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'In. a previous paper it was shown that in field theory 

there are two possible conditions under which an elementary 

particle lies on a Regge trajectory, i.e. , the first is .that the 

proper vertex function vanishes and that the proper vertex poles 

are not the poles of scattering amplitudes, and the other, due 

to Kaus and Zachariasen, is that the form facto~ and z
3 

both 

vanish. In the present paper it is shown that under the latter 

condition the polology approach, due to Bernstein et al., tuld the 

original approach, due to Goldberger and Treiman, ot obtaining the 

Goldberger-Treiman relation both fail. Therefore, this condition 

may be inadequate as the condition for Reggeization~ 
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. I. INTRODUCTION 

1 In a previous paper we explored the connections between 

the. elementary pion and the ·Regge ·pi~n. · We. f'ound that if' in f'ield 
~ - ' 

theory the proper vertex function wi~h the elementary pion off' the 

mass shell vanishes and that the proper vertex poles are not the 

poles of' scattering amplitudes, then the elementary pion disappears 

completely but the bootstrapped pion.takes its place, lying on the 

· Regge trajectory. However, we also found a different condition f'or 

· Reggeization, namely, tha·t the form factor K(s) ..,.... with the pion off' 
I 

the mass shell and z
3 

(the wave-function renormalization constant 

of' the pion) should both vanish: 

{1.1) 

{When bound-state poles exist, ·the vanishing of' the form tactor does 
I 

'2 
not always mean the vanishing of the· coupling constant,~ as was shown 

in a previous paper.) This latter condition {1.1)· is essentially 
' 3 

the same one as that derived by Kaus and Zachariasen (see Sec. II in 

their paper) • 

In this paper we apply the condition · (1.1) to the n-1.1 

decay process, It is then shown that the polology approach~ due to 

4 Bernstein et al., and the original approach, due to Goldberger and 

Treiman15. of obtaining the Goldberger-Treiman relation both f'ail • 

These approaches are essentially based on ,the asstimption that the 

divergence ot the axial-vector current is a highly.convergent' 
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•, I ·~ •,,. • • • '\ ' ~ 

. ·. · . · , · - . · : < :r\~ ~~,i: .. J1'1i;:. ;·: . ·· ~ . . 
operator. whose matrix: element:s-.:sad:'S:fY,':fJinsubtracted dispersion · 

... ~ .. 

.. • • -...... ~. > • , . 

...... relations in the momentwn. tra~·s·r~i~~;q~~~ed. A validity of. this 
_:•. • ' ,' ~ r' ' 

·' 
assumptio~, -known to a partially con~~r~ed-axial-vector current, 

. . > ' ' . . ·:J~~6:· . 
has been established by experiments •. '·: Therefore, the condition 

.,. ;Ll 
{1.1) may be inadequate as the condition for Reggeization • 

II. UNSUBTRACTED DISPERSION HELATIONS IN WEAK INTERACTIONS 

We assume that any matrix,elements of the divergence of the 

axial~vector current satisfy unsubtracted dispersion relations· (UDR), 

Let us define F, the invariant amplitude for the decay, by . 

'1 

{2<lo)~ .. (n-l.a~ AlJI 

; 
.I 

2 
q F 

I 

2 
lJ F, = 

where A denotes the axial~vector· current, q is the four
\.1 

. momentum of the elementary pion, and· lJ is the pion rest mass. 

(2,1) 

From our assumption the off~shell amplitude 2 F{q a s) satisfies 

UDR, 

00 
·- ---- ~~ 

F(s) l \i ds' Abs F(s') 
(2.2)· = - • 1f s' - s 

t' 

' ' . ! 

The 
.. . 

F(s) ab~orptive·part· of is given by 

, I 

(2.3) 

where Jfr ·:is the source of the pion 'field, and· a denotes. al.l the 

. ·, 

. -' 
' 
--~~·-
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,. 
' 

'. 1,. • ,· : ':> :_.~ ... 
. variables other._than s~. By summing up· over spins· and separating 

. out .kinematical, factors .• ~ Eq •. '{2.3) can be written as 

. ' s Abs F(s) II ·. ·~ L Ks"<•> Pa<•> f'a{s) 
·.'' .... B 

t ,, ::r K {s) ·p{s) f'{s) 
: . ' '. """" _. ;..vv. 

(2.4) 
. ' 

in.- matrix notation: K(s) 
""""'· 

and Here the two invariant amplitudes, 

f'(s), · represent virtual dissociation of' the pion into intermediate ,..,.... 

·states and their annihilation into a lepton pair, respectively; p{s) 

is a phase-space factor. Then Eq. (2.21 is written as 

F{s) ~
~ Kt(s') p(s') f'(s') 

d ,,...,.,..., ,..,_. -~ 

. 2 
8 s'(s• - s} 

9\.1. 

{2.5) = 
·- , •.. 

From our assumption, the amplitude f'(s) . also satisfies UDR, 

' . 
•' 

f'(s) ,.,.,.. II 
2 

2 
1.1 

1-1 - s 
Fg + -

-~' 

. t . 

I 
2o ( 8. ) ..e_( 8') ,!_( s.) 

ds • 
8 - s 

' co 

~-- L. 
J'. 2 
'. 91-1 (2.6). 

where ·,.!l is a .. coupling strength-· bc~W'e_en the pion and the channel 

which can be produced by·thevirtual pion. and .1o(s) is the scatter

ing amplitude in the pseudoscalar' sector. The "form factor" K(s) 

satisfies the uni tari ty relation : : ·f 

above 2 
9l! • 

\ 

t 
a ..!o E.IL = 

., 

Let us apply the usual 
1 

I~/~ method to ..t:o: 

_.,.. 

{2.7) 
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.'ii·· • · .. 
(2.8) 

where j
0
(s) is real inthe physical .. region,. and _E0(s) is given .. . . 

by 

~(s) 
d I ,?.~ ( S I ) l!o< 8 t ) 

8 s'(s• ~ s) • {2.9) 

Then Eq. (2.7) gives7 

. (2.10) 

The solution of Eq. {2,6) is7 

f'(s) 
......... [ 

2 2 . J ' . [ . ,l = ll /(JJ - s) . ·F Es) · t. ~(s) - .F ~s}J • (2.11) 

' -1 . 
~(s) . = ·~0 (s) ,!!O), {2.12) 

Here the first term in Eq. (2~11) is a special solution of Eq, (2.6), 

while the second term is a solution of the homogeneous equation of 

Eq._ (2.6)', normalized at 

Eq. (2.11) reduces to 

i;l 

s = 0, if G(s) = F K(s) 
""""' 

for all s, 

{2.13) 

.; f t 

a res~t kn~ to Geli-Mann and L~vy8 • who conjectured .th~ relation, 

., 
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:1!:_.~< .·.; >'-:.: . . ·.· 
-:{·: .. :.~.. .. . . 

~ - . 
: - 5 

~ ~-. . . . 
. 2 : 

··a A ~:;: ll F+ , . tTom whi_ch Eq. (2.13) immediately follows. But 
. lJ 1l . 1f T":\:~-:: .. 

· ' Eq, (2,13) contr~dicts Eq, (2.5), because, atter inserting Eq. (2,13) 
·tr· ., .. _., .. 

•";:-~!·· ... :~~ . .. _.: l ~ ·• i: '"f . . . . . . · .. 

!tr_:<-~~ . 

·:'·.· 

-~~~:~_:: ;-\ ·:.: .. . :~: . 
. ~:;·<;·:·~~ .·, ,,\ · .. 
-.~;#'. ,.: ' :, ! •• ,\: ' . 

J~. :- '· . .· 

.~ .. 
~ . . . . 

· into Eq. (2.5) and putting 2 
s = lJ • F II o. Therefore, what we get is 

the second term in Eq. (2.11} is absolutely necessary. 9 If the pole 

term-dominates in Eq, (2,11) or. in Eq. (2,6) for· lsi.< l-1
2, then 

we get the Goldberger-Treiman relation, f(O).~ F K(O) 
. /VV' """"' 

l\1 F g. 
~ 

This 

. i' 4 
is the polology approach, due to!Bernstein et al, 

Now, let us consider the limits (1,1) : K(s) 
~ 

+ o, and 
i ·-

2 z3 +. O. The former limit, ~s) -+ O, gives _.E0 (ll ~-+ 0 1 and 

hence10 1~0 (lJ2 )1 -+ o. Dynamical bound states occur vhen IE0(s)l = o. 

Hence, wpen I.Eo(l-12
) I is small, one cari expect there to b.e a bound 

s 11 a 
B 

near 2 
lJ • Let us suppose that this pole comes 1f/\.::),·:_:·.' ... 

J..... . .. out of the second Riemann sheet as the coupling strength increases; 
~ } -

then the integral paths in Eqs. (2.5) and (2,6) should be deformed, 

yielding the new pole terms. Dispersion relations of F{s), 

... and K{s) nov turn out to be of the forms -
l c • •• 

; ' ; 

. •.: ... ·. 
F(s) • (2.14) 

Kt(s') p(s 1 )·f(s 1 ) 
d t ....,..._ ....-.. ........ 

s s•(s 1 - s) 
.. 

... : .· 
·: • .... o I 

.... 

2 2 CIO 

ds • J:o t { s I ~(a I ~a I ) 1 \. f(s) = }J Fg + }J 
FB.§B + -- 2 _...,. sB - 8 11' s 1 

- a 
l& - s . 9lJ2 

(2.15) 
.· . 

' ~ I •lit 

' .· :. ~ ; _,.·· 

" . 

·~ ·· .. :. '"':: · .. 
2 C» t . 

X,!B 2 \ ..To (s 1 )p(s 1 )K(s 1
) 

K(s) . 8 - I} s - JJ d • .-... ...,..,.. = g + B 2 .,.,..... ..,..,.,.. 8 - SB 2 11' 
6 - lJ 9lJ2 (s•-~ ) (s 1-s) 

B 

,,,t' 

(2.16) '. 

~-- <· . ' 
' . 

. , 
',.. . 

• 

...... 
. . ~ 'i:l. 

·:,.:-~ ... 
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where FB is the decay constant of the bound state into the lepton 

pair,·. >. is the coupling strength between the pion and the. bound 

state, and ~B is the coupling strength between the bound state 

. ·. · and the channel which can be produced by the virtual pion. That the 

residues of the bound-state pole are factorized in the above forms 

will be shown in Appendix (see also Fig. 1).· In spite of the appear

ance of the new pole te~s, the solut.ions of Eqs. (2.15) and (2.16) 

·are given by {2.11) .and· (2.10), respectively, where ~0{sB) ·I = o. 

Here it should be noted that the second term ln {2.11) does .not 

I . 
contain the new pole because this term is the· solution of the homo-

geneous equatione Then a relation 

should hold. In quite the same way; z
3 

is_ nov 

. . ) 2 
+ . ( >. 

. s· - ·~2 . 
B . 

... 
+ ~ _ ds a(s); • 

9J.I2 

where "a(s) is the Lehmann weight function, glven by 

In the tirst limit, K(s) + o, Eq- ·(2 16) tends to11 
J • • 

·'· .• f.' 

{2.17) 

{2.18) 

"(2.19) 

(2.20) 

.. 
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and hence Eq. (2.17) becomes 

{2.21) 

As already mentioned, the limit, K(s) + 0, means + o. 
"""' 

Therefore, the parameter 2 
~ must tuke the value, because 

.1J2
0

(sB) I = 0, Then the pole terms in Eq, (2.15) are canceled out. 

This can also be seen from the solution (2.11). Since the second 

term in (2.11) does not contain any poles, the residue y of G(s) 

at s = sB must equal to the residue of F .!_(s) 

The equation (2.20) shows >.g + 0 ..... B 

i,e., 

as then 

y + 0. The solution of f(s) is now given by f(s) a G{s), and ,.,.. """""" ~ ~ 

therefore there is no pole in f(s). This shows that in the:limit, 
"""'" 

4 K(s) + 0, the polology approach, due to Bernstein et al., fails. ,.,.,.. 

Next let us turn our attention to F{s). When' K{s) f 0, ,.,.,.. 

inserting Eq. (2.11) into Eq. (2.14) and putting we have 

F [l ("2 A .J 00 

ds o(s)] 

C» Kt p G 2 

\ ~ + L + = ds """ """""; • 
sB 9l 9\.12 s(s-lJ ) 

(2.22) 

. In the limits, K(s) + o, and z3 ..... o, the above equation becomes 
,.-... 

(2.23) 

where the bracket term tends to infinity, as is seen from Eq. (2,18), 



·, 
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Then what we ge~ is F = o. This shows that in the limits (1.1) 

the original approach, due to Goldberger.and Tre1man,5 fails. 

This failure can also be seen in the following way: In Eq. (2.14) 

let us put 2 
s = l1 • Then we have 

F = 
Kt(s) .p(s) f(s) 

ds"""' """' 
2

"""" 
s(s - lJ ) 

(2.24) 

In the limits (1.1) the above equation tends to 

F = (2.25) 

whi!"e Eq. (2.14) becomes 

(2.26) 

Both equations (2.25) and (2.26) are consistent with each other as 

long as F a o. Note that this difficulty is independent of that of 

f(s). -
III. ONCE-SUBTRACTED DISPERSIOll RELATIONS IN WEAK INTERACTIONS 

(ODR) 

If F(s) satisfies the once-subtracted dispersion relation 

F(s). = F -
2 

a - ).! 

s - SB 

s - . 2 )CD • E< s. w s I~ s.) •. 
.;;;..,___,t;l!._ ds --~2~----n 

911
2 (s'-l1 ) (s•-s) 

. (3.1) 
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< ~---~ 
~ . "' . 

and if t(s). ·satisfies UDR; -t-he~·:·.i'n;;t-he limits· (1.1) the above ,.,.,.. . 
. ... ' 

equation tends to .. ' .. · 
. '-·l 

[1 
. ~~ .. 

ll2
] 

' ' F(s) 
'' 2 '' ."' 

= F + lim >. _!( sB:_-:- • 
"u ' ,.;. ·,·, ~.J 

' ... ~ 

(3.2) 

owing:.to·;Eq.(2.17) .- _· The bracket term. again tends to infinity i so that 

. · ODR for F( s) fails, too. Note that this difficulty is closely 

related with that of f(s).· 

If f(s) satisfie~ ODR 
~ 

~· I 
11111 

d ,Jot(s'~s'Ws') 2 

) ·2 
t(s) =·f(O) + 8 

Fg + s lJ ' 8 

2 - F g +- s s•(s• - s} ,fV'A """' """ s - s _ s 8 B~ '" 
lJ - 8 B 

9lJ 

(3.3) 

. then the solution of this equation is 

t(s) = G(s) + s x(s) • (3.4) 
"""' ~ 

,-where as x(a:.-}· is-t1le solufion. of the homogeneous equation; while 
"""" ' 

. -~s) • -( s/(s - lJ
2

)) F K(s) 
"""' 

is the special solution. In this case 
, I . 

the relation (2.17) is no longer:valid, but the different relation 

2 2 
- sB) 

2 (3.5) FB...§B = F .,§B >.sB/IJ (u y/p 
~ 

holds. In the limit, K(s) -+ o, this relation tends to 
"""' 

•: 

·. ·' 
lim FB..§n = -Fg y/sB (3.6) 

"""' ,.,...., ' 

• 
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,owing; t'~,~EC}(2 ~20) ·,·and h~nce no cancellation of the pole ~erms in 

f(s} ·occurs. · .Therefore • there is no contradiction in ODR for t(s) 1 

""""" .. --
.but one cannot get .the Goldberger-Tr~iman relation. 

If F(s) and f(s) both satisfy ODR, then in the limits 

(1.1) Eq. (3.1) becomes 

F(s) = F - . l.im FB [ >./(sB - \.?) J t (3. 7) 

because in this case Eq. (2.17) is no longer valid. Since 
. I 

the above limit should tend to zero, i.e. 1 

Therefore, it follows that lim FB =,0 1 because the bracket·term 

goes to infinity, Since .J!B -+ 0 as · z
3 

-+ 0., ve get from Eq •. ( 3. 6) 

(3.9} 

Arter all 1 there are no contradictions in ODR for F(s) and f(s}, .._,.. 

·but one cannot again· calculate 'the · n-~ decay rate. 

The unsubtracted disper::~ion relation for F(s) fails even 

when f(s) .satisfies ODR, because, as was shown in Sec, II 1 this 
.NV\. 

fail.ure is independent of subtraction of f( s). 
"""" 

;. 

.. 
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.. , . 

It is shown that the residues of the bound-state pole in 

F(s),· f(s),· and K(s) ·are factorized in the forms (2,14), (2.15),· 
- ,;onA. 

and (2,16). 

The form factor K(s) can be· continued into the second 
.......... 

Riemann sheet through the interval betw·een 9~ 2 and the next thresh-

·~old. by the formula 

K II = K 
a a 

(A.l) 

where ~II is .the scattering runpli tude continued into the second 

.. sheet, given by 

,; 

(T II) 
0 al 

Since.the pole _sB 

= 

a 

is not the pole of K 
a 

II 

• 

• 

we have 

from Eq. (A.l), where · R is the residue of K(s) ........... __,._ at 

·equation (A.3) shows that R is factorized in the form --
s = 8 • ·B 

In quite the same vay, th·e residue, e, of f(s) at 

·kl 2 
is fac.torized as !,. a -11 F~, by making use of the :formula 

(A.2) 

(A.3) 

The 

: .-.... · 
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2i(T II) . Pl fl • 
0 al 

The residue, o, of F(s) at s = sB is also·factorized as 

2 · o = -~ AFB. This is easily shown by making use of the formula 

2 - . . 
~ogether vith Eq •. (A.l) and ,!. a -~ F:s§B• 

•: 

(A.4) 

(A. 5) 

., . 
.... ,-

-~ 
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Therefore, the first te~ g is cancelled by the second term, so 

2 that K(s) is equal to zero even at s = ~ • The value of K(s) 
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