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REVIEW

Diagnosis and decision-making in radiology require that 
physicians integrate an imaging study’s findings with 

large amounts of information, including the patient’s 
clinical symptoms, laboratory values, comorbidities, prior 
medical history, and the likelihood of various diseases. Ar-
tificial intelligence (AI) systems can complement physician 
decision-making. These systems can store large amounts of 
data and perform complex calculations consistently, quick-
ly, and without biases. A Bayesian network is an AI formal-
ism, first introduced in 1985, that can learn, store, and ap-
ply knowledge in the form of probability values to reason 
under conditions of uncertainty (1). Bayesian networks 
have been used in radiology to integrate clinical and imag-
ing findings for differential diagnosis and clinical decision-
making (2–4). This article offers a brief refresher of prob-
ability theory, introduces Bayesian networks as a graphical 
representation of probabilistic knowledge, reviews current 
applications of Bayesian networks in radiology, and dis-
cusses future applications. A glossary of Bayesian network 
terms (Table S1), Bayesian networks’ advantages and dis-
advantages (Table S2), and additional resources (Table S3) 
are included.

Probability: Background and Definitions
Bayesian networks use probability to reason in settings 
of uncertainty. Probability theory offers a set of methods 
to conceptualize and quantify uncertainty. Probability 
values obey three fundamental properties: (a) an event’s 
probability value must be greater than or equal to 0, (b) 

the values of all possible events must sum to 1, and (c) the 
probability of A or B is the sum of their individual prob-
abilities if the two events are mutually exclusive.

Conditional probability expresses the likelihood of one 
event given another and is defined as probability that the 
two events, A and B, occur together (their joint probability) 
divided by the probability of the event conditioned upon. 
Thus, the conditional probability of A given B is defined 
as P(A|B) = P (A,B)/P(B). Conditional probabilities are fa-
miliar concepts in diagnostic medical testing, such as sen-
sitivity, specificity, positive predictive value, and negative 
predictive value. Conditional probabilities of A and B are 
related using Bayes theorem,

Bayes theorem allows probabilistic reasoning in both 
directions, that is, from the probability of B given A to the 
probability of A given B, or vice versa. In the setting of a 
diagnostic test, where A and B might represent a disease 
and a positive test result, respectively, one could compute 
the probability of the test result given the disease, or that of 
the disease given the test result.

Bayesian Networks
In medical applications, Bayesian networks typically ex-
press relationships between uncertain variables, such as 
the presence of a disease, and observable variables, such 
as demographic data, symptoms, vital signs, laboratory 
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A Bayesian network is a graphical model that uses probability theory to represent relationships among its variables. The model is a directed acy-
clic graph whose nodes represent variables, such as the presence of a disease or an imaging finding. Connections between nodes express causal 
influences between variables as probability values. Bayesian networks can learn their structure (nodes and connections) and/or conditional 
probability values from data. Bayesian networks offer several advantages: (a) they can efficiently perform complex inferences, (b) reason from 
cause to effect or vice versa, (c) assess counterfactual data, (d) integrate observations with canonical (“textbook”) knowledge, and (e) explain 
their reasoning. Bayesian networks have been employed in a wide variety of applications in radiology, including diagnosis and treatment plan-
ning. Unlike deep learning approaches, Bayesian networks have not been applied to computer vision. However, hybrid artificial intelligence 
systems have combined deep learning models with Bayesian networks, where the deep learning model identifies findings in medical images and 
the Bayesian network formulates and explains a diagnosis from those findings. One can apply a Bayesian network’s probabilistic knowledge to 
integrate clinical and imaging findings to support diagnosis, treatment planning, and clinical decision-making. This article reviews the funda-
mental principles of Bayesian networks and summarizes their applications in radiology.
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To illustrate, Figure 1 presents a simple Bayesian network 
with three variables: (a) age, a continuous variable that has been 
discretized into five states (eg, 40–49 years); (b) breast cancer, 
with states present and absent, influenced by the patient’s age; and 
(c) mammogram, with states normal and abnormal, influenced by 
the presence or absence of breast cancer. Prior probabilities have 
been assigned for age; conditional probabilities have been speci-
fied for breast cancer and mammogram.

Inference
Inference is the computational procedure that applies a Bayesian 
network’s probabilistic knowledge. Highly efficient algorithms 
enable Bayesian networks to compute posterior probabilities, 
analyze the value of information, perform sensitivity analysis, 
and generate explanations of the model’s reasoning.

Posterior Probabilities
The most fundamental Bayesian network inference task is to 
compute posterior probabilities, which are the probabilities 
of the model’s states after evidence is presented. Given a set 
of evidence E, specified by fixing the states of any subset of 
nodes in the network, one can calculate the marginal posterior 
probabilities, P(□|E), of all other nodes. Because evidence in 
Bayesian networks can be transmitted in either direction across 
a link, Bayesian networks can be used to perform predictive 
inference (from causes to effects), diagnostic inference (from 
effects to causes), or any combination thereof. Efficient algo-
rithms can propagate beliefs throughout the network as ad-
ditional evidence is acquired (6,7). Additionally, one can ana-
lyze a counterfactual query, such as “If A were true (when it is 
known to be false), what is the probability of C given the other 
known information?” (8).

Value of Information
In settings in which evidence can be obtained incrementally 
(eg, through additional laboratory tests or imaging examina-
tions) a user may wish to know which piece of additional infor-
mation would have the greatest influence on the probability of 
the hypothesis node or nodes. In other words, which test result 
will add the greatest certainty to the diagnosis? A Bayesian net-
work can calculate the value of information by computing the 
mutual information (or cross-entropy) of the hypothesis node 
H given a particular observation node O, written I(H;O). The 
most informative evidence for that hypothesis is the one with 
the highest value of I(H;O) (9).

Sensitivity Analysis
When using a Bayesian network in practice, a natural ques-
tion is how much confidence one should have in the network’s 
output. In other words, how sensitive are the results to small 
changes in the network’s parameters? A model’s sensitivity can 
be determined by calculating the derivatives of the posterior 
probability distributions of the set of target nodes (eg, diag-
nostic hypotheses) over each of the conditional probability 
table entries in the Bayesian network (10–12). A large de-
rivative means that small changes in the parameter may lead 

values, and imaging findings. Bayesian networks can integrate 
large amounts of probabilistic knowledge in a mathematically 
robust way that eliminates many of the heuristic biases of hu-
man decision-making. A Bayesian network model consists of 
a graph and an associated set of conditional probability tables 
(1,5,6). The graph incorporates a set of nodes and a set of edges, 
or arcs, that connect pairs of nodes. The nodes in a Bayesian 
network represent stochastic, or random, variables. Variables can 
have continuous or discrete values; we limit our discussion to 
variables with discrete values, as they are seen most frequently in 
medical applications. Continuous variables, such as age or labo-
ratory values, are typically discretized. Each node thus has two 
or more states that each have an associated probability value. The 
states must be exhaustive (they cover all possibilities) and mutu-
ally exclusive (only one can be true). Thus, the probability values 
for any node’s states always sum to 1. The edges of a Bayesian 
network form a directed acyclic graph, as the edges have speci-
fied direction and cannot form a closed-loop cycle.

Each node has a conditional probability table that specifies 
its states’ probabilities given the values of the node’s incoming 
edges. For nodes without incoming edges, the conditional prob-
ability table specifies the prior probability values of the nodes’ 
states. An edge between two nodes represents probabilistic influ-
ence between the two variables, expressed as a set of conditional 
probabilities. By convention, the orientation of the edge conveys 
the direction of causal influence.

Abbreviations
AI = artificial intelligence, BI-RADS = Breast Imaging Reporting 
and Data System 

Summary
Bayesian networks are graphical models that use probability theory 
to integrate clinical and imaging findings for diagnosis and clinical 
decision-making, with the advantages of explainability and ability to 
train on small datasets.

Essentials
	■ Bayesian networks have been used in radiology to integrate clini-

cal and imaging findings for differential diagnosis and clinical 
decision-making.

	■ Efficient algorithms enable Bayesian networks to compute poste-
rior probabilities (updated probabilities given additional informa-
tion), analyze the value of information (to identify the most useful 
next diagnostic test), perform sensitivity analysis, and generate 
explanations of the model’s reasoning.

	■ Bayesian networks offer advantages over various other artificial in-
telligence approaches, including explainability and accurate infer-
ence from small datasets and in the setting of missing data.

	■ Although Bayesian networks have not been applied to computer 
vision, hybrid artificial intelligence systems have combined deep 
learning models with Bayesian networks; the deep learning 
model identifies and extracts findings in medical images, and the 
Bayesian network formulates and explains a diagnosis from those 
findings and other clinical and laboratory data.

Keywords
Bayesian Network, Machine Learning, Abdominal Imaging, Muscu-
loskeletal Imaging, Breast Imaging, Neurologic Imaging, Radiology 
Education
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the impact of omitting that evidence (15). Macrolevel explana-
tions identify the network paths through which evidence flows 
to influence the hypothesis. The technique identifies all paths 
through the network from evidence nodes to the hypothesis 
and measures the strength of each, defined as the amount by 
which the evidence influences the probability of each node 
along the path. The idea is that the path is as strong as its weak-
est link. The paths can then be displayed and ranked in terms 
of strength (eg, Fig 2D) (15,16).

Constructing a Model
There is considerable flexibility in the construction of Bayesian 
networks; one can apply manual and/or automated approaches 
for structure learning and parameter learning. Structure learning 
determines the structure of the Bayesian network’s graphical 
model, including the dependence and independence of vari-
ables and the placement of the edges of the graph. Structure 
learning methods include scoring-based search algorithms 
(using optimization techniques), constraint-based algorithms 

to large changes in the target nodes’ posterior probabilities. 
In most cases, one can identify a small subset of parameters, 
called the sensitivity set, that influences the probability of the 
target nodes.

Explanation
Although deep neural networks have been applied successfully 
to numerous image- and text-based applications in radiology, 
their “black-box” property has rekindled interest in explain-
able AI (13). Bayesian networks offer strong advantages over 
neural networks; one can exploit a Bayesian network’s structure 
to describe direct and indirect influences between variables. A 
Bayesian network model explicitly specifies probabilistic rela-
tionships between variables and can quantify those relation-
ships. Two types of explanations, microlevel and macrolevel, 
have been described (14). Microlevel explanations identify the 
pieces of evidence that had the greatest influence on the hy-
pothesis of interest. Explanation is generated using a computa-
tion similar to that for value of information; one can quantify 

Figure 1:  An example Bayesian network model with three nodes. Tan-colored nodes are inferred from known information; nodes in gray have 
been set (instantiated) to a specific value, typically in response to an observation. An arrow indicates the direction of probabilistic influence; if an ar-
row points from node A to node B, then the probabilities of B’s states are conditioned on A. For example, the probability of abnormal mammographic 
findings is conditioned on the presence or absence of breast cancer. (A) The conditional probability tables for breast cancer and mammogram are 
shown beneath those nodes; here the sensitivity of mammography for breast cancer, P (mammogram = abnormal | breast cancer = present), is 90%. 
Prior probabilities have been assigned to the age ranges. Before any evidence is presented, there is a 1.26% probability that breast cancer is pres-
ent. (B) If we know that the patient is of age 70 or greater, the model infers a 2.60% probability that breast cancer is present. (C) If that patient has 
an abnormal mammogram, the probability of breast cancer rises to 32.5%. Note that although the arrow points from breast cancer to mammogram, 
information can flow in each direction. As one would expect, the result of the mammogram influences the patient’s likelihood of breast cancer.

http://radiology-ai.rsna.org
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data from the peer-reviewed literature to evaluate hepatobili-
ary diseases based on a patient’s age and sex, imaging findings, 
physical examination findings, and laboratory values (24). This 
model served as a test bed for a system to explain a Bayesian 
network model’s reasoning. A model for diagnosis of acute ap-
pendicitis in children applied four US imaging features (appen-
diceal diameter, wall hyperemia, appearance of periappendiceal 
mesentery, presence of appendicolith) and nine clinical and 
laboratory variables (including duration of symptoms, pres-
ence of fever, white blood cell count, and C-reactive protein) 
(25). This model was derived from existing clinical data, pub-
lished literature, and expert opinions without requiring a large 
dataset to train on. As an example, in a pediatric patient with 
an appendix of 11 mm, appendicolith present, wall hyperemia, 
fever, and 48 hours of symptoms, the Bayesian network deter-
mined a 97% probability of acute appendicitis. In a pediatric 
patient with nonvisualized appendix, normal-appearing mes-
entery, normal white blood cell count, no fever but with re-
bound tenderness and nausea, the Bayesian network calculated 
a 34% probability of acute appendicitis. The model was able to 
assign a probability even if certain imaging or clinical data were 
missing or not available.

Musculoskeletal Imaging
Primary bone tumors are rare and can present a diagnostic 
challenge. A Bayesian network model was able to correctly dis-
criminate among five benign and five malignant neoplasms of 
the appendicular skeleton using age, sex, and 17 radiographic 
characteristics (26). A naive Bayesian approach used two clini-
cal and 16 qualitative radiographic features to diagnose 29 
bone tumor types based on data of 1664 cases. This system 
correctly identified the diagnosis in 44% of cases and listed 

(to test for conditional dependence in the data), and Bayes-
ian methods (to generate an ensemble of possible structures). 
These methods are beyond the scope of this review and are dis-
cussed in detail elsewhere (17,18). Parameter learning applies a 
given dataset to determine the conditional probability values at 
each node. For example, Burnside et al (19) trained a Bayesian 
network from a large database of patient demographics and 
mammographic findings to accurately predict the presence of 
breast cancer. Several approaches have been developed to au-
tomatically deduce both the structure and the parameters of a 
Bayesian network from data (20,21).

One can combine manual and automated approaches to pa-
rameter learning by blending probability values provided by ex-
perts and those learned from data. Laplace smoothing is a com-
mon approach that adds a smoothing parameter, λ > 0, to each 
state’s count to assure a nonzero value (22). For example, for a 
variable with three states, Laplace smoothing would assign an 
initial count of λ to each state to give each state a probability of 
one-third. As actual data are accrued, each state’s count is incre-
mented accordingly. Laplace smoothing provides a simple way 
to avoid overfitting by pulling the probability estimates away 
from zero and toward the uniform distribution, and the effect of 
smoothing wanes as more data are accrued.

Applications in Clinical Radiology

Abdominal Imaging
Several diagnostic models have been developed in abdominal 
imaging. Decision Aid for Diagnosing Liver Lesions (DAFO-
DILL) aided in diagnosis of 14 types of liver lesions using eight 
MRI-based features and four clinical features (23). A model 
for diagnosis of gallbladder disease incorporated probability 

Figure 2:  As illustrated schematically in independent examples, Bayesian networks can (A) perform exact and efficient computation over mod-
els with hundreds or thousands of variables, (B) reason “forwards” from causes to effects as well as “backwards” from effects to causes, (C) learn 
their structure and probability values from manual input and/or directly from data, and (D) explain their reasoning.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 5: Number 6—2023  ■  radiology-ai.rsna.org� 5

Ma et al

Radiology Education
Because Bayesian networks can invoke the causal connections 
and probability values to explain their reasoning, researchers 
have explored Bayesian networks in radiology education. The 
Bayesian Network Tutoring and Explanation (BANTER) sys-
tem tutored users in diagnosis and selection of optimal diag-
nostic procedures. It computed posterior probabilities based on 
given evidence, determined the best diagnostic procedure to 
affirm or exclude a potential diagnosis, quizzed users on their 
selection of optimal diagnostic procedures, and generated ex-
planations of its reasoning (16,41,42). The Adaptive Radiology 
Interpretation and Education System, or ARIES, allowed users 
to interact with Bayesian network models to compute proba-
bilities of disease, identify the features most strongly associated 
with a given diagnosis, and highlight the most discriminative 
features through sensitivity analyses (43,44).

Discussion

Advantages of Bayesian Networks
Bayesian networks offer several advantages and can be used 
instead of or in concert with other radiology AI approaches, 
such as deep neural networks, decision trees, support vec-
tor machines, and clustering algorithms. Bayesian networks 
can apply a variety of highly efficient algorithms to learn a 
model’s structure and/or conditional probability parameters 
directly from data. It can also apply a network’s probabilistic 
knowledge to determine the most likely diagnosis, identify the 
most useful diagnostic test, and determine the sensitivity of 
the model’s conclusions to its variables. Bayesian networks can 
make accurate inferences from relatively small datasets and can 
perform well in the setting of missing data. Although convo-
lutional neural networks and other deep learning algorithms 
have been applied to numerous imaging tasks, such as detec-
tion and diagnosis of abnormalities, a frequent concern is their 
inability to explain their reasoning (13,45). In addition, other 
AI learning methods often require large datasets—on the order 
of 1000 or 10 000 cases—to achieve useful results (46). Recent 
work combining deep learning to detect findings and Bayes-
ian networks to relate those findings to diagnoses can tap the 
advantages of both technologies (39,40). Some key features of 
Bayesian networks are summarized schematically in Figure 2.

Bayesian network models can be updated continuously to learn 
from experience and play a role in learning health systems. The 
ability to directly examine a Bayesian network’s probability tables 
can help assure that the model is performing as expected (47). Re-
searchers have extended the capabilities of Bayesian networks into 
models that evolve over time and integrated them into logic-based 
models for automated reasoning. A dynamic Bayesian network, a 
model that repeats the static interactions of a conventional Bayes-
ian network over time, has been developed to predict lung cancer 
risk from clinical and CT findings (17,48,49).

Several efforts have sought to integrate the probabilistic rea-
soning of Bayesian networks with other AI frameworks, such as 
logic-based knowledge representation and neural network learn-
ing mechanisms. A generalized logic-programming approach 

the correct condition among the three most likely conditions 
in 60% of cases (27). These examples show how Bayesian net-
works can be applied in settings with relatively few cases from 
which to learn. Unlike neural network approaches, which gen-
erally require large datasets for training, Bayesian networks can 
apply knowledge from the medical literature.

Breast Imaging
Breast imaging reports contain highly structured data that 
are particularly suitable for diagnostic decision support. The 
MammoNet system incorporated seven clinical features and 
15 mammographic findings to predict the presence of breast 
cancer. It achieved an area under the receiver operating char-
acteristic curve of 0.88 on 67 test cases (28,29). Burnside et al 
(19) analyzed a database of more than 48 000 screening and 
diagnostic mammograms, matched with outcomes data from 
a breast cancer registry, to create a tree-augmented naive Bayes 
model of breast cancer risk that achieved an area under the 
receiver operating characteristic curve of 0.96. A natural lan-
guage processing tool that extracted Breast Imaging Report-
ing and Data System (BI-RADS) descriptors from textual 
mammography reports applied this Bayesian network model 
to predict BI-RADS assessment category with 98% accuracy, 
and the model was shown to reduce false-positive interpreta-
tions by 29% (30,31). Another Bayesian network model of 16 
epidemiologic and clinical characteristics, morphologic MRI 
features, and quantitative MRI parameters was developed to 
predict the risk of triple-negative breast cancer (32).

Neurologic Imaging
Bayesian networks have been applied in a variety of neurosci-
ence and neuroimaging studies, including resting-state func-
tional MRI studies to predict states of belief and disbelief 
and early diagnosis of Alzheimer disease from structural MRI 
(33–35). Bayesian networks have been used in an array of mul-
timodal MRI analyses for limited but complex diagnostic tasks 
in neuroradiology, including differentiating among atypical 
meningiomas, glioblastomas, and metastases (36); predicting 
glioma grade (37); and assisting in segmentation of multiple 
sclerosis lesions (38).

Advances in deep learning, such as convolutional neural 
networks, have enabled automated image analysis methods 
that make possible fully automated diagnostic systems to go 
from raw images to differential diagnoses. Recent studies ex-
plored Bayesian networks for diagnosis of 19 diseases involving 
the cerebral hemispheres (39) and 36 diseases involving deep 
gray matter (40). These efforts generated differential diagnoses 
with high accuracy by combining deep learning to detect and 
characterize abnormalities on multimodal brain MR images 
with Bayesian networks to integrate these imaging abnormali-
ties with clinical features. These systems achieved performance 
similar to that of subspecialists and better performance than 
that of general radiologists and neuroradiology fellows. The ap-
proach accurately models the steps taken by radiologists when 
generating an image-based differential diagnosis, namely rec-
ognizing imaging abnormalities and then integrating imaging 
findings with clinical context.

http://radiology-ai.rsna.org
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constructs a Bayesian network to answer queries based on a 
context-sensitive probabilistic knowledge base (50). Ontologies 
apply a logic-based framework to enable automated reasoning 
through the relationships defined between concepts (51). Several 
groups have explored approaches to augment ontologies with 
Bayesian networks’ probabilistic knowledge and ability to reason 
under uncertainty (52–54). Bayesian neural networks consist of 
a stochastic artificial neural network trained using Bayesian in-
ference (55).

Limitations of Bayesian Networks
Bayesian networks have several limitations. Unlike deep neural 
networks, Bayesian networks cannot be applied as directly to 
tasks in computer vision and natural language processing. An 
important limitation is the need to discretize continuous vari-
ables; automated approaches for discretization pose a technical 
challenge, and the only continuous distribution that Bayesian 
networks can work with is a conditional Gaussian distribution 
(56). Furthermore, the scope of Bayesian networks has been lim-
ited, especially in biomedical applications. A recent review found 
that almost 60% of Bayesian-network health care applications 
were focused in only four areas: heart conditions, cancer, psy-
chologic disorders, and lung disease (57). As outlined by Kyrimi 
et al (58), despite hundreds of articles published on Bayesian 
networks, there is still a large implementation gap, as Bayesian 
networks have rarely been applied in routine clinical practice.

Future Applications
One key opportunity for Bayesian networks lies in their inte-
gration with deep learning models, as has been shown for di-
agnosis in neuroradiology (39,40). Such hybrid approaches use 
the relative strengths of each technology. Deep neural networks 
can effectively recognize patterns and extract features, such as 
increased fluid-attenuated inversion recovery signal intensity in 
a certain spatial distribution, and Bayesian networks can inter-
pret and integrate the extracted image features, in combination 
with relevant clinical features such as age, sex, and laboratory 
values, to provide an explainable diagnosis. For rare diseases, 
a particular advantage of Bayesian networks is that one can 
specify a model’s probability tables with values gleaned from 
the medical literature rather than having to present thousands 
of examples to train a deep learning system.

Bayesian networks are poised to play an important role in 
learning health systems. Because a model’s conditional probabil-
ity tables can be updated directly based on its experience, accrual 
of real-life data will allow a Bayesian network to model its popu-
lation more precisely and to automatically adjust its reasoning 
over time to match a changing environment. For example, once a 
specific diagnosis is identified, the patient’s clinical data can then 
be inputted to refine the model. One can imagine collecting data 
on a larger scale from a health system’s laboratory, pathology, and 
genomics databases to continually update probabilistic models 
for imaging diagnosis. Standardized data dictionaries, such as the 
Observational Medical Outcomes Partnership Common Data 
Model (59) and the radiology community’s Common Data Ele-
ments (60), will support such efforts.

Conclusion
Bayesian networks continue to form an important AI ap-
proach in radiology. They offer powerful machine learning 
and decision support capabilities across a large number of 
applications. Their ability to learn from small datasets and 
provide explainable decisions make them especially useful in 
a medical field that integrates multimodal data for diagno-
sis and medical decision-making. One can combine Bayesian 
networks with other AI approaches. For example, one can 
use deep learning techniques to identify findings in images 
and use Bayesian networks to integrate those findings with 
other data and to explain the system’s reasoning. There are 
opportunities for greater adoption of Bayesian networks in 
clinical practice.
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