UC Berkeley
UC Berkeley Previously Published Works

Title
Spatial localization of cortical time-frequency dynamics

Permalink
https://escholarship.org/uc/item/97t3x8tg

Journal
Proceedings of the 29th Annual International Conference of the IEEE EMBS, 1

Authors

Dalal, Sarang S.
Guggisberg, Adrian G.
Edwards, Erik

Publication Date
2007-08-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/97t3x8ts
https://escholarship.org/uc/item/97t3x8ts#author
https://escholarship.org
http://www.cdlib.org/

Proceedings of the 29th Annual International
Conference of the IEEE EMBS

Cité Internationale, Lyon, France

August 23-26, 2007.

SaB03.2

Spatial Localization of Cortical Time-Frequency Dynamics

Sarang S. Dalal, Adrian G. Guggisberg, Erik Edwards, Kensuke Sekihara, Anne M. Findlay,
Ryan T. Canolty, Robert T. Knight, Nicholas M. Barbaro, Heidi E. Kirsch, and Srikantan S. Nagarajan

Abstract— The spatiotemporal dynamics of cortical oscilla-
tions across human brain regions remain poorly understood
because of a lack of adequately validated methods for recon-
structing such activity from noninvasive electrophysiological
data. We present a novel adaptive spatial filtering algorithm
optimized for robust source time-frequency reconstruction from
magnetoencephalography (MEG) and electroencephalography
(EEG) data. The efficacy of the method is demonstrated with
real MEG data from a self-paced finger movement task. The
algorithm reliably reveals modulations both in the beta band
(12-30 Hz) and a high gamma band (65-90 Hz) in sensorimotor
cortex. The performance is validated by both across-subjects
statistical comparisons and by intracranial electrocorticography
(ECoG) data from two epilepsy patients. We also revealed
observed high gamma activity in the cerebellum. The proposed
algorithm is highly parallelizable and runs efficiently on modern
high performance computing clusters. This method enables non-
invasive five-dimensional imaging of space, time, and frequency
activity in the brain and renders it applicable for widespread
studies of human cortical dynamics.

I. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) are functional neuroimaging techniques
with millisecond time resolution. Traditionally, MEG/EEG
(M/EEG) have been used to study evoked responses, i.e., ac-
tivity that is both time-locked and phase-locked to a stimulus
or task. These analyses assume a model of neural activity
in which responses are additive and/or phases are reset [1].
However, this model does not account for modulations of
oscillatory activity, which have been observed since the
earliest EEG research [2]. Furthermore, the across-trial jitter
inherent to typical brain responses may markedly reduce the
amplitude of averaged responses [3]; this effect becomes
even more pronounced for higher frequency bands.

Another approach to interpreting M/EEG data is to quan-
tify oscillatory aspects of the signals using time-frequency
methods. Typically, modulations of oscillatory activity are
described as event-related spectral power (ERSP) changes
[4], [5]. By comparing the power of neural activity to a
quiescent baseline, these types of analyses reveal induced
responses, i.e., activity that is time-locked but not neces-
sarily phase-locked. While M/EEG time-frequency analyses

S. S. Dalal was supported in part by NIH grant F31 DC006762 and
S. S. Nagarajan was supported in part by NIH grants RO1 DC004855 and
DC006435.

S. S. Dalal is currently with the Mental Processes and Brain Activation
Lab, INSERM U821, 69675 Bron, France dalal@lyon.inserm. fr

R. T. Canolty and R. T. Knight are with the Helen Wills Neuroscience
Institute and Department of Psychology, University of California, Berkeley,
CA 94720, USA.

The remaining authors are with the University of California, San Fran-
cisco, CA 94143, USA

1-4244-0788-5/07/$20.00 ©2007 IEEE

overcome many limitations of evoked response analyses,
most are conducted on the sensor signals and provide only
vague information as to which brain structures generated the
activity of interest.

Adaptive spatial filtering methods have the potential to
compute electromagnetic source images in both the time
and frequency domains [6]-[9]. Techniques such as the
synthetic aperture magnetometry (SAM) beamformer have
been employed to examine either the time course of neural
sources or the spatial distribution of power within a specific
frequency band [6]. However, published studies typically
employ SAM to generate static fMRI-style images using a
large bandwidth and wide time window—effectively discard-
ing the temporal resolution advantage of MEG [10], [11].
These reports describe a method in which a single set of
beamformer weights are first computed over a wide time win-
dow and frequency range; time-frequency decompositions
are then computed from the reconstructed time series for a
few locations of interest. However, weights computed from
wideband data may be inherently biased towards resolving
low-frequency brain activity due to the power law of typical
electrophysiological data. Additionally, responses of shorter
duration or outside the fixed time window used to generate
the weights may not be adequately captured. We propose a
novel adaptive spatial filtering algorithm that is optimized for
time-frequency source reconstructions from M/EEG data.

II. METHODS

A. Definitions and Problem Formulation

Throughout this paper, plain italics indicate scalars, lower-
case boldface italics indicate vectors, and uppercase boldface
italics indicate matrices.

We define the magnetic field measured by the mth de-
tector coil at time ¢ as b,,(t) and a column vector b(t) =
[b1(t),b2(t),...,bar(t)]T as a set of measured data, where
M is the total number of detector coils and the super-
script 1" indicates the matrix transpose. The second-order
moment matrix of the measurement is denoted R, i.e., R =
(b(t)b™ (t)), where (-) indicates the ensemble average over
trials. When (b(t)) = 0, R is also equal to the covariance
matrix of the measurement. In practice, the ensemble average
is often replaced with the time average over a certain time
window, t, such that R(t) = (b(t)b” (t)).

We assume that the sensor data arises from elemental
dipoles at each location r, represented by a 3-D vector such
that » = (r,7y,7.). The lead field vector for a unit-dipole
oriented in the optimal direction 7 is defined as I(r, 1) where
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Fig. 1. Algorithm for optimal time-frequency beamforming. Processing of
the combined #-« band is shown in detail; each of the other frequency bands
has a similar workflow. The algorithm is highly parallel and well-suited to
run on high performance computing clusters.

I(r,n) = L(r)n(r). Then, an adaptive spatial filter estimate
of the source moment §(r,t) is given by

3(r,t) =w” (r)b(t) (1)

where w(r) is the weight vector. The estimated source power
Py (r,t) follows:

Py(r,t) = (3(r,1)*) = ([w” (r)b(®)][b" (t)w(r)])
=w” (r)R(t)w(r) )

B. Proposed Time-Frequency Optimized Beamforming

In contrast to conventional beamforming, we propose that
a custom set of weights w(r,n, f) be generated from the co-
variances R,..(n, f) corresponding to each time-frequency
window. The data is first passed through a filter bank and
subsequently segmented into overlapping active windows,
Tact[n], and control windows, T .., [n]. For optimum time-
frequency resolution and beamformer performance, it is de-
sirable to choose larger time windows for lower frequencies
and narrower time windows for higher frequencies.

R (n, f)l(r)

(r) R~ (n, /)i(r)

where R(n, f) = [Ract(n, ) + Reon(n, f)]/2. Then,
Peon(r,n, f) = 0" (r,n, f)Reon(n, Hw(r,n, f) (4
Pact(r.n, f) = w” (7,0, f)Ract(n, flw(r,n, ) (5)

Pi(r,n,
Fap(r,n, f) = 10log,, M (6)
P con (’I", n, f )

Finally, the estimated power of overlapping segments are
averaged to improve numerical stability and better capture
transitions in source activity. The procedure is summarized
in Fig. 1.

3)

w(r,n, f) = /T

C. Finger Movement Data

1) Subjects: Data was collected from 12 right-handed
volunteers (6 females and 6 males, mean age 29.2 years,
age range 22-38 years). The participants were screened for
potentially confounding health conditions and medications.
The study protocol was approved by the UCSF Committee
on Human Research.

2) Data Acquisition and Processing: Data was acquired
with a 275-channel CTF Omega 2000 whole-head MEG
system from VSM MedTech (Coquitlam, BC, Canada) with
a 1200 Hz sampling rate. All post-processing and analysis
were performed using a development version of NUTMEG
[9]. Subjects were instructed to press the response button
with their left index finger at a self-paced interval of ~4 s,
acquiring 100 trials.

Covariances for use with the beamformers were generated
by creating a lattice of time-frequency windows. The original
data were first passed through a bank of 200th-order FIR
bandpass filters and subsequently split into several overlap-
ping temporal windows with a step size of 50 ms for all
bands. In our filter design, we chose to follow traditional
M/EEG power band definitions as best as possible: theta-
alpha band 4-12 Hz (300 ms windows), beta band 12-30 Hz
(200 ms windows), low gamma 30-55 Hz (150 ms windows).
Additionally, five high gamma bands were defined, avoiding
the 60 Hz power line frequency and its harmonics: 65-90 Hz,
90-115 Hz, 125-150 Hz, 150-175 Hz, 185-300 Hz, all with
100 ms windows. Finally, covariances were generated for this
matrix of time-frequency windows and averaged over trials.
Spatial filter weights were computed for each time-frequency
window, and an Fyp(r,n, f) space-time-frequency power
map was assembled as described earlier.

A multiple sphere head model was calculated for
each subject at 5 mm resolution based on individual
head shape and relative sensor geometry. Spectral power
changes were statistically tested across subjects with SnPM
(http://www.sph.umich.edu/ni-stat/SnPM/), using p < 0.05
(corrected) as the threshold for significant activity.

D. Intracranial Recordings

Preoperative MEG data and corresponding intracranial
electrocorticograms (ECoG) were obtained from two patients
undergoing surgical treatment for intractable epilepsy. In-
tracranial electrodes were implanted in these patients for
preresection seizure localization and functional mapping
of critical language and motor areas. The study protocol,
approved by the UCSF and UC Berkeley Committees on
Human Research, did not interfere with the ECoG recordings
made for clinical purposes and presented minimal risk to the
subjects. The implants consisted of an 8§ x8 grid of platinum-
iridium electrodes (Ad-Tech Medical, Racine, WI) placed
over the left frontotemporal region. The electrodes had a
2.3 mm contact diameter and center-to-center spacing of
10 mm. Electrodes with an impedance greater than 5 k2
or exhibiting epileptiform activity were rejected from further
analyses. An electrode in the corner of the electrode grid was
selected as the reference. Data was collected with an EEG
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Fig. 2. Shown above are the grand average reconstruction results for
left index finger movement using the proposed time-frequency beamformer,
superimposed on the MNI template brain. The functional maps are super-
imposed on the MNI template brain and are statistically thresholded at
p < 0.05 (corrected). In each panel, the crosshairs mark the spatiotemporal
peak for the reconstructed source, with the corresponding spectrogram
shown below it. The functional map plotted on the MRI corresponds to
the time-frequency window highlighted on the spectrogram.

amplifier (SA Instrumentation, San Diego, CA) sampling at
2003 Hz with 16-bit resolution. Patients were asked to move
their right index finger at a self-paced interval of ~4 s for
a total of 100 trials. Both patients had corresponding MEG
recordings acquired one day prior to their grid implants. The
recordings were conducted as with the healthy volunteers.

Time-frequency analyses of ECoG data were performed
using the ERSP method [5]. Time courses for the power
of single trial data were generated for each frequency band
using a Gaussian filter bank and the Hilbert transform [12];
after averaging across trials, the power time courses were
divided by the mean baseline spectrum to generate the ERSP.
These results were converted to decibels and then rebinned
into the same time-frequency windows used to analyze the
MEQG data for ease of comparison.

III. RESULTS
A. Finger Movement Data

The characteristic beta band power decrease in contralat-
eral sensorimotor cortex was observed and reached statistical
significance across subjects. (See Fig. 2.) The contralateral
decrease in beta power was followed by a significant con-
tralateral beta rebound (not shown). Interestingly, the method
resolved a focal, statistically significant high gamma (65—
90 Hz) peak in sensorimotor cortex. This activity was found
to be more spatially focal and temporally bound to the
movement than the beta activity.

Activation of the cerebellum was also found in 9 of 12
healthy volunteers and in both of the patients. (See Fig. 3
for patient activations.) While the spatiotemporal extent and
particular frequency content of cerebellar activations exhib-
ited considerable variability across subjects and did not reach
statistical significance in our across-subject analyses with
whole-brain multiple comparison correction, we did observe
that our method found consistent high-frequency sources in
the cerebellum in either the 65-90 Hz or 90-115 Hz bands.

B. Intracranial Recordings

As shown in Fig. 3, several locations showing ECoG
activity during the right finger movement task were also
found with the proposed MEG time-frequency beamformer
method and exhibited fairly similar spectrogram patterns.

Patient #1 Patient #2
T T

ECoG
Beta ERD

MEG
Beta ERD

ECoG
High Gamma ERS

MEG
High Gamma ERS

Fig. 3. Shown above are the right finger movement activity for two patients,
using both time-frequency analyses from an 8 x 8 intracranial electrode grid
and the corresponding results from preoperative MEG and the proposed
time-frequency beamformer. The spectrogram corresponds to the circled
spatial location, while the functional maps show the spatial extent of
activation for the indicated time window and frequency band. The orange
outline indicates the region covered by the intracranial electrode grid. Note
that MEG reveals strong primary motor cortex and cerebellum activity, but
these areas were not covered with electrodes in either patient; instead, lower-
amplitude secondary activations are compared between the two methods.

MEG peaks were found between 2.8 mm and 10.4 mm from
eight ECoG peaks, while two adjacent electrodes showing
low-amplitude beta ERD and one electrode showing high
gamma ERS did not have corresponding MEG activations.

Note that the MEG reconstructions for both patients
show the largest-amplitude beta desynchronization and high
gamma synchronization in left primary motor cortex and the
cerebellum in accordance with the across-subjects analyses,
but these areas were not covered by the grid in either patient;
therefore, the ECoG analyses show only lower-amplitude
secondary areas of activation which tend to result in blurrier
MEQG activations. Nevertheless, the ECoG analyses supported
the validity of MEG reconstructions of these secondary
activations, taking into account the 1 cm spacing and cortical
surface placement of the grid as well as spatiotemporal
blurring inherent to the beamformer technique.

IV. DISCUSSION

We have shown that, with our novel time-frequency op-
timized beamformer techniques, MEG can resolve sources
of transient power changes across multiple frequency bands,
including high gamma activity. The method was validated
with across-subjects statistics and intracranial recordings.

Some secondary activity revealed by the ECoG analyses
was not observed with the MEG source reconstructions; these
sources may have activated a small cortical region and/or
were not optimally oriented for detection by MEG sensor
arrays. Additionally, MEG source reconstructions for any
given voxel are linear combinations of activity from multiple
nearby sources due to spatiotemporal blur and may explain
minor spectrogram differences as compared to ECoG. The
degree of spatial blur depends on various factors, including
SNR and the true spatial extent of the sources.

Adaptive spatial filter weights computed in the traditional
manner from wideband data are inherently biased towards
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resolving low-frequency brain activity due to the power
law of typical electrophysiological data. By creating a set
of weights customized for each time-frequency window,
higher frequency sources may be characterized with much
greater fidelity. Additionally, segmenting the data into time
windows can better capture the temporal extent of oscillatory
modulations as well as allow for sources to change position
and orientation. This is particularly important for experiment
designs with long interstimulus intervals.

ECoG has been shown to clearly resolve high gamma
(>60 Hz) activity and suggests it is more spatiotemporally
focal than lower-frequency activity [13]. Recently, high
gamma activity has been gaining attention in the M/EEG
literature as well [14]-[16]. While increases in high gamma
power may coincide with decreases in beta power, high
gamma may be a better indicator of neural processing in
local cortical circuits since it is found to be more focused
spatially and temporally. The data we presented supports this
hypothesis. Additionally, many studies have recently shown
that high gamma activity is positively correlated with the
hemodynamic response measured by fMRI [15], [17]-[20].
Finally, higher frequency bands may be less likely to be
temporally correlated even if they are simultaneously active,
and may thereby naturally circumvent the known limitation
of beamformer techniques to resolve highly temporally cor-
related sources [21].

The technique we propose can be customized according
to the preferences of the experimenter. For example, the
frequency bands and time windows can be adjusted depend-
ing on the expected SNR and trial-to-trial variability of the
experiment. Any typical filter type can be used to construct
the filter banks; an experimenter may prefer to substitute
filters with different properties than we have chosen or
even wavelet-based filters. Finally, the contrast type may be
selected by the end user. Rather than an F-ratio contrast, a
t-test (difference) or the uncontrasted power time course may
be selected instead.

This type of analysis does yield a large amount of
information—a time-frequency spectrogram for every spatial
location implies five dimensions of output data! Therefore,
we have implemented an interactive time-frequency viewer
into our NUTMEG software to help make navigation of
the results more intuitive. Future directions may include
developing factor analysis techniques to help mine the rich
output afforded by five-dimensional space-time-frequency
analyses.

V. ACKNOWLEDGMENTS

The authors would like to thank J. M. Zumer,
S. M. Honma, V. van Wassenhove, L. B. Hinkley,
J. F. Houde, and J. P. Owen for invaluable assistance and
feedback, as well as J. Block and J. Crane for critical advice
on the use of parallel computing resources.

REFERENCES

[11 S. Hanslmayr, W. Klimesch, P. Sauseng, W. Gruber, M. Doppelmayr,
R. Freunberger, T. Pecherstorfer, and N. Birbaumer, “Alpha phase reset

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

4944

contributes to the generation of ERPs,” Cereb Cortex, vol. 17, no. 1,
pp. 1-8, 2007.

H. Berger, “Uber das elektrenkephalogramm des menschen,” J Psychol
Neurol, vol. 40, pp. 160-179, 1930.

H. J. Michalewski, D. K. Prasher, and A. Starr, “Latency variability
and temporal interrelationships of the auditory event-related potentials
(N1, P2, N2, and P3) in normal subjects,” Electroencephalogr Clin
Neurophysiol, vol. 65, pp. 59-71, 1986.

G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchro-
nization detected by power measurements of scalp EEG,” Electroen-
cephalogr Clin Neurophysiol, vol. 42, pp. 817-826, 1977.

S. Makeig, “Auditory event-related dynamics of the EEG spectrum and
effects of exposure to tones,” Electroencephalogr Clin Neurophysiol,
vol. 86, pp. 283-293, 1993.

S. E. Robinson and J. Vrba, “Functional neuroimaging by syn-
thetic aperture magnetometry,” in Recent Advances in Biomagnetism,
T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe, and N. Nakasato, Eds.
Sendai: Tohoku University Press, 1999, pp. 302-305.

J. Gross, J. Kujala, M. Hamalainen, L. Timmermann, A. Schnitzler,
and R. Salmelin, “Dynamic imaging of coherent sources: Studying
neural interactions in the human brain,” Proc Natl Acad Sci U S A,
vol. 98, pp. 694-699, 2001.

K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and
Y. Miyashita, “Reconstructing spatio-temporal activities of neural
sources using an MEG vector beamformer technique,” IEEE Trans
Biomed Eng, vol. 48, pp. 760-771, 2001.

S. S. Dalal, J. M. Zumer, V. Agrawal, K. E. Hild, K. Sekihara, and
S. S. Nagarajan, “NUTMEG: A neuromagnetic source reconstruction
toolbox,” Neurol Clin Neurophysiol, p. 52, 2004.

K. D. Singh, G. R. Barnes, A. Hillebrand, E. M. E. Forde, and
A. L. Williams, “Task-related changes in cortical synchronization are
spatially coincident with the hemodynamic response,” Neurolmage,
vol. 16, pp. 103-114, 2002.

D. Cheyne, W. Gaetz, L. Garnero, J.-P. Lachaux, A. Ducorps,
D. Schwartz, and F. J. Varela, “Neuromagnetic imaging of cortical
oscillations accompanying tactile stimulation,” Brain Res Cogn Brain
Res, vol. 17, pp. 599-611, 2003.

E. Edwards, “Electrocortical activation and human brain mapping,”
Ph.D. dissertation, University of California, Berkeley, May 2007.

N. E. Crone, D. L. Miglioretti, B. Gordon, and R. P. Lesser, “Func-
tional mapping of human sensorimotor cortex with electrocortico-
graphic spectral analysis. II. Event-related synchronization in the
gamma band,” Brain, vol. 121 ( Pt 12), pp. 2301-2315, 1998.

J. Kaiser, W. Lutzenberger, H. Ackermann, and N. Birbaumer, “Dy-
namics of gamma-band activity induced by auditory pattern changes
in humans,” Cereb Cortex, vol. 12, pp. 212-221, 2002.

N. Hoogenboom, J.-M. Schoffelen, R. Oostenveld, L. M. Parkes, and
P. Fries, “Localizing human visual gamma-band activity in frequency,
time and space,” Neurolmage, vol. 29, pp. 764-773, 2006.

D. Osipova, A. Takashima, R. Oostenveld, G. Fernandez, E. Maris,
and O. Jensen, “Theta and gamma oscillations predict encoding and
retrieval of declarative memory,” J Neurosci, vol. 26, pp. 7523-7531,
2006.

N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann,
“Neurophysiological investigation of the basis of the fMRI signal,”
Nature, vol. 412, pp. 150-157, 2001.

R. Mukamel, H. Gelbard, A. Arieli, U. Hasson, 1. Fried, and
R. Malach, “Coupling between neuronal firing, field potentials, and
FMRI in human auditory cortex,” Science, vol. 309, pp. 951-954,
2005.

A. Brovelli, J.-P. Lachaux, P. Kahane, and D. Boussaoud, ‘“High
gamma frequency oscillatory activity dissociates attention from inten-
tion in the human premotor cortex,” Neurolmage, vol. 28, pp. 154-164,
2005.

J.-P. Lachaux, P. Fonlupt, P. Kahane, L. Minotti, D. Hoffmann,
O. Bertrand, and M. Baciu, “Relationship between task-related gamma
oscillations and BOLD signal: New insights from combined fMRI and
intracranial EEG,” Hum Brain Mapp, 2007, in press.

K. Sekihara, S. S. Nagarajan, D. Poeppel, and A. Marantz, “Perfor-
mance of an MEG adaptive-beamformer technique in the presence of
correlated neural activities: Effects on signal intensity and time-course
estimates,” IEEE Trans Biomed Eng, vol. 49, pp. 1534-1546, 2002.



	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print



