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Abstract 
Whether the input available to children is sufficient to explain 
their ability to use language has been the subject of much 
theoretical debate in cognitive science. Here, we present a 
simple, developmentally motivated computational model that 
learns to comprehend and produce language when exposed to 
child-directed speech. The model uses backward transitional 
probabilities to create an inventory of ‘chunks’ consisting of 
one or more words. Language comprehension is 
approximated in terms of shallow parsing of adult speech and 
production as the reconstruction of the child’s actual 
utterances. The model functions in a fully incremental, on-
line fashion, has broad cross-linguistic coverage, and is able 
to fit child data from Saffran’s (2002) statistical learning 
study. Moreover, word-based distributional information is 
found to be more useful than statistics over word classes. 
Together, these results suggest that much of children’s early 
linguistic behavior can be accounted for in a usage-based 
manner using distributional statistics. 

Keywords:Language Learning; Computational Modeling; 
Corpora; Chunking; Shallow Parsing; Usage-Based Approach 

Introduction 
The ability to produce and understand a seemingly 
unbounded number of different utterances has long been 
hailed as a hallmark of human language acquisition. But 
how is such open-endedness possible, given the much more 
limited nature of other animal communication systems? And 
how can a child acquire such productivity, given input that 
is both noisy and necessarily finite in nature? For nearly half 
a century, generativists have argued that human linguistic 
productivity can only be explained by positing a system of 
abstract grammatical rules working over word classes and 
scaffolded by considerable innate language-specific 
knowledge (e.g., Pinker, 1999). Recently, however, an 
alternative theoretical perspective on linguistic productivity 
has emerged in the form of usage-based approaches to 
language (e.g., Tomasello, 2003). This perspective is 
motivated by analyses of child-directed speech, showing 
that there is considerably more information available in the 
input than previously assumed. For example, distributional 
and phonological information can provide reliable cues for 
learning about lexical categories and phrase structure (for a 
review, see Monaghan & Christiansen, 2008). Behavioral 
studies have shown that children can use such information 
in an item-based manner (Tomasello, 2003).  

A key difference between generative and usage-based 
approaches pertains to the granularity of the linguistic units 
necessary to account for the productivity of human 
language. At the heart of usage-based theory lies the idea 

that grammatical knowledge develops gradually through 
abstraction over multi-word utterances (e.g., Tomasello, 
2003), which are assumed to be stored as multi-word 
‘chunks.’ Testing this latter assumption, Bannard and 
Matthews (2008) showed not only that non-idiomatic chunk 
storage takes place, but also that storing such units actively 
facilitates processing: young children repeated multi-word 
sequences faster, and with greater accuracy, when they 
formed a frequent chunk. Moreover, Arnon and Snider 
(2010) extended these results, demonstrating an adult 
processing advantage for frequent phrases. The existence of 
such chunks is problematic for generative approaches that 
have traditionally clung to a words-and-rules perspective, in 
which memory-based learning and processing are restricted 
to the level of individual words (e.g., Pinker 1999). 

One remaining challenge for usage-based approaches is to 
provide an explicit computational account of language 
comprehension and production based on multi-word chunks. 
Although Bayesian modeling has shown that chunk-based 
grammars are in principle sufficient for the acquisition of 
linguistic productivity (Bannard, Lieven, & Tomasello, 
2009), no full-scale computational model has been 
forthcoming (though models of specific aspects of 
acquisition do exist, such as the optional infinitive stage; 
Freudenthal, Pine & Gobet, 2009). The scope of the 
computational challenge facing usage-based approaches 
becomes even more formidable when considering the 
success with which the generativist principles of words and 
rules have been applied in computational linguistics. In this 
paper, we take an initial step towards answering this 
challenge by presenting the ‘Comprehension And 
Production Performed Using Chunks Computed 
Incrementally, Non-categorically, and On-line’ (or 
CAPPUCCINO) model of language acquisition. 

The aim of the CAPPUCCINO model is to provide a test 
of the usage-based assumption that children’s language use 
may be explained in terms of stored chunks. To this end, the 
model gradually builds up an inventory of chunks consisting 
of one or more words—a  ‘chunkatory’—used for both 
language comprehension and production. The model was 
further designed with several key psychological and 
computational properties in mind: a) incremental learning: 
at any given point in time, the model can only rely on the 
input seen so far (no batch learning); b) on-line processing: 
input is processed word-by-word as it is encountered; c) 
simple statistics: learning is based on computing backward 
transitional probabilities (which 8-month-olds can track; 
Pelucchi, Hay, & Saffran, 2009); d) comprehension: the 
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model segments the input into chunks comparable to the 
output of a shallow parser; e) production: the model 
reproduces the child’s actual utterances; f) naturalistic 
input: the model learns from child-directed speech; g) cross-
linguistic coverage: the model is exposed to a typologically 
diverse set of languages (including Sesotho, Tamil, 
Estonian, and Indonesian). 

In what follows, we first describe the basic workings of 
the CAPPUCCINO model, its comprehension performance 
across English, German, and French, and its production 
ability across 13 different languages. Next, we demonstrate 
that the model is capable of closely fitting child data from a 
statistical learning study (Saffran, 2002). Finally, we discuss 
the limitations of the current model. 

Simulation 1: Modeling Comprehension and 
Production in Natural Languages 

The CAPPUCCINO model performed two tasks: 
comprehension of child-directed speech through the 
discovery and use of chunks, and sentence production 
through the use of the same chunks and statistics as in 
comprehension. Comprehension was approximated in terms 
of the model’s ability to segment a corpus into phrasal units, 
and production in terms of the model’s ability to reconstruct 
utterances produced by the child in the corpus. Thus, the 
model sought to 1) build an inventory of chunks—a 
chunkatory—and use it to segment out phrases, and 2) use 
the chunks to reproduce child utterances. We hypothesized 
that both problems could, to a large extent, be solved by 
attending to a single statistic: transitional probability (TP). 

TP has been proposed as a cue to phrase structure in the 
statistical learning literature: peaks in TP can be used to 
group words together, whereas dips in TP can be used to 
find phrase boundaries (e.g., Thompson & Newport, 2007). 
The view put forth in such studies is that TP is useful for 
discovering phrase structure when computed over form 
classes rather than words themselves. We hypothesized, 
instead, that distributional information tied to individual 
words provides richer cues to syntactic structure than has 
been assumed previously. Because we adopted this item-
based approach, we decided to examine backward 
transitional probability (BTP) as well as forward transitional 
probability (FTP). If learners compute statistics over 
individual words rather than form classes, the FTP between 
the words in phrases like the cat will always be low, given 
the sheer number of nouns that may follow any given 
determiner. BTPs provide a way around this issue: given the 
word cat, the probability that the determiner the 
immediately precedes it is quite high. 

Corpora 
Thirteen corpora were selected from the CHILDES database 
(MacWhinney, 2000) to cover a typologically diverse set of 
languages, representing 12 genera from 8 different language 
families (Haspelmath, Dryer, Gil, & Comrie, 2005). For 
each language, the largest available corpus for a single child 
was chosen rather than aggregating data across multiple 

child corpora, in order to assess what could be learned from 
the input available to individual children. All corpora 
involved interactions between a child and one or more 
adults. The average age of the target child at the beginnings 
of the corpora was 1;8, and 3;6 at the ends. The average 
number of words in each corpus was 168,204. 

 

Table 1: Natural Language Corpora 
 

Language Genus Family Word Ord. 
English Germanic Indo-European SVO 
German Germanic Indo-European n.d. 
French Romance Indo-European SVO 
Irish Celtic Indo-European VSO 
Croatian Slavic Indo-European SVO 
Estonian Finnic Uralic SVO 
Hungarian Ugric Uralic n.d. 
Hebrew Semitic Afro-Asiatic SVO 
Sesotho Bantoid Niger-Congo SVO 
Tamil Dravidian Dravidian SOV 
Indonesian Sundic Austronesian SVO 
Cantonese Chinese Sino-Tibetan SVO 
Japanese Japanese Japanese SOV 

 

The selected languages differed syntactically in a number 
of ways (see Table 1). Four word orders were represented: 
SVO, VSO, SOV, and no dominant order (n.d.; Haspelmath 
et al., 2005). The languages varied widely in morphological 
complexity, falling across the isolating/synthetic spectrum: 
while some languages had a relatively low morpheme-to-
word ratio (e.g., Cantonese), others had a much higher ratio 
(e.g., Hungarian), and others had ratios falling between the 
two (e.g., Sesotho; Chang, Lieven, & Tomasello, 2008). 

Corpus Preparation Each corpus was submitted to the 
same automated procedure whereby punctuation (including 
apostrophes: e.g., it’s→its), codes, and tags were removed, 
leaving only speaker identifiers and the original sequence of 
words. Hash tags (#) were added to the beginning of each 
line to signal the start of the utterance.  

Comprehension Task 
Child language comprehension was approximated in terms 
of the model’s ability to segment the corpus into phrasal 
units. The model's performance was evaluated against a 
shallow parser, a tool (widely used in the field of natural 
language processing) which identifies and segments out 
non-embedded phrases in a text. The shallow parsing 
method was chosen because it is consistent with the 
relatively underspecified nature of human sentence 
comprehension (Sanford & Sturt, 2002) and provides a 
reasonable approximation of the item-based way in which 
children process sentences (cf. Tomasello, 2003). 

For reasons explained above, we focused on BTP as a cue 
to phrasal units. The model discovered chunks by tracking 
the peaks and dips in BTP between words, using high BTPs 
to group words into phrases and low BTPs to identify phrase 
boundaries. Chunks learned in this way were then used to 
help process and learn from subsequent input. We tested the 
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model on the corpora for which an automated scoring 
method was available: English, German, and French. 

Model The model discovered its first chunks through 
simple sequential statistics. Processing utterances on a 
word-by-word basis, the model learned frequency 
information for words and word-pairs, which was used on-
line to track the BTP between words and maintain a running 
average BTP for previously encountered pairs. When the 
model calculated a BTP that was greater than expected, 
based on the running average, it grouped the word-pair 
together such that it would form part (or all) of a chunk; 
when the calculated BTP met or fell below the running 
average, a boundary was placed and the chunk thereby 
created (consisting of one or more words to the left) was 
added to the chunkatory.  

Once the model discovered its first chunk, it began using 
its chunkatory to assist in processing the input on the same 
word-to-word basis as before. The model continued learning 
the same low-level distributional information and 
calculating BTPs, but also used the chunkatory to make on-
line predictions as to which words would form a chunk, 
based on previously learned chunks. When a word-pair was 
encountered, it was checked against the chunkatory; if it had 
occurred at least twice as a complete chunk or as part of a 
larger chunk, the words were grouped together and the 
model moved on to the next word. If the word-pair was not 
represented strongly enough in the chunkatory, the BTP was 
compared to the running average, with the same 
consequences as before. Thus, there were no a priori limits 
on the number or size of chunks that could be learned.  

As an example, consider the following scenario in which 
the model encounters the phrase the blue doll for the first 
time and its chunkatory includes the blue car and blue doll 
(with counts greater than 2). When processing the and blue, 
the model will not place a boundary between these two 
words because the word-pair is already strongly represented 
in the chunkatory (as in the blue car). The model therefore 
predicts that this bigram will form part of a chunk. Next, 
when processing blue and doll, the model reacts similarly, 
as this bigram is also represented in the chunkatory. The 
model thereby combines its knowledge of two chunks to 
discover a new, third chunk, the blue doll, which is added to 
the chunkatory. As a consequence, the (sub)chunk, the blue, 
becomes even more strongly represented in the chunkatory, 
as there are now two chunks in which it appears. 

Scoring The model was scored against shallow parsers: 
the Illinois Chunker (Punyakanok & Roth, 2001) was used 
for English, and TreeTagger (Schmid, 1994) was used for 
French and German. After shallow parsing the corpora, 
phrase labels (VP, NP, etc.) were removed and replaced 
with boundary markers of the sort produced by the model.  

Each boundary marker placed by the model was scored as 
a hit if it corresponded to a boundary marker created by the 
shallow parser, and as a false alarm otherwise. Each 
boundary placed by the shallow parser but which was not 
placed by the model was scored as a miss. Thus, accuracy 

was calculated by hits / (hits + false alarms), and 
completeness by hits / (hits + misses). 

Alternate Distributional Models As previous work in 
the statistical learning literature has focused on FTP as a cue 
to phrase structure (e.g., Thompson & Newport, 2007), an 
alternate model was created to compare the usefulness of 
this cue against the BTPs used by CAPPUCCINO. This 
model was identical to the original model, but used FTPs in 
place of the BTPs. We refer to this as the FTP-chunk model. 
To assess the usefulness of variable-sized chunks, two 
additional alternate models were created which lacked 
chunkatories, relying instead on either FTPs or BTPs 
computed over stored trigrams (in the case of the former, if 
the FTP between the first bigram and the final unigram of a 
trigram fell below the average, a boundary was inserted). 
We refer to these models as the FTP-3G and BTP-3G 
alternates, respectively.  

Word Class Corpora A great deal of work in 
computational linguistics has assumed that statistics 
computed over form classes are superior to word-based 
approaches for learning about syntax (hence the widespread 
use of tagged corpora). This assumption is also present 
throughout the statistical learning literature (e.g., Thompson 
& Newport, 2007; Saffran, 2002), but is at odds with the 
present model, which relies on statistics computed over 
individual words rather than classes. To evaluate the 
usefulness of word-based transitional probabilities against 
those calculated over word classes, we ran the model and 
alternates on separate versions of each of the three corpora, 
in which words were replaced by the names of their lexical 
categories. For English, this process was automatically 
carried out using the tags in the original corpus. The 
untagged French and German corpora were tagged using 
TreeTagger (Schmid, 1994) before undergoing the same 
process. Across all three corpora, the same 13 categories 
were used (noun, verb, adjective, numeral, adverb, 
determiner, pronoun, preposition, conjunction, interjection, 
abbreviation, infinitive marker, and proper name). Unknown 
words (e.g., transcribed babbling) were marked as such. 

Results and Discussion The results are displayed in 
Figure 1. Chi-square tests were performed separately for 
accuracy and completeness on each language/model pair, 
contrasting BTP vs. FTP, chunks vs. 3G, and words vs. 
classes. All differences observable in the graph were highly 
significant (p<.001), with the exceptions of non-significant 
differences in accuracy when using words vs. classes for the 
FTP-chunk model (German) and both 3G models (English). 

When exposed to words, CAPPUCCINO offered the best 
combination of accuracy and completeness; for each 
language, it scored highest on both measures, with the 
exception of a 1%-point accuracy difference from the 
French class-based FTP-3G alternate (note, however, that 
CAPPUCCINO had a better completeness score by 23%-
points). The 3G alternates displayed higher accuracy when 
exposed to classes rather than words (with the exceptions of 
FTP-3G for English and BTP-3G for German), but lower 
completeness; in all cases, completeness was far lower for 
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class-based models (with the exception of the 3G-BTP 
alternate for English). More generally, the best performance 
was achieved using BTP-based chunks for all three 
languages, despite syntactic differences between them; 
though two of the languages were SVO, the third (German) 
had no dominant word order. 

Thus, CAPPUCCINO was able to approximate the 
performance of a shallow parser by learning in an on-line, 
incremental fashion from a single distributional cue. This 
was only the case, however, when the model was exposed to 
individual words rather than lexical categories. In addition 
to highlighting the wealth of distributional information 
available in the input, these results suggest that item-
specific knowledge of phrase structure may be more useful 
to early learners than abstract knowledge. 

Sentence Production Task 
The production task was inspired by the bag-of-words 
incremental generation task used by Chang et al. (2008), 
which offers a method for automatically evaluating 
syntactic learners on any language corpus. In our task, the 
model made its way through the corpus incrementally, 
collecting statistics and discovering chunks in the service of 
comprehension (as described above). Each time the model 
encountered a multi-word child utterance, however, it was 
required to recreate the utterance using only chunk 
information discovered in the previously encountered input. 

Model We began with the assumption that the overall 
message which the child wanted to convey could be 
approximated by treating the utterance as a randomly-
ordered set of words: a ‘bag-of-words.’ The task for the 
model, then, was to place these words in the correct order 
(as originally produced by the child). Following usage-
based approaches, the model utilized its chunkatory to 
reconstruct the child’s utterances. In order to model retrieval 
of stored chunks during production, the bag-of-words was 
filled by comparing parts of the child’s utterance against the 
chunkatory. E.g., consider a scenario in which the model 
encounters the child utterance the dog chased a cat and the 
largest chunk in the chunkatory consists of 3 words. To 
begin, the first 3 words are checked for storage as a single 
chunk. As this is not found in the chunkatory, the dog is 
checked. This check succeeds, so the words are removed 

from the utterance and placed in the bag as a single chunk. 
Next, chased a cat is checked, unsuccessfully, followed by 
chased a, also without success. The word chased is placed 
in the bag. Then a cat is checked, and so on. Crucially, 
however, this procedure was only used to find chunks that 
the model already knew (i.e., that were in the chunkatory) 
and would be likely to use as such (e.g., the dog). Once in 
the bag, the order of chunks was randomized. 

During production, the model had to reproduce the child’s 
utterance using the unordered chunks in the bag. We 
modeled this as an incremental, chunk-to-chunk process 
rather than one of whole-sentence optimization. Thus, the 
model began by removing from the bag the chunk with the 
highest BTP given the # tag (which marked the beginning of 
each utterance in the corpus), and producing it as the start of 
its new utterance. The chunk was removed from the bag 
before the model selected and produced its next chunk, the 
one with the highest BTP given the most recently produced 
chunk. In this manner, the model used chunk-to-chunk 
BTPs to incrementally produce the utterance, adding chunks 
one-by-one until the bag was empty. In rare cases where 
two or more units in the bag-of-words were tied for the 
highest BTP, one of them was chosen at random. 

Scoring Method For each utterance the model produced 
correctly, it received a score of 1; if the utterance did not 
match the corresponding child utterance completely, a score 
of 0 was assigned. The overall percentage of correctly 
produced utterances was then used as a measure of sentence 
production performance for a given corpus. 

Alternate Models The alternate FTP-chunk and 3G 
models used in the comprehension task were again used as 
baselines. The FTP-chunk model performed production in 
an identical manner to CAPPUCCINO (but used FTPs). As 
the 3G alternates lacked chunk inventories, they relied on 
TPs between unigrams and the start-of-utterance marker to 
select the first word in an utterance before using TPs based 
on trigram statistics for every subsequent word. 

Results and Discussion The average sentence production 
score for all 13 corpora (see Figure 2) was 59.8% for 
CAPPUCCINO, compared to 52.3%, 49.6%, and 54.2% for 
the FTP-chunk, FTP-3G, and BTP-3G alternates, 
respectively. The model scored higher than the alternates on 
all corpora. A 2 (Unit Type: Chunk vs. 3G) x 2 (Direction: 

Fig. 1: Accuracy and completeness scores for CAPPUCCINO and the FTP-chunk/3G alternates 
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FTP vs. BTP) ANOVA confirmed the observable model 
differences in Figure 2, yielding main effects of Unit Type 
(F(1,12)=26.2, p<.001) and Direction (F(1,12)=14.9, 
p<.01), and a Unit Type x Direction interaction 
(F(1,12)=24.6, p<.001). 

These results offer substantial, cross-linguistic support for 
CAPPUCCINO, and, more broadly, for the view that simple 
distributional statistics can capture a considerable part of 
early linguistic behavior. A single distributional cue, BTP, 
was used by the model to discover chunks as well as 
combine them to construct over half of the child utterances 
in each corpus (in one case, over 75%). Importantly, this 
approach was effective across the isolating/synthetic 
spectrum, yielding high performance despite the 
morphological complexity of the language learned by the 
model. This was true for all four word orders represented. 

The results also serve to demonstrate that a single source 
of information is sometimes useful for learning about 
structure at multiple levels: the same distributional statistic 
(BTP) can be used to segment words when calculated over 
syllables (e.g., Pelucchi et al., 2009), to discover phrase 
structure when calculated over words (as in the 
comprehension task), and to construct utterances when 
calculated over multi-word chunks.   

Simulation 2: Modeling Child AGL 
Artificial grammar learning (AGL) studies provide a means 
to study learning from language-like stimuli in a controlled 
setting. As such, they provide a rich source of 
psycholinguistic data for constraining computational 
accounts of learning from distributional information. We 
therefore tested CAPPUCCINO’s ability to model data from 
a child AGL experiment (Saffran, 2002). 

This particular study was chosen because it demonstrated 
the use of predictive dependencies on the part of the learner 
to group words into phrases. Subjects (aged 7;6 to 9;8) were 
trained on nonsense sentences generated by one of two 
artificial grammars. Each grammar consisted of a set of 
rewrite rules used to generate an artificial language: one 
incorporated predictive dependencies between words within 
phrases (Language P), while the other lacked this cue 
(Language N). When tested on grammatical/ungrammatical 
item pairs, children exposed to Language P outperformed 
those exposed to Language N.  

Method 
The model was identical to that used with natural languages. 
Importantly, this meant that the model continued learning 
during exposure to test items. For each language, 15 
simulations were performed, corresponding to the 30 child 
subjects from Saffran (2002). The model received the same 
amount of exposure to the exact same stimuli as the human 
subjects did (for each language, 50 sentences repeated 8 
times for a total of 400 training items, followed by 24 test 
item pairs). Each test item pair consisted of one sentence 
that was grammatical, and one that was ungrammatical. 
Saffran’s languages were created such that the same set of 
test items could be used for both language exposure 
conditions. We hypothesized that the human responses in 
this study were primarily based on sensitivity to the phrase-
like structure of the test stimuli. The model was therefore 
evaluated against a version of the test items that contained 
the correct phrase boundaries, as defined by the rewrite 
rules used to generate the sentences in Saffran’s study. 
Boundaries were placed between phrases in a non-
embedded fashion that emulated the shallow parsing 
technique used to evaluate the model’s performance on 
natural languages in Simulation 1.  

To further contrast the usefulness of item-specific vs. 
class-based distributional information, a separate set of 
simulations was performed after each word had been 
replaced by the corresponding class symbol from the rewrite 
rules in the original Saffran (2002) study.  

Scoring To model the two-alternative forced choice 
(2AFC) task from Saffran (2002), each item in a given test 
pair was scored according to the number of correctly placed 
phrase boundaries. The item with the highest score was then 
selected as the model’s response. If the model produced the 
same number of hits (including zero) for both items, a 
choice was made at random, allowing individual differences 
to appear across simulations. 

Results and Discussion 
The child subjects in Saffran (2002) had overall correct 
response rates of 71.8% for Language P and 58.3% for 
Language N. The model provided a close quantitative fit, 
with overall correct response rates of 70.5% for Language P 
and 57.5% for Language N. When the model was given 
information on word classes instead of concrete words, 

Fig. 2: Sentence production performance for CAPPUCCINO and the FTP-chunk/3G alternates 
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however, it provided a poor fit to the child data, with 81.1% 
accuracy for Language P and 39.7% for Language N. 

Thus, the model provides a close fit to these 
psycholinguistic data, suggesting that the ability to group 
words into larger units can indeed account for subject 
performance in the original study. While predictive 
dependencies between word classes were a potentially 
useful cue, the calculation of statistics over classes in the 
present model could not account for subject performance as 
well as the word-based approach. This resonates with the 
superior performance of the model on natural languages 
when working with words as opposed to lexical categories. 

General Discussion 
Our CAPPUCCINO model has demonstrated that 
incremental learning and on-line processing based on a 
single distributional cue, BTP, can capture a considerable 
part of children’s early linguistic behavior. In addition to 
approximating the performance of a shallow parser with 
high accuracy and completeness, the model was able to 
reproduce the majority of the child utterances in each of a 
typologically diverse set of 13 corpora, and closely fit AGL 
data from child subjects. In line with usage-based 
approaches to language (e.g., Tomasello, 2003), the model’s 
superior comprehension performance and ability to fit child 
AGL data when exposed to words as opposed to lexical 
categories suggests that knowledge of concrete words and 
chunks may be more important to early language acquisition 
than abstract rules operating over word classes. Of course, 
there is more to comprehension than shallow parsing—e.g., 
meaning is not taken into account—but it is encouraging to 
see just how well the model can reconstruct children’s 
utterances based on distributional information alone. 

As an initial step towards a chunk-based account of 
children’s comprehension and production of language, 
CAPPUCCINO is not without limitations. Firstly, although 
it closely fits child data from an artificial language learning 
study, it is important to determine whether our model can 
also account for specific patterns of natural language 
acquisition (e.g., similar to MOSAIC’s match with cross-
linguistic data regarding the optional infinitive stage; 
Freudenthal et al., 2009). Secondly, our model learns from 
already segmented speech and does not address the ways in 
which word segmentation may impact on chunk discovery; 

a child may discover its earliest chunks before segmentation 
of the component words has taken place. Finally, the 
unitization account offered by the model is oversimplified; 
psycholinguistic work suggests that there is no frequency 
‘threshold’ beyond which collocations are unitized, but 
instead that the processing advantage for chunks increases 
as a function of frequency (Arnon & Snider, 2010). In future 
work, we will thus aim to extend CAPPUCCINO by 
exposing it to unsegmented corpora, by making its chunk 
processing more graded, and by applying it to specific 
patterns of language acquisition. 
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