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Abstract

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology 

and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity 

testing and an emerging model for molecular ecotoxicology. To provide molecular resources for 

sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated 

the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable 

with other ecotoxicological model species. Through targeted investigation and use of gene 

expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, 

we annotated and characterized the major gene families involved in sequestration, detoxification, 

oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a 

large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light 

habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion 

transporters, and include recent gene duplications in the metal sequestration protein, 

metallothionein. Mapping of differentially expressed transcripts to the genome significantly 

increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will 

greatly facilitate development of genomic tools for environmental assessments and promote an 

understanding of how evolution shapes toxicological pathways with implications for 

environmental and human health.

Graphical abstract

Introduction

Sediment quality assessments serve as a metric for overall habitat integrity of freshwater 

ecosystems. Sediments provide a foundation for aquatic food webs, providing habitat for 

invertebrate species including crustaceans and insect larvae. However, they also concentrate 
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pollution over time, especially hydrophobic contaminants that sorb to sediments, leading to 

bioaccumulation in the food web.(1) While concentrations of a few legacy contaminants are 

declining in the United States due to regulatory efforts;(2) chemicals designed as their 

replacements are becoming emerging contaminants and their levels are increasing.(3) This is 

particularly true of newer generation pesticides, which have become problematic in urban 

areas,(4) and complex mixtures of pharmaceuticals and personal healthcare products.(5)

Hyalella azteca is a freshwater crustacean (Malacostraca: Amphipoda) that lives near the 

sediment surface, burrowing in sediment and scavenging on leaf litter, algae, and detritus 

material on the sediment surface.(6) The amphipod’s nearly continuous contact with 

sediment, rapid generation time, and high tolerance to changes in temperature and salinity 

has made H. azteca an ideal species for assessing toxicity(7,8) and the bioavailability of 

sediment contaminants.(9) Given its ecology and expansive distribution, H. azteca provides 

an important window into sediment toxicant exposure and is a foundational trophic link to 

vertebrates as prey.(10,11)

The H. azteca species complex represents one of the most abundant and broadly distributed 

amphipods in North America. It was originally characterized as a single cosmopolitan 

species, but life history and morphological differences of H. azteca from different locations 

suggest that they comprise a species complex.(12–15) Indeed, phylogeographic analyses 

have resolved several different species,(16–20) which have diverged in North America over 

the past 11 million years.(19) Figure 1 shows the distribution of seven of the best 

characterized species within the complex. Even as the species have diverged, convergent 

evolution appears to be occurring due to similarity between geographically dispersed 

habitats providing an interesting study system for evolutionary biology.(21) For example, 

several populations representing multiple species groups have independently evolved genetic 

resistance to pyrethroid insecticides through mutations to the voltage-gate sodium channel 

(VGSC).(22) Within ecotoxicology, new strategies are being promoted to address the 

magnitude and wide range of effects elicited by chemicals and deficiencies in current 

toxicity testing approaches (e.g., National Research Council (23)). These strategies include 

developing adverse outcome pathway models that connect “key events” that are predictive of 

harmful results, from molecular perturbations to ecologically relevant effects. (24,25) In 

addition, comparative toxicogenomic approaches to identify evolutionarily conserved 

toxicological pathways(26,27) and target sites(28)enable cross-species predictions of 

adverse effects.

To ensure that sediment toxicity testing remains current with these emerging approaches in 

environmental health assessments, we set out to investigate the toxicogenome of H. azteca 
(U.S. Lab Strain), or the complete set of genes involved in toxicological pathways and stress 

response. As an often-used model, and the most widely used species within the complex for 

ecotoxicology, a relatively large amount of toxicity data has been amassed for the U.S. Lab 

Strain of H. azteca. Detailed characterization of the toxicogenome creates opportunities to 

reinterpret and exploit existing toxicity data to better predict risk posed to the environment 

by chemicals. Here we describe the genome of H. azteca with particular emphasis on genes 

related to key toxicological targets and pathways including detoxification, stress response, 

developmental and sensory processes, and ion transport. In addition, we begin the process of 
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creating a “gene ontology” for environmental toxicology using H. azteca by annotating the 

function of genes responsive to model sediment contaminants, thereby shinning light on the 

toxicogenome underlying adverse outcome pathways.

Materials and Methods

Hyalella azteca Strain, Inbreeding, And Genomic DNA (gDNA) Extraction

Hylalella azteca (U.S. Laboratory Strain(29)) cultures were reared according to standard test 

conditions.(10) These organisms have been maintained by the U.S. Environmental 

Protection Agency since their original collection by A. Nebeker (ca. 1982) from a stream 

near Corvallis, Oregon.(16) They share highest genetic similarity with populations collected 

in Florida and Oklahoma (Figure 1, Clade 8)(29,30) and recently in California.(22) Several 

lines of full sibling matings were maintained for four generations, after which all lines were 

unable to produce offspring, likely due to inbreeding depression.(31) Twenty animals 

including both males and females from a single inbred line were collected and gDNA 

extracted from individual H. aztecausing the Qiagen DNeasy Blood & Tissue Kit (Qiagen, 

Germantown, MD) with slight modifications.(22) Because of the gDNA quantities required, 

multiple individuals were pooled for library construction.

gDNA Sequencing, Assembly, and Annotation

H. azteca is one of 30 arthropod species sequenced as part of a pilot project for the i5K 

Arthropod Genomes Project at the Baylor College of Medicine Human Genome Sequencing 

Center, Houston, TX. Sequencing was performed on Illumina HiSeq2000s (Casava v. 

1.8.3_V3) generating 100 bp paired end reads. The amount of sequences generated from 

each of four libraries (nominal insert sizes 180 bp, 500 bp, 3 kb, and 8 kb) is noted in 

Supporting Information (SI) Table S1 with NCBI SRA accessions. See SI S1 for more 

details on library preparation. Reads were assembled using ALLPATHS-LG (v35218)(32) 

and further scaffolded and gap-filled using in-house tools Atlas-Link (v.1.0) and Atlas gap-

fill (v.2.2) (https://www.hgsc.bcm.edu/software/). This yielded an initial assembly 

(HAZT_1.0; SI Table S1; NCBI Accession GCA_000764305.1) of 1.18 Gb (596.68 Mb 

without gaps within scaffolds), compared with genome size of 1.05 Gb determined by flow 

cytometry (see SI for methods). To improve assembly contiguity, we used the 

Redundans(33) assembly tool. With Redundans using standard parameters, HAZT_1.0 

scaffolds and all Illumina input reads given to ALLPATHS-LG when producing HAZT_1.0 

as data inputs, generated a new assembly (HAZT_2.0, SI Table S1; NCBI accession 

GCA_000764305.2) of 550.9 Mb (548.3 Mb without gaps within scaffolds).

The HAZT_1.0 genome assembly was subjected to automatic gene annotation using a 

Maker 2.0 annotation pipeline tuned specifically for arthropods. The core of the pipeline was 

a Maker 2 instance,(34) modified slightly to enable efficient running on our computational 

resources. See SIfor additional details. The automated gene sets are available from the 

BCM-HGSC Web site (https://hgsc.bcm.edu/arthropods/hyalella-azteca-genome-project), 

Ag Data Commons(35) and the National Agricultural Library (https://i5k.nal.usda.gov/

Hyalella_azteca) where a web-browser of the genome, annotations, and supporting info is 

accessible. The Hazt_2.0 assembly was annotated by the automated NCBI Eukaryotic 
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Genome Annotation Pipeline(36) and is available from NCBI (https://

www.ncbi.nlm.nih.gov/genome/annotation_euk/Hyalella_azteca/100/).

Manual Annotation and Official Gene Set Generation

Automated gene prediction greatly facilitates the generation of useful genomic annotations 

for downstream research; however, producing accurate, high-quality genome annotations 

remains a challenge.(37) Manual correction of gene models generated through automated 

analyses, also known as manual annotation can provide improved resources for downstream 

projects.(38) The Hyalella genome consortium recruited 25 annotators to improve gene 

models predicted from the genome assembly scaffolds,(39) adhering to a set of rules and 

guidelines during the manual annotation process (https://i5k.nal.usda.gov/content/rules-web-

apollo-annotation-i5k-pilot-project). Manual annotation occurred via the Apollo software,

(38) which allows users to annotate collaboratively on the web via the JBrowse genome 

browser, version 1.0.4(40)(https://apollo.nal.usda.gov/hyaazt/jbrowse/). Two transcriptomes 

(see below) were provided as external evidence for manual annotation and as an additional 

resource to search for missing genes. After manual annotation, models were exported from 

Apollo and screened for general formatting and curation errors (see https://github.com/NAL-

i5K/I5KNAL_OGS/wiki). Models that overlapped with potential bacterial contaminants 

were removed. Bacterial contamination included regions identified via the procedure 

outlined in the SI S1, S2 as well as potential contamination identified by NCBI (Terence 

Murphy, personal communication). The remaining corrected models were then merged with 

MAKER gene predictions HAZTv.0.5.3 and miRNA predictions (see SI S3) into a 

nonredundant gene set, OGSv1.0;(41) for details on the merge procedure see https://

github.com/NAL-i5K/I5KNAL_OGS/wiki/Merge-phase). The manual annotation process 

generated 911 corrected gene models, including 875 mRNAs and 46 pseudogenes. All 

annotations are available for download at the i5k Workspace@NAL (https://

i5k.nal.usda.gov/Hyalella_azteca).(42) Additional details pertaining to the annotation of 

specific gene families can be found with the annotation reports of the SI S4.

RNA Sequencing and Transcriptome Libraries

Two sets of transcriptomic data were generated from nonexposed H. azeteca to assist in gene 

prediction, and were recently published as part of a de novo transcriptome assembly project 

to identify peptide hormones(43) (see S1 for details). RNaseq reads from this transcriptome 

project were aligned to the H. azteca genome scaffolds (HAZT_1.0) using TopHat 2.0.14 

with bowtie 2–2.1.0 and SAMtools 1.2. Overall mapping rate was 70.2%. Resulting BAM 

files were transferred to NAL and added to the Apollo genome browser.

Gene Expression Data Sets

To assist in the manual annotation of genes related to toxicant stress, additional gene 

expression data sets were utilized, consisting of differentially expressed genes identified by 

microarray analysis following exposure to model pollutants (see Table 1). Two of these data 

sets were previously published(30,44) while a third data set is new. Details related to these 

microarray experiments can be found in the Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo; Accession number: GPL17458) and SI S1. Contigs 

corresponding to the differentially expressed microarray probes were aligned to the genome 
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using Blastn within the Apollo genome browser. Genes were manually annotated in the areas 

of the genome where the contigs aligned using available MAKER and AUGUSTUS gene 

models and RNaseq reads to correct exon and intron boundaries if needed.

Results and Discussion

Description of the Hyalella azteca Genome

Analysis of the H. azteca U.S. Lab strain genome size using flow cytometry gave an average 

genome size of 1.05 Gb (females 1C = 1045 ± 8.7 Mb; males 1C = 1061 ± 10.2 Mb). Our 

genome size is significantly smaller than recent estimates from H. azteca representing 

different species groups collected throughout North America, which have been shown to 

vary by a factor of 2. (45)Following the strategy of the i5k pilot project, we generated an 

assembly of 1.18 Gb (Hazt_1.0; SI Table S1). However, because of the high gap fraction and 

an assembly size larger than the experimentally determined genome size, a second assembly 

of 550.9 Mb was later generated from the same sequencing data using Redundans 

(Hazt_2.0).(33) This assembly greatly improved contig N50 and produced a more complete 

gene set (Figure 2, SI Table S1). Because of the timing of the availability of Hazt_2.0, most 

of the manual annotations were performed using Hazt_1.0; therefore, both assemblies are 

presented here. RNaseq reads(43) mapped equally well to both genome assemblies (Figure 

2E), but significantly more reads mapped to the improved gene models of the Hazt_2.0 

assembly (Figure 2F). BUSCO analysis(46) was performed on both H. azteca genome 

assemblies (Figure 2C) and predicted gene sets (Figure 2D) to assess the completeness of 

the genome. Hazt_2.0 contains a higher percentage (Genome = 91.0%, Gene set = 94.2%) of 

complete BUSCOs in contrast to the Hazt_1.0 assembly (Genome 85.3%, Gene set = 

67.6%). When compared to other genomes of ecotoxicological relevance,(47–53) the 

Hazt_2.0 showed comparable quality, ranking fourth in completeness out of the eight 

genomes assessed.

Associated Bacteria and Lateral Gene Transfers

Using two complementary approaches to screen the H. azteca genome for bacterial 

contaminants, (54,55) we recovered two draft bacterial genomes, or metagenome assembled 

genomes (MAGs), and evidence of lateral gene transfers (LGTs) (SI S2). MAG1 is a 

flavobacterium with distant affinities to currently sequenced bacteria (92% 16S rRNA 

identity to the most closely identified genera Chishuiella and Empedobacter). MAG2 is 

related to bacteria in the genus Ideonella (98% 16S rRNA identity to I. paludis), of which 

some are able to degrade plastics, (56) in particular an isolate from the wax moth Galleria 
mellonella.(57) Whether these bacteria are close associates of H. azteca or components of 

their diet is not currently known, but their interesting gene repertoires could be relevant to H. 
azteca ecotoxicology. An analysis of broad functional categories indicates that both genomes 

contain multiple genes related to metal detoxification and resistance to toxins (i.e., 

antibiotics) and possibly other organic pollutants (SI Figure S2.2). In addition, strong LGT 

candidates from Rickettsia-like bacteria were found on five genome scaffolds (SI Table 

S2.2).
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Genome Methylation and MicroRNAs

We performed two genome-wide analyses to characterize DNA methylation patterns in the 

genome and characterize the full complement of H. azteca microRNAs. DNA methylation is 

an epigenetic mechanism by which a methyl group (CH3) binds to DNA that may alter gene 

expression.(58) Because methylated cytosines tend to mutate to thymines over evolutionary 

time, we used signatures of CpG dinucleotide depletion in the H. azteca genome to uncover 

putative patterns of DNA methylation. Our analyses showed that H. azteca possesses strong 

indications of genomic DNA methylation, including CpG depletion of a subset of genes (SI 

Figure S3.1 A,B) and presence of the key DNA methyltransferase enzymes, DNMT1 and 

DNMT3 (SI Table S3.1). Furthermore, genes with lower levels of CpG observed/expected 

(CpG o/e; i.e., putatively methylated) displayed a strong positional bias in CpG depletion (SI 

Figure S3.1 C, black line), with 5′ regions of these genes being considerably depleted of 

CpGs. In contrast, genes with higher CpG o/e displayed no such positional bias (SI Figure 

S3.1 C, gray line). Several insects where DNA methylation has been empirically profiled at 

the single-base level possess such patterns(59)suggesting H. azteca has similar patterns of 

DNA methylation as most insects (but see Glastad et al.(60)).

MicroRNAs (miRNAs) are a family of short noncoding RNAs (∼22 nt in length) that play 

critical roles in post-translational gene regulation.(61) Recent research revealed that 

miRNAs are involved in aquatic crustaceans’ response to environmental stressors (e.g., 

hypoxia and cadmium exposure),(62,63) which makes miRNAs promising biomarkers for 

future aquatic toxicological research. We predicted H. azteca miRNAs based on sequence 

homology and hairpin structure identification. A total of 1261 candidate miRNA coding sites 

were identified by BLAST. After hairpin structure identification, we predicted 148 H. azteca 
miRNAs, which include several highly conserved miRNAs (e.g., miR-9 and let-7 family) (SI 

Table S3.2, sequences available in SI S6.1). Several Cd-responsive miRNAs in D. pulex 
(miR-210, miR-71 and miR-252)(62) were also predicted in H. azteca, suggesting a 

conserved role of these miRNAs. This number of predicted miRNAs is comparable to what 

has been reported for other arthropods (SI Figure S3.2).

Functional Annotation

The manual annotation of the H. azteca U.S. Lab strain genome resulted in the 

characterization of 13 different gene families (see detailed annotation reports in SI S4.1-

S4.13). Given its importance in ecological and ecotoxicological studies, a particular focus 

was given to genes involved in environmental sensing (chemoreceptors and opsins), 

detoxification and response to stress (cytochrome P450s, cuticle proteins, glutathione 

peroxidases, glutathione S-transferases, heat shock proteins, and metallothionein proteins), 

as well as genes involved in important toxicological pathways (ion transporters, early 

development genes, insecticide target genes, and nuclear receptors). Here we highlight 

significant findings of gene family expansions or contractions as well as the characterization 

of genes of particular toxicological importance.

Environmental Sensing

To better understand how H. azteca interacts with its environment, we annotated genes 

involved in light and chemical sensing. Arthropods deploy a diversity of light sensing 
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mechanisms including light capture in photoreceptor cells through the expression of opsins: 

light-sensitive, seven-transmembrane G-protein coupled opsin receptor proteins. Our survey 

of the H. azteca genome revealed only three opsin genes, a middle wavelength-sensitive 

subfamily 1 (MWS1) opsin and two belonging to the long wavelength-sensitive subfamily 

(LWS) opsins (SI Figure S4.13.1, Table S4.13.1). Maximum likelihood analysis with a 

subset of closely related malacostracan LWS opsins moderately supports the two H. azteca 
LWS opsins as 1:1 orthologs of the two LWS opsins previously reported for Gammarus 
minus.(64) Thus, the LWS opsin duplicate pair conserved in H. azteca and G. minus is likely 

ancient, predating at least the origin of amphipod Crustacea. The H. azteca MWS opsin by 

contrast, represents the first reported amphipod MWS opsin and is distinct from currently 

known malacostracan MWS opsins. These findings suggest that amphipod crustaceans are 

equipped with a minimally diversified set of three opsin genes and implies gene family 

losses for all of the nonretinal opsin subfamilies. This is in contrast to the 46 opsin genes 

characterized in Daphnia pulex.(47) It remains to be seen whether these candidate gene 

losses are associated with the adaptation of H. azteca to its crepuscular visual ecology or 

reflect a more ancient trend in amphipods.

In contrast, the H. azteca genome reveals gene expansions of chemoreceptors, which may be 

essential for H. azteca given its epibenthic ecology and close association with sediments.

(6)Noninsect arthropods have two major families of chemoreceptors: gustatory receptor 

(GR) family, an ancient lineage extending back to early animals,(49,65–67) and the 

ionotropic receptors (IRs) that are a variant lineage of the ancient ionotropic glutamate 

receptor superfamily known only from protostomes.(49,68) These two gene families were 

manually annotated in the H. azteca genome and improved models were generated for two 

other crustaceans, D. pulex(69,70) and Eurytemora affinis(49,71) for comparison (SI S4.1, 

sequences available in SI S6.2). With 155 GR genes, H. azteca has over twice the number of 

GRs compared with D. pulex (59)(69) and E. affinis (67), although many of the most recent 

gene duplicates are pseudogenes. Two candidate GR sugar receptors were identified in H. 
azteca and D. pulex (independently duplicated in both lineages), but not in E. affinis. 
Otherwise these crustacean GRs form large species-specific expanded clades with no 

convincing orthology with each other or other conserved insect GRs such as the Gr43a 

fructose receptor (SI Figure S4.1.1). H. azteca has 118 IR genes (two pseudogenic) 

compared with updated totals of 154 in D. pulex (26 pseudogenic) and 22 intact genes for E. 
affinis. All three species contain single copy orthologs of the highly conserved IR genes 

implicated in perception of salt, amines, amino acids, humidity, and temperature in insects, 

including Ir25a, Ir8a (missing in D. pulex), Ir76b,(72) and Ir93a.(73) The remaining 

divergent IRs form largely species-specific expanded lineages (SI Figure S4.1.2). The many 

divergent IRs and GRs in these three crustaceans presumably mediate most of their chemical 

sense capability, but their great divergence from the proteins of Drosophila for which 

functions are known precludes speculation as to specific roles.

Cytochrome P450s

The cytochrome P450 superfamily of genes (P450 genes) is ubiquitous and diverse as they 

have been found in all domains of life and are thought to have originated over 3 billion years 

ago.(74)P450 genes function in metabolizing a wide range of endogenous and exogenous 
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compounds, including toxins, drugs, plant metabolites, and signaling molecules.(75–78) In 

the H. aztecagenome, we found 70 genes or gene fragments that contained a typical P450 

signature (FxxGxxxC), where C is the heme thiolate ligand (SI S4.3, sequences available in 

SI S6.2). However, only 27 were complete genes. The 70 P450 genes were classifiable into 

one of four recognized P450 clans, with the CYP2 clan (SI Figure S4.3.1) being the largest 

with 48 genes. The most notable difference between the P450 complement of H. azteca 
relative to hexapods (insects) was the expansion of the CYP2 clan P450s. Typical of 

expanded clades, we found several clusters of genes (and gene fragments) of the CYP2 clan. 

The CYP3 and CYP4 clans in H. azteca were represented by eight and seven genes, 

respectively. The fourth P450 clan is the mitochondrial P450 clan, with at least nine genes in 

H. azteca. The number of P450s found in H. azteca was greater to those found in other 

crustaceans, including the copepods Tigriopus japonicus (52)(79) and Paracyclopina nana 
(46),(80) but somewhat fewer than those in hexapod taxa (including 106 in the mosquito 

Anopheles gambiae and 81 in the silkworm Bombyx mori).(81)

Heat Shock Proteins

The heat shock protein (HSP) molecular chaperones are a highly conserved family of 

proteins that facilitate the refolding of denatured proteins following stress, including thermal 

stress, but also in response to metals and other toxicants, oxidative stress, and dehydration.

(82) HSPs are divided into several families based on their molecular weight. Of the different 

families, HSP70, HSP90, and HSP60 play a major role in protein refolding while HSP40/J-

protein is a cofactor to HSP70 and delivers nonnative proteins to HSP70.(83) HSPs were 

identified and annotated for each of these families (SI S4.8). The number of hsp70 (8 genes), 

hsp90 (3), hsp40 (3), and hsp60 (1) was well within the expected number found throughout 

Arthropoda.(84) Of the eight hsp70 genes, five were found as a gene cluster on scaffold 277, 

which is similar to gene clusters identified in Drosophila melanogaster(85) and Aedes 
aegypti.(86) In agreement with Baringou et al.,(87) the HSP70 proteins described here 

cannot be easily divided into inducible and cognate forms based on sequence characteristics. 

We instead decided to compare our eight sequences to sequence motifs described by 

Baringou et al.(87) and classify the H. azteca HSP70s according to their framework (SI 

Table S4.8.2). According to these motifs and the classification methods described, all H. 
azteca sequences belong to Group A, which agrees with Baringou et al.(87) finding that all 

amphipod HSP70s characterized to date are Group A proteins. One HSP70 contained 

slightly different motif characteristics and was grouped with A4 proteins, while the 

remaining sequences were grouped together in A5.

Metallothionein Genes

Metallothioneins (MTs) are a group of conserved metalloproteins with a high capacity for 

binding metal ions. These proteins are characterized by their low molecular weight (<10 

kDa), cysteine rich composition (often over 30%), lack of secondary structure in the absence 

of bound metal ions, and a two domain structure dictated by the bound ions. Although their 

diversity makes it difficult to assign a specific function by class of MTs, their ability to bind 

metal ions has provided MTs with a role in detoxification, binding, and sequestration of 

toxic metals.(88) Four mt genes were identified in the H. azteca genome by mapping Cd 

responsive contigs with homology to Callinectes sapidusCdMT-1 (AAF08964) to the 
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HAZT_1.0 assembly (SI S4.11). These four genes were arranged as repeats on scaffold 460 

and each contained three exons, the typical gene structure of mts (SI Figure S4.11.1). Mt-b 

and mt-d produce identical proteins of 61 amino acids, whereas mt-c is missing the 

downstream splice site on exon 1 and produces a truncated protein of 53 amino acids. Mt-a 

lacks a viable start codon, making it a likely pseudogene. Due to the similarity in the 

sequences of the remaining three genes, it is not possible to determine if they are all 

transcribed or regulated differently based solely on the RNaseq mapped reads. However, 

given their high degree of similarity and arrangement on scaffold 460, these genes are likely 

the result of recent gene duplications, which may provide an evolutionary advantage against 

high metal exposure. 1–4 mt genes have been identified in at least 35 other Malacostracan 

species. However, in most cases, the multiple MTs are not identical in amino acid sequence. 

For example, in the blue crab C. sapidus there are three mt genes. Two encode for Cd 

inducible forms with 76% sequence identity, while a third, codes for a longer copper-

inducible form.(89) Given that our strategy for identifying the mt genes in H. azteca relied 

on using the Cd inducible gene expression set, it is possible that a fourth, copper inducible 

form also exists in its genome.

Ion Transport Proteins

In arthropods, a subset of ion transporters are integral in maintaining cellular homeostasis 

and regulating epithelial transport of common ions such as H+, Na+, K+, and Cl–(90–93) and 

are likely involved in the toxicity and uptake of metal ions. The proton pump V-type H+ 

ATPase (VHA, ATP6) is an evolutionarily conserved molecular machine having a wide 

range of functions. VHA actively translocates H+ across the membranes of cells and 

organelles allowing it to generate electrochemical H+ gradients(94) that drive H+-coupled 

substrate transport of common bioavailable cations (Na+, K+, Li+).(95) VHA is a large, two 

domain protein complex (V1 and V0) comprised of 13 subunits, which are ubiquitous in 

eukaryotes and thought to be expressed in virtually every eukaryotic cell.(96) These 13 

VHA subunits were identified in the H. aztecagenome, but two accessory subunits were not 

(SI S4.10). A previous comparative analysis identified a wide range of VHA genes in the 

genomes of D. melanogaster (33), human (24), mouse (24), C. elegans (19), Arabidopsis 
(28), and Saccharomyces (15).(97) The high number of VHA genes identified in those 

organisms are in stark contrast to the only 13 VHA subunit genes present in H. azteca.

The sodium/hydrogen antiporters (NHA, SLC9B2, CPA2) are a subfamily of transmembrane 

ion transporters, which was only recently discovered in animal genomes and characterized in 

mosquito larvae.(98–100) In both arthropods and mammals, evidence indicates that NHA is 

coupled to VHA as a secondary electrogenic transporter for ion uptake against concentration 

gradients.(99,101–104) The presence of four NHA genes in the H. azteca genome was 

unexpected, as only two NHA paralogs per genome had been found previously in animal 

genomes (SI S4.10).(98)

The minimal set of VHA subunits and expansion of NHA genes may have toxicological 

significance, particularly with respect to metal toxicity and transport. Metal speciation, and 

therefore toxicity, is highly pH-dependent.(105) As a regulator of pH at the epithelial 

membrane, and thus electrochemical transmembrane gradients, VHA may play an important 
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role in metal uptake, ion speciation, and solubility.(106–108) The specific substrates for 

NHA have not yet been fully characterized for most species, but sodium and chloride are 

likely candidates.(109) The presence of NHA gene duplicates in the H. azteca genome 

suggest a likely adaptation for ion uptake against transmembrane concentration gradients, 

but may also influence metal uptake and bioavailability (see SI S4.10 for further discussion). 

As many toxic metal ions are transported across the cell membrane via ion channels and/or 

ion transporters (e.g., ATPases),(110,111)additional transporters should be explored for their 

direct roles in metal uptake and indirect influence on metal toxicity.

The Toxico-Responsive Genome

Contaminants such as heavy metals, organic compounds, and nanoparticles can adversely 

affect ecologically relevant organisms. In H. azteca, heavy metal contaminants (Zn, Cd) have 

been shown to have negative effects on the development of population growth rate, 

longevity, and reproduction(112–114) while metal-based nanomaterials (i.e., ZnO NMs) 

cause increased toxicity which may be related to enhanced bioavailability.(44,115) Organic 

compounds such as pyrethroid insecticides and polychlorinated biphenyls (PCBs) can cause 

detrimental effects on behavior, reproduction, and development.(116–118)

A primary goal of the H. azteca genome project was to expand the functional gene 

annotations for transcripts that respond to toxicant stress, referred to as the toxicogenome. 

We utilized two published gene expression studies (Zn, ZnO, NPs,(44) cyfluthrin(30)) as 

well as two unpublished gene expression sets for Cd and PCB exposure (Table 1). During 

our original investigation, we were only able to annotate a small fraction of the differentially 

expressed transcripts (Cd: 13%; Zn: 29%; PCB126:0%; Cylfuthrin: 20%) (Figure 3A). The 

ability to align these transcripts to the H. azteca genome allowed us to identify full length 

transcripts and more completely assemble transcripts aligning to the same genic region of 

the genome in a way that was not possible with a de novo transcriptome assembler (i.e., 

Newbler, Roche). This increased our ability to predict gene function increasing the fraction 

of annotated transcripts by 10–32% (Figure 3A). However, we also note that for each of 

these chemical challenges, over half of the genes are still without annotations (Figure 3A), 

implying that these genes may be lineage specific. This is similar to the finding within the D. 
pulex genome that lineage specific genes were more likely to be differentially expressed 

following environmental challenges.(47)

Cadmium

To explore the gene expression response and further annotate genes involved in heavy metal 

exposure, we conducted a gene expression study at ecologically relevant concentrations of 

Cd. Compared to controls, 116 genes were up-regulated in expression and 9 were down-

regulated by Cd. These genes are related to several cell processes including digestion, 

oxygen transport, cuticular metabolism, immune function, acid–base balance, visual-sensory 

perception and signal transduction (SI Table S5.1). Categorizing the genes by biological 

processes illustrated that the metabolism of H. azteca was very broadly affected, with the 

cellular metabolic processes representing the largest GO term (Figure 3B). Heat shock 

proteins (general stress response) were significantly upregulated in response to Cd (see SI 

Table S4.8.1) consistent with other amphipod studies(119,120) and showing a similar 
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response to other stressors including heat stress, oxidative stress and changes in pH.

(121,122) In addition, expression of the newly described MT genes were also significantly 

induced over 15-fold by Cd (SI Figure S4.11.3). Cd exposure also induced expression of 

genes involved in oxidative stress including glutathione-S-transferase, a commonly used 

biomarker in toxicity tests of pollutant exposure and oxidative stress, and thioredoxin 

peroxidase, a gene involved in protection against reactive oxygen species (ROS). Finally, 

genes involved in regulation of the cuticle were also upregulated. Differential expression of 

Chitinase and other cuticular proteins has been demonstrated previously in crustaceans in 

response to stress and has been correlated with impacts to growth and reproduction.

(123,124)

Zinc

We utilized a data set originally published in Poynton et al.(44) that compared the toxicity of 

ZnO NPs to zinc sulfate (ZnSO4) to increase the number of annotated genes that were 

responsive to metal exposure. Of the 60 differentially expressed genes, we annotated 25, 

including 15 genes that had not been annotated in the original publication (SI Table S5.2, 

Figure 3A). For example, chorion peroxidase (contig18799 in Poynton et al.(38)) was 

induced in both the ZnSO4 and ZnO NP exposures and acts as an indicator of oxidative 

stress, as the gene is involved in ROS damage repair. Contig000192 in Poynton et al.(44) is 

another previously uncharacterized gene that was annotated as asparaginyl beta-

hydroxylase-like protein, a regulator of muscle contraction and relaxation; its dysregulation 

suggests negative impacts to swimming behavior and movement. With the additional 

annotation results we were able to perform gene ontology analysis (SI Table S5.2) and 

observed that most genes were mapped to GO:0042221, response to chemical (Figure 3C).

Cyfluthrin

The pyrethroid insecticide cyfluthrin is one the most widely applied insecticides 

worldwide(125,126) and has been shown to be highly toxic to H. azteca. (EC50 < 1 ng/L).

(116) We previously showed that cyfluthrin exposure at 1 ng/L caused differential 

expression of 127 sequences.(30) Through the reanalysis of this data set, we were able to 

annotate 33 genes and successfully mapped them to GO terms (SI Table S5.3). Many 

affected genes were consistent with the known mechanism of pyrethroid toxicity, showing 

involvement in neurological system processes, synapse organization, and transmission of 

nerve impulses, but also stress response such as oxidization processes, damage repair, 

maintaining of homeostasis, and immune response (Figure 3D).

PCB126

For H. azteca, PCBs represent a major exposure and accumulation threat due to their habitat 

and feeding behavior in benthic areas. In fishes, dioxin-like PCBs (e.g., PCB126) are highly 

toxic as they bind to the aryl hydrocarbon receptor and induce the expression of CYP1 

genes.(127) Much less is known about this mechanism in crustaceans,(128) but in general 

they appear more tolerant of PCBs. Following exposure of H. azteca to PCB126, the most 

potent and ubiquitous of the PCB congeners,(129) we identified 21 differentially expressed 

sequences, representing seven genes, of which five were annotated (SI Table S5.4). Three of 

the five characterized genes are transmembrane proteins, while two are involved in 
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endocrine processes (growth hormone, thyroid hormone). Neuroendocrine disruption of 

PCBs was described in crustaceans previously (see review in(130)); however, most 

investigations on neuroendocrine disruption to date focus on effects in vertebrates. Our study 

demonstrates that potential impacts of neuroendocrine disruption on invertebrates deserves 

further attention.

In summary, with a total of 19 936 genes including 911 manually curated genes, the genome 

of the Hyalella azteca U.S. Lab strain provides a foundational tool for understanding the 

molecular ecology of benthic invertebrates as well as the mechanisms of toxicity of sediment 

associated pollutants. The critical gene families annotated here will serve as basis for 

studying toxicologically conserved pathways in invertebrates and developing adverse 

outcome pathways for sediment dwelling organisms. Overall, our results illustrate the 

advantage of applying a genome assembly to ecotoxicogenomic studies including the 

improved ability to annotate genes of interest and we strongly encourage the expansion of 

genomic, not just transcriptomic, resources for other species of ecotoxicological relevance.

The ever-growing list of chemical contaminants entering the environment poses a significant 

challenge in terms of risk assessment. The low-throughput and high cost of traditional 

toxicity testing, suggests that the need for alternative means to assess risk.(23) The 

characterization of ‘omics responses has emerged as a potential alternative.(25) Measures on 

the cellular level provide valuable information on the mode of action of uncharacterized 

chemicals, the health status of exposed organisms, and can act as a means to extrapolate 

beyond model organisms, and can be integrated into predictive risk models. The 

interpretation of these omics responses within the context of the well-defined H. azteca 
genome described herein will greatly expand the utility and applications of omics responses 

to sediment ecotoxicology and risk assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Geographical distribution of seven of the most well characterized Hyalella azteca species 

groups in the United States and Canada. The two species that have been taxonomically 

described include Hyalella spinicauda and Hyalella wellborni.(131) The distribution shown 

here was described in several publications for H. wellborni(19,29,132) with additional 

collections by R. Cothran and G. Wellborn; and H. spinicauda.(19,29,133) The remaining 

five species have species level divergence in the cytochrome oxidase-I gene, but without 

taxonomic descriptions, they are named with the designations applied in publications 

describing the collections. These include Clade 8 (also referred to as U.S. Lab strain,(29) 

Species C,(22) OK-L(133)) with additional collections shown here by G. Wellborn, R. 

Cothran, M. Worsham, A. Kuzmic; Clade 1;(19,29,132,134,135) Clade 5;(19)Species B;

(22,30,133) and Species D.(22,30,136) The genome sequence described here represents 

Clade 8 or the U.S. Lab strain.(29) The other commonly used laboratory strain, primarily 

from Canada, belongs to Clade 1.(29)
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Figure 2. 
Summary of the quality and completeness of the two H. azteca genome assemblies. (A) 

Comparison of the contig, scaffold, and assembly size between the two assemblies. (B) 

Comparison of predicted gene sets from the two assemblies. The original MAKER gene set 

for Hazt_1.0 is Hazt_0.5.3 while the gene set developed by NCBI for Hazt_2.0 is referred to 

as Hazt_2.0. (C) BUSCO analysis compared to other genomes of ecotoxicological relevance 

including the amphipod Parhyale hawaiensis,(48) the copepod Eurytemora affinis,(49) 

Daphnia pulex,(47) the aquatic midge Chironomus tentans,(50) the terrestrial springtail 

Folsomia candida,(53) the fathead minnow Pimephales promelas,(51) and the killifish 

Fundulus heteroclitus.(52) Dotted line corresponds to the total number of BUSCOs (single 

copy, duplicated, or fragmented) for the Hazt_2.0 assembly. (D) BUSCO comparison for the 

predicted gene sets. Dotted line corresponds to the total number of BUSCOs (single copy, 

duplicated, or fragmented) for the Hazt_2.0 gene set. (E) Percentage of RNaseq reads that 

mapped to the genome (left) and the predicted protein coding genes (right). Illumina data 
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sets were acquitted from the NCBI Bioproject (PRJNA312414). Reads were mapped 

according to methods described in Rosendale et al.(137) and Schoville et al.(138)
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Figure 3. 
Annotation of toxicant responsive genes. (A) The annotation of differentially expressed 

transcripts was significantly improved using the H. azteca genome. The total number of 

unique differentially expressed transcripts is listed below each treatment. Pie graphs 

represent differentially expressed contigs and illustrate the percentage of original 

annotations (blue) and the additional annotations that were added when contigs were aligned 

to the genome (orange). For PCB126, none of the contigs were annotated prior to alignment 

to the genome. In many cases more than one contig aligned to the same transcript; therefore, 

the total number of contigs is greater than the number of transcripts. (B–D) Biological 

processes gene ontology (GO) terms representing the differentially expressed transcripts 

from Cd (B), Zn, and ZnO NPs (C), and cyfluthrin (D). The number of genes mapped to 

each of the GO terms is shown by the length of the bars, while the percentage of total 

transcripts is marked at the end of each bar. For PCB126, none of the 12 annotated 
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transcripts were mapped to biological processes GO terms. Similar graphs for molecular 

function GO terms can be found in the SI Figure S5.
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Table 1.

Model Toxicants and Exposure Concentrations for Microarray Gene Expression Analysis

pollutant class chemical end points concentrations references

heavy metals

cadmium LC10 5.5 μg/L this study

zinc 1/10 LC50 25 μg/L Poynton et al. (2013)(44)

LC25 104 μg/L

insecticide cyfluthrin NOEC 1 ng/L Weston et al. (2013)(30)

nanomaterial ZnO NP 1/10 LC50 18 μg/L Poynton et al. (2013)(44)

LC25 65 μg/L

organic pollutant PCB126 7.0 μg/L this study
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