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'Ih_a previous paper it was ‘shown thdt.in field theory
there are two possible conditions under which an elementary
particle lies on a Regge trajectory, i.e,, the first is that the

proper vertex function vanishes and that the proper vertex poles

"are not the poles of scattering amplitudes, and the other, due

to Kaus and Zachariasen, is that the form factor and 23 both

. vanish, In the present paper it is shown that under the latter

" condition the polology approach, due to Bernstein et'ai., and the

original approach, due to Goldberger and Treiman, of obtaining the

Goldberger-Treiman relation both fail. Therefore, this condition



‘ f_:theory the proper vertex functlon wlth the elementary pion off the .
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In a previous paperl we exnlored the connections between
. the elementggx pion and the R 55 plon. Ve found that if in field
mass shell vanishes and that the proper vertex poles are not the
_Apolas of scattering amplitudes, then the elementary pion disappears
" -completely but the bootstrapped pionftakes its place, lying on the

‘fRegge traJectory.i However; we also found a different condition for

“f“Reggeization, namely, that the form factor K(s) with the pion off
. . : ' !

the mass shell and 2 (the wave-function renormalization'abnatant

3
. of the pion) should both vanish:

 K(s) + 0, enda 2, >+ 0. ', o N | _' (1.1)
(When bound-state poles exist,-tﬁé:vaniahing of the form factor doea.
i not always mean the'vanishing.ofztae‘coupling constant;% as was ahown
in a previous paper.) This laﬁper‘condition i(l.lj‘ is esseatially
the same one as that derived‘by Kaus.and Zachariasen3 (see Sec, IT in
their paper). |
. In this paper ve apply the condition “(1.1) -to the . nay

Adecay process, It is then shown that the polology approach due to

B Bernstein et al.,h and the original approach, due to Goldberger and

5

. Treiman,” of obtaining the Goldberger-Treiman relation both fail,
4Theae approaches are easentially based_dn,the assumption that the

divergence of the axial-vector current is a highly convergent °

'




L ‘..‘ AR . oL » £
~operator whose—metrix-elements*va

,nsubtracted dispersion

eh,'relations in the momentum transfer'squared. A validity of this -

4

' assumption, known to a partially conserved axial-vector current,

)
has been established by experlments.

é Therefore, the condition

- (1.1) may be inadequate as the condltion for Reggeization.

ITI., UNSUBTRACTED DISPERSION RELATIQNS IN WEAK INTERACTIONS

Ve assume that any matrix elements of the divergence of the

- axial=vector current satisfy unsubtracted dispersion relations - (UDR).

ttLet us define F, the invariant amplitude for the n-u decay, by

- . |
2 - 2 2 g

2 9 = F = .

(2q,) <n | . Aul o> aF = F, o (2,1)

where A; denotes the axial-vector current, q 1s the four-

. momentum of the elementary pion, and p is the pion rest ﬁass;

From our assumption the off-shell amplitude 1?('q2 = 5) satisfies

" F(s) =%- i ds‘_%{l?. . (2.2)

' The'abeorptive}bart‘of F(s)' is glven by

-sAbsF(s) = Z<o |J|sa><,u |a A|0>6(q - q),

- (2.3)

vhere J“_vis the source of the'piqnffield, and’ a denotes all the
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‘ ,;?afiables other than fé;?iB&'summing upiOQef'spins-and separating

.outfkinehaticél.facﬁors,:Eq,'(2.3) can be written as

" V : '
8 Abs F(s) = =« Z KB (8) ‘p-B(s) fa(s)
a x¥(s) p(s) £(s) L (2.)
- M M . m ' ' ’ .. ' .
| iﬁ;ﬁdtrii notation, Here the two invariant amplitudes, ,ESQ) and
f(s), represent virtual dissociation of the pion into intermediate
'states and their annihilation into a lepton pair, respedtively; vo(s)

is a phase-space factor. Then Eq. (2.2) is written as

. T Kls) plsh) fs) o
F(s) = X'g-ds_‘ S'\(?,._;_ﬂ (2.5)
9u_ . '

e

" From our assumption, the amplitude £(s) ~alsb satisfies UDR,

| 2 (T s plsn) g(sh)
f(s) = ..EE.._.. Fg +%_g 420 38.%: ) £(s
y =8 L D I
‘*'j'“’”"'v?u' o (2.6)

vhere 8 is a coupling strength bctween the pion and the channel

which can be produced by the. virtunl olon, and T (s) 19 the scatter-
ing amplitude in the. pseudoscalar sector. The "form factor"‘ K(s)

. A

satisfies the unitarity relation ii;
mE = T ok = kiop o _ o (2.7)
K .= Kely | | .

above 9u2. Let us apply ihe usuai; N/D  method to AZO’
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wheréaigo(sj’:is feali#ji%ﬁé éhf;ical;rsgioé"ahd ﬂao(g) is given

by , .»~  '; SR  :_'” o ':i, _ |

;)’:(s\')’g{o_(S') o

Dote) = % - % S L Sy (29

v éhen Eq. (2;7)_gives79‘
- K(s) ;_”130‘1<s>~99<u2>~é»ex“‘ﬂgq'_l(s)i(o)." R (2.10)

The solution of Eq. (2.6) 1s7

o) = [R67 0] re) v [ -rxe)] . (e

d(s)',=';90'1(s) £(0). ?_’ f}f‘t~ o ;'- (2.12)

~ Here the first term in Eq. (2,11) is a special solution of Eq. (2.6),
. ’ N
while the second term is a solution of the homogeneous equation of

Eq. (2.6}, normalized at s = 0. If G(s) = F K(s) for all s,

i

Eq. (2.11) reduces to

2o = [WBr0E -] P, - (2.13)
Kt} ' ’ .
' 31 . : 8 ' -
& result knoéwn to Gell-Mann and Lévy , who conjectured the relation,
¥ . . . o
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3, A = w2 ij.;ﬂ:,' .: from which Eq. (g.'iS')_:"immediatély follows. But
.,_,.Eq; (é.13)~contr§dict§ Eq. (2;5), §écause, after inserting Eq. (2.13)

" into Eq. (2.5) and putting g = u2,_ what we get is8 F = 0, Therefore,

. the second term in Eq. (2.11) is absolutely necessary.9 If the pole

" term dominates in Eq., (2.11) or in Eq. (2.6) for -|s|. < uz; then
_..-.—————‘—_/ L

‘we get the Goldberger-Treiman relation, Agﬁo),% F K(0) ¥ F g, This

.:_"15 the polology approach, due tbiBernstein et al.h

Now, let us consider the limits (1,1) :nESB) + 0, and

’:é- ZBY*.O. The former limit, ‘§£;)»+ O; éives ‘Po(uaz§“+ 0, and
hence® [go(uz)l + 0, Dynamical bound states occur wheh [Qo(s)l = 0,

' Hence, when [Eo(uz)l 1s.small, one can expect there to be a bound |
staté3 at g = sy near u2. Let us suppose that this pole comes
out of thé second Riemann sheet as the coupling strength increases;

then the integral paths in Egqs. (2.5) and (2.6) should be deformed,

yielding the new pole terms, Dispersion relations of F(s), f(s),

and K(s) now turn out to be of the forms

o W2 " kM(s") pls') £(a") :
o AN AnA A 'y )
| F(s) 'S—B—rs—;_—s) o+ & ) ds I O _ (2.14)
_ In ~
‘ N R
2 2 : T "(8')p(s)f(s")
f(s) = —2-}‘-— Fg + O R g + L X ds'*o — s L
- . e u -8 PN B ] B-MB n 2 S - 8
e ' S ‘ %u ' .
oL T | (2.15)
s ' A . . ' 7 © +,
. 2 g _ 2 T, (s')p(s')K(s")
K(s). = g ~ ==+ =3 5 + Lt X gt =2 = ’
G; M ca "B 6 = 1 9u2 (8'=y") (s'=s)

" - | . (2,16)

e
i - 2k

T S
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where FB

" pair,. A is the coupling strength between the pion and the: bound

is the decay constant Qf'the bound state into the lepton

state, and 8 is the coupling strepgth befween the bound state

" and the channel which can be pfoduced by the virtual pion, Th;t the
residues of the bound-state poie are‘factorized in the above forms

. will be shown in Appendix (see also Fig. l).; In spite of the appear-
ance of the new pole terms, the solpﬁ;ons of Eqs. (2.,15) and (2.16)
‘are éiven by (2.ll)vand'(2.;0), respeétively, where lgo(sB)l = 0,
Here 1t should be noted that the second term in (2.11)1does'not
contain the new pole because this term is the solution of the homo-

geneous equation. Then a relation

= 2-4 . - . ([
Fy &, F gy M (u= - sB) N (2.17)

should hold. In quite the same way; Z3 is now
v ) ‘ 2 . e
=1 . . Y ! ,
T S e I R ds o(s) ., - (2.18)
o =Y : 2 ' .
°8 = 9u

where 'a(s) 48 the Lehmann weight fuhcfion, given by

£

cets) = K@) Ka)/ts - B2 ~ (2.19)
| 1l

In the first limit, K(s) + 0, Eq. {2.16) tends to

Lt o d

0 = g - 11m~§B'A/(sB -7, - o (2.20)
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. -V7 -‘
and hence Eq. (2.17) becomes - |
lim FB'EB = -Fg.. | , (2.21)

As #lready mentioned, the limit, J&(s) ; 0, means [Qo(uz)ly* 0.
'Thefefore, the parameter uz must take the value, u2 = 8p because
'.LQO(BB)| = 0, Then the pole terms in Eq, (2.15) are canceled out.
This can also be seen from the solution (2,11), Since the second

term in (2,11) does not contain any poles, the residue y of G(s)

!

at s = sB must equal to the residue of F K(s) at s = gy 1.e.,
y = =g F. The equation (2,20) shows XgB + 0 as u2 + 8p, then
y + 0. The solution of f(s) 4is now given by f(s) = G(s), and
PN AN A ~ N

therefore there is no pole in f(s). This shows that in thejlimit,
K(s) » 0, the polology approach, due to Bernstein et al.,h fails,
Next let us turn our attention to F(s). When"§$s) $ 0,

inserting Eq., (2.11) into Eq. (2.14) and putting s = u2, we have

2 ® Co +

2 ; 3 K oG
Fl1 + -g- 5 + % as ofs)| = ds =%
B - ' 2 2 -
u sy ou o0 s(a-u")
. (2n22)'

3° 0, the above equation becomes

:In the limits, K(s) - 0, and 2
F [l + 1lim 12/(8B - uz)g]’ = 0, | (2.23)

‘where the bracket term tends to infinity, as is seen from Eq, (2,18).
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Then what we get is F = 0, This shows that in the limits (1,1)
the origiﬁal approach, due to Goldberger and 'I‘reiman',5 fails,
This failure can also be seen in the following way: In Eq., (2.1lh)

let us put s = u2. Then we have

o +
2 AF K (s) p(s) £(s)
F = !’5- “2 + S ds Tt (2.24)
B sp =¥ 9u2 s(s = u°)
In the limits (1,1) the above equation tends to
1
F = lim AF./(s. - y2) , - (2.25)
B B ll ] . .
while Eq. (2.14) becomes
F(s) = 1lim {1 FB)/(sB - 8) ., (2,26)

Both equations (2.25) and (2.26) are consistent with each other as
long as F = 0, Note that this difficulty is independent of that of
3‘:(3)9

III, ONCE-SUBTRACTED DISPERSION RELATIONS IN WEAK INTERACTIONS

If F(s) satisfies the once-subtracted dispersion relation

(ODR)
: 2 F .2 K'(s')p(s')f(s')
F(s) = F - 2-U S e 2o S ds‘msé&sm "
s = SB s u ¥ 2 (8'=u”) (8'=s)

9u
(3.1)
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" .and if ;ggs)"satisfiestDR;ﬁﬁheﬁ?jn,ﬁhe.limits-(l.l) the above
N equation'tehds to
PR B F(s) = F [l o+ 11£.X?/(SB;; u2)2] , ' (3.2)
owing:tb;qu2.l7).]'The'bfacket term again tends to infinity, so that
.~ ODR for F(s) fails;ﬂtoo,_ Note‘that this difficulty is closely

. related vith that of f£(s).

'If f(s) satisfies ODR
. ’M )

[} ' '
S s e . Iy (s')p(st)2(s")
. = - — e — H . r = 1 ° ~rA A
7VA£S8> Afso) * 3 Fe+ts -5 s.'B8"*% & _ ds s'(s' - 8)
TR - B . B 2
9u

. (3.3)

" then the solution of this equation is
- £(s) = G(s) - '[s/(s - uz)] FK(s) + sx(s), (3.4)

 where & x{s) is—the solution.of the homogeneous equation; while

e

: -;ESB) a'[s/(s - u2)] Fagis)' is,tbg special solution. In this case

;:“jfil‘ . the relation (2,17) is no longer valid, but the different reiation

PR , ' 2,2 2
A | Fpgp = Fgprsp/u(u -sp) - vATo o (3.5)
" v holds, In the limit, K(s) = 0, this relation tends to -

Unm Fp gy = -Fg - v/sy, | e (38)

i ;
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pwing;té;Eg(2;26);-and hehcé no cancellation of the pole terms in
'#(s) occurs. " Therefore, there is no contradiction in ODR for f(s),
N AV . B AN
.but one cannot get the Goldberger-Treiman relation.

If F(s) and f(s) both satisfy ODR, then in the limits

- (1.1) Eq. (3.1) becomes

R = F o~ um R [M(sg =D, ,ﬁ (3.7)
because in this case Eq. (2.17) is no longer valid. Since

n : Lo '
F(s = u2) = F, the above limit should tend to zero, i.e.,

lim Fy [A/(SB - u2)] = 0, L - (3.8)

B =;0, because the bracket term

goes to infinity. Since g, > 0 as- Z3 + 0, we get from Eq. (3.6)

- Therefore, it follows that 1lim F

Yy = -SB

Fg . T o o ‘ . (3-9)
After all, there are no contradiéfiéns‘in ODR for 'F(s) and f(s),
‘but ohe cannot again‘calculaﬁe'the' n-p decay rate.

' The unsubtracted dispersion relation for F(s) fails even
when ﬁass) satisfies ODR, becausé; as was shown in Sec, II, this

failure is independent of subtraction of f£(s).
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o " APPENDIX
.+ It is shown that the residues of the bound-state pole in

F-‘(é‘),( £(s), and - K(s) - are factorized in the forms (2,14), (2.15),
. and (2.16) .

A The form factor ,\,}i(s.) can be continued into the second

' Riemahn sheet thi‘ough thé intervgl between 9u2 and the next thresh-

old. s by the formula

1’
II I,
K=K - 21(T, ).ml pl'Kl , ] (A1)
. where }:on 18 the scattering amplitude continued into the second

.. sheet, given by

-II) \

- 11 N et o
(T gy = (Tgdgy - 2T ey (Todyy
a .(T ) 11 + 2£ p.(T ) -1 - - (A.2)
CT0%al [T 1''0’'11 ¢ o '
o S :
Since the pole 8p is not the pole of Ku s We have

. #

from Eq. (A.l), where "‘B\'"is the residue of &s) at s = gé. " The
‘equation (A.3) shows that R 1is factorized in the form R = =\gg.

In quite the same way, the residue, 8, of f(s) at s = 8y

- e : _
is factorized as 8 = ""2FB§-B’ by making use of the formula
AN . . . '

s
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T II, -
£, = f - ei(To )ml P, £ « | (AL)

'The residue, &, of F(s) at s = sy 18 also factorized as

8 = -ualFB. This is easily shown by making use of the formula

I , 11
F = F ~ 20K o 1, (A.5)

together with Eq. (A,1) and 8 = -unggg.

T
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The 1limit, N!i(s) + 0, does not always mean 8- 0; when the.

bound-state pole s, exists, Vhen u2 = g, the solution

B B ,

-1 2 .2 ;

D, (s)jo(u ) g is indefinite at & = y“ = 8ge Therefore,
2

the behavior of ﬁ(s) near 8 =y = SB needs & closer study,

K(s) =

TLet us ,guppose ﬁ(s) 2 0 except at g = u2. Then we have Eq. (2,20),

[
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g 1is cancelled by the second term, so

VAN

Therefore, the first term‘

that '558) is equal to zero even at s = ua. The value of K(s)

at s = u° should be defined by lim 25‘5) B‘gﬂua).
s > u
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.07+ . FIGURE CAPTION
' I-.F:‘lg."l. Factorization of the residues of the pole in F(s),

e wt;(s), and K(s) at s = Bge’.
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