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Abstract

This work shows how differential forms and boundary conditions can be conveniently expressed
in an appropriately constructed orthogonal or near-orthogonal coordinate system. As a special
case, two coordinate systems are constructed that map a R

3 rectangle to two irregularly shaped
open channels and perturbation methods are used to handle a Laplacian equation in different
magnitudes.

Additionally, other attempts at constructing such coordinate systems are presented along with
their challenges.
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In two dimensions, coordinate systems produced through the use of complex functions are always
orthogonal because such functions are always conformal mappings1. These can be extended to
doubly connected and multiply connected [2] regions. Unfortunately, there isn’t a three-dimensional
equivalent of complex variables2. The construction of orthogonal coordinates in three dimensions is
currently limited to highly symmetric boundaries, such as vertically or axially symmetric boundaries
which amount to two-dimensional orthogonal coordinates extruded vertically or rotated axially
respectively.

Currently, three-dimensional orthogonal coordinate systems let alone computational grids are
impossible: “There apparently is no system, hyperbolic or elliptic, that will give complete orthogo-
nality in 3D in general” (1-9) [12] and “for a three dimensional complex geometry, a fully orthogonal
grid may not exist” (7-1) [12]. There exist numerous methods that achieve near orthogonality or
so-called quasi-conformal maps by use of elliptic and hyperbolic grid generation schemes and the
use of control functions; the implementation of this gridding, though applicable to all manner of
mechanics and dynamics problems, cannot be used for analytic methods in the same way that an
orthogonal coordinate system could. Additionally, differencing schemes treat finitely small spaces
as linear and orthogonal and fail to quantify how much this deviation from orthogonality affects
their consistency.

This work shows how to construct near-orthogonal three dimensional coordinate systems. These
systems do not make cross-terms equal to zero, but instead reduce their magnitude to a quantifiable
limit. This makes it possible to solve these differential equations analytically through perturbation
methods, because these cross terms become a known order of magnitude smaller than the rest of
the equation and the variable or variables of interest can be expressed as asymptotic series [13],
and the differential equation can be expressed as a hierarchy of differential equations of descending
magnitude. Computationally, this allows for the production of differencing schemes that quantify
the numerical inconsistencies produced by assuming local orthogonality.

1This is only true for functions of a complex variable and not its conjugate.
2There are four and eight-dimensional equivalents, but these cannot produce three-dimensional coordinates unfortu-
nately.
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CHAPTER 2

Conformal Mapping and Orthogonal Coordinate Systems

2.1. Definition of Terms

2.1.1. Orthogonality. A coordinate system (or a subset of a coordinate system) possesses
orthogonality as long as its coordinates meet at right angles everywhere. A sufficient condition for
orthogonality is that given a (u, v) coordinate system where u and v can be expressed as functions
of (x, y), ∇u · ∇v = 0 everywhere. I show in Appendix C that this is equivalent to the Laplacian
in the coordinate system not containing cross-terms

(

like ∂
∂u

∂
∂v

)

.

2.1.2. Conformal Mapping. A conformal map is one such that it transforms one coordinate
space to another without affecting its local angles, i.e. one that transforms orthogonal coordinate
systems without changing their orthogonality.

At present, for the purposes of physical modeling, conformal mapping is limited to the complex
functions of the type

x+ iy = f(u+ iv)

where x and y are the coordinates in a 2-dimensional flat space and f is any given function with u+iv
as inputs. Liouville’s theorem on conformal mapping [7] states that there is no three-dimensional
equivalent to the above.

2.2. The Utility of Conformal Mapping

Conformal mapping was at one point “central to the practical solution of most physics and
engineering problems” [1] and there is at the very least one physical question about continuum
and field theory that is most appropriately addressed with the theory of conformal mapping: what
occurs at points arbitrarily close to a sharp edge or corner. However, conformal mapping fell in
disfavor due to three major shortcomings:

• The apparently limited scope of boundary conditions.
• Limitation to singly connected regions.
• Limitation to two-dimensional problems.

There is a rich history of conformal mapping being used to solve groundwater flow, potential
flow, electrostatics, and heat flow; in other words, anywhere where the Laplacian operator appears
(such as in the Poisson operator). Indeed, if conformal mapping did not have these three major
shortcomings, it may well have continued being used in these fields. Perhaps at one point in the
future, some analog of the triumphs of conformal mapping may be found again, significantly as its
original shortcomings relax:

• In the past decade, conformal mappings of doubly connected [5] and multiply connected [2]
regions have become possible.

• All Dirichlet, Neumann, and oblique boundary conditions can be accommodated in a
conformal map [5].

3



• Since near-orthogonal coordinate systems can be produced for geometries that lack az-
imuthal symmetry (see Chapter 3) a similar methodology may be applied to any given
curved surface, leading to something similar to conformal mapping for any given three-
dimensional boundary and the easing of differential equations be it in perturbation or fully
analytic form.
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3.1.1. Orthogonality of the Sinuous Semi-Circular Channel Coordinate System.

The coordinate system defined by the variables (φ, ρ, θ) is near-orthogonal. The same Fortran

program created to plot this channel was used to approximate ∂̂r
∂φ ,

∂̂r
∂ρ ,

∂̂r
∂θ through the centered

method with ∆φ = ∆ρ = ∆θ = 1× 10−10 to find that their dot products are near zero:

Dot Product Maximum Value over Domain Average Value over Domain

∂̂r

∂φ
· ∂̂r
∂ρ

1.9852160943679541E-004 2.8132505045507806E-005

∂̂r

∂ρ
· ∂̂r
∂θ

6.0454666042044691E-002 9.9470386083527866E-003

∂̂r

∂θ
· ∂̂r
∂φ

3.8516866739242844E-003 9.5710515455647583E-005

This is a good numerical measure of orthogonality, but a more rigorous way to identify the
orthogonality of this coordinate system is to find the metric tensor [10] and determine how close
it is to being diagonal. The derivation of the below expression can be found in Appendix B and is
repeated in Equation (B.2)

(3.1) gsc =







4π2e−2S 0 0

0 ε2
∣

∣e−2S cos θ + i sin θ
∣

∣

2
ε cos θ sin θ(1− e−2S)

0 ε cos θ sin θ(1− e−2S)
∣

∣cos θ + ie−2S sin θ
∣

∣

2







where

S =
π

4
sin(2πφ) sinh(ερ cos θ)

This metric shows that the coordinate system is orthogonal insofar as (1− e−2S) << 1; for ǫ << 1,
this is certainly the case.

3.1.2. Laplacian of the Sinuous Semi-Circular Channel Coordinate System. Equa-
tion (3.1) results in a Laplacian operator of different orders of magnitude, please see Appendix
B.1.1 for a derivation:
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O(1) : ∇2{·} =4π2
∂2

∂φ2
{·}+ ∂2

∂θ2
{·}

O(ε) : ∇2{·} =− 2π3ρ sin(2πφ) cos(θ)
∂2

∂φ2
{·}

− 6π3 cos(θ) sin(2πφ)
∂

∂φ
{·}

+
πρ

8
sin(2πφ)

(

(cos(3θ)− cos(θ))
∂2

∂θ2
{·} − 3(sin(3θ)− 3 sin(θ))

∂

∂θ
{·}
)

O(ε2) : ∇2{·} =π4ρ2 sin2(2πφ) cos2(θ)
∂2

∂φ2
{·}

+ πρ cos(θ) sin(2πφ)(3 cos2(θ) + 6π2 sin(2πφ) cos(θ)− 2)
∂

∂φ
{·}

+ 2
∂2

∂ρ2
{·}

− πρ sin(2πφ) cos(θ)(3 sin2(θ)− 1)
∂

∂ρ
{·}

+
π2ρ2

4
sin2(2πφ) sin2(2θ)

∂2

∂θ2
{·}

+
π

2
sin(2πφ) cos(θ)(4πρ2 sin(2πφ) cos2(θ) + 2 cos(θ)− 3πρ2 sin(2πφ)) sin(θ)

∂

∂θ
{·}

+ πρ sin(2πφ) cos2(θ) sin θ
∂2

∂ρ∂θ
{·}

And lower orders of magnitude. As it can be seen above, the cross-term only appears on the second
order of magnitude, with ε = O(0.1), this means that it’s only 1% relevant to the solution of a
differential equation where the Laplacian is the only possible source of cross-terms

3.1.3. Diffusion Equation in a Sinuous Semi-Circular Channel. Consider the diffusion
of a contaminant on this rectangular sinuous channel expressed in Cartesian coordinates where the
diffusion tensor is purely diagonal and isotropic with value equal to 1:

∂c

∂t
=
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2
(3.2)

IC : c|x>0 = 0

BC : c|x=0 = 1

BC : c|(x,y,z)=Channel bottom = 1

7



The second boundary condition in the above expression is nearly-impossible to simply express.
Alternatively, (φ, ρ, θ) coordinates produces this equation instead:

∂c

∂t
=∇2c

IC : c|φ>0 = 0

BC : c|φ=0 = 1

BC : c|ρ=1 = 0

This makes the second boundary condition simply expressible; additionally, the differential ex-
pression itself is much easier to solve since the Laplacian can be separated in cascading orders of
magnitude, please see Appendix B.1.1 for a derivation. A perturbation method procedure that
addresses this is to expand the variable c in orders of magnitude:

c = c0 + εc1 + ε2c2 +H.O.T

The highest order of magnitude equation will be:

(3.3) O(1) :
∂c0
∂t

= 4π2
∂2c0
∂φ2

+
∂2c0
∂θ2

Consider how many times easier Equation (3.3) is than Equation (3.2). However, this equation
accounts for 90% of the behavior of c in φ and θ due to the next equation being O(0.1) since
ε = O(0.1). To account for the next 9%, the next order of magnitude of the equation must be
accounted for:

O(0.1) :
∂c1
∂t

=4π2
∂2c1
∂φ2

+
∂2c1
∂θ2

(3.4)

− 2π3ρ sin(2πφ) cos(θ)
∂2c0
∂φ2

− 6π3 cos(θ) sin(2πφ)
∂c0
∂φ

+
πρ

8
sin(2πφ)

(

(cos(3θ)− cos(θ))
∂2c0
∂θ2

− 3(sin(3θ)− 3 sin(θ))
∂c0
∂θ

)

Whatever c0 satisfies Equation (3.3) is simply plugged into the lower order of magnitude expres-
sion of ∇2 and acts as a forcing in the otherwise identical equation for c1. Having solved c0 and c1,
the solution to the diffusion problem is 99% accurate in φ and θ. For an extra 0.9%, the solutions
for c0 and c1 can be plugged into Equations (B.5) and (B.4), and act as forcings of Equation (B.3)
acting on c2. To obtain the first 90% accurate solution in ρ, the equation will have to be solved
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until the first differential in ρ occurs which is in O(ε2):

∂c2
∂t

=B.3{c2}+B.4{c1}+ π4ρ2 sin2(2πφ) cos2(θ)
∂2c0
∂φ2

+ πρ cos(θ) sin(2πφ)(3 cos2(θ) + 6π2 sin(2πφ) cos(θ)− 2)
∂c0
∂φ

+ 2
∂2c0
∂ρ2

− πρ sin(2πφ) cos(θ)(3 sin2(θ)− 1)
∂c0
∂ρ

+
π2ρ2

4
sin2(2πφ) sin2(2θ)

∂2c0
∂θ2

+
π

2
sin(2πφ) cos(θ)(4πρ2 sin(2πφ) cos2(θ) + 2 cos(θ)− 3πρ2 sin(2πφ)) sin(θ)

∂c0
∂θ

+ πρ sin(2πφ) cos2(θ) sin θ
∂2c0
∂ρ∂θ

Since the behavior of c0 and c1 are known in φ and θ, the problem really becomes

∂c2
∂t

=4π2
∂2c2
∂φ2

+
∂2c2
∂θ2

+ 2
∂2c0
∂ρ2

− πρ sin(2πφ) cos(θ)(3 sin2(θ)− 1)
∂c0
∂ρ

+ πρ sin(2πφ) cos2(θ) sin(θ)
∂2c0
∂ρ∂θ

+Known forcings from c0 and c1

which can be made even simpler by limiting the expansion of c to be O(ε) only:

0 =2
∂2c0
∂ρ2

− πρ sin(2πφ) cos(θ)(3 sin2(θ)− 1)
∂c0
∂ρ

+ πρ sin(2πφ) cos2(θ) sin(θ)
∂2c0
∂ρ∂θ

+Known forcings from c0 and c1

But this is just one of the ways a solution for the problem can be sought in this new coordinate
system, if the average behavior of c in φ is desired, differentials in θ and/or ρ can be set to zero
from the start, or c could also be assumed to be:

c = P (φ)T (θ)
∞
∑

i=1

an sin(n(ρ− ε))

to accomodate the boundary condition from the start. Other differential forms can also be treated
this way using tensor calculus [3].

3.2. Orthogonal Sinuous Open Channel with Rectangular Cross Section

The parametric equation:

rr(φ, ρ, θ) =





x(φ, ρ, θ)
y(φ, ρ, θ)
z(φ, ρ, θ)



 =









Re
{

∫ 2πφ+ibεψ
0 exp(iπ4 (1− cos(w)))

}

dw

Im
{

∫ 2πφ+ibεψ
0 exp(iπ4 (1− cos(w)))

}

dw

hεζ









This expression, known from here on as the Sinuous Rectangular Channel Function rr maps the
rectangular domain (φ, ψ, ζ) ∈ [0, 1] × [0, 1] × [0, 1] to the shape of a sinuous rectangular channel
of non-dimensional length 1, non-dimensional channel height hε = O(0.1), and non-dimensional
channel width bε = O(0.1). It should be noted that h and b are non-dimensional numbers and are
physically equal to the ratio of the channel’s height over the channel’s total length and the ratio of
the channel’s base over the channel’s total length respectively.
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3.2.2. Laplacian of the Sinuous Rectangular Channel Coordinate System. Equation
(B.6) results in a Laplacian operator of different orders of magnitude:

O(1) : ∇2{·} =4π2
∂2

∂φ2

O(ε) : ∇2{·} =− 2π3bψ sin(2πφ)
∂2

∂φ2
{·}

O(ε2) : ∇2{·} =2π4b2ψ2 sin2(2πφ)
∂2

∂φ2
{·}+ 2

(

h2 + b2
) ∂2

∂ψ2
{·}+ 2

(

h2 + b2
) ∂2

∂ζ2
{·}

And lower orders of magnitude, please see Appendix (B.2.1) for a derivation of this Laplacian
expression.

3.2.3. Diffusion Equation in a Rectangular Semi-Circular Channel. Consider the dif-
fusion of a contaminant on this rectangular sinuous channel expressed in Cartesian coordinates
where the diffusion tensor is purely diagonal and isotropic with value equal to 1:

∂c

∂t
=
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2
(3.6)

IC : c|x>0 = 0

BC : c|x=0 = 1

BC : c|(x,y,z)=Channel base = 1

The second boundary condition in the above expression is nearly-impossible to simply express,
consider instead using the (φ, ψ, ζ) coordinates:

∂c

∂t
=∇2c

IC : c|φ>0 = 0

BC : c|φ=0 = 1

BC : c|ζ=1 = 0

BC : c|ψ=0 = 0

BC : c|ψ=1 = 0

This makes the second boundary condition simply expressible, additionally, the differential expres-
sion itself is much easier to solve since the Laplace equation can be separated in cascading orders
of magnitude, please see Appendix B.2.1 for a derivation. A perturbation method procedure that
addresses this is to expand the variable c in orders of magnitude:

c = c0 + εc1 + ε2c2 +H.O.T

The highest order of magnitude equation will be:

(3.7) O(1) :
∂c0
∂t

= 4π2
∂2c0
∂φ2

Consider how many times easier Equation (3.7) is than Equation (3.6). However, this equation
accounts for 90% of the behavior of c in φ due to the next equation being O(0.1) since ε = O(0.1).

11



To account for the next 9%, the next order of magnitude of the equation must be accounted for:

(3.8) O(0.1) :
∂c1
∂t

= −2π3bψ sin(φ)
∂2c0
∂φ2

+
∂2c1
∂φ2

Whatever c0 satisfies Equation (3.7) is simply plugged into the lower order of magnitude ex-
pression of ∇2 and acts as a forcing in the otherwise identical equation for c1. Having solved c0
and c1, the solution to the diffusion problem is 99% accurate in φ and ψ. To find the solution’s
behavior in ζ, the next order of magnitude will need to be solved:

∂c2
∂t

= 4π2
∂2c2
∂φ2

−2π3bψ sin(2πφ)
∂2c1
∂φ2

+2π4b2ψ2 sin2(2πφ)
∂2c0
∂φ2

+2
(

h2 + b2
) ∂2c0
∂ψ2

+2
(

h2 + b2
) ∂2c0
∂ζ2

Since the behavior of c0 and c1 against φ and ψ are known, the problem is really

∂c2
∂t

= 4π2
∂2c2
∂φ2

+ 2(h2 + b2)
∂2c0
∂ζ2

+ Forcings by c0 and c1

The expression of more involved differential equations can likewise be made simpler through tensor
calculus [3].

12



CHAPTER 4

Method to Create Conformally Extruded Coordinate Systems

A number of methods were tried to produce orthogonal or near-orthogonal coordinate systems
in three dimensions, the final method used in Chapter 3 began as an attempt of superimposing
one conformal map onto each of the transects of another. To produce a channel-like curvature, the
Bézier equation was used but with complex variable w = u+ iv:

(4.1) x+ iy = B(u+ iv) = P0(1− w)3 + 3P1(1− w)2w + 3P2(1− w)w2 + P3w
3

The real form of this equation is explored in [6]; replacing the usual t for a w which is a standard
complex variable. Observe that the Bézier equation is equal to P0 for w = 0, and P3 for w = 1, the
P constants identify the so-called control points, which guide the shape of the Bézier curve. The
complex version of this curve plots the same curve for real values of w, and including some small
imaginary values ±ε produce what can best be described as a “flownet” in the language of ideal
fluids.

Figure 4.1. Image of complex Bézier function for domain (u, v) ∈ [0, 1] × [−ε, ε]
with control points P0 = 0, P1 = 1, P2 = i, P3 = 1 + i. (Hereon referred to as
flownet)

13



The image in Figure 4.1 is by construction fully orthogonal everywhere in two dimensions albeit
self-intersecting for a large enough domain by virtue of being a complex function and therefore a
conformal map.

To plot the complex Bézier function in R
2 instead of the complex plane, a parametric equation

can be made:

[

x
y

]

=

[

Re{B(w)}
Im{B(w)}

]

To extrude this onto R
3, it is sufficient to add a third parameter:





x
y
z



 =





Re{B(w)}
Im{B(w)}

z





The next step was to project onto it the image of an ellipse:

Υ(w) = cosh(w) = cosh(u) cos(v) + i sinh(u) sin(v)

Figure 4.2. Image of cosh function in the complex plane

onto each of the transverse planes of the flownet in Figure 4.1. The method of accomplishing this
was not obvious, much trial and error produced the following method:

(4.2)





x
y
z



 =





Re{B(φ+ iRe{Υ(ρ+ iθ)})}
Im{B(φ+ iRe{Υ(ρ+ iθ)})}

Im{Υ(ρ+ iθ)}





The orthogonality of this parametrization is small but not negligible, and the transverse shape
shrinks and lengthens at the same rate as the flownet’s transverse lengths in Figure 4.1. As it turns
out, the orthogonality and the uneven lengthening are related in a way that is only obvious after
finding the metric of this coordinate transform in Equation (A.1).

Because of this, the equation is better expressed in terms of its derivative, or Hodograph [6]:




x
y
z



 =







Re{
∫ φ+iRe{Υ(ρ+iθ)}
0 Φ(w)dw}

Im{
∫ φ+iRe{Υ(ρ+iθ)}
0 Φ(w)dw}
Im{Υ(ρ+ iθ)}







This way, the Hodograph equation denoted in the rest of this work as Φ, can be monitored to
account for how much it stretches the transverse of the flownet in Figure 4.1. Equation (A.1) shows

14



that the transverse stretching produced by the above expression is equal to |Φ(φ+iRe{Υ(ρ+iθ)})|.
Functions λ(ρ) and γ(θ) are then introduced which independently scale ρ and θ without affecting
orthogonality for a given (x, y, z) point. Finally, to accomodate for the desired domain of φ, a
constant can be multiplied by it. This produces the expression for conformally extruded coordinate
systems:

(4.3)





x
y
z



 =







Re{
∫ bφ+iRe{Υ(λ(ρ)+iγ(θ))}
0 Φ(w)dw}

Im{
∫ bφ+iRe{Υ(λ(ρ)+iγ(θ))}
0 Φ(w)dw}
Im{Υ(λ(ρ) + iγ(θ))}







where the image of Υ is extruded through the transects of the complex function
∫ w
0 Φ(w′)dw′.

4.1. Method to Create Near Orthogonal Coordinate Systems for Channel-Like

Geometries

It may be possible to get closer to orthogonality by reparametrizing Equation (4.1) so that
|dBdu | = 1 by scaling w:

B(w) → B(f(w))

to make the metric from Equation (A.1) be more orthogonal, this produces a set of complicated
differential equations. A way around this is by observing that the hodograph [6] only needs to lie
very close to the unit complex circle. Restricting hodographs to functions of the form:

Φ(w) = eif(w)

where f(w) is a complex function that is purely real for real values of w. The task is then find-
ing f(w) that matches the original channel’s center-line, many functions were tried that did not
sufficiently match the center-line of the flownet in Figure 4.1, but this one worked subjectively:

f(w) =
π

4
(1− cosw)

which makes:

(4.4) Φ(w) = ei
π

4
(1−cosw)

This choice of Φ in Equation (4.3) along with the circular and rectangular images for Υ produce
the semi-circular and rectangular sinuous coordinate systems respectively,

4.2. Possibility of non-Channel-like Coordinate Systems

The coordinate systems produced in Sections 3.1 and 3.2 share a near-unit hodograph as defined
in Equation (4.4):

Φ(w) = eif(w) = ei
π

4
(1−cosw)

The construction of this hodograph is not unique, an infinite number of functions can be made
through Schwarz-Christoffel transforms [5] to meet the required condition that f(w) needs to be
near-real for some domain of w.

Additionally, the argument cosh(u+ iv) can be individually scaled with u→ ξ(u) and v → η(v)
with functions that go to infinity to produce functions that go from purely real in some domain of
u to purely real in some domain of v, and back to purely real in some domain of u. This would
accomplish a coordinate system that is orthogonal along the perimeter of a sinuous rectangle,
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and from these an interlocking set of coordinate systems could be made to produce a grid that is
orthogonal everywhere along its edges and only near-orthogonal at its center-faces.

Finally, the hodograph was defined in two dimensions because complex variables were used
to produce the first coordinate systems. But this is not a necessity if the system starts in three
dimensions. Orthogonal coordinates such as the ones defined in Section 5.3 can easily produce three-
dimensional hodographs to integrate and produce new coordinate systems. The difficulty here is
that complex integration has no adequate equivalent in three dimensions. In future research, I will
start with an expression like

∫ φ

0
r||(u, v, w) · ds+

∫ ψ

0
r⊢(φ, v, w) · ds+

∫ ζ

0
r⊤(u, v, w) · ds

where r||, r⊢, and r⊤ are mutually orthogonal unit vectors guided by some three-dimensional
hodograph as the ones in Section 5.3, because this retains some of the essential geometry that
complex integration accomplishes.
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CHAPTER 5

Three Dimensional Unit Hodographs

This chapter expands on the idea of a unit hodograph in three dimensions for the possibility of
producing near-orthogonal coordinate systems for non-channel-like geometries.

5.1. Definitions

5.1.1. Conformability. An orthogonal coordinate system possesses conformability as long as
two of its coordinates can be transformed via some complex-valued function (e.g., f(u+iv) = φ+iψ
where (u, v) and (φ, ψ) are both orthogonal coordinate systems) without losing orthogonality. It
will be shown in this Chapter that a sufficient condition for conformability is that the Laplacian in
the coordinate system does not contain any first-order terms.

5.1.1.1. The Simplest Conformable Coordinate System. The trivial functions u(x, y) = x and
v(x, y) = y that correspond to the Cartesian coordinate system satisfy orthogonality and have the
additional property that the real and imaginary parts of a given function of u(x, y) + iv(x, y) will
also be orthogonal, for example:

u(x, y) = x, v(x, y) = y

(u(x, y) + iv(x, y))2 = (x+ iy)2 = x2 − y2 + 2ixy

φ(x, y) + iψ(x, y) = (u(x, y) + iv(x, y))2 = (x+ iy)2 = x2 − y2 + 2ixy

Observe that φ(x, y) = x2 − y2 has a gradient that is orthogonal to the gradient of ψ(x, y) = 2xy.
5.1.1.2. A Non-Conformable Orthogonal Coordinate System. The polar coordinate system is

orthogonal but not conformable:

r(x, y) =
√

x2 + y2, θ(x, y) = arctan
(y

x

)

φ(x, y) + iψ(x, y) =
(

√

x2 + y2 + i arctan
(y

x

))2

=x2 + y2 −
(

arctan
(y

x

))2
+ 2i

√

x2 + y2 arctan
(y

x

)

φ(x, y) = x2 − y2 −
(

arctan
( y
x

))2
and ψ(x, y) = 2

√

x2 + y2 arctan
( y
x

)

are not orthogonal, which
can be checked by their gradients.

5.1.2. Orthogonal Wrap. A two-dimensional coordinate system must become (or remain)
orthogonal after being projected onto said surface to wrap a surface orthogonally.

5.1.3. Conformal Wrap. A two-dimensional coordinate system must become (or remain)
conformable after being projected onto said surface to wrap a surface conformably.
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5.2. Orthogonally Wrapping a Sphere

A spherical coordinate system with r = 1 orthogonally wraps the unit sphere by default:

x = cosϕ sinφ
y = sinϕ sin θ
z = cos θ

⇒
ϕ = arctan

( y
x

)

θ = arctan

(

√

x2 + y2

z

)

This can be seen in how the gradients of ϕ and θ have a zero dot-product:

∇ϕ =
1

x2 + y2





−y
x
0



 ,∇θ = 1
√

x2 + y2(x2 + y2 + z2)





xz
yz

−(x2 + y2)





∇ϕ · ∇θ = 1

(x2 + y2)3/2(x2 + y2 + z2)
(−xyz + xyz + (x2 + y2)0) = 0

The projection of this orthogonal wrapping onto the Gaussian surfaces produced by the unit sphere
produces the current spherical system. However, this orthogonal wrapping is not conformable and
therefore one and only one three-dimensional orthogonal grid can be obtained from this extrusion.
A method for orthogonally wrapping irregular solids is shown in Appendix F.

5.3. Conformably Wrapping a Sphere

The Laplacian of the ϕ− θ coordinates along the unit sphere is not separable:

∇2 {} =

[

1

cos2 θ

∂2

∂ϕ2
+

∂2

∂θ2
− tan θ

∂

∂θ

]

However, there is a way to scale one of the coordinates to make this Laplacian separable. Using
Equation (D.2), the proper scaling will yield:

x = cosψ sech ζ
y = sinψ sech ζ
z = tanh ζ

⇒
ψ = arctan

( y
x

)

ζ = arctanh

(

z
√

x2 + y2 + z2

)

with Laplacian:

∇2 = cosh(ζ)

(

∂2

∂ψ2
+

∂2

∂ζ2

)

this Laplacian is perfectly separable:

cosh(ζ)

(

∂2

∂ψ2
+

∂2

∂ζ2

)

= cosh(ζ)

(

∂

∂ψ
− i

∂

∂ζ

)(

∂

∂ψ
+ i

∂

∂ζ

)

therefore the (ψ, ζ) orthogonal wrap is perfectly conformable, there exists more ways to wrap the
unit sphere, infinitely many in fact, but fewer than the ways in which an infinite flat surface can
be orthogonally gridded. As a consequence, orthogonal spherical coordinates can be produced that
accommodate any boundary conditions on the surface of the sphere, such as continental coasts or
tectonic plates.
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5.3.1. A Periodic Conformal Map on the Surface of a Sphere. Not every complex
function will transform the conformable grid (ψ − ζ) into a conformal coordinate system for the
entire sphere because of self-intersection. Geometrically speaking, once the orthogonal grid makes
its way around the sphere, the orthogonal grid will intersect itself and ψ coordinates are not
guaranteed to intersect ζ coordinates at right angles; however, this can be avoided in the case of
periodic orthogonal grids because the ψ coordinates will meet themselves in parallel and therefore
continue to intersect ζ coordinates orthogonally and vice-versa.

A function of periodicity 2π can be obtained by adding an infinite number of source terms (or
injection wells in the context of groundwater mechanics) at distance 2π apart:

θ = θ + iψ, X = x+ iy

θ = · · ·+ log(X + 2π) + log(X) + log(X − 2π) + · · ·

=
∞
∑

n=−∞

log(X + 2nπ)

=

∫ ∞
∑

n=−∞

1

X + 2nπ
dX

the last step comes from the fundamental theorem of calculus. From [1], the infinite sums like the
one inside the integral converges to a trigonometric function:

θ =

∫

π

2π
cot
( π

2π
X
)

dX

=

∫

1

2
cot

(

1

2
X

)

dX

= ln

(

sin

(

1

2
X

))

⇒ X = 2arcsin
(

eθ
)

Figure 5.1. Conformal map f(θ) = 2 arcsin eθ
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This conformal map can be projected onto the conformable spherical coordinates (ψ, ζ) intro-
duced in Section 5.3 by applying the conformal map:

ψ + iζ = 2arcsin
(

eu+iv
)

This results in a new spherical coordinate system that is as orthogonal as the original:

x = r cos
(

Re
{

2 arcsin
(

eu+iv
)})

sech
(

Im
{

2 arcsin
(

eu+iv
)})

y = r sin
(

Re
{

2 arcsin
(

eu+iv
)})

sech
(

Im
{

2 arcsin
(

eu+iv
)})

z = r tanh
(

Im
{

2 arcsin
(

eu+iv
)})

r =
√

x2 + y2 + z2

u = Re









log









sin









arctan
( y
x

)

+ i arctanh

(

z√
x2+y2+z2

)

2

























v = Im









log









sin









arctan
( y
x

)

+ i arctanh

(

z√
x2+y2+z2

)

2

























These equations are plotted in Figure 5.2:

(a) View of alternative conformal wrap (b) Same view rotated 30◦ in the z axis

Figure 5.2. Conformal map ψ + iζ = 2arcsin eψ
′+iζ′ on single layer of alternative

coordinate system
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(a) View of second alternative conformal wrap

(b) Same view rotated 30◦ in the z axis

Figure 5.3. Conformal map ψ + iζ = 1
2 arcsin e

ψ′+iζ′ on single layer of alternative
coordinate system
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Figure 5.4. Projection of conformal map ψ + iζ = 2arcsin eψ
′+iζ′ onto the unit

sphere and one Gaussian sphere near it
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Figure 5.5. Conformal map ψ + iζ = 1
2 arcsin e

ψ′+iζ′ near the unit sphere

Any periodic conformal map can be used to fully conformally wrap the unit sphere if the (ψ, ζ)
coordinate system from Section 5.3 is used.

5.3.2. Some Self Bounded Conformal Maps on the Surface of a Sphere. As I men-
tioned at the beginning of this Section, another set of conformal maps that can be projected to
the surface of a sphere and then extruded into three-dimensional space are those conformal maps
that are by construction bounded inside a single period of the azimuth angle. Such is the case of
Schwarz-Christoffel transformations of a strip to a polygon [5]:
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(a) Conformal map ψ + iζ =
∫ ζ′+iψ′

0
ζ ′

−
2

3

(

ζ ′ − e
2π

3

)

−
2

3

(

ζ ′ − e
4π

3

)

−
2

3

dζ ′ on the plane

x
y

z

(b) The same conformal map projected onto a sphere continues to be orthogonal

Figure 5.6. A self-enclosed conformal map continues to be orthogonal when pro-
jected onto a conformably wrapped sphere
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(a) Conformal map ψ + iζ =
∫ ζ′+iψ′

0
ζ ′

−
2

5

(

ζ ′ − e
2π

5

)
−2

5

(

ζ ′ − e
4π

5

)

−
2

5

(

ζ ′ − e
6π

5

)

−
2

5

(

ζ ′ − e
8π

5

)

−
2

5

dζ ′ on the

plane

x
y

z

(b) Same conformal map projected onto a sphere

Figure 5.7. Another self-enclosed conformal map that remains orthogonal when
plotted in a conformably wrapped sphere.

But this can also be accomplished by only including enough of a conformal map in such a way
that it does not wrap completely around the sphere. The ζ coordinate can go as far as it needs to
without ever reaching the top of the sphere, but the ψ coordinate needs to be observed not to span
a domain radius greater than 2π.
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CHAPTER 6

Conclusions

A near-orthogonal coordinate system can be made to accommodate a channel that has a curved
center-line and is otherwise near-prismatic. The change of variables makes boundary conditions
more simply expressible and differential forms more easily solvable, albeit requiring perturbation
methods to solve. This work is a first in a series of coordinate system constructions, and while
the methods introduced here are applicable to three-dimensional regions quantifiably close to a
given curve, methods applicable to regions within a given curved perimeter and a given curved
volume are not too far from reach. It may be possible to produce similar differential forms for more
complex geometries and the numerical modeling requiring of matrix inversion of arbitrary accuracy
could be made much simpler, particularly in that three-dimensional problems could be made two-
or one-dimensional albeit requiring twice as many or three times as many time steps. Perhaps some
geometries and differential equations could be solved analytically rather than numerically at all.
Additionally, the methodologies from this work could also make it possible to grid a given geometry
of space in a near- or fully- orthogonal way, giving account to how much detail is lost by assuming
orthogonality at the grid scale.
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APPENDIX A

Derivation of Metric Tensor for Extruded Coordinate Systems

For any parametrization of (x, y, z) space as variables of (φ, ρ, θ), the metric tensor [10] can be
defined as:

g =







∂r
∂φ · ∂r∂φ ∂r

∂φ · ∂r∂ρ ∂r
∂φ · ∂r∂θ

∂r
∂ρ · ∂r∂φ ∂r

∂ρ · ∂r∂ρ ∂r
∂ρ · ∂r∂θ

∂r
∂θ · ∂r∂φ ∂r

∂θ · ∂r∂ρ ∂r
∂θ · ∂r∂θ







Which is identical to the Jacobian matrix left multiplied with its transpose, the Jacobian matrix
being denoted as:

J =
∂(x, y, z)

∂(φ, ρ, θ)
=







∂x
∂φ

∂x
∂ρ

∂x
∂θ

∂y
∂φ

∂y
∂ρ

∂y
∂θ

∂z
∂φ

∂z
∂ρ

∂z
∂θ







To find the metric tensor then it is first necessary to find the derivative of each of the Cartesian
coordinates (x, y, z) against each of the curvilinear coordinates (φ, ρ, θ). This is slighlty complicated
by the fact that the coordinates were created using Re and Im operators. This however can
be solved by producing some complex expressions, taking the general expression for Conformally
Extruded Coordinate Systems Equation (4.3) in Chapter 4:

r =





x
y
z



 =









Re
{

∫ bφ+iRe{Υ(λ(ρ)+iγ(θ))}
0 Φ(w)dw

}

Im
{

∫ bφ+iRe{Υ(λ(ρ)+iγ(θ))}
0 Φ(w)dw

}

Im{Υ(λ(ρ) + iγ(θ))}









∂z
∂φ ,

∂z
∂ρ ,

∂z
∂θ can be obtained directly:
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∂z

∂φ
=
∂

∂φ
(Im{Υ(λ(ρ) + iγ(θ))})

=0

∂z

∂ρ
=
∂

∂ρ
(Im{Υ(λ(ρ) + iγ(θ))})

=
∂λ

∂ρ
Im

{

∂Υ

∂λ

}

∂z

∂θ
=
∂

∂θ
(Im{Υ(λ(ρ) + iγ(θ))})

=
∂γ

∂θ
Im

{

∂Υ

∂γ

}

=
∂γ

∂θ
Im

{

i
∂Υ

∂λ

}

=
∂γ

∂θ
Re
{

∂Υ

∂λ

}

The same method would be difficult to apply for x and y, however, a shortcut can be found by
forming the complex relation:

x+ iy =

∫ bφ+iRe{Υ(λ(ρ)+iγ(θ))}

0
Φ(w)dw

Which can be differentiated directly by the fundamental theorem of calculus:

∂(x+ iy)

∂(bφ+ iRe{Υ(λ(ρ) + iγ(θ))}) = Φ(bφ+ iRe{Υ(λ(ρ) + iγ(θ))})

In the nature of complex differentiation [1], ∂x∂φ and ∂y
∂φ can be obtained by only allowing φ to variate

while keeping Re{Υ(λ(ρ) + iγ(θ))} constant:

∂(x+ iy)

∂bφ
=Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

∂(x+ iy)

∂φ
=bΦ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

⇒ ∂x

∂φ
=bRe {Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})}

⇒ ∂y

∂φ
=bIm {Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})}
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In a slighlty more involved manner, ∂x∂ρ and ∂y
∂ρ can be obtained using the chain rule:

∂(x+ iy)

i∂(Re{Υ(λ(ρ) + iγ(θ))})} =Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

∂(x+ iy)

∂(Re{Υ(λ(ρ) + iγ(θ))})} =iΦ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

∂(x+ iy)

∂λ
=i

∂

∂λ
(Re {Υ(λ(ρ) + iγ(θ))}) Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

=iRe
{

∂Υ

∂λ

}

Φ

∂(x+ iy)

∂ρ
=i
∂λ

∂ρ
Re
{

∂Υ

∂λ

}

Φ

∂x

∂ρ
=Re

{

i
∂λ

∂ρ
Re
{

∂Υ

∂λ

}

Φ

}

=− ∂λ

∂ρ
Re
{

∂Υ

∂λ

}

Im{Φ}

∂y

∂ρ
=Im

{

i
∂λ

∂ρ
Re
{

∂Υ

∂λ

}

Φ

}

=
∂λ

∂ρ
Re
{

∂Υ

∂λ

}

Re{Φ}

In an even more involved manner,∂x∂θ and ∂y
∂θ can be found

∂(x+ iy)

i∂(Re{Υ(λ(ρ) + iγ(θ))})} =Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

∂(x+ iy)

∂(Re{Υ(λ(ρ) + iγ(θ))})} =iΦ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

∂(x+ iy)

∂γ
=i

∂

∂γ
(Re {Υ(λ(ρ) + iγ(θ))}) Φ(φ+ iRe{Υ(λ(ρ) + iγ(θ))})

=− iIm
{

∂Υ

∂λ

}

Φ

∂(x+ iy)

∂θ
=− i

∂γ

∂θ
Im

{

∂Υ

∂λ

}

Φ

∂x

∂θ
=Re

{

−i∂γ
∂θ

Im
{

∂Υ

∂λ

}

Φ

}

=
∂γ

∂θ
Im

{

∂Υ

∂λ

}

Im{Φ}

∂y

∂θ
=Im

{

−i∂γ
∂θ

Im
{

∂Υ

∂λ

}

Φ

}

=− ∂γ

∂θ
Im

{

∂Υ

∂λ

}

Re{Φ}
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The Jacobian matrix is therefore:

J =
∂(x, y, z)

∂(φ, ρ, θ)
=







bReΦ bImΦ 0

−∂λ
∂ρRe

{

∂Υ
∂λ

}

ImΦ ∂λ
∂ρRe

{

∂Υ
∂λ

}

ReΦ ∂λ
∂ρIm

{

∂Υ
∂λ

}

∂γ
∂θIm

{

∂Υ
∂γ

}

ImΦ −∂γ
∂θIm

{

∂Υ
∂λ

}

ReΦ ∂γ
∂θRe

{

∂Υ
∂λ

}







which makes the metric tensor:
(A.1)

g = JJT =









b2|Φ|2 0 0

0
(

∂λ
∂ρ

)2 ∣
∣|Φ|Re

{

∂Υ
∂λ

}

+ iIm
{

∂Υ
∂λ

}∣

∣

2 ∂λ
∂ρ

∂γ
∂θRe

{

∂Υ
∂λ

}

Im
{

∂Υ
∂λ

} (

1− |Φ|2
)

0 ∂λ
∂ρ

∂γ
∂θRe

{

∂Υ
∂λ

}

Im
{

∂Υ
∂λ

} (

1− |Φ|2
)

(

∂γ
∂θ

)2 ∣
∣Re

{

∂Υ
∂λ

}

+ i|Φ|Im
{

∂Υ
∂λ

}∣

∣

2









The Laplacian can be expressed using the metric tensor [3] from Equation (A.1), the Laplacian
in each of the three coordinates (φ, ρ, θ) can be expressed as:

∇2 =
1

√

det(g)

∂

∂φ

(

√

det(g)gφ,φ

) ∂

∂φ
{·}+ gφ,φ

∂2

∂φ2
{·}(A.2)

+
1

√

det(g)

(

∂

∂ρ

(

√

det(g)gρ,ρ

)

+
∂

∂θ

(

√

det(g)gρ,θ

)

)

∂

∂ρ
{·}+ gρ,ρ

∂2

∂ρ2
{·}

+
1

√

det(g)

(

∂

∂ρ

(

√

det(g)gθ,ρ

)

+
∂

∂θ

(

√

det(g)gθ,θ

)

)

∂

∂θ
{·}+ gθ,θ

∂2

∂θ2
{·}

+ 2gρ,θ
∂2

∂ρ∂θ

30



APPENDIX B

Metric Tensor for Sinuous Channel-like Coordinate Systems

Sinuous channel-like coordinate systems are a specific case of extruded coordinate systems as
defined in Chapter 4 where

(B.1) Φ(w) = exp
(

i
π

4
(1− cos(w))

)

This is done on purpose because the metric tensor as defined in Equation (A.1) becomes diagonal
for |Φ(w)| = 1. And the above expression has this quality for real inputs w, and deviates from this
diagonality by some measureable amount depending on the function Υ(w)

B.1. Metric Tensor for Semi-Circular Sinuous Channel Coordinate System

To make a Semi-Circular Sinuous Channel, the transect must be a semi-circle. By construction,
the transect is mapped by the Υ function. To resemble the well-known polar coordinates, Υ must
be:

Υ(ln ερ+ iθ) =ερ cos θ + iερ sin θ

Together with the expression for Φ found in Equation (B.1) makes:

λ(ρ) =ερ

γ(θ) =θ

Φ(φ+ iερ cos θ) = exp
(

−π
4
sin(φ) sinh(ερ cos θ)

)

exp
(

i
π

4
(1− cosφ cosh(ερ cos θ))

)

The imaginary arguments of the first will be so repeated that I will express it as S:

S =
π

4
sin(2πφ) sinh(ερ cos θ)

Using the results of Appendix A found in Equation (A.1), the metric tensor becomes:

(B.2) gsc =







e−2S 0 0

0 ε2
∣

∣e−2S cos θ + i sin θ
∣

∣

2
ε cos θ sin θ(1− e−2S)

0 ε cos θ sin θ(1− e−2S)
∣

∣cos θ + ie−2S sin θ
∣

∣

2







B.1.1. Laplacian for Semi-Circular Sinuous Channel Coordinate System. The best
way to obtain the Laplacian of this coordinate system is by using a computer algebra system and
defining the expression in Equation (A.2), to then feed it the metric in Equation (B.2), I personally
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used Maxima [8]1. The result is a series of differential equations with different orders of magnitude:

O(1) : ∇2{·} =4π2
∂2

∂φ2
{·}+ ∂2

∂θ2
{·}

(B.3)

O(ε) : ∇2{·} =− 2π3ρ sin(2πφ) cos(θ)
∂2

∂φ2
{·}

(B.4)

− 6π3 cos(θ) sin(φ)
∂

∂φ
{·}

+
πρ

8
sin(2πφ)

(

(cos(3θ)− cos(θ))
∂2

∂θ2
{·} − 3(sin(3θ)− 3 sin(θ))

∂

∂θ
{·}
)

O(ε2) : ∇2{·} =π4ρ2 sin2(2πφ) cos2(θ)
∂2

∂φ2
{·}

(B.5)

+ πρ cos(θ) sin(2πφ)(3 cos2(θ) + 6π2 sin(2πφ) cos(θ)− 2)
∂

∂φ
{·}

+ 2
∂2

∂ρ2
{·}

− πρ sin(2πφ) cos(θ)(3 sin2(θ)− 1)
∂

∂ρ
{·}

+
π2ρ2

4
sin2(2πφ) sin2(2θ)

∂2

∂θ2
{·}

+
π

2
sin(2πφ) cos(θ)(4πρ2 sin(2πφ) cos2(θ) + 2 cos(θ)− 3πρ2 sin(2πφ)) sin(θ)

∂

∂θ
{·}

+ πρ sin(2πφ) cos2(θ) sin θ
∂2

∂ρ∂θ
{·}

And lower orders of magnitude.

B.2. Metric Tensor for Rectangular Sinuous Channel Coordinate System

To make a Rectangular Sinuous Channel, the transect must be a rectangle. By construction,
the transect is mapped by the Υ function.

Υ(ψ, ζ) =bεψ + ihεζ

Together with the expression for Φ found in Equation (B.1) makes:

λ(ψ) =bε

γ(ζ) =hε

Φ(φ+ ibεψ) = exp
(

−π
4
sin(φ) sinh(bεψ)

)

exp
(

i
π

4
(1− cosφ cosh(bεψ))

)

1I would have used it earlier in the derivations, but Maxima does not integrate in the complex domain.
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The arguments of the above exponents will be so repeated that I will express them as S and Θ
respectively

S =
π

4
sin(φ) sinh(bεψ)

Using the results of Appendix (A) found in Equation (A.1), the metric tensor becomes:

(B.6) gr =





4π2e−2S 0 0
0 b2ε2e−2S 0
0 0 h2ε2





B.2.1. Laplacian for Rectangular Sinuous Channel Coordinate System. The best
way to obtain the Laplacian of this coordinate system is by using a computer algebra system and
defining the expression in Equation (A.2), to then feed it the metric in Equation (B.6), I personally
used Maxima [8]2. The result is a series of differential equations with different orders of magnitude:

O(1) : ∇2{·} =4π2
∂2

∂φ2
(B.7)

O(ε) : ∇2{·} =− 2π3bψ sin(2πφ)
∂2

∂φ2
{·}(B.8)

O(ε2) : ∇2{·} =2π4b2ψ2 sin2(2πφ)
∂2

∂φ2
{·}+ 2

(

h2 + b2
) ∂2

∂ψ2
{·}+ 2

(

h2 + b2
) ∂2

∂ζ2
{·}(B.9)

And lower orders of magnitude.

2I would have used it earlier in the derivations, but Maxima does not integrate in the complex domain.
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APPENDIX C

Laplacian Operator When The Curvilinear Coordinates Are

Functions of (x, y, z)

Consider a change of variables (x, y, z) → (u, v, w) such that each u, v, and w are functions of
x, y, z. It is well known that the Laplacian can be expressed using the coefficients of the metric
tensor g [9]. But it can also be expressed in terms of the gradient and Laplacian of u, v, and w
respectively through the use of the chain rule:

∂

∂xi
=
∂uj
∂xi

∂

∂uj

∂2

∂x2i
=

∂

∂xi

(

∂uj
∂xi

∂

∂uj

)

=
∂uj
∂xi

∂

∂xi

(

∂

∂uj

)

+
∂

∂xi

(

∂uj
∂xi

)

∂

∂uj

=
∂uj
∂xi

∂uk
∂xi

∂

∂uj

(

∂

∂uk

)

+
∂2uj
∂x2i

∂

∂uj

=∇uj · ∇uk
∂2

∂uj∂uk
+∇2uj

∂

∂uj

In the case of orthogonal coordinates:

(C.1) ∇2 = ∇uj · ∇uj
∂2

∂u2j
+∇2uj

∂

∂uj

34



APPENDIX D

Coordinate Scaling

Consider a change of variables (u, v, w) → (f(u), g(v), h(w)). The new Laplacian can be found
in terms of derivatives of f , g, and h as well as the dot products of u, v, and w:

∂

∂xi
=
∂uj
∂xi

∂fk
∂uj

∂

∂fk

∂2

∂x2i
=

∂

∂xi

(

∂uj
∂xi

∂fk
∂uj

∂

∂fk

)

=
∂uj
∂xi

∂fk
∂uj

∂

∂xi

(

∂

∂fk

)

+
∂uj
∂xi

∂

∂xi

(

∂fk
∂uj

)

∂

∂fk
+

∂

∂xi

(

∂uj
∂xi

)

∂fk
∂uj

∂

∂fk

=
∂uj
∂xi

∂fk
∂uj

∂

∂xi

(

∂

∂fk

)

+

[

∂uj
∂xi

∂

∂xi

(

∂fk
∂uj

)

+
∂

∂xi

(

∂uj
∂xi

)

∂fk
∂uj

]

∂

∂fk

=
∂uj
∂xi

∂fk
∂uj

∂ul
∂xi

∂fm
∂ul

∂

∂fm

(

∂

∂fk

)

+

[

∂uj
∂xi

∂ul
∂xi

∂

∂ul

(

∂fk
∂uj

)

+
∂

∂xi

(

∂uj
∂xi

)

∂fk
∂uj

]

∂

∂fk

=
∂uj
∂xi

∂fk
∂uj

∂ul
∂xi

∂fm
∂ul

(

∂2

∂fk∂fm

)

+

[

∂uj
∂xi

∂ul
∂xi

(

∂2fk
∂uj∂ul

)

+

(

∂2uj
∂x2i

)

∂fk
∂uj

]

∂

∂fk

=
∂uk
∂xi

∂fk
∂uk

∂um
∂xi

∂fm
∂um

(

∂2

∂fk∂fm

)

+

[

∂uk
∂xi

∂uk
∂xi

(

∂2fk
∂u2k

)

+

(

∂2uk
∂x2i

)

∂fk
∂uk

]

∂

∂fk

=∇uk · ∇umf ′kf ′m
(

∂2

∂fk∂fm

)

+
[

∇uk · ∇ukf ′′k +∇2ukf
′
k

] ∂

∂fk

For an orthogonal system, this further reduces to:

(D.1) ∇2 = ∇uk · ∇uk(f ′k)2
∂2

∂f2k
+
[

∇uk · ∇ukf ′′k +∇2ukf
′
k

] ∂

∂fk

To eliminate the first-order differential, it is then only necessary to find the fk that solves the
equation

∇uk · ∇ukf ′′k +∇2ukf
′
k = 0

which can be found to be

(D.2) fk =

∫

exp

(

−
∫ ∇2uk

∇uk · ∇uk
duk

)

duk
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APPENDIX E

Additional Separability of the Laplace and Helmholtz Operators

The Laplacian operator shows up in a number of physical problems. It can be shown that a
separation of variables in the diffusion or wave equations among other equations will result in the
Helmholtz operator [9]. Which in turn is separable by use of the so-called Stäckel matrix [9]. An
unexpected consequence of eliminating the first-order differential terms from the Laplacian operator
produces an additional way of separating the Laplace and Helmholtz Operators.

E.1. Laplacian of Cylindrical Systems

Starting out from the Cartesian Laplacian:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Any two of the variables can be conformally mapped to produce an orthogonal coordinate system
with translational symmetry in the direction of the coordinate that was not conformally mapped.
Given a conformal map

g(x+ iy) = φ+ iψ

of which its inverse:

f(φ+ iψ) = x+ iy

can provide the exact form of the Laplacian previously derived:

∇2 =
1

f ′f ′

(

∂2

∂φ2
+

∂2

∂ψ2

)

+
∂2

∂z2

E.1.1. Separation of Variables in Any Given Cylindrical Coordinate System. For a
function U(φ, ψ, z) that satisfies Helmholtz equation, a separation of variables is possible such that

U = Ω(φ+ iψ)Z(z)

which will always reduce the Helmholtz equation to:

∇2U + k2U =

(

1

f ′f ′

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2
+ k2

)

Ω(φ+ iψ)Z(z)

=

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2
+ k2

)

Ω(φ+ iψ)Z(z)

= Ω(φ+ iψ)Z ′′(z) + k2Ω(φ+ iψ)Z(z)

This is satisfied by any Z ′′ + k2Z = 0
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E.1.2. First Mention of the Conformable Polar Coordinate System. This coordinate
system can be obtained from making the polar system conformable through the coordinate scaling
shown in Appendix D

((x, y, z) → (φ, ψ, z))







x = eφ cosψ
y = eφ sinψ
z = z

φ = 1
2 log

(

x2 + y2
)

ψ = arctan
( y
x

)

z = z

This coordinate system is also mentioned in [9]. It is presented alongside the more common

((x, y, z) → (r, ψ, z))







x = r cosψ
y = r sinψ
z = z

r =
√

x2 + y2

ψ = arctan
( y
x

)

z = z

Without any prior explanation or further treatment (whereas the handbook explains how to sep-
arate Laplace’s and Helmholtz equations in the traditional system, this is not done for the new
system). However, Section II of the same handbook hints that this new coordinate system was
arrived at using a “transformation in the complex plane” [9] or a conformal map being extruded
in the z direction. The same handbook reveals that the Laplacian will be:

∇2 = e−2φ

(

∂2

∂φ2
+

∂2

∂ψ2

)

+
∂2

∂z2

E.1.3. Separation of Laplace’s Equation in New Circular-Cylinder Coordinate Sys-

tem. The fact that the second-order differentials of φ and ψ have the same coefficient allows for a
second way of separation of variables:

∇2U = 0

∇2U =

(

e−2φ

(

∂2

∂φ2
+

∂2

∂ψ2

)

+
∂2

∂z2

)

U

=

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2

)

U

which leads to a two-fold instead of a three-fold separation of variables:

U = Ω(φ+ iψ)Z(z)

Much in the same way as Wirtinger Derivatives [14], it can be seen by inspection that Ω will always
be zero:

(

∂

∂φ
+ i

∂

∂ψ

)

Ω(φ+ iψ) = 0

producing:

∇2U =

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2

)

Ω(φ+ iψ)Z(z)

=

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2

)

Ω(φ+ iψ)Z(z)

= Ω(φ+ iψ)Z ′′(z)

Therefore any function of φ + iψ will work as long as Z ′′ = 0. Hence Ω can be made to fit any
given boundary or initial value problem.
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E.2. Separation of Helmholtz Equation in New Circular-Cylinder Coordinate System

The Laplace operator appears in a number of physical equations, such as the diffusion and wave
equations. As it is mentioned in [9], separation of variables will result in a temporal and spatial
component, the spatial component will satisfy Helmholtz equation and may be further separated
into three components much in a similar way as Laplace’s Equation when using:

U = Ω(φ+ iψ)Z(z)

It can be seen by inspection that Ω will always be zero:
(

∂

∂φ
+ i

∂

∂ψ

)

Ω(φ+ iψ) = 0

which produces:

∇2U + k2U =

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2
+ k2

)

Ω(φ+ iψ)Z(z)

=

(

e−2φ

(

∂

∂φ
− i

∂

∂ψ

)(

∂

∂φ
+ i

∂

∂ψ

)

+
∂2

∂z2
+ k2

)

Ω(φ+ iψ)Z(z)

= Ω(φ+ iψ)Z ′′(z) + k2Ω(φ+ iψ)Z(z)

Therefore any function of φ+ iψ will work as long as Z ′′ + k2Z = 0 ⇒ Z = A cos(kz) +B sin(kz).
Hence Ω can be made to fit any given boundary or initial value problem.

E.3. Discussion

Equation (D.2) shows that for any given orthogonal coordinate system, there must exist one
and only one scaling that eliminates the first-order differential term in the Laplacian.
Furthermore, Equations (C.1) and (D.2) imply that whenever a coordinate system is scaled to
remove the first-order differential, this scaling will further have the property that:

∇2f(u) = 0

E.4. A Spherical Laplacian Without First-Order Differentials

The Laplacian in spherical coordinates is [9]:

(E.1) ∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cot θ

r2
∂

∂θ
+

1

r2 sin2 θ

∂2

∂ψ2

where r is the distance from the origin, ψ is the azimuthal angle, and θ is the zenith angle. The
function φ required to remove the first-order differential in r will be:

φ(r) =

∫

exp

(

−
∫ ∇2r

∇r · ∇r dr
)

dr

from Equation (D.2). The terms inside the integral can be read off of Equation (E.1) by observing
that it must match Equation (C.1) :

φ(r) =

∫

exp

(

−
∫

2/r

1
dr

)

dr =
1

r
⇒ r =

1

φ

The function ζ required to remove the first-order differential in θ will be:

ζ(θ) =

∫

exp

(

−
∫ ∇2θ

∇θ · ∇θ dθ
)

dθ
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from Equation (D.2). The terms inside the integral can be read off of Equation (E.1) by observing
that it must match Equation (C.1) :

ζ(θ) = log

(

tan

(

θ

2

))

⇒ θ = 2arctan
(

eζ
)

These two φ and ζ functions turn the old spherical system into:

(x, y, z) → (r, ψ, θ) =







x = r sin θ cosψ
y = r sin θ sinψ
z = r cos θ

⇓

(x, y, z) → (φ, ψ, ζ) =























x = 1
φ sech(ζ) cosψ

y = 1
φ sech(ζ) sinψ

z = 1
φ tanh(ζ)

φ = 1√
x2+y2+z2

ψ = arctan
( y
x

)

ζ = arcsinh

(

z√
x2+y2

)

(E.2)

E.4.1. Laplacian of New Spherical Coordinate System. Equation (C.1) or Equation
(D.1) can be used to calculate:

∇2 = φ4
∂2

∂φ2
+ φ2 cosh(ζ)

(

∂2

∂ψ2
+

∂2

∂ζ2

)

As it can be seen above, there is no first-order differential term, but more conveniently, it is possible
to further separate the second part of the Laplacian:

(E.3) ∇2 = φ4
∂2

∂φ2
+ φ2 cosh(ζ)

(

∂

∂ψ
− i

∂

∂ζ

)(

∂

∂ψ
+ i

∂

∂ζ

)

E.4.2. Separation of Variables in Laplace’s Equation of the New Spherical Coordi-

nate System. Laplace’s Equation in the traditional spherical system separates into three ordinary
differential equations [9]:

U = R(r)Θ(θ)Ψ(ψ)

∇2U = 0 ⇒







R′′ + 2
rR

′ − α
r2
R = 0

Θ′′ + cot θΘ′ + (α− β csc2 θ)Θ = 0
Ψ′′ + βΨ = 0

with well-known analytic solutions.
The new spherical coordinate system separates into two equations instead:

U = Φ(φ)Ω(ψ + iζ)

∇2U = 0 ⇒ φ4Φ′′ = 0

with solution

Φ = Aφ+B
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E.4.3. Separation of Variables in New Spherical Coordinate System. The Helmholtz
operator in the traditional Spherical system separates into three ordinary differential equations [9]:

U = R(r)Θ(θ)Ψ(ψ)

∇2U + k2U = 0 ⇒







R′′ + 2
rR

′ + (k2 − α/r2)R = 0
Θ′′ + cot θΘ′ + (α− β csc2 θ)Θ = 0
Ψ′′ + βΨ = 0

With well-known analytic solutions.
The new spherical coordinate system separates into two equations instead:

U = Φ(φ)Ω(ψ + iζ)

∇2U + k2U = 0 ⇒ φ4Φ′′ + k2Φ = 0

With solution

Φ = Aφ cos

(

k

φ

)

+Bφ sin

(

k

φ

)
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APPENDIX F

Orthogonally Wrapping an Irregular Solid

A given two-dimensional orthogonal grid can be, for lack of a better word, “inflated” to describe
a new orthogonal grid on a curved surface.

F.0.1. Inflating a Conformal Map. Consider a conformal map resting on a flat surface:

x+ iy = f(u+ iv) ⇒ x = ℜ{f(u+ iv)}
y = ℑ{f(u+ iv)}

⇒ ∂x/∂u = ℜ{f ′(u+ iv)} ∂x/∂v = ℜ{if ′(u+ iv)} = −ℑ{f ′(u+ iv)}
∂y/∂u = ℑ{f ′(u+ iv)} ∂y/∂v = ℑ{if ′(u+ iv)} = ℜ{f ′(u+ iv)} ⇒

∂x
∂u = ∂y

∂v
∂x
∂v = − ∂y

∂u

By construction, the non-diagonal elements of its metric are zero:

∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
= −∂y

∂v

∂y

∂u
+
∂y

∂u

∂y

∂v
= 0

To “inflate” this orthogonal grid, the z coordinate can be introduced but made out to be a
function of u or v alone:

x = ℜ{f(u+ iv)}
y = ℑ{f(u+ iv)}
z = g(u)

This two-dimensional coordinate system will also have zero non-diagonal elements:

✘
✘

✘
✘

✘
✘
✘
✘✿0∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= 0 + g′(u) · 0 = 0

this will also be true if u or v are scaled.
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F.0.2. An Inflated Conformal Map. The map of x+ iy = cosh(u+ iv) found in Figure 4.2
can be re-scaled and inflated:





x
y
z



 =





Re{cosh(u+ iv)}
Im{cosh(u+ iv)}

0



 =





coshu cos v
sinhu sin v

0



→





x
y
z



 = γ(u, v) =





√
1 + cos2 u cos v
cosu sin v

sinu





with scaling function unew = arccos(sinh(uold))
This produces a solid that resembles (and will be referred to as) a pillow:

x

y

x

z

y

z

x

yz

Figure F.1. Pillow produced by re-scaling and inflating x+ iy = cosh(u+ iv)

It may be possible to produce near-orthogonal coordinate systems by extruding this pillow
through the Gaussian surfaces it would produce if it was treated as if it was made of a charged
perfectly conducting material.
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