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ABSTRACT:

We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of

the gravitational potential between two spherical bodies of any mass ratio. To accurately

reproduce the tidal evolution of a system at separations less than five times the radius

of the larger primary component, the tidal potential due to the presence of a smaller

secondary component is expanded in terms of Legendre polynomials to arbitrary order

rather than truncated at leading order as is typically done in studies of well-separated

system like the Earth and Moon. The equations of tidal evolution including tidal torques,

the changes in spin rates of the components, and the change in semimajor axis (orbital

separation) are then derived for binary asteroid systems with circular and equatorial mutual

orbits. Accounting for higher-order terms in the tidal potential serves to speed up the

tidal evolution of the system leading to underestimates in the time rates of change of the

spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are

ignored. Special attention is given to the effect of close orbits on the calculation of material

properties of the components, in terms of the rigidity and tidal dissipation function, based

on the tidal evolution of the system. It is found that accurate determinations of the physical

parameters of the system, e.g., densities, sizes, and current separation, are typically more

important than accounting for higher-order terms in the potential when calculating material

properties. In the scope of the long-term tidal evolution of the semimajor axis and the

component spin rates, correcting for close orbits is a small effect, but for an instantaneous

rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can

be on the order of tens of percent. This work has possible implications for the determination

of the Roche limit and for spin-state alteration during close flybys.

Keywords: Gravity – Extended Body Dynamics – Tides – Asteroids – Binary aster-

oids
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1. Introduction

The classic equations for tidal evolution in two-body systems derived or utilized in

seminal papers [e.g., MacDonald (1964); Goldreich (1966); Goldreich and Soter (1966);

Mignard (1979, 1981)], reviews [e.g., Burns (1977); Weidenschilling et al. (1989); Peale

(1999)], and textbooks [e.g., Murray and Dermott (1999); Danby (1992)] are based

upon the underlying assumption that the two spherical components in the system are

separated by several times the radius of the larger primary component. While this

assumption is valid in planet-satellite systems1 such as Earth-Moon, Jupiter-Galilean

satellites, and Saturn-Titan, as well as for Pluto-Charon and the majority of binary

main-belt asteroids (with 100-km-scale primaries), it is not completely accurate for all

binary asteroids, especially those in the near-Earth region. Based upon the compilation

by Walsh and Richardson (2006) of measured and estimated binary asteroid component

size and semimajor axis parameters, nearly 75% of near-Earth and Mars-crossing binaries

have inter-component separations between 3 and 5 primary radii. An updated compilation

of parameters by Pravec and Harris (2007) including small main-belt binaries, those with

primaries less than 10 km in diameter, confirms that 75% of binary systems among

these three populations have close mutual orbits. In addition, double asteroids, those

systems with equal-size components that were not counted in the above tallies, such

as (69230) Hermes (Margot et al., 2003; Pravec et al., 2003; Margot et al., 2006), (90)

Antiope (Merline et al., 2000; Micha lowski et al., 2004; Descamps et al., 2007), (854)

Frostia, (1089) Tama, (1313) Berna, and (4492) Debussy (Behrend et al., 2006), have

1There are small natural satellites of the outer planets that orbit very close to their

primaries, but we must keep in mind that these satellites are part of much more complex

dynamical systems than simple two-component binaries in addition to having negligible

masses compared to their primaries.
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separations within 5 primary radii. The favored formation mechanism for near-Earth, Mars-

crossing, and small main-belt binaries is rotational fission or mass shedding (Margot et al.,

2002; Richardson and Walsh, 2006; Descamps and Marchis, 2008) most likely due to YORP

spin-up (Pravec and Harris, 2007), a torque on the asteroid spin state due to re-emission

of absorbed sunlight (Rubincam, 2000; Vokrouhlický and Čapek, 2002), where the typical

binaries produced have equatorial mutual orbits with semimajor axes between 2 and 4.5

primary radii and eccentricities below 0.15 (Walsh et al., 2008). Though all binary systems

in these three populations may not have separations of less than 5 primary radii at present,

if formed via spin-up, these systems likely have tidally evolved outward from a closer orbit.

Complex generalized formulae for tidal evolution are presented by Kaula (1964) and

Mignard (1980) as extensions of the work of Darwin (1879a,b, 1880) that account for

higher-order terms in the expansion of the tidal potential, though, nearly universally, even

by Darwin, Kaula, and Mignard themselves, only the leading order is applied in practice

under the assumption of a distant secondary and the negligibility of higher-order terms.

To date, the most common application of higher-order expansions of the tidal potential

is in the Mars-Phobos system where tides on Mars raised by Phobos orbiting at 2.76

Mars radii are causing the gradual infall of Phobos’s orbit. As the separation between

Mars and Phobos decreases, higher-order terms in the potential expansion must gain

importance. With this in mind, attempts to understand the observed secular acceleration

of Phobos and the past history of its orbit date back to Redmond and Fish (1964) and have

continued with Smith and Born (1976), Lambeck (1979), and Szeto (1983), among others,

with Bills et al. (2005) presenting the most recent treatment of the subject.

Because many binaries exist in a regime where traditional assumptions break down, and

because tidal evolution is most important at small separations, we are motivated to examine

tidal interactions in close orbits. Here, we expand the gravitational potential between two
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spherical bodies to arbitrary order as well as allow for a secondary of non-negligible mass.

We then present the resulting equations for the evolution of the component spin rates and

the semimajor axis due to the tidal bulges raised on both components when restricted to

systems with mutual orbits that are both circular and equatorial as suggested for small

binaries formed via spin-up. The effect of accounting for close orbits is examined and

compared to the effect of uncertainties in physical parameters of the binary system.

2. Tidal Potential of Arbitrary Order

The potential V per unit mass at a point on the surface of the primary body of mass

Mp, radius Rp, and uniform density ρp due to a secondary of mass Ms, radius Rs, and

uniform density ρs orbiting on a prograde circular path in the equator plane of the primary

with semimajor axis a measured from the center of mass of the primary is

V = −G Ms

∆
, (1)

where G is the gravitational constant and ∆ is the distance between the center of the

secondary and the point of interest given by

∆ = a

[

1 − 2

(

Rp

a

)

cosψ +

(

Rp

a

)2
]1/2

, (2)

with ψ measured from the line joining the centers of the primary and secondary [e.g.,

Murray and Dermott (1999)]. In the spherical polar coordinate system (r, θ, φ) shown

in Fig. 1, with the polar angle θ measured from the rotation axis of the primary and

the azimuthal angle φ measured from an arbitrary reference direction fixed in space, the

separation angle ψ between the secondary and the point of interest on the primary is
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cosψ = cos θp cos θs + sin θp sin θs cos (φp − φs) . (3)

For widely separated binary systems where the semimajor axis a is much larger than the

radius of the primary Rp, the potential is expanded in powers of the small term Rp/a such

that

V = −G Ms

a

[

1 +

(

Rp

a

)

cosψ +

(

Rp

a

)2
1

2

(

3 cos2 ψ − 1
)

+ . . .

]

. (4)

The first term is independent of the position of the point of interest and thus produces no

force on the primary. The second term provides the force that keeps the mass element at

the point of interest in a circular orbit about the center of mass of the system. The third

term is the tidal potential

U = −G
MsR

2
p

a3
1

2

(

3 cos2 ψ − 1
)

(5)

that is the focus of past studies of tidal evolution where the the bodies are widely separated

such as in the Earth-Moon system. However, truncation of the expansion of V in (4) at

three terms accurately estimates the true potential in (1) only for separations exceeding

5Rp. For smaller separations, as are often found among binary asteroids, higher orders in

the expansion of V are necessary.

The full expansion of the potential V in (4) may be written concisely as the sum over

Legendre polynomials Pℓ(cosψ), i.e., zonal harmonic or azimuthally independent surface

harmonic functions, as

V = −G Ms

a

∞
∑

ℓ=0

(

Rp

a

)ℓ

Pℓ (cosψ) , (6)
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where the ℓ = 2 term of the expansion of V is the dominant tidal term in (5). The full tidal

potential U including all orders becomes

U = −G Ms

a

∞
∑

ℓ=2

(

Rp

a

)ℓ

Pℓ (cosψ) . (7)

While we will derive the tidal evolution equations in terms of an arbitrary order ℓ, Table 1

lists the order ℓ of the expansion necessary for accurate reproduction of the potential V

at small separations. At 2Rp, the potential must be expanded to at least ℓ = 6, requiring

four additional, but manageable, terms in the expansion. This separation is convenient in

terms of tidal evolution as it is the contact limit of a binary system with two equal-size

components and a reasonable initial separation for the onset of tidal evolution in a newly

formed binary system, regardless of component size, especially for systems formed through

primary spin-up and mass shedding (Walsh et al., 2008). Proceeding inward of 2Rp rapidly

requires an unwieldy number of terms in the expansion (e.g., twice as many additional

terms are needed at 1.5Rp).

3. Roche Limit

The well-known classical fluid Roche limit is located at a = 2.46Rp (Chandrasekhar,

1969) for equal density components, so that if one considers a secondary just outside the

fluid limit, one must include the Legendre polynomials of orders ℓ ≤ 4 in the expansion for

the potential felt by the primary. For solid, cohesionless2 bodies (gravitational aggregates

or so-called rubble piles) modeled as a dry soil, the Roche limit falls approximately between

2A cohesionless material has zero shear strength in the absence of confining pressure. The

interlocking of the constituent particles under pressure, however, can give the material shear

strength.
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1.5Rp and 2Rp (Holsapple and Michel, 2006, 2008; Sharma, 2009). The cohesionless Roche

limit is based upon a binary system that is not tidally evolving, but the secondary remains

stressed by its self-gravity, rotation (synchronized to the orbital period), and the difference

in gravity from its near, primary-facing side to its far side. Holsapple and Michel (2006,

2008) illustrate that the mass ratio of the components has a negligible effect on the Roche

limit, but one would expect that allowing the secondary to have a more rapid spin or

allowing for higher-order tidal terms due to its proximity to the primary will increase the

internal stresses and push the Roche limit farther from the primary, though, as noted

by Sharma (2009), these issues have not been studied in detail.

With a modest amount of cohesion, the secondary may exist within the stated Roche

limit (Holsapple and Michel, 2008). For the rough properties of a near-Earth binary of

ρp,s = 2 g/cm3 and Rs = 100 m, a cohesion value of < 100 Pa is enough to hold the

secondary together at the surface of the primary3. For comparison, the surface material

of comet Tempel 1 excavated by the Deep Impact mission projectile is estimated to

have a shear strength of < 65 Pa (A’Hearn et al., 2005) and an effective strength of

103 Pa (Richardson et al., 2007); fine-grained terrestrial sand is found to have cohesion

values up to 250 Pa (Schellart, 2000). Therefore, it is not unreasonable that in the tidal

field of the primary, the secondary can stably exist at the very least within the fluid Roche

limit (even if cohesionless), if not also within the cohesionless Roche limit (with a cohesion

comparable to comet regolith or sand), justifying our later choice to work to order ℓ = 6

corresponding to a separation of 2Rp.

3The cohesion needed to prevent disruption scales as the square of both the density and

size of the secondary. Thus, for a main-belt binary with a Rs = 10 km, the necessary cohesion

is of order 106 Pa, similar to monolithic rock.
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4. External Potential of Arbitrary Order

The tidal potential Uℓ of arbitrary order ℓ ≥ 2 felt by the primary, taken from (7), may

be written concisely as

Uℓ = − gp ζℓ,p Pℓ (cosψ) , (8)

where gp = GMp/R
2
p is the surface gravity of the primary and

ζℓ,p =
Ms

Mp

(

Rp

a

)ℓ+1

Rp. (9)

The combination ζℓ,pPℓ (cosψ) is the equilibrium tide height, due to the tidal potential of

order ℓ, that defines the equipotential surface about a primary that is completely rigid

(inflexible). Because the mass ratio Ms/Mp ≤ 1 and we assume a ≥ 2Rp, the quantity

ζℓ,p/Rp ≤ 1/8 for all binary systems, and typically ζℓ,p/Rp ≪ 1.

For a body with realistic rigidity, the tidal potential Uℓ physically deforms the surface

of the primary by a small distance λℓ,pRpSℓ as a function of position on the primary, where

λℓ,p ≪ 1 and Sℓ is a surface harmonic function. Darwin (1879a) and Love (1927) lay

the groundwork for showing that, in general, the deformation of a homogeneous density,

incompressible sphere

λℓ,pRp Sℓ = − hℓ,p
Uℓ
gp

= hℓ, p ζℓ,p Pℓ (cosψ) (10)

is given in terms of the displacement Love number hℓ,p (Munk and MacDonald, 1960),

hℓ,p =
2ℓ+ 1

2 (ℓ− 1)

1

1 + (2ℓ2+4ℓ+3)µp
ℓgpρpRp

, (11)
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introducing µp as the rigidity or shear modulus of the primary4. For bodies less than 200

km in radius, as all components of binary asteroid systems are, the rigidity µ dominates the

stress due to self-gravity gρR ∼ Gρ2R2 (Weidenschilling et al., 1989), even for rubble-pile

structures (i.e., the model proposed by Goldreich and Sari (2009)), such that the Love

number hℓ ≪ 1 for small bodies. With hℓ,p and ζℓ,p/Rp small, and noting from (10) that

λℓ,p = hℓ,p ζℓ,p/Rp, the assumption of a small deformation factor λℓ,p is justified.

Of particular interest is the external potential felt by the secondary now that the

primary has been deformed. It is this external potential that produces the tidal torque

that transfers angular momentum through the system. Here, we slightly alter our spherical

coordinate system such that θ now measures the angle from the axis of symmetry of the

tidal bulge, as in Murray and Dermott (1999), such that the surface of the nearly spherical

primary is now given by

R = Rp

(

1 +

∞
∑

ℓ=2

λℓ,pPℓ (cos θ)

)

. (12)

The potential felt at a point external to the primary is the sum of the potential of a

spherical primary with radius Rp and that of the deformed shell. However, only that due

to the deformed shell, called the non-central potential by Murray and Dermott (1999), will

contribute to the torque.

In Fig. 2, the reciprocal of the distance ∆ between the external point (r, θ, φ) and

a point on the surface of the primary (r′, θ′, φ′) separated by an angle ψ, where r′ = R

4Darwin (1879a) realized the correspondence between elastic and viscoelastic media and

provides a generalized form for the deformation of a viscous spheroid, a function equivalent

to (10) he calls σ, that when applied to an elastic spheroid, in terms of rigidity rather than

viscosity, is equivalent to the expression found here.
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from (12), is

1

∆
=

1

r

∞
∑

ℓ=0

(

Rp

r

)ℓ

Pℓ (cosψ) + O (λℓ′,p) . (13)

The use of ℓ′ denotes terms based upon the surface deformation rather than the expansion

of the distance between the points of interest. The non-central potential (per unit mass

of the object disturbed by the potential) due to the deformed shell with mass element

ρpR
3
p

∞
∑

ℓ′=2

λℓ′,pPℓ′ (cos θ′) d (cos θ′) dφ′ is

Unc = −GρpR
2
p

(

Rp

r

) ∞
∑

ℓ′=2

∞
∑

ℓ=0

λℓ′,p

(

Rp

r

)ℓ ∫ ∫

Pℓ′ (cos θ′)Pℓ (cosψ) d (cos θ′) dφ′, (14)

where the double integral goes over the surface of the primary. The integral of the product

of two surface harmonics like the Legendre polynomials over a surface is zero unless ℓ = ℓ′

such that for a specific order ℓ ≥ 2 (MacRobert, 1967),

Uℓ,nc = −GρpR2
p

(

Rp

r

)

λℓ,p × 4π

2ℓ+ 1

(

Rp

r

)ℓ

Pℓ (cos θ)

= − 3

2ℓ+ 1
hℓ,pζℓ,pgp

(

Rp

r

)ℓ+1

Pℓ (cos θ) . (15)

By defining the more familiar potential Love number

kℓ,p =
3

2ℓ+ 1
hℓ,p =

3

2 (ℓ− 1)

1

1 + (2ℓ2+4ℓ+3)µp
ℓgpρpRp

, (16)

which is of a similar order as hℓ,p, the non-central potential is written in the form

Uℓ,nc = − kℓ,pgpζℓ,p

(

Rp

r

)ℓ+1

Pℓ (cos θ) (17)
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such that Uℓ,nc at the surface of the primary is simply kℓ,pUℓ. Because µ ≫ gρR for small

bodies, the Love number kℓ,p may be approximated by

kℓ,p ≃ 3

2 (ℓ− 1)

ℓ

2ℓ2 + 4ℓ+ 3

gpρpRp

µp

=
2π

ℓ− 1

ℓ

2ℓ2 + 4ℓ+ 3

Gρ2pR
2
p

µp

. (18)

Taking the external point to be the position of the secondary orbiting at a distance a from

the primary, the complete5 non-central potential per unit secondary mass due to tides

raised on the primary is

Unc = −gp
∞
∑

ℓ=2

kℓ,pζℓ,p

(

a

Rp

)

−(ℓ+1)

Pℓ (cos θ)

= −GMs

Rp

∞
∑

ℓ=2

kℓ,p

(

a

Rp

)

−2(ℓ+1)

Pℓ (cos θ) . (19)

The non-central potential drops off quickly with increasing separation as the separation to

the sixth power for ℓ = 2 and by an additional square of the separation for each successive

order. The θ term in the Legendre polynomial accounts for the angular separation between

the external point of interest and the tidal bulge of the primary. For the specific location

of the secondary, we define the angle δ as the geometric lag angle between the axis of

symmetry of the tidal bulge and the line connecting the centers of the two components.

5Here, by complete we mean accounting for all orders ℓ. We have, however, limited the

result to first order in the Love number kℓ,p because terms of order λℓ,p were ignored in (13).

These would have produced higher-order terms in the Love number in the final form of the

potential in (19), but because we have argued λℓ,p and kℓ,p are both small quantities, terms

of second and higher order in the Love number are negligible.
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5. Tidal Dissipation Function Q

In addition to the rigidity µ, the response of a homogeneous, incompressible sphere to

a disturbing potential is characterized by the tidal dissipation function Q defined by

Q−1 =
1

2πE∗

∮
(

−dE
dt

)

dt, (20)

where E∗ is the maximum energy stored in the tidal distortion and the integral is the

energy dissipated over one cycle [see Goldreich (1963) or Efroimsky and Williams (2009)

for detailed discussions]. This definition is akin to the quality factor in a damped, linear

oscillator and does not depend on the details of how the energy is dissipated. Friction in

the response of the body to a tide-raising potential plus the rotation of the body itself (at a

spin rate ω compared to the mean motion n in the mutual orbit about the center of mass

of the system) lead to misalignment by the geometric lag angle δ.

The geometric lag relates to a phase lag by ǫℓmpq = −mδ sign (ω − n), where the ℓmpq

notation follows Kaula (1964), and we have implicitly assumed a single tidal bulge as done

by Gerstenkorn (1955) and MacDonald (1964) by using a single positive geometric lag δ

independent of the tidal frequencies6. The tidal dissipation function Q, in turn, relates to

the phase angle as Q−1
ℓmpq = |cot ǫℓmpq| ≃ |ǫℓmpq| + O(ǫ2ℓmpq) (Efroimsky and Williams, 2009)

6The definition of the phase lag (Kaula, 1964; Efroimsky and Williams, 2009), when one

ignores changes in the periapse and node, is ǫℓmpq = [(ℓ− 2p+ q)n−mω] ∆tℓmpq, where the

bracketed term is the tidal frequency and ∆tℓmpq is the positive time lag in the response of

the material to the tidal potential. In the potential expansion by Kaula (1964), only terms

satisfying ℓ − 2p = m and q = 0 survive for mutual orbits that are circular and equatorial

such that ǫℓmpq = −m |ω − n|∆tℓmpq sign (ω − n) = −mδ sign (ω − n), assuming a constant

time lag and a single (positive) value for geometric lag for all viable combinations of ℓmpq.
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provided energy dissipation is weak (Qℓmpq ≫ 1). The absolute value of ǫℓmpq is required

on physical grounds to ensure that Qℓmpq is positive. Since the tidal dissipation function

is related to the phase lag, a different Qℓmpq technically applies to each tidal frequency.

Compared to the dominant order ℓ = 2, where only the ℓmpq = 2200 term survives in the

setup of our problem,

Q−1
ℓmpq = mδ =

m

2
Q−1

2200 =
m

2
Q−1 (21)

in general, where we define Q ≡ Q2200 such that Qℓmpq for any tidal frequency is proportional

to a single value of Q. This simple relation between Qℓmpq and the Q of the dominant tidal

frequency is a direct result of our assumption of a single geometric lag independent of tidal

frequency. Such a choice may not be the most realistic physical model7, but does allow for

simpler mathematical manipulation. Because Q is necessarily positive regardless of the sign

of the phase lag, we append sign (ω − n) to our forthcoming equations, where the spin rate

ω relates to the tidally distorted component. If ω > n, the bulge leads; if ω < n, the bulge

lags behind.

6. Tidal Torques on the Components

The force on the secondary due to the distorted primary at order ℓ is −Ms∇Uℓ,nc,

and because we have restricted the problem to a circular, equatorial mutual orbit, the

tidal bulge remains in the orbit plane, and the sole component of the force is tangential to

7In our model, Q varies inversely with the tidal frequency. Efroimsky and Williams (2009)

argue in favor of a rheological model where Q scales to a positive fractional power of the tidal

frequency (at least for terrestrial planets). It is unclear what rheological model is proper for

gravitational aggregates like binary asteroids.
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the mutual orbit. Returning to the notation where ψ measures the angle from the axis of

symmetry of the tidal bulge8, the force at the location of the secondary is proportional to

− ∂Pℓ/∂ψ|ψ=δ and pointed in the −ψ̂ direction. The value of δ is taken to be positive as

stated in the previous section such that, for δ small, the quantity − ∂Pℓ/∂ψ|ψ=δ is positive

and the primary bulge attracts the secondary. For a prograde mutual orbit with ωp > n,

the primary bulge pulls the secondary ahead in the orbit; if ωp < n, the primary bulge

retards the motion of the secondary (see Fig. 3). The resulting torque vector acting upon

the orbit of the secondary, which is located at position r with respect to the center of mass

of the primary, is given by Γℓ,p= r× (−Ms ∇Uℓ,nc). Thus, the torque vector, in general, is

proportional to − ∂Pℓ/∂ψ|ψ=δ
(

ψ̂ × r̂
)

. As defined, the direction (sign) of ψ̂ × r̂ depends

on whether the tidal bulge leads or lags, and we indicate this in the magnitude of the

torque via the term sign (ω − n) such that the torque on the orbit of the secondary due to

the ℓth-order deformation of the primary is

Γℓ,p = −Ms
∂Uℓ,nc
∂ψp

= kℓ,p
GM2

s

Rp

(

a

Rp

)

−2(ℓ+1)
(

−∂Pℓ (cosψp)

∂ψp

∣

∣

∣

∣

ψp=δp

)

sign (ωp − n) . (22)

where δp is the geometric lag angle between the primary’s tidal bulge and the line of centers.

A positive (negative) torque increases (decreases) the energy of the orbit at a rate Γp n. An

equal and opposite torque alters the rotational energy of the primary at a rate −Γpωp such

that the total energy E of the system is dissipated over time at a rate Ė = −Γp (ωp − n) < 0

as heat inside the primary. Though energy is dissipated, angular momentum is conserved

due to the equal and opposite nature of the torques on the orbit and the rotation of the

8In this notation, the tidal potential in (7) deforms the shape of the component according

to (10) and produces the external potential (19) all in terms of the single angle ψ.
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primary. Conservation of angular momentum results in the evolution of the mutual orbit

and is discussed in the following section.

A similar torque arises from tides raised on the secondary. By the symmetry of motion

about the center of mass, the torque Γℓ,s is given by swapping the subscripts p and s in (22)

such that

Γℓ,s = kℓ,s
GM2

p

Rs

(

a

Rs

)

−2(ℓ+1)
(

− ∂Pℓ (cosψs)

∂ψs

∣

∣

∣

∣

ψs=δs

)

sign (ωs − n) (23)

= kℓ,p
GM2

s

Rp

(

Rs

Rp

)2ℓ−3
µp

µs

(

a

Rp

)

−2(ℓ+1)
(

− ∂Pℓ (cosψs)

∂ψs

∣

∣

∣

∣

ψs=δs

)

sign (ωs − n) ,

where δs is the geometric lag angle between the tidal bulge of the secondary and the line of

centers. This torque changes the orbital energy at a rate Γs n, and the equal and opposite

torque alters the rotational energy of the secondary at a rate −Γsωs, dissipating energy as

heat in the secondary at a rate Ė = −Γs (ωs − n). Torques on the primary and secondary

weaken for higher orders of ℓ and increasing separations, as expected, and do so in the

same manner as the non-central potential in (19). Once the rotation rate of a component

synchronizes with the mean motion of the mutual orbit, the associated torque goes to zero

due to the sign (ω − n) term9. Note that we have ignored interactions between the tidal

bulges of the components as these will depend on the square (or higher powers) of the Love

numbers, which we have argued are negligible (see Footnote 5).

9If the mutual orbit were not circular, a radial tide owing to the eccentricity would

continue to act despite the synchronization of the component spin rate to the mean motion.
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7. Spin Rate and Semimajor Axis Evolution for Close Orbits

During tidal evolution, angular momentum is transferred between the spins of the

components and the mutual orbit. For simplicity, assume that the primary and secondary

have spin axes parallel to the normal of the mutual orbit plane and rotate in a prograde

sense. Then, the torque on the distorted primary alters its spin with time at a rate

ω̇p = −Γp/Ip, where Ip = αpMpR
2
p is the moment of inertia of the primary. The pre-factor

α is 2/5 for a uniform density sphere, but can vary with the internal structure of the body,

and is left as a variable here such that the change in spin rate of the primary is

ω̇ℓ,p = − kℓ,p
αp

κ2

1 + κ

(

a

Rp

)

−2ℓ+1

n2

(

− ∂Pℓ (cosψp)

∂ψp

∣

∣

∣

∣

ψp=δp

)

sign (ωp − n) , (24)

recalling that −∂Pℓ/∂ψ ≥ 0 for small angles and defining the mass ratio κ ≡ Ms/Mp =

(ρs/ρp) (Rs/Rp)3. Also note that n2, which is proportional to (a/Rp)−3, was introduced via

Kepler’s Third Law, n2a3 = G (Mp +Ms). For rapidly spinning primaries with ωp > n, the

torque will slow the rotation.

To conserve angular momentum in the system, the change in spin angular momentum,

given by the torque −Γℓ,p, plus the change in orbital angular momentum must be zero. The

orbital angular momentum for a circular mutual orbit MpMs/ (Mp +Ms) na
2 changes with

time as (1/2)MpMs/ (Mp +Ms) naȧ such that conservation requires

(

ȧ

Rp

)

ℓ,p

= 2kℓ,p κ

(

a

Rp

)

−2ℓ

n

(

−∂Pℓ (cosψp)

∂ψp

∣

∣

∣

∣

ψp=δp

)

sign (ωp − n) (25)

for each order ℓ. For rapidly spinning primaries, the orbit will expand as angular momentum

is transferred from the spin of the primary to the mutual orbit and, so long as the geometric

lag remains small, higher orders will cause both more rapid despinning of the primary and
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faster expansion of the mutual orbit than ℓ = 2 alone. A large secondary with κ ∼ 1 clearly

causes the most rapid tidal evolution. A small secondary with κ ≪ 1 will not cause the

primary to despin appreciably due to the κ2-dependence of (24), but the separation will

evolve more readily as (25) scales as κ.

One can derive the change in the semimajor axis in (25) by other methods including the

work done on the orbit and Gauss’s formulation of Lagrange’s planetary equations. Setting

the time derivative of the total energy of the orbit −GMpMs/2a, which is GMpMsȧ/2a
2,

equal to the work done on the orbit Γℓ,pn simplifies to (25). Using Gauss’s formulation for

spherical bodies (see Burns (1976) for a lucid derivation) and a circular mutual orbit,

ȧℓ =
2

n
(1 + κ)Tℓ, (26)

where Tℓ is the tangential component of the disturbing force (per unit mass) from the

previous section, which is (1/a) ∂Uℓ,nc/∂ψ sign (ωp − n) with Uℓ,nc given by (17). The

(1 + κ) term is not typically present in the Gauss formulation, but is appended here to the

disturbing function10 due to the non-inertial nature of the coordinate system centered on

the primary (Rubincam, 1973) and is necessary, as stated in Darwin (1880), because the

primary “must be reduced to rest.” One can also argue the term is necessary to account for

the reaction of one body to the tidal action of the other (Ferraz-Mello et al., 2008) as the

10Algebraically, from the time rate of change of the orbital energy, ȧ = 2a2Ė/GMpMs,

and the change in orbital energy is further related to the velocity of the secondary ṙ and the

disturbing force F = −Ms∇Unc such that Ė = ṙ · F = naMsT for a circular mutual orbit.

Replacing Ė by naMsT and using Kepler’s Third Law, n2a3 = G (Mp +Ms) = GMp (1 + κ),

in the expression for ȧ gives (26) for a specific order ℓ. If Ms were ignored in Kepler’s Third

Law, the more familiar form of Gauss’s formulation would emerge: ȧ = 2T/n.
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perturbation is internal to the binary system rather than an external element (e.g., drag

force, third body). The (1 + κ) term is absent in the formulae of Kaula (1964), which is

reasonable if the secondary is of negligible mass, but we wish to allow for an arbitrary mass

ratio. Substitution of the disturbing force into (26) produces (25). By including the (1 + κ)

term in Kaula’s equation (38), evaluating Kaula’s F and G functions with zero inclination

and eccentricity, and recalling that Kaula’s ǫℓmpq = −mδ sign (ωp − n) in our notation, we

find our evolution of the semimajor axis in (25) is a special case of Kaula’s generalization11,

as one would expect.

The tidal evolution of the secondary follows similarly. The torque on the distorted

secondary alters its spin with time at a rate ω̇s = −Γs/Is,

ω̇ℓ,s = −kℓ,s
αs

1

κ (1 + κ)

(

Rs

Rp

)2ℓ−1(
a

Rp

)

−2ℓ+1

n2

(

− ∂Pℓ (cosψs)

∂ψs

∣

∣

∣

∣

ψs=δs

)

sign (ωs − n) (27)

11The product of Kaula’s Fℓmp and Gℓpq functions is non-zero for circular, equatorial orbits

only if ℓ− 2p = m and q = 0. The prefactors on each ψ in the Legendre polynomials listed

in Table 1 are the values of m for each order ℓ that satisfy ℓ − 2p = m. Thus, the cosine

terms in the Legendre polynomials we list correspond to ℓmpq of 2200, 3110, 3300, 4210,

4400, 5120, 5310, 5500, 6220, 6410, and 6600. This correspondence allows us to link our

equations written in terms of Legendre polynomials and a geometric lag to Kaula’s equations

written in terms of the phase lag ǫℓmpq. While the combinations 2010, 4020, and 6030 satisfy

ℓ−2p = m, terms with m = 0 cannot contribute to the tidal evolution of the system because,

by definition, these terms do not produce a phase lag. These three terms are responsible

for the ψ-independent components of the Legendre polynomials with ℓ = 2, 4, 6 that vanish

upon differentiation with respect to ψ.
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= −kℓ,p
αp

κ

1 + κ

(

Rs

Rp

)2ℓ−5
αp

αs

µp

µs

(

a

Rp

)

−2ℓ+1

n2

(

− ∂Pℓ (cosψs)

∂ψs

∣

∣

∣

∣

ψs=δs

)

sign (ωs − n) ,

and alters the semimajor axis of the mutual orbit at a rate of

(

ȧ

Rp

)

ℓ,s

= 2kℓ,p κ

(

Rs

Rp

)2ℓ−3
µp

µs

(

a

Rp

)

−2ℓ

n

(

−∂Pℓ (cosψs)

∂ψs

∣

∣

∣

∣

ψs=δs

)

sign (ωs − n) . (28)

The Legendre polynomials in Table 1 are written as sums of terms of the form cos mψ

where m is an integer (see Footnote 11). Thus, the derivative ∂Pℓ/∂ψ|ψ=δ is a sum of

terms of the form sin mδ. For small geometric lag angles (Q ≫ 1), −∂Pℓ/∂ψ|ψ=δ ≥ 0

and sin mδ ≃ mδ such that −∂Pℓ/∂ψ|ψ=δ ∝ Q−1. Because the derivative of a Legendre

polynomial is proportional to Q−1, only the size ratio of the components and their material

properties, in terms of their respective µQ values, determine the relative strength of the

torques and the relative contributions to the orbit expansion,

∣

∣

∣

∣

Γℓ,s
Γℓ,p

∣

∣

∣

∣

=

∣

∣

∣

∣

ȧℓ,s
ȧℓ,p

∣

∣

∣

∣

=

(

Rs

Rp

)2ℓ−3
µpQp

µsQs

, (29)

with the relative contribution of the secondary decreasing at higher orders of ℓ and for

smaller secondaries. Note that the relative strength of the torques is independent of

the mass and density12. For classical ℓ = 2 tides on components with similar material

properties, the torque due to the distorted secondary is a factor of the size ratio weaker

than the torque due to the distorted primary. For each higher order in the expansion, the

relative strength of the torque due to the distorted secondary weakens by the square of the

size ratio. The changes in the spin rates compare as

12However, the absolute strengths of the torques in (22) and (23) do depend on the masses

and densities of the components.
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∣

∣

∣

∣

ω̇ℓ,s
ω̇ℓ,p

∣

∣

∣

∣

=
1

κ

(

Rs

Rp

)2ℓ−5
αp

αs

µpQp

µsQs
=

ρp
ρs

(

Rs

Rp

)2(ℓ−4)
αp

αs

µpQp

µsQs
. (30)

This differs from a generalization of Darwin’s result [c.f. Darwin (1879b), p. 521] because

we have included the ratio of the Love numbers of the components. At the dominant

orders, ℓ = 2 and 3, with similar densities, shapes, and material properties, the spin rate

of the secondary changes faster than the primary. However, interestingly, for ℓ = 4, the

contributions to the changes in spin rates are equal, and for orders ℓ > 4, the contribution

to the change in spin rate of the primary is greater than that of the secondary. As with

the torques, the relative strength of the changes in spin rates weakens by the square of the

size ratio for each successive order ℓ. For smaller secondaries, the changes in spin rates are

smaller than for similar mass components, and, for all cases, the process of changing the

spin of the primary is slower than for the secondary.

Evaluating the Love number kℓ,p in (18) and ∂Pℓ/∂ψp from Table 1 explicitly for orders

ℓ ≤ 6, assuming a small geometric lag angle δp, and applying (21), the spin of the primary

changes as

ω̇p = − 8

19

1

αp

π2G2ρ3pR
2
p

µpQp
κ2
(

a

Rp

)

−6

sign (ωp − n)

×
[

1 +
19

22

(

a

Rp

)

−2

+
380

459

(

a

Rp

)

−4

+
475

584

(

a

Rp

)

−6

+
133

165

(

a

Rp

)

−8
]

, (31)

where n has been replaced with Kepler’s Third Law to show the full dependence upon the

separation of the components a/Rp. Using either (27) or (30), the spin of the secondary

changes as

ω̇s = − 8

19

1

αs

π2G2ρ3pR
2
p

µsQs

κ

(

Rs

Rp

)

−1(
a

Rp

)

−6

sign (ωs − n)
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×
[

1 +
19

22

(

Rs

Rp

)2(
a

Rp

)

−2

+
380

459

(

Rs

Rp

)4(
a

Rp

)

−4

+
475

584

(

Rs

Rp

)6(
a

Rp

)

−6

+
133

165

(

Rs

Rp

)8(
a

Rp

)

−8
]

. (32)

Assuming similar densities for the components, the change in the spin rate of the primary

scales as the size ratio of the components to the sixth power (∝ κ2); the spin rate of the

secondary scales only as the square of the size ratio at leading order, reinforcing from (30)

how the spin of the secondary evolves more rapidly than that of the primary, especially for

small size ratios.

For close orbits, the separation of the components changes as angular momentum is

transferred to or from the spins of the components such that the overall change in the

orbital separation for ℓ ≤ 6 is the sum of (25) and (28),

ȧ

Rp
=

8
√

3

19

π3/2G3/2ρ
5/2
p R2

p

µpQp
κ (1 + κ)1/2

(

a

Rp

)

−11/2

×
[

sign (ωp − n) +

(

Rs

Rp

)

µpQp

µsQs

sign (ωs − n)

+
19

22

(

a

Rp

)

−2
(

sign (ωp − n) +

(

Rs

Rp

)3
µpQp

µsQs
sign (ωs − n)
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+
380

459

(

a

Rp

)

−4
(

sign (ωp − n) +

(

Rs

Rp

)5
µpQp

µsQs

sign (ωs − n)

)

+
475

584

(

a

Rp

)

−6
(

sign (ωp − n) +

(

Rs

Rp

)7
µpQp

µsQs

sign (ωs − n)

)

+
133
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(

a

Rp

)

−8
(

sign (ωp − n) +

(

Rs

Rp

)9
µpQp

µsQs

sign (ωs − n)

)]

. (33)

Inside the square brackets, having a secondary of negligible size (Rs/Rp → 0) has the same

effect as having a synchronous secondary (ωs = n); both make the contribution from the

secondary vanish. Of course, if one considers the factor outside the square brackets, having
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a secondary of negligible size makes the mass ratio κ negligible, while having a synchronous

secondary does not directly affect κ. The change in the mean motion of the mutual orbit

follows from Kepler’s Third Law and (33) as

ṅ

n
= − 3

2

(

a

Rp

)

−1(
ȧ

Rp

)

. (34)

Note that in the above equations (31–34), any difference in density between the components

is accounted for in the mass ratio κ; otherwise, only the size ratio of the components is

involved in the terms due to tides raised on the secondary. Obviously, the contribution of

the secondary is most important when the components are of similar size. Not only is the

contribution of the secondary weakened because of its smaller size, it should also be despun

faster than the primary such that its contribution turns off when ωs = n long before the

primary does the same. Furthermore, each equation has a strong inverse dependence on the

separation of the components even at ℓ = 2, and while the inclusion of higher-order terms

will be strongest at small separations, the orbit of a typical outwardly evolving system will

expand to a wider separation rapidly.

8. Effect of Close Orbit Expansion on Tidal Evolution

Inclusion of higher-order terms for the changes in spin rates and semimajor axis in

(31–33) speeds up the evolution of the system and decreases the tidal timescales. Using

up to order ℓ = 6 compared to ℓ = 2 results in the spin rates of the components changing

up to 28% faster at 2Rp, but falling off quickly with increasing separation (Fig. 4) to less

than 4% at 5Rp. The size ratio of the components only affects ω̇s, where the higher-order

terms are weaker for smaller secondaries. Similarly, for the change in semimajor axis with

time, assuming both components are causing the separation to change in the same sense

(sign (ωp − n) and sign (ωs − n) have the same value), using up to order ℓ = 6 (Fig. 5)
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results in a faster evolution by 21% to 28% at 2Rp and decreases quickly with increasing

separation. Unlike the changes in spin rates, the largest effect on the evolution of the

semimajor axis occurs when the size ratio is either unity (equal size) or negligible or when

the spin of the secondary has synchronized to the mean motion such that the tidal torque

on the secondary vanishes. The change in semimajor axis with time is least affected by

the higher-order terms for a size ratio of 0.53 with all other size ratios falling within these

bounds. According to (34) for the change in the mean motion with time, the value of ṅ/n

using higher-order terms compared to ℓ = 2 has the same form as the change in semimajor

axis in Fig. 5.

The strengths of the contributions of the extra terms in the close-orbit correction to

the change in semimajor axis are listed in Table 2. At 2Rp, higher-order terms with ℓ ≥ 3

account for nearly 25% of the change in semimajor axis with time. Although the ℓ = 6 term

is necessary for accurate reproduction of the potential between the bodies to within 1% at

2Rp, it does not alter the change in semimajor axis with time at the 1% level because of

the stronger dependence of (25) on separation compared to (6). The net contribution of the

higher-order terms in Table 2 decreases by roughly 5% at each value of the separation from

Table 1 with only the ℓ = 3 term having much consequence beyond 3Rp.

The total change in the component spin rates as a function of separation, shown in

Fig. 6, is given by integration of the ratio of (31) and (33) for the primary and the ratio

of (32) and (33) for the secondary. Depending on the size ratio of the components, the total

change in the spin rate of the primary is enhanced by up to 6% at 2Rp over using ℓ = 2

tides only, but not by more than a few percent at larger separations. For the secondary,

perhaps counter-intuitively, despite the spin of the secondary evolving more rapidly with

time by adding higher-order terms (Fig. 4), its evolution with respect to the separation is

less than when using ℓ = 2 only; the deficit is as large as 22% at 2Rp when the size of the
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secondary is negligible. This is because for smaller secondaries, the effect of higher-order

terms on ω̇s in (32) is reduced, while the effect of higher-order terms on ω̇p is independent

of the size ratio. Thus, for a rapidly rotating primary, the higher-order terms transfer more

angular momentum from the spin of the primary to the orbit, expanding the separation

faster than by ℓ = 2 tides alone and faster than the spin rate of the secondary changes such

that the net effect on ∆ωs(a) is smaller.

Integration of (33) provides the separation as a function of time. For tidal evolution

from an initial separation of 2Rp to a final separation of 5Rp (Fig. 7), the close-orbit

correction is strongest at the onset, expanding the separation more rapidly than ℓ = 2

tides, but only by about 2% over the same time interval. The contributions from the

higher-order terms lose strength over time as the separation increases resulting in a net

effect of expanding the separation by ∼1% extra by using ℓ = 6 instead of ℓ = 2. From

Figs. 6 and 7, the integrated effects of the close-orbit correction are small, typically of

order a few percent; the effects are more noticeable in the instantaneous rates of change

of the spin rates, separation, or mean motion due to the rapid fall-off in strength of the

higher-order terms with increasing separation and how rapidly the system tidally evolves

from small separations.

Rearrangement and integration of (33) allows one to calculate the combination of the

material properties of the components µQ (assuming µpQp = µsQs) and the age of the

binary ∆t based on measurable system parameters. For brevity, we retain only terms due

to tides raised on the primary giving

µQ

∆t
=

8
√

3

19
π3/2G3/2ρ5/2p R2

p κ (1 + κ)1/2

×
[

∫ af/Rp

2

x11/2

1 + 19
22
x−2 + 380

459
x−4 + 475

584
x−6 + 133

165
x−8

dx

]

−1

(35)
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with x = a/Rp. Because both terms on the left-hand side of (35) are unknown, one

may either estimate the material properties by assuming binary ages (Margot et al.,

2002, 2003; Taylor and Margot, 2007), estimate binary ages by assuming material

properties (Walsh and Richardson, 2006; Goldreich and Sari, 2009), or consider both

avenues (Marchis et al., 2008a,b; Taylor and Margot, 2010). Furthermore, precisely because

both terms are unknown, assuming a value for one has an intimate effect on the calculation

of the other as changing one’s value by an order of magnitude changes the result of the

other by an order of magnitude. Thus, when one wishes to find µQ, for instance, choosing

an age for the binary injects a great source of uncertainty into the calculation.

The close-orbit correction enhances the rate at which the separation changes such

that, to provide the same tidal evolution over the same timescale ∆t, the product µQ must

increase to compensate for the inclusion of the higher-order terms. For classical ℓ = 2 tides,

the denominator of the integrand in (35) vanishes such that the effect of including terms up

to ℓ = 6 alters µQ according to

µQℓ=6

µQℓ=2
=

∫ af/Rp

2
x11/2 dx

∫ af/Rp

2
x11/2

1+ 19
22
x−2+ 380

459
x−4+ 475

584
x−6+ 133

165
x−8 dx

(36)

and is shown as a function of the final separation in Fig. 8. Note that in Fig. 8, the

contribution of the secondary is included in the numerical integration of (33) although it

is not explicitly given in (36) above. Evolution from a close initial separation of 2Rp to a

wide separation of 10Rp results in only a ∼1% increase in µQ over the classical value for all

size ratios. Thus, the basic ℓ = 2 tidal mechanism is sufficient for well-separated binaries.

On the other hand, if the final separation is smaller, as is the case for most near-Earth

binaries, the correction is larger, increasing to 5% for evolution from 2Rp to 5Rp and 15%

for evolution from 2Rp to 3Rp. When making a coarse estimate of the material properties

of the system, taking the close orbit into account is not of paramount importance; classical
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tides will easily provide an order-of-magnitude estimate of µQ for even the closest of

binary asteroids, though the result will be slightly underestimated. Complementarily, if

higher-order terms are included and µQ is held fixed, the age of the binary must decrease

by the same factor as in Fig. 8 meaning that ℓ = 2 tides provide an upper bound on ages

for systems with a given µQ value.

The use of higher-order terms up to ℓ = 6 is sufficient for exploring the tidal evolution

of binary systems with separations greater than 2Rp. Additional terms with ℓ > 6 make

inconsequential changes to tidal evolution at these separations as illustrated by the rapid

fall-off of the contributions of the higher-order terms beyond 2Rp in Table 2. Moreover,

terms with ℓ > 6 leave Figs. 4–8 unchanged, only having an effect within 2Rp. Thus, if

one wishes to proceed inward of 2Rp, simply using orders of up to ℓ = 6 is insufficient as

higher-order terms gain importance the closer one proceeds to the primary. Though we

stated earlier that the number of terms required can rapidly become unwieldy, one can

approximate their strength. For an arbitrary order ℓ > 2, the term within the square

brackets of (33) is approximately

0.8

(

a

Rp

)

−2(ℓ−2)
(

sign (ωp − n) +

(

Rs

Rp

)2ℓ−3
µpQp

µsQs
sign (ωs − n)

)

, (37)

allowing additional terms to be included without explicit calculation of the Love numbers

kℓ,p or manipulation of the Legendre polynomials. Similar terms follow for the changes in

spin rates. One must keep in mind that the approximation in (37) is only valid so long

as the small angle approximation holds (sin mδ ≃ mδ ∝ Q−1) with m ≤ ℓ, which requires

Q > 10 to retain 1% accuracy at m = 6 and larger Q as m increases13 (e.g., Q > 20 for

13We have applied (21) to estimate the value of Q required. In general, the small angle

approximation holds to within 1% for Qℓmpq ∼ 4 or greater.
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m = 10). Also, having separations of less than 2Rp requires smaller secondaries, since

contact occurs at a separation of (1 + Rs/Rp)Rp, which reduces the contribution of the

secondary due to dependencies upon the size ratio, in addition to demanding consideration

of the Roche limit for the system (see Section 3).

9. Comparison to Measurement Errors

Take, for example, 66391 (1999 KW4), the best-studied of the near-Earth binary

systems (Ostro et al., 2006; Scheeres et al., 2006). Even with exhaustive analysis of

radar imagery, production of three-dimensional shape models of both components, and

investigation of the system dynamics, physical parameters of the system are not known

with extreme precision. The densities of the primary and secondary components are known

to approximately 12% and 25%, respectively. The uncertainty in the density of the primary

alone can cause error of more than 30% in ω̇p, ω̇s, and ȧ/Rp according to (31–33), more

than the close-orbit correction causes in Figs. 4 and 5. The higher estimated density of

the secondary in the 1999 KW4 system of 2.81 g/cm3, compared to 1.97 g/cm3 for the

primary, directly affects the mass ratio κ applied in the equations of tidal evolution as one

typically assumes similar densities for the components. Ignoring the density uncertainties,

this difference in component densities alone causes a 43% change in κ that, in turn, affects

ω̇p by a factor of two and ω̇s and ȧ/Rp by approximately 40% as well, again, a larger effect

than the close-orbit correction to tidal evolution. The calculated value of µQ in (35) is

affected by density and mass ratio uncertainties in the same way as ȧ/Rp. Furthermore,

uncertainties in densities and the dependence of the mass ratio κ on density differences

between the components apply at all separations unlike the close-orbit correction, which

falls off quickly with increasing separation.

One must also consider the effect of the initial separation of the components at the
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onset of tidal evolution, a property that is not known for individual systems, but can be

estimated from simulations of binary formation mechanisms [e.g., Walsh and Richardson

(2006); Walsh et al. (2008)] and given a lower bound by the contact limit at (1 +Rs/Rp) Rp.

Assuming evolution over the same timescale, if the system had an initial separation ai

instead of 2Rp, the effect on µQ calculated with classical ℓ = 2 tides raised only on the

primary is

µQi

µQ2

=
1 −

(

2
af/Rp

)13/2

1 − (ai/af)
13/2

. (38)

For a final separation af from 3Rp to 10Rp, unless the actual initial separation ai is within

10% of the final separation (>0.9af), the value of µQ is affected by less than a factor of two

by assuming an initial separation of 2Rp. Using up to ℓ = 6 and allowing for tides raised on

the secondary with any size ratio do not cause a significant difference in this result.

A similar result is found for the dependence on the final separation of the components,

which one typically takes to be the current separation. If af is the final (current) separation,

then changing the separation to af ′ due to, say, a measurement error causes the calculated

µQ value for tidal evolution from 2Rp to change as

µQf ′

µQf
=

1 −
(

2
af/Rp

)13/2

(af ′/af)
13/2 −

(

2
af/Rp

)13/2
. (39)

We find µQ is affected by less than a factor of two if the final (current) separation is

known within 10%. From the dependence on the initial and final separations, it is clear

that the tidal evolution near the final separation dominates over the early evolution where

the close-orbit correction is necessary. In fact, if instead of calculating µQ, one considers

the time taken to tidally evolve to a final separation af ≥ 4Rp (by assuming a value of
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µQ instead of an age), the evolution of the separation from 0.9af to af takes roughly the

same amount of time as the evolution from ai ≤ 2Rp to 0.9af . Thus, precisely when the

close-orbit correction is most prominent is also when the system requires the least amount

of time to evolve, which causes the mild effect of the close-orbit correction found in Figs. 7

and 8.

Returning to a concrete example, for the 1999 KW4 system, using the equivalent

spherical radius of the primary shape model, the separation of the components a/Rp is

known to 3% as 3.87±0.12 (Ostro et al., 2006). By (39), this small uncertainty can result

in a roughly 20% error in the calculated µQ, more than twice the effect of the close-orbit

correction in Fig. 8 at 3.87Rp. Together with the dependence of the µQ calculation on the

density values for the components, the accuracy of measurements of physical parameters

in the 1999 KW4 system is more important than accounting for the proximity of the

components to one another.

10. Discussion

We have derived the equations of tidal evolution to arbitrary order in the Legendre

polynomial expansion of the separation between two spherical bodies in a circular and

equatorial mutual orbit allowing for accurate representation of evolution within five primary

radii. Equations written in terms of the Love number kℓ are applicable to any binary

system, while equations where the Love number has been evaluated have assumed the

bodies involved have rigidities that dominate their self-gravitational stress (characteristic

of bodies less than roughly 200 km in radius). Because higher-order terms cause tidal

evolution to proceed faster, choosing to ignore them produces upper limits on tidal evolution

timescales and lower limits on material properties in terms of the product of rigidity and

the tidal dissipation function. However, we have shown that the correction for close orbits
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has only a minor integrated effect on outward tidal evolution and the calculation of material

properties, comparable to or less than the effect of uncertainties in measurable properties

such as density, mass ratio, and semimajor axis (scaled to the radius of the primary

component). In the case of outward evolution, the binary system evolves rapidly through

the range of separations where the close-orbit correction is strongest, so one can safely

ignore the correction to obtain order-of-magnitude estimates of timescales and material

properties using the classical equations for tidal evolution. Accounting for higher orders is

more applicable to studying, famously in the case of Phobos, observed secular accelerations

and the infall of a secondary to the surface of its primary where the higher-order terms

instead gain strength.

Though we have presented the expansion of the gravitational potential and the

resulting equations of tidal evolution in the context of two asteroids in mutual orbit, the

essence of this work could be generalized for use in the determination of the Roche limit

and the study of close flybys. The use of a higher-order expansion of the gravitational

potential in terms of Legendre polynomials is warranted whenever the separation of two

bodies is within five times the radius of one of the bodies14 (see Table 1). Historically, in

the context of disruption of a body at the Roche limit or due to a close flyby of a larger

body (Sridhar and Tremaine, 1992; Richardson et al., 1998; Holsapple and Michel, 2006,

2008; Sharma et al., 2006; Sharma, 2009), stresses are only considered in the much smaller

secondary while the primary is assumed to be rigid. For small secondaries, the cohesionless

Roche limit of 1.5–2Rp is much larger than 5Rs such that higher-order terms in the potential

expansion are not necessary. However, as larger secondaries are considered (Rs/Rp > 0.1),

14The potential felt by the primary requires higher-order terms with ℓ > 2 if the separation

is less than 5Rp; the potential felt by the secondary requires higher-order terms with ℓ > 2

if the separation is less than 5Rs.
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higher-order terms in the gravitational potential will further stress the secondary near the

Roche limit. Also, with components of increasingly similar size, the assumption of a rigid

primary is not appropriate; the tidal stress on the primary will deform it from a spherical

shape and produce an external potential as in Section 4 that will in turn further stress

the secondary. If the components are not spin-locked, tidal torques will also play a role in

stressing the secondary. Thus, if evaluating the Roche limit for components of similar size

and/or components that are not spin-locked, one must consider the description presented

here. For disruption during a close flyby, or simply modification of the spin state of the

passing body (Scheeres, 2001; Scheeres et al., 2000, 2004), one must consider the proximity

of the flyby in terms of the expansion of the gravitational potential and whether or not

tidal bulges can be raised on the components that would produce torques capable of further

altering the spin state of either component.

It is also important to remember that the higher-order theory presented here has

implicitly assumed initially spherical bodies. Extension of this work from spheres to

ellipsoids or to arbitrary shapes would affect the mutual gravitational potential, linear

and angular momentum balance, and orbital equations as described by Scheeres (2009)

and Sharma (2010). Once the shape is made nonspherical in the absence of a tidal

potential, the system is subject to a “direct” torque that naturally occurs from the changing

gravitational pull felt by the orbiting component due to the nonspherical shape of the other

component. Accounting for the tidal potential introduces the “indirect” torque described

here due to the deformation of one component by the gravitational presence of the other

component. Because the amplitude of the tidal bulge on asteroids, the parameter λ in

this work, can be very small due to its direct dependence on the ratio of self-gravitational

stress to rigidity, its direct dependence on the mass ratio, and its inverse dependence on the

separation raised to the third (or higher) power, natural deviations from a spherical shape

may exceed the amplitude of the tidal bulge. However, one must recall that the direct
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torques due to a nonspherical shape will change direction as the body rotates under the

orbiting component tending to cancel the pre- and post-encounter effects of the torque as

opposed to the indirect torque that is in a consistent direction so long as the bulge always

leads or lags the orbiting component. It may be important to consider direct torques due

to natural departures from a spherical shape via the use of shape models: oblate or prolate

spheroids, triaxial ellipsoids, or vertex models such as those made for the components of

the 1999 KW4 binary system and other asteroids.
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Weidenschilling, S. J., Paolicchi, P., Zappalà, V., 1989. Do asteroids have satellites? In:

Binzel, R. P., Gehrels, T., Matthews, M. S. (Eds.), Asteroids II. Univ. of Arizona

Press, Tucson, pp. 643–660.

This manuscript was prepared with the AAS LATEX macros v5.0.

40



ℓ a/Rp Legendre Polynomial, Pℓ(cosψ)

2 4.64 1
4

(1 + 3 cos 2ψ)

3 3.16 1
8

(3 cos ψ + 5 cos 3ψ)

4 2.51 1
64

(9 + 20 cos 2ψ + 35 cos 4ψ)

5 2.15 1
128

(30 cos ψ + 35 cos 3ψ + 63 cos 5ψ)

6 1.93 1
512

(50 + 105 cos 2ψ + 126 cos 4ψ + 231 cos 6ψ)

Table 1: Order ℓ of Legendre polynomials necessary in the expansion of the gravitational

potential (6) of a binary system (with ψ = 0) to accurately reproduce the full potential

(1) to within 1% at separations less than a/Rp ≃ 5. If a/Rp is greater than the value

listed, expansion to the corresponding order ℓ suffices. Recall that the fluid Roche limit

is a/Rp = 2.46 (see Section 3). Also note the Legendre polynomials are given in terms of

cos mψ, where m is an integer, rather than the more common form of cosm ψ.



ȧℓ/ȧ a/Rp = 1.93 a/Rp = 2.15 a/Rp = 2.51 a/Rp = 3.16 a/Rp = 4.64

ȧ2/ȧ 76.25% 80.93% 86.08% 91.27% 95.97%

ȧ3/ȧ 17.68% 15.12% 11.80% 7.89% 3.85%

ȧ4/ȧ 4.55% 3.14% 1.80% 0.76% 0.17%

ȧ5/ȧ 1.20% 0.67% 0.28% 0.07% 0.01%

ȧ6/ȧ 0.32% 0.14% 0.04% 0.01% –

Table 2: Maximum contributions by the successive orders ℓ that alter the semimajor axis

of the mutual orbit in (33) at the separations listed in Table 1. The strengths of the con-

tributions depend on the size ratio of the components with systems having negligibly small

secondaries or equal-size components having the strongest contributions from higher order

terms, which are shown here. Having a synchronous secondary (ωs = n) also has the same

effect on ȧℓ/ȧ. It is assumed the components have similar µQ parameters and the effect of

each component’s tides on the semimajor axis are additive.
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θ̂
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(a, θs, φs)
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Fig. 1. Geometry for the potential felt on the surface of the primary due to the secondary

orbiting a distance a from the center of mass of the primary. The dashed line is the locus of

points on the surface of the spherical primary that are separated by the angle ψ and distance

∆ from the position of the spherical secondary and thus feel the same potential.
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Fig. 2. Geometry for the potential felt at an external point due to the deformation of the

primary from its initially spherical shape (dashed). Note that here θ is measured from the

axis of symmetry of the tidal bulge.
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Fig. 3. When the primary spins faster than the mean motion of the mutual orbit (ωp > n),

the tidal bulge is carried ahead of the tide-raising secondary. The resulting torques slow the

rotation of the primary and expand the mutual orbit. When the primary spins slower than

the mean motion (ωp < n), the torques speed up the rotation of the primary and contract

the mutual orbit. Similar diagrams apply to tides raised on the secondary and whether or

not ωs > n. Note that ψ is measured from the axis of symmetry of the tidal bulge of the

primary with ψ = δp being the geometric lag angle at the position of the secondary.



Fig. 4. Time rates of change of the spin rate of the primary (left) and secondary (right)

as a function of the separation of the components using all orders up to ℓ = 6 versus using

classical ℓ = 2 tides only. The plotted ratio amounts to the bracketed portions of (31) and

(32) for the primary and secondary, respectively. The change in spin rate of the primary

due to higher-order terms is unaffected by the size ratio of the components. The change

in spin rate of the secondary is greater for larger size ratios, plotted from top to bottom

with Rs/Rp = 1, 0.8, 0.6, 0.4, and 0.2. The effect of higher-order terms is always below 30%

beyond 2Rp and falls below 1% by a separation of 10Rp for all size ratios.



Fig. 5. Time rate of change of the semimajor axis of the mutual orbit as a function of the

separation of the components using all orders up to ℓ = 6 versus using classical ℓ = 2 tides.

The plotted ratio amounts to the bracketed portion of (33) divided by 1 +Rs/Rp with both

components having similar µQ parameters and contributing to the evolution in an additive

sense. The solid curve corresponds to a system with components of equal size (Rs/Rp = 1),

a secondary of negligible size (Rs/Rp = 0), or a synchronized secondary (ωs = n). The

lower bound (dashed curve) is for the size ratio Rs/Rp = 0.53. As in Fig. 4, the effect of

higher-order terms is always below 30% beyond 2Rp and falls below 1% by a separation of

10Rp for all size ratios.



Fig. 6. Total change in spin rate of the components based on tidal evolution from an

initial separation of 2Rp using all orders up to ℓ = 6 versus using classical ℓ = 2 tides. The

coordinate on the x-axis is the final separation of the tidal evolution. With both components

contributing in an additive sense in (33), the spin rate of the primary is affected more rapidly

than in the classical case, while the secondary is affected less rapidly. The maximum change

in the spin rate of the primary occurs for Rs/Rp = 0.53 (upper solid curve) and the minimum

is the dashed line at 1 for Rs/Rp = 0, 1 or a synchronized secondary. The lower solid curve

corresponds to the change in spin rate of the secondary for Rs/Rp → 0. For larger size ratios,

the curve for the secondary moves toward the dashed line at 1.



Fig. 7. Evolution of the semimajor axis with time using all orders up to ℓ = 6 versus

using classical ℓ = 2 tides. Time is plotted logarithmically and scaled to the time necessary

for a system to evolve from 2Rp to 5Rp via ℓ = 2 tides. As in Fig. 5, the solid curve

corresponds to Rs/Rp = 0, 1 or a synchronized secondary and the dashed curve corresponds

to Rs/Rp = 0.53. Using up to ℓ = 6 gives a correction of order 1% to classical tides at any

point in the evolution from 2Rp to 5Rp.



Fig. 8. In terms of the ratio µQℓ=6/µQℓ=2 for tidal evolution from 2Rp with both com-

ponents contributing, systems with Rs/Rp = 0, 1 or a synchronized secondary share the

upper curve and are most affected by the close-orbit correction; a system with Rs/Rp = 0.53

(dashed curve) is the least affected by the close-orbit correction. Overall, the close-orbit

correction is roughly 25% at 2Rp and quickly falls off to 5% for evolution from 2Rp to 5Rp

and to 1% for evolution to 10Rp for all size ratios. The components are assumed to have

similar µQ parameters and contribute in an additive sense in (33).
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