assumptions in a data augmentation step that can be used in all or some studies in a pooled 

database.  The details of this method were described in full in a previous work [Thompson, Arah. 

Selection bias modeling using observed data augmented with imputed record-level probabilities 

(manuscript)].  The purpose of this study is to demonstrate this method using a multi-study 

epidemiologic project designed to investigate the etiology of endometrial cancer: The 

Epidemiology of Endometrial Cancer Consortium (E2C2). 

5.3. MATERIALS AND METHODS 

5.3.1. DATA SOURCE: THE EPIDEMIOLOGY OF ENDOMETRIAL CANCER 

CONSORTIUM (E2C2) 

The Epidemiology of Endometrial Cancer Consortium (E2C2) is a formally designated NCI 

consortium to study rare cancer.  The objective of the consortium is to pool as many studies of 

endometrial cancer as possible, with goals to study genetic variation, gene-gene interactions, 

gene-environment interactions, diet, and risk profiles of rarer histologic subtypes and 

underrepresented minorities[44].  The E2C2 project includes 24 studies, 9 prospective cohort 

studies and 15 case-control studies.  For the purpose of this study, we restricted to hospital and 

population-based case-control studies only, and excluded one study that did not measure an 

important confounding variable, smoking status.  This left 13 studies with a total of 7,163 

endometrial cancer cases and 10,733 control subjects.  These studies vary in population size, 

sampling strategies, inclusion criteria, population ethnicities, participant ages, case and control 

response rates, and recruitment periods.  A list of analyzed studies including study type, location, 

case and control recruitment strategy, case and control response rates, and ethnicity distributions, 
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is provided in table 5.1.  The dataset utilized for this study is the core risk factors database, which 

includes all E2C2 study participants and values for all major risk factors for endometrial cancer 

(BMI, weight change, reproductive variables, menopausal status, use of hormone replacement 

therapy and oral contraception, smoking, chronic comorbidities, physical activity), as well as 

demographic characteristics.  The primary objective of this study is to demonstrate the use of 

record-level techniques for the simulation of selection probabilities to facilitate adjustment for 

non-response bias in the E2C2 risk factors database.  We have chosen BMI as the exposure of 

interest, and we will focus on type I endometrial cancer cases only.  The adjustment technique 

will be applied with a variety of hypothetical bias parameters in a sensitivity analysis.   

5.3.2. DIRECTED ACYCLIC GRAPHS 

We will use directed acyclic graphs (DAGs) visualize the bias model using.  DAGs are directed, 

not cyclic, path diagrams that depict the variables and relationships between those variables in 

causal epidemiologic investigations. The use of DAGs to express these causal relationships 

imparts a basic set of rules, which have been extensively described elsewhere [32-36].  The two 

major sources of biasing paths in DAGs are uncontrolled confounding, that results from failing 

to control for a confounding (such as a common cause) variable, and conditioning on a collider, 

thus opening up a previously blocked path. Selection or non-response bias is a well-known 

example of collider bias (figure 5.1).  Confounding variables may also directly affect selection; 

adequate control of such variables will succeed in blocking the open path that is created by 

conditioning on the collider, but background knowledge of their effect on selection will improve 

simulation of selection probabilities in the record-level data augmentation.  
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Figure 5.1 Collider bias due to selective non-response 

 

5.3.3. BIAS MODEL 

Let X be the exposure BMI (per 5 kg/m
2
 unit increase), Y be the outcome, type I endometrial 

cancer, and S=1 be study participation (where S=0 is non-participation).  In our bias model, in 

addition to BMI and type I EC, we also take into account two additional variables that are 

suspected to directly affect selection: Z1 represents white race (reference being non-white) and Z2 

represents ever use of hormone replacement therapy (HRT).  The selection mechanism is 

displayed in figure 5.2.  
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Figure 5.2 Signed DAG representing modeled influences of nonresponse in E2C2 case control studies 

 

The probability of S as a function of the DAG variables can be obtained from the expit function 

of the logistic equation: 

(1)  o  t(P(S  1|         ))                                    

                                                            

                                                    

We defined a range of fixed prior distributions for the βs in expression (1).  For the non-product 

terms, we have chosen small to moderate in magnitude prior that assign a range of possibilities 

and directionality to the forces predicting selection into the study (S=1) to demonstrate how the 

results might change under each set of priors.  For the YX product terms, we assigned a very 

small positive and a very slight negative interaction coefficient in two scenarios.  For all other 

product terms, we set an uninformative null prior, indicating that we strongly doubt the existence 



84 
 

of heterogeneity in the influences of the X, Y, Z1 and Z2 on selection.  We set the 

P(S=1|X=0,Y=0, Z=0) to 0.05, indicating that probability of (S=1|X=0,Y=0,Z=0) was very low.  

Our priors were combined with the existing data in this model to generate the probability of 

selection for each participant in the analyzed case-control studies.  The stabilized weight, 

P(S=1|X=0, Y=0, Z=0)/(P(S=1|X=x, Y=y, Z=z), which is the background probability of selection 

multiplied by the inverse of the conditional probability of  selection for each participant, was 

used as a weight in the conditional logistic regression model for the relationship between BMI 

(per 5 kg/m
2
) and type I endometrial cancer, adjusted for Z1, Z2, and additional appropriate 

confounding variables, all of which will be represented by the set Z in further notation.  We 

present customary unadjusted results, odds ratios, with 95% confidence intervals and the 

selection bias adjusted results odds ratios, with adjusted 95% confidence intervals (without 

further random error adjustment).  All statistical analyses were performed in SAS version 9.3 

(SAS Institute; Cary, NC). 

5.4. RESULTS 

Of the 13 case-control studies included, only one (WNYDS) had hospital controls.  Others had 

neighborhood or population registry controls and four studies had control series selected by 

random-digit-dialing.  The case and control response rates varied from 42% to 83%, and 39% to 

73%, respectively.  Sample sizes, including ratio of matched controls to cases varied widely.  

Two studies, Hawaii case control, and SECS had very low (or no) white race participants.  

Recruitment periods varied also.  
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Table 5.1 Eligible participating population and hospital based case-control studies: location and population description 

Study Location 

Sample size 

Cases / 

Controls 

% 

White 

Case 

Mean age 

(SD) 

Control 

Mean age 

(SD) 

Case source 

Case 

response 

rate 

Control Source 

Control 

response 

rate 

Recruitment 

period 

EDGE [52] New Jersey 418 / 467 90.2 60.6 (9.8) 64.2 (11.3) Cancer registry 42% 
RDD, HCFA, 

neighborhood 
39% 2001-2005 

WISE [53] Philadelphia 552 / 1583 79.2 62.6 (8.1) 61.3 (8.1) 
Population 

based 
52% RDD 58% 1999-2002 

Hawaii case 

control [54] 
Hawaii 432 / 511 23.5 57.5 (12.0) 56.6 (12.2) Cancer registry 66% 

Dept. of Health 

random sample 
73% 1988-1993 

SECS[55] China 1,071 / 1,212 0.0 54.5 (8.5) 54.6 (8.5) Cancer registry 83% 

Random sample 

from the 

Shanghai 

Resident 

Registry 

74% 1997-2004 

PECS[56] Poland 435 / 1925 100.0 60.9 (8.1) 56.3 (10.2) Case-control 79% 
Population 

register 
68% 2000-2003 

US case 

control[57] 
5 US clinics 332 / 320 92.2 59.3 (10.1) 57.9 (10.5) 5 US clinics  

RDD and 

HCFA files 
 1987-1990 

Alberta Canada 474 / 1,032 94.8 58.3 (9.5) 58.1 (10.1) Cancer registry  

Alberta 

province 

(population-

based) 

 2002-2006 

USC LA[58] Los Angeles 787 / 791 100.0 63.0 (5.3) 63.1 (5.4) Cancer registry 77% Neighborhood 60% 1987-1993 

ANECS[59] Australia 1,125 / 740 88.3 60.7 (9.4) 61.1 (9.9) 

Major 

treatment 

centers and 

cancer 

registries 

67% 

Australian 

Electoral roll 

(~95% 

complete) 

53% 2005-2007 

PEDS [60] New York 468 / 541 97.0 62.4 (11.3) 63.2 (11.1) 

Roswell Park 

cancer institute 

patients 

50% 

Roswell Park 

cancer institute 

patients 

50% 1982-1998 

WNYDS [61] New York 232 / 639 100.0 63.5 (9.4) 55.9 (10.6) 

Identified at 

WNYDS 

hospitals 

51% 

Randomly 

selected from 

driver‟s license 

and HCFA 

51% 1986-1991 

Turin Italy 249 / 307 100.0 61.3 (7.4) 60.4 (7.7)      

CECS[62] Connecticut 588 / 665 93.4 60.2 (9.6) 61.5 (10.8) 
28 hospitals in 

Connecticut 
60% RDD 65% 2004-2008 
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Subject characteristics were generally comparable between cases and controls with the exception 

of BMI (higher on average in cases), nulliparity (lower on average in cases), and ever smoking 

(lower on average in cases).  The pooled (unadjusted) odds ratio reflecting a BMI increase of 5 

kg/m
2
 on the odds of type I endometrial cancer was 1.58 (95% CI 1.54-1.63).  This estimate 

varied in by study analyses, from a low of 1.51 (95% CI 1.37-1.65) in the USC LA study, to a 

high of 1.77 (95% CI 1.59-1.98) in the SECS study.  

Table 5.2 Subject characteristics 

Characteristic Cases Controls 

  N=7,163 N=10,733 

Race, n (%)   

   White 5,413 (75.6) 8,486 (79.1) 

   Black 120 (1.7) 463 (4.3) 

   Asian 1,348 (18.8) 1,542 (14.4) 

   Hawaiian/Pacific Islander 48 (0.7) 89 (0.8) 

   Other 131 (1.8) 85 (0.8) 

   Missing/unknown 103 (1.4) 68 (0.6) 

   

BMI, mean (SD) 29.5 (7.8) 25.7 (5.1) 

BMI categories, n (%)   

Underweight (<18.5) 92 (1.3) 283 (2.6) 

Normal (18.5-<25) 2,251 (31.4) 5,283 (49.2) 

Overweight (25 to <30) 1,994 (27.8) 3,252 (30.3) 

Obese Class I (30 to <35) 1,247 (17.4) 1,249 (11.6) 

Obese Class II & III (35+) 1,475 (20.6) 582 (5.4) 

Missing/unknown 104 (1.5) 84 (0.8) 

Age at menarche, n (%)   

<11 505 (7.1) 463 (4.3) 

11-12 1,259 (17.6) 1,494 (13.9) 

13-14 4,163 (58.1) 6,565 (61.2) 

15+ 1,156 (16.1) 2,124 (19.8) 

Missing/unknown 80 (1.1) 87 (0.8) 

Parity, n (%)   

0 1,308 (18.3) 1,152 (10.7) 

1 1,394 (19.5) 2,019 (18.8) 

2 2,052 (28.7) 3,491 (32.5) 

3-4 1,904 (26.6) 3,140 (29.3) 

5+ 408 (5.7) 877 (8.2) 

Missing/unknown 97 (1.4) 54 (0.5) 
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Characteristic Cases Controls 

HRT ever users, n (%)   

   Yes 2,099 (29.3) 3,127 (29.1) 

   No 4,914 (68.6) 7,385 (68.8) 

   Missing/unknown 150 (2.1) 221 (2.1) 

OC ever users, n (%)   

   Yes 2,631 (36.73) 4,408 (41.07) 

   No 4,477 (62.5) 6,276 (58.5) 

   Missing/unknown 55 (0.8) 49 (0.5) 

Smoking, n (%)   

   Never 4,617 (25.3) 5,804 (54.1) 

   Past 1,811 (25.3) 2,835 (26.4) 

   Current 675 (9.4) 2,071 (19.3) 

   Missing/unknown 60 (0.8) 23 (0.2) 
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Table 5.3 Selection bias adjustment fixed by scenario and trial 

Trial 𝐞  𝐘  𝐞  𝐗  𝐞  𝐙𝟏  𝐞  𝐙𝟐  𝐞  𝐘𝐗  

Scenario A: No Y*X interaction 

1a 1.5 1.1 1.5 1.5 1 

2a 2.0 1.2 2.0 2.0 1 

3a 5.0 1.3 5.0 5.0 1 

4a 2.0 0.9 2.0 2.0 1 

5a 2.0 0.8 2.0 2.0 1 

Scenario B: Positive Y*X product term 

1b 1.5 1.1 1.5 1.5 1.1 

2b 2.0 1.2 2.0 2.0 1.1 

3b 5.0 1.3 5.0 5.0 1.1 

4b 2.0 0.9 2.0 2.0 1.1 

5b 2.0 0.8 2.0 2.0 1.1 

Scenario B: Negative Y*X product term 

1c 1.5 1.1 1.5 1.5 0.9 

2c 2.0 1.2 2.0 2.0 0.9 

3c 5.0 1.3 5.0 5.0 0.9 

4c 2.0 0.9 2.0 2.0 0.9 

5c 2.0 0.8 2.0 2.0 0.9 

 

In scenario A, we introduced low to moderate strength fixed priors for the log odds relating 

endometrial cancer to the probability of selection (   ), the log odds relating BMI (per 5 kg/m
2
 

increase) to the probability of selection (   ), the log odds relating white race to the probability 

of selection (    ), and the log odds relating ever use of hormone replacement therapy to the 

probability of selection (    ).  The pooled odds ratio estimate increased from 1.58 (95% CI 

1.54-1.63) to 1.74 (95% CI 1.58-1.92) in the most extreme trial for this scenario (trial 3a), which 

assigned OR of 5.0 to    ,     ,     , and an OR of 1.3 to    .  All other trials saw modest 

increases in the OR (less that 0.1).  The by-study analysis reflected the results of the pooled 

adjustment, with the most extreme change detected in trial 3a.  In trials 4a and 5a, which 

included a negative prior for    , results were attenuated towards the null in several of the 

smaller case-control studies.   
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In scenario B, we used the same low to moderate strength fixed priors as were applied in 

scenario A, this time introducing a slight positive value (OR=1.1) for the     , the modification 

by X on the effect of Y on S (or the modification by X for the effect of X on S, by the symmetry 

property of the odds ratio).  When this term is introduced, adjusted results remain similar to those 

in scenario A, with some exaggeration of adjusted OR‟s in smaller studies; the pooled estimates 

are however, were almost identical to those from scenario A.  As in scenario A, trial 3 resulted in 

the most extreme shifts in odds ratios after adjustment. 

In scenario C, we introduced a slight negative value (OR=0.9) for the     . As in scenarios A 

and B, the pooled estimate shifted upwards, but this time it was most marked in trial 5, which 

imposed a negative relationship between X and S (OR=0.8).  In by-study analysis, all point 

estimates were shifted upwards, some by more than 30%.  
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Table 5.4 Scenario A: Selection bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Sample size 

(cases / 

controls) 

OR-adj
1
 (95% CI) per 5 kg/m

2
 increase 

Unadjusted 

analysis 
Trial 1a Trial 2a Trial 3a Trial 4a Trial 5a 

        

Pooled 6,836 / 10,287 1.58 (1.54, 1.63) 1.62 (1.54, 1.69) 1.65 (1.54, 1.77) 1.74 (1.58, 1.92) 1.64 (1.59, 1.70) 1.65 (1.61, 1.68) 

        

Edge 415 / 464 1.62 (1.45, 1.82) 1.65 (1.36, 2.01) 1.69 (1.27, 2.25) 1.80 (1.17, 2.76) 1.69 (1.49, 1.93) 1.71 (1.56, 1.87) 

WISE 546 / 1,574 1.66 (1.49, 1.85) 1.67 (1.39, 2.01) 1.70 (1.31, 2.22) 1.77 (1.19, 2.63) 1.65 (1.44, 1.88) 1.64 (1.49, 1.80) 

Hawaii case-

control 
313 / 337 1.57 (1.35, 1.83) 1.64 (1.31, 2.06) 1.70 (1.24, 2.33) 1.84 (1.16, 2.91) 1.58 (1.38, 1.81) 1.52 (1.39, 1.66) 

SECS 1,060 / 1,207 1.77 (1.59, 1.98) 1.78 (1.53, 2.06) 1.79 (1.48, 2.17) 1.91 (1.45, 2.52) 1.79 (1.61, 1.98) 1.80 (1.67, 1.95) 

PECS 427 / 1,832 1.46 (1.31, 1.63) 1.48 (1.21, 1.80) 1.51 (1.13, 2.02) 1.57 (1.02, 2.44) 1.48 (1.27, 1.72) 1.48 (1.33, 1.65) 

US Case-control 313 / 305 1.56 (1.38, 1.77) 1.54 (1.25, 1.90) 1.56 (1.15, 2.11) 1.66 (1.05, 2.60) 1.59 (1.38, 1.82) 1.64 (1.50, 1.80) 

Alberta 472 / 1,029 1.62 (1.48, 1.77) 1.62 (1.38, 1.91) 1.66 (1.30, 2.11) 1.72 (1.20, 2.46) 1.63 (1.45, 1.82) 1.63 (1.51, 1.76) 

USC LA 787 / 791 1.51 (1.37, 1.65) 1.54 (1.31, 1.82) 1.58 (1.24, 2.02) 1.65 (1.14, 2.39) 1.65 (1.46, 1.87) 1.71 (1.56, 1.87) 

ANECS 704 / 1,071 1.74 (1.59, 1.90) 1.84 (1.59, 2.13) 1.90 (1.53, 2.34) 1.97 (1.44, 2.70) 1.82 (1.64, 2.01) 1.79 (1.67, 1.92) 

PEDS 436 / 506 1.63 (1.45, 1.83) 1.65 (1.36, 2.01) 1.68 (1.27, 2.24) 1.78 (1.16, 2.75) 1.60 (1.41, 1.82) 1.56 (1.44, 1.70) 

WNYDS 232 / 639 1.74 (1.52, 2.00) 1.74 (1.37, 2.21) 1.77 (1.24, 2.53) 1.88 (1.10, 3.21) 1.79 (1.50, 2.13) 1.81 (1.60, 2.05) 

Turin 267 / 197 1.66 (1.36, 2.03) 1.65 (1.18, 2.30) 1.68 (1.03, 2.75) 1.76 (0.83, 3.73) 1.56 (1.24, 1.96) 1.49 (1.28, 1.75) 

CECS 567 / 632 1.67 (1.52, 1.83) 1.70 (1.44, 2.01) 1.74 (1.37, 2.22) 1.81 (1.26, 2.59) 1.66 (1.49, 1.86) 1.62 (1.51, 1.74) 

        
1Conditional logistic regression, adjusted for age (in 5 year intervals), white vs. nonwhite race, parity, smoking status, age at menarche, ever use of oral contraception, and ever use of any type of 

hormone replacement therapy. 
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Table 5.5 Scenario B: Selection bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Sample size 

(cases / 

controls) 

OR-adj
1
 (95% CI) per 5 kg/m

2
 increase 

Unadjusted 

analysis 
Trial 1a Trial 2a Trial 3a Trial 4a Trial 5a 

        

Pooled 6,836 / 10,287 1.58 (1.54, 1.63) 1.51 (1.43, 1.59) 1.60 (1.49, 1.72) 1.76 (1.61, 1.93) 1.50 (1.44, 1.56) 1.49 (1.44, 1.54) 

        

Edge 415 / 464 1.62 (1.45, 1.82) 1.55 (1.25, 1.92) 1.65 (1.21, 2.23) 1.81 (1.24, 2.66) 1.55 (1.33, 1.79) 1.60 (1.38, 1.85) 

WISE 546 / 1,574 1.66 (1.49, 1.85) 1.57 (1.28, 1.94) 1.66 (1.24, 2.22) 1.84 (1.28, 2.66) 1.52 (1.30, 1.78) 1.43 (1.23, 1.66) 

Hawaii case-

control 
313 / 337 1.57 (1.35, 1.83) 

1.52 (1.18, 1.95) 1.61 (1.15, 2.26) 1.77 (1.13, 2.76) 1.44 (1.24, 1.68) 1.39 (1.25, 1.54) 

SECS 1,060 / 1,207 1.77 (1.59, 1.98) 1.65 (1.40, 1.95) 1.70 (1.37, 2.10) 1.90 (1.41, 2.56) 1.63 (1.45, 1.84) 1.64 (1.50, 1.80) 

PECS 427 / 1,832 1.46 (1.31, 1.63) 1.38 (1.10, 1.74) 1.47 (1.06, 2.03) 1.62 (1.08, 2.41) 1.35 (1.13, 1.62) 1.33 (1.09, 1.62) 

US Case-control 313 / 305 1.56 (1.38, 1.77) 1.45 (1.15, 1.82) 1.53 (1.10, 2.11) 1.70 (1.13, 2.55) 1.45 (1.24, 1.69) 1.49 (1.28, 1.73) 

Alberta 472 / 1,029 1.62 (1.48, 1.77) 1.53 (1.27, 1.84) 1.62 (1.25, 2.12) 1.78 (1.29, 2.46) 1.49 (1.30, 1.70) 1.45 (1.27, 1.65) 

USC LA 787 / 791 1.51 (1.37, 1.65) 1.44 (1.20, 1.74) 1.54 (1.18, 2.00) 1.67 (1.21, 2.31) 1.51 (1.30, 1.74) 1.52 (1.30, 1.78) 

ANECS 704 / 1,071 1.74 (1.59, 1.90) 1.72 (1.47, 2.01) 1.83 (1.47, 2.29) 2.00 (1.52, 2.64) 1.66 (1.48, 1.85) 1.65 (1.49, 1.83) 

PEDS 436 / 506 1.63 (1.45, 1.83) 1.53 (1.24, 1.90) 1.63 (1.20, 2.20) 1.81 (1.23, 2.65) 1.46 (1.27, 1.68) 1.42 (1.24, 1.63) 

WNYDS 232 / 639 1.74 (1.52, 2.00) 1.63 (1.23, 2.15) 1.73 (1.17, 2.55) 1.91 (1.18, 3.10) 1.63 (1.32, 2.00) 1.62 (1.30, 2.03) 

Turin 267 / 197 1.66 (1.36, 2.03) 1.53 (1.05, 2.21) 1.63 (0.96, 2.76) 1.80 (0.93, 3.48) 1.42 (1.10, 1.84) 1.36 (1.04, 1.78) 

CECS 567 / 632 1.67 (1.52, 1.83) 1.60 (1.33, 1.91) 1.70 (1.31, 2.21) 1.86 (1.35, 2.57) 1.52 (1.35, 1.72) 1.52 (1.35, 1.71) 

        
1Conditional logistic regression, adjusted for age (in 5 year intervals), white vs. nonwhite race, parity, smoking status, age at menarche, ever use of oral contraception, and ever use of any type of 

hormone replacement therapy. 
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Table 5.6 Scenario C: Selection bias adjusted estimates for the effect of BMI (per 5 kg/m
2
 increase) on type I endometrial cancer 

Study 

Sample size 

(cases / 

controls) 

OR-adj
1
 (95% CI) per 5 kg/m

2
 increase 

Unadjusted 

analysis 
Trial 1a Trial 2a Trial 3a Trial 4a Trial 5a 

        

Pooled 6,836 / 10,287 1.58 (1.54, 1.63) 1.77 (1.70, 1.85) 1.76 (1.66, 1.87) 1.77 (1.61, 1.95) 1.83 (1.78, 1.88) 1.84 (1.80, 1.88) 

        

Edge 415 / 464 1.62 (1.45, 1.82) 1.81 (1.52, 2.15) 1.80 (1.39, 2.33) 1.82 (1.20, 2.75) 1.88 (1.67, 2.12) 1.90 (1.75, 2.06) 

WISE 546 / 1,574 1.66 (1.49, 1.85) 1.82 (1.55, 2.13) 1.80 (1.42, 2.27) 1.78 (1.22, 2.59) 1.81 (1.62, 2.03) 1.82 (1.68, 1.97) 

Hawaii case-

control 
313 / 337 1.57 (1.35, 1.83) 

1.82 (1.48, 2.25) 1.86 (1.39, 2.48) 1.92 (1.24, 2.97) 1.77 (1.56, 2.01) 1.70 (1.56, 1.84) 

SECS 1,060 / 1,207 1.77 (1.59, 1.98) 1.95 (1.71, 2.23) 1.94 (1.64, 2.31) 1.99 (1.55, 2.55) 1.98 (1.81, 2.17) 2.00 (1.87, 2.14) 

PECS 427 / 1,832 1.46 (1.31, 1.63) 1.62 (1.37, 1.91) 1.60 (1.24, 2.06) 1.58 (1.04, 2.41) 1.65 (1.46, 1.87) 1.66 (1.52, 1.81) 

US Case-control 313 / 305 1.56 (1.38, 1.77) 1.69 (1.40, 2.04) 1.65 (1.25, 2.18) 1.66 (1.07, 2.57) 1.76 (1.56, 1.99) 1.82 (1.68, 1.97) 

Alberta 472 / 1,029 1.62 (1.48, 1.77) 1.77 (1.54, 2.04) 1.75 (1.41, 2.17) 1.73 (1.22, 2.44) 1.81 (1.64, 1.99) 1.82 (1.70, 1.94) 

USC LA 787 / 791 1.51 (1.37, 1.65) 1.70 (1.46, 1.97) 1.68 (1.34, 2.10) 1.66 (1.16, 2.38) 1.83 (1.64, 2.05) 1.90 (1.75, 2.06) 

ANECS 704 / 1,071 1.74 (1.59, 1.90) 2.02 (1.76, 2.31) 2.02 (1.66, 2.47) 2.00 (1.47, 2.72) 2.02 (1.85, 2.22) 2.00 (1.88, 2.13) 

PEDS 436 / 506 1.63 (1.45, 1.83) 1.83 (1.53, 2.18) 1.80 (1.39, 2.35) 1.80 (1.18, 2.75) 1.80 (1.60, 2.03) 1.76 (1.63, 1.90) 

WNYDS 232 / 639 1.74 (1.52, 2.00) 1.91 (1.55, 2.35) 1.88 (1.38, 2.57) 1.88 (1.12, 3.17) 1.99 (1.71, 2.30) 2.02 (1.82, 2.24) 

Turin 267 / 197 1.66 (1.36, 2.03) 1.82 (1.35, 2.47) 1.81 (1.15, 2.83) 1.78 (0.86, 3.69) 1.76 (1.43, 2.16) 1.69 (1.47, 1.95) 

CECS 567 / 632 1.67 (1.52, 1.83) 1.86 (1.60, 2.17) 1.85 (1.48, 2.32) 1.82 (1.28, 2.58) 1.86 (1.68, 2.05) 1.82 (1.70, 1.94) 

        
1Conditional logistic regression, adjusted for age (in 5 year intervals), white vs. nonwhite race, parity, smoking status, age at menarche, ever use of oral contraception, and ever use of any type of 

hormone replacement therapy. 
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5.5. DISCUSSION 

We have demonstrated a flexible sensitivity analysis technique using record-level simulation of 

selection probabilities to perform IPSW for adjustment of selection bias.  We assumed that the 

exposure, BMI, case/control status, white race (vs. non-white race) and ever use of hormone 

replacement therapy would directly affect the probability of participation in the case-control 

study, we additionally controlled for participant age, parity, age at menarche, and ever use of oral 

contraception in both unadjusted and selection bias-adjusted results.  We found that the BMI and 

endometrial cancer relationship, one of the strongest predictors of type I EC, is robust to small to 

moderate levels of the type of collider bias we simulated, but in the presence of larger effects, or 

substantial heterogeneity, unadjusted results may underreport the true magnitude of the effect.  

By-study analysis demonstrated that the impact of the bias model varied greatly, from study to 

study; this is likely a reflection of varying exposure distributions, case to control ratios, and 

prevalence of non-white race and ever use of hormone replacement therapy by study.  We 

considered that most of our model variables would positively influence selection; for example, 

we hypothesized that heavier women, white women, and women who had previously been 

exposed to hormone replacement therapy would be more likely to participate in a study.  But, but 

in two trials per scenario (trials 4 and 5) we reverse the direction of this prior to assume a 

negative relationship between BMI and participation.  These two trials are compatible with the 

idea that heavier women might be less likely to participate in a case-control trial compared to 

women of normal weight.  While it is difficult to know whether overweight women would be 

less responsive to case-control studies because extensive data on non-responders is rare, there is 

evidence that overweight women are less likely to participate in screening programs for 

endometrial and cervical cancers [63, 64].  A range of plausible priors, when paired with an 
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adequate sensitivity analysis are useful to examine a bias mechanism in the absence of definitive 

information about the direction or magnitude of one or more of the biasing effects. In this case, 

an argument could be made for obese women being more or less likely to participate, and we 

have provided quantitative information that can be used for both sides of this discussion.      

We also found that the introduction of a negative product term      , which implies the 

additional hypothesis that overweight women with endometrial cancer would be even less likely 

to participate, resulted in the most exaggerated (away from the null) selection bias adjusted 

estimates, especially when combined with these small negative parameters for the relationship 

between BMI and participation (trials 4c and 5c).  If these priors are compatible with the true 

causal effects, the presence of selection bias in these studies would be shifting results towards the 

null. Our use of stabilized weights helped to minimize the difference between the numerator and 

the denominator of the weight, eliminating extreme weights and achieving better, more robust 

performance of the weighting procedure. [65] 

This study has a number of limitations.  Our use of fixed hypothetical priors is instructive with 

regard to potential performance of the bias model, but not necessarily reflective of the level of 

uncertainty one may desire when approaching a selection bias adjustment.  More realistic priors, 

with adequate distributions could be obtained from data collected on subjects who refused, or 

extracted from a follow-up study that suffered from loss related to background characteristics of 

the subjects enrolled (such as race or ever use of hormone replacement therapy).  Additionally, 

application of the same bias parameters for all studies is potentially unrealistic, especially 

considering the variation in study design and recruitment successes. A benefit of the record-level 

adjustment, in comparison to external formula adjustment is the option for bias parameters to be 
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applied in a study-specific fashion, taking into account suspected selection bias as a result of 

control recruitment, refusal rates, and the ethnic distribution of the source population.   

6. CONCLUSIONS 

The purpose of this dissertation was to develop and carefully demonstrate novel probabilistic 

imputation methods for analysis of bias due to unmeasured confounding and non-response that 

make fuller use of the observed record level data.  Our bias modeling techniques employ 

probability equations that are used to simulate or impute unmeasured confounding variables or 

population weights for adjustment of non-response bias.  These models are fit using bias 

parameters, and actual values of the individual-level data in the source database, yielding 

augmented data that can be used to conduct bias-naïve analysis and bias adjusted sensitivity 

analyses.   

In studies 1 and 2 we elucidated the general methodology behind these algorithms and conducted 

extensive simulation studies to support the proof of concept in hypothetical data sources.  In all 

simulation studies, the objective was to demonstrate our ability to recapture the joint distribution 

in the unbiased source population, either via imputing unmeasured confounding variables or re-

weighting the selected population to produce effect estimates that would be achieved by 

analyzing the entire source population.  When employing true empirical priors, our methods were 

completely accurate and unbiased, as would be expected mathematically.  In study 2, we also 

demonstrated performance under slight misspecification of priors.  In both studies 1 and 2, we 

discovered and emphasized the importance of fully saturated probability equations when 

simulating the confounding or selection probability variables.  Liberal invocation of Bayes 

theorem in these algorithms explains this need, but its importance can also be visualized via 
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DAGs.  In a DAG, conditioning on any collider variable will introduce dependencies between 

the parents of said variable.  Since our simulation equations control for all DAG variables, 

including the outcome, these conditional dependencies are unavoidable and thus must be 

circumvented by using fully saturated models.  Use of fully saturated models can grow to be 

quite unwieldy however, as we saw in applied settings.  Exercises in studies 1 and 2 comparing 

results from the fully saturated to the unsaturated model forms were designed to demonstrate the 

differences in performance that one might expect when choosing a flexible versus a more 

restrictive model form.  Exclusion of interaction parameters in the model is tantamount to 

assuming a sharp null (i.e., a very strong prior assumption that the interaction does not exist).  

We noted that the confounding variable simulation technique is much more sensitive to exclusion 

of these parameters than the selection probability simulations.  This finding can also be 

visualized via the DAG structure for collider bias compared to that of the structure for 

confounding bias.  Confounding variables are parent variables to the exposure and outcome (both 

of which become colliders in the presence of 2 or more confounders), the selection probability is 

itself a collider, and conditioning its parents may introduce dependencies between other 

confounding variables in the models, but the selection variable itself is not necessarily included 

in these additional dependencies.  DAG structures, including our ability to visualize the behavior 

of the bias as well as formalizing it through probability equations based on these diagrams, were 

a key component of this work. 

In studies 3 and 4 we used the Epidemiology of Endometrial Cancer Consortium (E2C2) risk 

factors database to demonstrate the use of our algorithms to support quantitative bias modeling in 

a large, multi-center epidemiologic study.  For the confounding variable imputation (paper 3), we 

demonstrated a very comprehensive use of empirical priors derived from the complete subject 
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subset and applied to the full E2C2 database in order to fill values for 3 partially measured 

variables, in sequence.  In paper 4, we demonstrated the use of fixed hypothetical priors in 

exploring the robustness of the BMI-EC relationship to significant levels of non-response bias. 

The E2C2 consortium is an ideal study to explore bias analysis techniques specifically designed 

for studying rare cancer etiology in a data pooling project.  Our algorithms are highly relevant to 

a pooling project because they allow for multiple bias parameters to be placed directly in the 

dataset.  As we were able to successfully demonstrate in studies 3 and 4, these bias parameters 

can vary by derivation (empirical or hypothetical), by distribution (fixed or probabilistic), by 

characteristics at the study level (study type, matching criteria, non-response rates, study 

location), and by characteristics at the participant level (ethnicity, age, other exposures, and so 

on.)  Furthermore, the flexibility of the algorithms lends particularly well to consortium 

investigators re-specifying the priors for the bias parameters based on subject matter knowledge, 

validation studies, etc. before performing any bias analysis.   

By utilizing the risk of BMI on type I endometrial cancer in studies 3 and 4, we were able to 

evaluate our bias analysis methods using an exposure-disease relationship that has been well 

characterized in the literature.  The reason for using a well-characterized relationship, rather than 

a novel one, was to aid in the qualitative evaluation of the bias model performance (in light of 

published findings).  BMI is one of the strongest risk factors for endometrial cancer, and its 

causal effect is not under debate.  This sets our work apart from the typical quantitative bias 

analysis, because it is not often the main objective to adjust for unmeasured confounding in well-

characterized relationships, but to evaluate the robustness of associations detected in new 

etiological research.  However, especially in study 3, background knowledge of the magnitude 

and direction of the confounding bias in this relationship improved our ability to discuss and 
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frame findings from the bias adjusted models.  And in study 4, the strength and robustness of the 

BMI-EC relationship was supported by a sensitivity analysis for non-response bias.   

One of the most daunting limitations of this project was the computational power that was 

needed to perform the MC simulations in a database with over 50,000 participants.  For 

probabilistic bias analysis, every observation in the database had to first be copied at least 1,000 

times.  This resulted in enormous size working files: for paper 3 alone there were over 500 

gigabytes of data files to be processed.  We employed raid hard drive configurations and some 

shortcut strategies in our programming to reduce computational times, but we hit many 

roadblocks including those related to implementing full probabilistic bias analysis in study 4 (we 

substituted fixed priors) and achieving the multiple bias algorithm that was proposed last year (as 

yet undone).  Quantitative researchers who plan to use this type of modeling should ensure 

adequate computational and data storage resources, including systems optimized for fast I/O 

sequential reads that can be gained from high capacity solid state drives or raided hard drive 

configurations.   

Other limitations include model assumptions – all simulated data were based on causal structures 

and our prior specifications.  While it is always impossible to account for all sources of bias in 

observational studies, in order for the application section of this work to be adequately 

demonstrative, we assumed that no further biases, other than the ones modeled, were present.  

Prior specifications in our application sections (studies 3 and 4) varied in complexity and 

generalizability.  In some cases, the priors may have been outside of the scope of plausibility or 

subject to doubt by experts in the field.  This points to an important aspect of (semi-) Bayesian 

statistics which is that all the models are sensitive to the inputs, but these inputs are entirely open 
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for debate, and a good sensitivity analysis will include a range of inputs to satisfy a full 

consideration of the biasing sources.  Additionally, and this is extremely important, all bias-naïve 

analyses (not adjusted for bias) that we presented assume that there is absolutely no systematic 

error in our data models; assuming no systematic error is a very extreme prior, much more 

extreme than many of the priors we applied.    

Through this work, we contributed a novel method, as well exploration of this method in a 

number of hypothetical scenarios and in an applied setting with a very large multi-study 

database. The application component of this work included demonstrating adjustment for 

unmeasured confounding and non-response bias in multiple studies at a time, employing both 

empirical and hypothetical priors, as well as fixed and probabilistic priors, and taking into 

account varying degrees of bias at both the study-level and participant-level.  Additionally we 

intend to contribute working algorithms to the E2C2 committee, so that these methods can be 

used in the important task of uncovering the etiology of rare subtypes of endometrial cancer. 

Bias modeling is a tool to guide the qualitative discussion of epidemiologic findings in a 

quantitative fashion.  As a departure from traditional discussion of bias using generalizing 

statements, these methods will continue to gain relevance and importance in health research, 

especially as researchers design and build larger and more rich combined datasets (from multiple 

observational studies or routine hospital sources).  External formula adjustment has been the 

major vehicle for bias modeling in the epidemiologic literature but its accessibility is limited due 

to weighty and complex formulas.  The record-level approach that we described and 

demonstrated in this work is a flexible, transparent, and easy-to-understand approach that can put 

quantitative bias modeling in the hands of any analyst, without substantive knowledge of the 
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complex statistics behind external formula adjustment, and additionally allows for bias 

parameters to be integrated into a shared data source.   
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7. APPENDIX TABLES 
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Table 7.1 Study 1: Planned characteristics of the trial cohorts (N=10,000) 

Trial 
Target 

model1 P(Z1) P(Z2) 
Mean 

(Z3) 

SD

(Z3) 

P(Z4) 

P(X0=1)2 P(Y0=1)3 
ORYX|Z1, 

Z2, Z3,Z4 

ORXZ1|Y, 

Z2, Z3,Z4 

ORXZ2|Y, 

Z1, Z3,Z4 

ORXZ3|Y, 

Z1, Z2,Z4 

ORXZ4|Y, 

Z1, Z2,Z3 ORYZ1|X, 

Z2, Z3,Z4 

ORYZ2|X, 

Z1, Z3,Z4 

ORYZ3|X, 

Z1, Z2,Z4 

ORYZ4|X, 

Z1, Z2,Z3 

Z4=1 Z4=2 Z4=1 Z4=2 Z4=1 
Z4=

2 

                     

1a All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 2 2 3 3 5 2 2 3 

2a All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.5 1 3 2 2 2 3 3 5 2 2 3 

3a All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.7 1 3 2 2 2 3 3 5 2 2 3 

4a All 0.3 0.3 0.0 1.0 0.4 0.3 0.5 0.3 1 3 2 2 2 3 3 5 2 2 3 

5a All 0.3 0.3 0.0 1.0 0.4 0.3 0.7 0.3 1 3 2 2 2 3 3 5 2 2 3 

6a z1, z2 0.5 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 5 2 2 3 3 5 2 2 3 

7a z1, z2 0.5 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 5 2 2 2 3 5 5 2 2 3 

8a z1, z2 0.7 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 7 2 2 2 3 7 5 2 2 3 

9a z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 1.5 2 3 3 5 1.5 2 3 

10a z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 5 2 3 3 5 5 2 3 

11a z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 1.2 2 3 3 5 5 2 3 

12a z4 0.3 0.3 0.0 1.0 0.2 0.2 0.3 0.3 1 3 2 2 2 3 3 5 2 2 3 

13a z4 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 2 5 3 3 5 2 2 5 

14a z4 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 1 3 2 2 7 3 3 5 2 2 2 

                     

1b All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 2 2 2 3 3 5 2 2 3 

2b All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.5 2 3 2 2 2 3 3 5 2 2 3 

3b All 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.7 2 3 2 2 2 3 3 5 2 2 3 

4b All 0.3 0.3 0.0 1.0 0.4 0.3 0.5 0.3 2 3 2 2 2 3 3 5 2 2 3 

5b All 0.3 0.3 0.0 1.0 0.4 0.3 0.7 0.3 2 3 2 2 2 3 3 5 2 2 3 

6b z1, z2 0.5 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 5 2 2 3 3 5 2 2 3 

7b z1, z2 0.5 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 5 2 2 2 3 5 5 2 2 3 

8b z1, z2 0.7 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 7 2 2 2 3 7 5 2 2 3 

9b z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 0.7 1.5 2 3 3 5 1.5 2 3 

10b z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 0.7 5 2 3 3 5 5 2 3 

11b z3 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 0.7 1.2 2 3 3 5 5 2 3 
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Trial 
Target 

model1 P(Z1) P(Z2) 
Mean 

(Z3) 

SD

(Z3) 
P(Z4) P(X0=1)2 P(Y0=1)3 

ORYX|Z1, 

Z2, Z3,Z4 

ORXZ1|Y, 

Z2, Z3,Z4 

ORXZ2|Y, 

Z1, Z3,Z4 

ORXZ3|Y, 

Z1, Z2,Z4 

ORXZ4|Y, 

Z1, Z2,Z3 

ORYZ1|X, 

Z2, Z3,Z4 

ORYZ2|X, 

Z1, Z3,Z4 

ORYZ3|X, 

Z1, Z2,Z4 

ORYZ4|X, 

Z1, Z2,Z3 

12b z4 0.3 0.3 0.0 1.0 0.2 0.2 0.3 0.3 2 3 0.7 2 2 3 3 5 2 2 3 

13b z4 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 0.7 2 5 3 3 5 2 2 5 

14b z4 0.3 0.3 0.0 1.0 0.4 0.3 0.3 0.3 2 3 0.7 2 7 3 3 5 2 2 2 

                     
1Trials 1-5 were designed to check all imputation models.  Trials 6-8 were designed for the dichotomous confounder model. Trials 9-11 were designed for the continuous confounder model.  Trials 12-14 
were designed for the trichotomous confounder model. 
2P(X0=1) is the background exposure prevalence P(X=1|Z1=Z2=Z3=Z4=0) 
3P(Y0=1) is the background risk of disease P(Y=1|X=Z1=Z2=Z3=Z4=0) 
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Table 7.2 Study 1: Actual characteristics of the trial cohorts (N=10,000) 

Trial 
Target 

model1 P(Z1) P(Z2) 
Mean 

(Z3) 
SD(Z3) 

P(Z4) 

P(X0=1)2 P(Y0=1)3 
ORYX|Z1, 

Z2, Z3,Z4 

ORXZ1|Y, 

Z2, Z3,Z4 

ORXZ2|Y, 

Z1, Z3,Z4 

ORXZ3|Y, 

Z1, Z2,Z4 

ORXZ4|Y, Z1, 

Z2,Z3 
ORYZ1|

X, Z2, 

Z3,Z4 

ORYZ2|X, 

Z1, Z3,Z4 

ORY

Z3|X, 

Z1, 

Z2,Z4 

ORYZ4|X, Z1, Z2,Z3 

Z4=1 Z4=2 Z4=1 Z4=2 Z4=1 Z4=2 

                     

1a All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 0.95 3.20 1.83 2.11 1.92 2.93 2.75 5.15 2.02 1.95 3.07 

2a All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.48 0.97 3.18 1.81 2.10 1.91 2.91 2.96 5.30 1.97 2.14 2.93 

3a All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.70 0.96 3.18 1.81 2.10 1.91 2.91 3.06 5.72 1.98 2.14 3.15 

4a All 0.29 0.30 0.01 1.00 0.40 0.30 0.49 0.31 0.97 3.06 2.00 2.07 2.15 3.54 2.73 5.13 2.01 1.94 3.06 

5a All 0.29 0.30 0.01 1.00 0.40 0.30 0.72 0.27 1.05 3.37 2.06 2.04 2.10 3.22 2.70 5.09 1.99 1.92 3.02 

6a z1, z2 0.49 0.30 0.01 1.00 0.40 0.30 0.31 0.28 0.97 3.17 5.16 2.09 2.06 3.14 2.84 5.11 2.01 2.05 3.13 

7a z1, z2 0.49 0.30 0.01 1.00 0.40 0.30 0.31 0.28 0.96 5.28 1.95 2.05 1.86 3.06 4.62 5.32 2.01 2.07 3.23 

8a z1, z2 0.71 0.30 0.01 1.00 0.40 0.30 0.26 0.30 0.97 7.09 2.00 2.05 2.06 2.92 7.59 5.31 2.02 1.97 3.19 

9a z3 0.29 0.30 0.01 1.00 0.40 0.30 0.29 0.31 0.91 3.12 1.94 1.55 1.96 2.97 2.87 5.68 1.50 2.04 3.32 

10a z3 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.30 0.95 3.08 1.98 5.20 2.05 3.03 2.95 4.78 5.27 2.02 3.27 

11a z3 0.29 0.30 0.01 1.00 0.40 0.30 0.29 0.32 0.99 3.03 1.99 1.21 1.99 3.06 2.92 4.75 5.18 2.00 3.24 

12a z4 0.29 0.30 0.00 1.00 0.20 0.20 0.29 0.30 0.97 2.93 1.99 2.10 2.05 3.31 2.99 5.17 2.05 1.92 2.82 

13a z4 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 0.95 3.02 2.06 2.07 5.04 2.93 2.81 5.29 2.02 1.97 4.85 

14a z4 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 0.99 3.02 2.06 2.04 6.97 2.88 2.70 5.14 2.04 1.95 2.12 

                     

1b All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 1.91 2.88 1.58 1.96 1.77 2.60 2.86 4.98 1.97 1.98 2.96 

2b All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.48 1.93 2.98 1.67 2.01 1.82 2.71 3.03 5.53 2.01 2.17 3.20 

3b All 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.70 1.94 2.63 1.60 1.89 1.94 3.07 3.35 5.91 1.99 2.13 3.08 

4b All 0.29 0.30 0.01 1.00 0.40 0.30 0.49 0.31 2.01 2.90 1.65 1.86 1.87 2.77 2.90 5.10 1.91 1.97 2.74 

5b All 0.49 0.30 0.01 1.00 0.40 0.30 0.72 0.27 2.12 2.76 4.21 1.91 1.87 2.70 2.86 5.22 1.92 2.14 2.97 

6b z1, z2 0.49 0.30 0.01 1.00 0.40 0.30 0.31 0.28 1.95 4.43 1.64 1.89 1.70 2.69 2.86 5.34 1.96 2.11 3.15 

7b z1, z2 0.71 0.30 0.01 1.00 0.40 0.30 0.31 0.28 1.88 5.81 1.73 1.93 1.96 2.64 4.53 5.21 1.99 2.09 3.04 

8b z1, z2 0.29 0.30 0.01 1.00 0.40 0.30 0.26 0.30 1.83 2.71 1.56 1.47 1.76 2.54 7.76 5.64 2.03 1.83 3.16 

9b z3 0.29 0.30 0.01 1.00 0.40 0.30 0.29 0.31 1.88 2.70 1.63 4.25 1.88 2.63 2.82 5.53 1.48 2.13 3.10 

10b z3 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.30 1.98 2.74 1.70 1.03 1.86 2.75 2.83 5.05 5.22 1.96 3.23 

11b z3 0.29 0.30 0.01 1.00 0.40 0.30 0.29 0.32 1.94 2.55 1.61 1.92 1.89 2.87 2.84 5.10 5.25 1.98 2.99 

12b z4 0.29 0.30 0.00 1.00 0.20 0.20 0.29 0.30 1.91 2.63 1.67 1.90 4.56 2.38 2.97 5.49 1.99 1.91 3.00 



105 
 

Trial 
Target 

model1 P(Z1) P(Z2) 
Mean 

(Z3) 
SD(Z3) P(Z4) P(X0=1)2 P(Y0=1)3 

ORYX|Z1, 

Z2, Z3,Z4 

ORXZ1|Y, 

Z2, Z3,Z4 

ORXZ2|Y, 

Z1, Z3,Z4 

ORXZ3|Y, 

Z1, Z2,Z4 

ORXZ4|Y, Z1, 

Z2,Z3 

ORYZ1|

X, Z2, 

Z3,Z4 

ORYZ2|X, 

Z1, Z3,Z4 

ORY

Z3|X, 

Z1, 

Z2,Z4 

ORYZ4|X, Z1, Z2,Z3 

13b z4 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 2.00 2.62 1.66 1.86 6.29 2.63 2.75 5.27 1.93 2.04 4.76 

14b z4 0.29 0.30 0.01 1.00 0.40 0.30 0.30 0.31 1.99 2.88 1.58 1.96 1.77 2.60 2.78 5.07 1.96 2.08 1.96 

                     

1Trials 1-5 were designed to check all imputation models.  Trials 6-8 were designed for the dichotomous confounder model. Trials 9-11 were designed for the continuous confounder model.  Trials 12-14 were designed for the 

trichotomous confounder model. 
2P(X0=1) is the background exposure prevalence P(X=1|Z1=Z2=Z3=Z4=0) 
3P(Y0=1) is the background risk of disease P(Y=1|X=Z1=Z2=Z3=Z4=0) 
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Table 7.3 Study 1: Full simulation results: imputing a dichotomous confounder (Z1, Z2) model (N=10,000, reps=1,000) – Non-saturated models 

Trial 
OR true1 

(LCL, UCL) 

Imputing for Z1 Only Imputing for Z2 Only 

OR unadj2 

(LCL, UCL) 

OR adj3 

(LSI, USI) 
Bias4 RMSE5 Coverage6 

OR unadj2 

(LCL, UCL) 

OR adj3 

(LSI, USI) 
Bias4 RMSE5 Coverage6 

            

1a 0.95 (0.86, 1.05) 1.18 (1.07, 1.29) 0.95 (0.86, 1.05) 0.0020 0.0500 100% 1.13 (1.03, 1.24) 0.95 (0.86, 1.05) 0.0001 0.0500 100% 

2a 0.97 (0.87, 1.08) 1.21 (1.09, 1.35) 0.98 (0.88, 1.09) 0.0027 0.0552 100% 1.15 (1.03, 1.27) 0.97 (0.87, 1.08) -0.0028 0.0553 100% 

3a 0.95 (0.84, 1.09) 1.19 (1.05, 1.35) 0.96 (0.84, 1.10) 0.0054 0.0680 100% 1.12 (0.98, 1.27) 0.95 (0.83, 1.09) -0.0032 0.0680 100% 

4a 0.97 (0.87, 1.08) 1.18 (1.07, 1.31) 0.98 (0.88, 1.08) 0.0037 0.0539 100% 1.19 (1.08, 1.31) 0.98 (0.88, 1.09) 0.0051 0.0540 100% 

5a 1.05 (0.92, 1.19) 1.27 (1.12, 1.44) 1.05 (0.92, 1.19) 0.0039 0.0650 100% 1.28 (1.13, 1.44) 1.05 (0.92, 1.19) 0.0031 0.0649 100% 

6a 0.98 (0.89, 1.08) 1.28 (1.16, 1.41) 0.98 (0.89, 1.09) 0.0025 0.0519 100% 1.48 (1.35, 1.63) 0.98 (0.89, 1.09) 0.0013 0.0518 100% 

7a 0.96 (0.86, 1.06) 1.63 (1.48, 1.79) 0.96 (0.86, 1.07) 0.0033 0.0549 100% 1.15 (1.04, 1.27) 0.96 (0.86, 1.07) 0.0022 0.0548 100% 

8a 0.96 (0.85, 1.09) 2.13 (1.91, 2.37) 0.98 (0.87, 1.11) 0.0154 0.0656 100% 1.17 (1.04, 1.31) 0.97 (0.86, 1.10) 0.0099 0.0644 100% 

            

1b 1.91 (1.73, 2.11) 2.32 (2.10, 2.55) 1.91 (1.73, 2.11) 0.0031 0.0512 100% 2.13 (1.93, 2.34) 1.90 (1.72, 2.11) -0.0052 0.0514 100% 

2b 1.92 (1.71, 2.16) 2.35 (2.09, 2.63) 1.93 (1.72, 2.17) 0.0087 0.0605 100% 2.16 (1.93, 2.42) 1.91 (1.70, 2.15) -0.0112 0.0610 100% 

3b 1.94 (1.67, 2.26) 2.40 (2.07, 2.78) 1.95 (1.67, 2.27) 0.0047 0.0779 100% 2.20 (1.90, 2.56) 1.93 (1.65, 2.24) -0.0167 0.0797 100% 

4b 2.01 (1.81, 2.23) 2.39 (2.16, 2.65) 2.02 (1.82, 2.24) 0.0097 0.0549 100% 2.28 (2.06, 2.52) 2.01 (1.81, 2.24) 0.0011 0.0541 100% 

5b 2.11 (1.86, 2.40) 2.52 (2.23, 2.85) 2.13 (1.87, 2.41) 0.0104 0.0656 100% 2.41 (2.14, 2.72) 2.12 (1.86, 2.40) 0.0016 0.0648 100% 

6b 1.93 (1.74, 2.15) 2.48 (2.24, 2.75) 1.93 (1.74, 2.15) 0.0012 0.0540 100% 2.80 (2.53, 3.09) 1.92 (1.73, 2.14) -0.0069 0.0544 100% 

7b 1.88 (1.68, 2.10) 2.99 (2.70, 3.31) 1.88 (1.69, 2.10) 0.0065 0.0567 100% 2.13 (1.91, 2.36) 1.87 (1.67, 2.09) -0.0067 0.0567 100% 

8b 1.83 (1.61, 2.08) 3.77 (3.36, 4.23) 1.86 (1.63, 2.11) 0.0280 0.0717 100% 2.11 (1.87, 2.39) 1.85 (1.62, 2.10) 0.0197 0.0688 100% 

            
1True odds ratio adjusting for simulated Z  
2Unadjusted odds ratio, without control for Z  
3Odds ratio adjusting for 𝑍̂ (bias model): 50th percentile of the median of the estimates, lower and upper simulation interval (LSI, USI) 
4Bias=True OR – Bias adjusted OR 
5 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)   
695% confidence interval coverage as defined by the % of times OR true is between the lower and upper limit of the 95% confidence interval of the repetition OR. 
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Table 7.4 Study 1: Full simulation results for Imputing two dichotomous confounder (Z1, Z2) simultaneously model (N=10,000, reps=1,000) – Non-saturated 

models 

Trial 
OR true1 

(LCL, UCL) 

OR unadj2 

(LCL, UCL) 

OR adj3 

(LSI, USI) 
Bias4 RMSE5 Coverage6 

       

1a 0.95 (0.86, 1.05) 1.36 (1.25, 1.49) 0.95 (0.86, 1.05) -0.0019 0.0500 100% 

2a 0.97 (0.87, 1.08) 1.39 (1.26, 1.54) 0.97 (0.87, 1.08) -0.0008 0.0552 100% 

3a 0.95 (0.84, 1.09) 1.36 (1.20, 1.54) 0.96 (0.84, 1.09) 0.0024 0.0679 100% 

4a 0.97 (0.87, 1.08) 1.40 (1.27, 1.54) 0.98 (0.88, 1.08) 0.0035 0.0539 100% 

5a 1.05 (0.92, 1.19) 1.51 (1.34, 1.70) 1.05 (0.92, 1.19) 0.0012 0.0649 100% 

6a 0.98 (0.89, 1.08) 1.80 (1.64, 1.97) 0.98 (0.88, 1.09) 0.0091 0.0535 100% 

7a 0.96 (0.86, 1.06) 1.82 (1.66, 2.00) 0.96 (0.86, 1.07) 0.0009 0.0549 100% 

8a 0.96 (0.85, 1.09) 2.33 (2.10, 2.59) 0.99 (0.87, 1.12) 0.0228 0.0676 100% 

       

1b 1.91 (1.73, 2.11) 2.52 (2.30, 2.77) 1.90 (1.72, 2.10) -0.0086 0.0519 100% 

2b 1.92 (1.71, 2.16) 2.59 (2.32, 2.89) 1.92 (1.71, 2.16) -0.0060 0.0602 100% 

3b 1.94 (1.67, 2.26) 2.68 (2.32, 3.11) 1.94 (1.66, 2.26) -0.0057 0.0780 100% 

4b 2.01 (1.81, 2.23) 2.66 (2.41, 2.93) 2.01 (1.81, 2.24) 0.0021 0.0541 100% 

5b 2.11 (1.86, 2.40) 2.81 (2.50, 3.17) 2.12 (1.87, 2.41) 0.0044 0.0651 100% 

6b 1.93 (1.74, 2.15) 3.34 (3.03, 3.68) 1.97 (1.77, 2.19) 0.0191 0.0574 100% 

7b 1.88 (1.68, 2.10) 3.22 (2.92, 3.55) 1.87 (1.68, 2.09) -0.0026 0.0564 100% 

8b 1.83 (1.61, 2.08) 4.04 (3.61, 4.51) 1.87 (1.64, 2.12) 0.0363 0.0754 100% 

       
1True odds ratio adjusting for simulated Z1 and Z2.   
2Unadjusted odds ratio, without control for Z  
3Odds ratio adjusting for 𝑍̂ (bias model): 50th percentile of the median of the estimates, lower and upper simulation interval (LSI, USI) 
4Bias=True OR – Bias adjusted OR 
5 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
695% confidence interval coverage as defined by the % of times OR true is between the lower and upper limit of the 95% confidence interval of the repetition OR. 
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Table 7.5 Study 1: Full simulation results from imputing a single continuous confounder (Z3) model (N=10,000, reps=1,000) – Non-saturated models 

Trial 
OR true1 

(LCL, UCL) 

OR unadj2 

(LCL, UCL) 

OR adj3 

(LSI, USI) 
Bias4 RMSE5 Coverage6 

       

1a 0.95 (0.86, 1.05) 1.47 (1.34, 1.60) 0.95 (0.86, 1.05) 0.0027 0.0500 100% 

2a 0.97 (0.87, 1.08) 1.49 (1.35, 1.65) 0.98 (0.88, 1.09) 0.0049 0.0553 100% 

3a 0.95 (0.84, 1.09) 1.48 (1.31, 1.67) 0.96 (0.84, 1.10) 0.0091 0.0683 100% 

4a 0.97 (0.87, 1.08) 1.49 (1.35, 1.64) 0.98 (0.88, 1.09) 0.0052 0.0541 100% 

5a 1.05 (0.92, 1.19) 1.59 (1.42, 1.80) 1.05 (0.93, 1.19) 0.0053 0.0650 100% 

       

9a 0.91 (0.83, 1.00) 1.08 (0.98, 1.18) 0.91 (0.83, 1.00) 0.0009 0.0484 100% 

10a 0.95 (0.84, 1.06) 3.79 (3.47, 4.14) 0.99 (0.88, 1.10) 0.0394 0.0701 99% 

11a 0.99 (0.89, 1.10) 1.22 (1.12, 1.33) 0.99 (0.89, 1.10) -0.0042 0.0542 100% 

       

1b 1.91 (1.73, 2.11) 2.77 (2.52, 3.04) 1.91 (1.73, 2.11) 0.0016 0.0512 100% 

2b 1.92 (1.71, 2.16) 2.85 (2.55, 3.18) 1.93 (1.72, 2.17) 0.0083 0.0604 100% 

3b 1.94 (1.67, 2.26) 2.93 (2.53, 3.38) 1.95 (1.68, 2.27) 0.0082 0.0782 100% 

4b 2.01 (1.81, 2.23) 2.85 (2.58, 3.14) 2.02 (1.82, 2.25) 0.0122 0.0554 100% 

5b 2.11 (1.86, 2.40) 3.00 (2.66, 3.38) 2.13 (1.88, 2.42) 0.0154 0.0666 100% 

       

9b 1.88 (1.70, 2.07) 2.16 (1.96, 2.41) 1.88 (1.70, 2.07) 0.0007 0.0497 100% 

10b 1.98 (1.76, 2.22) 6.68 (6.07, 7.35) 2.06 (1.84, 2.31) 0.0824 0.1014 99% 

11b 1.94 (1.74, 2.16) 1.95 (1.78, 2.13) 1.89 (1.70, 2.11) -0.0514 0.0753 100% 

       
1True odds ratio adjusting for simulated Z3 
2Unadjusted odds ratio, without control for Z3 
3Odds ratio adjusting for 𝑍3̂ (bias model): simulation interval derived from 50th percentile of the median of the estimates, lower and upper simulation interval (LSI, USI) 
4Bias=True OR – Bias adjusted OR 
5 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
695% confidence interval coverage as defined by the % of times OR true is between the lower and upper limit of the 95% confidence interval of the repetition OR. 
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Table 7.6 Study 1: Full simulation results for Imputing a single trichotomous confounder (Z4) model (N=10,000, reps=1,000) – Non-saturated models 

Trial 
OR true1 

(LCL, UCL) 

OR unadj2 

(LCL, UCL) 

OR adj3 

(LSI, USI) 
Bias4 RMSE5 Coverage6 

       

1a 0.95 (0.86, 1.05) 1.13 (1.03, 1.24) 0.95 (0.86, 1.05) 0.0039 0.0501 100% 

2a 0.97 (0.87, 1.08) 1.16 (1.04, 1.29) 0.98 (0.88, 1.09) 0.0049 0.0554 100% 

3a 0.95 (0.84, 1.09) 1.15 (1.01, 1.31) 0.96 (0.84, 1.10) 0.0055 0.0681 100% 

4a 0.97 (0.87, 1.08) 1.20 (1.08, 1.32) 0.98 (0.89, 1.09) 0.0123 0.0551 100% 

5a 1.05 (0.92, 1.19) 1.26 (1.12, 1.43) 1.05 (0.93, 1.20) 0.0089 0.0654 100% 

       

12a 0.97 (0.88, 1.06) 1.18 (1.08, 1.30) 0.97 (0.88, 1.07) 0.0051 0.0500 100% 

13a 0.95 (0.85, 1.05) 1.18 (1.07, 1.30) 0.96 (0.86, 1.06) 0.0102 0.0540 100% 

14a 0.99 (0.89, 1.09) 1.22 (1.10, 1.34) 0.99 (0.89, 1.10) 0.0027 0.0528 100% 

       

1b 1.91 (1.73, 2.11) 2.21 (2.00, 2.44) 1.91 (1.73, 2.12) 0.0044 0.0513 100% 

2b 1.92 (1.71, 2.16) 2.26 (2.02, 2.54) 1.93 (1.72, 2.17) 0.0066 0.0602 100% 

3b 1.94 (1.67, 2.26) 2.30 (1.98, 2.67) 1.95 (1.68, 2.27) 0.0082 0.0782 100% 

4b 2.01 (1.81, 2.23) 2.38 (2.15, 2.64) 2.03 (1.82, 2.25) 0.0174 0.0567 100% 

5b 2.11 (1.86, 2.40) 2.50 (2.21, 2.83) 2.13 (1.88, 2.42) 0.0156 0.0667 100% 

       

12b 1.91 (1.73, 2.11) 2.29 (2.08, 2.52) 1.92 (1.74, 2.12) 0.0119 0.0521 100% 

13b 2.00 (1.80, 2.22) 2.40 (2.17, 2.65) 2.01 (1.80, 2.23) 0.0055 0.0546 100% 

14b 1.99 (1.79, 2.20) 2.46 (2.23, 2.72) 1.99 (1.79, 2.21) 0.0058 0.0536 100% 

       
1True odds ratio adjusting for simulated Z4 
2Unadjusted odds ratio, without control for Z4 
3Odds ratio adjusting for imputed 𝑍 ̂ (bias model), simulation interval derived from 50th percentile of the median of the estimates, lower and upper simulation interval (LSI, USI) 
4Bias=True OR – Bias adjusted OR 
5 RMSE  √(B as)  (M d an SE obta n d from th  b as adjust d OR d str but s)  
695% confidence interval coverage as defined by the % of times OR true is between the lower and upper limit of the 95% confidence interval of the repetition OR. 
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Table 7.7 Study 3: Smoking bias model parameters, based on complete case analysis, by study type
1
 

Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Intercept       

Current smoking -4.901 0.710 0.0001 -2.476 0.710 0.004 

Past smoking -3.134 0.710 0.0022 -0.886 0.710 0.2342 

BMI (per kg/m2) 0.015 0.012 0.21 0.002 0.013 0.8718 

Race       

White Ref Ref Ref Ref Ref Ref 

Black -0.762 0.696 0.2735 1.309 0.818 0.1096 

Asian -1.009 0.743 0.174 -3.224 0.777 <.0001 

Hawaiian or Pacific Islander -1.964 1.238 0.1125 0.085 1.342 0.9495 

Other -3.143 0.814 0.0001 -2.536 1.193 0.0335 

Age at menarche       

<11 years Ref Ref Ref Ref Ref Ref 

11-12 years 1.387 0.569 0.0149 0.649 0.574 0.2578 

13-14 years 1.080 0.536 0.0439 0.780 0.519 0.1327 

15+ years 1.770 0.637 0.0055 1.750 0.606 0.0039 

Parity       

Nulliparous Ref Ref Ref Ref Ref Ref 

1 child 0.205 0.478 0.6686 0.914 0.489 0.0617 

2 children 0.377 0.400 0.3455 1.065 0.416 0.0104 

3-4 children 0.666 0.392 0.0893 0.866 0.422 0.04 

5+ children 2.025 0.536 0.0002 1.057 0.649 0.1033 

Ever use of oral contraception 1.553 0.280 <.0001 0.899 0.289 0.0018 

Case status -0.181 0.334 0.5877 -0.717 0.307 0.0196 

Age in years 0.046 0.010 <.0001 0.008 0.010 0.4363 

BMI*Race interactions       

BMI*Black 0.002 0.010 0.8574 -0.023 0.013 0.0827 

BMI*Asian 0.039 0.016 0.0176 0.041 0.016 0.01 

BMI*Hawaiian or pacific islander 0.020 0.017 0.2316 -0.003 0.022 0.8937 

BMI*Other 0.048 0.013 0.0003 0.026 0.020 0.1782 

BMI*Age at menarche interactions       

BMI*11-12 years -0.021 0.008 0.0137 -0.008 0.009 0.3783 

BMI*13-14 years -0.018 0.008 0.0282 -0.015 0.008 0.0753 

BMI*15+ years -0.020 0.010 0.0489 -0.012 0.011 0.2638 

BMI*Parity interactions       

BMI*1 child 0.007 0.008 0.3694 -0.001 0.009 0.9144 

BMI*2 children -0.004 0.007 0.5186 0.001 0.007 0.9065 

BMI*3-4 children -0.009 0.007 0.158 0.003 0.007 0.632 

BMI*5+ children -0.023 0.008 0.0058 -0.005 0.010 0.5912 

BMI*Ever use of oral contraception -0.004 0.005 0.33 -0.005 0.005 0.2887 

BMI*Case status 0.004 0.005 0.4179 0.011 0.005 0.0219 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Black Race*Age at menarche interactions       

Black*11-12 years 0.020 0.252 0.9379 -0.161 0.342 0.6384 

Black*13-14 years -0.053 0.250 0.8318 -0.058 0.306 0.8502 

Black*15+years -0.517 0.296 0.0807 0.195 0.356 0.5845 

Black race*Parity interactions       

Black*1 child -0.248 0.244 0.31 -0.270 0.317 0.393 

Black*2 children -0.431 0.220 0.0501 -0.475 0.297 0.1101 

Black*3-4 children -0.485 0.203 0.0169 -0.379 0.296 0.2003 

Black*5+ children -0.372 0.222 0.0947 -0.711 0.327 0.0297 

Black race*Ever use of oral contraception -0.051 0.139 0.7136 0.328 0.180 0.0673 

Black race*Case status 0.016 0.188 0.9313 -0.238 0.227 0.2959 

Black race*Age in years 0.022 0.009 0.0158 -0.005 0.010 0.6076 

Asian race*Age at menarche interactions       

Asian*11-12 years -0.296 0.280 0.2892 0.392 0.483 0.4172 

Asian*13-14 years -0.387 0.277 0.1631 0.214 0.438 0.6243 

Asian*15+years -0.380 0.338 0.2606 0.512 0.457 0.2628 

Asian race*Parity interactions       

Asian*1 child 0.022 0.263 0.9335 -0.543 0.265 0.0404 

Asian*2 children -0.213 0.218 0.3282 -0.255 0.258 0.3228 

Asian*3-4 children -0.277 0.219 0.2063 0.063 0.251 0.8028 

Asian*5+ children -0.145 0.340 0.6704 0.536 0.316 0.0897 

Asian race*Ever use of oral contraception -0.276 0.162 0.0891 0.109 0.173 0.53 

Asian race*Case status 0.376 0.184 0.0411 0.133 0.165 0.4194 

Asian race*Age in years 0.001 0.009 0.9218 0.012 0.009 0.1635 

Hawaiian race*Age at menarche interactions       

Hawaiian*11-12 years 0.757 0.476 0.1113 -0.741 0.710 0.2965 

Hawaiian*13-14 years 0.602 0.496 0.2247 -0.515 0.631 0.4147 

Hawaiian*15+years 0.871 0.562 0.1208 0.436 0.748 0.5594 

Hawaiian race*Parity interactions       

Hawaiian*1 child 0.857 0.595 0.1503 0.312 0.714 0.6618 

Hawaiian*2 children 0.008 0.553 0.989 0.338 0.718 0.6373 

Hawaiian*3-4 children -0.353 0.508 0.4873 0.570 0.630 0.3658 

Hawaiian*5+ children 0.283 0.514 0.5816 0.759 0.646 0.2399 

Hawaiian race*Ever use of oral contraception 0.091 0.269 0.7342 1.046 0.445 0.0189 

Hawaiian race*Case status 0.080 0.332 0.8096 -0.037 0.415 0.9282 

Hawaiian race*Age in years 0.014 0.016 0.3587 -0.027 0.018 0.144 

Other race*Age at menarche interactions       

Other*11-12 years -0.042 0.295 0.888 0.485 0.594 0.4139 

Other*13-14 years 0.400 0.289 0.1659 0.706 0.556 0.204 

Other*15+years 0.056 0.339 0.8694 1.251 0.660 0.058 

Other race*Parity interactions       

Other*1 child 0.328 0.330 0.3216 -0.165 0.509 0.746 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Other*2 children 0.188 0.276 0.4961 -0.266 0.433 0.5395 

Other*3-4 children 0.096 0.254 0.7064 -0.010 0.448 0.9816 

Other*5+ children -0.057 0.264 0.8304 0.985 0.543 0.0698 

Other race*Ever use of oral contraception -0.137 0.156 0.3801 -0.050 0.311 0.8718 

Other race*Case status -0.027 0.193 0.8892 0.588 0.335 0.0795 

Other race*Age in years 0.020 0.009 0.0316 0.010 0.015 0.5032 

Age at menarche*Parity interactions       

11-12 years*1 child -0.269 0.215 0.2112 -0.213 0.252 0.3996 

11-12 years*2 children -0.130 0.179 0.4684 -0.413 0.213 0.052 

11-12 years*3-4 children -0.156 0.171 0.3617 -0.128 0.214 0.55 

11-12 years*5+ children 0.050 0.229 0.8286 0.029 0.309 0.9251 

11-12 years*Ever use of oral contraception -0.030 0.121 0.8044 -0.014 0.145 0.922 

11-12 years*Case status -0.021 0.143 0.8806 -0.073 0.153 0.6336 

11-12 years*Age in years -0.012 0.008 0.1323 -0.004 0.008 0.6307 

Age at menarche*Parity interactions       

13-14 years*1 child -0.036 0.205 0.8622 0.076 0.228 0.7388 

13-14 years*2 children -0.085 0.171 0.6195 -0.146 0.194 0.4537 

13-14 years*3-4 children -0.223 0.164 0.1751 0.090 0.194 0.6432 

13-14 years*5+ children -0.046 0.220 0.8324 0.160 0.283 0.5706 

13-14 years*Ever use of oral contraception -0.099 0.116 0.3915 -0.112 0.131 0.3962 

13-14 years*Case status 0.045 0.136 0.7381 -0.054 0.139 0.6995 

13-14 years*Age in years -0.007 0.007 0.3364 -0.006 0.007 0.4305 

Age at menarche*Parity interactions       

15+ years*1 child -0.331 0.245 0.1756 -0.365 0.266 0.1693 

15+ years*2 children -0.489 0.205 0.017 -0.570 0.230 0.0133 

15+ years*3-4 children -0.436 0.196 0.0262 -0.290 0.231 0.2095 

15+ years*5+ children -0.206 0.254 0.4177 -0.265 0.326 0.4169 

15+ years*Ever use of oral contraception -0.098 0.137 0.4764 -0.266 0.154 0.0852 

15+ years*Case status 0.084 0.167 0.6144 -0.075 0.164 0.6464 

15+ years*Age in years -0.012 0.009 0.1471 -0.014 0.008 0.0904 

Parity interactions       

1 child*Ever use of oral contraception 0.025 0.111 0.8181 -0.189 0.123 0.1259 

1 child*Case status -0.337 0.122 0.0057 -0.170 0.120 0.1548 

1 child*Age in years -0.004 0.006 0.5188 -0.006 0.006 0.2874 

2 children*Ever use of oral contraception -0.038 0.090 0.6705 -0.248 0.106 0.0187 

2 children*Case status -0.130 0.097 0.1803 -0.005 0.103 0.9617 

2 children*Age in years -0.002 0.005 0.7311 -0.006 0.005 0.1956 

3-4 children*Ever use of oral contraception 0.070 0.087 0.4206 -0.159 0.107 0.1372 

3-4 children*Case status -0.076 0.094 0.42 -0.185 0.105 0.0765 

3-4 children*Age in years -0.006 0.005 0.1949 -0.010 0.005 0.0598 

5+ children*Ever use of oral contraception 0.060 0.108 0.5818 -0.285 0.142 0.0448 

5+ children*Case status -0.111 0.131 0.3936 -0.282 0.155 0.0679 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

5+ children*Age in years -0.024 0.007 0.0003 -0.007 0.008 0.3549 

Ever use of oral contraception*Case status -0.040 0.069 0.5598 -0.260 0.071 0.0003 

Ever use of oral contraception*Age in years -0.025 0.003 <.0001 -0.010 0.003 0.0031 

Case status*Age in years 0.000 0.004 0.962 0.011 0.004 0.0045 
1Cumulative logistic regression model for smoking status (current or previous vs. never smoker), stratified by study type, with random intercept 

by study site and fixed effects as appear in the table. 
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Table 7.8 Study 3: Estrogen bias model parameters, based on complete case analysis, by study type
1
 

Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Intercept -10.078 1.852 0.0006 -7.564 1.566 0.0003 

BMI (per kg/m2) -0.034 0.031 0.2716 0.054 0.027 0.0438 

Race       

White Ref Ref Ref Ref Ref Ref 

Black -2.746 1.678 0.1018 -0.523 1.911 0.7842 

Asian -2.289 1.502 0.1276 -0.399 1.463 0.7851 

Hawaiian or Pacific Islander -5.442 6.056 0.3689 -0.782 26.499 0.9765 

Other 0.641 1.432 0.6544 -1.610 2.859 0.5733 

Age at menarche       

<11 years Ref Ref Ref Ref Ref Ref 

11-12 years 0.499 1.284 0.6975 0.498 1.207 0.6796 

13-14 years -0.174 1.216 0.8864 -0.534 1.097 0.6266 

15+ years 0.660 1.465 0.6526 0.911 1.238 0.4616 

Parity       

Nulliparous Ref Ref Ref Ref Ref Ref 

1 child 0.037 1.128 0.9738 0.972 0.955 0.3087 

2 children -0.129 0.897 0.8853 0.807 0.796 0.3101 

3-4 children 0.807 0.859 0.3472 0.106 0.808 0.8953 

5+ children 1.388 1.207 0.2499 1.049 1.254 0.4028 

Ever use of oral contraception 0.858 0.655 0.1906 0.739 0.562 0.1884 

Smoking status       

Never smoking Ref Ref Ref Ref Ref Ref 

Prior smoking -0.749 0.651 0.2494 0.510 0.590 0.3874 

Current smoking -0.194 0.927 0.8347 -0.110 0.763 0.8851 

Case status 1.706 0.689 0.0133 1.893 0.559 0.0007 

Age in years 0.097 0.022 <.0001 0.064 0.020 0.0012 

BMI*Race interactions       

BMI*Black -0.007 0.023 0.7493 -0.034 0.033 0.3026 

BMI*Asian 0.062 0.032 0.0546 -0.061 0.029 0.0357 

BMI*Hawaiian or pacific islander 0.078 0.033 0.0201 -0.360 0.295 0.2228 

BMI*Other 0.000 0.025 0.9903 0.059 0.050 0.237 

BMI*Age at menarche interactions       

BMI*11-12 years 0.006 0.022 0.7923 -0.025 0.021 0.219 

BMI*13-14 years 0.006 0.021 0.7851 -0.006 0.019 0.7453 

BMI*15+ years 0.021 0.026 0.4217 0.014 0.022 0.5343 

BMI*Parity interactions       

BMI*1 child -0.014 0.021 0.4935 -0.013 0.017 0.4468 

BMI*2 children 0.007 0.017 0.6626 -0.017 0.014 0.2411 

BMI*3-4 children -0.009 0.016 0.5828 -0.004 0.014 0.7914 

BMI*5+ children -0.014 0.020 0.4882 -0.023 0.020 0.252 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

BMI*Ever use of oral contraception -0.007 0.011 0.5674 -0.020 0.009 0.0312 

BMI*Smoking interactions       

BMI*Prior smoking 0.026 0.012 0.0264 -0.012 0.010 0.2257 

BMI*Current smoking 0.051 0.017 0.0025 -0.008 0.014 0.5718 

BMI*Case status -0.047 0.012 <.0001 -0.078 0.009 <.0001 

Black Race*Age at menarche interactions       

Black*11-12 years -0.335 0.584 0.5659 0.921 0.820 0.2611 

Black*13-14 years -0.084 0.575 0.8835 0.492 0.778 0.5266 

Black*15+years -0.059 0.643 0.9267 0.728 0.850 0.392 

Black race*Parity interactions       

Black*1 child 0.151 0.561 0.7881 0.762 0.835 0.3619 

Black*2 children 0.774 0.477 0.1043 1.328 0.785 0.0905 

Black*3-4 children 0.651 0.446 0.1447 1.086 0.796 0.1722 

Black*5+ children 0.528 0.490 0.2815 1.280 0.839 0.1269 

Black race*Ever use of oral contraception 0.484 0.308 0.1167 -0.308 0.370 0.4052 

Black race*Smoking interactions       

Black race*Prior smoking 0.032 0.296 0.9144 0.229 0.361 0.5268 

Black race*Current smoking -0.028 0.370 0.9405 -0.069 0.437 0.874 

Black race*Case status 0.148 0.367 0.687 -0.460 0.458 0.3156 

Black race*Age in years 0.021 0.020 0.2776 -0.004 0.021 0.8538 

Asian Race*Age at menarche interactions       

Asian*11-12 years -0.139 0.582 0.8117 0.596 1.000 0.5509 

Asian*13-14 years 0.224 0.571 0.6946 0.576 0.925 0.5338 

Asian*15+years -0.119 0.670 0.8588 0.251 0.942 0.7903 

Asian race*Parity interactions       

Asian*1 child 0.056 0.478 0.9071 0.300 0.384 0.4351 

Asian*2 children 0.031 0.412 0.9391 0.278 0.364 0.445 

Asian*3-4 children -0.183 0.401 0.6486 -0.807 0.397 0.0421 

Asian*5+ children 0.045 0.598 0.9405 -1.179 0.617 0.0561 

Asian race*Ever use of oral contraception 0.476 0.335 0.155 -0.386 0.245 0.1161 

Asian race*Smoking interactions       

Asian race*Prior smoking 0.497 0.286 0.0823 0.344 0.361 0.3409 

Asian race*Current smoking 0.057 0.498 0.9092 -0.110 0.528 0.8352 

Asian race*Case status -0.312 0.317 0.3246 -0.190 0.219 0.3858 

Asian race*Age in years -0.007 0.017 0.6711 0.032 0.016 0.0385 

Hawaiian Race*Age at menarche interactions       

Hawaiian*11-12 years -1.358 0.802 0.0905 -4.739 15.272 0.7563 

Hawaiian*13-14 years -1.712 0.931 0.0659 2.407 12.717 0.8499 

Hawaiian*15+years -0.180 0.853 0.833 3.275 12.796 0.798 

Hawaiian race*Parity interactions       

Hawaiian*1 child 4.481 5.608 0.4242 3.658 18.489 0.8432 

Hawaiian*2 children 4.444 5.583 0.4261 -0.054 20.058 0.9979 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Hawaiian*3-4 children 4.907 5.567 0.378 5.104 15.445 0.7411 

Hawaiian*5+ children 5.036 5.559 0.365 6.774 15.508 0.6623 

Hawaiian race*Ever use of oral contraception 0.498 0.552 0.3667 4.614 7.287 0.5266 

Hawaiian race*Smoking interactions       

Hawaiian race*Prior smoking -0.114 0.606 0.8505 -2.474 2.111 0.2411 

Hawaiian race*Current smoking 0.069 0.649 0.9157 -6.178 6.679 0.355 

Hawaiian race*Case status 0.578 0.604 0.3388 1.116 1.545 0.4702 

Hawaiian race*Age in years -0.025 0.033 0.4464 -0.110 0.142 0.4412 

Other Race*Age at menarche interactions       

Other*11-12 years 0.322 0.567 0.57 -0.707 1.148 0.538 

Other*13-14 years 0.462 0.555 0.4056 -0.704 1.061 0.5073 

Other*15+years -0.030 0.658 0.9637 -4.796 5.509 0.384 

Other race*Parity interactions       

Other*1 child 0.345 0.567 0.5424 0.382 1.569 0.8078 

Other*2 children 0.250 0.497 0.6153 -0.123 1.271 0.923 

Other*3-4 children 0.218 0.444 0.6229 1.207 1.231 0.3269 

Other*5+ children 0.410 0.475 0.3882 0.321 1.638 0.8446 

Other race*Ever use of oral contraception 0.404 0.288 0.1611 0.584 0.842 0.4881 

Other race*Smoking interactions       

Other race*Prior smoking 0.055 0.276 0.8417 -0.443 0.831 0.5943 

Other race*Current smoking -0.831 0.527 0.1151 -0.559 1.360 0.6813 

Other race*Case status 0.669 0.293 0.0223 0.600 0.947 0.5261 

Other race*Age in years -0.031 0.016 0.0452 -0.021 0.040 0.5981 

Age at menarche*Parity interactions       

11-12 years*1 child 1.106 0.593 0.0623 -0.012 0.476 0.98 

11-12 years*2 children -0.345 0.389 0.3753 -0.068 0.379 0.8574 

11-12 years*3-4 children 0.011 0.365 0.977 0.309 0.376 0.412 

11-12 years*5+ children -0.138 0.477 0.7721 -0.148 0.576 0.7973 

11-12 years*Ever use of oral contraception 0.206 0.279 0.4612 -0.292 0.266 0.2721 

11-12 years*Smoking interactions       

11-12 years*Prior smoking 0.461 0.283 0.1031 0.052 0.271 0.8469 

11-12 years*Current smoking 0.072 0.375 0.8488 0.392 0.387 0.3105 

11-12 years*Case status 0.013 0.305 0.9659 0.088 0.260 0.7354 

11-12 years*Age in years -0.015 0.017 0.3671 0.009 0.016 0.5741 

Age at menarche*Parity interactions       

13-14 years*1 child 0.905 0.577 0.1169 0.176 0.429 0.6806 

13-14 years*2 children -0.096 0.370 0.7946 -0.045 0.343 0.8962 

13-14 years*3-4 children -0.103 0.350 0.7679 0.143 0.341 0.6739 

13-14 years*5+ children -0.187 0.454 0.6796 0.043 0.522 0.9341 

13-14 years*Ever use of oral contraception 0.041 0.267 0.8783 -0.060 0.244 0.8041 

13-14 years*Smoking interactions       

13-14 years*Prior smoking 0.390 0.271 0.1491 0.126 0.248 0.612 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

13-14 years*Current smoking -0.137 0.362 0.7043 0.323 0.355 0.363 

13-14 years*Case status 0.080 0.290 0.7831 0.171 0.238 0.4725 

13-14 years*Age in years -0.003 0.016 0.8731 0.011 0.015 0.4592 

Age at menarche*Parity interactions       

15+ years*1 child 1.386 0.655 0.0344 -0.203 0.474 0.668 

15+ years*2 children 0.477 0.454 0.2932 -0.423 0.388 0.2755 

15+ years*3-4 children 0.343 0.429 0.4237 -0.336 0.391 0.3908 

15+ years*5+ children 0.515 0.534 0.3353 -0.406 0.587 0.4889 

15+ years*Ever use of oral contraception 0.196 0.315 0.5332 0.052 0.279 0.8528 

15+ years*Smoking interactions       

15+ years*Prior smoking 0.515 0.319 0.1061 0.129 0.284 0.651 

15+ years*Current smoking 0.252 0.416 0.5446 0.160 0.395 0.6866 

15+ years*Case status 0.582 0.340 0.0869 0.063 0.270 0.8166 

15+ years*Age in years -0.033 0.019 0.0804 -0.017 0.016 0.2916 

Parity interactions       

1 child*Ever use of oral contraception -0.116 0.254 0.6466 -0.010 0.219 0.9647 

1 child*Prior smoking -0.694 0.232 0.0027 -0.123 0.216 0.5671 

1 child*Current smoking -0.911 0.322 0.0047 0.185 0.267 0.4887 

1 child*Case status 0.006 0.246 0.9789 0.207 0.188 0.2693 

1 child*Age in years 0.000 0.013 0.9777 -0.015 0.011 0.1758 

2 children*Ever use of oral contraception -0.101 0.204 0.6212 -0.029 0.184 0.8753 

2 children*Prior smoking -0.516 0.188 0.0059 -0.063 0.176 0.7188 

2 children*Current smoking -0.797 0.258 0.002 0.083 0.235 0.7249 

2 children*Case status -0.129 0.194 0.5062 -0.039 0.159 0.8043 

2 children*Age in years 0.006 0.011 0.5997 -0.005 0.010 0.6053 

3-4 children*Ever use of oral contraception -0.166 0.192 0.3877 0.067 0.184 0.7147 

3-4 children*Prior smoking -0.498 0.176 0.0047 0.010 0.175 0.9529 

3-4 children*Current smoking -0.845 0.238 0.0004 0.206 0.237 0.3847 

3-4 children*Case status -0.167 0.182 0.3586 0.138 0.160 0.3894 

3-4 children*Age in years 0.000 0.010 0.985 -0.009 0.010 0.3747 

5+ children*Ever use of oral contraception -0.635 0.241 0.0084 0.000 0.248 0.9996 

5+ children*Prior smoking -0.310 0.234 0.1858 -0.357 0.253 0.1572 

5+ children*Current smoking -0.764 0.315 0.0154 -0.040 0.332 0.903 

5+ children*Case status -0.017 0.256 0.9478 0.127 0.243 0.6017 

5+ children*Age in years 0.001 0.014 0.9353 -0.013 0.015 0.3806 

Ever use of oral contraception interactions       

Ever use of oral contraception*Prior smoking -0.228 0.130 0.0791 0.012 0.119 0.9224 

Ever use of oral contraception*Current 

smoking 
-0.238 0.185 0.1976 0.031 0.165 0.851 

Ever use of oral contraception*Case status 0.302 0.146 0.0391 -0.029 0.114 0.7983 

Ever use of oral contraception*Age in years -0.011 0.008 0.1507 -0.009 0.007 0.1865 

Smoking interactions       
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Prior smoking*Case status -0.221 0.138 0.1094 -0.006 0.115 0.9557 

Prior smoking*Age in years 0.010 0.008 0.1865 0.000 0.007 0.95 

Current smoking*Case status -0.246 0.218 0.259 0.052 0.162 0.7475 

Current smoking*Age in years 0.006 0.011 0.5605 -0.002 0.009 0.8469 

Case status*Age in years -0.006 0.008 0.4428 0.006 0.007 0.3435 
1Binomial logistic regression model for ever use of estrogen only hormone replacement therapy, stratified by study type, with random intercept by 

study site and fixed effects as appear in the table. 
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Table 7.9 Study 3: Diabetes bias model parameters, based on complete case analysis, by study type
1
 

Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Intercept -10.850 2.133 0.0014 -8.446 1.531 <.0001 

BMI (per kg/m2) 0.162 0.025 <.0001 0.110 0.022 <.0001 

Race       

White Ref Ref Ref Ref Ref Ref 

Black 2.039 1.253 0.1037 2.612 1.329 0.0494 

Asian -1.272 1.611 0.43 0.659 1.057 0.5331 

Hawaiian or Pacific Islander 3.925 2.304 0.0885 -6.201 15.425 0.6877 

Other 0.453 1.503 0.7629 -1.403 2.102 0.5044 

Age at menarche       

<11 years Ref Ref Ref Ref Ref Ref 

11-12 years 1.308 1.323 0.3228 -1.386 1.133 0.2212 

13-14 years -0.843 1.282 0.511 -1.913 1.026 0.0622 

15+ years 1.220 1.594 0.4439 -2.254 1.232 0.0672 

Parity       

Nulliparous Ref Ref Ref Ref Ref Ref 

1 child 0.055 1.345 0.9675 1.150 0.992 0.2463 

2 children -0.827 1.160 0.4759 0.480 0.910 0.5978 

3-4 children 0.563 1.070 0.5991 0.112 0.925 0.9034 

5+ children 0.377 1.314 0.7739 1.777 1.323 0.1793 

Ever use of oral contraception 2.938 0.777 0.0002 1.306 0.621 0.0355 

Smoking status       

Never smoking Ref Ref Ref Ref Ref Ref 

Prior smoking 0.575 0.773 0.4569 0.623 0.681 0.3601 

Current smoking 1.100 1.207 0.3621 -0.293 0.877 0.7383 

Case status 2.341 0.825 0.0046 1.836 0.620 0.0031 

Age in years 0.053 0.026 0.0447 0.025 0.021 0.2358 

Ever use of EHRT 1.710 1.406 0.2239 0.341 1.103 0.757 

BMI*Race interactions       

BMI*Black -0.041 0.015 0.0062 -0.049 0.018 0.0074 

BMI*Asian 0.078 0.030 0.01 0.010 0.017 0.5463 

BMI*Hawaiian or pacific islander -0.050 0.029 0.0876 0.000 0.061 0.9948 

BMI*Other -0.013 0.021 0.5236 -0.041 0.030 0.1733 

BMI*Age at menarche interactions       

BMI*11-12 years 0.005 0.016 0.7649 0.040 0.015 0.0075 

BMI*13-14 years 0.031 0.015 0.0417 0.031 0.014 0.0215 

BMI*15+ years 0.009 0.019 0.638 0.035 0.017 0.0415 

BMI*Parity interactions       

BMI*1 child 0.008 0.016 0.6262 0.002 0.014 0.8979 

BMI*2 children 0.004 0.014 0.7649 -0.003 0.013 0.8082 

BMI*3-4 children -0.019 0.013 0.1339 -0.005 0.012 0.6691 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

BMI*5+ children -0.021 0.015 0.1625 -0.001 0.017 0.9618 

BMI*Ever use of oral contraception -0.033 0.009 0.0004 -0.014 0.008 0.0875 

BMI*Smoking interactions       

BMI*Prior smoking -0.002 0.009 0.7972 -0.008 0.009 0.3496 

BMI*Current smoking -0.002 0.016 0.8803 0.008 0.013 0.5267 

BMI*Case status -0.034 0.009 0.0003 -0.031 0.009 0.0003 

BMI*Ever use of EHRT 0.005 0.019 0.7982 0.029 0.015 0.0509 

Black Race*Age at menarche interactions       

Black*11-12 years 0.173 0.426 0.6854 0.652 0.554 0.2398 

Black*13-14 years -0.138 0.429 0.7472 0.864 0.503 0.0861 

Black*15+years -0.015 0.491 0.9763 0.330 0.593 0.5779 

Black race*Parity interactions       

Black*1 child -0.135 0.441 0.76 -0.844 0.503 0.0934 

Black*2 children 0.087 0.411 0.8314 -0.239 0.458 0.6018 

Black*3-4 children 0.274 0.369 0.4572 -0.231 0.449 0.6073 

Black*5+ children 0.829 0.379 0.0286 0.487 0.468 0.2974 

Black race*Ever use of oral contraception 0.098 0.235 0.6755 -0.054 0.285 0.8509 

Black race*Smoking interactions       

Black race*Prior smoking -0.008 0.230 0.9738 -0.112 0.284 0.6932 

Black race*Current smoking 0.571 0.310 0.0655 -0.556 0.340 0.1019 

Black race*Case status 0.050 0.275 0.8552 0.315 0.305 0.3026 

Black race*Age in years -0.007 0.016 0.6452 -0.018 0.017 0.2745 

Black race*Ever use of EHRT -0.137 0.415 0.7422 0.091 0.471 0.8466 

Asian Race*Age at menarche interactions       

Asian*11-12 years -0.770 0.502 0.1251 0.556 0.664 0.4017 

Asian*13-14 years -0.529 0.510 0.3 0.464 0.589 0.4306 

Asian*15+years 0.314 0.575 0.5857 0.178 0.611 0.7704 

Asian race*Parity interactions       

Asian*1 child -1.020 0.586 0.0818 -0.190 0.339 0.5757 

Asian*2 children -0.674 0.427 0.1145 0.187 0.324 0.5643 

Asian*3-4 children -0.866 0.414 0.0366 0.347 0.325 0.2843 

Asian*5+ children -1.962 0.832 0.0183 0.562 0.430 0.1907 

Asian race*Ever use of oral contraception -1.120 0.341 0.001 -0.291 0.205 0.156 

Asian race*Smoking interactions       

Asian race*Prior smoking 0.106 0.328 0.7469 -0.170 0.341 0.6185 

Asian race*Current smoking -1.096 0.830 0.187 -1.151 0.553 0.0375 

Asian race*Case status -0.812 0.403 0.0439 0.295 0.182 0.1063 

Asian race*Age in years 0.049 0.020 0.0126 -0.006 0.012 0.6273 

Asian race*Ever use of EHRT -1.139 0.688 0.098 0.279 0.395 0.48 

Hawaiian Race*Age at menarche interactions       

Hawaiian*11-12 years -1.588 0.715 0.0264 -1.396 2.423 0.5646 

Hawaiian*13-14 years -0.949 0.726 0.1911 -1.968 2.187 0.3683 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

Hawaiian*15+years -1.493 0.921 0.1049 -7.479 6.248 0.2313 

Hawaiian race*Parity interactions       

Hawaiian*1 child -2.062 1.256 0.1006 -1.033 2.299 0.6531 

Hawaiian*2 children -1.783 1.004 0.0757 -0.390 3.285 0.9054 

Hawaiian*3-4 children -0.948 0.763 0.2141 -3.760 2.324 0.1057 

Hawaiian*5+ children -1.160 0.770 0.1322 0.083 1.725 0.9619 

Hawaiian race*Ever use of oral contraception -0.583 0.491 0.2348 5.206 7.410 0.4823 

Hawaiian race*Smoking interactions       

Hawaiian race*Prior smoking 0.108 0.541 0.8421 2.167 1.429 0.1295 

Hawaiian race*Current smoking 0.437 0.628 0.4867 -0.449 1.610 0.7803 

Hawaiian race*Case status 0.171 0.561 0.7606 0.702 1.086 0.5179 

Hawaiian race*Age in years 0.017 0.030 0.5753 -0.015 0.081 0.856 

Hawaiian race*Ever use of EHRT 0.060 0.797 0.9398 -3.404 10.889 0.7546 

Other Race*Age at menarche interactions       

Other*11-12 years -0.169 0.467 0.7168 1.543 0.964 0.1094 

Other*13-14 years 0.184 0.458 0.6873 2.324 0.887 0.0088 

Other*15+years -0.145 0.555 0.7943 2.366 1.070 0.027 

Other race*Parity interactions       

Other*1 child -0.475 0.748 0.5253 1.936 0.774 0.0124 

Other*2 children 0.164 0.552 0.7658 0.838 0.705 0.2347 

Other*3-4 children 0.344 0.486 0.4796 -0.030 0.803 0.9702 

Other*5+ children 1.061 0.482 0.0279 2.141 0.831 0.01 

Other race*Ever use of oral contraception 0.169 0.290 0.56 0.323 0.493 0.5119 

Other race*Smoking interactions       

Other race*Prior smoking 0.308 0.271 0.2554 0.833 0.482 0.084 

Other race*Current smoking -0.186 0.567 0.7432 0.384 0.695 0.5803 

Other race*Case status -0.240 0.336 0.4753 0.491 0.558 0.3787 

Other race*Age in years -0.001 0.017 0.9645 -0.007 0.024 0.7536 

Other race*Ever use of EHRT -0.274 0.457 0.5478 1.706 0.887 0.0544 

Age at menarche*Parity interactions       

11-12 years*1 child -0.133 0.467 0.7749 -0.658 0.409 0.1083 

11-12 years*2 children -0.270 0.406 0.5067 -0.237 0.378 0.5297 

11-12 years*3-4 children -0.339 0.377 0.3689 0.016 0.395 0.9676 

11-12 years*5+ children -0.360 0.440 0.4137 -1.236 0.487 0.0111 

11-12 years*Ever use of oral contraception -0.544 0.274 0.0474 -0.432 0.265 0.1037 

11-12 years*Smoking interactions       

11-12 years*Prior smoking 0.043 0.262 0.8709 -0.385 0.267 0.149 

11-12 years*Current smoking -0.040 0.419 0.9236 0.392 0.408 0.3368 

11-12 years*Case status -0.389 0.267 0.1461 -0.628 0.278 0.0241 

11-12 years*Age in years -0.004 0.017 0.8307 0.022 0.016 0.1575 

11-12 years*Ever use of EHRT 0.094 0.458 0.8368 -0.148 0.481 0.7584 

Age at menarche*Parity interactions       
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

13-14 years*1 child -0.199 0.459 0.6647 -0.451 0.370 0.2238 

13-14 years*2 children -0.241 0.398 0.5453 -0.070 0.352 0.8416 

13-14 years*3-4 children -0.270 0.370 0.4656 0.360 0.365 0.3246 

13-14 years*5+ children -0.311 0.427 0.4667 -1.026 0.438 0.0192 

13-14 years*Ever use of oral contraception -0.479 0.269 0.0744 -0.422 0.242 0.0808 

13-14 years*Smoking interactions       

13-14 years*Prior smoking 0.068 0.256 0.7912 -0.388 0.244 0.1117 

13-14 years*Current smoking -0.139 0.412 0.7355 0.397 0.375 0.2901 

13-14 years*Case status -0.686 0.261 0.0087 -0.410 0.253 0.106 

13-14 years*Age in years 0.014 0.016 0.3998 0.029 0.014 0.0429 

13-14 years*Ever use of EHRT -0.346 0.453 0.4455 0.299 0.423 0.4803 

Age at menarche*Parity interactions       

15+ years*1 child -0.623 0.578 0.2809 -0.530 0.446 0.2341 

15+ years*2 children -0.684 0.495 0.167 -0.140 0.426 0.7429 

15+ years*3-4 children -0.444 0.444 0.3178 0.292 0.438 0.5049 

15+ years*5+ children -0.245 0.512 0.6321 -1.050 0.535 0.0496 

15+ years*Ever use of oral contraception -0.221 0.333 0.5064 -0.468 0.285 0.1009 

15+ years*Smoking interactions       

15+ years*Prior smoking 0.101 0.318 0.7508 -0.545 0.299 0.0685 

15+ years*Current smoking 0.496 0.479 0.3003 0.364 0.427 0.3945 

15+ years*Case status -0.488 0.350 0.1637 -0.468 0.287 0.1033 

15+ years*Age in years -0.010 0.020 0.6113 0.037 0.016 0.0243 

15+ years*Ever use of EHRT -0.153 0.541 0.778 0.114 0.490 0.8157 

Parity interactions       

1 child*Ever use of oral contraception 0.013 0.299 0.9662 -0.395 0.243 0.1041 

1 child*Prior smoking 0.047 0.267 0.8591 0.512 0.246 0.0371 

1 child*Current smoking -0.076 0.415 0.8543 -0.001 0.313 0.9975 

1 child*Case status -0.163 0.285 0.5674 0.061 0.219 0.7807 

1 child*Age in years 0.005 0.017 0.7744 -0.001 0.012 0.9456 

1 child*Ever use of EHRT -0.872 0.498 0.0802 -0.461 0.344 0.1795 

2 children*Ever use of oral contraception -0.084 0.252 0.7385 -0.373 0.223 0.0946 

2 children*Prior smoking -0.189 0.227 0.405 0.171 0.221 0.439 

2 children*Current smoking -0.036 0.353 0.9178 0.123 0.283 0.6637 

2 children*Case status -0.204 0.236 0.386 0.106 0.202 0.5985 

2 children*Age in years 0.019 0.014 0.1764 0.003 0.011 0.7603 

2 children*Ever use of EHRT -0.558 0.390 0.1523 -0.537 0.297 0.0709 

3-4 children*Ever use of oral contraception -0.015 0.235 0.9491 -0.342 0.225 0.1293 

3-4 children*Prior smoking -0.432 0.209 0.0385 0.324 0.219 0.1386 

3-4 children*Current smoking -0.505 0.325 0.1202 0.071 0.289 0.8066 

3-4 children*Case status -0.390 0.219 0.0743 0.115 0.201 0.5686 

3-4 children*Age in years 0.012 0.013 0.3797 0.004 0.011 0.7017 

3-4 children*Ever use of EHRT -0.360 0.342 0.2918 -0.546 0.292 0.0619 
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Model term 
Cohort studies Case-control studies 

Estimate SE Pr > |t| Estimate SE Pr > |t| 

5+ children*Ever use of oral contraception -0.087 0.270 0.746 -0.493 0.288 0.087 

5+ children*Prior smoking 0.109 0.243 0.6531 0.572 0.287 0.0465 

5+ children*Current smoking -0.584 0.394 0.1386 0.208 0.385 0.5885 

5+ children*Case status -0.105 0.266 0.6948 0.369 0.275 0.1798 

5+ children*Age in years 0.014 0.016 0.3904 -0.005 0.016 0.7547 

5+ children*Ever use of EHRT -0.633 0.440 0.1498 -0.393 0.429 0.3595 

Ever use of oral contraception interactions       

Ever use of oral contraception*Prior smoking 0.095 0.150 0.527 0.219 0.147 0.1359 

Ever use of oral contraception*Current 

smoking 
0.108 0.241 0.6551 -0.168 0.192 0.3806 

Ever use of oral contraception*Case status 0.151 0.175 0.388 0.168 0.133 0.2056 

Ever use of oral contraception*Age in years -0.021 0.010 0.0271 -0.002 0.008 0.7994 

Ever use of oral contraception*Ever use of 

EHRT 
0.197 0.272 0.4686 -0.268 0.217 0.217 

Smoking interactions       

Prior smoking*Case status -0.105 0.163 0.5199 0.132 0.142 0.3526 

Prior smoking*Age in years -0.009 0.010 0.3539 -0.010 0.008 0.2271 

Prior smoking*Ever use of EHRT 0.040 0.258 0.8761 -0.139 0.223 0.5332 

Current smoking*Case status 0.341 0.274 0.214 -0.313 0.196 0.1096 

Current smoking*Age in years -0.019 0.015 0.2218 0.005 0.010 0.6092 

Current smoking*Ever use of EHRT 0.078 0.377 0.8361 -0.046 0.292 0.874 

Case status*Age in years -0.009 0.010 0.3804 -0.009 0.007 0.2138 

Case status*Ever use of EHRT -0.359 0.276 0.1935 -0.522 0.205 0.0108 

Age in years*Ever use of EHRT -0.024 0.016 0.1357 -0.009 0.014 0.485 
1Binomial logistic regression model for diagnosis of diabetes, stratified by study type, with random intercept by study site and fixed effects as 

appear in the table. 
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