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Abstract

Synthetic biology dictates the data-driven engineering of biocatalysis, cellular functions, and

organism behavior. Integral to synthetic biology is the aspiration to efficiently find, access,

interoperate, and reuse high-quality data on genotype-phenotype relationships of native

and engineered biosystems under FAIR principles, and from this facilitate forward-engineer-

ing strategies. However, biology is complex at the regulatory level, and noisy at the opera-

tional level, thus necessitating systematic and diligent data handling at all levels of the

design, build, and test phases in order to maximize learning in the iterative design-build-

test-learn engineering cycle. To enable user-friendly simulation, organization, and guidance

for the engineering of biosystems, we have developed an open-source python-based com-

puter-aided design and analysis platform operating under a literate programming user-inter-

face hosted on Github. The platform is called teemi and is fully compliant with FAIR

principles. In this study we apply teemi for i) designing and simulating bioengineering, ii)

integrating and analyzing multivariate datasets, and iii) machine-learning for predictive engi-

neering of metabolic pathway designs for production of a key precursor to medicinal alka-

loids in yeast. The teemi platform is publicly available at PyPi and GitHub.

Author summary

Bioengineering holds fantastic perspectives and is poised to change how we produce

foods, materials, and medicines. However, rapid progress is limited by a lack of
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mechanistic knowledge in even the simplest model organisms, such as bacteria and yeast.

Thus, to compensate, we often have to construct and study a large number of engineered

cells and select the cells with the greatest potential for the given objective function. The

targeted construction of engineered cells is often described as an iterative process of

design, build, test, and learn (the DBTL cycle). Literate programming is a paradigm that

encourages the combination of text and computer code with the potential to describe all

workflows covered by the DBTL cycle. The purpose of the present work is to give a first

estimate of the extent to which we can accelerate the individual steps in the DBTL cycle by

using end-to-end literate programming workflows. To achieve this, we established an

open-source platform called teemi, and used it to optimize production of a key precursor

to medicinal alkaloids in yeast. We expect that teemi will enable higher DBTL throughput

with fewer errors, better integration of IT tools with laboratory resources, and more effec-

tive knowledge capture.

This is a PLOS Computational Biology Methods paper.

Introduction

The rational engineering of biology for user-defined purposes, also known as synthetic biol-

ogy, has fostered a shift in the way we imagine, design and produce foods, materials, and medi-

cines [1]. Seminal examples of synthetic biology success stories adopted by society during the

last decade includes plant-based burgers with meat flavor derived from soy leghemoglobin

produced in engineered yeast [2], the hyaline family of clear, flexible and robust polyimide

films for flexible electronics made from bio-sourced monomers [3], and chimeric antigen

receptors (CARs) fused to antibodies that when inserted in patients’ T cells and introduced

into the patient enable efficient killing of cancer cells [4]. Common to these examples is the

bioengineering of living cells to encapsulate and arm them with novel functions to meet socie-

tal needs in agriculture, manufacturing industry, and health. Even more so, many more solu-

tions to mitigate climate changes, increase food supplies, and treat patients with unmet needs

are set to depart from engineered cells and synthetic biology in the near future [5].

However, rapid progress in bioengineering is limited by the long, costly, and non-standard-

ised approaches used to engineer even the simplest model cells, such as Escherichia coli and

Saccharomyces cerevisiae [6]. Taken together with the molecular and metabolic complexity of

biological systems, and limited scalable design principles, bioengineers often have to construct

and study large libraries of variant cell designs to identify genotypes with sought-for properties

[7]. The targeted construction of strains is often described as an iterative process of design,

build, test, and learn (the DBTL cycle) [7]. To support the various steps of the DBTL cycle a

multitude of commercial software and cloud-lab platforms are available, including Benchling,

Riffyn, Inscripta, Teselagen and Emerald Cloud Lab, with advanced laboratory information

management system (LIMS), data analysis capabilities, and integration of laboratory workflow

execution via robotics [8,9]. In addition to commercial platforms, open-source Python APIs

for flexible workflow planning, execution and data management, central to the working prac-

tices of researchers, are gaining momentum, especially covering the design and learn steps of

the DBTL cycle [10–12] Similarly, the collection of FAIR (Findable, Accessible, Interoperable,
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findings of this study. All data related to this study

can be accessed and downloaded from GitHub, the

designated data repository at https://github.com/

hiyama341/G8H_CPR_library. The data include all

source files and datasets analyzed throughout the

study as well as training sets for the machine-

learning models. Code availability The code utilized

for data extraction, organization, filtering, and

simulation, as well as the code utilized for

algorithm training, can be found on GitHub https://

github.com/hiyama341/teemi. The teemi platform

was implemented through PyPi and is available at

https://pypi.org/project/teemi/.
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Reusable) training materials made available via community efforts, such as the Galaxy Train-

ing Network [13], seek to empower researchers with data analysis literacy and bridge the skills

gap between design-build-test and learn [14]. Still there is a common challenge to further sup-

port researchers in using natural language laboratory protocols and integrating such tools and

services into their daily workflows [15]. Solving this challenge should enable i) that more tasks

can be performed in a shorter amount of time and with less errors, ii) better integration of IT

tools with other laboratory resources, such as robotics, and iii) better documentation, and thus

more effective knowledge transfer among research communities [15–17].

Literate programming is a paradigm that encourages the combination of text and computer

code in a systematic and coherent way [18]. Computer code is formal language for describing

how to do things [19]. The code can be understood by both humans and computers if it is writ-

ten sufficiently abstract. Literate programming protocols are thus written for humans, but

computer code is used whenever the tasks can be performed by a computer. With literate pro-

gramming, workflows and data can be described precisely meeting the FAIR principles [20].

In particular within bioengineering, a literate programming approach has the potential to

describe all elements of the DBTL cycle, thus supporting cost-effective laboratory and data

analytical workflows. Examples of existing open-source tools that excel in parts of the DBTL

cycle include Pydna [21], Aquarium [11], GalaxySynBioCAD [22]. Briefly, Pydna provides

descriptions of DNA assembly and cloning strategies in Python with a high degree of flexibil-

ity. Complementary to this, Aquarium generates protocols represented as executable code

with an integrated LIMS system, while the Galaxy platform [23] offers extensive bioinformatic

workflows on genomic analysis through its web-based platform. Extending from this, Galaxy-

SynBioCAD builds on the Galaxy platform with a focus on tools for synthetic biology, such as

retrosynthesis and metabolic pathway analyses, through the DBTL cycle. Based on this, there is

still a need to provide examples of how tools like these can be assembled into flexible end-to-

end DBTL workflows leveraging the best of an ever-increasing palette of tools through literate

programming.

The purpose of the present work is to give a first estimate of the extent to which bioengi-

neers can accelerate the speed, efficiency, and fidelity of the individual steps in the DBTL cycle

by using literate programming. To do so, we have established an open-source platform includ-

ing all elements of the iterative DBTL cycle bioengineers are confronted with. The platform is

called teemi. To showcase teemi in its entirety and facility efficient adoption, we present an

experimental example using literate programming in teemi for all DBTL stages of an iterative

learning task targeting the optimization of a metabolic pathway for production of a key precur-

sor to medicinal alkaloids in yeast.

Results

Background and motivation for teemi

At the onset of this project, we first assessed the availability of web tools and scripts available

for bioengineers to streamline DBTL workflows (Table 1). While tools like GalaxySynBioCad

and Aquarium are widely adopted [9,11], we could not identify open-source tools that can

integrate all steps of the DBTL cycle in a single workflow, without the need to acquire pro-

gramming skills, and/or shifting between platforms and programming languages.

In literate programming, besides the textual documentation, embedded code allows

abstracting away all computations in a reusable way. Lab notebook-style chronological docu-

ments will contain information on when, how, and for what purpose, data was acquired and

used. Moreover, with literate programming, data is compliant with FAIR principles being find-

able and accessible from a single context via links to digital repositories, interoperable via a
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free to use, open source, and user-friendly workflow document, while both data acquisition

and processing are reproducible via text documentation and embedded functions.

For this study, teemi is used in Jupyter Notebooks and consists of a set of Python functions

and classes facilitating simulation of experimental flow for in vivo design and assembly of

diverse genetic libraries, pooled library constructions, organization and modeling of genotype

and phenotype data, as well as implementing machine learning to model the data and recom-

mend new designs (Figs 1 and S1). Through teemi simulations, the preparation of laboratory

work is standardized and thoroughly executed, aimed at reducing time consumption, decreas-

ing human error rates, and improving the reproducibility of experimental results.

Table 1. Comparison of maintained* open-source IT tools and their functionalities for full-stack DBTL cycle.

Pydna Aquarium Galaxy

platform

Galaxy

SynBioCAD

Poly Edinburgh Genome

Foundry tools

Lattice-

Automation/synbio

autoprotocol-

python

DESIGN: Parts selection - - - + - + - -

DESIGN: Combinatorial

library generation

- - - + - - - -

DESIGN: Cloning

workflows

+ + - + + - + -

BUILD: Laboratory

protocols

- + - - + - - +

BUILD: Automation with

robotics

+ - - + - + + -

TEST: Data processing of

analytics

- + + + - - - -

LEARN: Machine-Learning - - + - - - - -

LIMS system - - - - - - -

Python level Medium None None None Go-

package

Medium Medium Medium

*Minimum one commit on GitHub within the last year.

https://doi.org/10.1371/journal.pcbi.1011929.t001

Fig 1. Conversion of natural language lab protocols for iterative design-build-test-learn cycles to literate protocols using teemi. Natural

language protocols (left—blue) comprehensible to humans are converted into computer code (right—yellow) that can be understood by both

computers and humans. In teemi, each procedure in natural language protocols is connected with names of python modules in literate

protocols, thus lowering the programming entry level needed for adopting teemi. See also S1 Fig for more details. Created with Biorender.

com.

https://doi.org/10.1371/journal.pcbi.1011929.g001
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The literate programming notebooks used for the experimental testbed presented in this

study are hosted by Google Colab. All notebooks are extensively referenced upon implementa-

tion throughout this study as well as summarized in a comprehensive list (Table 2), allowing

the reader to easily connect literate programming for iterative DBTL cycles with the results

presented.

The experimental bioengineering testbed

An often-encountered bottleneck in modern biotechnology is the bottleneck of oxidation reac-

tions catalyzed by cytochrome P450 enzymes [24,25]. These oxidation reactions are catalyzed

by cytochrome P450 (CYP) superfamily of hemoproteins, and cytochrome P450 reductases

(CPR) [26–28]. CYPs are generally often speaking cytosol-facing, N-terminally bound

enzymes bound to the endoplasmic reticulum (ER) [24]. They catalyze hydroxylations of small

molecule substrates facilitated by the transfer of two electrons from NADPH to NADP+ cata-

lyzed by the ER-bound CPRs [27]. Plant-derived CYP/CPR reactions are widespread in mod-

ern biotechnology for fermentation-based manufacturing of fine chemistries, such as alkaloids

and terpenes [29,30]. When heterologously expressed in microbes, such as the biotechnology

workhorse baker’s yeast Saccharomyces cerevisiae, poor CYP activity and shunt product forma-

tion limits efficient bioconversion of cheap feedstocks to value-added advanced pharmaceuti-

cal ingredients sourced by fermentation [25,29]. To mitigate this, CYP/CPR reactions often

need extensive trial-error engineering to optimize substrate conversion and balance co-factor

availability in cell factories. This has included i) regulating the expression of genes encoding

both CPR and CYPs, ii) searching for optimal CYP:CPR pairs, iii) bioprospecting for enzyme

homologs, iv) perturbing gene copy numbers, or v) rational engineering of signal peptides to

target membrane-anchoring of enzymes to dedicated subcellular compartments [25,27]. While

independently all of these approaches have positively impacted oxidation reactions catalyzed

Table 2. Overview of the notebooks created for this work.

DBTL

Round

Name and link Description

1 DESIGN 00_1_DESIGN_Homologs Describes how we automatically can select homologs from NCBI from a query in a standardizable

and repeatable way.

01_1_DESIGN_Promoters Describes how promoters can be selected from RNAseq data and fetched from an online database

with various quality measurements implemented.

02_1_DESIGN_Combinatorial_library Describes how a combinatorial library can be generated with the DesignAssembly class along with

robot executable instructions.

BUILD 03_1_BUILD_gRNA_plasmid Describes the assembly of a CRISPR plasmid with USER cloning.

04_1_BUILD_Background_strain Describes the construction of the background strain by K/O of G8H and CPR in the X-3 and XI-3

sites respectively.

05_1_BUILD_Combinatorial_library Building a combinatorial library of 1280 combinations with designs generated by Tesselagen

software.

TEST 06_1_TEST_Library_characterisation Describes data processing of LC-MS data and genotyping of the generated strains.

LEARN 07_1_LEARN_Modelling_and_

predictions

Describes the use AutoML to predict the best combinations for a targeted second round of library

construction.

2 DESIGN 08_2_DESIGN_Model_recommended_

combinatiorial_library

This notebook utilizes the machine learning predictions made in the previous notebook to create a

targeted combinatorial library with best predicted genetic parts.

BUILD 09_2_BUILD_Combinatorial_library Shows how results from the ML can be translated into making a second focused library of strains.

TEST 10_2_TEST_Library_characterization Describes the data processing of LC-MS data like in notebook 8 but with the second focused

library.

LEARN 11_2_LEARN_Modelling_and_

predictions

Second cycle of ML showing how the model increased performance and saturation of best-

performing strains.

https://doi.org/10.1371/journal.pcbi.1011929.t002
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by heterologous expression of plant-derived CYPs and CPRs in yeast [25,27,29], multivariate

exploration of these reactions are needed. One recent study documenting the power of combi-

natorial search strategies was performed by Davies et al., searching >100 CYP/CPR co-expres-

sion designs, which when combined with best-performing promoter designs show-cased

improved C8-hydroxylation of geraniol to 8-hydroxy-geraniol catalyzed by the geraniol

hydroxylase G8H and its CPR partner [27].

In this study we present the power of teemi and literate programming to build simulation-

guided and iterative laboratory workflows for optimizing strictosidine production in yeast (Fig

2A). Motivated by the complexity of the oxidation reactions and documented importance of

exploring combinatorial design spaces [27], and the observation that feeding 8-hydroxy-gera-

niol improves strictosidine production compared to feeding geraniol [29], we considered the

Fig 2. Design and characteristics of the constituent DNA parts used as experimental testbed for teemi. (A) The ten-step biosynthetic pathway converting geraniol to

strictosidine. The G8H step is highlighted in a dashed box [26]. (B-C) Rooted phylogenetic trees of G8H (D) and CPR (E) protein representatives. Uniprot identifiers are

shown in parentheses. Catharanthus roseus (Cro), Rauvolfia serpentina (Rse), Olea europaea (Oeu), Camptotheca acuminata (Cac), Vinca minor (Vmi), Cinchona

calisaya (Cca), Ophiarrhiza pumila (Opu), and Swertia mussatii (Smu), Artemisia annua (Aan), Arabidopsis thaliana (Ath), Catharanthus longifolius (Clo), Amsania

hubrichtii (Ahu), and Aspergillus niger (Ani). (D-E) Temporal resolution of transcript abundances for candidate genes [34], for which promoters were chosen to control

the expression of genes encoding G8H (D) and CPR (D) homologous. (F) Combinatorial assembly and genome integration strategy.

https://doi.org/10.1371/journal.pcbi.1011929.g002
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C8-hydroxylation of geraniol to 8-hydroxy-geraniol as a valid testbed to showcase the band-

width and throughput enabled by literate programming using teemi.

teemi for design-build-test-learn cycle I

Using teemi we initially constructed a parental strain (MIA-CH-A2) harboring CroG8H and

CroCPR under the control of promoters pTDH3 and pTEF1, together with the other 11 genes

controlling the expression of genes encoding enzymes of the biosynthesis pathway converting

geraniol to strictosidine [26,29](Fig 2A).

The first iteration of the teemi-based DESIGN module, under the DBTL framework,

focused on enzyme homology searches, promoter choices, and primer designs. This approach

aimed to leverage the extensive and increasing genomic resources available in databases like

NCBI [31]. Using a top-down approach is particularly useful when the enzymatic pathway is

known. Building on this, we developed an algorithm to standardize screening and selection of

homologs (00_1_DESIGN_Homologs, Paragraph: 1) using Catharanthus roseus G8H and

CPR sequences as queries [23,25].

In addition to the NCBI database search, CPR candidates documented from literature

[29,32], search results from the PhytoMetasyn database [33], and a beetle G8H from Chrysa-
mela populi (Cpo) were included to generate diversity (Fig 2B and 2C).

Each gene was expressed under the control of four unique native promoters, yielding a total

library size of 1,280 (8x10x4x4). For the choice of promoters a second algorithm was developed

aimed at selecting relevant promoters from expression data generated during the lag (10% glu-

cose consumption, low ethanol production), mid-exponential (75% glucose consumed,

increasing ethanol production), and post-exponential phases (>99% glucose consumed, start

of ethanol consumption) [34](01_1_DESIGN_Promoters, Paragraph: 1)). All promoter

sequences were aligned to ensure that there were no homologous sequences in order to mini-

mize recombineering during transformation and library propagation (01_1_DESIGN_

Promoters, Paragraph: 4). Lastly, primers for amplification of each of the chosen library parts

were designed (02_1_DESIGN_Combinatorial_library, Paragraph: 3). To facilitate homolo-

gous recombinations by design, the parts used as flanking regions for repair assembly into a

pre-defined genomic landing pad were designed to be 0.5 kb and the homology regions

between library parts were 30 bp by default. For all design steps, the notebooks along with

teemi were used to simulate all relevant designs in a combinatorial library, check primer

matches with templates, calculate lengths of PCR products, and print tables of PCR mixes in

order to provide an overview of reagents and their location, calculate melting temperatures for

PCR programs and expected gel electrophoresis outputs, and create expected sequences from

an alignment of parts integrated (03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_

strain, 05_1_BUILD_Combinatorial_library, 09_2_BUILD_Combinatorial_library). As such

this simulation also mimics an electronic laboratory notebook (ELN), thus facilitating docu-

mentation of the experiments and allowing for easy sharing in order to prevent knowledge

loss. Most importantly, the 100% sequence verification of amplicons (06_1_TEST_Library_

characterisation, Paragraph: 2.2; 10_2_TEST_Library_characterization, Paragraph: 2) based

on teemi simulations of expected gel electrophoresis outputs (S2 Fig) is a validation of the sim-

ulation workflow, and is expected to improve interoperability and reproducibility of laboratory

workflows, and help reduce human errors.

Next, for the BUILD module, we adopted CasEMBLR for CRISPR/Cas9-mediated assembly

harnessing seamless homologous recombination between seven parts in each cluster [35], and

into a stable genomic integration site [36] (Fig 3A). The choice of method used for the BUILD

step, focused on reducing potential expression heterogeneity of the designed expression units
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and the number of wet lab steps. With CasEMBLR this would be enabled by stable genomic

integration of assembled expression clusters as defined in the DESIGN step, and by the direct

transformation of parts rather than the adoption of shuttle vectors propagated via a bacterial

host, respectively. For this purpose, CasEMBLR is a well-suited tool as it leverages high-fidelity

multi-part assembly based on homologous recombination and limits expression stochasticity

by genomic integration of the assembled expression units. The seven parts encode two differ-

ent promoters each controlling the expression of a gene encoding a G8H or a CPR, together

with a selectable marker and two homology regions for the genomic landing pad (Fig 3A).

When generating diversity, it is essential to remember that the outcome vs effort is

restricted in the build and test part of the DBTL cycle due to physical capacities in strain con-

struction and testing. A potential way to accelerate the process is with stochastic variant gener-

ation [37]. Hence, we used teemi to output parts lists for combinatorial assemblies, each

encoding a single G8H:CPR combination together with all 16 different promoter

Fig 3. Design, characterization and modeling of design-build-test-learn cycle I. (A) Outline of the stochastic sampling and test workflow for data

generation. Created with Biorender.com. (B) The distribution and counts of parts from the 167 strains that were accepted as input for machine learning

in the first learning phase of the first DBTL cycle. (C) The distribution of observed strictosidine titers relative to reference strain MIA-CH-A2. Below

the bar plot the distribution of parts for each of the 238 analyzed strains is presented. (D) Cross-validated predictions vs average normalized

strictosidine production. All values are ranked.

https://doi.org/10.1371/journal.pcbi.1011929.g003
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combinations (4x4)(05_1_BUILD_Combinatorial_library)(Fig 3A). The designs were assem-

bled as one-pot transformations together with the selectable marker and the two up- and

down-homology regions, making each transformation consist of 21 parts for a total of 16

genetic designs in each of 80 (8 x 10) transformations (05_1_BUILD_Combinatorial_library,

Paragraph: 4)(Fig 3A).

For the TEST module, we scored genotype and phenotype relationships of stochastically

sampled colonies based on DNA sequencing of promoter:gene combinations and liquid-chro-

matography mass spectrometry to quantify strictosidine, respectively (Fig 3A). The choice on

which data to capture in the TEST module was guided by simple principles. First, working on

engineering biology, bioengineers are often aiming to correlate, and even predict, a sought-for

phenotype of a living system based on a given genotype. While genotype is largely described

by DNA sequencing, the phenotype of interest can be assessed by a multitude of parameters

and proxies, such as fitness, shape, taste, and function. In this study, the objective function was

to adopt teemi for the cost-effective engineering of cell factories and the prediction of produc-

tion titers in engineered cell factories based on their respective genotypes. As such, the mini-

mal set of input data to be used for model-guided optimization of cell factories would be

genotype and titers based on Sanger-based DNA sequencing and quantitative liquid chroma-

tography-mass spectrometry data, respectively.

Sequencing results matched with the simulation from the DESIGN step, were organized

into a CSV file containing rows with strains that had unambiguous genotypes along with stric-

tosidine production as part of the teemi workflow (06_1_TEST_Library_characterisation, Par-

agraph: 3). The pooled library approach complemented stochastic sampling of three colonies

from each transformation to maximize diversity generation within the shortest amount of

time [37], from which 159 unique genotypes were extracted from the 238 sampled colonies

(12.4% coverage of the 1,280 design solution space)(06_1_TEST_Library_characterisation,

Paragraph: 4). Furthermore, out of the total 159 unique genotypes obtained, the distribution

of the 8 different G8Hs and 10 different CPRs were 11.4–13.8% and 7–12%, respectively, while

for the 4 promoters driving expression of genes encoding G8Hs and CPRs the distributions

were 19.6–33.5% and 22.2–30.0%, respectively (06_1_TEST_Library_characterisation, Para-

graph: 4)(Fig 3B), totaling a deviation span of 1.4–8.5 percentile points from an even distribu-

tion. Taken together, these results demonstrate efficient parts assembly and relatively large

coverage of the theoretical sequence space. With respect to strictosidine production, LC-MS

measurements were obtained concomitantly, and data was normalized by the mean of the pro-

duction obtained for the reference strain MIA-CH-A2 run in technical quadruplicates on

three different replicate plates (29.29 +/- 4.84 μM; 34.77 +/- 4.85 μM; 34.23 +/- 7.60 μM) [29]

(06_1_TEST_Library_characterisation, Paragraph: 2.1); 10_2_TEST_Library_

characterization, Paragraph: 1.3). From the analysis, 9 of the 238 strains tested were observed

to produce more than the reference strain (Fig 3C and S2 Table).

Lastly, in the interest to automate the modeling of genotype and phenotype data and to rec-

ommend forward-engineering of lead strains beyond those already used for modeling, we

showcase integration of machine learning by teemi to LEARN genotype-phenotype relation-

ships as well as recommend new strain designs not seen in the training data set. Commonly

used machine learning models include XGBoost models which have previously been shown to

have high predictive capabilities in modeling gene expression values [38], as well as genetic

and metabolic networks [39]. Complementary to this, DeepLearning algorithms have been

used in a plethora of bioengineering applications notably to predict guide-RNA activity for

CRISPR/Cas-based genome engineering [40] and gene regulation [41]. Additionally, stacked

ensembles, distributed random forest (DRF), general linear models (GLMs), and gradient

booster models (GBM) models have also found applications in various biological areas [42,43].
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Taken together, the adoption of such a vast repertoire of computational methodologies empha-

sizes the diverse degree of complexity found in nature and biological research. However, as no

single machine learning algorithm is optimal for all learning tasks [44,45], 1,895 different mod-

els, including DRF, GLM, XGBoost, GBM, DeepLearning, and StackedEnsemble sourced from

H2O AutoML [46], were made as a function of gene and promoter combinations combined

with normalized strictosidine measurements (input_for_ml_dbtl1.csv). AutoML was used to

investigate the performance of all models with different algorithms and different hyperpara-

meters instead of manually changing parameters of different models, or even performing man-

ual pattern investigation. The simultaneous investigation of all the different models using this

approach facilitated the training of different models on the single regression learning task of

predicting the ability of the design combinations of G8H and CPR expression cassettes to

increase the strictosidine production, and indirectly its ability to transform geraniol to

8-hydroxygeraniol. Through a 1-hour run of AutoML in H2O, a deep learning model was

found to be the best-suited model for predicting relative production from genotypes (Fig 3D).

The best model was found by sorting on MAE from cross-validation data with the best-per-

forming model yielding an MAE = 8.03 and an RMSE = 18.10 based on 10-fold cross-valida-

tion predictions (07_1_LEARN_Modelling_and_predictions, Paragraph: 2)(Table 3). These

MAE and RMSE values represent ~ 3 and 7% of the full range of measurements (0.0–245.0),

respectively.

The strictosidine measurements were transformed into ranked values representing

245.03 = 1.00, 156.32 = 0.99,. . ., and 0.00 = 0.18 of the full range of measurements, respectively

(Fig 3D). Observed production values of 167 strains were compared to cross-validation predic-

tions, with the deep learning model yielding an overall R2 = 0.77 (Fig 3D). However, the model

tended to underpredict production, as evidenced by the majority of predicted strictosidine lev-

els lying below the observed production curve (Fig 3D).

Beyond the motivation to model genotype-phenotype landscapes from genotypes and stric-

tosidine production profiles for the 167 strains used for model training, a further motivation

was to use the deep learning model to explore genotypes not seen in the training data set.

From the remaining 1,121 theoretical combinations, 42 genotypes were predicted to produce

more strictosidine than the reference strain (3.84% of the uncharted theoretical design space).

With a fully deployed DBTL workflow now available in teemi, we were thus motivated to effi-

ciently explore the combinatorial design space via a second DBTL cycle.

teemi for design-build-test-learn cycle II

From the learnings of the first DBTL cycle, we used teemi to design the next DBTL cycle using

the parts found in experimentally-validated top-performers with previously non-observed

Table 3. Machine-learning model characteristics.

Model First model Second Model

Deep Learning XGBoost

MAE* 2.728627138605333 8.669277115850836

RMSE* 6.088407587552942 19.04539155210566

Cross-validation MAE** 8.037346736078618 11.928834673923415

Cross-validation RMSE** 18.104192131285426 23.340093018693615

R2 of observed vs. cross-validation-predicted 0.776 0.850

*Reported on train data

**Reported on cross-validation data

https://doi.org/10.1371/journal.pcbi.1011929.t003
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combinations from the machine learning-guided predictions of the first DBTL cycle (08_2_

DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1). Balancing the maxi-

mum remaining search space (1,121 designs) and the predictive power of the deep learning

model trained on data from the first DBTL cycle (159 designs), we decided for a maximum

build capacity of 180 strain designs based on the parts found among the 20 predicted top-per-

formers. This resulted in a distribution of 5 G8Hs, 2 promoters for controlling expression of

genes encoding G8Hs, 2 promoters for controlling expression of genes encoding CPRs, and 7

CPRs (16 parts in total, creating a theoretical combinatorial space of 140 strains)(08_2_

DESIGN_Model_recommended_combinatiorial_library, Paragraph: 1)(Fig 4A). Based on

these parts, the combinatorial optimization approach was conducted as in the first DBTL cycle

(Fig 3A). Of note, by choosing this combinatorial optimization approach we were biased

towards “generating more hits-on-target” rather than the exactness of the constructed geno-

types. This said, among the top-20 designs investigated, that form the basis of our sublibrary in

the second DBL cycle, 16 of the highest predicted designs were made (16/20 = 80%), indicating

only a modest trade-off between exploration and exploitation within the constrained design

space of this study.

In the BUILD step, the combinatorial optimization resulted in 35 transformations of pooled

transformations, this time consisting of a background strain and 11 different parts, namely 2

G8Hs (1 G8H x 2 overhangs), 2 promoters for expression of G8H-encoding genes, 2 promot-

ers for expression of CPR-encoding genes, 2 CPRs (1 CPR x 2 overhangs), a TRP1 expression

cassette, and UP and DW homology regions. This created a sequence space of 140 (35 x 4)

unique 9 kb 7-parts assemblies at the target genomic locus. From the transformations, 4 strains

with known G8H and CPR were sampled randomly from each plate to get 140 strains, a num-

ber that matches the sequence space (2 extra were sampled from one strain, therefore 142 in

total). Additionally, 2 blanks, 2 negative controls and 22 positive controls were sampled total-

ing 168 strains (09_2_BUILD_Combinatorial_library, Paragraph: 8) (Fig 4).

For the TEST step, genotypes and strictosidine production levels were again assessed by

DNA sequencing and LC-MS, respectively (Fig 4A and 4B). From sequencing, a total of 86

unique genotypes were obtained from the 142 colonies sampled (86/142 = 60.56% coverage),

of which 75 were not present in the first round, while the number of duplicates was 43 (10_2_

Fig 4. Design, characterization and modeling of design-build-test-learn cycle II. (A) The distribution and counts of parts from the strains that were accepted as input

for machine learning in the second learning phase of the second cycle of DBTL. (B) The distribution of observed strictosidine titers relative to reference strain

MIA-CH-A2. Below the bar plot the distribution of parts for each of the 240 analysed strains is presented. (C) Cross-validated predictions vs average normalized

strictosidine production. All values are ranked.

https://doi.org/10.1371/journal.pcbi.1011929.g004
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TEST_Library_characterization, Paragraph: 5.2). Out of the 86 unique genotypes, the distri-

bution of the 5 different G8Hs and 7 different CPRs were 18.6–20.9% and 13.1–15.5%, respec-

tively, while for the 2 promoters each driving expression of genes encoding G8Hs or CPRs the

distributions were 55.0–45.0% and 58.1–41.9%, respectively (Fig 4A, 10_2_TEST_Library_

characterization, Paragraph: 4). From the first cycle, the 159 unique strains were generated in

80 transformations, providing 99% more strains compared to what could maximally be

obtained from single-design transformations. The second cycle generated 86 unique strains in

the 35 transformations and generated 145% more strains than single-design transformations.

Combined with the 159 unique strains generated in the first cycle, there were 234 (159+75)

unique genotypes created from a total of 115 transformations, with only 62 identical genotypes

harvested in both cycles, highlighting once again stochastic sampling from pooled transforma-

tions as an efficient approach for searching amble genotypic spaces.

Again, and concomitant to sequencing, the strictosidine titers were measured for all 142

strains as well as replicates of reference strain and positive controls (with known production)

and negative controls (no G8H and CPR expression cassette inserts, 168 in total). From the

142 forward engineered strains, 28 strains produced more strictosidine than the reference

MIA-CH-A2 strain (28.11 μM), which is a 5-fold improvement in performance compared to

the first DBTL round ((28/142)/(9/238) = 5.21), and the highest producing design being

pENO2:SmusG8H and pTPI1:RseCPR with 69% higher production(47.69 μM) compared to

the reference strain (Fig 4B and S3 Table, (10_2_TEST_Library_characterization, Paragraph:

1.3)). 13 strains were only partially genotyped and were therefore discarded. Combining stric-

tosidine measurements with genotyping resulted in 129 accepted strains, of which 86 were

unique (86/129 = 66.67% of the theoretical sequence space)(Fig 4B, Accepted strains in second

iteration, 10_2_TEST_Library_characterization).

As conducted for the first DBTL cycle, we used AutoML to investigate and rank the perfor-

mance of 774 models. As AutoML trains models until they reach convergence, the number of

models is only limited by the time which is set dynamically by H2O to 1 hour if the number of

models is set to “None” (H2O documentation) [46]. Through a 1-hour run of AutoML in

H2O, a XGBoost model was found to be the best-suited model for predicting relative produc-

tion from genotypes. Similar to the first DBTL cycle, the best model was found by sorting on

MAE on cross-validation data with the best-performing model yielding an MAE = 11.93 and

an RMSE = 23.34 based on 10-fold cross-validation predictions (11_2_LEARN_Modelling_

and_predictions, Paragraph: 4). These MAE and RMSE values represent ~ 7 and 14% of the

full range of measurements (0.0–170.0), respectively. Additionally, the best model had an over-

all correlation coefficient of R2 = 0.85 when ranking observed production titers with cross-vali-

dated predicted titers of the 296 strains (Fig 4C).

Furthermore, and as exemplified in the first DBTL cycle (Fig 3C and 3D), the LEARN step

focused on parts distribution and correlation coefficient between the ranking of observed vs.

cross-validated predicted strictosidine titers to inform about the possible impact of using the

models generated from data in the first DBTL cycle for a second DBTL cycle. Here, when ask-

ing the best-performing XGBoost model trained on the data generated in the second DBTL

cycle to recommend parts to be used for forward-engineering of new strains with high(er)

even strictosidine titers in a potential third DBTL cycle, we found that the Top-25 predictions

overlapped by 70.0% with those already exploited for the second DBTL cycle (S3 Fig, (11_2_

LEARN_Modelling_and_predictions, Paragraph: 5.3.1)). Furthermore, while the hit-rate of

high-producers compared to the reference strain obtained in the second DBTL cycle increased

compared to the results from the first DBTL cycle (9/238 = 3.8% vs 28/142 = 19.7%), and a

modest increase in correlation coefficient between the ranking of observed strictosidine and

PLOS COMPUTATIONAL BIOLOGY teemi: An open-source platform for design-build-test-learn cycles in bioengineering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011929 March 8, 2024 12 / 24

https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/10_2_TEST_Library_Characterization.ipynb%23scrollTo=bfabef32-9316-42dd-92bb-329093defa62
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/10_2_TEST_Library_Characterization.ipynb%23scrollTo=99b5ecd0-214d-472e-85a4-3fdfc53240dc
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/10_2_TEST_Library_Characterization.ipynb%23scrollTo=99b5ecd0-214d-472e-85a4-3fdfc53240dc
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/10_2_TEST_Library_Characterization.ipynb%23scrollTo=54aa44b0-d0e9-49df-963a-e82390f5cb59
https://github.com/hiyama341/G8H_CPR_library/blob/main/data/09-AutoML/input_to_ml/second_round/input_for_ml_2nd_iteration_all_analytics.csv
https://github.com/hiyama341/G8H_CPR_library/blob/main/data/09-AutoML/input_to_ml/second_round/input_for_ml_2nd_iteration_all_analytics.csv
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/10_2_TEST_Library_Characterization.ipynb%23scrollTo=bfabef32-9316-42dd-92bb-329093defa62
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/11_2_LEARN_Modelling_and_predictions.ipynb%23scrollTo=30c7c29d
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/11_2_LEARN_Modelling_and_predictions.ipynb%23scrollTo=30c7c29d
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/11_2_LEARN_Modelling_and_predictions.ipynb%23scrollTo=30c7c29d
https://colab.research.google.com/github/hiyama341/teemi/blob/main/colab_notebooks/11_2_LEARN_Modelling_and_predictions.ipynb%23scrollTo=30c7c29d
https://doi.org/10.1371/journal.pcbi.1011929


predicted production could be obtained (R2 = 0.77 vs. R2 = 0.85)(Figs 3D and 4C), although

the algorithm was not able to precisely rank the genotypes according to production (S4 Fig).

Stop-go evaluation for design-build-test-learn cycle III

To further evaluate whether to continue into a third DBTL cycle in search for high(est) pro-

ducing strain designs, we used several assessment criteria. First, we evaluated the coverage of

the explored design space across the two engineering cycles, totaling 234 different designs out

of 1,280 possible combinations (18.3%). Second, we used learning curves as a quantitative

parameter to guide the stop-go evaluation (07_1_LEARN_Modelling_and_predictions, Para-

graph: 8); 11_2_LEARN_Modelling_and_predictions, Paragraph: 6)). Learning curves, cre-

ated based on the MAE compared to the number of data points used for training, can give an

indication of how adding more data could affect the predictive power of the models used

between iterative DBTL cycles.

We can use data partitioning to evaluate how well a model performs and behaves with dif-

ferent subsets of the data [47]. To do this, we shuffled the data, divided it into parts, and

trained a model on each part of the dataset. We repeated this process 10 times (07_1_LEARN_

Modelling_and_predictions, Paragraph: 8); 11_2_LEARN_Modelling_and_predictions, Par-

agraph: 6). When comparing the learning curves obtained from data generated in the first

DBTL cycle vs. the second DBTL cycle, it can be observed that the MAE of the cross-validation

decrease through the data points but with a reducing slope as data used for training increases

(slope -0.009x from datapoint 56–167 for the first DBTL cycle and slope -0.016x from data-

point 60–296 for the second DBTL cycle)(Fig 5A and 5B). For DBTL cycle I, the lowest MAE

from the training data obtained was 0.08 and with a decreasing trend even when the models

were trained on 167 data points (07_1_LEARN_Modelling_and_predictions). For the learning

curve obtained from the cross-validated models trained on data from DBTL cycle II, the train-

ing MAE, on the other hand, reached a plateau at 120 data points with a minimum MAE of

2.56 (Fig 5B), indicating that the model does not improve much with more data, even though

the correlation coefficient (Fig 4C), and thereby predictive power, increases in DBTL cycle II

(Fig 5B, 11_2_LEARN_Modelling_and_predictions).

Lastly, and in addition to the 70% overlap between the Top-25 predictions offered by the

best-performing XGBoost model and the designs already exploited for the second DBTL cycle

(S3 Fig), we also compared the distribution of best-performing observed strictosidine produc-

ers arising from the first and second DBTL cycle. Here we observed that even though the best-

performing strain design compared to the reference strain was identified in the second DBTL

cycle, the increase in production compared to the best-performing strain observed from the

first DBTL cycle was merely 10% (159 vs 144)(Fig 5C).

Taken together, evaluating design space coverage, learning curves, and observed produc-

tion from top-ranking designs between individual DBTL cycles, can help guide decisions as to

whether to stop further exploration of the remaining design space or to continue forward engi-

neering in search of the global maximum. In this case, the relative high design space coverage

(18.3%), the stagnating learning curve and the higher MAE in the second DBTL cycle, and the

overlap between already-explored designs and the forward engineering predictions offered by

XGBoost for a third DBTL cycle, supported a “stop” decision on further exploration of this

design space.

General design highlights

With the finalization of the two iterative DBTL cycles for the multivariate optimization of the

C8-hydroxylation of geraniol to 8-hydroxy-geraniol, several design take-homes can be
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extrapolated. Firstly, we found that the strictosidine production increased by up to 59% com-

paring the reference strain (MIA-CH-A2) with the best-producer encoding pENO2:SmusG8H

and pTPI1:AanCPR (28.115095 μM vs. 44.719792 μM, respectively) (Fig 5C). Next, from the

top-ranking strictosidine producers, our results indicate a high level of CPR promiscuity for

the two top-ranking G8H candidates from Swertia mussatii (Smu) and Rauvolfia serpentina
(Rse), as evidenced by 5 different CPRs included in the Top-6 ranking strain designs (Fig 5C).

Notably, the identification of several CPRs improving 8-hydroxygeraniol synthesis corrobo-

rates previous findings [27]. Furthermore, even though the G8H from Catharanthus roseus
(Cro) has been critically acclaimed to enable high production of 8-hydroxy-geraniol and

down-stream plant bioactives [26,27,29], this study highlights SmuG8H and RseG8H as prom-

ising geraniol hydroxylating enzymes in microbial cells (Fig 5C). Lastly, and interestingly, the

promoters driving the expression of genes encoding CPRs, promoters with high expression

during the glucose-rich early- and mid-exponential phases of cultivation, such as pTPI1 and

pCCW12 are prominent design parts (Figs 2B, 2C, and 5C). For G8H expression control, top-

ranking strain designs also included strong promoters, albeit promoters with expression lower

than pTDH3, used in the reference design of strain MIA-CH-A2 (Fig 5C), thus indicating that

use of strong constitutive promoters may be dispensable for P450-mediated biocatalysis in

yeast.

Taken together, the multivariate design space explored and exploited in this teemi testbed

has offered robust take-homes in terms of bioengineering designs benchmarking with, and

extending beyond, previously reported G8H and CPR studies.

Discussion

The aim of this study was to showcase teemi for bioengineering demonstrated experimentally

via a multi-variate biological testbed founded on i) computer-aided design to standardize

Fig 5. Learning curves and top-ranking strains designs from the iterative engineering cycles. Learning curves from the first (A) and second (B) DBTL cycles,

illustrating mean absolute error (MAE) of the best-performing deep learning and XGBoost models used cycle I and II, respectively, in relation to the number of data

points (blue line) and the cross-validation holdout prediction MAE together with the standard deviations of the 10 models created (yellow line). The points are based on

10 models created with a randomized shuffled data in partitions of 33, 67, 100% and 20, 40, 60, 80 and 100% of the data available for dbtl1 and dbtl2 respectively to get the

same size of partitions. (C) Average strictosidine production for Top-20 strains from first and second DBTL cycles. Genotypes are shown (left) with their respective color

codes (middle) and average strictosidine production (right). For the strictosidine production, the light and dark blue colors correspond to strain designs that were first

found in the first and second second DBTL cycle, respectively.

https://doi.org/10.1371/journal.pcbi.1011929.g005
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workflows and minimize errors during the build step, ii) stochastic sampling from pooled

DNA parts libraries, iii) research data management according to FAIR principles, and iv) the

use of 2,000+ ML models sourced from AutoML to stress-test predictive engineering com-

pared to manual extrapolation of patterns.

The iterative bioengineering testbed supported by teemi, not only enabled a streamlined

workflow for quantitative assessment of genotypes and phenotypes, but also supported objec-

tive decision-making. For instance, the best models showed good correlations for both first

and second DBTL cycle (MAE = 2.7% and 8.7% of the measurement ranges, respectively

(Table 3), with an increase in predictive power from the first DBTL to the second (R2 = 0.776

and 0.850, respectively)(Figs 3D and 4C), ultimately increasing the forward-engineering hit

rate (i.e. obtaining phenotypes that performed better than the reference strain within the

sequence space) by more than 5 times (from 3.8% to 19.7%)(S4 Fig). Also, we observed that as

we generated more data, the cross-validated MAE decreased in both first and second DBTL

cycle (slopes of -0.009x and -0.016x, respectively)(Fig 5A and 5B). Having said this, for this

particular testbed, we observed different trends in the two learning curves regarding the test

MAE, where the models in the first DBTL cycle seem to overfit the data, and the models in the

second DBTL cycle seem to converge, while from cross-validation we observed a higher MAE

for the models in the second cycle compared to the first cycle (MAE = 8.04 and 11.93, respec-

tively)(Table 3). The higher MAE for the second cycle is likely caused by higher variation in

the data points between the different test runs, and call for higher quality analytical data. Fur-

thermore, as almost 20% of the design space has been explored during the first two DBTL

cycles, and with a mere 10% improvement in strictosidine production in top-ranking design

found in the second DBTL cycle compared to the top-ranking hit from the first DBTL cycle, a

natural next engineering step would be to focus attention to other limiting factors of the stric-

tosidine pathway, such as rational engineering of the other hydroxylation steps [26], for

instance using the design principles uncovered in the best–performing G8H:CPR step.

To generate top-performing strains requires high-performing genetic parts and finding

top-performing genetic parts is a hurdle when constructing biosynthetic pathways. Here we

used BLAST to find homologs to catalyze our challenging hydroxylation step, but an alterna-

tive approach would be to BLAST and cluster sequences with, for example, the open source

tool MMseqs2 [48] and introduce variants from each cluster to increase library diversity.

Another way to find alternative genetic parts, circumvent bottlenecks in the pathway, or find

novel biosynthesis routes would be to use retrobiosynthesis tools like Retropath 2.0 [49] or the

BNICE framework [50]. These strategies align with the iterative nature of the DBTL cycle,

where each step is crucial for efficient pathway engineering.

As in any DBTL cycle, the goal has focused on maximizing the knowledge generated, and

ultimately reducing time and resource allocation during iterative bioengineering cycles. With

the step-by-step guidance illustrated by experimental data in this study, we expect that the use

of FAIR-compliant teemi will enable i) that more experiments can be performed in shorter

amount of time and with less errors, ii) better integration of IT tools with other resources (e.g.

human-centered and/or robotic work-flows), and iii) effective inter- and intra-laboratory

knowledge transfer, and thus drastically increase reproducibility and standardization in biol-

ogy. With respect to better integration of IT tools in bioengineering, it deserves to be men-

tioned that this study was co-led by MSc-level students to maximise compatibility with both

the skills and the aspirations of early-stage bioengineers. Basic programming skills are advan-

tageous in order to benefit from all the capabilities of teemi, but not needed to get started.

Indeed, in teemi, abstractions are used to streamline workflows and manage complexity, and

by providing these workflows as open-source for the community, we can continuously

improve the workflows and learn a lot more from each other and in less time.
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Materials and methods

Executing teemi

teemi is distributed as free open-source software at pypi.org. To maximize the usefulness of

teemi we have developed a set of Jupyter notebooks that can be executed locally or through

Google Colaboratory without any prior installation of software. This, we believe will lower the

time spent on installation and resolving dependencies which is useful for all users regardless of

programming experience. The only requirement is a Google account to use Google Colabora-

tory and the notebooks can be found at https://github.com/hiyama341/teemi/tree/main/

colab_notebooks.

Modules of teemi

teemi consists of four modules that aid in strain construction through the Design, Build, Test,

and Learn phase of the DBTL cycle with an additional Laboratory information system module

(LIMS)(Fig 1). The first module is DESIGN, which includes functions for cloning procedures,

and the generation of combinatorial libraries. The second module, BUILD, is focused on

building strains with functions for simulating and calculating PCRs, transformation reactions

and automatically generating robot executable instructions. The third module is the LIMS

module that can import and export DNA sequences and keep track of samples through

Benchlings API and a local CSV file database. The fourth module, the TEST module, has func-

tions to pre-process data from sequencing results and infer the relationship between sequenc-

ing results and genetic parts based on pairwise alignment. The final module is aimed at the

LEARN phase by incorporating easy-to-use ML functions with plotting functions.

As teemi is under MIT license anyone can edit, and use the code rendering it flexible and

reusable. Additional modules can be added to the package by anyone willing to contribute or

modification of the code by the users is allowed. The guidelines for contributing can be found

on teemi’s contributing site here. For a high-level overview of teemi, please visit teemi’s docu-

mentation page https://teemi.readthedocs.io/en/latest/. The site provides detailed descriptions

of the modules, functions, and classes and how to install teemi locally.

teemi: Simulation of experimental workflow and data analysis

To enable reproducible high-throughput strain construction, literate programming along with

the modules of teemi was used to simulate all experimental workflows used in this study. The

experimental workflows were divided into Jupyter notebooks encompassing different parts of

the DBTL cycle as shown in Table 2.

This framework enabled the generation of a large number of strains while keeping mistakes

at a minimum by simulating experimental workflow and keeping track of samples. More spe-

cifically, It provided a tool to simulate the amplification of DNA in PCR reactions, retrieving

locations of all relevant DNA fragments and primers while attaining an overview of the proce-

dures. PCR and transformation mixes were calculated and simulated in silico. Additionally, it

worked as a laboratory notebook containing all experimental setups, observations, and results.

These notebooks also show how teemi and literate programming can incorporate advanced

machine learning models through H2O’s AutoML package (07_1_LEARN_Modelling_and_

predictions, 11_2_LEARN_Modelling_and_predictions).

Experimental strains used in this study

The S. cerevisiae strains constructed in this study were derived from the MIA-CH-A2 strain

containing CroG8H, CroCPR, and 11 other genes under promoters pTDH3 and pTEF1,
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driving the biosynthesis pathway from geraniol to strictosidine [29]. The background strain

used in this work was made by using literate programming along with teemi’s design and

build modules to enable CRISPR-mediated knockout of CroG8H and CroCPR in the Easy-

Clone site X-3 and XI-3 sites [36], respectively. These modules made it possible to extract the

knockout sites and simulate the in vivo assembly while generating GenBank files of the newly

generated strains (04_1_BUILD_Background_strain). The resulting background strain was

named MIA-HA-1 (MIA-HA-1.gb).

Microbial strain cultivations

We used teemi and literate programming to document and calculate all steps of plate and liq-

uid cultivations. The plate and liquid cultivations were performed as described in [29] except

that 0.2 mM geraniol and 1 mM tryptamine were added to YPD media and the cultures were

grown at 300 rpm when testing for strictosidine production (03_1_BUILD_gRNA_plasmid,

Paragraph: 1.5, 04_1_BUILD_Background_strain,, Paragraph: 6, 05_1_BUILD_

Combinatorial_library,, Paragraph: 4).

Genetic parts selection

To standardize the selection of genetic parts we developed an algorithm in a literate program-

ming workflow that automates the selection process by searching and selecting homologs

based on amino acid identity through NCBIs databases (00_1_DESIGN_Homologs). Using

Catharanthus roseus sequences (Q8VWZ7, Q05001) as queries, eight G8H and CPR genes

were found on NCBI’s databases. To diversify the CPR genes we searched the PhytoMetaSyn

database using Catharanthus roseus CPR mRNA (X69791.1) as a query. We selected two addi-

tional CPRs from the largest ORFs of the mRNA transcripts, which provided a broad range of

amino acid identities for all the chosen CPRs (00_1_DESIGN_Homologs, Paragraph: 5.1.5).

The sequences were codon-optimized for S.cerevisiae with DNA Chisel (00_1_DESIGN_

Homologs, Paragraph: 5.3).

A literate programming workflow was used to select promoters to drive the expression of

the gene homologs (01_1_DESIGN_Promoters). Promoters were chosen based on absolute

mRNA abundance measured from S. cerevisiae CEN.PK 113-7D at cultivation time points 6,

12, and 24 hours (01_1_DESIGN_Promoters, Paragraph: 2) [34].The promoters were defined

as 1kb upstream of the target gene, with lengths varying from 984–1004 bp due to differences

in in our in-house strains and the database strains. Four promoters were selected for each CYP
and CPR module based on constitutive expression and expression patterns (high/low and

increasing/decreasing). To prevent homologous recombination during transformation, all

promoter sequences were aligned to ensure no homologous sequences, reducing the chance of

genetic parts looping out (01_1_DESIGN_Promoters, Paragraph: 8). To streamline the com-

binatorial library size and minimize the number of integrated fragments, gene homologs were

assembled with tCYC and tADH terminators.

Extracting genetic parts

In this study, we ordered gene homologs as gBlocks and cloned them into plasmids along with

tADH and tCYC terminators. To extract promoters from the genomic DNA of wild-type S.

cerevisiae CEN.PK2-1C, we generated specific primers. Additionally, we amplified the TRP1

cassette from plasmid pRS414-USER using primers overlapping with the tCYC1 terminator

and homologous to the fragment downstream of EasyClone site XI-2 [36].

Prior to conducting the PCR reactions and USER assemblies in the laboratory, we simu-

lated them using teemi’s module PCR.py. The specific PCR programs, polymerases,
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purifications methods, and amplification of USER and transformation parts can be found in

(03_1_BUILD_gRNA_plasmid, 04_1_BUILD_Background_strain, 05_1_BUILD_

Combinatorial_library).

Plasmid construction

Construction of plasmids was simulated with teemi’s cloning.py module in a literate program-

ming workflow and assembled in the lab with USER cloning [51], 03_1_BUILD_gRNA_

plasmid). More specifically, the cloning.py module was used to simulate and construct the

plasmid (Double_gRNA_vecor_p1_G09_(pESC-LEU-gRNA_ATF1_CroCPR) that was used

to perform CRISPR-mediated deletion of the G8H and CPR genes (03_1_BUILD_gRNA_

plasmid). The second plasmid used in this study, pESC-URA-gRNA_XI2-2, used for in vivo

assembly into the EasyClone site XI-2 locus had been constructed previous to this work.

Designing genetic parts for the combinatorial library

We used two methods to design combinatorial libraries, the commercially available Teselagen

Design module, and our own open-source DesignAssembly algorithm. The designs made with

the DesignAssembly algorithm incorporate 40 bp overlapping overhangs by default with a dis-

tribution of 50/50% of the overhang to the forward and reverse primer. A pad (defined as a

nucleotide sequence of 40 bp) was incorporated between the promoters with an ATF1 gRNA

site to provide the deletion of the module at a later stage. The designs and instructions for the

assembly can be found in the following notebook (02_1_DESIGN_Combinatorial_library).

Another similar combinatorial library was created with Teselagen Design Module software

where the parts were made with 30 bp overhangs. Annealing temperatures were re-calculated

with tmcalculator.neb.com. The design of overhangs can be seen here (05_1_BUILD_

Combinatorial_library). Both designs are presented in this work but it was decided only to go

forward with the designs made with Tesselagen (05_1_BUILD_Combinatorial_library).

Pooled construction of the combinatorial libraries

The combinatorial library in this study was constructed using the CasEMBLR method and

designed for the EasyClone site XI-2 [36]. To facilitate the construction process, we used liter-

ate programming and teemi’s modules to standardize and simplify the procedure (05_1_

BUILD_Combinatorial_library, 09_2_BUILD_Combinatorial_library). We used the teemi’s

lab module (PCR.py and transformation.py) to calculate PCR melting temperatures, simulate

and verify gel bands, and track samples using a local CSV-based LIMS system (csv_database.

py,). The plasmid pESC-URA-gRNA_XI2-2 was used for the in vivo assembly of the library

into locus XI2-2. Flanking regions for repair were approximately 0.5 kb, and the homology

regions between parts were 30 bp by default. A tryptophan selection marker was used to select

for positive transformants. (05_1_BUILD_Combinatorial_library, 09_2_BUILD_

Combinatorial_library).

To create the library, we pooled genetic parts into one mixture, including promoters, UP,

DW, and cTRP1 parts, and one gene pair, all with overlapping overhangs and in equimolar

amounts(05_1_BUILD_Combinatorial_library, Paragraph: 2.2), 09_2_BUILD_

Combinatorial_library, Paragraph: 5.1–5.3). The pooled library was transformed with the

genetic parts in a one-pot reaction to prevent unwanted homologous recombination between

the genes (05_1_BUILD_Combinatorial_library, Paragraph: 4.1, 09_2_BUILD_

Combinatorial_library, Paragraph 6.1–6.3)).

Yeast transformations were carried out using the LiAc/SS carrier DNA/PEG method [52]

and performed with 1–2 ml of a background strain with an optical density of 1. Each
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transformation reaction contained 0.25 pmol of a CRISPR plasmid expressing the gRNA for

XI-2 and 0.5 picomoles of each DNA fragment (05_1_BUILD_Combinatorial_library, Para-

graph: 4, 09_2_BUILD_Combinatorial_library, Paragraph: 6.1).

Control strains were transformed alongside the library strains. These strains were trans-

formed with plasmids containing uracil or tryptophan to test transformation efficiency and

water to test cell viability. The first set of transformations was split into three in the first round

of the DBTL(05_1_BUILD_Combinatorial_library, Paragraph: 4.1, while the second set was

split into two in the second cycle (09_2_BUILD_Combinatorial_library, Paragraph: 6.1).

Sample preparation for LC-MS and data analysis

Sample preparation and internal standards were prepared according to [29], with the excep-

tion that pre-cultures were transferred to media containing 0.2 mM geraniol + 1 mM trypt-

amine after two days as described in 05_1_BUILD_Combinatorial_library(Paragraph: 5) and

09_2_BUILD_Combinatorial_library(Paragraph: 8). The metabolites strictosidine, loganic

acid, loganin, secologanin, and tryptamine were analyzed according to [29].

The full data analysis with respect to normalization, and calculations can be found in note-

book 06_1_TEST_Library_characterisation and 10_2_TEST_Library_characterization where

functions from teemi’s data_wrangling.py were used to process the data.

Promoter genotyping

Genomic DNA was extracted from overnight cultures with LiOAc/SDS method adapted for 96

well plates [53]. Each extract was used as a template for two PCR’s spanning the promoter

gene pairs (05_1_BUILD_Combinatorial_library, Paragraph: 5, 09_2_BUILD_

Combinatorial_library, Paragraph: 7), providing approximately ~2700 bp and ~3200 bp

(Lenghts_of_constructs). The colony PCR products were validated with 1% agarose gels fol-

lowed by sequencing. Positive colony PCRs were first sequenced by Eurofins, using a PlateSeq

Kit for crude PCR products according to the manufacturer’s instructions. Second re-sequenc-

ing was performed with previous transformants with 5 μl PCR products and 2 μl ExoSAP-IT

enzymes (Thermo Fisher Scientific Inc.) heated to 37 ˚C for 15 minutes followed by 80 ˚C for

another 15 minutes.

The sequencing data consisted of a plate report describing each well’s average quality and

sequencing files (.ab1). Using teemi’s data_wrangling.py we automated data processing by fil-

tering out low-quality alignments (average quality < 50, length used> 25). Then, using func-

tions from genotyping.py we inferred the promoter relationship to the samples. Wells with

multiple inferred promoters were filtered out. The final result was CSV files with inferred pro-

moters for each well. These results were merged with LC-MS data, resulting in a CSV file with

genotypes and normalized strictosidine production for the strains.

AutoML and learning curves

In this study, we used the AutoML H2O python library version 3.38.0.4 to automate the

machine learning process (AutoML H2O). The H2OAutoML class was initiated with an input

dataframe (input_for_ml_dbtl1.csv, input_for_ml_dbtl2.csv), response column(norm.stricto-

sidine) and specified feature columns(promoter:gene combinations). The feature columns

were made categorical, and 10-fold cross-validation was performed. The trained models were

saved in a leaderboard, and the best model was selected to predict phenotypes of unseen geno-

types in the remaining combinatorial library (07_1_LEARN_Modelling_and_predictions(Par-

agraph: 1–7), 11_2_LEARN_Modelling_and_predictions(Paragraph: 1–5)).
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To generate a learning curve, the teemi module auto_ml.py was used on the datasets

(input_for_ml_dbtl1.csv, input_for_ml_dbtl2.csv). Here, the main function divides the dataset

into partitions that progressively increase in size, and then trains models on each partition.

The function outputs a dataframe containing the name of the top performing model(sorted by

MAE), the mean-absolute error, and cross-validated values. This was done ten times for each

dataset, including a shuffling step between each run (07_1_LEARN_Modelling_and_

predictions(Paragraph: 8), 11_2_LEARN_Modelling_and_predictions, Paragraph: 6).

Model based genetic part recommendations

The genetic parts for the second DBTL round were selected by iterating through all predictions

of non-encountered combinations (08_2_DESIGN_Model_recommended_combinatiorial_

library(Paragraph: 1)). Each new genetic part was saved and once the total number of combi-

nations reached the maximum capacity the iteration stopped. The encountered genetic parts

were then used in the following DBTL cycle to investigate the best-performing parts of the

combinatorial library (09_2_BUILD_Combinatorial_library).

Dependencies

S1 Table provides a list of dependencies required to run teemi’s modules. Specifically, it

describes the minimum dependencies needed, while the optional test dependencies can be

installed through the setup.py file. The installation of these can be done with the following

command: pip install teemi[dev]. For executing the 00_1_DESIGN_Homologs and 01_1_

DESIGN_Promoters notebooks additional requirements need to be installed. These packages

include InterMines Python API and Edinburgh Genome Foundry’s DnaChisel. However,

through the Google colab notebooks, these dependencies are installed automatically.

Supporting information

S1 Fig. Overview of all the functions and file formats used in teemi for the present study.

Created with Biorender.com.

(TIF)

S2 Fig. Using literate programming to A) Simulate a gel with one line of code and B) Run

the gel with the amplicons.

(TIFF)

S3 Fig. Schematic representations of A) top 25 designed strains from DBTL2 and B) top 25

predicted strains from the updated machine-learning model after DBTL2.

(TIFF)

S4 Fig. A) Showing the observed strictosidine production values vs. the the cross-validated

values from the model in the (A) first DBTL cycle and B) second DBTL cycle with all

accepted strains.

(TIFF)

S1 Table. Shows the dependencies for teemi divided into three categories: Minimal, Test,

and Extra dependencies.

(XLSX)

S2 Table. Sorted strain performance of all fully genotyped strains in the first DBTL round.

(XLSX)
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S3 Table. Sorted strain performance of all fully genotyped strains in the second DBTL

round.

(XLSX)
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