
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Discovery of Latent Factors in High-dimensional Data Using Tensor Methods

Permalink
https://escholarship.org/uc/item/97f3404j

Author
Huang, Furong

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97f3404j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Discovery of Latent Factors in High-dimensional Data Using Tensor Methods

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Furong Huang

Dissertation Committee:
Assistant Professor Animashree Anandkumar, Chair

Professor Carter Butts
Associate Professor Athina Markopoulou

2016

All materials c© 2016 Furong Huang

DEDICATION

To Jinsong Huang and Shaoyun Liu

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xiii

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Summary of Contributions . 3

1.1.1 Globally Guaranteed Online Tensor Decomposition 3
1.1.2 Deployment of Scalable Tensor Decomposition Framework 4
1.1.3 Learning Invariant Models Using Convolutional Tensor Decomposition 6
1.1.4 Learning Latent Tree Models Using Hierarchical Tensor Decomposition 7
1.1.5 Discovering Neuronal Cell Types Using Spectral Methods 8

1.2 Tensor Preliminaries . 9
1.3 Background and Related Works . 12

1.3.1 Online Stochastic Gradient for Tensor Decomposition 12
1.3.2 Applying Online Tensor Methods for Learning Latent Variable Models 15
1.3.3 Dictionary Learning through Convolutional Tensor Decomposition . . 17
1.3.4 Latent Tree Model Learning via Hierarchical Tensor Decomposition . 22

1.4 Thesis Structure . 24

2 Online Stochastic Gradient for Tensor Decomposition 25
2.1 Preliminaries . 27
2.2 Stochastic Gradient Descent for Strict saddle Function 29

2.2.1 Strict saddle Property . 29
2.2.2 Proof Sketch . 32
2.2.3 Constrained Problems . 34

2.3 Online Tensor Decomposition . 36
2.3.1 Optimization Problem for Tensor Decomposition 36

iii

2.3.2 Implementing Stochastic Gradient Oracle 38
2.4 Experiments . 40
2.5 Conclusion . 42

3 Applying Online Tensor Methods for Learning Latent Variable Models 43
3.1 Tensor Forms for Topic and Community Models 45

3.1.1 Topic Modeling . 45
3.1.2 Mixed Membership Model . 48

3.2 Learning using Third Order Moment . 50
3.2.1 Dimensionality Reduction and Whitening 51
3.2.2 Stochastic Tensor Gradient Descent 52
3.2.3 Post-processing . 53

3.3 Implementation Details . 54
3.3.1 Symmetrization Step to Compute M2 54
3.3.2 Efficient Randomized SVD Computations 55
3.3.3 Stochastic Updates . 59
3.3.4 Computational Complexity . 61

3.4 Validation methods . 66
3.4.1 P -value Testing . 66
3.4.2 Evaluation Metrics . 67

3.5 Experimental Results . 70
3.6 Conclusion . 76

4 Dictionary Learning through Convolutional Tensor Decomposition 78
4.1 Model and Formulation . 80

4.1.1 Convolutional Dictionary Learning/ICA Model 81
4.2 Form of Cumulant Moment Tensors . 82
4.3 Alternating Least Squares for Convolutional Tensor Decomposition 84
4.4 Algorithm Optimization to Reduce Memory and Computational Costs 87

4.4.1 Challenge: Computing ((H⊤H). ⋆ (G⊤G))† 88
4.4.2 Challenge: Computing M = C3(H⊙ G) · ((H⊤H). ⋆ (G⊤G))† 89

4.5 Experiments: Comparison with Alternating Minimization 91
4.6 Application: Learning Word-sequence Embeddings 92

4.6.1 Word-Sequence Modeling and Formulation 92
4.6.2 Evaluating Embeddings through Downstream Tasks 97

4.7 Conclusion . 102

5 Latent Tree Model Learning through Hierarchical Tensor Decomposition103
5.1 Latent Tree Graphical Model Preliminaries 105
5.2 Overview of Approach . 107
5.3 Structure Learning . 108
5.4 Parameter Estimation . 110
5.5 Integrated Structure and Parameter Estimation 111

5.5.1 Local Recursive Grouping with Tensor Decomposition 111
5.5.2 Merging and Alignment Correction 113

iv

5.6 Theoretical Gaurantees . 116
5.7 Experiments . 117

5.7.1 Validation . 118
5.8 Conclusion . 122

6 Discovering Cell Types with Spatial Point Process Mixture Model 123
6.1 Introduction . 124

6.1.1 Motivations and Goals . 124
6.1.2 Previous Work . 126

6.2 Modeling Cell-types Using Spatial Point Process Features 129
6.2.1 The Marked Spatial Point Process Representation of ISH Images . . . 129
6.2.2 Representing Spatial Point Processes Using Joint Feature Histograms 130

6.3 Un-mixing Spatial Point Processes to Discover Cell-types 131
6.3.1 Generative Model: A Variation of Latent Dirichlet Allocation 131
6.3.2 Estimating the Cell-type Dependent Gene Expression Profile β 132
6.3.3 Estimating the Cell-type Dependent Spatial Point Process Histogram h 133

6.4 Results and Evaluation . 134
6.4.1 Implementation Details . 134
6.4.2 Evaluating Cell-type Gene Expression Profile Predictions 135
6.4.3 Comparison to Standard Average Gene Expression Features 136
6.4.4 A Brief Analysis of Recovered Cell Types in Somatosensory Cortex . 138

6.5 Conclusion . 139

7 Conclusion and Outlook 141
7.1 Conclusion . 141
7.2 Outlook . 142

Bibliography 143

A Appendix for Online Stochastic Gradient for Tensor Decomposition 156
A.1 Detailed Analysis for Section 2.2 in Unconstrained Case 156
A.2 Detailed Analysis for Section 2.2 in Constrained Case 172

A.2.1 Preliminaries . 174
A.2.2 Geometrical Lemmas Regarding Constraint Manifold 178
A.2.3 Main Theorem . 183

A.3 Detailed Proofs for Section 2.3 . 195
A.3.1 Warm Up: Maximum Eigenvalue Formulation 195
A.3.2 New Formulation . 200
A.3.3 Extending to Tensors of Different Order 209

B Appendix for Applying Online Tensor Methods for Learning LVMs 212
B.1 Stochastic Updates . 212
B.2 Proof of Algorithm Correctness . 214
B.3 GPU Architecture . 215
B.4 Results on Synthetic Datasets . 219

v

B.5 Comparison of Error Scores . 220

C Appendix for Dictionary Learning via Convolutional Tensor Method 224
C.1 Cumulant Form . 224
C.2 Proof for Main Theorem 4.1 . 225
C.3 Parallel Inversion of Ψ . 226

D Appendix for Latent Tree Learning via Hierarchical Tensor Method 228
D.1 Additivity of the Multivariate Information Distance 228
D.2 Local Recursive Grouping . 230
D.3 Proof Sketch for Theorem 5.1 . 231
D.4 Proof of Correctness for LRG . 233
D.5 Cross Group Alignment Correction . 235
D.6 Computational Complexity . 236
D.7 Sample Complexity . 237
D.8 Efficient SVD Using Sparsity and Dimensionality Reduction 238

E Appendix for Spatial Point Process Mixture model Learning 240
E.1 Morphological Basis Extraction . 240

E.1.1 Gaussian Prior Convolutional Sparse Coding 241
E.1.2 Image Registration/Alignment . 242

vi

LIST OF FIGURES

Page

1.1 Unsupervised learning general framework . 3
1.2 Tensor decomposition framework is versatile 5
1.3 Tensor decomposition vs variational inference on PubMed 5
1.4 Tensor decomposition vs variational inference on social networks 5
1.5 Word embedding and sentence embedding 6
1.6 Hierarchical tensor decomposition. 7
1.7 Examples of brain slices. 8
1.8 Orthogonal matrix decomposition is not unique without eigenvalue gap. . . . 10
1.9 Orthogonal tensor decomposition is unique with or without eigenvalue gap. . 11
1.10 Flat multi-view vs hierarchical latent variable graphical model 23

2.1 Comparison of different objective functions 41
2.2 Comparison of different objective functions 42

3.1 Efficient computation in smart order . 55
3.2 Data transfer between CPU and GPU . 58
3.3 STGD running time comparison . 60
3.4 P -value matching . 66
3.5 Yelp result . 73
3.6 Facebook result tunning . 76

4.1 Block structure . 84
4.2 Error and running time comparison . 92
4.3 Principal component projection . 93
4.4 Overview of our ConvDic+DeconvDec framework 94
4.5 Tensor decomposition for learning convolutional ICA models 95
4.6 Third order cumulant . 95

5.1 Latent tree and hierarchical tensor decomposition 104
5.2 Overall approach illustrated in a toy example 107
5.3 Running time . 119
5.4 Subtree 1 of estimated human disease hierarchy 120
5.5 Subtree 1 of estimated human disease hierarchy 121

6.1 Overview of the proposed framework . 128
6.2 Synthetic results and comparison with average gene expression level baseline. 135

vii

6.3 Estimated β on marker genes for 8 cell types 137
6.4 Detected 8 cell type feature visualization . 138

viii

LIST OF TABLES

Page

3.1 Linear algebraic operation counts . 59
3.2 Time and space complexity . 61
3.3 New York Times results: topics . 72
3.4 New York Times results: words . 72
3.5 Datasets summary . 73
3.6 Compare community detection results against variational method 74
3.7 Membership recovery in Yelp review data . 75

4.1 Summary statistics of the datasets used. 97
4.2 Classification tasks . 99
4.3 Paraphrase detection tasks . 99
4.4 STS task . 101

5.1 Worst-case computational complexity of our algorithm 117
5.2 Robinson Foulds (RF) metric . 119

ix

LIST OF ALGORITHMS

Page
1 Noisy Stochastic Gradient . 31
2 Projected Noisy Stochastic Gradient . 34
3 Moment-based spectral learning of latent variable models 51
4 Randomized tall-thin SVD . 57
5 Randomized Pseudoinverse . 57
6 LRG with Parameter Estimation . 112
7 Merging and Alignment Correction (MAC) . 113
8 Parameter Alignment Correction . 115

x

ACKNOWLEDGMENTS

First and foremost I want to thank my advisor Animashree Anandkumar, who has been my
role model as a successful female professor in machine learning. It has been an honor to be
her first Ph.D. student. I appreciate all the efforts she put to help build my confidence, guide
me through my early research career, and make my graduate study experience productive
and stimulating. Her endless enthusiasm for research has been contagious and a source of
motivation. She has also continually and convincingly conveyed a spirit of adventure with
regard to research and scholarship. Anima is not only a role model, a career guide but also a
friend who shares life experience and offers excellent advice. I couldn’t have fought through
the tough times in my Ph.D. pursuit without her inspiration or support.

During my graduate studies, I have been lucky to have collaborated with some smart and
innovative minds who inspired me profoundly. My collaborator Rong Ge has impressed
me by his enthusiasm, intensity and incredible ability to disentangle complicated research
problems. I would also like to acknowledge Chi Jin and Yang Yuan for always being available
for discussions and brainstorming. I am especially grateful for working with Srini Turaga and
Ernest Fraenkel. They provided comments and advice from fresh angles and stimulated me to
think differently. I appreciate insightful and sparkling discussions with Sham Kakade, Daniel
Hsu, David Mimno, David Blei, Qirong Ho, Alex Smola, Paul Mineiro, Nikos Karampatziakis
and others. During my internship in Microsoft Research New England, I have met the most
wonderful mentors Jennifer Chayes and Christian Borgs, whose support has powered me to
chase my academic dreams.

I would like to thank my committee members, Professor Athina Markopoulou, and Professor
Carter Butts, who are always there for me whenever I need advice. In addition, a thank
you to Professor Max Welling and Professor Alexander Ihler, who introduced me to machine
learning, and stimulated my long lasting enthusiasm for machine learning. I also appreciate
the efforts of Professor Padhraic Smyth, who started the Data Science Initiative, a growing
interdisciplinary machine learning community, in UC Irvine.

The members of the MEGADatA group, Majid Janzamin, Hanie Sedghi, Niranjan UN,
Forough Arabshahi, Yang Shi, Kamyar Azizzade, and Saeed Karimi Bidhendi, have brought
immense amount of joy to my personal and professional time at UC Irvine. I am grateful
for the nights we spent working on paper deadlines, as well as the fun times we had wearing
bean sprout hair clips in the lab and posing for group profile pictures. The group has been
a source of friendships and collaborations.

I thank MIT Press for permission to include Chapter 2 of my thesis, which was originally
published in Conference of Learning Theory. And I thank MIT Press for permission to
include Chapter 3 and 4 of my thesis, which was originally published in Journal of Machine
Learning. I gratefully acknowledge the funding sources that made my Ph.D. work possible.
I was funded by the EECS Department fellowship. My work was also supported by the
National Science Foundation BIGDATA award.

xi

Lastly, I would like to thank my family for all their unconditional love and faithful support.
Thank my parents, Jinsong Huang and Shaoyun Liu, for raising me with hard-working spirit
and a love of science. Wenchao Xi, thank you for always being by my side, sharing joy and
sorrow, in the years of adventure.

xii

CURRICULUM VITAE

Furong Huang

EDUCATION

Doctor of Philosophy in ECE 2016
University of California Irvine Irvine, CA, USA

Master of Science in ECE 2012
University of California Irvine Irvine, CA, USA

Bachelor of Science in EECS 2010
Zhejiang University Hangzhou, Zhejiang, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2010–2016
University of California Irvine Irvine, California

Research Intern 2014.3–2014.5
Microsoft Research Redmond, Washington

Research Intern 2014.6–2014.12
Microsoft Research New England Cambridge, Massachusetts

REFEREED JOURNAL PUBLICATIONS

F. Huang, U.N. Niranjan, M.U. Hakeem and A. Anandkumar, “On-
line Tensor Methods for Learning Latent Variable Models”

2014

Journal of Machine Learning

A. Anandkumar, V.Y.F Tan, F. Huang and A.S. Willsky, “High-
Dimensional Structure Learning of Ising Models: Local Separation
Criterion”

2012

Annals of Statistics

A. Anandkumar, V.Y.F Tan, F. Huang and A.S. Willsky, “High-
Dimensional Gaussian Graphical Model Selection: Walk-Summability
and Local Separation Criterion”

2012

Journal of Machine Learning

xiii

REFEREED CONFERENCE PUBLICATIONS

F. Huang, A. Anandkumar, C. Borgs, J. Chayes, E. Fraenkel, M.
Hawrylycz, E. Lein, A. Ingrosso, S. Turaga, “Discovering Neuronal
Cell Types and Their Gene Expression Profiles Using a Spatial Point
Process Mixture Model”

2015

NIPS BigNeuro workshop 2015

F. Huang, U.N. Niranjan, J. Perros, R. Chen, J. Sun, A. Anand-
kumar,“Scalable Latent Tree Model and its Application to Health
Analytics”

2015

NIPS 2015 Workshop on Machine Learning in Healthcare

F. Huang, A. Anandkumar, “Convolutional Dictionary Learning
through Tensor Factorization”

2015

JMLR conference and workshop proceedings

F. Arabshahi, F. Huang, A. Anandkumar, C. Butts, “Are you going
to the party: depends, who else is coming? –Learning hidden group
dynamics via conditional latent tree models”

2015

2015 IEEE International Conference on Data Mining (ICDM)

F. Huang, S. Matusevych, A.Anandkumar, N. Karampatziakism and
P. Mineiro, “Distributed Latent Dirichlet Allocation via Tensor Fac-
torization”

2014

NIPS Optimization for Machine Learning workshop

A. Anandkumar, D. Hsu, F. Huang and S.M. Kakade, “Learning
High-Dimensional Mixtures of Graphical Models”

2012

Proc. of NIPS 2012

F. Huang and A. Anandkumar, “FCD: Fast-Concurrent-Distributed
Load Balancing under Switching Costs and Imperfect Observations”

2013

In Proc. of the 32nd IEEE INFOCOM

F. Huang, W. Wang and Z. Zhang, “Prediction-based Spectrum Ag-
gregation with Hardware Limitation in Cognitive Radio Networks”

2010

IEEE Vehicular Technology Conference

SOFTWARE

xiv

TensorDecom4TopicModeling Link to Github repository
C++ algorithm that solves topic modeling LDA using tensor decomposition on single
node workstations.

OnlineTensorCommunity Link to Github repository
C++ and CUDA algorithms that solves community detection problem using tensor de-
composition on single node CPU and GPU.

SpectralLDA-TensorSpark Link to Github repository
Spark spectral LDA algorithms in Scala that solves large scale tensor decomposition.

ConvDicLearnTensorFactor Link to Github repository
Tensor decomposition algorithms that learns convolutional dictionary models.

AWARDS

MLconf Industry Impact Student Research Winner 2015
Google San Francisco, California

Travel Grant 2015
NIPS Montreal, Canada

Travel Grant 2013
WiML Lake Tahoe, Nevada

Fellowship 2010
University of California Irvine Irvine, California

xv

https://github.com/FurongHuang/TensorDecomposition4TopicModeling
https://github.com/FurongHuang/OnlineTensorCommunity
https://github.com/FurongHuang/SpectralLDA-TensorSpark
https://github.com/FurongHuang/ConvDicLearnTensorFactor

ABSTRACT OF THE DISSERTATION

Discovery of Latent Factors in High-dimensional Data Using Tensor Methods

By

Furong Huang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Assistant Professor Animashree Anandkumar, Chair

Unsupervised learning aims at the discovery of hidden structure that drives the observations

in the real world. It is essential for success in modern machine learning and artificial intel-

ligence. Latent variable models are versatile in unsupervised learning and have applications

in almost every domain, e.g., social network analysis, natural language processing, computer

vision and computational biology. Training latent variable models is challenging due to the

non-convexity of the likelihood objective function. An alternative method is based on the

spectral decomposition of low order moment matrices and tensors. This versatile framework

is guaranteed to estimate the correct model consistently. My thesis spans both theoretical

analysis of tensor decomposition framework and practical implementation of various appli-

cations.

This thesis presents theoretical results on convergence to globally optimal solution of tensor

decomposition using the stochastic gradient descent, despite non-convexity of the objective.

This is the first work that gives global convergence guarantees for the stochastic gradient

descent on non-convex functions with exponentially many local minima and saddle points.

This thesis also presents large-scale deployment of spectral methods (matrix and tensor

decomposition) carried out on CPU, GPU and Spark platforms. Dimensionality reduction

techniques such as random projection are incorporated for a highly parallel and scalable

xvi

tensor decomposition algorithm. We obtain a gain in both accuracies and in running times

by several orders of magnitude compared to the state-of-art variational methods.

To solve real world problems, more advanced models and learning algorithms are proposed.

After introducing tensor decomposition framework under latent Dirichlet allocation (LDA)

model, this thesis discusses generalization of LDA model to mixed membership stochastic

block model for learning hidden user commonalities or communities in social network, con-

volutional dictionary model for learning phrase templates and word-sequence embeddings,

hierarchical tensor decomposition and latent tree structure model for learning disease hierar-

chy in healthcare analytics, and spatial point process mixture model for detecting cell types

in neuroscience.

xvii

Chapter 1

Introduction

There has been tremendous excitement about machine learning and artificial intelligence over

the last few years. We are now able to do automated classification of images, where there

are a predefined set of image categories. Due to the enormous amount of available labeled

data, and powerful computation resources, we can train massive neural networks and obtain

features for classification in domains such as image classification, speech recognition, and

text understanding. However, all these tasks fall under what we call supervised learning,

where the training data provides label information. What if such labeled information about

the categories is absent? Can we have automated discovery of the features and categories?

This problem is known as unsupervised learning, and experts agree that it is one of the

hardest problems in machine learning. Unsupervised learning is usually the foundation for

the success of supervised learning in many real world problems, and it aims at summarizing

key features in the data. Human beings are known to be good at unsupervised learning,

as we accumulate “general knowledge” or “common sense.” But can we have “intelligent”

machines that mimic such capabilities?

1

We live in a world with explosively growing data; as we receive more data, not only do we

get more information but also are we confronted with more variables or “unknowns”. In

other words, as the data grows, the number of variables also grows, and this is known as

the high-dimensional regime. Learning the data patterns or the model in high dimensions is

extremely challenging due to curse of dimensionality. However, the useful information that

we need to gain an insightful understanding of the data usually hides in a low dimensional

space. Finding these hidden structures is computationally challenging since it is akin to

finding “a needle in a haystack”.

The hidden structures in data can be efficiently expressed with the use of probabilistic

latent variable models. The computational task of searching for hidden structures is then

expressed as learning a probabilistic latent variable model. Once the model is learned, the

hidden variables can be inferred based on the model parameters, as depicted in Figure 1.1.

There exit numerous popular approaches for probabilistic latent variable model learning

algorithms, among which two families of approaches are particularly successful: randomized

algorithms (such as MCMC) and deterministic algorithms (such as maximum likelihood

based variational inference). However, randomized algorithms are typically slow due to the

exponential mixing time. The deterministic maximum likelihood based estimators tend to

be faster than randomized algorithms, but the likelihood function is often intractable. One

solution is to substitute the likelihood objective with its approximation and search for the

optima. However, local search methods are susceptible to spurious local optima as the

surrogate likelihoods are usually non-convex.

In this thesis, we analyze and deploy an alternative tensor decomposition framework for

learning latent variable models. The basic paradigm of tensor decomposition framework

dates back to 1894 when Pearson [135] proposed the method of moments, a classical pa-

rameter estimation technique using data statistics. The method of moments identifies the

model whose parameters give rise to the observed aggregated statistics of the data (such

2

Words

Topics

Choice Variable

life gene data DNA RNA

k1 k2 k3 k4 k5

h

A A A A A

Unlabeled data Probabilistic latent variable model Learning Algorithm Inference

Figure 1.1: A general framework of unsupervised learning framework.

as empirical moments) [12]. Although matching the model parameters to the observed mo-

ments may involve solving computationally intractable systems of multivariate polynomial

equations, low-order moments (typically third or fourth order) completely characterize the

distribution for many classes of latent variable models [37, 36, 38, 128, 81, 15, 80], and

decomposition of the low-order statistics of the data (tensors) reveals the consistent model

parameters asymptotically. Therefore, the inverse method of moments is solved efficiently

with consistency guarantees (both in terms of computational and sample complexity), in

contrast to the computationally prohibitive maximum likelihood estimators which require

non-convex optimization and are subject to local optimality.

1.1 Summary of Contributions

1.1.1 Globally Guaranteed Online Tensor Decomposition

Learning latent variable models via method of moments involves a challenging non-convex

optimization problem in the high-dimensional regime as tensor decomposition is NP-hard

in general. We identify strict saddle property for non-convex problem that allows for ef-

ficient optimization. Using this property, we show that from an arbitrary starting point,

noisy stochastic gradient descent converges to a local minimum in a polynomial number of

iterations. To the best of our knowledge, this is the first work that gives global convergence

3

guarantees for stochastic gradient descent on non-convex functions with exponentially many

local minima and saddle points. Our analysis is applied to orthogonal tensor decomposition,

and we propose a new optimization formulation for the tensor decomposition problem that

has strict saddle property. As a result, we get the first online algorithm for orthogonal ten-

sor decomposition with global convergence guarantee [64]. By employing this algorithm, we

obtain an efficient unsupervised learning algorithm for a wide class of latent variable models.

1.1.2 Deployment of Scalable Tensor Decomposition Framework

Tensor decomposition framework is tailored for automated categorization of documents (that

is finding the hidden topics of articles) and prediction of social actors’ common interests or

communities (using the connectivity graph) in social networks efficiently, see Figure 1.2.

Compared to the state of the art variational inference, which optimizes the lower bound on

the likelihood, our results are surprisingly accurate and much faster [84, 86]. For instance,

we implemented our tensor decomposition on spark to learn topics in the PubMed data,

which consists of 8 million documents and 700 million words. Tensor method achieves much

more accurate results (better likelihood) compared to variational inference although we never

compute or optimize over the likelihood function. Furthermore, tensor method requires much

less computation time and is at least an order of magnitude faster.

Another comparison is carried out on graph data to evaluate the performance of discovering

hidden communities. On the Facebook friendship network, yelp bipartite review graph and

DBLP co-authorship system, tensor decomposition framework continues to be both accuracy

and fast compared to the state-of-the-art variational methods [86].

4

Topics

Education

Crime

Sports

Figure 1.2: Tensor decomposition framework is versatile. (a) Automated hidden topic dis-
covery. (b) Scalable community membership detection via connectivity graph.

103

104

105

P
e
rp

le
x
it
y

Tensor

Variational

0

2

4

6

8

10 ×104

R
u
n
n
in

g
T
im

e
(s
)

Figure 1.3: Tensor decomposition framework vs variational inference on PubMed.

10-2

10-1

100

101

E
rr
o
r
/
g
ro

u
p

FB YP DBLPsub DBLP
102

103

104

105

106

R
u
n
n
in

g
T
im

e
s
(s
)

FB YP DBLPsub DBLP

Figure 1.4: Tensor decomposition framework vs variational inference on Facebook, Yelp and
DBLP.

5

1.1.3 Learning Invariant Models Using Convolutional Tensor De-

composition

Tensor methods can also be extended to solving the problem of learning shift invariant dic-

tionary elements. The data is modeled as linear combinations of filters/templates convolved

with activation maps. The filters are shift invariant dictionary elements due to the con-

volution. A tensor decomposition algorithm with additional shift invariance constraints on

the factors is introduced, and it converges to models with better reconstruction error and is

much faster, compared to the popular alternating minimization heuristic, where the filters

and activation maps are alternately updated.

This convolutional tensor decomposition framework successfully solves challenging natural

language processing tasks such as learning phrase templates and extracting word-sequence

embeddings, as in Figure 1.5. Convolutional tensor decomposition learns a good set of

filters/templates [82] and discriminative features (such as word-sequence embeddings) which

yield successful automated understanding and classification of word-sequences.

football

soccer

tree

Word Embedding

The weather is good.

Her life spanned years of

incredible change for women.
Mary lived through an era of

liberating reform for women.

Word Sequence Embedding

Figure 1.5: Word embedding and sentence embedding. Word embeddings are vector repre-
sentations of words, such that words with similar semantic meanings are closer in the vector
space. Therefore, a machine can “comprehend” the words. Similarly, a more challenging task
is to extract word sequence embeddings, where sentences or arbitrary length word-sequences
that share semantic and syntactic properties are mapped to similar vector representations.

6

1.1.4 Learning Latent Tree Models Using Hierarchical Tensor De-

composition

Tensor decomposition framework is also extended to learning models with hierarchy. This

thesis presents an integrated approach to structure and parameter estimation in latent tree

models. The proposed algorithm automatically learns the latent variables and their loca-

tions and achieves consistent structure estimation with logarithmic computational complex-

ity. Meanwhile, the inverse method of moments is carried out on smartly selected local

neighborhoods with linear computational complexity. A rigorous proof of the global consis-

tency of the structure and parameter estimation under the “divide-and-conquer” framework

is presented. The consistency guarantees apply to a broad class of linear multivariate la-

tent tree models including discrete distributions, continuous multivariate distributions (e.g.

Gaussian), and mixed distributions such as Gaussian mixtures [88]. This model class is much

more general than discrete models, prevalent in most of the previous works on latent tree

models [128, 127, 59, 17].

= + +

= + + = + + = + +

Figure 1.6: Hierarchical tensor decomposition.

This efficient approach is shown to be useful in healthcare analytics [88], where we account

for the co-occurrence of diseases on individuals and learn a clinical meaningful human disease

hierarchy, using big electronic hospital records which involve millions of patients, hundreds

of millions diagnostic events, and tens of thousands of diseases. The learned hierarchy

7

on human diseases is clinically meaningful and can help doctors prevent potential diseases

according to partial information on patients’ health condition.

1.1.5 Discovering Neuronal Cell Types Using Spectral Methods

The above advances in unsupervised learning have rich applications in neuroscience. Using

spectral decomposition framework, we analyze challenging tasks. For instance, cataloging

neuronal cell types in the brain, which has been the number one goal of the brain initiative

and modern neuroscience. It is an extremely challenging task partly due to the petabyte-

scale size brain-wide single-cell resolution in situ hybridization imagery. Previous methods

average over image intensity in local voxels for a rough estimation of gene expression levels.

The success of these methods rely on a precise neuron level image alignment across different

brains, which is computationally prohibitive.

(a)

(b)

Figure 1.7: Examples of brain slices.

In this thesis, we resolve the above problem using a spatial point process mixture model. We

measure the spatial distribution of neurons labeled in the ISH image for each gene and model

it as a spatial point process mixture, whose mixture weights are given by the cell types which

8

express that gene. By fitting a point process mixture model jointly to the ISH images, we

infer both the spatial point process distribution for each cell type and their gene expression

profile. We validate our predictions of cell type-specific gene expression profiles using single

cell RNA sequencing data, recently published for the mouse somatosensory cortex. Jointly

with the gene expression profiles, cell features such as cell size, orientation, intensity and

local density level are inferred per cell type. Compared with the state-of-the-art approaches,

our method [83] yields lower/better perplexity scores. In addition, 8 cell types are detected

and their cell features are estimated.

1.2 Tensor Preliminaries

What is a tensor? A pth order tensor is a p-dimensional array. We will use 4th order tensor

as an example. If T ∈ Rd4 is a 4th order tensor, we use Ti1,i2,i3,i4(i1, ..., i4 ∈ [d]) to denote its

(i1, i2, i3, i4)
th entry.

Tensors can be constructed from tensor products. We use (u ⊗ v) to denote a 2nd order

tensor where (u ⊗ v)i,j = uivj . This generalizes to higher order and we use u⊗4 to denote

the 4th order tensor

[u⊗4]i1,i2,i3,i4 = ui1ui2ui3ui4.

We say a 4th order tensor T ∈ Rd4 has an orthogonal decomposition if it can be written as

T =

d∑

i=1

a⊗4
i , (1.1)

where ai’s are orthonormal vectors that satisfy ‖ai‖ = 1 and aTi aj = 0 for i 6= j. We call

the vectors ai’s the components of this decomposition. Such a decomposition is unique up

to permutation of ai’s and sign-flips.

9

A tensor also defines a multilinear form (just as a matrix defines a bilinear form), for a pth

order tensor T ∈ Rdp and matrices Mi ∈ Rd×ni , i ∈ [p], we define

[T (M1,M2, ...,Mp)]i1,i2,...,ip =
∑

j1,j2,...,jp∈[d]
Tj1,j2,...,jp

∏

t∈[p]
Mt[jt, it].

That is, the result of the multilinear form T (M1,M2, ...,Mp) is another tensor in R
n1×n2×···×np.

We will most often use vectors or identity matrices in the multilinear form. In particular, for a

4th order tensor T ∈ Rd4 we know T (I, u, u, u) is a vector and T (I, I, u, u) is a matrix. In par-

ticular, if T has the orthogonal decomposition in (1.1), we know T (I, u, u, u) =
∑d

i=1(u
Tai)

3ai

and T (I, I, u, u) =
∑d

i=1(u
Tai)

2aia
T
i .

Why are tensors powerful? Let us start with the simple matrix decomposition, where

the goal is to discover the orthogonal eigenvectors of a matrix. However, it is known that

if the eigenvalues of the matrix are equal to each other, one can not uniquely identify the

eigenvectors. For instance, an identity matrix can be decomposed as the set of basis vector

e1 and e2, as well as u1 and u2, who are 45 degree rotated e1 and e2:

1 0

0 1

 = e1e

⊤
1 + e2e

⊤
2 = u1u

⊤
1 + u2u

⊤
2 .

e1

e2

u1 = [
√
2
2
, −

√
2

2
]

u2 = [
√
2
2
,
√
2
2
]

Figure 1.8: Orthogonal matrix decomposition is not unique without eigenvalue gap.

10

However, in tensors, there exists a unique decomposition even without eigenvalue gap. Let

a third order tensor (a cube) be decomposed as a linear combination of 2 rank-1 tensors as

in red and blue, see Figure 1.9a. The eigenvectors of the tensor are this red vector and this

blue vector who are orthogonal to each other, and the eigenvalues of the tensor are equal.

Consider taking a slice of the tensor, which yields matrix. This matrix shares the same

eigenvectors with the tensor, but the eigenvalues of this matrix will be different depending

on the direction of the slice. Therefore, the slice of tensor has eigenvalue gap. And thus we

are able to identify the eigenvectors for the tensor uniquely. Since higher order tensors have

additional dimensions and contains more information, it is more powerful than second-order

matrices.

+=

≠

(a)

+=

≠

(b)

+=

≠

(c)

Figure 1.9: Orthogonal tensor decomposition is unique with or without eigenvalue gap. (a)
A third order tensor equals to a linear combination of rank 1 tensors, where each rank 1
tensor is a third order tensor product of the tensor’s eigenvector. (b) A slice of the tensor
results in a matrix. The matrix shares the same set of eigenvectors with the original tensor,
with a different scaling factor, i.e., different eigenvalues. (c) Tensor eigenvectors are uniquely
identified when there is a eigenvalue gap in the slice.

Orthogonal tensor decomposition Given a tensor T with an orthogonal decomposition, the

orthogonal tensor decomposition problem asks to find the individual components a1, ..., ad.

This is a central problem in learning many latent variable models, including Hidden Markov

Model, multi-view models, topic models, mixture of Gaussians and Independent Component

Analysis (ICA). See the discussion and citations in [13]. Orthogonal tensor decomposition

problem can be solved by many algorithms even when the input is a noisy estimation T̃ ≈ T

[77, 105, 13]. In practice this approach has been successfully applied to ICA [49], topic

models [171] and community detection [87].

11

1.3 Background and Related Works

1.3.1 Online Stochastic Gradient for Tensor Decomposition

Stochastic gradient descent is one of the basic algorithms in optimization. It is often used

to solve the following stochastic optimization problem

w = arg min
w∈Rd

f(w), where f(w) = Ex∼D[φ(w, x)] (1.2)

Here x is a data point that comes from some unknown distribution D, and φ is a loss function

that is defined for a pair (x, w) of sample and parameters. We hope to minimize the expected

loss E[φ(w, x)].

When the function f(w) is convex, convergence of stochastic gradient descent is well-understood

[147, 138]. However, the stochastic gradient descent is not only limited to convex functions.

Especially, in the context of neural networks, the stochastic gradient descent is known as

the “backpropagation” algorithm [141], and has been the main algorithm that underlies the

success of deep learning [28]. However, the guarantees in the convex setting do not transfer

to the non-convex settings.

Optimizing a non-convex function is NP-hard in general. The difficulty comes from two

aspects. First, the function may have many local minima, and it can be hard to find the

best one (global minimum) among them. Second, even finding a local minimum can be hard

as there can be many saddle points which have 0-gradient but are not local minima1. In the

most general case, there is no known algorithm that guarantees to find a local minimum in a

polynomial number of steps. The discrete analog (finding a local minimum in domains like

{0, 1}n) has been studied in complexity theory and is PLS-complete [96].

1See Section 2.2 for the definition of saddle points.

12

In many cases, especially in those related to deep neural networks [53]

[43], the main bottleneck in optimization is not due to local minima, but the existence

of many saddle points. Gradient-based algorithms are in particular susceptible to saddle

point problems as they only rely on the gradient information. The saddle point problem is

alleviated for second-order methods that also rely on the Hessian information [53].

However, using Hessian information usually increases the memory requirement and compu-

tation time per iteration. As a result, many applications still use stochastic gradient and

empirically get reasonable results. In this paper we investigate why stochastic gradient meth-

ods can be effective even in presence of saddle point, in particular, we answer the following

question:

Question: Given a non-convex function f with many saddle points, what properties of f

will guarantee stochastic gradient descent to converge to a local minimum efficiently?

We identify a property of non-convex functions which we call strict saddle. Intuitively, it

guarantees local progress if we have access to the Hessian information. Surprisingly we show

that, with only first order (gradient) information, the stochastic gradient escape from the

saddle points efficiently. We provide a framework for analyzing stochastic gradient in both

unconstrained and equality-constrained case using this property.

We apply our framework to orthogonal tensor decomposition, which is a core problem in

learning many latent variable models. The tensor decomposition problem is inherently sus-

ceptible to the saddle point issues, as the problem asks to find d different components and

any permutation of the true components yields a valid solution. Such symmetry creates

exponentially many local minima and saddle points in the optimization problem. Using our

new analysis of stochastic gradient, we give the first online algorithm for orthogonal tensor

decomposition with global convergence guarantee. This is a key step towards making tensor

decomposition algorithms more scalable.

13

Relaxed notions of convexity In optimization theory and economics, there are extensive works

on understanding functions that behave similarly to convex functions (and in particular can

be optimized efficiently). Such notions involve pseudo-convexity [117], quasi-convexity [104],

invexity[75] and their variants. More recently there are also works that consider classes

that admit more efficient optimization procedures like RSC (restricted strong convexity) [3].

Although these classes involve functions that are non-convex, the function (or at least the

function restricted to the region of analysis) still has a unique stationary point that is the

desired local/global minimum. Therefore, these works cannot be used to prove global con-

vergence for problems like tensor decomposition, where there are exponentially many local

minima and saddle points by the symmetry of the problem.

Second-order algorithms The most popular second-order method is the Newton’s method.

Although Newton’s method converges fast near a local minimum, its global convergence

properties are less understood in the more general case. For non-convex functions, [63] gave

a concrete example where second-order method converges to the desired local minimum in

a polynomial number of steps (interestingly the function of interest is trying to find one

component in a 4th order orthogonal tensor, which is a simpler case of our application).

As Newton’s method often converges also to saddle points, to avoid this behavior, different

trusted-region algorithms are applied [53].

Stochastic gradient and symmetry The tensor decomposition problem we consider in this

paper has the following symmetry: the solution is a set of d vectors v1, ..., vd. If (v1, v2, ..., vd)

is a solution, then for any permutation π and any sign flips κ ∈ {±1}d, (.., κivπ(i), ...) is also

a valid solution. In general, symmetry is known to generate saddle points, and variants of

gradient descent often perform reasonably in these cases (see [143], [139], [92]). The settings

in these work are different from ours, and none of them give bounds on number of steps

required for convergence.

14

Many other problems have the same symmetric structure as the tensor decomposition prob-

lem, including the sparse coding problem [132] and many deep learning applications [28]. In

these problems, the goal is to learn multiple “features” where the solution is invariant under

permutation. Note that there are many recent papers on iterative/gradient-based algorithms

for problems related to matrix factorization [93, 145]. These problems often have very differ-

ent symmetry, as if Y = AX then for any invertible matrix R we know Y = (AR)(R−1X).

In this case, all the equivalent solutions are in a connected low dimensional manifold, and

there need not be saddle points between them.

1.3.2 Applying Online Tensor Methods for Learning Latent Vari-

able Models

The spectral or moment-based approach involves decomposition of certain empirical moment

tensors, estimated from observed data to obtain the parameters of the proposed probabilistic

model. Unsupervised learning for a wide range of latent variable models can be carried out

efficiently via tensor-based techniques with low sample and computational complexities [10].

In contrast, usual methods employed in practice such as expectation maximization (EM)

and variational Bayes do not have such consistency guarantees. While the previous works [8]

focused on theoretical guarantees, in chapter 3 of this thesis, we focus on the implementation

of the tensor methods, study its performance on several datasets.

We introduce an online tensor decomposition based approach for two latent variable mod-

eling problems namely, (1) community detection, in which we learn the latent communities

that the social actors in social networks belong to, and (2) topic modeling, in which we

infer hidden topics of text articles. We consider decomposition of moment tensors using

stochastic gradient descent. We conduct optimization of multilinear operations in SGD and

avoid directly forming the tensors, to save computational and storage costs. We present opti-

15

mized algorithm in two platforms. Our GPU-based implementation exploits the parallelism

of SIMD architectures to allow for maximum speed-up by a careful optimization of storage

and data transfer, whereas our CPU-based implementation uses efficient sparse matrix com-

putations and is suitable for large sparse data sets. For the community detection problem,

we demonstrate accuracy and computational efficiency on Facebook, Yelp, and DBLP data

sets, and for the topic modeling problem, we also demonstrate good performance on the New

York Times data set. We compare our results to the state-of-the-art algorithms such as the

variational method and report a gain of accuracy and a gain of several orders of magnitude

in the execution time.

Chapter 3 builds on the recent works of Anandkumar et al [10, 8] which establishes the cor-

rectness of tensor-based approaches for learning MMSB [5] models and other latent variable

models. While, the earlier works provided a theoretical analysis of the method, the current

paper considers a careful implementation of the method. Moreover, there are a number of

algorithmic improvements in this thesis. For instance, while [10, 8] consider tensor power

iterations, based on batch data and deflations performed serially, here, we adopt a stochastic

gradient descent approach for tensor decomposition, which provides the flexibility to trade-

off sub-sampling with accuracy. Moreover, we use randomized methods for dimensionality

reduction in the preprocessing stage of our method which enables us to scale our method to

graphs with millions of nodes.

There are other known methods for learning the stochastic block model based on techniques

such as spectral clustering [120] and convex optimization [39]. However, these methods

are not applicable for learning overlapping communities. We note that learning the mixed

membership model can be reduced to a matrix factorization problem [169]. While collabo-

rative filtering techniques such as [126, 144] focus on matrix factorization and the prediction

accuracy of recommendations on an unseen test set, we recover the underlying latent com-

16

munities, which helps with the interpretability, and the statistical model can be employed

for other tasks.

Although there have been other fast implementations for community detection before [152,

112], these methods are not statistical and do not yield descriptive statistics such as bridging

nodes [129], and cannot perform predictive tasks such as link classification which are the main

strengths of the MMSB model. With the implementation of our tensor-based approach, we

record huge speed-ups compared to existing approaches for learning the MMSB model.

To the best of our knowledge, while stochastic methods for matrix decomposition have been

considered earlier [130, 18], this is the first work incorporating stochastic optimization for

tensor decomposition, and paves the way for further investigation on many theoretical and

practical issues. We also note that we never explicitly form or store the subgraph count

tensor, of size O(n3) where n is the number of nodes, in our implementation, but directly

manipulate the neighborhood vectors to obtain tensor decompositions through stochastic

updates. This is a crucial departure from other works on tensor decompositions on GPUs [25,

146], where the tensor needs to be stored and manipulated directly.

1.3.3 Dictionary Learning through Convolutional Tensor Decom-

position

Feature or representation learning forms a cornerstone of modern machine learning. Repre-

senting the data in the relevant feature space is critical to obtaining good performance in

challenging machine learning tasks in speech, computer vision and natural language process-

ing. A popular representation learning framework is based on dictionary learning. Here, the

input data is modeled as a linear combination of dictionary elements. However, this model

fails to incorporate natural domain-specific invariances such as shift invariance and results

in highly redundant dictionary elements, which makes inference in these models expensive.

17

These shortcomings can be remedied by incorporating invariances into the dictionary model,

and such models are known as convolutional models. Convolutional models are ubiquitous

in machine learning for image, speech and sentence representations [167, 101, 33], and in

neuroscience for modeling neural spike trains [131, 58]. Deep convolutional neural networks

are a multi-layer extension of these models with non-linear activations. Such models have

revolutionized performance in image, speech and natural language processing [167, 97]. The

convolutional dictionary learning model posits that the input signal x is generated as a linear

combination of convolutions of unknown dictionary elements or filters f ∗
1 , . . . f

∗
L and unknown

activation maps w∗
1, . . . w

∗
L:

x =
∑

i∈[L]
f ∗
i ∗w∗

i , (1.3)

where [L] := 1, . . . , L. The vector w∗
i denotes the activations at locations, where the corre-

sponding filter f ∗
i is active.

In order to learn the model in (1.3), usually a square loss reconstruction criterion is employed:

min
fi,wi:‖fi‖=1

‖x−
∑

i∈[L]
fi∗wi‖2. (1.4)

The constraints (‖fi‖ = 1) are enforced, since otherwise, the scaling can be exchanged

between the filters fi and the activation maps wi. Also, an additional regularization term

(for example an ℓ1 term on the w′
is) is usually added to the above objective to promote

sparsity on wi.

A popular heuristic for solving (1.4) is based on alternating minimization [34], where the

filters fi are optimized, while keeping the activations wi fixed, and vice versa. Each alter-

nating update can be solved efficiently (since it is linear in each of the variables). However,

the method is computationally expensive in the large sample setting since each iteration re-

18

quires a pass over all the samples, and in modern machine learning applications, the number

of samples can run into billions. Moreover, alternating minimization has multiple spurious

local optima, and reaching the global optimum of (1.4) is NP-hard in general. This problem

is severely amplified in the convolutional setting due to additional symmetries, compared

to the usual dictionary learning setting (without the convolutional operation). Due to shift

invariance of the convolutional operator, shifting a filter fi by some amount, and applying

a corresponding negative shift on the activation wi leaves the objective in (1.4) unchanged.

Can we design alternative methods for convolutional dictionary learning that are scalable to

huge datasets?

The special case of (1.3) with one filter (L = 1) is a well studied problem, and is referred to as

blind deconvolution [90]. In general, this problem is not identifiable, i.e. multiple equivalent

solutions can exist [44]. It has been documented that in many cases alternating minimization

produces trivial solutions, where the filter f = x is the signal itself and the activation is the

identity function [116]. Therefore, alternative techniques have been proposed, such as convex

programs, based on nuclear norm minimization [4] and imposing hierarchical Bayesian priors

for activation maps [163]. However, there is no analysis for settings with more than one

filter. Incorporating Bayesian priors has shown to reduce the number of local optima, but

not eliminate them [163, 109]. Moreover, Bayesian techniques are in general more expensive

than alternating minimization.

The extension of blind deconvolution to multiple filters is known as convolutive blind source

separation or convolutive independent component analysis (ICA) [90]. Previous methods

directly reformulate convolutive ICA as an ICA model, without incorporating the shift con-

straints. Moreover, reformulation leads to an increase in the number of hidden sources from

L to nL in the new model, where n is the input dimension, which is harder to separate

and computationally more expensive. Other methods are based on performing ICA in the

Fourier domain, but the downside is that the new mixing matrix depends on the angular fre-

19

quency, and leads to permutation and sign indeterminacies of the sources across frequencies.

Complicated interpolation methods [90] overcome these indeterminacies. In contrast, our

method avoids all these issues. We do not perform Fourier transform on the input. Instead,

we employ FFTs at different iterations of our method to estimate the filters efficiently.

The dictionary learning problem without convolution has received much attention. Recent

results show that simple iterative methods can learn the globally optimal solution [2, 19].

Also, tensor decomposition methods provably learn the model, when the activations are

independently drawn (the ICA model) [12] or are sparse (the sparse coding model) [14]. In

this work, we extend the tensor decomposition methods to efficiently incorporate the shift

invariance constraints imposed by the convolution operator. This framework is applied to

word-sequence embedding learning in natural language processing.

We have recently witnessed the tremendous success of word embeddings or word vector

representations in natural language processing. This involves mapping words to vector rep-

resentations such that words which share similar semantic or syntactic meanings are close

to one another in the vector space [29, 47, 48, 124, 136]. Word embeddings have attained

state-of-the-art performance in tasks such as part-of-speech (POS) tagging, chunking, named

entity recognition (NER), and semantic role labeling. Despite this impressive performance,

word embeddings do not suffice for more advanced tasks which require context-aware infor-

mation or word orders, e.g. paraphrase detection, sentiment analysis, plagiarism detection,

information retrieval and machine translation. Therefore, extracting word-sequence vector

representations is crucial for expanding the realm of automated text understanding.

Previous works on word-sequence embeddings are based on a variety of mechanisms. A

popular method is to learn the composition operators in sequences [125, 166]. The complexity

of the compositionality varies widely: from simple operations such as addition [125, 166] to

complicated recursive neural networks [149, 150, 27], convolutional neural networks [97,

97], long short-term memory (LSTM) recurrent neural networks [154], or combinations of

20

these architectures [161]. All these methods produce sentence representations that depend

on a supervised task, and the class labels are back-propagated to update the composition

weights [98].

Since the above methods rely heavily on the downstream task and the domain of the training

samples, they can hardly be used as universal embeddings across domains, and require inten-

sive pre-training and hyper-parameter tuning. The state-of-the-art unsupervised framework

is Skip-thought [103], based on an objective function that abstracts the skip-gram model to

the sentence level, and encodes a sentence to predict the sentences around it. However, the

skip-thought model requires a large corpus of contiguous text, such as the book corpus with

more than 74 million sentences. Can we instead efficiently learn sentence embeddings using

small amounts of samples without supervision/labels or annotated features(such as parse

trees)? Also, can the sentence embeddings be context-aware, can handle variable lengths,

and is not limited to specific domains?

We propose an unsupervised ConvDic+DeconvDec framework that satisfies all the above

constraints. It is composed of two phases, a comprehension phase which summarizes template

phrases using convolutional dictionary elements, followed by a feature-extraction phase which

extracts activations using deconvolutional decoding. We propose a novel learning algorithm

for the comprehension phase based on convolutional tensor decomposition. Note that in the

comprehension phase, phrase templates are learned over fixed length small patches (patch

length is equal to phrase template length), whereas entire word-sequence is decoded to get

the final word-sequence embedding in the feature-extraction phase.

We employ our sentence embeddings in the tasks of sentiment classification, semantic textual

similarity estimation, and paraphrase detection over eight datasets from various domains.

These are challenging tasks since they require a contextual understanding of text relation-

ships rather than bags of words. We learn the embeddings from scratch without using any

auxiliary information. While previous works use information such as parse trees, Wordnet

21

or pre-train on a much larger corpus, we train from scratch on small amounts of text and

obtain competitive results, which are close or even better than the state-of-the-art.

This is due to the combination of efficient modeling and learning approaches in our work.

The convolutional model incorporates word orders and phrase representations, and our tensor

decomposition algorithm can efficiently learn a set of parameters (phrase templates) for the

convolutional model.

1.3.4 Latent Tree Model Learning through Hierarchical Tensor

Decomposition

Latent variable graphical models span flat models and hierarchical models, see Figure 1.10

for a flat multi-view model and a hierarchical model. Latent tree graphical models are a

popular class of latent variable models, where a probability distribution involving observed

and hidden variables are Markovian on a tree. Due to the fact that structure of (observable

and hidden) variable interactions are approximated as a tree, inference on latent trees can be

carried out exactly through a simple belief propagation [134]. Therefore, latent tree graphical

models present a good trade-off between model accuracy and computational complexity.

They are applicable in many domains, where it is natural to expect hierarchical or sequential

relationships among the variables (through a hidden-Markov model). For instance, latent

tree models have been employed for phylogenetic reconstruction [56], object recognition [40],

[42] and human pose estimation [157].

The task of learning a latent tree model consists of two parts: learning the tree structure,

and learning the parameters of the tree. There exist many challenges which prohibit efficient

or guaranteed learning of the latent tree graphical model, which will be addressed in this

thesis:

22

(a) Multi-view (b) Hierarchical tree

Figure 1.10: Flat multi-view latent variable graphical model vs hierarchical latent variable
graphical model.

1. The location and the number of latent variables are hidden, and the marginalized graph

over the observable variables no longer conforms to a tree structure.

2. Structure learning algorithms are typically of computational complexity polynomial

with p (number of variables) as discussed in [6, 41]. These methods are serial in nature

and therefore are not scalable for large p.

3. Parameter estimation in latent tree models is typically carried out through Expecta-

tion Maximization (EM) or other local search heuristics [41]. These methods have

no consistency guarantees, suffer from the problem of local optima and are not easily

parallelizable.

4. Typically structure learning and parameter estimation are carried out one after an-

other.

There has been widespread interest in developing distributed learning techniques, e.g., the

recent works of [148] and [160]. These works consider parameter estimation via likelihood-

based optimizations such as Gibbs sampling, while our method involves more challenging

tasks where both the structure and the parameters are estimated. Simple methods such as

local neighborhood selection through ℓ1-regularization [121] or local conditional independence

testing [16] can be parallelized, but these methods do not incorporate hidden variables.

Finally, note that the latent tree models provide a statistical description, in addition to

23

revealing the hierarchy. In contrast, hierarchical clustering techniques are not based on a

statistical model [108] and cannot provide valuable information such as the level of correlation

between observed and hidden variables.

1.4 Thesis Structure

In my thesis, I will first prove that simple noisy gradient descent on a carefully selected ob-

jective function yields global convergence guarantee in chapter 2. Based on the theoretical

guarantees, I will show how to make tensor decomposition highly scalable, highly parallel

in chapter 3. Furthermore, I extend the framework to learn dictionary or templates with

additional constraints such as shift invariance in image or text dictionary learning using

convolutional dictionary tensor decomposition in chapter 4. I do not limit myself to shallow

models where observations are conditional independent on the hidden dimension. On the

contrary, I extend the multi-view tensor decomposition framework to a hierarchical tensor

decomposition framework to analyze data with complicated hierarchical structure. A latent

tree model is therefore proposed in chapter 5, where latent variable graphical model struc-

ture learning technique is combined with hierarchical tensor decomposition for a consistent

learning of the hierarchical model structure and parameter. Finally, I conclude my thesis

with a challenging but important task in chapter 6, discovering cell types in the brain. This

work brings together the techniques used in all previous chapters, such as image processing

to extract cells and cell features from brain slices, learning a point process admixture model.

24

Chapter 2

Online Stochastic Gradient for Tensor

Decomposition

It is established in the previous work [13] that a wide class of latent variable graphical models

can be learned through tensor decomposition, and model parameters are obtained by decom-

posing higher order data aggregates or modified data moments. Therefore, learning latent

variable graphical model is reduced to tensor decomposition problem. Tensor decomposition

is a non-convex optimization problem, and it is known that non-convex optimization problem

is NP hard in general. Now the question is: could we use efficient methods such as stochastic

gradient descent to reach local optima for a class of function under mild conditions? Could

we fit tensor decomposition problem into the class of function?

We analyze stochastic gradient descent for optimizing non-convex functions. In many cases

for non-convex functions the goal is to find a reasonable local minimum, and the main concern

is that gradient updates are trapped in saddle points. In this chapter we identify strict saddle

property for non-convex problem that allows for efficient optimization. Using this property

we show that from an arbitrary starting point, stochastic gradient descent converges to a

25

local minimum in a polynomial number of iterations. To the best of our knowledge this

is the first work that gives global convergence guarantees for stochastic gradient descent on

non-convex functions with exponentially many local minima and saddle points.

Our analysis can be applied to orthogonal tensor decomposition, which is widely used in

learning a rich class of latent variable models. We propose a new optimization formulation

for the tensor decomposition problem that has strict saddle property. As a result we get the

first online algorithm for orthogonal tensor decomposition with global convergence guarantee.

Strict saddle functions

Given a function f(w) that is twice differentiable, we call w a stationary point if ∇f(w) = 0.

A stationary point can either be a local minimum, a local maximum or a saddle point. We

identify an interesting class of non-convex functions which we call strict saddle. For these

functions the Hessian of every saddle point has a negative eigenvalue. In particular, this

means that local second-order algorithms which are similar to the ones in [53] can always

make some progress.

It may seem counter-intuitive why stochastic gradient can work in these cases: in particular

if we run the basic gradient descent starting from a stationary point then it will not move.

However, we show that the saddle points are not stable and that the randomness in stochastic

gradient helps the algorithm to escape from the saddle points.

Theorem 2.1 (informal). Suppose f(w) is strict saddle (see Definition 2.3), Noisy Gradient

Descent (Algorithm 1) outputs a point that is close to a local minimum in polynomial number

of steps.

Online tensor decomposition Requiring all saddle points to have a negative eigenvalue may

seem strong, but it already allows non-trivial applications to natural non-convex optimization

26

problems. As an example, we consider the orthogonal tensor decomposition problem. This

problem is the key step in spectral learning for many latent variable models.

We design a new objective function for tensor decomposition that is strict saddle.

Theorem 2.2. Given random variables X such that T = E[g(X)] ∈ Rd4 is an orthogonal

4-th order tensor, there is an objective function f(w) = E[φ(w,X)] w ∈ Rd×d such that every

local minimum of f(w) corresponds to a valid decomposition of T . Further, function f is

strict saddle.

Combining this new objective with our framework for optimizing strict saddlefunctions, we

get the first online algorithm for orthogonal tensor decomposition with global convergence

guarantee.

2.1 Preliminaries

The stochastic gradient aims to solve the stochastic optimization problem (1.2), which we

restate here:

w = arg min
w∈Rd

f(w), where f(w) = Ex∼D[φ(w, x)].

Recall φ(w, x) denotes the loss function evaluated for sample x at point w. The algorithm

follows a stochastic gradient

wt+1 = wt − η∇wtφ(wt, xt), (2.1)

where xt is a random sample drawn from distribution D and η is the learning rate.

In the more general setting, stochastic gradient descent can be viewed as optimizing an

arbitrary function f(w) given a stochastic gradient oracle.

27

Definition 2.1. For a function f(w) : Rd → R, a function SG(w) that maps a variable to

a random vector in Rd is a stochastic gradient oracle if E[SG(w)] = ∇f(w) and ‖SG(w)−

∇f(w)‖ ≤ Q.

In this case the update step of the algorithm becomes wt+1 = wt − ηSG(wt).

Smoothness and Strong Convexity Traditional analysis for stochastic gradient often assumes

the function is smooth and strongly convex. A function is β-smooth if for any two points

w1, w2,

‖∇f(w1)−∇f(w2)‖ ≤ β‖w1 − w2‖. (2.2)

When f is twice differentiable this is equivalent to assuming that the spectral norm of the

Hessian matrix is bounded by β. We say a function is α-strongly convex if the Hessian at

any point has smallest eigenvalue at least α (λmin(∇2f(w)) ≥ α).

Using these two properties, previous work [138] shows that stochastic gradient converges at

a rate of 1/t. In this thesis we consider non-convex functions, which can still be β-smooth

but cannot be strongly convex.

Smoothness of Hessians It is common to assume the Hessian of the function f to be smooth.

We say a function f(w) has ρ-Lipschitz Hessian if for any two points w1, w2 we have

‖∇2f(w1)−∇2f(w2)‖ ≤ ρ‖w1 − w2‖. (2.3)

This is a third order condition that is true if the third order derivative exists and is bounded.

28

2.2 Stochastic Gradient Descent for Strict saddle Func-

tion

In this section we discuss the properties of saddle points, and show if all the saddle points

are well-behaved then stochastic gradient descent finds a local minimum for a non-convex

function in polynomial time.

Notation Throughout the chapter we use [d] to denote set {1, 2, ..., d}. We use ‖ · ‖ to denote

the ℓ2 norm of vectors and spectral norm of matrices. For a matrix we use λmin to denote

its smallest eigenvalue. For a function f : Rd → R, ∇f and ∇2f denote its gradient vector

and Hessian matrix.

2.2.1 Strict saddle Property

For a twice differentiable function f(w), we call a point stationary point if its gradient is

equal to 0. Stationary points could be local minima, local maxima or saddle points. By local

optimality conditions [164], in many cases we can tell what type a point w is by looking at

its Hessian: if ∇2f(w) is positive definite then w is a local minimum; if ∇2f(w) is negative

definite then w is a local maximum; if ∇2f(w) has both positive and negative eigenvalues

then w is a saddle point. These criteria do not cover all the cases as there could be degenerate

scenarios: ∇2f(w) can be positive semidefinite with an eigenvalue equal to 0, in which case

the point could be a local minimum or a saddle point.

If a function does not have these degenerate cases, then we say the function is strict saddle:

Definition 2.2. A twice differentiable function f(w) is strict saddle, if all its local minima

have ∇2f(w) ≻ 0 and all its other stationary points satisfy λmin(∇2f(w)) < 0.

29

Intuitively, if we are not at a stationary point, then we can always follow the gradient and

reduce the value of the function. If we are at a saddle point, we need to consider a second

order Taylor expansion:

f(w +∆w) ≈ w + (∆w)T∇2f(w)(∆w) +O(‖∆w‖3).

Since the strict saddle property guarantees ∇2f(w) to have a negative eigenvalue, there is

always a point that is near w and has strictly smaller function value. It is possible to make

local improvements as long as we have access to second order information. However it is not

clear whether the more efficient stochastic gradient updates can work in this setting.

To make sure the local improvements are significant, we use a robust version of the strict

saddle property:

Definition 2.3. A twice differentiable function f(w) is (α, γ, ǫ, δ)-strict saddle, if for any

point w at least one of the following is true

1. ‖∇f(w)‖ ≥ ǫ.

2. λmin(∇2f(w)) ≤ −γ.

3. There is a local minimum w⋆ such that ‖w−w⋆‖ ≤ δ, and the function f(w′) restricted

to 2δ neighborhood of w⋆ (‖w′ − w⋆‖ ≤ 2δ) is α-strongly convex.

Intuitively, this condition says for any point whose gradient is small, it is either close to a

robust local minimum, or is a saddle point (or local maximum) with a significant negative

eigenvalue.

We purpose a simple variant of stochastic gradient algorithm, where the only difference to the

traditional algorithm is we add an extra noise term to the updates. The main benefit of this

additional noise is that we can guarantee there is noise in every direction, which allows the

30

Procedure 1 Noisy Stochastic Gradient

Input: Stochastic gradient oracle SG(w), initial point w0, desired accuracy κ.
Output: wt that is close to some local minimum w⋆.
1: Choose η = min{Õ(κ2/ log(1/κ)), ηmax}
2: for t = 0 to Õ(1/η2) do
3: Sample noise n uniformly from unit sphere.
4: wt+1 ← wt − η(SG(w) + n)

algorithm to effectively explore the local neighborhood around saddle points. If the noise

from stochastic gradient oracle already has nonnegligible variance in every direction, our

analysis also applies without adding additional noise. We show noise can help the algorithm

escape from saddle points and optimize strict saddle functions.

Theorem 2.3 (Main Theorem). Suppose a function f(w) : Rd → R that is (α, γ, ǫ, δ)-strict

saddle, and has a stochastic gradient oracle with radius at most Q. Further, suppose the

function is bounded by |f(w)| ≤ B, is β-smooth and has ρ-Lipschitz Hessian. Then there ex-

ists a threshold ηmax = Θ̃(1), so that for any ζ > 0, and for any η ≤ ηmax/max{1, log(1/ζ)},

with probability at least 1− ζ in t = Õ(η−2 log(1/ζ)) iterations, Algorithm 1 (Noisy Gradient

Descent) outputs a point wt that is Õ(
√
η log(1/ηζ))-close to some local minimum w⋆.

Here (and throughout the rest of the chapter) Õ(·) (Ω̃, Θ̃) hides the factor that is polynomially

dependent on all other parameters (including Q, 1/α, 1/γ, 1/ǫ, 1/δ, B, β, ρ, and d), but

independent of η and ζ . So it focuses on the dependency on η and ζ . Our proof technique

can give explicit dependencies on these parameters however we hide these dependencies for

simplicity of presentation. 1

Remark (Decreasing learning rate). Often analysis of stochastic gradient descent uses de-

creasing learning rates and the algorithm converges to a local (or global) minimum. Since the

function is strongly convex in the small region close to local minimum, we can use Theorem

2.3 to first find a point that is close to a local minimum, and then apply standard analysis

1 Currently, our number of iteration is a large polynomial in the dimension d. We have not tried to
optimize the degree of this polynomial. Empirically the dependency on d is much better, whether the
dependency on d can be improved to poly log d is left as an open problem.

31

of SGD in the strongly convex case (where we decrease the learning rate by 1/t and get 1/
√
t

convergence in ‖w − w⋆‖).

In the next part we sketch the proof of the main theorem. Details are deferred to Ap-

pendix A.1.

2.2.2 Proof Sketch

In order to prove Theorem 2.3, we analyze the three cases in Definition 2.3. When the

gradient is large, we show the function value decreases in one step (see Lemma 2.1); when

the point is close to a local minimum, we show with high probability it cannot escape in the

next polynomial number of iterations (see Lemma 2.2).

Lemma 2.1 (Gradient). Under the assumptions of Theorem 2.3, for any point with ‖∇f(wt)‖

≥ C
√
η (where C = Θ̃(1)) and C

√
η ≤ ǫ, after one iteration we have E[f(wt+1)] ≤

f(wt)− Ω̃(η2).

The proof of this lemma is a simple application of the smoothness property.

Lemma 2.2 (Local minimum). Under the assumptions of Theorem 2.3, for any point wt

that is Õ(
√
η) < δ close to local minimum w⋆, in Õ(η−2 log(1/ζ)) number of steps all future

wt+i’s are Õ(
√
η log(1/ηζ))-close with probability at least 1− ζ/2.

The proof of this lemma is similar to the standard analysis [138] of stochastic gradient descent

in the smooth and strongly convex setting, except we only have local strong convexity. The

proof appears in Appendix A.1.

The hardest case is when the point is “close” to a saddle point: it has gradient smaller than

ǫ and smallest eigenvalue of the Hessian bounded by −γ. In this case we show the noise in

our algorithm helps the algorithm to escape:

32

Lemma 2.3 (Saddle point). Under the assumptions of Theorem 2.3, for any point wt where

‖∇f(wt)‖ ≤ C
√
η (for the same C as in Lemma 2.1), and λmin(∇2f(wt)) ≤ −γ, there is a

number of steps T that depends on wt such that E[f(wt+T)] ≤ f(wt)− Ω̃(η). The number of

steps T has a fixed upper bound Tmax that is independent of wt where T ≤ Tmax = Õ(1/η).

Intuitively, at point wt there is a good direction that is hiding in the Hessian. The hope of

the algorithm is that the additional (or inherent) noise in the update step makes a small

step towards the correct direction, and then the gradient information will reinforce this small

perturbation and the future updates will “slide” down the correct direction.

To make this more formal, we consider a coupled sequence of updates w̃ such that the

function to minimize is just the local second order approximation

f̃(w) = f(wt) +∇f(wt)
T (w − wt) +

1

2
(w − wt)

T∇2f(wt)(w − wt).

The dynamics of stochastic gradient descent for this quadratic function is easy to analyze as

w̃t+i can be calculated analytically. Indeed, we show the expectation of f̃(w̃) will decrease.

More concretely we show the point w̃t+i will move substantially in the negative curvature di-

rections and remain close to wt in positive curvature directions. We then use the smoothness

of the function to show that as long as the points did not go very far from wt, the two update

sequences w̃ and w will remain close to each other, and thus f̃(w̃t+i) ≈ f(wt+i). Finally we

prove the future wt+i’s (in the next T steps) will remain close to wt with high probability by

Martingale bounds. The detailed proof appears in Appendix A.1.

With these three lemmas it is easy to prove the main theorem. Intuitively, as long as

there is a small probability of being Õ(
√
η)-close to a local minimum, we can always apply

Lemma 2.1 or Lemma 2.3 to make the expected function value decrease by Ω̃(η) in at most

Õ(1/η) iterations, this cannot go on for more than Õ(1/η2) iterations because in that case

33

the expected function value will decrease by more than 2B, but max f(x)−min f(x) ≤ 2B

by our assumption. Therefore in Õ(1/η2) steps with at least constant probability wt will

become Õ(
√
η)-close to a local minimum. By Lemma 2.2 we know once it is close it will

almost always stay close, so after q epochs of Õ(1/η2) iterations each, the probability of

success will be 1 − exp(−Ω(q)). Taking q = O(log(1/ζ)) gives the result. More details

appear in Appendix A.1.

2.2.3 Constrained Problems

In many cases, the problem we are facing are constrained optimization problems. In this

part we briefly describe how to adapt the analysis to problems with equality constraints

(which suffices for the tensor application). Dealing with general inequality constraint is left

as future work.

For a constrained optimization problem:

min
w∈Rd

f(w) (2.4)

s.t. ci(w) = 0, i ∈ [m]

in general we need to consider the set of points in a low dimensional manifold that is defined

by the constraints. In particular, in the algorithm after every step we need to project back

to this manifold (see Algorithm 2 where ΠW is the projection to this manifold).

Procedure 2 Projected Noisy Stochastic Gradient

Input: Stochastic gradient oracle SG(w), initial point w0, desired accuracy κ.
Output: wt that is close to some local minimum w⋆.
1: Choose η = min{Õ(κ2/ log(1/κ)), ηmax}
2: for t = 0 to Õ(1/η2) do
3: Sample noise n uniformly from unit sphere.
4: vt+1 ← wt − η(SG(w) + n)
5: wt+1 = ΠW(vt+1)

34

For constrained optimization it is common to consider the Lagrangian:

L(w, λ) = f(w)−
m∑

i=1

λici(w). (2.5)

Under common regularity conditions, it is possible to compute the value of the Lagrangian

multipliers:

λ∗(w) = argmin
λ
‖∇wL(w, λ)‖.

We can also define the tangent space, which contains all directions that are orthogonal to all

the gradients of the constraints: T (w) = {v : ∇ci(w)Tv = 0; i = 1, · · · , m}. In this case the

corresponding gradient and Hessian we consider are the first-order and second-order partial

derivative of Lagrangian L at point (w, λ∗(w)):

χ(w) = ∇wL(w, λ)|(w,λ∗(w)) = ∇f(w)−
m∑

i=1

λ∗i (w)∇ci(w) (2.6)

M(w) = ∇2
wwL(w, λ)|(w,λ∗(w)) = ∇2f(w)−

m∑

i=1

λ∗i (w)∇2ci(w) (2.7)

We replace the gradient and Hessian with χ(w) andM(w), and when computing eigenvectors

of M(w) we focus on its projection on the tangent space. In this way, we can get a similar

definition for strict saddle (see Appendix A.2), and the following theorem.

Theorem 2.4. (informal) Under regularity conditions and smoothness conditions, if a con-

strained optimization problem satisfies strict saddle property, then for a small enough η, in

Õ(η−2 log 1/ζ) iterations Projected Noisy Gradient Descent (Algorithm 2) outputs a point w

that is Õ(
√
η log(1/ηζ)) close to a local minimum with probability at least 1− ζ.

Detailed discussions and formal version of this theorem are deferred to Appendix A.2.

35

2.3 Online Tensor Decomposition

In this section we describe how to apply our stochastic gradient descent analysis to tensor

decomposition problems. We first give a new formulation of tensor decomposition as an

optimization problem, and show that it satisfies the strict saddle property. Then we explain

how to compute stochastic gradient in a simple example of Independent Component Analysis

(ICA) [91].

2.3.1 Optimization Problem for Tensor Decomposition

Given a tensor T ∈ R
d4 that has an orthogonal decomposition

T =

d∑

i=1

a⊗4
i , (2.8)

where the components ai’s are orthonormal vectors (‖ai‖ = 1, aTi aj = 0 for i 6= j), the goal of

orthogonal tensor decomposition is to find the components ai’s. This problem has inherent

symmetry: for any permutation π and any set of κi ∈ {±1}, i ∈ [d], we know ui = κiaπ(i)

is also a valid solution. This symmetry property makes the natural optimization problems

non-convex.

In this section we will give a new formulation of orthogonal tensor decomposition as an

optimization problem, and show that this new problem satisfies the strict saddle property.

Previously, [63] solves the problem of finding one component, with the following objective

function

max
‖u‖2=1

T (u, u, u, u). (2.9)

36

In Appendix A.3.1, as a warm-up example we show this function is indeed strict saddle,

and we can apply Theorem 2.4 to prove global convergence of stochastic gradient descent

algorithm.

It is possible to find all components of a tensor by iteratively finding one component, and

do careful deflation, as described in [13] or [20]. However, in practice the most popular

approaches like Alternating Least Squares [50] or FastICA [89] try to use a single optimization

problem to find all the components. Empirically these algorithms are often more robust to

noise and model misspecification.

The most straight-forward formulation of the problem aims to minimize the reconstruction

error

min
∀i,‖ui‖2=1

‖T −
d∑

i=1

u⊗4
i ‖2F . (2.10)

Here ‖ · ‖F is the Frobenius norm of the tensor which is equal to the ℓ2 norm when we view

the tensor as a d4 dimensional vector. However, it is not clear whether this function satisfies

the strict saddle property, and empirically stochastic gradient descent is unstable for this

objective.

We propose a new objective that aims to minimize the correlation between different compo-

nents:

min
∀i,‖ui‖2=1

∑

i 6=j

T (ui, ui, uj, uj), (2.11)

To understand this objective intuitively, we first expand vectors uk in the orthogonal basis

formed by {ai}’s. That is, we can write uk =
∑d

i=1 zk(i)ai, where zk(i) are scalars that cor-

respond to the coordinates in the {ai} basis. In this way we can rewrite T (uk, uk, ul, ul) =

37

∑d
i=1(zk(i))

2(zl(i))
2. From this form it is clear that the T (uk, uk, ul, ul) is always nonnega-

tive, and is equal to 0 only when the support of zk and zl do not intersect. For the objective

function, we know in order for it to be equal to 0 the z’s must have disjoint support. There-

fore, we claim that {uk}, ∀k ∈ [d] is equivalent to {ai}, ∀i ∈ [d] up to permutation and sign

flips when the global minimum (which is 0) is achieved.

We further show that this optimization program satisfies the strict saddle property and all

its local minima in fact achieves global minimum value. The proof is deferred to Appendix

A.3.2.

Theorem 2.5. The optimization problem (2.11) is (α, γ, ǫ, δ)-strict saddle, for α = 1 and

γ, ǫ, δ = 1/poly(d). Moreover, all its local minima have the form ui = κiaπ(i) for some

κi = ±1 and permutation π(i).

Note that we can also generalize this to handle 4th order tensors with different positive

weights on the components, or other order tensors, see Appendix A.3.3.

2.3.2 Implementing Stochastic Gradient Oracle

To design an online algorithm based on objective function (2.11), we need to give an imple-

mentation for the stochastic gradient oracle.

In applications, the tensor T is oftentimes the expectation of multilinear operations of

samples g(x) over x where x is generated from some distribution D. In other words, for

any x ∼ D, the tensor is T = E[g(x)]. Using the linearity of the multilinear map, we

know E[g(x)](ui, ui, uj, uj) = E[g(x)(ui, ui, uj, uj)]. Therefore we can define the loss function

φ(u, x) =
∑

i 6=j g(x)(ui, ui, uj, uj), and the stochastic gradient oracle SG(u) = ∇uφ(u, x).

38

For concreteness, we look at a simple ICA example. In the simple setting we consider an

unknown signal x that is uniform2 in {±1}d, and an unknown orthonormal linear transfor-

mation3 A (AAT = I). The sample we observe is y := Ax ∈ Rd. Using standard techniques

(see [35]), we know the 4-th order cumulant of the observed sample is a tensor that has

orthogonal decomposition. Here for simplicity we don’t define 4-th order cumulant, instead

we give the result directly.

Define tensor Z ∈ R
d4 as follows:

Z(i, i, i, i) = 3, ∀i ∈ [d]

Z(i, i, j, j) = Z(i, j, i, j) = Z(i, j, j, i) = 1, ∀i 6= j ∈ [d]

where all other entries of Z are equal to 0. The tensor T can be written as a function of the

auxiliary tensor Z and multilinear form of the sample y.

Lemma 2.4. The expectation E[1
2
(Z − y⊗4)] =

∑d
i=1 a

⊗4
i = T , where ai’s are columns of the

unknown orthonormal matrix A.

This lemma is easy to verify, and is closely related to cumulants [35]. Recall that φ(u, y)

denotes the loss (objective) function evaluated at sample y for point u. Let φ(u, y) =

∑
i 6=j

1
2
(Z − y⊗4)(ui, ui, uj, uj). By Lemma 2.4, we know that E[φ(u, y)] is equal to the ob-

jective function as in Equation (2.11). Therefore we rewrite objective (2.11) as the following

stochastic optimization problem

min
∀i,‖ui‖2=1

E[φ(u, y)], where φ(u, y) =
∑

i 6=j

1

2
(Z − y⊗4)(ui, ui, uj, uj)

2In general ICA the entries of x are independent, non-Gaussian variables.
3In general (under-complete) ICA this could be an arbitrary linear transformation, however usually after

the “whitening” step (see [35]) the linear transformation becomes orthonormal.

39

The stochastic gradient oracle is then

∇ui
φ(u, y) =

∑

j 6=i

(
〈uj, uj〉ui + 2 〈ui, uj〉uj − 〈uj, y〉2 〈ui, y〉 y

)
. (2.12)

Notice that computing this stochastic gradient does not require constructing the 4-th order

tensor T − y⊗4. In particular, this stochastic gradient can be computed very efficiently:

Remark. The stochastic gradient (2.12) can be computed for all ui’s in O(d
3) time for one

sample or O(d3 + d2k) for average of k samples.

Proof. The proof is straight forward as the first two terms on the right hand side take O(d3)

and is shared by all samples. The third term can be efficiently computed once the inner-

products between all the y’s and all the ui’s are computed (which takes O(kd2) time).

2.4 Experiments

We run simulations for Projected Noisy Gradient Descent (Algorithm 2) applied to orthogo-

nal tensor decomposition. The results show that the algorithm converges from random initial

points efficiently (as predicted by the theorems), and our new formulation (2.11) performs

better than reconstruction error (2.10) based formulation.

Settings We set dimension d = 10, the input tensor T is a random tensor in R104 that

has orthogonal decomposition (1.1). The step size is chosen carefully for respective ob-

jective functions. The performance is measured by normalized reconstruction error E =
(
‖T −∑d

i=1 u
⊗4
i ‖2F

)
/‖T‖2F .

Samples and stochastic gradients We use two ways to generate samples and compute stochas-

tic gradients. In the first case we generate sample x by setting it equivalent to d
1
4ai with

40

probability 1/d. It is easy to see that E[x⊗4] = T . This is a very simple way of generating

samples, and we use it as a sanity check for the objective functions.

In the second case we consider the ICA example introduced in Section 2.3.2, and use Equation

(2.12) to compute a stochastic gradient. In this case the stochastic gradient has a large

variance, so we use mini-batch of size 100 to reduce the variance.

Comparison of objective functions We use the simple way of generating samples for our new

objective function (2.11) and reconstruction error objective (2.10). The result is shown in

Figure 2.1. Our new objective function is empirically more stable (always converges within

10000 iterations); the reconstruction error do not always converge within the same number

of iterations and often exhibits long periods with small improvement (which is likely to be

caused by saddle points that do not have a significant negative eigenvalue).

Simple ICA example As shown in Figure 2.2, our new algorithm also works in the ICA

setting. When the learning rate is constant the error stays at a fixed small value. When we

decrease the learning rate the error converges to 0.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
ec
o
n
st
ru

ct
io
n
E
rr
o
r

Iteration

(a) New Objective (2.11)

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
ec
o
n
st
ru

ct
io
n
E
rr
o
r

Iteration

(b) Reconstruction Error Objective (2.10)

Figure 2.1: Comparison of different objective functions

41

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R
ec
o
n
st
ru

ct
io
n
E
rr
o
r

Iteration

(a) Constant Learning Rate η

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

R
ec
o
n
st
ru

ct
io
n
E
rr
o
r

Iteration

(b) Learning Rate η/t (in log scale)

Figure 2.2: Comparison of different objective functions

2.5 Conclusion

In this chapter we identify the strict saddle property and show stochastic gradient descent

converges to a local minimum under this assumption. This leads to new online algorithm

for orthogonal tensor decomposition. We hope this is a first step towards understanding

stochastic gradient for more classes of non-convex functions. We believe strict saddle prop-

erty can be extended to handle more functions, especially those functions that have similar

symmetry properties.

42

Chapter 3

Applying Online Tensor Methods for

Learning Latent Variable Models

In Chapter 2, we have established a guaranteed online stochastic gradient descent algorithm

for tensor decomposition. Theoretically, it is solid and well justified. We will now fill in the

gap of theoretical findings and practical applications by applying the algorithm to real world

problems.

We consider two problems: (1) community detection (wherein we compute the decomposition

of a tensor which relates to the count of 3-stars in a graph) and (2) topic modeling (wherein we

consider the tensor related to co-occurrence of triplets of words in documents); decomposition

of the these tensors allows us to learn the hidden communities and topics from observed data.

Community detection: We recover hidden communities in several real datasets with high

accuracy. When ground-truth communities are available, we propose a new error score based

on the hypothesis testing methodology involving p-values and false discovery rates [153] to

validate our results. The use of p-values eliminates the need to carefully tune the number of

communities output by our algorithm, and hence, we obtain a flexible trade-off between the

43

fraction of communities recovered and their estimation accuracy. We find that our method

has very good accuracy on a range of network datasets: Facebook, Yelp and DBLP. We

summarize the datasets used in this chapter in Table 3.5. To get an idea of our running

times, let us consider the larger DBLP collaborative data set for a moment. It consists of 16

million edges, one million nodes and 250 communities. We obtain an error of 10% and the

method runs in about two minutes, excluding the 80 minutes taken to read the edge data

from files stored on the hard disk and converting it to sparse matrix format.

Compared to the state-of-the-art method for learning MMSB models using the stochastic

variational inference algorithm of [70], we obtain several orders of magnitude speed-up in

the running time on multiple real datasets. This is because our method consists of efficient

matrix operations which are embarrassingly parallel. Matrix operations are carried out in the

sparse format which is efficient especially for social network settings involving large sparse

graphs. Moreover, our code is flexible to run on a range of graphs such as directed, undi-

rected and bipartite graphs, while the code of [70] is designed for homophilic networks, and

cannot handle bipartite graphs in its present format. Note that bipartite networks occur in

the recommendation setting such as the Yelp data set. Additionally, the variational imple-

mentation in [70] assumes a homogeneous connectivity model, where any pair of communities

connect with the same probability and the probability of intra-community connectivity is

also fixed. Our framework does not suffer from this restriction. We also provide arguments

to show that the Normalized Mutual Information (NMI) and other scores, previously used

for evaluating the recovery of overlapping community, can underestimate the errors.

Topic modeling: We also employ the tensor method for topic-modeling, and there are many

similarities between the topic and community settings. For instance, each document has

multiple topics, while in the network setting, each node has membership in multiple commu-

nities. The words in a document are generated based on the latent topics in the document,

and similarly, edges are generated based on the community memberships of the node pairs.

44

The tensor method is even faster for topic modeling, since the word vocabulary size is typi-

cally much smaller than the size of real-world networks. We learn interesting hidden topics

in New York Times corpus from UCI bag-of-words data set1 with around 100, 000 words and

300, 000 documents in about two minutes. We present the important words for recovered

topics, as well as interpret “bridging” words, which occur in many topics.

Implementations: We present two implementations, viz., a GPU-based implementation which

exploits the parallelism of SIMD architectures and a CPU-based implementation for larger

datasets, where the GPU memory does not suffice. We discuss various aspects involved such

as implicit manipulation of tensors since explicitly forming tensors would be unwieldy for

large networks, optimizing for communication bottlenecks in a parallel deployment, the need

for sparse matrix and vector operations since real world networks tend to be sparse, and a

careful statistical approach to validating the results, when ground truth is available.

3.1 Tensor Forms for Topic and Community Models

In this section, we briefly recap the topic and community models, as well as the tensor forms

for their exact moments, derived in [10, 8].

3.1.1 Topic Modeling

In topic modeling, a document is viewed as a bag of words. Each document has a latent set

of topics, and h = (h1, h2, . . . , hk) represents the proportions of k topics in a given document.

Given the topics h, the words are independently drawn and are exchangeable, and hence,

the term “bag of words” model. We represent the words in the document by d-dimensional

random vectors x1, x2, . . . xl ∈ Rd, where xi are coordinate basis vectors in Rd and d is the

1https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

45

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

size of the word vocabulary. Conditioned on h, the words in a document satisfy E[xi|h] = µh,

where µ := [µ1, . . . , µk] is the topic-word matrix. And thus µj is the topic vector satisfying

µj = Pr (xi|hj), ∀j ∈ [k]. Under the Latent Dirichlet Allocation (LDA) topic model [31], h

is drawn from a Dirichlet distribution with concentration parameter vector α = [α1, . . . , αk].

In other words, for each document u, hu
iid∼ Dir(α), ∀u ∈ [n] with parameter vector α ∈ R

k
+.

We define the Dirichlet concentration (mixing) parameter

α0 :=
∑

i∈[k]
αi.

The Dirichlet distribution allows us to specify the extent of overlap among the topics by

controlling for sparsity in topic density function. A larger α0 results in more overlapped

(mixed) topics. A special case of α0 = 0 is the single topic model.

Due to exchangeability, the order of the words does not matter, and it suffices to consider

the frequency vector for each document, which counts the number of occurrences of each

word in a document. Let ct := (c1,t, c2,t, . . . , cd,t) ∈ Rd denote the frequency vector for tth

document, and let n be the number of documents.

46

We consider the first three order empirical moments, given by

MTop
1 :=

1

n

n∑

t=1

ct (3.1)

MTop
2 :=

α0 + 1

n

n∑

t=1

(ct ⊗ ct − diag (ct))− α0M
Top
1 ⊗MTop

1 (3.2)

MTop
3 :=

(α0 + 1)(α0 + 2)

2n

n∑

t=1

ct ⊗ ct ⊗ ct −

d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ei ⊗ ej)

−
d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ej ⊗ ei)−
d∑

i=1

d∑

j=1

ci,tcj,t(ei ⊗ ej ⊗ ej) + 2
d∑

i=1

ci,t(ei ⊗ ei ⊗ ei)

− α0(α0 + 1)

2n

n∑

t=1

[
d∑

i=1

ci,t(ei ⊗ ei ⊗MTop
1) +

d∑

i=1

ci,t(ei ⊗MTop
1 ⊗ ei)

+
d∑

i=1

ci,t(M
Top
1 ⊗ ei ⊗ ei)

]
+ α2

0M
Top
1 ⊗MTop

1 ⊗MTop
1 . (3.3)

We recall Theorem 3.5 of [10]:

Lemma 3.1. The exact moments can be factorized as

E[MTop
1] =

k∑

i=1

αi

α0
µi (3.4)

E[MTop
2] =

k∑

i=1

αi

α0
µi ⊗ µi (3.5)

E[MTop
3] =

k∑

i=1

αi

α0
µi ⊗ µi ⊗ µi. (3.6)

where µ = [µ1, . . . , µk] and µi = Pr (xt|h = i), ∀t ∈ [l]. In other words, µ is the topic-word

matrix.

From the Lemma 3.1, we observe that the first three moments of a LDA topic model have

a simple form involving the topic-word matrix µ and Dirichlet parameters αi. In [10], it is

shown that these parameters can be recovered under a weak non-degeneracy assumption.

We will employ tensor decomposition techniques to learn the parameters.

47

3.1.2 Mixed Membership Model

In the mixed membership stochastic block model (MMSB), introduced by [5], the edges

in a social network are related to the hidden communities of the nodes. A batch tensor

decomposition technique for learning MMSB was derived in [8].

Let n denote the number of nodes, k the number of communities and G ∈ Rn×n the adjacency

matrix of the graph. Each node i ∈ [n] has an associated community membership vector

πi ∈ R
k, which is a latent variable, and the vectors are contained in a simplex, i.e.,

∑

i∈[k]
πu(i) = 1, ∀u ∈ [n]

where the notation [n] denotes the set {1, . . . , n}. Membership vectors are sampled from

the Dirichlet distribution πu
iid∼ Dir(α), ∀u ∈ [n] with parameter vector α ∈ R

k
+ where

α0 :=
∑

i∈[k] αi. As in the topic modeling setting, the Dirichlet distribution allows us to

specify the extent of overlap among the communities by controlling for sparsity in community

membership vectors. A larger α0 results in more overlapped (mixed) memberships. A special

case of α0 = 0 is the stochastic block model [8].

The community connectivity matrix is denoted by P ∈ [0, 1]k×k where P (a, b) measures the

connectivity between communities a and b, ∀a, b ∈ [k]. We model the adjacency matrix

entries as either of the two settings given below:

Bernoulli model: This models a network with unweighted edges. It is used for Facebook and

DBLP datasets in Section 3.5 in our experiments.

Gij
iid∼ Ber(π⊤

i Pπj), ∀i, j ∈ [n].

48

Poisson model [100]: This models a network with weighted edges. It is used for the Yelp

data set in Section 3.5 to incorporate the review ratings.

Gij
iid∼ Poi(π⊤

i Pπj), ∀i, j ∈ [n].

The tensor decomposition approach involves up to third order moments, computed from

the observed network. In order to compute the moments, we partition the nodes randomly

into sets X,A,B, C. Let FA := Π⊤
AP

⊤, FB := Π⊤
BP

⊤, FC := Π⊤
CP

⊤ (where P is the

community connectivity matrix and Π is the membership matrix) and α̂ :=
(

α1

α0
, . . . , αk

α0

)

denote the normalized Dirichlet concentration parameter. We define pairs over Y1 and Y2 as

Pairs(Y1, Y2) := G⊤
X,Y1
⊗G⊤

X,Y2
. Define the following matrices

ZB := Pairs (A,C) (Pairs (B,C))† , (3.7)

ZC := Pairs (A,B) (Pairs (C,B))† . (3.8)

We consider the first three empirical moments, given by

M1
Com :=

1

nX

∑

x∈X
G⊤

x,A (3.9)

M2
Com :=

α0 + 1

nX

∑

x∈X
ZCG

⊤
x,CGx,BZ

⊤
B − α0M1

ComM1
Com⊤

(3.10)

M3
Com :=

(α0 + 1)(α0 + 2)

2nX

∑

x∈X
G⊤

x,A ⊗ ZBG
⊤
x,B ⊗ ZCG

⊤
x,C

+ α2
0M1

Com ⊗M1
Com ⊗M1

Com

− α0(α0 + 1)

2nX

∑

x∈X

(
G⊤

x,A ⊗ ZBG
⊤
x,B ⊗M1

Com +G⊤
x,A ⊗M1

Com ⊗ ZCG
⊤
x,C

+M1
Com ⊗ ZBG

⊤
x,B ⊗ ZCG

⊤
x,C

)
(3.11)

49

We now recap Proposition 2.2 of [9] which provides the form of these moments under expec-

tation.

Lemma 3.2. The exact moments can be factorized as

E[M1
Com|ΠA,ΠB,ΠC] :=

∑

i∈[k]
α̂i(FA)i (3.12)

E[M2
Com|ΠA,ΠB,ΠC] :=

∑

i∈[k]
α̂i(FA)i ⊗ (FA)i (3.13)

E[M3
Com|ΠA,ΠB,ΠC] :=

∑

i∈[k]
α̂i(FA)i ⊗ (FA)i ⊗ (FA)i (3.14)

where ⊗ denotes the Kronecker product and (FA)i corresponds to the ith column of FA.

We observe that the moment forms above for the MMSB model have a similar form as

the moments of the topic model in the previous section. Thus, we can employ a unified

framework for both topic and community modeling involving decomposition of the third

order moment tensors MTop
3 and MCom

3 . Second order moments MTop
2 and MCom

2 are used

for preprocessing of the data (i.e., whitening, which is introduced in detail in Section 3.2.1).

For the sake of the simplicity of the notation, in the rest of the chapter, we will use M2 to

denote empirical second order moments for both MTop
2 in topic modeling setting, and MCom

2

in the mixed membership model setting. Similarly, we will use M3 to denote empirical third

order moments for both MTop
3 and MCom

3 .

3.2 Learning using Third Order Moment

Our learning algorithm uses up to the third-order moment to estimate the topic word matrix

µ or the community membership matrix Π. First, we obtain co-occurrence of triplet words

or subgraph counts (implicitly). Then, we perform preprocessing using second order moment

50

M2. Then we perform tensor decomposition efficiently using stochastic gradient descent [111]

on M3. We note that, in our implementation of the algorithm on the Graphics Processing

Unit (GPU), linear algebraic operations are extremely fast. We also implement our algorithm

on the CPU for large datasets which exceed the memory capacity of GPU and use sparse

matrix operations which results in large gains in terms of both the memory and the running

time requirements. The overall approach is summarized in Algorithm 3.

Procedure 3 Overall approach for learning latent variable models via a moment-based
approach.

Input: Observed data: social network graph or document samples.
Output: Learned latent variable model and infer hidden attributes.
1: Estimate the third order moments tensor M3 (implicitly). The tensor is not formed

explicitly as we break down the tensor operations into vector and matrix operations.
2: Whiten the data, via SVD of M2, to reduce dimensionality via symmetrization and

orthogonalization. The third order moments M3 are whitened as T .
3: Use stochastic gradient descent to estimate spectrum of whitened (implicit) tensor T .
4: Apply post-processing to obtain the topic-word matrix or the community memberships.

5: If ground truth is known, validate the results using various evaluation measures.

3.2.1 Dimensionality Reduction and Whitening

Whitening step utilizes linear algebraic manipulations to make the tensor symmetric and

orthogonal (in expectation). Moreover, it leads to dimensionality reduction since it (im-

plicitly) reduces tensor M3 of size O(n3) to a tensor of size k3, where k is the number of

communities. Typically we have k ≪ n. The whitening step also converts the tensor M3 to

a symmetric orthogonal tensor. The whitening matrix W ∈ RnA×k satisfies W⊤M2W = I.

The idea is that if the bilinear projection of the second order moment onto W results in

the identity matrix, then a trilinear projection of the third order moment onto W would

result in an orthogonal tensor. We use multilinear operations to get an orthogonal tensor

T :=M3(W,W,W).

51

The whitening matrix W is computed via truncated k−svd of the second order moments.

W = UM2Σ
−1/2
M2

,

where UM2 and ΣM2 = diag(σM2,1, . . . , σM2,k) are the top k singular vectors and singular

values of M2 respectively. We then perform multilinear transformations on the triplet data

using the whitening matrix. The whitened data is thus

ytA :=
〈
W, ct

〉
,

ytB :=
〈
W, ct

〉
,

ytC :=
〈
W, ct

〉
,

for the topic modeling, where t denotes the index of the documents. Note that ytA, y
t
B and

ytC ∈ Rk. Implicitly, the whitened tensor is T = 1
nX

∑
t∈X

ytA ⊗ ytB ⊗ ytC and is a k × k × k

dimension tensor. Since k ≪ n, the dimensionality reduction is crucial for our speedup.

3.2.2 Stochastic Tensor Gradient Descent

In [8] and [10], the power method with deflation is used for tensor decomposition where the

eigenvectors are recovered by iterating over multiple loops in a serial manner. Furthermore,

batch data is used in their iterative power method which makes that algorithm slower than

its stochastic counterpart. In addition to implementing a stochastic spectral optimization

algorithm, we achieve further speed-up by efficiently parallelizing the stochastic updates.

Let v = [v1|v2| . . . |vk] be the true eigenvectors. Denote the cardinality of the sample set

as nX, i.e., nX := |X|. Now that we have the whitened tensor, we propose the Stochastic

Tensor Gradient Descent (STGD) algorithm for tensor decomposition. Consider the tensor

52

T ∈ R
k×k×k using whitened samples, i.e.,

T =
1

nX

∑

t∈X
T t =

(α0 + 1)(α0 + 2)

2nX

∑

t∈X
ytA ⊗ ytB ⊗ ytC

− α0(α0 + 1)

2nX

∑

t∈X

[
ytA ⊗ ytB ⊗ ȳC + ytA ⊗ ȳB ⊗ ytC + ȳA ⊗ ytB ⊗ ytC

]
+ α2

0ȳA ⊗ ȳB ⊗ ȳC ,

where t ∈ X and denotes the index of the online data and ȳA, ȳB, and ȳC denote the mean

of the whitened data. Our goal is to find a symmetric CP decomposition of the whitened

tensor, and this will be extensively discussed in the next chapter.

After learning the decomposition of the third order moment, we perform post-processing to

estimate Π̂.

3.2.3 Post-processing

Eigenvalues Λ := [λ1, λ2, . . . , λk] are estimated as the norm of the eigenvectors λi = ‖φi‖3.

Lemma 3.3. After we obtain Λ and Φ, the estimate for the topic-word matrix is given by

µ̂ = W⊤†
Φ,

and in the community setting, the community membership matrix is given by

Π̂Ac = diag(γ)1/3 diag(Λ)−1Φ⊤Ŵ⊤GA,Ac .

where Ac := X ∪ B ∪ C. Similarly, we estimate Π̂A by exchanging the roles of X and A.

Next, we obtain the Dirichlet distribution parameters

α̂i = γ2λ−2
i , ∀i ∈ [k].

53

where γ2 is chosen such that we have normalization
∑

i∈[k] α̂i :=
∑

i∈[k]
αi

α0
= 1.

Thus, we perform STGDmethod to estimate the eigenvectors and eigenvalues of the whitened

tensor, and then use these to estimate the topic word matrix µ and community membership

matrix Π̂ by thresholding.

3.3 Implementation Details

3.3.1 Symmetrization Step to Compute M2

Note that for the topic model, the second order moment M2 can be computed easily from

the word-frequency vector. On the other hand, for the community setting, computing M2

requires additional linear algebraic operations. It requires computation of matrices ZB and

ZC in equation (3.7). This requires computation of pseudo-inverses of “Pairs” matrices.

Now, note that pseudo-inverse of (Pairs (B,C)) in Equation (3.7) can be computed using

rank k-SVD:

k-SVD (Pairs (B,C)) = UB(:, 1 : k)ΣBC(1 : k)VC(:, 1 : k)⊤.

We exploit the low rank property to have efficient running times and storage. We first

implement the k-SVD of Pairs, given by G⊤
X,CGX,B. Then the order in which the matrix

products are carried out plays a significant role in terms of both memory and speed. Note

that ZC involves the multiplication of a sequence of matrices of sizes RnA×nB , RnB×k, Rk×k,

Rk×nC , G⊤
x,CGx,B involves products of sizes RnC×k, Rk×k, Rk×nB , and ZB involving products

of sizes RnA×nC , RnC×k, Rk×k, Rk×nB . While performing these products, we avoid products

of sizes R
O(n)×O(n) and R

O(n)×O(n). This allows us to have efficient storage requirements.

Such manipulations are represented in Figure 3.1.

54

=

† ⊤†⊤
|A|

|A|

=

⊤ ⊤ ⊤

=

⊤ ⊤ ⊤

Figure 3.1: By performing the matrix multiplications in an efficient order (Equation (3.10)),
we avoid products involving O(n) × O(n) objects. Instead, we use objects of size
O(n) × k which improves the speed, since k ≪ n. Equation (3.10) is equivalent

to M2 =
(
PairsA,B Pairs†C,B

)
PairsC,B

(
Pairs†B,C

)⊤
Pairs⊤A,C −shift, where the shift =

α0

α0+1

(
M1M1

⊤ − diag
(
M1M1

⊤)). We do not explicitly calculate the pseudoinverse but main-
tain the low rank matrix decomposition form.

We then orthogonalize the third order moments to reduce the dimension of its modes to k.

We perform linear transformations on the data corresponding to the partitions A, B and C

using the whitening matrix. The whitened data is thus ytA :=
〈
W,G⊤

t,A

〉
, ytB :=

〈
W,ZBG

⊤
t,B

〉
,

and ytC :=
〈
W,ZCG

⊤
t,C

〉
, where t ∈ X and denotes the index of the online data. Since k ≪ n,

the dimensionality reduction is crucial for our speedup.

3.3.2 Efficient Randomized SVD Computations

When we consider very large-scale data, the whitening matrix is a bottleneck to handle

when we aim for fast running times. We obtain the low rank approximation of matrices

using random projections. In the CPU implementation, we use tall-thin SVD (on a sparse

matrix) via the Lanczos algorithm after the projection and in the GPU implementation,

55

we use tall-thin QR. We give the overview of these methods below. Again, we use graph

community membership model without loss of generality.

Randomized low rank approximation: From [66], for the k-rank positive semi-definite matrix

M2 ∈ RnA×nA with nA ≫ k, we can perform random projection to reduce dimensionality.

More precisely, if we have a random matrix S ∈ RnA×k̃ with unit norm (rotation matrix),

we project M2 onto this random matrix to get Rn×k̃ tall-thin matrix. Note that we choose

k̃ = 2k in our implementation. We will obtain lower dimension approximation of M2 in

Rk̃×k̃. Here we emphasize that S ∈ Rn×k̃ is a random matrix for dense M2. However for

sparse M2, S ∈ {0, 1}n×k̃ is a column selection matrix with random sign for each entry.

After the projection, one approach we use is SVD on this tall-thin (Rn×k̃) matrix. Define

O := M2S ∈ Rn×k̃ and Ω := S⊤M2S ∈ Rk̃×k̃. A low rank approximation of M2 is given by

OΩ†O⊤ [66]. Recall that the definition of a whitening matrix W is that W⊤M2W = I. We

can obtain the whitening matrix of M2 without directly doing a SVD on M2 ∈ RnA×nA.

Tall-thin SVD: This is used in the CPU implementation. The whitening matrix can be

obtained by

W ≈ (O†)⊤(Ω
1
2)⊤. (3.15)

The pseudo code for computing the whitening matrix W using tall-thin SVD is given in

Algorithm 4. Therefore, we only need to compute SVD of a tall-thin matrix O ∈ RnA×k̃.

Note that Ω ∈ Rk̃×k̃, its square-root is easy to compute. Similarly, pseudoinverses can also

be obtained without directly doing SVD. For instance, the pseudoinverse of the Pairs (B,C)

matrix is given by

(Pairs (B,C))† = (J†)⊤ΨJ†,

56

Procedure 4 Randomized Tall-thin SVD

Input: Second moment matrix M2.
Output: Whitening matrix W .
1: Generate random matrix S ∈ Rn×k̃ if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k̃ if M2 is sparse.

3: O =M2S ∈ Rn×k̃

4: [UO, LO, VO] =SVD(O)

5: Ω = S⊤O ∈ Rk̃×k̃

6: [UΩ, LΩ, VΩ] =SVD(Ω)

7: W = UOL
−1
O V ⊤

O VΩL
1
2
ΩU

⊤
Ω

where Ψ = S⊤ (Pairs (B,C))S and J = (Pairs (B,C))S. The pseudo code for computing

pseudoinverses is given in Algorithm 5.

Procedure 5 Randomized Pseudoinverse

Input: Pairs matrix Pairs (B,C).
Output: Pseudoinverse of the pairs matrix (Pairs (B,C))†.
1: Generate random matrix S ∈ Rn,k if M2 is dense.
2: Generate column selection matrix with random sign S ∈ {0, 1}n×k if M2 is sparse.
3: J = (Pairs (B,C))S
4: Ψ = S⊤J
5: [UJ , LJ , VJ] =SVD(J)
6: (Pairs (B,C))† = UJL

−1
J V ⊤

J ΨVJL
−1
J U⊤

J

The sparse representation of the data allows for scalability on a single machine to datasets

having millions of nodes. Although the GPU has SIMD architecture which makes paralleliza-

tion efficient, it lacks advanced libraries with sparse SVD operations and out-of-GPU-core

implementations. We therefore implement the sparse format on CPU for sparse datasets. We

implement our algorithm using random projection for efficient dimensionality reduction [45]

along with the sparse matrix operations available in the Eigen toolkit2, and we use the

SVDLIBC [30] library to compute sparse SVD via the Lanczos algorithm. Theoretically, the

Lanczos algorithm [69] on a n×n matrix takes around (2d+8)n flops for a single step where

d is the average number of non-zero entries per row.

2http://eigen.tuxfamily.org/index.php?title=Main_Page

57

http://eigen.tuxfamily.org/index.php?title=Main_Page

vti

ytA,y
t
B,y

t
C

CPU

GPU

Standard Interface

vti

ytA,y
t
B,y

t
C

CPU

GPU

Device Interface

vti

Figure 3.2: Data transfers in the standard and device interfaces of the GPU implementation.

Tall-thin QR: This is used in the GPU implementation due to the lack of library to do sparse

tall-thin SVD. The difference is that we instead implement a tall-thin QR on O, therefore

the whitening matrix is obtained as

W ≈ Q(R†)⊤(Ω
1
2)⊤.

The main bottleneck for our GPU implementation is device storage, since GPU memory is

highly limited and not expandable. Random projections help in reducing the dimensionality

from O(n× n) to O(n× k) and hence, this fits the data in the GPU memory better. Conse-

quently, after the whitening step, we project the data into k-dimensional space. Therefore,

the STGD step is dependent only on k, and hence can be fit in the GPU memory. So, the

main bottleneck is computation of large SVDs. In order to support larger datasets such as

the DBLP data set which exceed the GPU memory capacity, we extend our implementation

with out-of-GPU-core matrix operations and the Nystrom method [66] for the whitening

matrix computation and the pseudoinverse computation in the pre-processing module.

58

3.3.3 Stochastic Updates

STGD can potentially be the most computationally intensive task if carried out naively

since the storage and manipulation of a O(n3)-sized tensor makes the method not scalable.

However we overcome this problem since we never form the tensor explicitly; instead, we col-

lapse the tensor modes implicitly. We gain large speed up by optimizing the implementation

of STGD.To implement the tensor operations efficiently we convert them into matrix and

vector operations so that they are implemented using BLAS routines. We obtain whitened

vectors yA, yB and yC and manipulate these vectors efficiently to obtain tensor eigenvector

updates using the gradient scaled by a suitable learning rate.

Efficient STGD via stacked vector operations: We convert the BLAS II into BLAS III

operations by stacking the vectors to form matrices, leading to more efficient operations.

Although the updating equation for the stochastic gradient update is presented serially, we

can update the k eigenvectors simultaneously in parallel. The basic idea is to stack the k

eigenvectors φi ∈ Rk into a matrix Φ, then using the internal parallelism designed for BLAS

III operations.

Overall, the STGD step involves 1 + k + i(2 + 3k) BLAS II over Rk vectors, 7N BLAS III

over Rk×k matrices and 2 QR operations over Rk×k matrices, where i denotes the number of

iterations. We provide a count of BLAS operations for various steps in Table 3.1.

Module BLAS I BLAS II BLAS III SVD QR

Pre 0 8 19 3 0
STGD 0 Nk 7N 0 2
Post 0 0 7 0 0

Table 3.1: Linear algebraic operation counts: N denotes the number of iterations for STGD
and k, the number of communities.

Reducing communication in GPU implementation: In STGD, note that the storage needed

for the iterative part does not depend on the number of nodes in the data set, rather,

59

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Number of communities k

R
u
n
n
in
g
ti
m
e(
se
cs
)

MATLAB Tensor Toolbox

CULA Standard Interface

CULA Device Interface

Eigen Sparse

Figure 3.3: Comparison of the running time for STGD under different k for 100 iterations.

it depends on the parameter k, i.e., the number of communities to be estimated, since

whitening performed before STGD leads to dimensionality reduction. This makes it suitable

for storing the required buffers in the GPU memory, and using the CULA device interface

for the BLAS operations. In Figure 3.2, we illustrate the data transfer involved in the GPU

standard and device interface codes. While the standard interface involves data transfer

(including whitened neighborhood vectors and the eigenvectors) at each stochastic iteration

between the CPU memory and the GPU memory, the device interface involves allocating and

retaining the eigenvectors at each stochastic iteration which in turn speeds up the spectral

estimation.

60

We compare the running time of the CULA device code with the MATLAB code (using the

tensor toolbox [23]), CULA standard code and Eigen sparse code in Figure 3.3. As expected,

the GPU implementations of matrix operations are much faster and scale much better than

the CPU implementations. Among the CPU codes, we notice that sparsity and optimization

offered by the Eigen toolkit gives us huge gains. We obtain orders of magnitude of speed up

for the GPU device code as we place the buffers in the GPU memory and transfer minimal

amount of data involving the whitened vectors only once at the beginning of each iteration.

The running time for the CULA standard code is more than the device code because of the

CPU-GPU data transfer overhead. For the same reason, the sparse CPU implementation, by

avoiding the data transfer overhead, performs better than the GPU standard code for very

small number of communities. We note that there is no performance degradation due to the

parallelization of the matrix operations. After whitening, the STGD requires the most code

design and optimization effort, and so we convert that into BLAS-like routines.

3.3.4 Computational Complexity

Module Time Space

Preprocessing (Matrix Multiply) O (max(nsk/c, log s)) O (max(s2, sk))
Preprocessing (CPU SVD) O (max(nsk/c, log s) + max(k2/c, k)) O(sk)
Preprocessing (GPU QR) O (max(sk2/c, log s) + max(sk2/c, log k)) O(sk)
Preprocessing(short-thin SVD) O (max(k3/c, log k) + max(k2/c, k)) O(k2)
STGD O (max(k3/c, log k)) O(k2)
Post-processing O (max(nsk/c, log s)) O(nk)

Table 3.2: The time and space complexity (number of compute cores required) of our al-
gorithm. Note that k ≪ n, s is the average degree of a node (or equivalently, the average
number of non-zeros per row/column in the adjacency sub-matrix); note that the STGD
time is per iteration time. We denote the number of cores as c - the time-space trade-off
depends on this parameter.

We partition the execution of our algorithm into three main modules namely, pre-processing,

STGD and post-processing, whose various matrix operation counts are listed above in Ta-

ble 3.1.

61

The theoretical asymptotic complexity of our method is summarized in Table 3.2 and is

best addressed by considering the parallel model of computation [94], i.e., wherein a number

of processors or compute cores are operating on the data simultaneously in parallel. This

is justified considering that we implement our method on GPUs and matrix products are

embarrassingly parallel. Note that this is different from serial computational complexity.

We now break down the entries in Table 3.2. First, we recall a basic lemma regarding the

lower bound on the time complexity for parallel addition along with the required number of

cores to achieve a speed-up.

Lemma 3.4. [94] Addition of s numbers in serial takes O(s) time; with Ω(s/ log s) cores,

this can be improved to O(log s) time in the best case.

Essentially, this speed-up is achieved by recursively adding pairs of numbers in parallel.

Lemma 3.5. [94] Consider M ∈ Rp×q and N ∈ Rq×r with s non-zeros per row/column.

Naive serial matrix multiplication requires O(psr) time; with Ω(psr/ log s) cores, this can be

improved to O(log s) time in the best case.

Lemma 3.5 follows by simply parallelizing the sparse inner products and applying Lemma 3.4

for the addition in the inner products. Note that, this can be generalized to the fact that

given c cores, the multiplication can be performed in O(max(psr/c, log s)) running time.

Pre-processing

Random projection: In preprocessing, given c compute cores, we first do random projection

using matrix multiplication. We multiply an O(n)× O(n) matrix M2 with an O(n)× O(k)

random matrix S. Therefore, this requires O(nsk) serial operations, where s is the number of

non-zero elements per row/column of M2. Using Lemma 3.5, given c = nsk
log s

cores, we could

62

achieve O(log s) computational complexity. However, the parallel computational complexity

is not further reduced with more than nsk
log s

cores.

After the multiplication, we use tall-thin SVD for CPU implementation, and tall-thin QR

for GPU implementation.

Tall-thin SVD: We perform Lanczos SVD on the tall-thin sparse O(n)×O(k) matrix, which

involves a tri-diagonalization followed with the QR on the tri-diagonal matrix. Given c = nsk
log s

cores, the computational complexity of the tri-diagonalization is O(log s). We then do QR on

the tridiagonal matrix which is as cheap as O(k2) serially. Each orthogonalization requires

O(k) inner products of constant entry vectors, and there are O(k) such orthogonalizations

to be done. Therefore given O(k) cores, the complexity is O(k). More cores does not help

since the degree of parallelism is k.

Tall-thin QR: Alternatively, we perform QR in the GPU implementation which takes O(sk2).

To arrive at the complexity of obtaining Q, we analyze the Gram-Schmidt orthonormalization

procedure under sparsity and parallelism conditions. Consider a serial Gram-Schmidt on k

columns (which are s-dense) of O(n) × O(k) matrix. For each of the columns 2 to k, we

perform projection on the previously computed components and subtract it. Both inner

product and subtraction operations are on the s-dense columns and there are O(s) operations

which are done O(k2) times serially. The last step is the normalization of k s-dense vectors

with is an O(sk) operation. This leads to a serial complexity of O(sk2+sk) = O(sk2). Using

this, we may obtain the parallel complexity in different regimes of the number of cores as

follows.

Parallelism for inner products : For each component i, we need i − 1 projections on previ-

ous components which can be parallel. Each projection involves scaling and inner product

operations on a pair of s-dense vectors. Using Lemma 3.4, projection for component i can

63

be performed in O(max(sk
c
, log s)) time. O(log s) complexity is obtained using O(sk/ log s)

cores.

Parallelism for subtractions : For each component i, we need i − 1 subtractions on a s-

dense vector after the projection. Serially the subtraction requires O(sk) operations, and

this can be reduced to O(log k) with O(sk/ log k) cores in the best case. The complexity is

O(max(sk
c
, log k)).

Combing the inner products and subtractions, the complexity is O
(
max(sk

c
, log s)

+max(sk
c
, log k)

)
for component i. There are k components in total, which can not be

parallel. In total, the complexity for the parallel QR is O
(
max(sk

2

c
, log s) + max(sk

2

c
, log k)

)
.

Short-thin SVD: SVD of the smaller O(Rk×k) matrix time requires O(k3) computations

in serially. We note that this is the bottleneck for the computational complexity, but we

emphasize that k is sufficiently small in many applications. Furthermore, this k3 complexity

can be reduced by using distributed SVD algorithms e.g. [99, 62]. An analysis with respect

to Lanczos parallel SVD is similar with the discussion in the Tall-thin SVD paragraph. The

complexity is O(max(k3/c, log k)+max(k2/c, k)). In the best case, the complexity is reduced

to O(log k + k).

The serial time complexity of SVD is O(n2k) but with randomized dimensionality reduc-

tion [66] and parallelization [51], this is significantly reduced.

STGD

In STGD, we perform implicit stochastic updates, consisting of a constant number of matrix-

matrix and matrix-vector products, on the set of eigenvectors and whitened samples which

is of size k × k. When c ∈ [1, k3/ log k], we obtain a running time of O(k3/c) for computing

inner products in parallel with c compute cores since each core can perform an inner product

64

to compute an element in the resulting matrix independent of other cores in linear time. For

c ∈ (k3/ log k,∞], using Lemma 3.4, we obtain a running time of O(log k). Note that the

STGD time complexity is calculated per iteration.

Post-processing

Finally, post-processing consists of sparse matrix products as well. Similar to pre-processing,

this consists of multiplications involving the sparse matrices. Given s number of non-zeros

per column of an O(n) × O(k) matrix, the effective number of elements reduces to O(sk).

Hence, given c ∈ [1, nks/ log s] cores, we need O(nsk/c) time to perform the inner products

for each entry of the resultant matrix. For c ∈ (nks/ log s,∞], using Lemma 3.4, we obtain

a running time of O(log s).

Note that nk2 is the complexity of computing the exact SVD and we reduce it to O(k) when

there are sufficient cores available. This is meant for the setting where k is small. This

k3 complexity of SVD on O(k × k) matrix can be reduced to O(k) using distributed SVD

algorithms e.g. [99, 62]. We note that the variational inference algorithm complexity, by

Gopalan and Blei [71], is O(mk) for each iteration, where m denotes the number of edges

in the graph, and n < m < n2. In the regime that n ≫ k, our algorithm is more efficient.

Moreover, a big difference is in the scaling with respect to the size of the network and ease

of parallelization of our method compared to variational one.

65

Π1

Π2

Π3

Π4

Π̂1

Π̂2

Π̂3

Π̂4

Π̂5

Π̂6

Figure 3.4: Bipartite graph G{Pval} induced by p-value testing. Edges represent statistically
significant relationships between ground truth and estimated communities.

3.4 Validation methods

3.4.1 P -value Testing

We recover the estimated community membership matrix Π̂ ∈ Rk̂×n, where k̂ is the number

of communities specified to our method. Recall that the true community membership matrix

is Π, and we consider datasets where ground truth is available. Let i-th row of Π̂ be denoted

by Π̂i. Our community detection method is unsupervised, which inevitably results in row

permutations between Π and Π̂ and k̂ may not be the same as k. To validate the results, we

need to find a good match between the rows of Π̂ and Π. We use the notion of p-values to

test for statistically significant dependencies among a set of random variables. The p-value

denotes the probability of not rejecting the null hypothesis that the random variables under

consideration are independent and we use the Student’s3 t-test statistic [60] to compute the

p-value. We use multiple hypothesis testing for different pairs of estimated and ground-

3Note that Student’s t-test is robust to the presence of unequal variances when the sample sizes of the
two are equal which is true in our setting.

66

truth communities Π̂i,Πj and adjust the p-values to ensure a small enough false discovery

rate (FDR) [153].

The test statistic used for the p-value testing of the estimated communities is

Tij :=
ρ
(
Π̂i,Πj

)√
n− 2

√
1− ρ

(
Π̂i,Πj

)2 .

The right p-value is obtained via the probability of obtaining a value (say tij) greater than

the test statistic Tij , and it is defined as

Pval(Πi, Π̂j) := 1− P (tij > Tij) .

Note that Tij has Student’s t-distribution with degree of freedom n − 2 (i.e. Tij ∼ tn−2).

Thus, we obtain the right p-value4.

In this way, we compute the Pval matrix as

Pval(i, j) := Pval

[
Π̂i,Πj

]
, ∀i ∈ [k] and j ∈ [k̂].

3.4.2 Evaluation Metrics

Recovery ratio: Validating the results requires a matching of the true membership Π with

estimated membership Π̂. Let Pval(Πi, Π̂j) denote the right p-value under the null hypothesis

that Πi and Π̂j are statistically independent. We use the p-value test to find out pairs Πi, Π̂j

which pass a specified p-value threshold, and we denote such pairs using a bipartite graph

4The right p-value accounts for the fact that when two communities are anti-correlated they are not
paired up. Hence note that in the special case of block model in which the estimated communities are just
permuted version of the ground truth communities, the pairing results in a perfect matching accurately.

67

G{Pval}. Thus, G{Pval} is defined as

G{Pval} :=
({
V

(1)
{Pval}, V

(2)
{Pval}

}
, E{Pval}

)
,

where the nodes in the two node sets are

V
(1)
{Pval} = {Π1, . . . ,Πk} ,

V
(2)
{Pval} =

{
Π̂1, . . . , Π̂k̂

}

and the edges of G{Pval} satisfy

(i, j) ∈ E{Pval} s.t. Pval

[
Π̂i,Πj

]
≤ 0.01.

A simple example is shown in Figure 3.4, in which Π2 has statistically significant dependence

with Π̂1, i.e., the probability of not rejecting the null hypothesis is small (recall that null

hypothesis is that they are independent). If no estimated membership vector has a significant

overlap with Π3, then Π3 is not recovered. There can also be multiple pairings such as for Π1

and {Π̂2, Π̂3, Π̂6}. The p-value test between Π1 and {Π̂2, Π̂3, Π̂6} indicates that probability

of not rejecting the null hypothesis is small, i.e., they are independent. We use 0.01 as the

threshold. The same holds for Π2 and {Π̂1} and for Π4 and {Π̂4, Π̂5}. There can be a perfect

one to one matching like for Π2 and Π̂1 as well as a multiple matching such as for Π1 and

{Π̂2, Π̂3, Π̂6}. Or another multiple matching such as for {Π1,Π2} and Π̂3.

Let Degreei denote the degree of ground truth community i ∈ [k] in G{Pval}, we define the

recovery ratio as follows.

Definition 3.1. The recovery ratio is defined as

R :=
1

k

∑

i

I {Degreei > 0} , i ∈ [k]

68

where I(x) is the indicator function whose value equals one if x is true.

The perfect case is that all the memberships have at least one significant overlapping es-

timated membership, giving a recovery ratio of 100%. Error function: For performance

analysis of our learning algorithm, we use an error function given as follows:

Definition 3.2. The average error function is defined as

E :=
1

k

∑

(i,j)∈E{P
val

}

1

n

∑

x∈|X|

∣∣∣∣ Π̂i(x)−Πj(x)

∣∣∣∣

 ,

where E{Pval} denotes the set of edges based on thresholding of the p-values.

The error function incorporates two aspects, namely the l1 norm error between each estimated

community and the corresponding paired ground truth community, and the error induced by

false pairings between the estimated and ground-truth communities through p-value testing.

For the former l1 norm error, we normalize with n which is reasonable and results in the range

of the error in [0, 1]. For the latter, we define the average error function as the summation of

all paired memberships errors divided by the true number of communities k. In this way we

penalize falsely discovered pairings by summing them up. Our error function can be greater

than 1 if there are too many falsely discovered pairings through p-value testing (which can

be as large as k × k̂).

Bridgeness: Bridgeness in overlapping communities is an interesting measure to evaluate.

A bridge is defined as a vertex that crosses structural holes between discrete groups of

people and bridgeness analyzes the extent to which a given vertex is shared among different

69

communities [129]. Formally, the bridgeness of a vertex i is defined as

bi := 1−

√√√√ k̂

k̂ − 1

k̂∑

j=1

(
Π̂i(j)−

1

k̂

)2

. (3.16)

Note that centrality measures should be used in conjunction with bridge score to distinguish

outliers from genuine bridge nodes [129]. The degree-corrected bridgeness is used to evaluate

our results and is defined as

Bi := Dibi, (3.17)

where Di is degree of node i.

3.5 Experimental Results

Results on Synthetic Datasets:

We perform experiments for both the stochastic block model (α0 = 0) and the mixed mem-

bership model. For the mixed membership model, we set the concentration parameter α0 = 1.

We note that the error is around 8%−14% and the running times are under a minute, when

n ≤ 10000 and n≫ k.

We observe that more samples result in a more accurate recovery of memberships which

matches intuition and theory. Overall, our learning algorithm performs better in the stochas-

tic block model case than in the mixed membership model case although we note that the

accuracy is quite high for practical purposes. Theoretically, this is expected since smaller

concentration parameter α0 is easier for our algorithm to learn [8]. Also, our algorithm is

scalable to an order of magnitude larger in n as illustrated by experiments on real-world

large-scale datasets.

70

Note that we threshold the estimated memberships to clean the results. There is a tradeoff

between match ratio and average error via different thresholds. In synthetic experiments,

the tradeoff is not evident since a perfect matching is always present. However, we need to

carefully handle this in experiments involving real data.

Results on Topic Modeling: We perform experiments for the bag of words data set [22] for

The New York Times. We set the concentration parameter to be α0 = 1 and observe top

recovered words in numerous topics. The results are in Table 3.3. Many of the results are

expected. For example, the top words in topic # 11 are all related to some bad personality.

We also present the words with most spread membership, i.e., words that belong to many

topics as in Table 3.4. As expected, we see minutes, consumer, human, member and so on.

These words can appear in a lot of topics, and we expect them to connect topics.

Results on Real-world Graph Datasets: We describe the results on real datasets summarized

in Table 3.5 in detail below. The simulations are summarized in Table 3.6.

The results are presented in Table 3.6. We note that our method, in both dense and sparse

implementations, performs very well compared to the state-of-the-art variational method.

For the Yelp dataset, we have a bipartite graph where the business nodes are on one side

and user nodes on the other and use the review stars as the edge weights. In this bipartite

setting, the variational code provided by Gopalan et al [70] does not work on since it is not

applicable to non-homophilic models. Our approach does not have this restriction. Note

that we use our dense implementation on the GPU to run experiments with large number

of communities k as the device implementation is much faster in terms of running time of

the STGD step.On the other hand, the sparse implementation on CPU is fast and memory

efficient in the case of sparse graphs with a small number of communities while the dense

implementation on GPU is faster for denser graphs such as Facebook. Note that data

reading time for DBLP is around 4700 seconds, which is not negligible as compared to other

71

Topic # Top Words

1 prompting complicated eviscerated predetermined lap
renegotiating loose entity legalese justice

2 hamstrung airbrushed quasi outsold fargo
ennobled tantalize irrelevance noncontroversial untalented

3 scariest pest knowingly causing flub
mesmerize dawned millennium ecological ecologist

4 reelection quixotic arthroscopic versatility commanded
hyperextended anus precipitating underhand knee

5 believe signing ballcarrier parallel anomalies
munching prorated unsettle linebacking bonus

6 gainfully settles narrator considerable articles
narrative rosier deviating protagonist deductible

7 faithful betcha corrupted inept retrench
martialed winston dowdy islamic corrupting

8 capable misdeed dashboard navigation opportunistically
aerodynamic airbag system braking mph

9 apostles oracles believer deliberately loafer
gospel apt mobbed manipulate dialogue

10 physique jumping visualizing hedgehog zeitgeist
belonged loo mauling postproduction plunk

11 smirky silly bad natured frat
thoughtful freaked moron obtuse stink

12 offsetting preparing acknowledgment agree misstating
litigator prevented revoked preseason entomology

13 undertaken wilsonian idealism brethren writeoff
multipolar hegemonist multilateral enlargement mutating

14 athletically fictitious myer majorleaguebaseball familiarizing
resurrect slug backslide superseding artistically

15 dialog files diabolical lion town
password list swiss coldblooded outgained

16 recessed phased butyl lowlight balmy
redlining prescription marched mischaracterization tertiary

17 sponsor televise sponsorship festival sullied
ratification insinuating warhead staged reconstruct

18 trespasses buckle divestment schoolchild refuel
ineffectiveness coexisted repentance divvying overexposed

Table 3.3: Top recovered topic groups from the New York Times dataset along with the
words present in them.

Keywords

minutes, consumer, human, member, friend, program, board, cell, insurance, shot

Table 3.4: The top ten words which occur in multiple contexts in the New York Times
dataset.

72

Statistics Facebook Yelp DBLP sub DBLP

|E| 766,800 672,515 5,066,510 16,221,000
|V | 18,163 10,010+28,588 116,317 1,054,066
GD 0.004649 0.000903 0.000749 0.000029
k 360 159 250 6,003
AB 0.5379 0.4281 0.3779 0.2066
ADCB 47.01 30.75 48.41 6.36

Table 3.5: Summary of real datasets used in our thesis: |V | is the number of nodes in the

graph, |E| is the number of edges, GD is the graph density given by 2|E|
|V |(|V |−1)

, k is the
number of communities, AB is the average bridgeness and ADCB is the average degree-
corrected bridgeness(explained in Section 3.4).

datasets (usually within a few seconds). Effectively, our algorithm, excluding the file I/O

time, executes within two minutes for k = 10 and within ten minutes for k = 100.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Business Category ID

#
b
u
si
n
e
ss

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Recovery Ratio

A
v
e
ra

g
e
E
rr
o
r

Figure 3.5: Distribution of business categories (left) and result tradeoff between recovery
ratio and error for yelp (right).

Interpretation on Yelp Dataset: The ground truth on business attributes such as location

and type of business are available (but not provided to our algorithm) and we provide the

distribution in Figure 3.5 on the left side. There is also a natural trade-off between recovery

ratio and average error or between attempting to recover all the business communities and the

accuracy of recovery. We can either recover top significant communities with high accuracy

or recover more with lower accuracy. We demonstrate the trade-off in Figure 3.5 on the right

side.

73

Data Method k̂ Thre E R(%) Time(s)

Ten(sparse) 10 0.10 0.063 13 35
Ten(sparse) 100 0.08 0.024 62 309
Ten(sparse) 100 0.05 0.118 95 309
Ten(dense) 100 0.100 0.012 39 190
Ten(dense) 100 0.070 0.019 100 190

FB Variational 100 – 0.070 100 10, 795
Ten(dense) 500 0.020 0.014 71 468
Ten(dense) 500 0.015 0.018 100 468
Variational 500 – 0.031 100 86, 808
Ten(sparse) 10 0.10 0.271 43 10
Ten(sparse) 100 0.08 0.046 86 287
Ten(dense) 100 0.100 0.023 43 1, 127

YP Ten(dense) 100 0.090 0.061 80 1, 127
Ten(dense) 500 0.020 0.064 72 1, 706
Ten(dense) 500 0.015 0.336 100 1, 706
Ten(dense) 100 0.15 0.072 36 7, 664
Ten(dense) 100 0.09 0.260 80 7, 664
Variational 100 – 7.453 99 69, 156

DB sub Ten(dense) 500 0.10 0.010 19 10, 157
Ten(dense) 500 0.04 0.139 89 10, 157
Variational 500 – 16.38 99 558, 723
Ten(sparse) 10 0.30 0.103 73 4716

DB Ten(sparse) 100 0.08 0.003 57 5407
Ten(sparse) 100 0.05 0.105 95 5407

Table 3.6: Yelp, Facebook and DBLP main quantitative evaluation of the tensor method
versus the variational method: k̂ is the community number specified to our algorithm, Thre
is the threshold for picking significant estimated membership entries. Refer to Table 3.5 for
statistics of the datasets.

We select the top ten categories recovered with the lowest error and report the business

with highest weights in Π̂. Among the matched communities, we find the business with

the highest membership weight (Table 3.7). We can see that most of the “top” recovered

businesses are rated high. Many of the categories in the top ten list are restaurants as they

have a large number of reviewers. Our method can recover restaurant category with high

accuracy, and the specific restaurant in the category is a popular result (with high number

of stars). Also, our method can also recover many of the categories with low review counts

accurately like hobby shops, yoga, churches, galleries and religious organizations which are

the “niche” categories with a dedicated set of reviewers, who mostly do not review other

categories.

Our algorithm can also recover the attributes of users. However, the ground truth available

about users is far more limited than businesses, and we only have information on gender,

average review counts and average stars (we infer the gender of the users through their

74

Category Business Star(B) Star(C) RC(B) RC(C)
Latin American Salvadoreno 4.0 3.94 36 93.8
Gluten Free P.F. Chang’s 3.5 3.72 55 50.6
Hobby Shops Make Meaning 4.5 4.13 14 7.6
Mass Media KJZZ 91.5FM 4.0 3.63 13 5.6
Yoga Sutra Midtown 4.5 4.55 31 12.6
Churches St Andrew Church 4.5 4.52 3 4.2
Art Galleries Sette Lisa 4.5 4.48 4 6.6
Libraries Cholla Branch 4.0 4.00 5 11.2
Religious St Andrew Church 4.5 4.40 3 4.2
Wickenburg Taste of Caribbean 4.0 3.66 60 6.7

Table 3.7: Most accurately recovered categories and businesses with highest membership
weights for the Yelp dataset. “Star(B)” denotes the review stars that the business receive
and “Star(C)”, the average review stars that businesses in that category receive. “RC(B)”
denotes the review counts for that business and “RC(C)” , the average review counts in that
category.

names). Our algorithm can recover all these attributes. We observe that gender is the hardest

to recover while review counts is the easiest. We see that the other user attributes recovered

by our algorithm correspond to valuable user information such as their interests, location,

age, lifestyle, etc. This is useful, for instance, for businesses studying the characteristics of

their users, for delivering better personalized advertisements for users, and so on.

Facebook Dataset: A snapshot of the Facebook network of UNC [155] is provided with user

attributes. The ground truth communities are based on user attributes given in the dataset

which are not exposed to the algorithm. There are 360 top communities with sufficient (at

least 20) users. Our algorithm can recover these attributes with high accuracy compared

with variational inference result [70].

We also obtain results for a range of values of α0 (Figure 3.6). We observe that the recovery

ratio improves with larger α0 since a larger α0 can recover overlapping communities more

efficiently while the error score remains relatively the same.

For the Facebook dataset, the top ten communities recovered with lowest error consist of cer-

tain high schools, second majors and dorms/houses. We observe that high school attributes

are easiest to recover and second major and dorm/house are reasonably easy to recover by

looking at the friendship relations in Facebook. This is reasonable: college students from

75

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
R

ec
ov

er
y

ra
tio

ts

Threshold

α0:0.1
α0:0.5
α0:0.9

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

Threshold

E
rr
or

α0:0.1
α0:0.5
α0:0.9

Figure 3.6: Performance analysis of Facebook dataset under different settings of the concen-
tration parameter (α0) for k̂ = 100.

the same high school have a high probability of being friends; so do colleges students from

the same dorm.

DBLP Dataset:

The DBLP data contains bibliographic records5 with various publication venues, such as

journals and conferences, which we model as communities. We then consider authors who

have published at least one paper in a community (publication venue) as a member of it.

Co-authorship is thus modeled as link in the graph in which authors are represented as nodes.

In this framework, we could recover the top authors in communities and bridging authors.

3.6 Conclusion

In this chapter, we presented a fast and unified moment-based framework for learning over-

lapping communities as well as topics in a corpus. There are several key insights involved.

Firstly, our approach follows from a systematic and guaranteed learning procedure in contrast

to several heuristic approaches which may not have strong statistical recovery guarantees.

5http://dblp.uni-trier.de/xml/Dblp.xml

76

http://dblp.uni-trier.de/xml/Dblp.xml

Secondly, though using a moment-based formulation may seem computationally expensive

at first sight, implementing implicit “tensor” operations leads to significant speed-ups of the

algorithm. Thirdly, employing randomized methods for spectral methods is promising in the

computational domain, since the running time can then be significantly reduced.

This work paves the way for several interesting directions for further research. While our

current deployment incorporates community detection in a single graph, extensions to multi-

graphs and hypergraphs are possible in principle. A careful and efficient implementation

for such settings will be useful in a number of applications. It is natural to extend the

deployment to even larger datasets by having cloud-based systems. The issue of efficient

partitioning of data and reducing communication between the machines becomes significant

there. Combining our approach with other simple community detection approaches to gain

even more speedups can be explored.

77

Chapter 4

Dictionary Learning through

Convolutional Tensor Decomposition

In this chapter, we extend tensor decomposition framework to models with invariances, such

as convolutional dictionary models. Learning invariant dictionary elements is crucial to

remove unnecessary model redundancy in a lot of settings. For instance, in image filter

bank learning where image filters’ activation locations in the image are ignored, in natural

language process where the phrase templates are not distinguished by their location in the

sentence, and in neural science where neural spikes consist of template spikes activated at

different time.

We propose a tensor decomposition algorithm to solve this problem of learning shift invariant

dictionary elements. Our tensor decomposition algorithm is based on the popular alternating

least squares (ALS) method, but with additional shift invariance constraints on the factors.

We demonstrate that each ALS update can be computed efficiently using simple operations

such as fast Fourier transforms and matrix multiplications. Our algorithm converges to mod-

78

els with better reconstruction error and is much faster, compared to the popular alternating

minimization heuristic, where the filters and activation maps are alternately updated.

We propose a novel framework for learning convolutional models through tensor decom-

position. We consider inverse method of moments to estimate the model parameters via

decomposition of higher order (third or fourth order) moment tensors. When the inputs x

are generated from a convolutional model in (1.3), with independent activation maps w∗
i , i.e.

a convolutional ICA model, we show that the cumulant tensors have a CP decomposition,

whose components correspond to filters and their circulant shifts. We propose a novel method

for tensor decomposition when such circulant constraints are imposed on the components of

the tensor decomposition.

Our tensor decomposition method is a constrained form of the popular alternating least

squares (ALS) method1. We show that the resulting optimization problem in each tensor

ALS iteration can be solved in closed form, and uses simple operations such as Fast Fourier

transforms (FFT) and matrix multiplications. These operations have a high degree of par-

allelism: for estimating L filters, each of length n, we require O(logn + logL) time and

O(L2n3) processors. Note that there is no dependence on the number of data samples N ,

since the empirical moment tensor can be computed in one data pass, and the ALS iterations

only updates the filters. This is a huge saving in running time, compared to the alternate

minimization method which requires a pass over data in each step to decode all the activation

maps wi. The running time of alternating minimization is O(max(logn logL, log n logN))

per iteration with O(max(nNL
logN

, nNL
logL

)) processors, and when N ≫ Ln2, which is the typical

scenario, our method is hugely advantageous. Our method avoids decoding the activation

maps in each iteration since they are averaged out in the input moment tensor, on which

the ALS method operates and we only estimate the filters fi in the learning step. In other

1The ALS method for tensor decomposition is not to be confused with the alternating minimization
method for solving (1.4). While (1.4) acts on data samples and alternates between updating filters and
activation maps, tensor ALS operates on averaged moment tensors and alternates between different modes
of the tensor decomposition.

79

words, the activation maps wi’s are easily estimated using (1.4) in one data pass after filter

estimation. Thus, our method is highly parallel and scalable to huge datasets.

We carefully optimize computation and memory costs by exploiting tensor algebra and cir-

culant structure, due to the shift invariance of the convolutional model. We implicitly carry

out many of the operations and do not form large (circulant) matrices and minimize stor-

age requirements. Preliminary experiments further demonstrate superiority of our method

compared to alternating minimization. Our algorithm converges accurately and much faster

to the true underlying filters compared to alternating minimization. Moreover, it results in

much lower reconstruction error, while alternating minimization tends to get stuck in spu-

rious local optima. Our algorithm is also orders of magnitude faster than the alternating

minimization.

4.1 Model and Formulation

Notation Let [n] := {1, 2, . . . , n}. For a vector v, denote the ith element as v(i). For a

matrix M , denote the ith row as M i and jth column as Mj . For a tensor T ∈ Rn×n×n, its

(i1, i2, i3)
th entry is denoted by [T]i1,i2,i3 . A column-stacked matrixM consisting ofM ′

is (with

same number of rows) is M := [M1,M2, . . . ,ML]. Similarly, a row-stacked matrix M from

M ′
is (with same number of columns) is M := [M1;M2; . . . ;ML].

Cyclic Convolution The 1-dimensional (1-D) n-cyclic convolution f ∗w between vectors

f and w is defined as v = f ∗n w, v(i) = ∑j∈[n] f(j)w((i − j + 1) mod n). Note that the

linear convolution is the combination without the modulo operation (i.e. cyclic shifts) above.

n-Cyclic convolution is equivalent to linear convolution, when n is at least twice the support

length of both f and w [133], which will be assumed. We drop the notation n in ∗ for

80

convenience. Cyclic convolution in (4.1) is equivalent to f ∗w = Cir(f) · w, and

Cir(f) :=
∑

p

f(p)Gp ∈ R
n×n, (Gp)

i
j := δ {((i− j) mod n) = p− 1} , ∀p ∈ [n]. (4.1)

defines a circulant matrix. A circulant matrix Cir(f) is characterized by the vector f , and

each column corresponds to a cyclic shift of f .

Properties of circulant matrices Let F be the discrete Fourier transform matrix whose

(m, k)-th entry is Fm
k = ω

(m−1)(k−1)
n , ∀m, k ∈ [n] where ωn = exp(−2πi

n
). If U :=

√
nF−1,

U is the set of eigenvectors for all n × n circulant matrices [73]. Let the Discrete Fourier

Transform of a vector f be FFT(f), we express the circulant matrix Cir(f) as

Cir(f) = U Diag(F · f)UH = U Diag(FFT(f))UH. (4.2)

This is an important property we use in algorithm optimization to improve computational

efficiency.

Column stacked circulant matrices We will extensively use column stacked circulant matrices

F := [Cir(f1), . . . ,Cir(fL)], where Cir(fj) is the circulant matrix corresponding to filter fj .

4.1.1 Convolutional Dictionary Learning/ICA Model

We assume that the input x ∈ Rn is generated as

x =
∑

j∈[L]
f ∗
j ∗w∗

j =
∑

j∈[L]
Cir(f ∗

j)w
∗
j = F∗ · w∗, (4.3)

where F∗ := [Cir(f ∗
1),Cir(f

∗
2), . . . ,Cir(f

∗
L)] is the concatenation or column stacked version of

circulant matrices and w∗ is the row-stacked vector w∗ := [w∗
1;w

∗
2; . . . w

∗
L] ∈ RnL. Recall that

Cir(f ∗
l) is circulant matrix corresponding to filter f ∗

l , as given by (4.2). Note that although

81

F∗ is a n by nL matrix, there are only nL free parameters. We never explicitly form the

estimates F of F∗, but instead use filter estimates fl’s to characterize F . In addition, we can

handle additive Gaussian noise in (4.17), but do not incorporate it for simplicity. Activation

Maps:For each observed sample x, the activation map w∗
i in (4.17) indicates the locations

where each filter f ∗
i is active and w∗ is the row-stacked vector w∗ := [w∗

1;w
∗
2; . . . w

∗
L]. We

assume that the coordinates of w∗ are drawn from some product distribution, i.e. different

entries are independent of one another and we have the independent component analysis

(ICA) model in (4.17). When the distribution encourages sparsity, e.g. Bernoulli-Gaussian,

only a small subset of locations are active, and we have the sparse coding model in that case.

We can also extend to dependent distributions such as Dirichlet for w∗, along the lines of [32],

but limit ourselves to ICA model for simplicity. Learning Problem:Given access to N i.i.d.

samples, X := [x1, x2, . . . , xN] ∈ Rn×N , generated according to the above model, we aim to

estimate the true filters f ∗
i , for i ∈ [L]. Once the filters are estimated, we can use standard

decoding techniques, such as the square loss criterion in (1.4) to learn the activation maps

for the individual maps. We focus on developing a novel method for filter estimation in this

chapter.

4.2 Form of Cumulant Moment Tensors

Tensor Preliminaries We consider 3rd order tensors in this chapter but the analysis is easily

extended to higher order tensors. For tensor T ∈ Rn×n×n, its (i1, i2, i3)
th entry is denoted by

[T]i1,i2,i3, ∀i1 ∈ [n], i2 ∈ [n], i3 ∈ [n]. A flattening or unfolding of tensor T ∈ R is the column-

stacked matrix of all its slices, given by unfold(T) := [[T]:,:,1, [T]:,:,2, . . . , [T]:,:,n] ∈ Rn×n2
.

Define the Khatri-Rao product for vectors u ∈ R
a and v ∈ R

b as a row-stacked vector

[u ⊙ v] := [u(1)v; u(2)v; . . . ; u(a)v] ∈ Rab. Khatri-Rao product is also defined for matrices

with same columns. For M ∈ Ra×c and M ′ ∈ Rb×c, M ⊙M ′ := [M1 ⊙M ′
1, . . . ,Mc ⊙M ′

c,] ∈

82

R
ab×c, where Mi denotes the ith column of M . CumulantThe third order cumulant of a

multivariate distribution is a third order tensor, which uses (raw) moments up to third

order. Let C3 ∈ Rn×n2
denote the unfolded version of third order cumulant tensor, it is given

by

C3 := E[x(x ⊙ x)⊤]− unfold(Z) (4.4)

where [Z]a,b,c := E[xa]E[xbxc] +E[xb]E[xaxc] +E[xc]E[xaxb]− 2E[xa]E[xb]E[xc], ∀a, b, c ∈ [n].

Under the convolution ICA model in Section 4.1.1, we show that the third order cumulant

has a nice tensor form, as given below.

Lemma 4.1 (Form of Cumulants). The unfolded third order cumulant C3 in (4.4) has the

following decomposition form

C3 =
∑

j∈[nL]
λ∗jF∗

j (F∗
j ⊙F∗

j)
⊤ = F∗Λ∗ (F∗ ⊙ F∗)⊤ , where Λ∗ := Diag(λ∗1, λ

∗
2, . . . , λ

∗
nL) (4.5)

where F∗
j denotes the jth column of the column-stacked circulant matrix F∗ and λ∗j is the

third order cumulant corresponding to the (univariate) distribution of w∗(j).

For example, if the lth activation is drawn from a Poisson distribution with mean λ̃, we have

that λ∗l = λ̃. Note that if the third order cumulants of the activations, i.e. λ∗j ’s, are zero, we

need to consider higher order cumulants. This holds for zero-mean activations and we need

to use fourth order cumulant instead. Our method extends in a straightforward manner for

higher order cumulants.

The decomposition form in (4.5) is known as the CANDECOMP/PARAFAC (CP) decom-

position form [12] (the usual form has the decomposition of the tensor and not its unfolding,

as above). We now attempt to recover the unknown filters f ∗
i through decomposition of the

third order cumulants C3. This is formally stated below.

83

F = blk1(F) . . . blkL(F)
blk11(Ψ) . . . blk1L(Ψ)

Ψ =

blkL1 (Ψ) . . . blkLL(Ψ)

Figure 4.1: (a) Blocks of the column-stacked circulant matrix F . (b) Blocks of the row-and-
column-stacked diagonal matrices Ψ. blkij(Ψ) is diagonal.

Objective Function: Our goal is to obtain filter estimates fi’s which minimize the Frobenius

norm ‖ · ‖F of reconstruction of the cumulant tensor C3,

min
F

‖C3 −FΛ (F ⊙F)⊤‖2F ,

s.t. blkl(F) = U Diag(FFT(fl))U
H, ‖fl‖2 = 1, ∀l ∈ [L], Λ = Diag(λ). (4.6)

where blkl(F) denotes the lth circulant matrix in F . The conditions in (4.6) enforce blkl(F)

to be circulant and for the filters to be normalized. Recall that U denotes the eigenvectors

for circulant matrices. The rest of the chapter is devoted to devising efficient methods to

solve (4.6).

Throughout the chapter, we will use Fj to denote the jth column of F , and blkl(F) to denote

the lth circulant matrix block in F . Note that F ∈ R
n×nL, Fj ∈ R

n and blkl(F) ∈ R
n×n.

4.3 Alternating Least Squares for Convolutional Ten-

sor Decomposition

To solve the non-convex optimization problem in (4.6), we consider the alternating least

squares (ALS) method with column stacked circulant constraint. We first consider the

asymmetric relaxation of (4.6) and introduce separate variables F ,G and H for filter es-

84

timates along each of the modes to fit the third order cumulant tensor C3. We then perform

alternating updates by fixing two of the modes and updating the third one.

min
F

‖C3−FΛ (H⊙ G)⊤‖2F s.t. blkl(F) = U ·Diag(FFT(fl))·UH, ‖fl‖22 = 1, ∀l ∈ [L] (4.7)

Similarly, G and H have the same column-stacked circulant matrix constraint and are up-

dated similarly in alternating steps. The diagonal matrix Λ is updated through normaliza-

tion.

We now introduce the Convolutional Tensor (CT) Decomposition algorithm to efficiently

solve (4.7) in closed form, using simple operations such as matrix multiplications and fast

Fourier Transform (FFT). We do not form matrices F ,G and H ∈ Rn×nL, which are large,

but only update them using filter estimates f1, . . . , fL, g1, . . . , gL, h1, . . . hL. Denote

M := C3((H⊙ G)⊤)†, (4.8)

where † denotes pseudoinverse. Let blkl(M) and blkl(Λ) denote the lth blocks of M and Λ.

We have a closed form solution for filter update, once we have computed M , and we present

the main result as follows.

Theorem 4.1. [Closed form updates] The optimal solution f opt
l for (C.9) is given by

f opt
l (p) =

∑
i,j∈[n]

‖blkl(M)j‖−1 · blkl(M)ij · Iqp−1

∑
i,j∈[n]

Iqp−1

, ∀p ∈ [n], q := (i− j) mod n. (4.9)

Further Λ = Diag(λ) is updated as λ(i) = ‖Mi‖, for all i ∈ [nL]. Note that Iqp−1 denotes the

(q, (p− 1))th element of the identity matrix.

85

Proof Sketch: Using the property of least squares, the optimization problem in (4.7) is

equivalent to

min
F
‖C3((H⊙ G)⊤)†Λ†−F‖2F s.t. blkl(F) = U ·Diag(FFT(fl))·UH, ‖fl‖22 = 1, ∀l ∈ [L] (4.10)

when (H ⊙ G) and Λ are full column rank. The full rank condition requires nL < n2 or

L < n, and it is a reasonable assumption since otherwise the filter estimates are redundant.

In practice, we can additionally regularize the update to ensure full rank condition is met.

Since (C.8) has block constraints, it can be broken down in to solving L independent sub-

problems

min
fl

∥∥blkl(M) · blkl(Λ)† − U ·Diag(FFT(fl)) · UH
∥∥2
F

s.t. ‖fl‖22 = 1, ∀l ∈ [L] (4.11)

Our proof for the closed form solution is similar to the analysis in [57], where they proposed

a closed form solution for finding the closest circulant/toeplitz matrix. For a detailed proof

of Theorem 4.1, see Appendix C.2.

Thus, the reformulated problem in (C.9) can be solved in closed form efficiently. A bulk

of the computational effort will go into computing M in (4.8). Computation of M requires

2L fast Fourier Transforms of length n filters and simple matrix multiplications without

explicitly forming G or H. We make this concrete in the next section. The closed form

update after getting M is highly parallel. With O(n2L/ log n) processors, it takes O(logn)

time.

86

4.4 Algorithm Optimization to Reduce Memory and

Computational Costs

We now focus on estimating M := C3((H ⊙ G)⊤)† in (4.8). If done naively, this requires

inverting n2 × nL matrix and multiplication of n × n2 and n2 × nL matrices with O(n6)

time. However, forming and computing with these matrices is very expensive when n (and

L) are large. Instead, we utilize the properties of circulant matrices and the Khatri-Rao

product ⊙ to efficiently carry out these computations implicitly. We present our final result

on computational complexity of the proposed method. Recall that n is the filter size and L

is the number of filters.

Lemma 4.2. [Computational Complexity] With multi-threading, the running time of

our algorithm for n dimensional input and L number of filters is O(logn+logL) per iteration

using O(L2n3) processors.

Note that before the iterative updates, we compute the third order cumulant2 C3 once

whose computational complexity is O(logN) with N
logN

processors, where N is the number

of samples. However, this operation is not iterative. In contrast, alternating minimization

(AM) requires pass over all the data samples in each iteration, while our algorithm requires

only one pass of the data.

The parallel computational complexity of AM is as follows. In each iteration of AM, com-

puting the derivative with respect to either filters or activation maps requires NL number

of FFTs (requires O(NLn log n) serial time), and the degrees of parallelism are O(Nn logL)

and O(Nn logn) respectively. Therefore with multi-threading, the running time of AM is

O(max(logn logL, logn logN)) per iteration using O(max(nNL
logN

, nNL
logL

)) processors. Compar-

2Instead of computing the cumulant tensor C3, a randomized sketch can be computed efficiently, following
the recent work of [159], and the ALS updates can be performed efficiently without forming the cumulant
tensor C3.

87

ing with Lemma 4.2, we find that our algorithm is advantageous in the regime of N ≥ Ln2,

which is the typical regime in applications.

Let us describe how we utilize various algebraic structures to obtain efficient computation.

Property 1 (Khatri-Rao product): ((H⊙G)⊤)† = (H⊙G)((H⊤H).⋆(G⊤G))†, where .⋆ denotes

element-wise product.

Computational Goals: Find ((H⊤H). ⋆ (G⊤G))† first and multiply the result with C3(H⊙G)

to find M .

We now describe in detail how to carry out each of these steps.

4.4.1 Challenge: Computing ((H⊤H). ⋆ (G⊤G))†

A naive implementation to find the matrix inversion ((H⊤H). ⋆ (G⊤G))† is very expensive.

However, we incorporate the stacked circulant structure of G and H to reduce computation.

Note that this is not completely straightforward since although G and H are column stacked

circulant matrices, the resulting product whose inverse is required, is not circulant. Below,

we show that however, it is partially circulant along different rows and columns.

Property 2 (Block circulant matrix): The matrix (H⊤H). ⋆ (G⊤G) consists of row and

column stacked circulant matrices.

We now make the above property precise by introducing some new notations. Define column

stacked identity matrix I := [I, . . . , I] ∈ Rn×nL, where I is n × n identity matrix. Let

U := Blkdiag(U, U, . . . U) ∈ RnL×nL be the block diagonal matrix with U along the diagonal.

The first thing to note is that G and H, which are column stacked circulant matrices, can

88

be written as

G = I ·U · Diag(v) ·UH

, v := [FFT(g1); FFT(g2); . . . ; FFT(gL)], (4.12)

where g1, . . . , gL are the filters corresponding to G, and similarly for H, where the diagonal

matrix consists of FFT coefficients of the respective filters h1, . . . , hL.

By appealing to the above form, we have the following result. We use the notation blkij(Ψ)

for a matrix Ψ ∈ RnL×nL to denote (i, j)th block of size n× n.

Lemma 4.3 (Form of (H⊤H). ⋆ (G⊤G)). We have

((H⊤H). ⋆ (G⊤G))† = U ·Ψ† ·UH, (4.13)

where Ψ ∈ R
nL×nL has L by L blocks, each block of size n× n. Its (j, l)th block is given by

blkjl (Ψ) = Diag(FFT(γ(gj, gl). ∗ γ(hj , hl))) ∈ R
n×n (4.14)

where γ(gj, gl) := reverse(reverse(gj)∗ gl) and γ(hj, hl) := reverse(reverse(hj)∗hl).

Therefore, the inversion of (H⊤H).⋆(G⊤G) can be reduced to the inversion of row-and-column

stacked set of diagonal matrices which form Ψ. Computing Ψ simply requires FFT on all

2L filters g1, . . . , gL and h1, . . . , hL, i.e. 2L FFTs, each on length n vector. We propose

an efficient iterative algorithm to compute Ψ† via block matrix inversion theorem[68] in

Appendix C.3.

4.4.2 Challenge: Computing M = C3(H⊙ G) · ((H⊤H). ⋆ (G⊤G))†

Now that we have computed ((H⊤H). ⋆ (G⊤G))† efficiently, we need to compute the resulting

matrix with C3(H⊙ G) to obtain M . We observe that the mth row of the result M is given

89

by

Mm =
∑

j∈[nL]
Uj DiagH (z) Φ(m) Diag (v) (Uj)HUjΨ†UH, ∀m ∈ [nL], (4.15)

where v := [FFT(g1); . . . ; FFT(gL)], z := [FFT(h1); . . . ; FFT(hL)] are concatenated FFT co-

efficients of the filters, and

Φ(m) := UHI⊤Γ(m)IU, [Γ(m)]ij := [C3]
m
i+(j−1)n, ∀i, j,m ∈ [n] (4.16)

Note that Φ(m) and Γ(m) are fixed for all iterations and need to be computed only once.

Note that Γ(m) is the result of taking mth row of the cumulant unfolding C3 and matricizing

it. Equation (4.15) uses the property that Cm
3 (H ⊙ G) is equal to the diagonal elments of

H⊤Γ(m)G.

We now bound the cost for computing (4.15). (1) Inverting Ψ takes O(logL+logn) time with

O(n2L2/(logn+logL)) processors according to appendix C.3. (2) Since Diag(v) and Diag(z)

are diagonal and Ψ is a matrix with diagonal blocks, the overall matrix multiplication in

equation (4.15) takes O(L2n2) time serially with O(L2n2) degree of parallelism for each row.

Therefore the overall serial computation cost is O(L2n3) with O(L2n3) degree of parallelism.

With multi-threading, the running time is O(1) per iteration using O(L2n3) processes. (3)

FFT requires O(n logn) serial time, with O(n) degree of parallelism. Therefore computing

2L FFT’s takes O(logn) time with O(Ln) processors.

Combining the above discussion, it takes O(logL+ log n) time with O(L2n3) processors.

90

4.5 Experiments: Comparison with Alternating Mini-

mization

We compare our convolutional tensor decomposition framework with solving equation (1.4)

using alternating (between filters and activation map) minimization method where gradient

descent is employed to update fi and wi alternatively. The error comparison between our

proposed convolutional tensor algorithm and the alternating minimization algorithm is in

figure 4.2a. We evaluate the errors for both algorithms by comparing the reconstruction of

error and filter recovery error3. Our algorithm converges much faster to the solution than

the alternating minimization algorithm. In fact, alternating minimization leads to spurious

solution where the reconstruction error is significantly larger compared to the error achieved

by the tensor method. The error bump in the reconstruction error curve in figure 4.2a for

tensor method is due to the random initialization following deflation of one filter, and esti-

mation of the second one. The running time is also reported in figure 4.2b and 4.2c between

our proposed convolutional tensor algorithm and the alternating minimization. Our algo-

rithm is orders of magnitude faster than the alternating minimization. Both our algorithm

and alternating minimization scale linearly with number of filters. However convolutional

tensor algorithm is almost constant time with respect to the number of samples, whereas

the alternating minimization scales linearly. This results in huge savings in running time for

large datasets.

3Note that circulant shifts of the filters result in the same reconstruction error, and we report the lowest
error between the estimated filters and all circulant shifts of the ground-truth.

91

10
0

10
1

10
2

10
−1

10
0

10
1

er
ro
r

iteration

Proposed CT: Reconst
Baseline AM: Reconst

Proposed CT: f1
Baseline AM: f1
Proposed CT: f2
Baseline AM: f2

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

Number of Filters L

se
co
n
d
s

Proposed CT

Baseline AM

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Number of Samples N

se
co
n
d
s

Proposed CT

Baseline AM

Figure 4.2: (a) Error comparison between our convolutional tensor method (proposed CT)
and the baseline alternate minimization method (baseline AM). (b) Running time compar-
ison between our proposed CT and the baseline AM method under varying L. (c) Running
time comparison between CT and AM method under varying N .

4.6 Application: LearningWord-sequence Embeddings

4.6.1 Word-Sequence Modeling and Formulation

Our ConvDic+DeconvDec framework focuses on a convolutional dictionary model to summa-

rize phrase templates, and then decode word-sequence signals to obtain the word-sequence

embeddings. The first question is how to encode the word sequence into a signal, to be input

to the convolutional model and we discuss that below.

From raw text to signals

Word encoding: A word is represented as a one-hot encoding vector, i.e. with vector ei ∈ Rd

whose ith entry is 1 and other entries are 0, where i is the index of the word in the dictionary.

Alternatively, one could use the word2vec embeddings instead of one-hot encodings. We

then stack the one-hot encoding vectors of each sentence together to form a encoding matrix.

The stacking order conforms the word-sequence order.

92

d

k

kN1 N2 N3

svd
=

=

=Y

U

U⊤

Σ V ⊤

Sseq1

Sseq1

Sseq2

Sseq2

Sseq3

Sseq3

Y1Y1Y1Y1Y1Y1 Y2Y2Y2Y2Y2Y2 Y3Y3Y3Y3Y3Y3

y
(1)
1 y

(1)
2

y
(1)
3

y
(2)
1 y

(2)
2 y

(2)
3

Figure 4.3: Principal component projection to obtain [Y1,Y2, . . . ,YM] = U⊤S =
U⊤[Sseq1,Sseq2 , . . . ,SseqM] using S. Note that U is the top k left eigenvectors of S.

To be precise, let us consider sentenc with N words. The encoding matrix of this word-

sequence Sseq is Sseq := [sword1 , sword2, . . . , swordN] ∈ R
d×N .

Principal components: Now that we have encoded words in each sentence, we want to find

a compact representation of them in terms of a dictionary model. However, the encoding

matrices are too sparse to fit a convolutional model in the word space. Instead, we perform

dimensionality reduction through PCA and carry out dictionary modeling in the projected

space.

Concretely, we stack the encoding matrices side by side as S := [Sseq1 ,Sseq2, . . . ,SseqM] ∈

R
d×(

∑M
i=1 Ni), assuming there are M number of sentences in the collection of varying lengths

N1, N2 and so on. Let U ∈ Rd×k denote the top k left eigenvectors of S. We consider

Yi := U⊤Sseq1 ∈ Rk×Ni, for each sentence i. We treat the rows of Yi independently in

parallel and fit convolutional model to each row. Denote jth row of Yi as y
(j)
i , and thus

Yi =

y
(1)
i

...

y
(k)
i

.

93

== ** +

== ** +

== ** +

+

+

+

m
a

x
−

k
 p

o
o

lin
g

m
a

x
−

k
 p

o
o

lin
g

m
a

x
−

k
 p

o
o

lin
g

Yi

y
(1)
i

y
(2)
i

y
(k)
i

Activation Maps

stack Coordinate 1

Coordinate 2

Coordinate k

Word-sequence Embedding

Comprehension Phase Feature-extraction Phase

Figure 4.4: Overview of our ConvDic+DeconvDec framework for the ith word-sequence over k
coordinates. The Comprehension Phase learns phrase templates using tensor decomposition
algorithm. The Feature-extraction Phase decodes activation maps using deconvolutional
decoding algorithm. The activation maps are max-k pooled and stacked as the final word-
sequence embedding.

Each y
(j)
i is generated through a convolutional dictionary model over phrase templates and

activation maps. Our goal in the learning phase is to learn template phrases for the collection

of [y
(j)
i] over all word-sequences ∀i ∈ [M] across all parallel directions ∀j ∈ [k]. We will state

the learning problem formally in the next section. Since all the coordinates are independent

and the phrase templates are learned in parallel over all the coordinates, we drop the index

j to denote a coordinate of the ith word sequence y
(j)
i . In the following subsection, a patch

from y
(j)
i will be denoted as x.

Comprehension Phase – Learning Phrase Templates

A word sequence is composed of superposition of overlapping patches, therefore we are

interested in learning a generative model over overlapping patches. We can also view these

patches as phrases. A length n patch x is generated as the superposition of L phrase

embeddings f ∗
l convolved at L activation maps w∗

l , ∀l ∈ [L]. Due to the property of the

convolution, the convolution is reformulated as the multiplication of F∗ and w∗, where

F∗ := [Cir(f ∗
1),Cir(f

∗
2), . . . ,Cir(f

∗
L)] is the concatenation of circulant matrices and w∗ is the

94

= =∗∗
x xf∗

1 w∗
Lf∗

Lw∗
1 F∗ w∗

(a) Convolutional model (b) Reformulated model

Figure 4.5: Convolutional tensor decomposition for learning convolutional ICA mod-
els [82].(a) The convolutional generative model with template phrases. (b) Reformulated
multiplicative model where F∗ is column-stacked circulant matrix.

= +...+ + +...+

C3 λ1(F∗
1)

⊗3 +λ2(F∗
2)

⊗3. . .

Figure 4.6: The third order cumulant is decomposed superposition of third order outer
product of template phrases and third order outer product of shifted template phrases.

row-stacked vector w∗ :=

w∗
1

w∗
2

...

w∗
L

∈ RnL. To be precise, a patch

x =
∑

l∈[L]
f ∗
l ∗wl

∗ = F∗ · w∗, (4.17)

This is illustrated in Fig 4.6(a). Cir(f ∗
l) is circulant matrix corresponding to phrase template

f ∗
l , whose columns are shifted versions of f ∗

l as shown in Fig 4.6(a). Note that although F∗

is a n by nL matrix, there are only nL free parameters. Given access to the collection of

word-sequence sample patches, X := [x1, x2, . . .], generated according to the above model,

we aim to estimate the true template phrases f ∗
i , for i ∈ [L].

95

If the patches are in the same coordinate of the word sequence, these patches share a common

set of phase templates, but their activation maps are different. The activation maps are the

discriminative features that distinguish different patches. Once the template phrases are

estimated, we can use standard decoding techniques, such as the square loss criterion in

(1.4) to learn the activation maps for the individual maps.

Feature-extraction Phase – Word-sequence Embeddings

Activation maps in a coordination: After learning a good set of phrase templates {f1, . . . , fL}

and thus F , we use the deconvolutional decoding (DeconvDec) to obtain the activation maps

for the jth coordinate. For each observed coordinate of the word-sequence y
(j)
i , the activation

map w∗
l in (4.17) indicates the locations where ith template phrase f ∗

l is activated and w∗

is the row-stacked vector w∗ := [w∗
1;w

∗
2; . . . w

∗
L]. An estimation of w∗, w

(j)
i , is achieved as

follows

w
(j)
i = F †y

(j)
i

⊤
. (4.18)

Note that the estimated phrase templates are zero padded to match the length of the word-

sequence.

We assume that the elements of w∗ are drawn from some product distribution, i.e. different

entries are independent of one another, and we have the independent component analysis

(ICA) model in (4.17). When the distribution encourages sparsity, e.g. Bernoulli-Gaussian,

only a small subset of locations are active, and we have the sparse coding model in that

case. We can also extend to dependent distributions such as Dirichlet for w∗, along the lines

of [32], but limit ourselves to ICA model for simplicity. This activation map w
(j)
i ∈ RNi·L

contains sequence embeddings from coordinate j only, and will be used as one coordinate of

our final word-sequence embeddings.

96

Varying sentence length: One difficulty in learning the template phrases using our convo-

lutional tensor decomposition model is that different word-sequence has a different length

Ni, therefore the activation maps are of varying length as well. We resolved this problem

by max-k pooling. In other words, we extract most informative global discriminative fea-

tures from the activation maps, as illustrated in Figure 4.4. Finally, we concatenate all the

max-k pooled coordinate sequence embeddings as a long vector as the final word-sequence

embedding.

The overall framework flow is depicted in Fig 4.4.

4.6.2 Evaluating Embeddings through Downstream Tasks

We evaluate the quality of our word sequence embeddings using three challenging natural

language process tasks: sentiment classification, paraphrase detection, and semantic textual

similarity estimation. Eight datasets which cover various domains are used as shown in

Table 4.1.

Dataset Domain Label Label Distribution M

Review Moview Reviews {-1,1} [0.49,0.51] 64720

SUBJ Obj/Subj comments {-1,1} [0.50,0.50] 1000

MSRpara news sources {-1,1} [0.33,0.67] 5801×2
STS-MSRpar newswire [0,5] [0.00,0.02,0.10,0.24,0.47,0.17] 1500×2
STS-MSRvid video caption [0,5] [0.13,0.21,0.14,0.16,0.21,0.14] 1500×2
STS-OnWN glosses [0,5] [0.01,0.02,0.04,0.12,0.35,0.47] 750×2
STS-SMTeuroparl machine translation [0,5] [0.01,0.00,0.00,0.02,0.19,0.78] 1193×2
STS-SMTnews machine translation [0,5] [0.00,0.01,0.01,0.06,0.19,0.73] 399×2

Table 4.1: Summary statistics of the datasets used.

For all the datasets, we train a simple logistic regression model on the training samples and

report test classification accuracy using a 10-fold cross validation. Sentiment analysis and

paraphrase detection belong to binary classification tasks. In a binary classification task,

either accuracy or F score is used as evaluate metric. Recall that F-score is the harmonic

97

mean of precision and recall, i.e., F = 2 · (precision · recall)/precision + recall. Precision is

the number of true positives divided by the total number of elements labeled as belonging

to the positive class, and recall is the number of true positives divided by the total number

of elements that belong to the positive class.

Our ConvDic+DeconvDec learns word-sequence embeddings from scratch and requires no

pre-training. When working on a new dataset from a new domain, we train fresh set of

phrase templates as called domain phrase templates. Using these domain phrase templates,

we decode activation maps and then form phrase-embeddings. Our approach is different

from skip thoughts, where universal phrase embeddings are generated [103].

Evaluation Task: Sentiment Classification

Sentiment analysis is an important task in natural language process as automated labeling of

word sequences into positive and negative opinions is used in various settings. We evaluate

our sentence embeddings on two datasets from different domains, such as movie review

and subjective and objective comments, as in Table 4.1. Using word-sequence embeddings

combined with NB features, we obtain the state-of-the-art classification results for both these

datasets as in Table 4.2.

Evaluation Task: Paraphrase Detection

We consider the paraphrase detection task on the Microsoft paraphrase corpus [137, 55]. We

employ 4076 sentence pairs as training data to learn the sentence embeddings and regress on

the ground truth binary labels with our learned sentence embeddings. The remaining test

data is used to calculate classification error.

4The word similarities information they use are either trained in Wikipedia (4.4 million articles in contrast
to the 4076 sentences of paraphrase dataset we use) or from WordNet with expert knowledge.

98

Method MR SUBJ

NB-SVM [158] 79.4 93.2
MNB [158] 79.0 93.6
cBoW [170] 77.2 91.3

GrConv [170] 76.3 89.5
RNN [170] 77.2 93.7
BRNN [170] 82.3 94.2
CNN [102] 81.5 93.4
AdaSent [170] 83.1 95.5

Paragraph-vector [114] 74.8 90.5

Skip-thought [103] 75.5 92.1

ConvDic+DeconvDec 78.9 92.4

Table 4.2: Binary classification tasks: sentiment analysis task of cataloging a word-sequence
into two different categories. Classification accuracies in percentage on standard benchmarks
(movie review and subject dataset) are displayed. The first group contains results using bag-of-
words models; the second group exhibits some supervised compositional models; the third group is
paragraph vector; the fourth is the skip-thought result.

Method Outside Information 4 F score

Vector Similarity [123] word similarity 0.75
ESA [78] word semantic profiles 0.79
LSA [78] word semantic profiles 0.80
RMLMG [142] syntacticinfo 0.81
ConvDic+DeconvDec none 0.81
Skip-thought [103] train large book corpus 0.82

Table 4.3: Binary classification tasks: paraphrase detection task, which operates on pairs of
word-sequences and decides on whether they are a paraphrase of each other or not. Com-
parison of F-score with other unsupervised sentence paraphrase approaches. Other methods
use auxiliary information such as word similarities trained on Wikipedia or from WordNet.
In contrast, our algorithm learns sentence embeddings from scratch.

99

As discussed in [154], we combine the pair of sentence embeddings produced earlier wL

and wR, i.e., the embedding for the right and the left sentences. We generate features for

classification using both the distance (absolute difference) and the product between the pair

(wL, wR): [wL ⊙ wR, ‖wL − wR‖], where ⊙ denotes the element-wise multiplication.

In contrast to other unsupervised methods which are trained using outside information such

as wordnet and parse trees, our unsupervised approach use no extra information, and still

achieves comparable results with the state of art [162] as in table 4.3. We show some examples

of paraphrase and non-paraphrase we identified.

Paraphrase detected: (1) Amrozi accused his brother, whom he called ”the witness”,

of deliberately distorting his evidence. (2) Referring to him as only ”the witness”, Amrozi

accused his brother of deliberately distorting his evidence. The two sentences are the “difficult

sentence” to show how our algorithm detect paraphrases since they are not simple switching

of clauses, and the sentence structures differ quite significantly in the two sentences.

Non-paraphrase detected : (1) I never organised a youth camp for the diocese of

Bendigo. (2) I never attended a youth camp organised by that diocese. Similarly with

non-paraphrase detection, the two sentences share common words such as youth camp and

organized, but our method is able to successfully detect them as non-paraphrase.

Evaluation Task: Semantic Textual Similarity Estimation

For the Semantic Textual Similarity (STS) task, the goal is to predict a real-valued similarity

score in a range [1, K] given a sentence pair. We include datasets from STS task in various

domains including news, image and video description, glosses from WordNet/OntoNotes, the

output of machine translation systems with reference translation.

100

To frame semantic test similarity estimation task into the multi-class classification frame-

work, the gold rating τ ∈ [K1, K2] is discretized as p ∈ ∆K2−K1 in the follow manner [154],

pi = ⌊τ⌋ − τ + 1 if i = ⌊τ⌋+ 1−K1, pi = τ − ⌊τ⌋ if i = ⌊τ⌋+ 2−K1, and pi = 0 otherwise.

This reduces to finding a predicted p̂θ ∈ ∆K2−K1 given model parameters θ to be closest to

p in terms of KL divergence [154]. We use a logistic regression classifier to predict p̂θ and

estimate τ̂θ = [K1, . . . , K2]p̂.

Results on STS task datasets are illustrated in Table 4.4. As in [161], Pearson’s r of the me-

dian, 75th percentile, and highest score from the official task rankings are showed. We then

compare our method against the performance of supervised models in [161]: PARAGRAM-

PHRASE (PP), projection (proj.), deep-averaging network (DAN), recurrent neural net-

work (RNN) and LSTM; as well as the state-of-the-art unsupervised model skip-thought

vectors [103].

As we can see from the table, LST is performing poorly even though a back-propagation after

seeing the training labelings is carried out for sequence embedding learning. Our method

is an unsupervised approach as in skip-thought vectors. However, our algorithm doesn’t

output universal word-sequence embeddings across domains. We train a fresh model and a

new set of domain phrase templates from scratch. Therefore our algorithm is performing

better for these individual datasets on the STS task.

Supervised + Unsupervised Supervised Methods Unsupervised Methods

Dataset 50% 75% Max DAN RNN LSTM Skip-thought ConvDic+DeconvDec

MSRpar 51.5 57.6 73.4 40.3 18.6 9.3 16.8 36.0

MSRvid 75.5 80.3 88.0 70.0 66.5 71.3 41.7 61.8

SMT-eur 44.4 48.1 56.7 43.8 40.9 44.3 35.2 37.5

OnWN 60.8 65.9 72.7 65.9 63.1 56.4 29.7 33.1

SMT-news 40.1 45.4 60.9 60.0 51.3 51.0 30.8 72.1

Table 4.4: STS task results: Pearson’s r × 100 on MSRpar, MSRvid, OnWN, SMTeuroparl and

SMTnews dataset. The first three columns are official rankings reported in the STS2012
official website, so it combines both supervised and unsupervised methods. The second three
columns are reported by [161]. Our comparison against the state-of-the-art unsupervised
word-sequence embedding method is in the last two columns.

101

4.7 Conclusion

In this chapter, we proposed a novel tensor decomposition framework for learning convolu-

tional dictionary models. Unlike the popular alternating minimization, our method avoids

expensive decoding of activation maps in each step and can reach better solutions with

faster run times. We derived efficient updates for tensor decomposition based on modified

alternating least squares, and it consists of simple operations such as FFTs and matrix mul-

tiplications. Our framework easily extends to convolutional models for higher dimensional

signals (such as images), where the circulant matrix is replaced with block circulant matri-

ces [73]. More generally, our framework can handle general group structure, by replacing

the FFT operation with the appropriate group FFT [106]. By combining the advantages

of tensor methods with a general class of invariant representations, we thus have a pow-

erful paradigm for learning efficient latent variable models and embeddings in a variety of

domains.

102

Chapter 5

Latent Tree Model Learning through

Hierarchical Tensor Decomposition

In previous chapters, we introduced latent dirichlet allocation and its variations to model

data with “shallow” structure, for instance, multi-view model. However, real world data

is usually generated through more complicated models such as a latent (hierarchical) tree

graphical model. Latent tree graphical models characterize a probability distribution involv-

ing observed and hidden variables which are Markovian on a tree. Learning is challenging

as the number of latent variables and the location of them are not observed. We present an

integrated approach to structure and parameter estimation in latent tree graphical models,

where some nodes are hidden.

We present an integrated approach to structure and parameter estimation in latent tree

models. Our method overcomes all the above shortcomings simultaneously. First, it au-

tomatically learns the latent variables and their locations. Second, our method achieves

consistent structure estimation with log(p) computational complexity with enough compu-

tational resources via “divide-and-conquer” manner. We also present a rigorous proof on the

103

replacements

(a) Latent tree

= + +

= + + = + + = + +

(b) Hierarchical tensor decomposition

Figure 5.1: Learning hierarchical latent variable graphical model parameter using hierarchical
tensor decomposition.

global consistency of the structure and parameter estimation under the “divide-and-conquer”

framework. Our consistency guarantees are applicable to a broad class of linear multivari-

ate latent tree models including discrete distributions, continuous multivariate distributions

(e.g. Gaussian), and mixed distributions such as Gaussian mixtures. This model class is

much more general than discrete models, prevalent in most of the previous works on latent

tree models [128, 127, 59, 17]. Third, our algorithm considers the inverse method of mo-

ments, and estimates the model parameters via tensor decomposition with low perturbation

guarantees. Moreover, we carefully integrate structure learning with parameter estimation,

based on tensor spectral decompositions [11]. Finally, our approach has a high degree of

parallelism, and is bulk asynchronous parallel [65].

In addition to the aforementioned technical contributions, we showcase the impact of our

work by applying it to two real datasets originating from the healthcare domain. The

algorithm was used to discover hidden patterns, or concepts reflecting co-occurrences of

particular diagnoses in patients in outpatient and intensive care settings. While such a task

is currently done through manual analysis of the data, our method provides an automated

method for the discovery of novel clinical concepts from high dimensional, multi-modal data.

104

Our overall approach follows a “divide-and-conquer” strategy that learns models over small

groups of variables and iteratively merges into a global solution. The structure learning

involves combinatorial operations such as minimum spanning tree construction and local re-

cursive grouping; the parameter learning is based on the method of moments and on tensor

decompositions. Our method is guaranteed to correctly recover the unknown tree structure

and the model parameters with low sample complexity for the class of linear multivari-

ate latent tree models which includes discrete and Gaussian distributions, and Gaussian

mixtures. Our bulk asynchronous parallel algorithm is implemented in parallel using the

OpenMP framework and scales logarithmically with the number of variables and linearly

with dimensionality of each variable.

Our experiments confirm a high degree of efficiency and accuracy on large datasets of elec-

tronic health records. We use latent tree model for discovering a hierarchy among diseases

based on comorbidities exhibited in patients’ health records, i.e. co-occurrences of diseases

in patients. In particular, two large healthcare datasets of 30K and 1.6M patients are used

to build the latent disease trees, where clinically meaningful disease clusters are identified

as shown in fig 5.4 and 5.5. The proposed algorithm also generates intuitive and clinically

meaningful disease hierarchies.

5.1 Latent Tree Graphical Model Preliminaries

We denote [n] := {1, . . . , n}. Let T := (V, E) denote an undirected tree with vertex set V

and edge set E . The neighborhood of a node vi, nbd(vi), is the set of nodes to which vi is

directly connected on the tree. Leaves which have a common neighboring node are known

as siblings, and the common node is referred to as their parent. Let N denote the number

of samples. An example of latent tree is depicted in Figure 5.2(a).

105

There are two types of variables on the nodes, namely, the observable variables, denoted

by X := {x1, . . . , xp} (p := |X |), and hidden variables, denoted by H := {h1, . . . , hm}

(m := |H|). Let Y := X ∪ H denote the complete set of variables and let yi denote the

random variable at node vi ∈ V, and similarly let yA denote the set of random variables in

set A.

A graphical model is defined as follows: given the neighborhood nbd(vi) of any node vi ∈ V,

the variable yi is conditionally independent of the rest of the variables in V, i.e., yi ⊥

yj|ynbd(vi), ∀vj ∈ V\ {vi ∪ nbd(vi)}.

Linear Models We consider the class of linear latent tree models. The observed variables

xi are random vectors of length di, i.e., xi ∈ Rdi , ∀i ∈ [p] while the latent nodes are k-state

categorical variables, i.e., hi ∈ {e1, . . . , ek}, where ej ∈ Rk is the jth standard basis vector.

Although di can vary across variables, we use d for notation simplicity. In other words, for

notation simplicity, xi ∈ Rd, ∀i ∈ [p] is equivalent to xi ∈ Rdi , ∀i ∈ [p]. For any variable yi

with neighboring hidden variable hj , we assume a linear relationship:

E[yi|hj] = Ayi|hj
hj , (5.1)

where transition matrix Ayi|hj
∈ Rd×k is assumed to have full column rank, ∀yi, hj ∈ V. This

implies that k ≤ d, which is natural if we want to enforce a parsimonious model for fitting

the observed data.

For a pair of (observed or hidden) variables ya and yb, consider the pairwise correlation

matrix E
[
yay

⊤
b

]
where the expectation is over samples. Since our model assumes that two

observable variables interact through at least a hidden variable, we have

E[yay
⊤
b] :=

∑

ei

E[hj = ei]Aya|hj=ei
A⊤

yb|hj=ei
(5.2)

106

We see that E[yay
⊤
b] is of rank k since Aya|hj=ei

or Ayb|hj=ei
is of rank k.

5.2 Overview of Approach

Figure 5.2: (a) Ground truth latent tree to be estimated, numbers on edges are multivariate

information distances. (b) MST constructed using the multivariate information distances. v3 and
v5 are internal nodes (leaders). Note that multivariate information distances are additive on latent
tree, not on MST. (c1) LCR on nbd[v3,MST] to get local structure N3. Pink shadow denotes the
active set. Local parameter estimation is carried out over triplets with joint node, such as (v2, v3,
v5) with joint node h1. (c2) LCR on nbd[v5,MST] to get local structure N5. Cyan shadow denotes
the active set. (d1)(d2) Merging local sub-trees. Path(v3,v5; N3) and path(v3,v5; N5) conflict.
(e) Final recovery.

The overall approach is depicted in Figure 5.2, where (a) and (b) show the data preprocessing

step, (c) - (e) illustrate the divide-and-conquer step for structure and parameter learning.

More specifically, we start with the parallel computation of pairwise multivariate information

distances. Information distance roughly measures the extent of correlation between different

pairs of observed variables and requires SVD computations in step (a). Then in step (b) a

Minimum Spanning Tree (MST) is constructed over observable variables in parallel [24] using

the multivariate information distance. The local groups are also obtained through MST so

that they are available for the structure and parameter learning step that follows.

The structure and parameter learning is done jointly through a divide-and-conquer strategy.

Step-(c) illustrates the divide step (or local learning), where local structure and parameter

estimation is performed. It also performs the local merge to obtain group level structure and

parameter estimates. After the local structure and parameter learning is finished within the

107

groups, we perform merge operations among groups, again guided by the Minimum Spanning

Tree structure. For the structure estimation it consists of a union operation of sub-trees;

for the parameter estimation, it consists of linear algebraic operations. Since our method is

unsupervised, an alignment procedure of the hidden states is carried out which finalizes the

global estimates of the tree structure and the parameters.

5.3 Structure Learning

Structure learning in graphical models involves finding the underlying Markov graph, given

the observed samples. For latent tree models, structure can be estimated via distance based

methods. This involves computing certain information distances between any pair of ob-

served variables, and then finding a tree which fits the computed distances.

Multivariate information distances: We propose an additive distance for multivariate

linear latent tree models. For a pair of (observed or hidden) variables ya and yb, consider the

pairwise correlation matrix E
[
yay

⊤
b

]
(the expectation is over samples). Note that its rank is

k, dimension of the hidden variables.

Definition 5.1. The multivariate information distance between nodes i and j is defined as

dist(va, vb) := − log

k∏
i=1

σi
(
E(yay

⊤
b)
)

√
det(E(yay⊤a)) det(E(yby

⊤
b))

(5.3)

where {σ1(·), . . . , σk(·)} are the top k singular values.

Note that definition 5.1 suggests that this multivariate information distance allows hetero-

geneous settings where the dimensions of ya and yb are different (and ≥ k).

108

For latent tree models, we can find information distances which are provably additive on the

underlying tree in expectation, i.e. the expected distance between any two nodes in the tree

is the sum of distances along the path between them.

Lemma 5.1. The multivariate information distance is additive on the tree T , i.e., dist(va, vc)

= dist(va, vb) + dist(vb, vc), where vb is a node in the path from va to vc and va,vb,vc ∈ V.

Refer to Appendix D.1 for proof. The empirical distances can be computed via rank-k SVD

of the empirical pairwise moment matrix Ê[yay
⊤
b] Note that the distances for all the pairs

can be computed in parallel.

Formation of local groups via MST: Once the empirical distances are computed, we

construct a Minimum Spanning Tree (MST), based on those distances. Note that the MST

can be computed efficiently in parallel [156, 122]. We now form groups of observed variables

over which we carry out learning independently, without any coordination. These groups

are obtained by the (closed) neigborhoods in the MST, i.e. an internal node and its one-hop

neighbors form a group. The corresponding internal node is referred to as the group leader.

See Figure 5.2(b).

Local recursive grouping (LRG): Once the groups are constructed via neighborhoods

of MST, we construct a sub-tree with hidden variables in each group (in parallel) using

the recursive grouping introduced in [41]. The recursive grouping uses the multivariate

information distances and decides the locations and numbers of hidden nodes. It pro-

ceeds by deciding which nodes are siblings, which proceeds as follows: consider two ob-

served nodes vi, vj which are siblings on the tree with a common parent vl, and consider

any other observed node va. From additivity of the (expected) information distances, we

have dist(vi, va) = dist(vi, vl) + dist(vl, va) and similarly for dist(vj , va). Thus, we have

Φ(vi, vj; va) := dist(vi, va) − dist(vj, va) = dist(vi, vl) − dist(vj , vl), which is independent

of node va. Thus, comparing the quantity Φ(vi, vj ; va) for different nodes va allows us to

109

conclude that vi and vj are siblings. Once the siblings are inferred, the hidden nodes are

introduced, and the same procedure repeats to construct the higher layers. Note that when-

ever we introduce a new hidden node hnew as a parent, we need to estimate multivariate

information distance between hnew and nodes in active set Ω. This is discussed in [41] with

details.

We will describe the LRG in details with integrated parameters estimation in Procudure 6

in Section 5.5. In the end, we obtain a sub-tree over the local group of variables. After this

local recursive grouping test, we store the neighborhood relationship for the leader vi using

an adjacency list N i. We call the resultant local structure as latent sub-tree.

5.4 Parameter Estimation

Along with the structure learning, we adopt a moment-based spectral learning technique for

parameter estimation. This is a guaranteed and fast approach to recover parameters via

moment matching for third order moments of the observed data. In contrast, traditional

approaches such as Expectation Maximization (EM) suffer from spurious local optima and

cannot provably recover the parameters.

A latent tree with three leaves: We first consider an example of three observable leaves

x1, x2, x3 (i.e., a triplet) with a common hidden parent h. We then clarify how this can be

generalized to learn the parameters of the latent tree model. Let ⊗ denote for the tensor

product. For example, if x1, x2, x3 ∈ Rd, we have x1 ⊗ x2 ⊗ x3 ∈ Rd×d×d.

Property 5.1 (Tensor decomposition for triplets). For a linear latent tree model with three

observed nodes v1, v2, v3 with joint hidden node h, we have

E(x1 ⊗ x2 ⊗ x3) =
k∑

r=1

P[h = er]A
r
x1|h ⊗Ar

x2|h ⊗ Ar
x3|h, (5.4)

110

where Ar
xi|h = E(xi|h = er), i.e., r

th column of the transition matrices from h to xi. The

tensor decomposition method of [11] provably recovers the parameters Axi|h, ∀i ∈ [3], and

P[h].

Tensor decomposition for learning latent tree models: We employ the above approach

for learning latent tree model parameters as follows: for every triplet of variables ya, yb, and

yc (hidden or observed), we consider the hidden variable hi which is the joining point of ya, yb

and yc on the tree. They form a triplet model, for which we employ the tensor decomposition

procedure. However, it is wasteful to do it over all the triplets in the latent tree.

In the next section, we demonstrate how we efficiently estimate the parameters as we learn

the structure, and minimize the tensor decompositions required for estimation. Issues such

as alignment of hidden labels across different decompositions will also be addressed.

5.5 Integrated Structure and Parameter Estimation

So far, we described high-level procedures of structure estimation through local recursive

grouping (LRG) and parameter estimation through tensor decomposition over triplets of

variables, respectively. We now describe an integrated and efficient approach which brings

all these ingredients together. In addition, we provide merging steps to obtain a global

model, using the sub-trees and parameters learnt over local groups.

5.5.1 Local Recursive Grouping with Tensor Decomposition

Next we present an integrated procedure where the parameter estimation goes hand-in-hand

with structure estimation. Intuitively, we find efficient groups of triplets to carry out tensor

decomposition simultaneously, as we estimate the structure through recursive grouping. In

111

recursive grouping, pairs of nodes are recursively grouped as siblings or as parent-child. As

this process continues, we carry out tensor decompositions whenever there are siblings present

as triplets. If there are only a pair of siblings, we find an observed node with closest distance

to the pair. Once the tensor decompositions are carried out on the observed nodes, we

proceed to structure and parameter estimation of the added hidden variables. The samples

of the hidden variables can be obtained via the posterior distribution, which is learnt earlier

through tensor decomposition. This allows us to predict information distances and third

order moments among the hidden variables as process continues. The full algorithm is given

in Procedure 6.

Procedure 6 LRG with Parameter Estimation

Input: for each vi ∈ Xint, active set Ω := nbd[vi;MST].
Output: for each vi ∈ Xint, local sub-tree adjacency matrix N i, and E[ya|yb] for all (va, vb) ∈
N i.

1: Active set Ω← nbd[vi;MST]
2: while |Ω| > 2 do
3: for all va, vb ∈ Ω do
4: if Φ(va, vb; vc) = dist(va, vb), ∀ vc ∈ Ω\{va, vb} then
5: va is a leaf node and vb is its parent,
6: Eliminate va from Ω.
7: if −dist(va, vb) < Φ(va, vb; vc) = Φ(va, vb; v

′
c) < dist(va, vb), ∀vc, v′c ∈ Ω\{va, vb}

then
8: va and vb are siblings,eliminate va and vb from Ω, add hnew to Ω.
9: Introduce new hidden node hnew as parent of va and vb.
10: if more than 3 siblings under hnew then
11: find vc in siblings,
12: else
13: find vc = argminvc∈Ω dist(va, vc).

14: Estimate empirical third order moments Ê(ya ⊗ yb ⊗ yc)
15: Decompose Ê(ya ⊗ yb ⊗ yc) to get Pr[hnew] and E(yr|hnew), ∀r = {a, b, c}.

The divide-and-conquer local spectral parameter estimation is superior compared to pop-

ular EM-based method [41], which is slow and prone to local optima. More importantly,

EM can only be applied on a stable structure since it is a global update procedure. Our

proposed spectral learning method, in contrast, is applied locally over small groups of vari-

ables, and is a guaranteed learning with sufficient number of samples [11]. Moreover, since

112

we integrate structure and parameter learning, we avoid recomputing the same quantities,

e.g. SVD computations are required both for structure estimation (for computing distances)

and parameter estimation (for whitening the tensor). Combining these operations results in

huge computational savings (see Section 5.6 for the exact computational complexity of our

method).

Procedure 7 Merging and Alignment Correction (MAC)

Input: Latent sub-trees N i for all internal nodes i.
Output: Global latent tree T structure and parameters.
1: for N i and N j in all the sub-trees do
2: if there are common nodes between N i and N j then
3: Find the shortest path path(vi, vj;N i) between vi and vj on N i and path(vi, vj;N j)

in N j ;
4: Union the only conflicting path(vi, vj ;N i) and path(vi, vj;N j) according to equa-

tion (5.7) ;
5: Attach other nodes in N i and N j to the union path;
6: Perform alignment correction as described in Procedure 8.

5.5.2 Merging and Alignment Correction

We have so far learnt sub-trees and parameters over local groups of variables, where the

groups are determined by the neighborhoods of the MST. The challenge now is to combine

them to obtain a globally consistent estimate. There are non-trivial obstacles to achieving

this: first, the constructed local sub-trees span overlapping groups of observed nodes, and

possess conflicting paths. Second, local parameters need to be re-aligned as we merge the

subtrees to obtain globally consistent estimates due to the nature of unsupervised learning.

To be precise, different tensor decompositions lead to permutation of the hidden labels (i.e.

columns of the transition matrices) across triplets. Thus, we need to find the permutation

matrix correcting the alignment of hidden states of the transition matrices, so as to guarantee

global consistency.

113

Structure Union: We now describe the procedure to merge the local structures. We merge

them in pairs to obtain the final global latent tree. Recall that N i denotes a sub-tree

constructed locally over a group, whose leader is node vi. Consider a pair of subtrees N i

and N j, whose group leaders vi and vj are neighbors on the MST. Since vi and vj are

neighbors, both the sub-trees contain them, and have different paths between them (with

hidden variables added). Moreover, note that this is the only conflicting path in the two

subtrees. We now describe how we can resolve this: in N i, let h
i
1 be the neighboring hidden

node for vi and h
i
2 be the neighbor of vj . There could be more hidden nodes between hi1 and

hi2. Similarly, in N i, let h
j
1 and hj2 be the corresponding nodes in N j. The shortest path

between vi and vj in the two sub-trees are given as follows:

path(vi, vj;N i) := [vi − hi1 − . . .− hi2 − vj] (5.5)

path(vi, vj ;N j) := [vi − hj1 − . . .− hj2 − vj] (5.6)

Then the union path is formed as follows:

merge(path(vi, vj;N i), path(vi, vj;N j))

:= [vi − hi1 − . . .− hi2 − hj1 . . . hj2 − vj] (5.7)

In other words, we retain the immediate hidden neighbor of each group leader, and break

the paths on the other end. For example in Figure 5.2(d1,d2), we have the path v3−h1− v5
in N 3 and path v3 − h3 − h2 − v5 in N 5. The resulting path is v3 − h1 − h3 − h2 − v5, as

see in Figure 5.2(e). After the union of the conflicting paths, the other nodes are attached

to the resultant latent tree. We present the pseudo code in Procedure 7 in Appendix D.5.

Parameter Alignment Correction: As mentioned before, our parameter estimation is

unsupervised, and therefore, columns of the estimated transition matrices may be permuted

for different triplets over which tensor decomposition is carried out. Note that the parameter

114

Procedure 8 Parameter Alignment Correction
(Gr denotes reference group, Go denotes the list of other groups, each group has a reference
node denoted as Rl, and the reference node in Gr is Rg. The details on alignment at line 8
is in Appendix D.5.)

Input: Triplets and unaligned parameters estimated for these triplets, denoted as
Trip(yi, yj, yk).

Output: Aligned parameters for the entire latent tree T .
1: Select Gr which has sufficient children;
2: Select refer node Rg in Gr;
3: for all a, b in Gr do
4: Align Tripin(ya, yb,Rg);
5: for all ig in Go do
6: Select refer node Rl in Go[ig];
7: Align Tripout(Rg, ya,Rl) and Tripout(Rl, yi,Rg);
8: for all i, j in Go[ig] do
9: Align Trip(yi, yj,Rl);

estimation within the triplet is automatically acquired through the tensor decomposition

technique, so that the alignment issue only arises across triplets. We refer to this as the

alignment issue and it is required at various levels.

There are two types of triplets, namely, in-group and out-group triplets. A triplet of nodes

Trip(yi, yj, yl) is said to be in-group (denoted by Tripin(yi, yj, yl)) if its containing nodes

share a joint node hk and there are no other hidden nodes in path(yi, hk), path(yj, hk) or

path(yl, hk). Otherwise, this triplet is out-group denoted by Tripout(yi, yj, yl). We define a

group as sufficient children group if it contains at least three in-group nodes.

Designing an in-group alignment correction with sufficient children is relatively simple: we

achieve this by including a local reference node for all the in-group triplets. Thus, all the

triplets are aligned with the reference node. The alignment correction is more challenging if

lacking sufficient children. We propose out-group alignment to solve this problem. We first

assign one group as a reference group, and the local reference node in that reference group

becomes the global reference node. In this way, we align all recovered transition matrices

115

in the same order of hidden states as in the reference node. Overall, we merge the local

structures and align the parameters from LRG local sub-trees using Procedure 7 and 8.

5.6 Theoretical Gaurantees

Correctness of Proposed Parallel Algorithm: We now provide the main result of this

chapter on global consistency for our method, despite the high degree of parallelism.

Theorem 5.1. Given samples from an identifiable latent tree model, the proposed method

consistently recovers the structure with O(log p) sample complexity and parameters with

O(poly p) sample complexity.

The proof sketch is in Appendix D.3.

Computational Complexity: We recall some notations here: d is the observable node

dimension, k is the hidden node dimension (k ≪ d), N is the number of samples, p is the

number of observable nodes, and z is the number of non-zero elements in each sample.

Let Γ denote the maximum size of the groups, over which we operate the local recursive

grouping procedure. Thus, Γ affects the degree of parallelism for our method. Recall that

it is given by the neighborhoods on MST, i.e., Γ := maxi|nbd[i;MST]|. Below, we provide a

bound on Γ.

Lemma 5.2. The maximum size of neighborhoods on MST, denoted as Γ, satisfies

Γ ≤ ∆
1+

ud
ld

δ
, (5.8)

where δ := maxi{minj{path(vi, vj; T)}} is the effective depth, ∆ is the maximum degree of T ,

and the ud and ld are the upper and lower bound of information distances between neighbors

on T .

116

Thus, we see that for many natural cases, where the degree and the depth in the latent tree

are bounded (e.g. the hidden Markov model), and the parameters are mostly homogeneous

(i.e., ud/ld is small), the group sizes are bounded, leading to a high degree of parallelism.

We summarize the computational complexity in Table 5.1. Details can be found in Ap-

pendix D.6.

Algorithm Steps Time per worker Degree of parallelism

Distance Est. O(Nz + d+ k3) O(p2)
MST O(log p) O(p2)
LRG O(Γ3) O(p/Γ)
Tensor Decomp. O(Γk3 + Γdk2) O(p/Γ)
Merging step O(dk2) O(p/Γ)

Table 5.1: Worst-case computational complexity of our algorithm. The total complexity is
the product of the time per work and degree of parallelism.

5.7 Experiments

Setup Experiments are conducted on a server running the Red Hat Enterprise 6.6 with 64

AMD Opteron processors and 265 GBRAM. The program is written in C++, coupled with

the multi-threading capabilities of the OpenMP environment [52] (version 1.8.1). We use

the Eigen toolkit1 where BLAS operations are incorporated. For SVDs of large matrices, we

use randomized projection methods [66] as described in Appendix D.8.

Healthcare data analysis The goal of our analysis is to discover a disease hierarchy based

on their co-occurring relationships in the patient records. In general, longitudinal patient

records store the diagnosed diseases on patients over time, where the diseases are encoded

with International Classification of Diseases (ICD) code.

1http://eigen.tuxfamily.org/index.php?title=Main_Page

117

http://eigen.tuxfamily.org/index.php?title=Main_Page

Data description We used two large patient datasets of different sizes with respect to the

number of samples, variables and dimensionality.

(1) MIMIC2: The MIMIC2 dataset record disease history of 29,862 patients where a overall

of 314,647 diagnostic events over time representing 5675 diseases are logged. We consider

patients as samples and groups of diseases as variables. We analyze and compare the results

by varying the group size (therefore varying d and p).

(2) CMS: The CMS dataset includes 1.6 million patients, for whom 15.8 million medical

encounter events are logged. Across all events, 11,434 distinct diseases (represented by ICD

codes) are logged. We consider patients as samples and groups of diseases as variables. We

consider specific diseases within each group as dimensions. We analyze and compare the

results by varying the group size (therefore varying d and p). While the MIMIC2 dataset

and CMS dataset both contain logged diagnostic events, the larger volume of data in CMS

provides an opportunity for testing the algorithm’s scalability. We qualitatively evaluate

biological implications on MIMIC2 and quantitatively evaluate algorithm performance and

scalability on CMS.

To learn the disease hierarchy from data, we also leverage some existing domain knowledge

about diseases. In particular, we use an existing mapping between ICD codes and higher-

level Phenome-wide Association Study (PheWAS) codes [54]. We use (about 200) PheWAS

codes as observed nodes and the observed node dimension is set to be binary (d = 2) or the

maximum number of ICD codes within a pheWAS code (d = 31). The goal is to learn the

latent nodes and the disease hierarchy and associated parameters from data.

5.7.1 Validation

We conduct both quantitative and qualitative validation of the resulting disease hierarchy.

118

0 0.5 1 1.5

·106
0

2,000

4,000

6,000

8,000

Number of samples

R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

(a) Running time vs Number of samples

0 200 400 600 8001,000
0

0.5

1

1.5

·104

Number of observed nodes

R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

(b) Running time vs Number of nodes

0 20 40 60
0

20

40

60

Number of threads

S
p
ee
d
-u
p
fa
ct
o
r

(c) Speed-up vs available threads

Method speed-up

Ideal speed-up

Figure 5.3: (a) CMS dataset sub-sampling w.r.t. varying number of samples. (b) MIMIC2
dataset sub-sampling w.r.t. varying number of observed nodes. Each one of the observed
nodes is binary (d = 2). (c) MIMIC2 dataset: Scaling w.r.t. varying computational power,
establishing the scalability of our method even in the large p regime. The number of observed
nodes is 1083 and each one of them is binary (p = 1083, d = 2).

Quantitative Analysis We first compare our resulting hierarchy with a ground truth tree

based on medical knowledge2. The standard Robinson Foulds (RF) metric [140](between

our estimated latent tree and the ground truth tree) is computed to evaluate the structure

recovery in Table 5.2. The smaller the metric is, the better the recovered tree is. We also

compare our results with a baseline: the agglomerative clustering. The proposed method are

slightly better than the baseline and the advantage is increased with more nodes. However,

the proposed method provides an efficient probabilistic graphical model that can support

general inference which is beyond the baseline.

Data p RF(agglo.) RF(proposed)

MIMIC2 163 0.0061 0.0061
CMS 168 0.0060 0.0059

MIMIC2 952 0.0060 0.0011

Table 5.2: Robinson Foulds (RF) metric compared with the “ground-truth” tree for both
MIMIC2 and CMS dataset. Our proposed results are better as we increase the number of
nodes.

Qualitative analysis The qualitative analysis is done by a senior MD-PhD student in our

team.

2The ground truth tree is the PheWAS hierarchy provided in the clinical study [54]

119

(a) Case d=2: Here we report the results from the 2-dimensional case (i.e., observed variable

is binary). In figure 5.4, we show a portion of the learned tree using the MIMIC2 healthcare

Figure 5.4: An example of two subtrees which represent groups of similar diseases which
may commonly co-occur. Nodes colored yellow are latent nodes from learned subtrees.

data. The yellow nodes are latent nodes from the learned subtrees while the blue nodes

represent observed nodes(diagnosis codes) in the original dataset. Diagnoses that are similar

were generally grouped together. For example, many neoplastic diseases were grouped under

the same latent node (node 1135). While some dissimilar diseases were grouped together,

there usually exists a known or plausible association of the diseases in the clinical setting.

For example, in figure 5.4, clotting-related diseases and altered mental status were grouped

under the same latent node as several neoplasms. This may reflect the fact that altered

mental status and clotting conditions such as thrombophlebitis can occur as complications

of neoplastic diseases [61]. The association of malignant neoplasms of prostate and colon

polyps, two common cancers in males, is captured under latent node 1136 [74].

120

Figure 5.5: An example of four subtrees which represent groups of similar diseases which
may commonly co-occur. Most variables in this subtree are related to trauma.

(b) Case d =31: We also learn a tree from the MIMIC2 dataset, in which we grouped

diseases into 163 pheWAS codes and up to 31 dimensions per variable. Figure 5.5 shows

a portion of the learned tree of four subtrees which all reflect similar diseases relating to

trauma. A majority of the learned subtrees reflected clinically meaningful concepts, in that

related and commonly co-occurring diseases tended to group together in the same subtrees

or in nearby subtrees. We also learn the disease tree from the larger CMS dataset, in which

we group diseases into 168 variables and up to 31 dimensions per variable. Similar to the

case from the MIMIC2 dataset, a majority of learned subtrees reflected clinically meaningful

concepts.

For both the MIMIC2 and CMS datasets, we performed a qualitative comparison of the

resulting trees while varying the hidden dimension k for the algorithm. The resulting trees

for different values of k did not exhibit significant differences. This implies that our algorithm

is robust with different choices of hidden dimensions. The estimated model parameters are

also robust for different values of k based on the results.

121

Scalability Our algorithm is scalable w.r.t. varying characteristics of the input data. First,

it can handle a large number of patients efficiently, as shown in Figure 5.3(a). It has also

a linear scaling behavior as we vary the number observed nodes, as shown in Figure 5.3(b).

Furthermore, even in cases where the number of observed variables is large, our method

maintains an almost linear scale-up as we vary the computational power available, as shown

in Figure 5.3(c). As such, by providing the respective resources, our algorithm is practical

under any variation of the input data characteristics.

5.8 Conclusion

We present an integrated approach to structure and parameter estimation in latent tree

models. Our method overcomes challenges such as uncertainty of location and number

of hidden variables, problem of local optima with no consistency guarantees, difficulty in

scalability with respect to number of variables. The proposed algorithm is ideal for parallel

computing and highly scalable. We successfully applied the algorithm to a real application

for disease hierarchy discovery using large patient data for 1.6m patients.

122

Chapter 6

Discovering Cell Types with Spatial

Point Process Mixture Model

Cataloging the neuronal cell types that comprise circuitry of individual brain regions is a

major goal of modern neuroscience and the BRAIN initiative. Single-cell RNA sequencing

can now be used to measure the gene expression profiles of individual neurons and to cate-

gorize neurons based on their gene expression profiles. While the single-cell techniques are

extremely powerful and hold great promise, they are currently still labor intensive, have a

high cost per cell, and, most importantly, do not provide information on spatial distribution

of cell types in specific regions of the brain. We propose a complementary approach that

uses computational methods to infer the cell types and their gene expression profiles through

analysis of brain-wide single-cell resolution in situ hybridization (ISH) imagery contained in

the Allen Brain Atlas (ABA). We measure the spatial distribution of neurons labeled in the

ISH image for each gene and model it as a spatial point process mixture, whose mixture

weights are given by the cell types which express that gene. By fitting a point process mix-

ture model jointly to the ISH images, we infer both the spatial point process distribution

for each cell type and their gene expression profile. We validate our predictions of cell type-

123

specific gene expression profiles using single cell RNA sequencing data, recently published

for the mouse somatosensory cortex. Jointly with the gene expression profiles, cell features

such as cell size, orientation, intensity and local density level are inferred per cell type. This

work brings together the techniques used in all previous chapters, such as image processing

to extract cells and cell features from brain slices, learning a point process admixture model.

6.1 Introduction

6.1.1 Motivations and Goals

The human brain comprises about one hundred billion neurons and one trillion supporting

glial cells. These cells are specialized into a surprising diversity of cell types. The retina

alone boasts well over 50 cell types, and it is an active area of research to perform a census of

the various neuronal cell types that comprise the central nervous system. Many criteria have

been used to categorize neuronal cell types, from neuronal morphology and connectivity to

their functional response properties. Neurons can also be categorized based on the proteins

they make. Immunohistochemistry has been used with great success for many decades

to differentiate excitatory neurons from inhibitory neurons by labeling for known proteins

involved in the synthesis and regulation of glutamate and GABA, the primary excitatory

and inhibitory neurotransmitters respectively.

More recently, there has been an effort to systematically measure the complete transcriptome

of single neurons. Single-cell RNA sequencing (RNA-Seq) is an extremely powerful technique

that can quantitatively determine the expression level of every gene that is expressed in in-

dividual neurons. This so-called transcriptome or gene expression / transcription profile can

then be used to define cell types by clustering. A recent study produced the most compre-

hensive census of cell types to date in the mouse somatosensory cortex and hippocampus

124

by performing single-cell RNA-Seq on over 3000 neurons [168]. While this study is quite

exciting, tyring to replicate it for all brain regions might well require the equivalent of a

thousand such experiments. Thus, it is likely that the unprecedented insights that RNA-Seq

can provide will be slow to arrive. More importantly, single cell sequencing methods are not

currently able to capture the precise three-dimensional location of the individual neurons.

Here we propose a complementary approach that uses computational strategies to identify

cell types and their spatial distribution by re-analysing data published by the Allen Institute

for Brain Research. The Allen Brain Atlas (ABA) contains cellular resolution brain-wide in-

situ hybridization (ISH) images for 20,000 genes1. ISH is a histological technique that labels

the mRNA in all cells expressing the corresponding gene in a manner roughly proportion to

the gene expression level. An example of an ISH image can be seen in figure 6.1(a).

The ABA contains genome-wide and brain-wide ISH images of the adult mouse brain. These

images were generated by slicing the brain into a series of 25 µm thin sections and performing

ISH. Image series of ISH performed for different genes come from different mouse brains,

since ISH can only be performed for one gene at a time. The ISH image series for different

genes were then computational aligned into a common reference brain coordinate system.

Such data have been productively used to infer the average transcriptomes corresponding to

different brain regions.

It is commonly thought that the ABA cannot be used to infer the transcriptomes of individual

cells in a given brain region since mouse brains cannot be aligned to the precision of a single

cell. This is because there is individual variation in the precise number and location of

neurons from brain to brain. However, we expect that the average number and spatial

distribution of neurons from each cell type to be conserved from brain to brain, for a given

brain area. More concretely, we might expect that parvalbumin-expressing (PV) inhibitory

1 Although the Atlas contains ISH data for approximately 20,000 distinct mouse genes, we focus on the
top 1743 reliable genes whose sagittal and coronal experiments are highly correlated.

125

interneurons in layer 2/3 of the mouse somatosensory cortex comprise approximately 7% of

all neurons and have a conserved spatial and size distribution from brain to brain. We use

this fact to derive a method for simultaneously inferring the cell types in a given brain region

and their gene expression profiles from the ABA.

We propose to model the spatial distribution of neurons in a brain as being generated by

sampling from an unknown but consistent brain-region and cell-type dependent spatial point

process distribution. And since each gene might only be expressed in a subset of cell types,

an ISH image for a single gene can be thought of as a mixture of spatial point processes where

the mixture weights represent the individual cell types expressing that gene. We infer cell

types, their gene expression profiles and their spatial distribution by unmixing the spatial

point processes corresponding to the ISH images for 1743 genes. This is in notable contrast

to the information provided by single-cell RNA sequencing which can only measure the

gene expression profile of individual cells to high accuracy but where, due to the destructive

measurement process, all information about the spatial position and distribution of cell types

is lost.

6.1.2 Previous Work

Allen Brain Atlas (ABA) [115] is a landmark study which mapped the gene expression of

about 20,000 genes across the entire mouse brain. The ABA dataset consists of cellular

high-resolution 2d imagery of in-situ hybridized series of brain sections, digitally aligned

to a common reference atlas. However, since the in-situ images for each gene come from

different mouse brains and since there is significant variability in the individual locations of

labeled cells, it is not possible to register brain-wide gene expression at a resolution higher

than about 250µm. Therefore, the cellular resolution detail was down-sampled to construct

126

a coarser 3d representation of the average gene expression level in 250µm× 250µm× 250µm

voxels.

The coarse-resolution averaged gene expression representation has been widely used and an-

alyzed to understand differences in gene expression at the level of brain region. Hawrylycz

et al [79] analyzed the correlational structure of gene expression at this scale, across the

entire mouse brain. However, due to the poor resolution of the average gene expression rep-

resentation, it has proven challenging to use the ABA to discover the microstructure of gene

expression within a brain region. To address this issue from a complementary perspective,

Grange et al [72] used the gene expression profiles of 64 known cell-types, combined with

linear unmixing to determine the spatial distribution of these known cell-types. However,

such an approach can be confounded by the presence of cell-types whose expression profiles

have yet to be characterized, and limited by the resolution of the averaged gene expression

representation.

In contrast to previous approaches, we aim to solve the difficult problem of automatically

discovering the gene expression profiles of cell-types within a brain region by analyzing the

original cellular resolution ISH imagery. We propose to use the spatial distributions of

labeled cells, and their shapes and sizes, which are a far richer representation than simply

the average expression level in 250µm× 250µm× 250µm voxels. This spatial point process

is then un-mixed to determine the gene expression profile of cell types.

Most previous work on unmixing point process mixtures adopted parametric generative

models where the point process is limited to some distribution family such as Poisson or

Gaussian [95, 107]. However, since we are not interested in building a generative model of a

point process, but rather care more about inferring the mixing proportions (gene expression

profile), we take a simpler parameter-free approach. This approach models only the statistics

of the point process, but is not a generative model, and so cannot be use to model individual

points/cells.

127

Extract Point Process:

Joint Histogram:

Discover Cell Types:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Patch from gene Pvalb slice

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Cell detection and extraction of
spatial point process features

Pvalb

Rasgrf2

(c1) Size

π/6 2π/6 3π/6 4π/6 5π/6

(c2) Orientation

(c3) Expression level (c4) Cell counts in 100 µm radius

(d) Point process histogram
representation: [xmn] ∈ R+

NG×NF
(f) LDA model for inferring cell types

Figure 6.1: Overview of the proposed framework - Discovering Neuronal cell Types via Un-
mixing of Spatial Point Process Mixtures. (a) & (b) An in situ hybridization image for gene
Pvalb along with detected cells. (c) Marginalized point process feature histograms for genes
Pvalb and Rasgrf2. Note that size denotes the principal axis diameter. We have NG genes
and 4d joint histogram with NF bins.

128

6.2 Modeling the Spatial Distribution of Cell-types Us-

ing Spatial Point Process Features

Most analyses of the ABA in situ hybridization dataset have utilized a simple measure of

average expression level in relatively large 250µm× 250µm× 250µm voxels of brain tissue.

Due to the large volume over which the expression level is averaged, such a representation

cannot distinguish between large numbers of cells expressing small amounts of RNA vs.

small numbers of cells expressing large amounts of RNA. All information about the spatial

organization of labeled cells, their shapes, sizes and spatial density are lost and summarized

by a single scalar number. Here, we describe a more sophisticated representation of the

labeled cells in an ISH image based on marked spatial point processes.

6.2.1 The Marked Spatial Point Process Representation of ISH

Images

Our approach requires processing the high-resolution ISH images to detect individual labeled

cells and their visual characteristics. We developed a cell detection algorithm described in

the Supplementary section. Our algorithm additionally also estimates the expression level of

each detected cell, its shape, size and orientation. Figure 6.1(a) and Figure 6.1(b) illustrate

the results of our cell detection algorithm.

Since cell-types differ not only in terms of gene expression pattern, but also display a di-

versity of shapes, sizes and spatial densities, we sought to characterize these properties. We

measured: (1) cell size s = [r1, r2]: the radius in two principal directions of an ellipse fit to

each cell; (2) cell orientation o: the orientation of the first principle axis of the ellipse; (3)

gene intensity level p: intensity of labeling of a cell relative to the image background; (4)

129

spatial distribution c: the number of cells within a local area centered around the cell,

which can be regarded as a measure of the local cell density.

The collection of detected cells within an atlas-defined brain region, along with their features,

constitutes a marked spatial point process. This point process is considered “marked”,

because each point is characterized by the shape, size, expression level and local density

features, in addition to just their location in space.

6.2.2 A Model-free Approach to Representing Spatial Point Pro-

cesses Using Joint Feature Histograms

The statistical modeling of repulsive spatial point processes such as those that arise in biology

is non-trivial, and many generative models such as determinantal point processes [110]and

Matern point processes have high computational complexity. But since we are not interested

in directly modeling the individual labeled cells, but instead in modeling only their aggre-

gate spatial statistics, and in inferring their gene expression profiles, we can take a simpler

approach.

We use a joint histogram simple statistics of the collection of detected cells to characterize the

underlying point process from which they are drawn. This is an empirical moment approach

which side-steps the need to carefully define a generative point process distribution.

As we describe in the next section, we propose to model the point process measured from the

ISH image for each gene as a mixture of point processes belonging to individual cell-types.

For this, we use a linear mixing model, the Latent Dirichlet Allocation model. The use of

this model is greatly simplified if we carefully choose our feature representation such that

the linear mixture of point processes results in a linear mixture of histogram statistics. This

is clearly the case for the features we have chosen. For instance, if we sample equally from

130

two point process distributions P1 and P2 with average densities of d1 and d2, the addition of

these two point processes P = P1+P2 results in the addition of the two densities d = d1+d2.

This is not the case for second order features, such as the distances to the nearest neighbors,

which would have a more nonlinear relationship.

In figure 6.1(c), we display marginal histograms corresponding to the joint histogram for two

genes, Pvalb and Rasgrf2, which are well-known markers for a specific class of inhibitory and

excitatory cortical neuronal cell-types respectively.

6.3 Un-mixing Spatial Point Processes to Discover Cell-

types

6.3.1 Generative Model: A Variation of Latent Dirichlet Alloca-

tion

The spatial point process histogram representation of the ABA ISH dataset results, for each

brain region, is an NF × NG matrix [xmn], where NF is the total number of histogram bins

(henceforward called the number of histogram features) 2, NG is the number of genes, and

xmn is the number of cells expressing gene n in histogram bin m.

We model the gene-spatial histogram matrix [xmn] by assuming it is generated by a Variation

of Latent Dirichlet Allocation (vLDA) [32] model of cell types. This matrix factorization

based latent variable model assumes that the ISH histograms are generated from a small

number of cell-types, K, and each cell-type i is associated with a type-dependent spatial

point process histogram hi and a gene expression profile βi.

2Note that there are two types of features – the features characterizing each detected cell, and the features
characterizing the collection of detected cells that constitute a single sample from a spatial point process

131

Our generative model for each histogram bin m (characterizing a particular bin in the size/

orientation/ gene profile/ spatial distribution) is as follows: Let Lm =
∑NG

n xmn be the

detected number of cells in the joint histogram bin m. For each cell l in this bin, its cell-type

t is sampled from the multinomial distribution hm. And given the cell-type t of cell l, the

genes n expressed by this cell are sampled from a multinomial distribution given by the

type-dependent gene expression profile/distribution βt. For a given gene n and histogram

bin m, this generative process determines the number of cells that would be detected xmn .

We further place a Dirichlet prior over hm ∼ Dir(α), with the concentration parameter

α which determines the prior probability over the number of cell-types present in a given

histogram bin m. This prior represents our prior knowledge of how many cell-types express

each gene, and also how well our feature representation separates cells of different types into

different histogram bins. In principle, we could generalize this to be a gene-specific prior, if

we had such information available. We could also use α to incorporate information about our

prior knowledge over the distribution of cells from each cell-type, for instance that excitatory

neurons greatly outnumber inhibitory neurons in a roughly 5 : 1 ratio.

We now describe how we estimate the model parameters – the cell-type specific multinomial

gene expression profile β and the cell-type specific spatial point process histogram h from

the gene-specific spatial point process histograms measured from the ISH images.

6.3.2 Estimating the Cell-type Dependent Gene Expression Pro-

file β

After testing several estimation methods for the parameters of our model, we found that

non-negative matrix factorization (NMF) performed well in estimating the cell-type specific

132

gene expression profiles β, see Figure 6.2a. We solve the following optimization problem:

min
β,h

NF∑

m

NG∑

n

(xmn −
K∑

t

hmt β
t
nL

m)2, s.t. βt
n ≥ 0,

NG∑

n

βt
n = 1, hmt ≥ 0,

K∑

t

hmt = 1 (6.1)

Here, the non-negativity and sum-to-one constraints on hmt and βt
n ensure that h and β result

in properly normalized multinomial distributions. While this estimation procedure results

in joint estimates for h and β, it does not enforce the Dirichlet prior over h. So we refine

our NMF-derived estimates for h using variational inference [32].

6.3.3 Estimating the Cell-type Dependent Spatial Point Process

Histogram h

We use a standard maximum likelihood estimation procedure for h [32]. Iteratively, we refine

the inference of the cell type membership hm ∈ ∆k under each joint histogram feature m.

We update hmi until convergence [148].

hmi ←
1

Lm +
∑K

t αt

NG∑

n=1

xmn
hmi β

i
n

K∑
l=1

hml β
l
n

+ αi, ∀i ∈ [K], m ∈ [NF] (6.2)

Recall that the Dirichlet prior α encodes the number of cell-types that we expect on average

to express each gene. We set α to be a symmetric Dirichlet with α1 = α2 = . . . = αK , and

∑
t αt = 0.01 for all cell-types t. In practice, we observe that our estimates of h are fairly

insensitive to the specific choice for α as long as
∑

t αt is small enough. The smaller α is,

the fewer cell-types expressing a given gene we expect to observe in a single histogram bin.

133

6.4 Results and Evaluation

6.4.1 Implementation Details

We tested our proposed cell-type discovery algorithm using the high-resolution in situ hy-

bridization image series for 1743 of the most reliably imaged and annotated genes in the

ABA. Individual cells were detected in the cellular resolution ISH images using custom al-

gorithms (detailed in Supplementary Information). For each detected cell, we fit ellipses

and extract several local features: (a) size and shape represented as the diameters along the

principle axes of the ellipse, (b) orientation of the first principle axis, (c) gene intensity level

as measured by the intensity of labeling of the cell body, and (d) the number of cells detected

with-in a 100 µm radius around the cell, which is a measure of the local cell density. We

aligned the ISH images to the ABA reference atlas and, for this paper, focused our attention

on cells in the somatosensory cortex, since independent RNA-Seq data exist for this region

the can be used to evaluate our approach. We computed joint histograms for the collection

of cells found with-in the somatosensory cortex, resulting in a spatial point process feature

vector of NF = 10010 histogram bins per gene.

Synthetic experiment: The vLDA model we proposed is then fit to NG × NF gene point

process histogram matrix to estimate the cell-type gene expression profile matrix β using the

non-negative matrix factorization (NNMF) algorithm. The reason why we choose NNMF

over Variational Inference (which is a popular approach for LDA) for β estimation is that

NNMF produces more accurate β estimation in simulated data, illustrated in Fig 6.2a. In

the synthetic experiment, we simulate point process data (with some predefined golden

standard β) and use the data to estimate β̂. The errors were computed after pairing the

estimated columns of β with a closest golden standard β column via hypothesis testing. Note

that the columns of β are normalized to 1, so the errors are bounded.

134

3 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

E
rr
o
r
P
e
r
T
y
p
e

Number of Cell Types

Permute β
VI estimated β
NNMF estimated β
NNMF robust

(a) Validate NNMF Method

0��

1.0

1��

2.0

2��

k
Spatial point process (ours) permuted

Average expression level (baseline) permuted

()

()

(b) Validate Point Process Data

Figure 6.2: (a) Synthetic Experiment : comparison of Non-negative Matrix Factorization
(NNMF) with Variational Inference (VI) on simulated point process cell data using known
gene expression profile β. An additional robustness test of NNMF is done to see how good
the algorithm is when a wrong number of cell types K is input. A permutation test (shuffling
the gene expression levels between cell) is done to access statistical significance. Comparing
with permute test shows that our cell-types are significantly different from chance. Error per
type is computed by pairing the columns of estimated β̂ with the columns of the ground-truth
β. (b) Comparison of gene expression profiles recovered for cell-types in the somatosensory
cortex by fitting an LDA model using spatial point process features (ours) vs the standard
average gene expression level feature (baseline). Our features provide a significantly better
match, with lower perplexity, to ground truth single-cell RNA sequencing derived transcrip-
tomes. A permutation test is done to access statistical significance. Perplexity is computed
by matching to surrogate single-cell RNA transcriptomes by shuffling the gene expression
levels between cells. Comparing with permute test shows that our cell-types are significantly
different from chance.

6.4.2 Evaluating Cell-type Gene Expression Profile Predictions

A recent study performed single-cell RNA sequencing on 1691 neurons isolated from mouse

somatosensory cortex. We use this dataset to evaluate the quality of the cell-types we

discover.

The single cell RNA-seq data, G := [g1|g2| . . . |gNC] ∈ RNG×NC , contains the gene expression

profiles for NC = 1691 cells. We infer the cell types hi for these cells using equation (6.2), and

then compute the likelihood Li of observing each for each cell under our estimated cell-type

dependent gene expression profile matrix β using equation (6.4). We can then evaluate the

135

perplexity, a commonly used measure of goodness of fit under the vLDA model, of single cell

RNA-seq data on the model we learned from our spatial point process data.

The perplexity score is a standard metric, which is defined as the geometric mean per-cell

likelihood. It is a monotonically decreasing function of the log-likelihood L(G) of test data

G.

perplexity(G) = exp(−
∑NC

i=1 log p(g
i)∑NC

i=1 L
i

) (6.3)

where the likelihood is evaluated as

p(gm|hm, α, β) = Γ (
∑

i αi)∏
i Γ (αi)

k∏

i=1

(hmi)
αi−1

Lm∏

j=1

(
k∑

i=1

NG∑

n=1

δgmj ,enh
m
i β

i
n

)
. (6.4)

where δi,j is the Kronecker delta, δi,j = 1 when i = j and 0 otherwise. en is the nth basis

vector.

6.4.3 Comparison to Standard Average Gene Expression Features

Baseline and a Permutation Test for Significance

Here we demonstrate the superiority of our method and its statistical significance in two

ways. First we compared the perplexity of the single-cell RNA seq dataset G under our

model (figure 6.2b, solid blue) against the perplexity of a surrogate dataset with the same

marginal statistics, but whose gene-cell correlations were destroyed (figure 6.2b, dashed blue).

We generated this surrogate dataset by randomly permuting the gene expression levels for

each gene across cells. This permuted dataset had a significantly higher (worse) perplexity

than the true single-cell dataset. This demonstrates that our model trained to un-mix the

ISH-derived spatial point processes discovered cell-types whose gene expression profiles are

significantly better match to single-cells than by chance.

136

Gad1

Sp8

Tox3

Nkx2-1

Lhx6

Pax6

Dlx5

Arx

Dlx2

Dlx1

Elavl2

Sp9

Tbr1

Foxp2

Tshz2

Stat4

Ascl1

Cux2

Neurod1

Mef2c

O
lig
od
en
dr
oc
yt
es

In
te
rn
eu
ro
ns

S1
P
yr
am

id
al

A
st
ro
cy
te
s

E
pe
nd
ym

al

M
ic
ro
gl
ia

E
nd
ot
he
lia
l

M
ur
al

Ptrf

Cldn5

Maf

Hcls1

Spi1

Myb

Fhl1

Aldoc

Sall3

Sox21

Mbp

Etv6

Sox10

St18

Olig2

O
lig
od
en
dr
oc
yt
es

In
te
rn
eu
ro
ns

S1
Pa
ra
m
id
al

A
st
ro
cy
te
s

E
pe
nd
ym

al

M
ic
ro
gl
ia

E
nd
ot
he
lia
l

M
ur
al

Figure 6.3: Estimated memberships β on marker genes for 8 cell types. These marker genes
are used to label the columns of the membership matrix.

We also compared the predictions of cell-type gene expression profiles derived by un-mixing

our spatial point process features against gene expression profiles derived by un-mixing the

more standard 250µm × 250µm × 250µm averaged gene expression level features. We see

a very large improvement in perplexity by switching from the standard simple averaging

of gene expression, to extracting spatial point process features (figure 6.2b). The single-

cell RNA seq dataset analysis from figure 6.2b shows that the perplexity of our recovered

cell-types rapidly flattens after we recover approximately 10 clusters (K = 10).

137

Olig
od

en
dr

oc
yt
es

In
te
rn

eu
ro
ns

S1
Py

ra
m
di
al

Astr
oc

yt
es

Ep
en

dy
m
al

M
icr

og
lia

En
do

th
eli

al

M
ur

al
2

3

4

5

6

7

8

9

Axis 1

Axis 2

(a) Cell diameter in principal axes

0

50

100

150

Olig
od

en
dr

oc
yt
es

In
te
rn

eu
ro
ns

S1
Py

ra
m
di
al

Astr
oc

yt
es

Ep
en

dy
m
al

M
icr

og
lia

En
do

th
eli

al

M
ur

al

(b) Orientation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Olig
od

en
dr

oc
yt
es

In
te
rn

eu
ro
ns

S1
Py

ra
m
di
al

Astr
oc

yt
es

Ep
en

dy
m
al

M
icr

og
lia

En
do

th
eli

al

M
ur

al

(c) Intensity

0

10

20

30

40

50

Olig
od

en
dr

oc
yt
es

In
te
rn

eu
ro
ns

S1
Py

ra
m
di
al

Astr
oc

yt
es

Ep
en

dy
m
al

M
icr

og
lia

En
do

th
eli

al

M
ur

al

(d) Cells in 100µm radius

Figure 6.4: Figure of 5% and 95% percentile estimated cell features for 8 cell types we
detected. Inference is performed on the Spatial point process histograms data we estimated.

6.4.4 A Brief Analysis of Recovered Cell Types in Somatosensory

Cortex

In this section we describe the representative spatial point process statistics and gene ex-

pressions for 8 cell-types we recovered. We attempted to align our 8 clusters to cell-types

defined by [168] in the single-cell RNA sequencing paper. We found high overlap in the gene

expression profiles for all 8 clusters with known cell-types defined in [168], Interneurons, S1

138

Pyramidal, Mural, Endothelial, Microglia, Ependymal, Astrocytes and Oligodendrocytes, in

Figure 6.3.

The estimate of β was combined with MLE to infer the cell-type specific spatial point process

representation hml . In examining the spatial point process distributions that we predict for

each of these cell types, we discover that while the distribution of cell body orientations is

quite broad and similar across cell types, the cell count distribution, which is a measure

of cell density, varies in a systematic way from one cell type to another. Fig 6.4d shows

that inhibitory Interneurons are less dense than S1Pyramidal neurons. This is consistent

with their known prevalence, roughly 20% of all neurons are GABAergic interneurons [118],

while the remaining 80% are excitatory glutamatergic pyramidal neurons. As expected, this

excitatory neuronal category of S1Pyramidal is the most common and hence most dense

class of neuronal cells. They also have slightly larger cell bodies, compared to interneurons,

as can be seen in Fig 6.4a. The remaining 6 cell types correspond to various glial sub-types.

6.5 Conclusion

We developed a computational method for discovering cell types in a brain region by an-

alyzing the high-resolution in situ hybridization image series from the Allen Brain Atlas.

Under the assumption that cell types have unique spatial distributions and gene expression

profiles, we used a varied latent Dirichlet allocation (vLDA) based on spatial point process

process mixture model to simultaneously infer the cell feature spatial distribution and gene

expression profiles of cell types. By comparing our gene expression profile predictions to a

single-cell RNA sequencing dataset, we demonstrated that our model improves significantly

on state of the art.

139

The accuracy of our method relies heavily on the assumption that cell-types differ in their

spatial distribution, and that our point process features perform a good job of distinguishing

these differences. Thus the performance of our method can be improved by better estimates

of better features. We would expect our method to perform better for large brain areas,

which can be more accurately aligned, and which have more cells to estimate point process

features.

There are several modifications to our vLDA model which might improve the faithfulness

of our generative model to the biology. We place a symmetric Dirichlet prior over cell-type

multinomial distribution hm for a given histogram bin m. This assumes that the number of

cell-types expressing each gene is the same for all genes. But since some genes are expressed

more commonly and non-specifically than others, we might expect a gene-specific prior to

be a better model. Further, the symmetric Dirichlet assumes that all cell-types have equal

proportions of cells. But evidence suggests that excitatory neurons are more common than

inhibitory neurons in cortex [76], and using a non-uniform Dirichlet prior could account for

this.

140

Chapter 7

Conclusion and Outlook

7.1 Conclusion

Now that we are at the end of the dissertation, we are convinced that spectral methods

including tensor decomposition are good candidates for unsupervised learning. They re-

veal hidden structure using transformations and extract useful and clean information to

characterize the complicated data. Spectral methods are proved to be potential in various

application. For instance, text and image processing, social networks, healthcare analytics

and neuroscience.

Spectral methods especially matrix/tensor decomposition framework is versatile. They are

straightforward to apply to flat models, such as exchangeable model, multi-view model,

and hidden Markov model, but they are also amendable to learn models with a hierarchy

such as a mixture of trees and latent tree model. Spectral methods not only perform well

on traditional multiplicative sparse coding models but also outperforms the state-of-the-art

on models with group invariance. The tensor decomposition framework is efficient and is

guaranteed to converge to global optima.

141

7.2 Outlook

Now the question is what is beyond? Could we further push the boundaries of spectral meth-

ods? Can we have a tensor library with optimal hardware support for tensor operations? In

the region of high dimensional hidden space, could we develop approximated algorithms that

are computational more efficient? Could we have tensor sketching where the decomposition

happens in a sketching vector space, and the tensor is never explicitly formed? Furthermore,

could we use tensor decomposition to train models with other invariances (such as rotation

invariance and scaling invariance) or general invariance constraints?

In the real world, we could push our framework further for more challenging tasks. In

neuroscience, we would like to understand the brain; that is to systematically model and

learn brain neural system and sort out its relationship to body functions. We know that

deep neural network system inspired by the architecture of neural circuits have been hugely

successful empirically. Could we utilize the neural network techniques to foster understanding

of the brain neural circuits? Or could we use our knowledge of the brain neural circuits to

understand fundamental reasons for a certain structure of a deep neural network system in

machine learning? Even in healthcare analytics, simple usage of the co-occurrence of diseases

is not as informative as considering other factors such as symptoms. With more information,

the model gets more complicated, but we hope to achieve personalized identification of

diseases or curing plans.

Overall, there are numerous exciting open problems ahead. Graduation is not an end; rather

it is a fresh start. I am looking forward to the uncertainty of the future career. Keep curious

and continue exploring. May the world be more intelligent!

142

Bibliography

[1] Website: 2014 allen institute for brain science. allen mouse brain atlas [internet]. Avail-
able from: http://mouse.brain-map.org/. Accessed: 2014-11-06.

[2] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning Sparsely
Used Overcomplete Dictionaries. In Conference on Learning Theory (COLT), June
2014.

[3] A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence rates of
gradient methods for high-dimensional statistical recovery. In Advances in Neural
Information Processing Systems, pages 37–45, 2010.

[4] A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming.
Information Theory, IEEE Transactions on, 60(3):1711–1732, 2014.

[5] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9:1981–2014, June 2008.

[6] A. Anandkumar, K. Chaudhuri, D. Hsu, S. M. Kakade, L. Song, and T. Zhang.
Spectral methods for learning multivariate latent tree structure. arXiv preprint
arXiv:1107.1283, 2011.

[7] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y.-K. Liu. Two svds suffice:
Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation.
CoRR, abs/1204.6703, 1, 2012.

[8] A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to
Learning Mixed Membership Community Models. In Conference on Learning Theory
(COLT), June 2013.

[9] A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to
Learning Mixed Membership Community Models. ArXiv 1302.2684, Feb. 2013.

[10] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decomposi-
tions for latent variable models, 2012.

[11] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decomposi-
tions for learning latent variable models. arXiv preprint arXiv:1210.7559, 2012.

143

http://mouse.brain-map.org/

[12] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decomposi-
tions for learning latent variable models. The Journal of Machine Learning Research,
15(1):2773–2832, 2014.

[13] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decom-
positions for learning latent variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

[14] A. Anandkumar, R. Ge, and M. Janzamin. Learning overcomplete latent variable
models through tensor methods. In Conference on Learning Theory (COLT), June
2015.

[15] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models
and hidden markov models. arXiv preprint arXiv:1203.0683, 2012.

[16] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional struc-
ture learning of Ising models: local separation criterion. The Annals of Statistics,
40(3):1346–1375, 2012.

[17] A. Anandkumar, R. Valluvan, et al. Learning loopy graphical models with latent
variables: Efficient methods and guarantees. The Annals of Statistics, 41(2):401–435,
2013.

[18] R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimization for pca
and pls. In Communication, Control, and Computing (Allerton), 2012 50th Annual
Allerton Conference on, pages 861–868, 2012.

[19] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcom-
plete dictionaries. In Conference on Learning Theory (COLT), June 2014.

[20] S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown gaussian
noise, with implications for gaussian mixtures and autoencoders. In Advances in Neural
Information Processing Systems, pages 2375–2383, 2012.

[21] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathemat-
ical Journal, Second Series, 19(3):357–367, 1967.

[22] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[23] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5. Available online,
January 2012.

[24] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the mini-
mum spanning forest of sparse graphs. Journal of Parallel and Distributed Computing,
66(11):1366–1378, 2006.

[25] G. Ballard, T. Kolda, and T. Plantenga. Efficiently computing tensor eigenvalues on
a gpu. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1340–1348. IEEE, 2011.

144

[26] A. Banerjee and J. Langford. An objective evaluation criterion for clustering. In Pro-
ceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 515–520. ACM, 2004.

[27] D. Belanger and S. Kakade. A linear dynamical system model for text. arXiv preprint
arXiv:1502.04081, 2015.

[28] Y. Bengio. Learning deep architectures for AI. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[29] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural probabilistic
language models. In Innovations in Machine Learning, pages 137–186. Springer, 2006.

[30] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varadhan. Svdlibc version 1.4.
Available online, 2002.

[31] D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
2012.

[32] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[33] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 391–398.
IEEE, 2013.

[34] H. Bristow and S. Lucey. Optimization methods for convolutional sparse coding. arXiv
preprint arXiv:1406.2407, 2014.

[35] J.-F. Cardoso. Source separation using higher order moments. In Acoustics, Speech,
and Signal Processing, pages 2109–2112. IEEE, 1989.

[36] J.-F. Cardoso. Super-symmetric decomposition of the fourth-order cumulant tensor.
blind identification of more sources than sensors. In Acoustics, Speech, and Signal
Processing, 1991. ICASSP-91., 1991 International Conference on, pages 3109–3112.
IEEE, 1991.

[37] R. B. Cattell. parallel proportional profiles and other principles for determining the
choice of factors by rotation. Psychometrika, 9(4):267–283, 1944.

[38] J. T. Chang. Full reconstruction of markov models on evolutionary trees: identifiability
and consistency. Mathematical biosciences, 137(1):51–73, 1996.

[39] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs. arXiv preprint
arXiv:1210.3335, 2012.

[40] M. Choi, A. Torralba, and A. Willsky. Context models and out-of-context objects.
Pattern Recognition Letters, 2012.

145

[41] M. J. Choi, V. Y. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree
graphical models. The Journal of Machine Learning Research, 12:1771–1812, 2011.

[42] M. J. Choi, A. Torralba, and A. S. Willsky. Context models and out-of-context objects.
Pattern Recognition Letters, 33(7):853–862, 2012.

[43] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surface
of multilayer networks. arXiv:1412.0233, 2014.

[44] S. Choudhary and U. Mitra. Sparse blind deconvolution: What cannot be done. In
Information Theory (ISIT), 2014 IEEE International Symposium on, pages 3002–3006.
IEEE, 2014.

[45] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input
sparsity time. CoRR, abs/1207.6365, 2012.

[46] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the 45th annual ACM symposium on Symposium on
theory of computing, pages 81–90. ACM, 2013.

[47] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM, 2008.

[48] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
language processing (almost) from scratch. The Journal of Machine Learning Research,
12:2493–2537, 2011.

[49] P. Comon. Tensor decompositions. Mathematics in Signal Processing V, pages 1–24,
2002.

[50] P. Comon, X. Luciani, and A. L. De Almeida. Tensor decompositions, alternating least
squares and other tales. Journal of Chemometrics, 23(7-8):393–405, 2009.

[51] P. G. Constantine and D. F. Gleich. Tall and skinny qr factorizations in mapreduce
architectures. In Proceedings of the Second International Workshop on MapReduce and
its Applications, pages 43–50. ACM, 2011.

[52] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[53] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In Advances in Neural Information Processing Systems, pages 2933–2941,
2014.

[54] J. Denny, M. Ritchie, M. Basford, J. Pulley, L. Bastarache, K. Brown-Gentry, D. Wang,
D. Masys, R. DM, and D. Crawford. Phewas: demonstrating the feasibility of a
phenome-wide scan to discover genedisease associations. Bioinformatics, 26(9):1205–
1210, 2010.

146

[55] B. Dolan, C. Quirk, and C. Brockett. Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources. In Proceedings of the 20th inter-
national conference on Computational Linguistics, page 350. Association for Compu-
tational Linguistics, 2004.

[56] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1999.

[57] M. G. Eberle and M. C. Maciel. Finding the closest toeplitz matrix. Computational &
Applied Mathematics, 22(1):1–18, 2003.

[58] C. Ekanadham, D. Tranchina, and E. P. Simoncelli. A blind sparse deconvolution
method for neural spike identification. In Advances in Neural Information Processing
Systems, pages 1440–1448, 2011.

[59] P. L. Erdos, M. A. Steel, L. A. Székely, and T. J. Warnow. A few logs suffice to build
(almost) all trees (i). Random Structures and Algorithms, 14(2):153–184, 1999.

[60] B. Fadem. High-yield behavioral science. LWW, 2012.

[61] A. Falanga, M. Marchetti, A. Vignoli, and D. Balducci. Clotting mechanisms and
cancer: implications in thrombus formation and tumor progression. Clinical advances
in hematology & oncology: H&O, 1(11):673–678, 2003.

[62] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca and projective clustering. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1434–1453.
SIAM, 2013.

[63] A. Frieze, M. Jerrum, and R. Kannan. Learning linear transformations. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 359–359, 1996.

[64] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points — online stochastic
gradient for tensor decomposition. In Proc. of Conf. on Learning Theory, June 2015.

[65] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms.
Journal of parallel and distributed computing, 22(2):251–267, 1994.

[66] A. Gittens and M. W. Mahoney. Revisiting the nystrom method for improved large-
scale machine learning. arXiv preprint arXiv:1303.1849, 2013.

[67] A. Gittens and M. W. Mahoney. Revisiting the nystrom method for improved large-
scale machine learning. CoRR, abs/1303.1849, 2013.

[68] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[69] G. H. Golub and C. F. Van Loan. Matrix computations. 4th ed. Baltimore, MD: The
Johns Hopkins University Press, 4th ed. edition, 2013.

147

[70] P. Gopalan, D. Mimno, S. Gerrish, M. Freedman, and D. Blei. Scalable inference of
overlapping communities. In Advances in Neural Information Processing Systems 25,
pages 2258–2266, 2012.

[71] P. K. Gopalan and D. M. Blei. Efficient discovery of overlapping communities in
massive networks. Proceedings of the National Academy of Sciences, 110(36):14534–
14539, 2013.

[72] P. Grange, J. W. Bohland, B. W. Okaty, K. Sugino, H. Bokil, S. B. Nelson, L. Ng,
M. Hawrylycz, and P. P. Mitra. Cell-type–based model explaining coexpression
patterns of genes in the brain. Proceedings of the National Academy of Sciences,
111(14):5397–5402, 2014.

[73] R. M. Gray. Toeplitz and circulant matrices: A review. Communications and Infor-
mation Theory, 2(3):155–239, 2005.

[74] U. C. S. W. Group et al. United states cancer statistics: 1999–2010 incidence and
mortality web-based report. Atlanta (GA): Department of Health and Human Services,
Centers for Disease Control and Prevention, and National Cancer Institute, 2014.

[75] M. A. Hanson. Invexity and the kuhn–tucker theorem. Journal of mathematical anal-
ysis and applications, 236(2):594–604, 1999.

[76] K. D. Harris and T. D. Mrsic-Flogel. Cortical connectivity and sensory coding. Nature,
503(7474):51–58, 2013.

[77] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics,
16(1):84, 1970.

[78] S. Hassan. Measuring semantic relatedness using salient encyclopedic concepts. Uni-
versity of North Texas, 2011.

[79] M. Hawrylycz, L. Ng, D. Page, J. Morris, C. Lau, S. Faber, V. Faber, S. Sunkin,
V. Menon, E. Lein, et al. Multi-scale correlation structure of gene expression in the
brain. Neural Networks, 24(9):933–942, 2011.

[80] D. Hsu and S. M. Kakade. Learning mixtures of spherical gaussians: moment methods
and spectral decompositions. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, pages 11–20. ACM, 2013.

[81] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

[82] F. Huang and A. Anandkumar. Convolutional dictionary learning through tensor
factorization. In Proceedings of The 1st International Workshop on Feature Extraction:
Modern Questions and Challenges NIPS, pages 116–129, 2015.

148

[83] F. Huang, A. Anandkumar, C. Borgs, J. Chayes, E. Fraenkel, M. Hawrylycz, E. Lein,
A. Ingrosso, and S. Turaga. Discovering neuronal cell types and their gene expression
profiles using a spatial point process mixture model. arXiv preprint arXiv:1602.01889,
2016.

[84] F. Huang, S. Matusevych, A. Anandkumar, N. Karampatziakis, and P. Mineiro. Dis-
tributed latent dirichlet allocation via tensor factorization. In NIPS Optimization
Workshop, 2014.

[85] F. Huang, N. U. N, M. U. Hakeem, P. Verma, and A. Anandkumar. Fast detection of
overlapping communities via online tensor methods on gpus. CoRR, abs/1309.0787,
2013.

[86] F. Huang, U. Niranjan, M. Hakeem, and A. Anandkumar. Online tensor methods for
learning latent variable models, 2014.

[87] F. Huang, U. Niranjan, M. U. Hakeem, and A. Anandkumar. Fast detection of over-
lapping communities via online tensor methods. arXiv:1309.0787, 2013.

[88] F. Huang, I. Perros, R. Chen, J. Sun, A. Anandkumar, et al. Scalable latent tree model
and its application to health analytics. arXiv preprint arXiv:1406.4566, 2014.

[89] A. Hyvarinen. Fast ICA for noisy data using gaussian moments. In Circuits and
Systems, volume 5, pages 57–61, 1999.

[90] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46.
John Wiley & Sons, 2004.

[91] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46.
John Wiley & Sons, 2004.

[92] M. Inoue, H. Park, and M. Okada. On-line learning theory of soft committee machines
with correlated hidden units–steepest gradient descent and natural gradient descent–.
Journal of the Physical Society of Japan, 72(4):805–810, 2003.

[93] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating
minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 665–674, 2013.

[94] J. JáJá. An introduction to parallel algorithms. Addison Wesley Longman Publishing
Co., Inc., 1992.

[95] C. Ji, D. Merl, T. B. Kepler, and M. West. Spatial mixture modelling for unobserved
point processes: Examples in immunofluorescence histology. Bayesian analysis (On-
line), 4(2):297, 2009.

[96] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of computer and system sciences, 37(1):79–100, 1988.

149

[97] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[98] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network
for modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA,
Volume 1: Long Papers, pages 655–665. The Association for Computer Linguistics,
2014.

[99] R. Kannan, S. S. Vempala, and D. P. Woodruff. Principal component analysis and
higher correlations for distributed data. In Proceedings of The 27th Conference on
Learning Theory, pages 1040–1057, 2014.

[100] B. Karrer and M. E. Newman. Stochastic blockmodels and community structure in
networks. Physical Review E, 83(1):016107, 2011.

[101] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. L. Cun.
Learning convolutional feature hierarchies for visual recognition. In Advances in neural
information processing systems, pages 1090–1098, 2010.

[102] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[103] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fi-
dler. Skip-thought vectors. In Advances in Neural Information Processing Systems,
pages 3276–3284, 2015.

[104] K. C. Kiwiel. Convergence and efficiency of subgradient methods for quasiconvex
minimization. Mathematical programming, 90(1):1–25, 2001.

[105] T. G. Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis
and Applications, 23(1):243–255, 2001.

[106] R. Kondor. Group theoretical methods in machine learning. Columbia University,
2008.

[107] A. Kottas and B. Sansó. Bayesian mixture modeling for spatial poisson process inten-
sities, with applications to extreme value analysis. Journal of Statistical Planning and
Inference, 137(10):3151–3163, 2007.

[108] A. Krishnamurthy, S. Balakrishnan, M. Xu, and A. Singh. Efficient active algorithms
for hierarchical clustering. arXiv preprint arXiv:1206.4672, 2012.

[109] D. Krishnan, J. Bruna, and R. Fergus. Blind deconvolution with non-local sparsity
reweighting. arXiv preprint arXiv:1311.4029, 2013.

[110] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Ma-
chine Learning, 5(2-3):123–286, 2012.

150

[111] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Applications of Mathematics Series. Springer, 2003.

[112] A. Lancichinetti and S. Fortunato. Community detection algorithms: a comparative
analysis. Physical review E, 80(5):056117, 2009.

[113] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and hierarchi-
cal community structure in complex networks. New Journal of Physics, 11(3):033015,
2009.

[114] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.
arXiv preprint arXiv:1405.4053, 2014.

[115] E. S. Lein, M. J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger, A. Bernard, A. F.
Boe, M. S. Boguski, K. S. Brockway, E. J. Byrnes, et al. Genome-wide atlas of gene
expression in the adult mouse brain. Nature, 445(7124):168–176, 2007.

[116] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating
blind deconvolution algorithms. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1964–1971. IEEE, 2009.

[117] O. L. Mangasarian. Pseudo-convex functions. Journal of the Society for Industrial &
Applied Mathematics, Series A: Control, 3(2):281–290, 1965.

[118] H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu.
Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 5(10):793–807,
Oct. 2004.

[119] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, pages 415–444, 2001.

[120] F. McSherry. Spectral partitioning of random graphs. In FOCS, 2001.

[121] N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection
with the lasso. Annals of Statistics, 34(3):1436–1462, 2006.

[122] Michael. Boruvka algorithm parallel implementation cuda, December 2012.

[123] R. Mihalcea, C. Corley, and C. Strapparava. Corpus-based and knowledge-based mea-
sures of text semantic similarity. In AAAI, volume 6, pages 775–780, 2006.

[124] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[125] J. Mitchell and M. Lapata. Composition in distributional models of semantics. Cog-
nitive science, 34(8):1388–1429, 2010.

[126] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
Neural Information Processing Systems, pages 1257–1264, 2007.

151

[127] E. Mossel. Distorted metrics on trees and phylogenetic forests. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics (TCBB), 4(1):108–116, 2007.

[128] E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden markov models.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 366–375. ACM, 2005.

[129] T. Nepusz, A. Petróczi, L. Négyessy, and F. Bazsó. Fuzzy communities and the concept
of bridgeness in complex networks. Physical Review E, 77(1):016107, 2008.

[130] E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications, 106(1):69–84, 1985.

[131] B. A. Olshausen. Sparse codes and spikes. Probabilistic models of the brain: Perception
and neural function, pages 257–272, 2002.

[132] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision research, 37(23):3311–3325, 1997.

[133] A. V. Oppenheim and A. S. Willsky. Signals and systems. Prentice-Hall, 1997.

[134] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1988.

[135] K. Pearson. Contributions to the mathematical theory of evolution. Philosophical
Transactions of the Royal Society of London. A, 185:71–110, 1894.

[136] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pages 1532–1543, 2014.

[137] C. Quirk, C. Brockett, and W. B. Dolan. Monolingual machine translation for para-
phrase generation. In EMNLP, pages 142–149, 2004.

[138] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. In ICML, pages 449–456, 2012.

[139] M. Rattray, D. Saad, and S.-i. Amari. Natural gradient descent for on-line learning.
Physical review letters, 81(24):5461, 1998.

[140] D. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical Bio-
sciences, 53(1):131–147, 1981.

[141] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5, 1988.

[142] V. Rus, P. M. McCarthy, M. C. Lintean, D. S. McNamara, and A. C. Graesser. Para-
phrase identification with lexico-syntactic graph subsumption. In FLAIRS conference,
pages 201–206, 2008.

152

[143] D. Saad and S. A. Solla. On-line learning in soft committee machines. Physical Review
E, 52(4):4225, 1995.

[144] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In Proceedings of the 25th International Conference on
Machine learning, pages 880–887. ACM, 2008.

[145] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. arXiv:1312.6120, 2013.

[146] M. D. Schatz, T. M. Low, R. A. van de Geijn, and T. G. Kolda. Exploiting symmetry
in tensors for high performance. arXiv preprint arXiv:1301.7744, 2013.

[147] S. Shalev-Shwartz, O. Shamir, K. Sridharan, and N. Srebro. Stochastic convex opti-
mization. In Proceedings of The 22nd Conference on Learning Theory, 2009.

[148] A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proceed-
ings of the VLDB Endowment, 3(1-2):703–710, 2010.

[149] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural
language with recursive neural networks. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 129–136, 2011.

[150] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the conference on empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer, 2013.

[151] R. R. Sokal and F. J. Rohlf. The comparison of dendrograms by objective methods.
Taxon, 11(2):33–40, 1962.

[152] J. Soman and A. Narang. Fast community detection algorithm with gpus and multicore
architectures. In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 568–579. IEEE, 2011.

[153] K. Strimmer. fdrtool: a versatile r package for estimating local and tail area-based
false discovery rates. Bioinformatics, 24(12):1461–1462, 2008.

[154] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075,
2015.

[155] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A. Porter. Comparing community
structure to characteristics in online collegiate social networks. SIAM Review, in press
(arXiv:0809.0960), 2010.

[156] V. Vineet, P. Harish, S. Patidar, and P. Narayanan. Fast minimum spanning tree
for large graphs on the gpu. In Proceedings of the Conference on High Performance
Graphics 2009, pages 167–171. ACM, 2009.

153

[157] F. Wang and Y. Li. Beyond physical connections: Tree models in human pose estima-
tion. In Proc. of CVPR, 2013.

[158] S. Wang and C. D. Manning. Baselines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume 2, pages 90–94. Association for
Computational Linguistics, 2012.

[159] Y. Wang, H.-Y. Tung, A. Smola, and A. Anandkumar. Fast and guaranteed tensor
decomposition via sketching. In Proc. of NIPS, 2015.

[160] J. Wei, W. Dai, A. Kumar, X. Zheng, Q. Ho, and E. P. Xing. Consistent Bounded-
Asynchronous Parameter Servers for Distributed ML. ArXiv e-prints, Dec. 2013.

[161] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

[162] A. Wiki. Paraphrase identification (state of the art), 2014.

[163] D. Wipf and H. Zhang. Revisiting bayesian blind deconvolution. arXiv preprint
arXiv:1305.2362, 2013.

[164] S. J. Wright and J. Nocedal. Numerical optimization, volume 2. Springer New York,
1999.

[165] J. Yang and J. Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Se-
mantics, page 3. ACM, 2012.

[166] M. Yu and M. Dredze. Learning composition models for phrase embeddings. Trans-
actions of the Association for Computational Linguistics, 3:227–242, 2015.

[167] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
2528–2535. IEEE, 2010.

[168] A. Zeisel, A. B. Muñoz-Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno,
A. Juréus, S. Marques, H. Munguba, L. He, C. Betsholtz, et al. Cell types in the mouse
cortex and hippocampus revealed by single-cell rna-seq. Science, 347(6226):1138–1142,
2015.

[169] Y. Zhang and D.-Y. Yeung. Overlapping community detection via bounded nonnega-
tive matrix tri-factorization. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 606–614, New
York, NY, USA, 2012. ACM.

[170] H. Zhao, Z. Lu, and P. Poupart. Self-adaptive hierarchical sentence model. arXiv
preprint arXiv:1504.05070, 2015.

154

[171] J. Y. Zou, D. Hsu, D. C. Parkes, and R. P. Adams. Contrastive learning using spectral
methods. In Advances in Neural Information Processing Systems, pages 2238–2246,
2013.

155

Appendix A

Appendix for Online Stochastic

Gradient for Tensor Decomposition

A.1 Detailed Analysis for Section 2.2 in Unconstrained

Case

In this section we give detailed analysis for noisy gradient descent, under the assumption

that the unconstrained problem satisfies (α, γ, ǫ, δ)-strict saddle property.

The algorithm we investigate in Algorithm 1, we can combine the randomness in the stochas-

tic gradient oracle and the artificial noise, and rewrite the update equation in form:

wt = wt−1 − η(∇f(wt−1) + ξt−1) (A.1)

where η is step size, ξ = SG(wt−1) − ∇f(wt−1) + n (recall n is a random vector on unit

sphere) is the combination of two source of noise.

156

By assumption, we know ξ’s are independent and they satisfying Eξ = 0, ‖ξ‖ ≤ Q+ 1. Due

to the explicitly added noise in Algorithm 1, we further have EξξT ≻ 1
d
I. For simplicity,

we assume EξξT = σ2I, for some constant σ = Θ̃(1), then the algorithm we are running

is exactly the same as Stochastic Gradient Descent (SGD). Our proof can be very easily

extended to the case when 1
d
I � E[ξξT] � (Q + 1

d
)I because both the upper and lower

bounds are Θ̃(1).

We first restate the main theorem in the context of stochastic gradient descent.

Theorem A.1 (Main Theorem). Suppose a function f(w) : Rd → R that is (α, γ, ǫ, δ)-

strict saddle, and has a stochastic gradient oracle where the noise satisfy EξξT = σ2I.

Further, suppose the function is bounded by |f(w)| ≤ B, is β-smooth and has ρ-Lipschitz

Hessian. Then there exists a threshold ηmax = Θ̃(1), so that for any ζ > 0, and for any

η ≤ ηmax/max{1, log(1/ζ)}, with probability at least 1− ζ in t = Õ(η−2 log(1/ζ)) iterations,

SGD outputs a point wt that is Õ(
√
η log(1/ηζ))-close to some local minimum w⋆.

Recall that Õ(·) (Ω̃, Θ̃) hides the factor that has polynomial dependence on all other parame-

ters, but is independent of η and ζ . So it focuses on the dependency on η and ζ . Throughout

the proof, we interchangeably use both H(w) and ∇2f(w) to represent the Hessian matrix

of f(w).

As we discussed in the proof sketch in Section 2.2, we analyze the behavior of the algorithm

in three different cases. The first case is when the gradient is large.

Lemma A.1. Under the assumptions of Theorem A.1, for any point with ‖∇f(w0)‖ ≥
√

2ησ2βd where
√

2ησ2βd < ǫ, after one iteration we have:

Ef(w1)− f(w0) ≤ −Ω̃(η2) (A.2)

157

Proof. Our assumption can guarantee ηmax <
1
β
, then by update equation Eq.(A.1), we have:

Ef(w1)− f(w0) ≤ ∇f(w0)
T
E(w1 − w0) +

β

2
E‖w1 − w0‖2

= ∇f(w0)
T
E (−η(∇f(w0) + ξ0)) +

β

2
E ‖−η(∇f(w0) + ξ0)‖2

= −(η − βη2

2
)‖∇f(w0)‖2 +

η2σ2βd

2

≤ −η
2
‖∇f(w0)‖2 +

η2σ2βd

2
≤ −η

2σ2βd

2
(A.3)

which finishes the proof.

Lemma A.2. Under the assumptions of Theorem A.1, for any initial point w0 that is

Õ(
√
η) < δ close to a local minimum w⋆, with probability at least 1 − ζ/2, we have fol-

lowing holds simultaneously:

∀t ≤ Õ(
1

η2
log

1

ζ
), ‖wt − w⋆‖ ≤ Õ(

√
η log

1

ηζ
) < δ (A.4)

where w⋆ is the locally optimal point.

Proof. We shall construct a supermartingale and use Azuma’s inequality [21] to prove this

result.

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the

sigma field. Let event Et = {∀τ ≤ t, ‖wτ − w⋆‖ ≤ µ
√
η log 1

ηζ
< δ}, where µ is independent

of (η, ζ), and will be specified later. To ensure the correctness of proof, Õ notation in this

proof will never hide any dependence on µ. Clearly there’s always a small enough choice of

ηmax = Θ̃(1) to make µ
√
η log 1

ηζ
< δ holds as long as η ≤ ηmax/max{1, log(1/ζ)}. Also note

Et ⊂ Et−1, that is 1Et ≤ 1Et−1.

158

By Definition 2.3 of (α, γ, ǫ, δ)-strict saddle, we know f is locally α-strongly convex in the

2δ-neighborhood of w⋆. Since ∇f(w⋆) = 0, we have

∇f(wt)
T (wt − w⋆)1Et ≥ α‖wt − w⋆‖21Et (A.5)

Furthermore, with ηmax <
α
β2 , using β-smoothness, we have:

E[‖wt − w⋆‖21Et−1 |Ft−1] =E[‖wt−1 − η(∇f(wt−1) + ξt−1)− w⋆‖2|Ft−1]1Et−1

=
[
‖wt−1 − w⋆‖2 − 2η∇f(wt−1)

T (wt−1 − w⋆)

+η2‖∇f(wt−1)‖2 + η2dσ2
]
1Et−1

≤[(1− 2ηα + η2β2)‖wt−1 − w⋆‖2 + η2dσ2]1Et−1

≤[(1− ηα)‖wt−1 − w⋆‖2 + η2dσ2]1Et−1 (A.6)

Therefore, we have:

[
E[‖wt − w⋆‖2|Ft−1]−

ηdσ2

α

]
1Et−1 ≤ (1− ηα)

[
‖wt−1 − w⋆‖2 − ηdσ2

α

]
1Et−1 (A.7)

Then, let Gt = max{(1− ηα)−t(‖wt − w⋆‖2 − ηdσ2

α
), 0}, we have:

E[Gt1Et−1|Ft−1] ≤ Gt−11Et−1 ≤ Gt−11Et−2 (A.8)

which means Gt1Et−1 is a supermartingale.

159

Therefore, with probability 1, we have:

|Gt1Et−1 − E[Gt1Et−1|Ft−1]|

≤(1− ηα)−t[‖wt−1 − η∇f(wt−1)− w⋆‖ · η‖ξt−1‖+ η2‖ξt−1‖2 + η2dσ2]1Et−1

≤(1− ηα)−t · Õ(µη1.5 log 1
2
1

ηζ
) = dt (A.9)

Let

ct =

√√√√
t∑

τ=1

d2τ = Õ(µη1.5 log
1
2
1

ηζ
)

√√√√
t∑

τ=1

(1− ηα)−2τ (A.10)

By Azuma’s inequality, with probability less than Õ(η3ζ), we have:

Gt1Et−1 > Õ(1)ct log
1
2 (

1

ηζ
) +G0 (A.11)

We know Gt > Õ(1)ct log
1
2 (1

ηζ
) +G0 is equivalent to:

‖wt − w⋆‖2 > Õ(η) + Õ(1)(1− ηα)tct log
1
2 (

1

ηζ
) (A.12)

We know:

(1− ηα)tct log
1
2 (

1

ηζ
) = µ · Õ(η1.5 log 1

ηζ
)

√√√√
t∑

τ=1

(1− ηα)2(t−τ)

=µ · Õ(η1.5 log 1

ηζ
)

√√√√
t−1∑

τ=0

(1− ηα)2τ ≤ µ · Õ(η1.5 log 1

ηζ
)

√
1

1− (1− ηα)2

= µ · Õ(η log 1

ηζ
) (A.13)

160

This means Azuma’s inequality implies, there exist some C̃ = Õ(1) so that:

P

(
Et−1 ∩

{
‖wt − w⋆‖2 > µ · C̃η log 1

ηζ
)

})
≤ Õ(η3ζ) (A.14)

By choosing µ > C̃, this is equivalent to:

P

(
Et−1 ∩

{
‖wt − w⋆‖2 > µ2η log

1

ηζ

})
≤ Õ(η3ζ) (A.15)

Then we have:

P (Et) = P

(
Et−1 ∩

{
‖wt − w⋆‖ > µ

√
η log

1

ηζ

})
+ P (Et−1) ≤ Õ(η3ζ) + P (Et−1)

(A.16)

By initialization conditions, we know P (E0) = 0, and thus P (Et) ≤ tÕ(η3ζ). Take t =

Õ(1
η2
log 1

ζ
), we have P (Et) ≤ Õ(ηζ log 1

ζ
). When ηmax = Õ(1) is chosen small enough, and

η ≤ ηmax/ log(1/ζ), this finishes the proof.

Lemma A.3. Under the assumptions of Theorem A.1, for any initial point w0 where ‖∇f(w0)‖

≤
√

2ησ2βd < ǫ, and λmin(H(w0)) ≤ −γ, then there is a number of steps T that depends on

w0 such that:

Ef(wT)− f(w0) ≤ −Ω̃(η) (A.17)

The number of steps T has a fixed upper bound Tmax that is independent of w0 where T ≤

Tmax = O((log d)/γη).

Remark. In general, if we relax the assumption EξξT = σ2I to σ2
minI � EξξT � σ2

maxI,

the upper bound Tmax of number of steps required in Lemma A.3 would be increased to

Tmax = O(1
γη
(log d+ log σmax

σmin
))

161

As we described in the proof sketch, the main idea is to consider a coupled update sequence

that correspond to the local second-order approximation of f(x) around w0. We characterize

this sequence of update in the next lemma.

Lemma A.4. Under the assumptions of Theorem A.1. Let f̃ defined as local second-order

approximation of f(x) around w0:

f̃(w)
.
= f(w0) +∇f(w0)

T (w − w0) +
1

2
(w − w0)

TH(w0)(w − w0) (A.18)

{w̃t} be the corresponding sequence generated by running SGD on function f̃ , with w̃0 = w0.

For simplicity, denote H = H(w0) = ∇2f(w0), then we have analytically:

∇f̃(w̃t) = (1− ηH)t∇f(w0)− ηH
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (A.19)

w̃t − w0 = −η
t−1∑

τ=0

(1− ηH)τ∇f(w0)− η
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (A.20)

Furthermore, for any initial point w0 where ‖∇f(w0)‖ ≤ Õ(η) < ǫ, and λmin(H(w0)) = −γ0.

Then, there exist a T ∈ N satisfying:

d

ηγ0
≤

T−1∑

τ=0

(1 + ηγ0)
2τ <

3d

ηγ0
(A.21)

with probability at least 1− Õ(η3), we have following holds simultaneously for all t ≤ T :

‖w̃t − w0‖ ≤ Õ(η
1
2 log

1

η
); ‖∇f̃(w̃t)‖ ≤ Õ(η

1
2 log

1

η
) (A.22)

Proof. Denote H = H(w0), since f̃ is quadratic, clearly we have:

∇f̃(w̃t) = ∇f̃(w̃t−1) +H(w̃t − w̃t−1) (A.23)

162

Substitute the update equation of SGD in Eq.(A.23), we have:

∇f̃(w̃t) = ∇f̃(w̃t−1)− ηH(∇f̃(w̃t−1) + ξt−1)

= (1− ηH)∇f̃(w̃t−1)− ηHξt−1

= (1− ηH)2∇f̃(w̃t−2)− ηHξt−1 − ηH(1− ηH)ξt−2 = · · ·

= (1− ηH)t∇f(w0)− ηH
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (A.24)

Therefore, we have:

w̃t − w0 = −η
t−1∑

τ=0

(∇f̃(w̃τ) + ξτ)

= −η
t−1∑

τ=0

(
(1− ηH)τ∇f(w0)− ηH

τ−1∑

τ ′=0

(1− ηH)τ−τ ′−1ξτ ′ + ξτ

)

= −η
t−1∑

τ=0

(1− ηH)τ∇f(w0)− η
t−1∑

τ=0

(1− ηH)t−τ−1ξτ (A.25)

Next, we prove the existence of T in Eq.(A.21). Since
∑t

τ=0(1 + ηγ0)
2τ is monotonically

increasing w.r.t t, and diverge to infinity as t → ∞. We know there is always some T ∈ N

gives d
ηγ0
≤ ∑T−1

τ=0 (1 + ηγ0)
2τ . Let T be the smallest integer satisfying above equation. By

assumption, we know γ ≤ γ0 ≤ L, and

t+1∑

τ=0

(1 + ηγ0)
2τ = 1 + (1 + ηγ0)

2
t∑

τ=0

(1 + ηγ0)
2τ (A.26)

we can choose ηmax < min{(
√
2− 1)/L, 2d/γ} so that

d

ηγ0
≤

T−1∑

τ=0

(1 + ηγ0)
2τ ≤ 1 +

2d

ηγ0
≤ 3d

ηγ0
(A.27)

163

Finally, by Eq.(A.21), we know T = O(log d/γ0η), and (1 + ηγ0)
T ≤ Õ(1). Also because

Eξ = 0 and ‖ξ‖ ≤ Q = Õ(1) with probability 1, then by Hoeffding inequality, we have for

each dimension i and time t ≤ T :

P

(
|η

t−1∑

τ=0

(1− ηH)t−τ−1ξτ,i| > Õ(η
1
2 log

1

η
)

)
≤ e−Ω̃(log2 1

η
) ≤ Õ(η4) (A.28)

then by summing over dimension d and taking union bound over all t ≤ T , we directly have:

P

(
∀t ≤ T, ‖η

t−1∑

τ=0

(1− ηH)t−τ−1ξτ‖ > Õ(η
1
2 log

1

η
)

)
≤ Õ(η3). (A.29)

Combine this fact with Eq.(A.24) and Eq.(A.25), we finish the proof.

Next we need to prove that the two sequences of updates are always close.

Lemma A.5. Under the assumptions of Theorem A.1. and let {wt} be the corresponding se-

quence generated by running SGD on function f . Also let f̃ and {w̃t} be defined as in Lemma

A.4. Then, for any initial point w0 where ‖∇f(w0)‖ ≤ Õ(η) < ǫ, and λmin(∇2f(w0)) = −γ0.

Given the choice of T as in Eq.(A.21), with probability at least 1− Õ(η2), we have following

holds simultaneously for all t ≤ T :

‖wt − w̃t‖ ≤ Õ(η log2
1

η
); ‖∇f(wt)−∇f̃(w̃t)‖ ≤ Õ(η log2

1

η
) (A.30)

Proof. First, we have update function of gradient by:

∇f(wt) =∇f(wt−1) +

∫ 1

0

H(wt−1 + t(wt − wt−1))dt · (wt − wt−1)

=∇f(wt−1) +H(wt−1)(wt − wt−1) + θt−1 (A.31)

164

where the remainder:

θt−1 ≡
∫ 1

0

[H(wt−1 + t(wt − wt−1))−H(wt−1)] dt · (wt − wt−1) (A.32)

Denote H = H(w0), and H′
t−1 = H(wt−1)−H(w0). By Hessian smoothness, we immediately

have:

‖H′
t−1‖ = ‖H(wt−1)−H(w0)‖ ≤ ρ‖wt−1 − w0‖ ≤ ρ(‖wt − w̃t‖+ ‖w̃t − w0‖) (A.33)

‖θt−1‖ ≤
ρ

2
‖wt − wt−1‖2 (A.34)

Substitute the update equation of SGD (Eq.(A.1)) into Eq.(A.31), we have:

∇f(wt) = ∇f(wt−1)− η(H +H′
t−1)(∇f(wt−1) + ξt−1) + θt−1

= (1− ηH)∇f(wt−1)− ηHξt−1 − ηH′
t−1(∇f(wt−1) + ξt−1) + θt−1 (A.35)

Let ∆t = ∇f(wt)−∇f̃(w̃t) denote the difference in gradient, then from Eq.(A.24), Eq.(A.35),

and Eq.(A.1), we have:

∆t = (1− ηH)∆t−1 − ηH′
t−1[∆t−1 +∇f̃(w̃t−1) + ξt−1] + θt−1 (A.36)

wt − w̃t = −η
t−1∑

τ=0

∆τ (A.37)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the

sigma field. Also, let event Kt = {∀τ ≤ t, ‖∇f̃(w̃τ)‖ ≤ Õ(η
1
2 log 1

η
), ‖w̃τ − w0‖ ≤

Õ(η
1
2 log 1

η
)}, and Et = {∀τ ≤ t, ‖∆τ‖ ≤ µη log2 1

η
}, where µ is independent of (η, ζ),

and will be specified later. Again, Õ notation in this proof will never hide any dependence

165

on µ. Clearly, we have Kt ⊂ Kt−1 (Et ⊂ Et−1), thus 1Kt ≤ 1Kt−1 (1Et ≤ 1Et−1), where 1K is

the indicator function of event K.

We first need to carefully bounded all terms in Eq.(A.36), conditioned on event Kt−1 ∩Et−1,

by Eq.(A.33), Eq.(A.34)), and Eq.(A.37), with probability 1, for all t ≤ T ≤ O(log d/γ0η),

we have:

‖(1− ηH)∆t−1‖ ≤ Õ(µη log2
1

η
) ‖ηH′

t−1(∆t−1 +∇f̃(w̃t−1))‖ ≤ Õ(η2 log2
1

η
)

‖ηH′
t−1ξt−1‖ ≤ Õ(η1.5 log

1

η
) ‖θt−1‖ ≤ Õ(η2) (A.38)

Since event Kt−1 ⊂ Ft−1,Et−1 ⊂ Ft−1 thus independent of ξt−1, we also have:

E[((1− ηH)∆t−1)
TηH′

t−1ξt−11Kt−1∩Et−1 | Ft−1]

=1Kt−1∩Et−1((1− ηH)∆t−1)
TηH′

t−1E[ξt−1 | Ft−1] = 0 (A.39)

Therefore, from Eq.(A.36) and Eq.(A.38):

E[‖∆t‖221Kt−1∩Et−1 | Ft−1]

≤
[
(1 + ηγ0)

2‖∆t−1‖2 + (1 + ηγ0)‖∆t−1‖Õ(η2 log2
1

η
) + Õ(η3 log2

1

η
)

]
1Kt−1∩Et−1

≤
[
(1 + ηγ0)

2‖∆t−1‖2 + Õ(µη3 log4
1

η
)

]
1Kt−1∩Et−1 (A.40)

Define

Gt = (1 + ηγ0)
−2t[‖∆t‖2 + αη2 log4

1

η
] (A.41)

166

Then, when ηmax is small enough, we have:

E[Gt1Kt−1∩Et−1 | Ft−1] = (1 + ηγ0)
−2t

[
E[‖∆t‖221Kt−1∩Et−1 | Ft−1] + αη2 log3

1

η

]
1Kt−1∩Et−1

≤ (1 + ηγ0)
−2t

[
(1 + ηγ0)

2‖∆t−1‖2 + Õ(µη3 log4
1

η
) + αη2 log4

1

η

]
1Kt−1∩Et−1

≤ (1 + ηγ0)
−2t

[
(1 + ηγ0)

2‖∆t−1‖2 + (1 + ηγ0)
2αη2 log4

1

η

]
1Kt−1∩Et−1

= Gt−11Kt−1∩Et−1 ≤ Gt−11Kt−2∩Et−2 (A.42)

Therefore, we have E[Gt1Kt−1∩Et−1 | Ft−1] ≤ Gt−11Kt−2∩Et−2 which means Gt1Kt−1∩Et−1 is a

supermartingale.

On the other hand, we have:

∆t = (1− ηH)∆t−1 − ηH′
t−1(∆t−1 +∇f̃(w̃t−1))− ηH′

t−1ξt−1 + θt−1 (A.43)

Once conditional on filtration Ft−1, the first two terms are deterministic, and only the third

and fourth term are random. Therefore, we know, with probability 1:

| ‖∆t‖22 − E[‖∆t‖22|Ft−1] |1Kt−1∩Et−1 ≤ Õ(µη2.5 log3
1

η
) (A.44)

Where the main contribution comes from the product of the first term and third term. Then,

with probability 1, we have:

|Gt1Kt−1∩Et−1 − E[Gt1Kt−1∩Et−1 | Ft−1]|

=(1 + 2ηγ0)
−2t · | ‖∆t‖22 − E[‖∆t‖22|Ft−1] | · 1Kt−1∩Et−1 ≤ Õ(µη2.5 log3

1

η
) = ct−1 (A.45)

167

By Azuma-Hoeffding inequality, with probability less than Õ(η3), for t ≤ T ≤ O(log d/γ0η):

Gt1Kt−1∩Et−1 −G0 · 1 > Õ(1)

√√√√
t−1∑

τ=0

c2τ log(
1

η
) = Õ(µη2 log4

1

η
) (A.46)

This means there exist some C̃ = Õ(1) so that:

P

(
Gt1Kt−1∩Et−1 ≥ C̃µη2 log4

1

η

)
≤ Õ(η3) (A.47)

By choosing µ > C̃, this is equivalent to:

P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖2 ≥ µ2η2 log4

1

η

})
≤ Õ(η3) (A.48)

Therefore, combined with Lemma A.4, we have:

P

(
Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})

=P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})
+ P

(
Kt−1 ∩ Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})

≤Õ(η3) + P (Kt−1) ≤ Õ(η3) (A.49)

Finally, we know:

P (Et) = P

(
Et−1 ∩

{
‖∆t‖ ≥ µη log2

1

η

})
+ P (Et−1) ≤ Õ(η3) + P (Et−1) (A.50)

Because P (E0) = 0, and T ≤ Õ(1
η
), we have P (ET) ≤ Õ(η2). Due to Eq.(A.37), we have

‖wt − w̃t‖ ≤ η
∑t−1

τ=0 ‖∆τ‖, then by the definition of ET , we finish the proof.

Using the two lemmas above we are ready to prove Lemma A.3

168

Proof of Lemma A.3. Let f̃ and {w̃t} be defined as in Lemma A.4. and also let λmin(H(w0))

= −γ0. Since H(w) is ρ-Lipschitz, for any w,w0, we have:

f(w) ≤ f(w0) +∇f(w0)
T (w −w0) +

1

2
(w −w0)

TH(w0)(w− w0) +
ρ

6
‖w −w0‖3 (A.51)

Denote δ̃ = w̃T − w0 and δ = wT − w̃T , we have:

f(wT)− f(w0) ≤
[
∇f(w0)

T (wT − w0) +
1

2
(wT − w0)

TH(w0)(wT − w0) +
ρ

6
‖wT − w0‖3

]

=

[
∇f(w0)

T (δ̃ + δ) +
1

2
(δ̃ + δ)TH(δ̃ + δ) +

ρ

6
‖δ̃ + δ‖3

]

=

[
∇f(w0)

T δ̃ +
1

2
δ̃THδ̃

]
+

[
∇f(w0)

T δ + δ̃THδ + 1

2
δTHδ + ρ

6
‖δ̃ + δ‖3

]

(A.52)

Where H = H(w0). Denote Λ̃ = ∇f(w0)
T δ̃+ 1

2
δ̃THδ̃ be the first term, and Λ = ∇f(w0)

T δ+

δ̃THδ + 1
2
δTHδ + ρ

6
‖δ̃ + δ‖3 be the second term. We have f(wT)− f(w0) ≤ Λ̃ + Λ.

Let Et = {∀τ ≤ t, ‖w̃τ − w0‖ ≤ Õ(η
1
2 log 1

η
), ‖wt − w̃t‖ ≤ Õ(η log2 1

η
)}, by the result of

Lemma A.4 and Lemma A.5, we know P (ET) ≥ 1− Õ(η2). Then, clearly, we have:

Ef(wT)− f(w0) =E[f(wT)− f(w0)]1ET
+ E[f(wT)− f(w0)]1ET

≤EΛ̃1ET
+ EΛ1ET

+ E[f(wT)− f(w0)]1ET

=EΛ̃ + EΛ1ET
+ E[f(wT)− f(w0)]1ET

− EΛ̃1ET
(A.53)

We will carefully caculate EΛ̃ term first, and then bound remaining term as “perturbation”

to first term.

169

Let λ1, · · · , λd be the eigenvalues ofH. By the result of lemma A.4 and simple linear algebra,

we have:

EΛ̃ = −η
2

d∑

i=1

2T−1∑

τ=0

(1− ηλi)τ |∇if(w0)|2 +
1

2

d∑

i=1

λi

T−1∑

τ=0

(1− ηλi)2τη2σ2

≤ 1

2

d∑

i=1

λi

T−1∑

τ=0

(1− ηλi)2τη2σ2

≤ η2σ2

2

[
d− 1

η
− γ0

T−1∑

τ=0

(1 + ηγ0)
2τ

]
≤ −ησ

2

2
(A.54)

The last inequality is directly implied by the choice of T as in Eq.(A.21). Also, by Eq.(A.21),

we also immediately have that T = O(log d/γ0η) ≤ O(log d/γη). Therefore, by choose

Tmax = O(log d/γη) with large enough constant, we have T ≤ Tmax = O(log d/γη).

For bounding the second term, by definition of Et, we have:

EΛ1ET
= E

[
∇f(w0)

T δ + δ̃THδ + 1

2
δTHδ + ρ

6
‖δ̃ + δ‖3

]
1ET
≤ Õ(η1.5 log3

1

η
) (A.55)

On the other hand, since noise is bounded as ‖ξ‖ ≤ Õ(1), from the results of Lemma A.4,

it’s easy to show ‖w̃ − w0‖ = ‖δ̃‖ ≤ Õ(1) is also bounded with probability 1. Recall the

assumption that function f is also bounded, then we have:

E[f(wT)− f(w0)]1ET
− EΛ̃1ET

=E[f(wT)− f(w0)]1ET
− E

[
∇f(w0)

T δ̃ +
1

2
δ̃THδ̃

]
1ET
≤ Õ(1)P (ET) ≤ Õ(η2) (A.56)

Finally, substitute Eq.(A.54), Eq.(A.55) and Eq.(A.56) into Eq.(A.53), we finish the proof.

Finally, we combine three cases to prove the main theorem.

170

Proof of Theorem A.1. Let’s set L1 = {w | ‖∇f(w)‖ ≥
√
2ησ2βd}, L2 = {w | ‖∇f(w)‖ ≤

√
2ησ2βd and λmin(H(w)) ≤ −γ}, and L3 = Lc

1 ∪ Lc
2. By choosing small enough ηmax,

we could make
√
2ησ2βd < min{ǫ, αδ}. Under this choice, we know from Definition 2.3 of

(α, γ, ǫ, δ)-strict saddlethat L3 is the locally α-strongly convex region which is Õ(
√
η)-close

to some local minimum.

We shall first prove that within Õ(1
η2
log 1

ζ
) steps with probability at least 1− ζ/2 one of wt

is in L3. Then by Lemma A.2 we know with probability at most ζ/2 there exists a wt that

is in L3 but the last point is not. By union bound we will get the main result.

To prove within Õ(1
η2
log 1

ζ
) steps with probability at least 1− ζ/2 one of wt is in L3, we first

show starting from any point, in Õ(1
η2
) steps with probability at least 1/2 one of wt is in L3.

Then we can repeat this log 1/ζ times to get the high probability result.

Define stochastic process {τi} s.t. τ0 = 0, and

τi+1 =

τi + 1 if wτi ∈ L1 ∪ L3

τi + T (wτi) if wτi ∈ L2

(A.57)

Where T (wτi) is defined by Eq.(A.21) with γ0 = λmin(H(wτi))and we know T ≤ Tmax = Õ(1
η
).

By Lemma A.1 and Lemma A.3, we know:

E[f(wτi+1
)− f(wτi)|wτi ∈ L1,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi ∈ L1] ≤ −Õ(η2) (A.58)

E[f(wτi+1
)− f(wτi)|wτi ∈ L2,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi ∈ L2] ≤ −Õ(η) (A.59)

Therefore, combine above equation, we have:

E[f(wτi+1
)− f(wτi)|wτi 6∈ L3,Fτi−1] = E[f(wτi+1

)− f(wτi)|wτi 6∈ L3] ≤ −(τi+1− τi)Õ(η2)

(A.60)

171

Define event Ei = {∃j ≤ i, wτj ∈ L3}, clearly Ei ⊂ Ei+1, thus P (Ei) ≤ P (Ei+1). Finally,

consider f(wτi+1
)1Ei

, we have:

Ef(wτi+1
)1Ei
− Ef(wτi)1Ei−1

≤ B · P (Ei − Ei−1) + E[f(wτi+1
)− f(wτi)|Ei] · P (Ei)

≤ B · P (Ei − Ei−1)− (τi+1 − τi)Õ(η2)P (Ei) (A.61)

Therefore, by summing up over i, we have:

Ef(wτi)1Ei
− f(w0) ≤ BP (Ei)− τiÕ(η2)P (Ei) ≤ B − τiÕ(η2)P (Ei) (A.62)

Since |f(wτi)1Ei
| < B is bounded, as τi grows to as large as 6B

η2
, we must have P (Ei) <

1
2
.

That is, after Õ(1
η2
) steps, with at least probability 1/2, {wt} have at least enter L3 once.

Since this argument holds for any starting point, we can repeat this log 1/ζ times and we

know after Õ(1
η2
log 1/ζ) steps, with probability at least 1− ζ/2, {wt} have at least enter L3

once.

Combining with Lemma A.2, and by union bound we know after Õ(1
η2
log 1/ζ) steps, with

probability at least 1−ζ , wt will be in the Õ(
√
η log 1

ηζ
) neigborhood of some local minimum.

A.2 Detailed Analysis for Section 2.2 in Constrained

Case

So far, we have been discussed all about unconstrained problem. In this section we extend

our result to equality constraint problems under some mild conditions.

172

Consider the equality constrained optimization problem:

min
w

f(w) (A.63)

s.t. ci(w) = 0, i = 1, · · · , m

Define the feasible set as the set of points that satisfy all the constraints W = {w | ci(w) =

0; i = 1, · · · , m}.

In this case, the algorithm we are running is Projected Noisy Gradient Descent. Let function

ΠW(v) to be the projection to the feasible set where the projection is defined as the global

solution of minw∈W ‖v − w‖2.

With same argument as in the unconstrained case, we could slightly simplify and convert it

to standard projected stochastic gradient descent (PSGD) with update equation:

vt = wt−1 − η∇f(wt−1) + ξt−1 (A.64)

wt = ΠW(vt) (A.65)

As in unconstrained case, we are interested in noise ξ is i.i.d satisfying Eξ = 0, EξξT = σ2I

and ‖ξ‖ ≤ Q almost surely. Our proof can be easily extended to Algorithm 2 with 1
d
I �

EξξT � (Q + 1
d
)I. In this section we first introduce basic tools for handling constrained

optimization problems (most these materials can be found in [164]), then we prove some

technical lemmas that are useful for dealing with the projection step in PSGD, finally we

point out how to modify the previous analysis.

173

A.2.1 Preliminaries

Often for constrained optimization problems we want the constraints to satisfy some regular-

ity conditions. LICQ (linear independent constraint quantification) is a common assumption

in this context.

Definition A.1 (LICQ). In equality-constraint problem Eq.(A.63), given a point w, we say

that the linear independence constraint qualification (LICQ) holds if the set of constraint

gradients {∇ci(x), i = 1, · · · , m} is linearly independent.

In constrained optimization, we can locally transform it to an unconstrained problem by

introducing Lagrangian multipliers. The Langrangian L can be written as

L(w, λ) = f(w)−
m∑

i=1

λici(w) (A.66)

Then, if LICQ holds for all w ∈ W, we can properly define function λ∗(·) to be:

λ∗(w) = argmin
λ
‖∇f(w)−

m∑

i=1

λi∇ci(w)‖ = argmin
λ
‖∇wL(w, λ)‖ (A.67)

where λ∗(·) can be calculated analytically: let matrix C(w) = (∇c1(w), · · · ,∇cm(w)), then

we have:

λ∗(w) = C(w)†∇f(w) = (C(w)TC(w))−1C(w)T∇f(w) (A.68)

where (·)† is Moore-Penrose pseudo-inverse.

In our setting we need a stronger regularity condition which we call robust LICQ (RLICQ).

Definition A.2 (αc-RLICQ). In equality-constraint problem Eq.(A.63), given a point w,

we say that αc-robust linear independence constraint qualification (αc-RLICQ) holds if the

174

minimum singular value of matrix C(w) = (∇c1(w), · · · ,∇cm(w)) is greater or equal to αc,

that is σmin(C(w)) ≥ αc.

Remark. Given a point w ∈ W, αc-RLICQ implies LICQ. While LICQ holds for all w ∈ W

is a necessary condition for λ∗(w) to be well-defined; it’s easy to check that αc-RLICQ holds

for all w ∈ W is a necessary condition for λ∗(w) to be bounded. Later, we will also see

αc-RLICQ combined with the smoothness of {ci(w)}mi=1 guarantee the curvature of constraint

manifold to be bounded everywhere.

Note that we require this condition in order to provide a quantitative bound, without this

assumption there can be cases that are exponentially close to a function that does not satisfy

LICQ.

We can also write down the first-order and second-order partial derivative of Lagrangian L

at point (w, λ∗(w)):

χ(w) = ∇wL(w, λ)|(w,λ∗(w)) = ∇f(w)−
m∑

i=1

λ∗i (w)∇ci(w) (A.69)

M(w) = ∇2
wwL(w, λ)|(w,λ∗(w)) = ∇2f(w)−

m∑

i=1

λ∗i (w)∇2ci(w) (A.70)

Definition A.3 (Tangent Space and Normal Space). Given a feasible point w ∈ W, define

its corresponding Tangent Space to be T (w) = {v | ∇ci(w)Tv = 0; i = 1, · · · , m}, and

Normal Space to be T c(w) = span{∇c1(w) · · · ,∇cm(w)}

If w ∈ Rd, and we have m constraint satisfying αc-RLICQ , the tangent space would be

a linear subspace with dimension d −m; and the normal space would be a linear subspace

with dimension m. We also know immediately that χ(w) defined in Eq.(A.69) has another

interpretation: it’s the component of gradient ∇f(w) in tangent space.

175

Also, it’s easy to see the normal space T c(w) is the orthogonal complement of T . We can

also define the projection matrix of any vector onto tangent space (or normal space) to be

PT (w) (or PT c(w)). Then, clearly, both PT (w) and PT c(w) are orthoprojector, thus symmetric.

Also by Pythagorean theorem, we have:

‖v‖2 = ‖PT (w)v‖2 + ‖PT c(w)v‖2, ∀v ∈ R
d (A.71)

Taylor Expansion Let w,w0 ∈ W, and fix λ∗ = λ∗(w0) independent of w, assume∇2
wwL(w, λ∗)

is ρL-Lipschitz, that is ‖∇2
wwL(w1, λ

∗)−∇2
wwL(w2, λ

∗)‖ ≤ ρL‖w1−w2‖ By Taylor expansion,

we have:

L(w, λ∗) ≤L(w0, λ
∗) +∇wL(w0, λ

∗)T (w − w0)

+
1

2
(w − w0)

T∇2
wwL(w0, λ

∗)(w − w0) +
ρL
6
‖w − w0‖3 (A.72)

Since w,w0 are feasible, we know: L(w, λ∗) = f(w) and L(w0, λ
∗) = f(w0), this gives:

f(w) ≤ f(w0) + χ(w0)
T (w − w0) +

1

2
(w − w0)

TM(w0)(w − w0) +
ρL
6
‖w − w0‖3

(A.73)

Derivative of χ(w) By taking derative of χ(w) again, we know the change of this tangent

gradient can be characterized by:

∇χ(w) = H−
m∑

i=1

λ∗i (w)∇2ci(w)−
m∑

i=1

∇ci(w)∇λ∗i (w)T (A.74)

Denote

N(w) = −
m∑

i=1

∇ci(w)∇λ∗i (w)T (A.75)

176

We immediately know that ∇χ(w) = M(w) +N(w).

Remark. The additional term N(w) is not necessary to be even symmetric in general. This

is due to the fact that χ(w) may not be the gradient of any scalar function. However, N(w)

has an important property that is: for any vector v ∈ Rd, N(w)v ∈ T c(w).

Finally, for completeness, we state here the first/second-order necessary (or sufficient) con-

ditions for optimality. Please refer to [164] for the proof of those theorems.

Theorem A.2 (First-Order Necessary Conditions). In equality constraint problem Eq.(A.63),

suppose that w† is a local solution, and that the functions f and ci are continuously differen-

tiable, and that the LICQ holds at w†. Then there is a Lagrange multiplier vector λ†, such

that:

∇wL(w†, λ†) = 0 (A.76)

ci(w
†) = 0, for i = 1, · · · , m (A.77)

These conditions are also usually referred as Karush-Kuhn-Tucker (KKT) conditions.

Theorem A.3 (Second-Order Necessary Conditions). In equality constraint problem Eq.(A.63),

suppose that w† is a local solution, and that the LICQ holds at w†. Let λ† Lagrange multiplier

vector for which the KKT conditions are satisfied. Then:

vT∇2
xxL(w†, λ†)v ≥ 0 for all v ∈ T (w†) (A.78)

Theorem A.4 (Second-Order Sufficient Conditions). In equality constraint problem Eq.(A.63),

suppose that for some feasible point w† ∈ Rd, and there’s Lagrange multiplier vector λ† for

which the KKT conditions are satisfied. Suppose also that:

vT∇2
xxL(w†, λ†)v > 0 for all v ∈ T (w†), v 6= 0 (A.79)

177

Then w† is a strict local solution.

Remark. By definition Eq.(A.68), we know immediately λ∗(w†) is one of valid Lagrange

multipliers λ† for which the KKT conditions are satisfied. This means χ(w†) = ∇wL(w†, λ†)

and M(w†) = L(w†, λ†).

Therefore, Theorem A.2, A.3, A.4 gives strong implication that χ(w) and M(w) are the right

thing to look at, which are in some sense equivalent to ∇f(w) and ∇2f(w) in unconstrained

case.

A.2.2 Geometrical Lemmas Regarding Constraint Manifold

Since in equality constraint problem, at each step of PSGD, we are effectively considering

the local manifold around feasible point wt−1. In this section, we provide some technical

lemmas relating to the geometry of constraint manifold in preparsion for the proof of main

theorem in equality constraint case.

We first show if two points are close, then the projection in the normal space is much smaller

than the projection in the tangent space.

Lemma A.6. Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all

w ∈ W. Then, let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W, let T0 = T (w0), then

‖PT c
0
(w − w0)‖ ≤

1

2R
‖w − w0‖2 (A.80)

Furthermore, if ‖w − w0‖ < R holds, we additionally have:

‖PT c
0
(w − w0)‖ ≤

‖PT0(w − w0)‖2
R

(A.81)

178

Proof. First, since for any vector v̂ ∈ T0, we have ‖C(w0)
T v̂‖ = 0, then by simple linear

algebra, it’s easy to show:

‖C(w0)
T (w − w0)‖2 =‖C(w0)

TPT c
0
(w − w0)‖2 ≥ σ2

min‖PT c
0
(w − w0)‖2

≥α2
c‖PT c

0
(w − w0)‖2 (A.82)

On the other hand, by βi-smooth, we have:

|ci(w)− ci(w0)−∇ci(w0)
T (w − w0)| ≤

βi
2
‖w − w0‖2 (A.83)

Since w,w0 are feasible points, we have ci(w) = ci(w0) = 0, which gives:

‖C(w0)
T (w − w0)‖2 =

m∑

i=1

(∇ci(w0)
T (w − w0))

2 ≤
m∑

i=1

β2
i

4
‖w − w0‖4 (A.84)

Combining Eq.(A.82) and Eq.(A.84), and the definition of R, we have:

‖PT c
0
(w − w0)‖2 ≤

1

4R2
‖w − w0‖4 =

1

4R2
(‖PT c

0
(w − w0)‖2 + ‖PT0(w − w0)‖2)2 (A.85)

Solving this second-order inequality gives two solution

‖PT c
0
(w − w0)‖ ≤

‖PT0(w − w0)‖2
R

or ‖PT c
0
(w − w0)‖ ≥ R (A.86)

By assumption, we know ‖w − w0‖ < R (so the second case cannot be true), which finishes

the proof.

Here, we see the
√∑m

i=1
β2
i

α2
c
= 1

R
serves as a upper bound of the curvatures on the constraint

manifold, and equivalently, R serves as a lower bound of the radius of curvature. αc-RLICQ

and smoothness guarantee that the curvature is bounded.

179

Next we show the normal/tangent space of nearby points are close.

Lemma A.7. Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all

w ∈ W. Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W, let T0 = T (w0). Then for all v̂ ∈ T (w) so

that ‖v̂‖ = 1, we have

‖PT c
0
· v̂‖ ≤ ‖w − w0‖

R
(A.87)

Proof. With similar calculation as Eq.(A.82), we immediately have:

‖PT c
0
· v̂‖2 ≤ ‖C(w0)

T v̂‖2
σ2
min(C(w))

≤ ‖C(w0)
T v̂‖2

α2
c

(A.88)

Since v̂ ∈ T (w) , we have C(w)T v̂ = 0, combined with the fact that v̂ is a unit vector, we

have:

‖C(w0)
T v̂‖2 =‖[C(w0)− C(w)]T v̂‖2 =

m∑

i=1

([∇ci(w0)−∇ci(w)]T v̂)2

≤
m∑

i=1

‖∇ci(w0)−∇ci(w)‖2‖v̂‖2 ≤
m∑

i=1

β2
i ‖w0 − w‖2 (A.89)

Combining Eq.(A.88) and Eq.(A.89), and the definition of R, we concludes the proof.

Lemma A.8. Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all

w ∈ W. Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w,w0 ∈ W, let T0 = T (w0). Then for all v̂ ∈ T c(w) so

that ‖v̂‖ = 1, we have

‖PT0 · v̂‖ ≤
‖w − w0‖

R
(A.90)

Proof. By definition of projection, clearly, we have PT0 · v̂ + PT c
0
· v̂ = v̂. Since v̂ ∈ T c(w),

without loss of generality, assume v̂ =
∑m

i=1 λi∇ci(w). Define d̃ =
∑m

i=1 λi∇ci(w0), clearly

180

d̃ ∈ T c
0 . Since projection gives the closest point in subspace, we have:

‖PT0 · v̂‖ =‖PT c
0
· v̂ − v̂‖ ≤ ‖d̃− v̂‖

≤
m∑

i=1

λi‖∇ci(w0)−∇ci(w)‖ ≤
m∑

i=1

λiβi‖w0 − w‖ (A.91)

On the other hand, let λ = (λ1, · · · , λm)T , we know C(w)λ = v̂, thus:

λ = C(w)†v̂ = (C(w)TC(w))−1C(w)T v̂ (A.92)

Therefore, by αc-RLICQ and the fact v̂ is unit vector, we know: ‖λ‖ ≤ 1
αc
. Combined with

Eq.(A.91), we finished the proof.

Using the previous lemmas, we can then prove that: starting from any point w0 on constraint

manifold, the result of adding any small vector v and then projected back to feasible set, is

not very different from the result of adding PT (w0)v.

Lemma A.9. Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all

w ∈ W. Let
∑m

i=1
β2
i

α2
c
= 1

R2 , for any w0 ∈ W, let T0 = T (w0). Then let w1 = w0 + ηv̂, and

w2 = w0 + ηPT0 · v̂, where v̂ ∈ Sd−1 is a unit vector. Then, we have:

‖ΠW(w1)− w2‖ ≤
4η2

R
(A.93)

Where projection ΠW(w) is defined as the closet point to w on feasible set W.

Proof. First, note that ‖w1 − w0‖ = η, and by definition of projection, there must exist a

project ΠW(w) inside the ball Bη(w1) = {w | ‖w − w1‖ ≤ η}.

181

Denote u1 = ΠW(w1), and clearly u1 ∈ W. we can formulate u1 as the solution to following

constrained optimization problems:

min
u

‖w1 − u‖2 (A.94)

s.t. ci(u) = 0, i = 1, · · · , m

Since function f(u) = ‖w1−u‖2 and ci(u) are continuously differentiable by assumption, and

the condition αc-RLICQ holds for all w ∈ W implies that LICQ holds for u1. Therefore, by

Karush-Kuhn-Tucker necessary conditions, we immediately know (w1 − u1) ∈ T c(u1).

Since u1 ∈ Bη(w1), we know ‖w0 − u1‖ ≤ 2η, by Lemma A.8, we immediately have:

‖PT0(w1 − u1)‖ =
‖PT0(w1 − u1)‖
‖w1 − u1‖

‖w1 − u1‖ ≤
1

R
‖w0 − u1‖ · ‖w1 − u1‖ ≤

2

R
η2 (A.95)

Let v1 = w0 + PT0(u1 − w0), we have:

‖v1 − w2‖ =‖(v1 − w0)− (w2 − w0)‖ = ‖PT0(u1 − w0)− PT0(w1 − w0)‖

=‖PT0(w1 − u1)‖ ≤
2

R
η2 (A.96)

On the other hand by Lemma A.6, we have:

‖u1 − v1‖ = ‖PT c
0
(u1 − w0)‖ ≤

1

2R
‖u1 − w0‖2 ≤

2

R
η2 (A.97)

Combining Eq.(A.96) and Eq.(A.97), we finished the proof.

182

A.2.3 Main Theorem

Now we are ready to prove the main theorems. First we revise the definition of strict saddle in

the constrained case.

Definition A.4. A twice differentiable function f(w) with constraints ci(w) is (α, γ, ǫ, δ)-

strict saddle, if for any point w one of the following is true

1. ‖χ(w)‖ ≥ ǫ.

2. v̂TM(w)v̂ ≤ −γ for some v̂ ∈ T (w), ‖v̂‖ = 1

3. There is a local minimum w⋆ such that ‖w − w⋆‖ ≤ δ, and for all w′ in the 2δ neigh-

borhood of w⋆, we have v̂TM(w′)v̂ ≥ α for all v̂ ∈ T (w′), ‖v̂‖ = 1

Next, we prove a equivalent formulation for PSGD.

Lemma A.10. Suppose the constraints {ci}mi=1 are βi-smooth, and αc-RLICQ holds for all

w ∈ W. Furthermore, if function f is L-Lipschitz, and the noise ξ is bounded, then running

PSGD as in Eq.(A.64) is equivalent to running:

wt = wt−1 − η · (χ(wt−1) + PT (wt−1)ξt−1) + ιt−1 (A.98)

where ι is the correction for projection, and ‖ι‖ ≤ Õ(η2).

Proof. Lemma A.10 is a direct corollary of Lemma A.9.

The intuition behind this lemma is that: when {ci}mi=1 are smooth and αc-RLICQ holds for

all w ∈ W, then the constraint manifold has bounded curvature every where. Then, if we

only care about first order behavior, it’s well-approximated by the local dynamic in tangent

plane, up to some second-order correction.

183

Therefore, by Eq.(A.98), we see locally it’s not much different from the unconstrainted case

Eq.(A.1) up to some negeligable correction. In the following analysis, we will always use

formula Eq.(A.98) as the update equation for PSGD.

Since most of following proof bears a lot similarity as in unconstrained case, we only pointed

out the essential steps in our following proof.

Theorem A.5 (Main Theorem for Equality-Constrained Case). Suppose a function f(w) :

Rd → R with constraints ci(w) : Rd → R is (α, γ, ǫ, δ)-strict saddle, and has a stochastic

gradient oracle with radius at most Q, also satisfying Eξ = 0 and EξξT = σ2I. Further,

suppose the function function f is B-bounded, L-Lipschitz, β-smooth, and has ρ-Lipschitz

Hessian, and the constraints {ci}mi=1 is Li-Lipschitz, βi-smooth, and has ρi-Lipschitz Hes-

sian. Then there exists a threshold ηmax = Θ̃(1), so that for any ζ > 0, and for any

η ≤ ηmax/max{1, log(1/ζ)}, with probability at least 1− ζ in t = Õ(η−2 log(1/ζ)) iterations,

PSGD outputs a point wt that is Õ(
√
η log(1/ηζ))-close to some local minimum w⋆.

First, we proof the assumptions in main theorem implies the smoothness conditions for

M(w), N(w) and ∇2
wwL(w, λ∗(w′)).

Lemma A.11. Under the assumptions of Theorem A.5, there exists βM , βN , ρM , ρN , ρL poly-

nomial related to B,L, β, ρ, 1
αc

and {Li, βi, ρi}mi=1 so that:

1. ‖M(w)‖ ≤ βM and ‖N(w)‖ ≤ βN for all w ∈ W.

2. M(w) is ρM -Lipschitz, and N(w) is ρN -Lipschitz, and ∇2
wwL(w, λ∗(w′)) is ρL-Lipschitz

for all w′ ∈ W.

Proof. By definition of M(w), N(w) and ∇2
wwL(w, λ∗(w′)), the above conditions will holds

if there exists Bλ, Lλ, βλ bounded by Õ(1), so that λ∗(w) is Bλ-bounded, Lλ-Lipschitz, and

βλ-smooth.

184

By definition Eq.(A.68), we have:

λ∗(w) = C(w)†∇f(w) = (C(w)TC(w))−1C(w)T∇f(w) (A.99)

Because f is B-bounded, L-Lipschitz, β-smooth, and its Hessian is ρ-Lipschitz, thus, even-

tually, we only need to prove that there exists Bc, Lc, βc bounded by Õ(1), so that the

pseudo-inverse C(w)† is Bc-bounded, Lc-Lipschitz, and βc-smooth.

Since αc-RLICQ holds for all feasible points, we immediately have: ‖C(w)†‖ ≤ 1
αc
, thus

bounded. For simplicity, in the following context we use C† to represent C†(w) without

ambiguity. By some calculation of linear algebra, we have the derivative of pseudo-inverse:

∂C(w)†

∂wi
= −C†∂C(w)

∂wi
C† + C†[C†]T

∂C(w)T

∂wi
(I − CC†) (A.100)

Again, αc-RLICQ holds implies that derivative of pseudo-inverse is well-defined for every

feasible point. Let tensor E(w), Ẽ(w) to be the derivative of C(w), C†(w), which is defined

as:

[E(w)]ijk =
∂[C(w)]ik
∂wj

[Ẽ(w)]ijk =
∂[C(w)†]ik

∂wj

(A.101)

Define the transpose of a 3rd order tensor ET
i,j,k = Ek,j,i, then we have

Ẽ(w) = −[E(w)](C†, I, C†) + [E(w)T](C†[C†]T , I, (I − CC†)) (A.102)

where by calculation [E(w)](I, I, ei) = ∇2ci(w).

Finally, since C(w)† and ∇2ci(w) are bounded by Õ(1), by Eq.(A.102), we know Ẽ(w) is

bounded, that is C(w)† is Lipschitz. Again, since both C(w)† and ∇2ci(w) are bounded,

Lipschitz, by Eq.(A.102), we know Ẽ(w) is also Õ(1)-Lipschitz. This finishes the proof.

185

From now on, we can use the same proof strategy as unconstraint case. Below we list the

corresponding lemmas and the essential steps that require modifications.

Lemma A.12. Under the assumptions of Theorem A.5, with notations in Lemma A.11,

for any point with ‖χ(w0)‖ ≥
√

2ησ2βM(d−m) where
√

2ησ2βM(d−m) < ǫ, after one

iteration we have:

Ef(w1)− f(w0) ≤ −Ω̃(η2) (A.103)

Proof. Choose ηmax <
1

βM
, and also small enough, then by update equation Eq.(A.98), we

have:

Ef(w1)− f(w0) ≤ χ(w0)
T
E(w1 − w0) +

βM
2

E‖w1 − w0‖2

≤ −(η − βMη
2

2
)‖χ(w0)‖2 +

η2σ2βM(d−m)

2
+ Õ(η2)‖χ(w0)‖+ Õ(η3)

≤ −(η − Õ(η1.5)− βMη
2

2
)‖χ(w0)‖2 +

η2σ2βM(d−m)

2
+ Õ(η3)

≤ −η
2σ2βMd

4
(A.104)

Which finishes the proof.

Theorem A.6. Under the assumptions of Theorem A.5, with notations in Lemma A.11, for

any initial point w0 that is Õ(
√
η) < δ close to a local minimum w⋆, with probability at least

1− ζ/2, we have following holds simultaneously:

∀t ≤ Õ(
1

η2
log

1

ζ
), ‖wt − w⋆‖ ≤ Õ(

√
η log

1

ηζ
) < δ (A.105)

where w⋆ is the locally optimal point.

186

Proof. By calculus, we know

χ(wt) =χ(w
⋆) +

∫ 1

0

(M+N)(w⋆ + t(wt − w⋆))dt · (wt − w⋆) (A.106)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the

sigma field. Let event Et = {∀τ ≤ t, ‖wτ − w⋆‖ ≤ µ
√
η log 1

ηζ
< δ}, where µ is independent

of (η, ζ), and will be specified later.

By Definition A.4 of (α, γ, ǫ, δ)-strict saddle, we know M(w) is locally α-strongly convex

restricted to its tangent space T (w). in the 2δ-neighborhood of w⋆. If ηmax is chosen small

enough, by Remark A.2.1 and Lemma A.6, we have in addition:

χ(wt)
T (wt − w⋆)1Et = (wt − w⋆)T

∫ 1

0

(M+N)(w⋆ + t(wt − w⋆))dt · (wt − w⋆)1Et

≥ [α‖wt − w⋆‖2 − Õ(‖wt − w⋆‖3)]1Et ≥ 0.5α‖wt − w⋆‖21Et

(A.107)

Then, everything else follows almost the same as the proof of Lemma A.2.

Lemma A.13. Under the assumptions of Theorem A.5, with notations in Lemma A.11, for

any initial point w0 where ‖χ(w0)‖ ≤ Õ(η) < ǫ, and v̂TM(w0)v̂ ≤ −γ for some v̂ ∈ T (w),

‖v̂‖ = 1, then there is a number of steps T that depends on w0 such that:

Ef(wT)− f(w0) ≤ −Ω̃(η) (A.108)

The number of steps T has a fixed upper bound Tmax that is independent of w0 where T ≤

Tmax = O((log(d−m))/γη).

Similar to the unconstrained case, we show this by a coupling sequence. Here the sequence

we construct will only walk on the tangent space, by Lemmas in previous subsection, we

187

know this is not very far from the actual sequence. We first define and characterize the

coupled sequence in the following lemma:

Lemma A.14. Under the assumptions of Theorem A.5, with notations in Lemma A.11. Let

f̃ defined as local second-order approximation of f(x) around w0 in tangent space T0 = T (w0):

f̃(w)
.
= f(w0) + χ(w0)

T (w − w0) +
1

2
(w − w0)

T [P T
T0M(w0)PT0](w − w0) (A.109)

{w̃t} be the corresponding sequence generated by running SGD on function f̃ , with w̃0 = w0,

and noise projected to T0, (i.e. w̃t = w̃t−1 − η(χ̃(w̃t−1) + PT0ξt−1). For simplicity, denote

χ̃(w) = ∇f̃(w), and M̃ = P T
T0M(w0)PT0, then we have analytically:

χ̃(w̃t) = (1− ηM̃)tχ̃(w̃0)− ηM̃
t−1∑

τ=0

(1− ηM̃)t−τ−1PT0ξτ (A.110)

w̃t − w0 = −η
t−1∑

τ=0

(1− ηM̃)τ χ̃(w̃0)− η
t−1∑

τ=0

(1− ηM̃)t−τ−1PT0ξτ (A.111)

Further, for any initial point w0 where ‖χ(w0)‖ ≤ Õ(η) < ǫ, and minv̂∈T (w),‖v̂‖=1 v̂
TM(w0)v̂

= −γ0. There exist a T ∈ N satisfying:

d−m
ηγ0

≤
T−1∑

τ=0

(1 + ηγ0)
2τ <

3(d−m)

ηγ0
(A.112)

with probability at least 1− Õ(η3), we have following holds simultaneously for all t ≤ T :

‖w̃t − w0‖ ≤ Õ(η
1
2 log

1

η
); ‖χ̃(w̃t)‖ ≤ Õ(η

1
2 log

1

η
) (A.113)

Proof. Clearly we have:

χ̃(w̃t) = χ̃(w̃t−1) + M̃(w̃t − w̃t−1) (A.114)

188

and

w̃t = w̃t−1 − η(χ̃(w̃t−1) + PT0ξt−1) (A.115)

This lemma is then proved by a direct application of Lemma A.4.

Then we show the sequence constructed is very close to the actual sequence.

Lemma A.15. Under the assumptions of Theorem A.5, with notations in Lemma A.11. Let

{wt} be the corresponding sequence generated by running PSGD on function f . Also let f̃

and {w̃t} be defined as in Lemma A.14. Then, for any initial point w0 where ‖χ(w0)‖2 ≤

Õ(η) < ǫ, and minv̂∈T (w),‖v̂‖=1 v̂
TM(w0)v̂ = −γ0. Given the choice of T as in Eq.(A.112),

with probability at least 1− Õ(η2), we have following holds simultaneously for all t ≤ T :

‖wt − w̃t‖ ≤ Õ(η log2
1

η
); (A.116)

Proof. First, we have update function of tangent gradient by:

χ(wt) =χ(wt−1) +

∫ 1

0

∇χ(wt−1 + t(wt − wt−1))dt · (wt − wt−1)

=χ(wt−1) +M(wt−1)(wt − wt−1) +N(wt−1)(wt − wt−1) + θt−1 (A.117)

where the remainder:

θt−1 ≡
∫ 1

0

[∇χ(wt−1 + t(wt − wt−1))−∇χ(wt−1)] dt · (wt − wt−1) (A.118)

189

Project it to tangent space T0 = T (w0). Denote M̃ = P T
T0M(w0)PT0, and M̃′

t−1 = P T
T0[M(wt1)−

M(w0)]PT0 . Then, we have:

PT0 · χ(wt) =PT0 · χ(wt−1) + PT0(M(wt−1) +N(wt−1))(wt − wt−1) + PT0θt−1

=PT0 · χ(wt−1) + PT0M(wt−1)PT0(wt − wt−1)

+ PT0M(wt−1)PT c
0
(wt − wt−1) + PT0N(wt−1)(wt − wt−1) + PT0θt−1

=PT0 · χ(wt−1) + M̃(wt − wt−1) + φt−1 (A.119)

Where

φt−1 = [M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](wt − wt−1) + PT0θt−1 (A.120)

By Hessian smoothness, we immediately have:

‖M̃′
t−1‖ = ‖M(wt1)−M(w0)‖ ≤ ρM‖wt−1 − w0‖ ≤ ρM(‖wt − w̃t‖+ ‖w̃t − w0‖)

(A.121)

‖θt−1‖ ≤
ρM + ρN

2
‖wt − wt−1‖2 (A.122)

Substitute the update equation of PSGD (Eq.(A.98)) into Eq.(A.119), we have:

PT0 · χ(wt) = PT0 · χ(wt−1)− ηM̃(PT0 · χ(wt−1) + PT0 · PT (wt−1)ξt−1) + M̃ · ιt−1 + φt−1

= (1− ηM̃)PT0 · χ(wt−1)− ηM̃PT0ξt−1 + ηM̃PT0 · PT c(wt−1)ξt−1 + M̃ · ιt−1 + φt−1

(A.123)

190

Let ∆t = PT0 · χ(wt)− χ̃(w̃t) denote the difference of tangent gradient in T (w0), then from

Eq.(A.114), Eq.(A.115), and Eq.(A.123) we have:

∆t = (1− ηH)∆t−1 + ηM̃PT0 · PT c(wt−1)ξt−1 + M̃ · ιt−1 + φt−1 (A.124)

PT0 · (wt − w0)− (w̃t − w0) = −η
t−1∑

τ=0

∆τ + η
t−1∑

τ=0

PT0 · PT c(wτ)ξτ +
t−1∑

τ=0

ιτ (A.125)

By Lemma A.6, we know if
∑m

i=1
β2
i

α2
c
= 1

R2 , then we have:

‖PT c
0
(wt − w0)‖ ≤

‖wt − w0‖2
2R

(A.126)

Let filtration Ft = σ{ξ0, · · · ξt−1}, and note σ{∆0, · · · ,∆t} ⊂ Ft, where σ{·} denotes the

sigma field. Also, let event Kt = {∀τ ≤ t, ‖χ̃(w̃τ)‖ ≤ Õ(η
1
2 log 1

η
), ‖w̃τ−w0‖ ≤ Õ(η

1
2 log 1

η
)},

and denote Γt = η
∑t−1

τ=0 PT0 · PT c(wτ)ξτ , let Et = {∀τ ≤ t, ‖∆τ‖ ≤ µ1η log
2 1
η
, ‖Γτ‖ ≤

µ2η log
2 1
η
, ‖wτ− w̃τ‖ ≤ µ3η log

2 1
η
} where (µ1, µ2, µ3) are is independent of (η, ζ), and will be

determined later. To prevent ambiguity in the proof, Õ notation will not hide any dependence

on µ. Clearly event Kt−1 ⊂ Ft−1,Et−1 ⊂ Ft−1 thus independent of ξt−1.

Then, conditioned on event Kt−1 ∩ Et−1, by triangle inequality, we have ‖wτ − w0‖ ≤

Õ(η
1
2 log 1

η
), for all τ ≤ t − 1 ≤ T − 1. We then need to carefully bound the following

bound each term in Eq.(A.124). We know wt − wt−1 = −η · (χ(wt−1) + PT (wt−1)ξt−1) + ιt−1,

191

and then by Lemma A.8 and Lemma A.7, we have:

‖ηM̃PT0 · PT c(wt−1)ξt−1‖ ≤ Õ(η1.5 log
1

η
)

‖M̃ · ιt−1‖ ≤ Õ(η2)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](−η · χ(wt−1))‖ ≤ Õ(η2 log2

1

η
)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)](−ηPT (wt−1)ξt−1)‖ ≤ Õ(η1.5 log

1

η
)

‖[M̃′
t−1 + PT0M(wt−1)PT c

0
+ PT0N(wt−1)]ιt−1‖ ≤ Õ(η2)

‖PT0θt−1‖ ≤ Õ(η2) (A.127)

Therefore, abstractly, conditioned on event Kt−1 ∩ Et−1, we could write down the recursive

equation as:

∆t = (1− ηH)∆t−1 + A+B (A.128)

where ‖A‖ ≤ Õ(η1.5 log 1
η
) and ‖B‖ ≤ Õ(η2 log2 1

η
), and in addition, by independence, easy

to check we also have E[(1 − ηH)∆t−1A|Ft−1] = 0. This is exactly the same case as in the

proof of Lemma A.5. By the same argument of martingale and Azuma-Hoeffding, and by

choosing µ1 large enough, we can prove

P

(
Et−1 ∩

{
‖∆t‖ ≥ µ1η log

2 1

η

})
≤ Õ(η3) (A.129)

On the other hand, for Γt = η
∑t−1

τ=0 PT0 · PT c(wτ)ξτ , we have:

E[Γt1Kt−1∩Et−1 |Ft−1] =
[
Γt−1 + ηE[PT0 · PT c(wt−1)ξt−1|Ft−1]

]
1Kt−1∩Et−1

= Γt−11Kt−1∩Et−1 ≤ Γt−11Kt−2∩Et−2 (A.130)

192

Therefore, we have E[Γt1Kt−1∩Et−1 | Ft−1] ≤ Γt−11Kt−2∩Et−2 which means Γt1Kt−1∩Et−1 is a

supermartingale.

We also know by Lemma A.8, with probability 1:

|Γt1Kt−1∩Et−1 − E[Γt1Kt−1∩Et−1 | Ft−1]| = |ηPT0 · PT c(wt−1)ξt−1| · 1Kt−1∩Et−1

≤Õ(η)‖wt−1 − w0‖1Kt−1∩Et−1 ≤ Õ(η1.5 log
1

η
) = ct−1 (A.131)

By Azuma-Hoeffding inequality, with probability less than Õ(η3), for t ≤ T ≤ O(log(d −

m)/γ0η):

Γt1Kt−1∩Et−1 − Γ0 · 1 > Õ(1)

√√√√
t−1∑

τ=0

c2τ log(
1

η
) = Õ(η log2

1

η
) (A.132)

This means there exists some C̃2 = Õ(1) so that:

P

(
Kt−1 ∩ Et−1 ∩

{
‖Γt‖ ≥ C̃2η log

2 1

η

})
≤ Õ(η3) (A.133)

by choosing µ2 > C̃2, we have:

P

(
Kt−1 ∩ Et−1 ∩

{
‖Γt‖ ≥ µ2η log

2 1

η

})
≤ Õ(η3) (A.134)

Therefore, combined with Lemma A.14, we have:

P

(
Et−1 ∩

{
‖Γt‖ ≥ µ2η log

2 1

η

})
≤ Õ(η3) + P (Kt−1) ≤ Õ(η3) (A.135)

Finally, conditioned on event Kt−1 ∩ Et−1, if we have ‖Γt‖ ≤ µ2η log
2 1
η
, then by Eq.(A.125):

‖PT0 · (wt − w0)− (w̃t − w0)‖ ≤ Õ

(
(µ1 + µ2)η log

2 1

η

)
(A.136)

193

Since ‖wt−1 − w0‖ ≤ Õ(η
1
2 log 1

η
), and ‖wt − wt−1‖ ≤ Õ(η), by Eq.(A.126):

‖PT c
0
(wt − w0)‖ ≤

‖wt − w0‖2
2R

≤ Õ(η log2
1

η
) (A.137)

Thus:

‖wt − w̃t‖2 =‖PT0 · (wt − w̃t)‖2 + ‖PT c
0
· (wt − w̃t)‖2

=‖PT0 · (wt − w0)− (w̃t − w0)‖2 + ‖PT c
0
(wt − w0)‖2 ≤ Õ((µ1 + µ2)

2η2 log4
1

η
)

(A.138)

That is there exist some C̃3 = Õ(1) so that ‖wt − w̃t‖ ≤ C̃3(µ1 + µ2)η log
2 1
η
Therefore,

conditioned on event Kt−1∩Et−1, we have proved that if choose µ3 > C̃3(µ1+µ2), then event

{‖wt − w̃t‖ ≥ µ3η log
2 1
η
} ⊂ {‖Γt‖ ≥ µ2η log

2 1
η
}. Then, combined this fact with Eq.(A.129),

Eq.(A.135), we have proved:

P
(
Et−1 ∩ Et

)
≤ Õ(η3) (A.139)

Because P (E0) = 0, and T ≤ Õ(1
η
), we have P (ET) ≤ Õ(η2), which concludes the proof.

These two lemmas allow us to prove the result when the initial point is very close to a saddle

point.

Proof of Lemma A.13. Combine Talyor expansion Eq.A.73 with Lemma A.14, Lemma A.15,

we prove this Lemma by the same argument as in the proof of Lemma A.3.

Finally the main theorem follows.

194

Proof of Theorem A.5. By Lemma A.12, Lemma A.13, and Lemma A.6, with the same ar-

gument as in the proof Theorem A.1, we easily concludes this proof.

A.3 Detailed Proofs for Section 2.3

In this section we show two optimization problems (2.9) and (2.11) satisfy the (α, γ, ǫ, δ)-

strict saddle propery.

A.3.1 Warm Up: Maximum Eigenvalue Formulation

Recall that we are trying to solve the optimization (2.9), which we restate here.

max T (u, u, u, u), (A.140)

‖u‖2 = 1.

Here the tensor T has orthogonal decomposition T =
∑d

i=1 a
⊗4
i . We first do a change of

coordinates to work in the coordinate system specified by (ai)’s (this does not change the

dynamics of the algorithm). In particular, let u =
∑d

i=1 xiai (where x ∈ Rd), then we can see

T (u, u, u, u) =
∑d

i=1 x
4
i . Therefore let f(x) = −‖x‖44, the optimization problem is equivalent

to

min f(x) (A.141)

s.t. ‖x‖22 = 1

This is a constrained optimization, so we apply the framework developed in Section 2.2.3.

195

Let c(x) = ‖x‖22 − 1. We first compute the Lagrangian

L(x, λ) = f(x)− λc(x) = −‖x‖44 − λ(‖x‖22 − 1). (A.142)

Since there is only one constraint, and the gradient when ‖x‖ = 1 always have norm 2, we

know the set of constraints satisfy 2-RLICQ. In particular, we can compute the correct value

of Lagrangian multiplier λ,

λ∗(x) = argmin
λ
‖∇xL(x, λ)‖ = argmin

λ

d∑

i=1

(2x3i + λxi)
2 = −2‖x‖44 (A.143)

Therefore, the gradient in the tangent space is equal to

χ(x) = ∇xL(x, λ)|(x,λ∗(x)) = ∇f(x)− λ∗(x)∇c(x)

= −4(x31, · · · , x3d)T − 2λ∗(x)(x1, · · · , xd)T

= 4
(
(x21 − ‖x‖44)x1, · · · , (x2d − ‖x‖44)xd

)
(A.144)

The second-order partial derivative of Lagrangian is equal to

M(x) = ∇2
xxL(x, λ)|(x,λ∗(x)) = ∇2f(x)− λ∗(x)∇2c(x)

= −12diag(x21, · · · , x2d)− 2λ∗(x)Id

= −12diag(x21, · · · , x2d) + 4‖x‖44Id (A.145)

196

Since the variable x has bounded norm, and the function is a polynomial, it’s clear that the

function itself is bounded and all its derivatives are bounded. Moreover, all the derivatives

of the constraint are bounded. We summarize this in the following lemma.

Lemma A.16. The objective function (2.9) is bounded by 1, its p-th order derivative is

bounded by O(
√
d) for p = 1, 2, 3. The constraint’s p-th order derivative is bounded by 2, for

p = 1, 2, 3.

Therefore the function satisfy all the smoothness condition we need. Finally we show the

gradient and Hessian of Lagrangian satisfy the (α, γ, ǫ, δ)-strict saddle property. Note that

we did not try to optimize the dependency with respect to d.

Theorem A.7. The only local minima of optimization problem (2.9) are ±ai (i ∈ [d]).

Further it satisfy (α, γ, ǫ, δ)-strict saddle for γ = 7/d, α = 3 and ǫ, δ = 1/poly(d).

In order to prove this theorem, we consider the transformed version Eq.A.141. We first need

following two lemma for points around saddle point and local minimum respectively. We

choose

ǫ0 = (10d)−4, ǫ = 4ǫ20, δ = 2dǫ0, S(x) = {i | |xi| > ǫ0} (A.146)

Where by intuition, S(x) is the set of coordinates whose value is relative large.

Lemma A.17. Under the choice of parameters in Eq.(A.146), suppose ‖χ(x)‖ ≤ ǫ, and

|S(x)| ≥ 2. Then, there exists v̂ ∈ T (x) and ‖v̂‖ = 1, so that v̂TM(x)v̂ ≤ −7/d.

Proof. Suppose |S(x)| = p, and 2 ≤ p ≤ d. Since ‖χ(x)‖ ≤ ǫ = 4ǫ20, by Eq.(A.144), we have

for each i ∈ [d], |[χ(x)]i| = 4|(x2i − ‖x‖44)xi| ≤ 4ǫ20. Therefore, we have:

∀i ∈ S(x), |x2i − ‖x‖44| ≤ ǫ0 (A.147)

197

and thus:

|‖x‖44 −
1

p
| = |‖x‖44 −

1

p

∑

i

x2i |

≤|‖x‖44 −
1

p

∑

i∈S(x)

x2i |+ |
1

p

∑

i∈[d]−S(x)

x2i | ≤ ǫ0 +
d− p
p

ǫ20 ≤ 2ǫ0 (A.148)

Combined with Eq.A.147, this means:

∀i ∈ S(x), |x2i −
1

p
| ≤ 3ǫ0 (A.149)

Because of symmetry, WLOG we assume S(x) = {1, · · · , p}. Since |S(x)| ≥ 2, we can pick

v̂ = (a, b, 0, · · · , 0). Here a > 0, b < 0, and a2 + b2 = 1. We pick a such that ax1 + bx2 = 0.

The solution is the intersection of a radius 1 circle and a line which passes (0, 0), which

always exists. For this v̂, we know ‖v̂‖ = 1, and v̂Tx = 0 thus v̂ ∈ T (x). We have:

v̂TM(x)v̂ = −(12x21 + 4‖x‖44)a2 − (12x22 + 4‖x‖44)b2

=− 8x21a
2 − 8x22b

2 − 4(x21 − ‖x‖44))a2 − 4(x22 − ‖x‖44))b2

≤− 8

p
+ 24ǫ0 + 4ǫ0 ≤ −7/d (A.150)

Which finishes the proof.

Lemma A.18. Under the choice of parameters in Eq.(A.146), suppose ‖χ(x)‖ ≤ ǫ, and

|S(x)| = 1. Then, there is a local minimum x⋆ such that ‖x− x⋆‖ ≤ δ, and for all x′ in the

2δ neighborhood of x⋆, we have v̂TM(x′)v̂ ≥ 3 for all v̂ ∈ T (x′), ‖v̂‖ = 1

Proof. WLOG, we assume S(x) = {1}. Then, we immediately have for all i > 1, |xi| ≤ ǫ0,

and thus:

1 ≥ x21 = 1−
∑

i>1

x2i ≥ 1− dǫ20 (A.151)

198

Therefore x1 ≥
√

1− dǫ20 or x1 ≤ −
√

1− dǫ20. Which means x1 is either close to 1 or

close to −1. By symmetry, we know WLOG, we can assume the case x1 ≥
√

1− dǫ20. Let

e1 = (1, 0, · · · , 0), then we know:

‖x− e1‖2 ≤ (x1 − 1)2 +
∑

i>1

x2i ≤ 2dǫ20 ≤ δ2 (A.152)

Next, we show e1 is a local minimum. According to Eq.A.145, we know M(e1) is a diagonal

matrix with 4 on the diagonals except for the first diagonal entry (which is equal to −8),

since T (e1) = span{e2, · · · , ed}, we have:

vTM(e1)v ≥ 4‖v‖2 > 0 for all v ∈ T (e1), v 6= 0 (A.153)

Which by Theorem A.4 means e1 is a local minimum.

Finally, denote T1 = T (e1) be the tangent space of constraint manifold at e1. We know for

all x′ in the 2δ neighborhood of e1, and for all v̂ ∈ T (x′), ‖v̂‖ = 1:

v̂TM(x′)v̂ ≥v̂TM(e1)v̂ − |v̂TM(e1)v̂ − v̂TM(x′)v̂|

=4‖PT1 v̂‖2 − 8‖PT c
1
v̂‖2 − ‖M(e1)−M(x′)‖‖v̂‖2

=4− 12‖PT c
1
v̂‖2 − ‖M(e1)−M(x′)‖ (A.154)

By lemma A.7, we know ‖PT c
1
v̂‖2 ≤ ‖x′ − e1‖2 ≤ 4δ2. By Eq.(A.145), we have:

‖M(e1)−M(x′)‖ ≤ ‖M(e1)−M(x′)‖ ≤
∑

(i,j)

|[M(e1)]ij − [M(x′)]ij |

≤
∑

i

∣∣−12[e1]2i + 4‖e1‖44 − 12x2i + 4‖x‖44
∣∣ ≤ 64dδ (A.155)

In conclusion, we have v̂TM(x′)v̂ ≥ 4− 48δ2 − 64dδ ≥ 3 which finishs the proof.

199

Finally, we are ready to prove Theorem A.7.

Proof of Theorem A.7. According to Lemma A.17 and Lemma A.18, we immediately know

the optimization problem satisfies (α, γ, ǫ, δ)-strict saddle.

The only thing remains to show is that the only local minima of optimization problem (2.9)

are ±ai (i ∈ [d]). Which is equivalent to show that the only local minima of the transformed

problem is ±ei (i ∈ [d]), where ei = (0, · · · , 0, 1, 0, · · · , 0), where 1 is on i-th coordinate.

By investigating the proof of Lemma A.17 and Lemma A.18, we know these two lemmas

actually hold for any small enough choice of ǫ0 satisfying ǫ0 ≤ (10d)−4, by pushing ǫ0 → 0,

we know for any point satisfying |χ(x)| ≤ ǫ → 0, if it is close to some local minimum, it

must satisfy 1 = |S(x)| → supp(x). Therefore, we know the only possible local minima are

±ei (i ∈ [d]). In Lemma A.18, we proved e1 is local minimum, by symmetry, we finishes the

proof.

A.3.2 New Formulation

In this section we consider our new formulation (2.11). We first restate the optimization

problem here:

min
∑

i 6=j

T (u(i), u(i), u(j), u(j)), (A.156)

∀i ‖u(i)‖2 = 1.

Note that we changed the notation for the variables from ui to u
(i), because in later proofs

we will often refer to the particular coordinates of these vectors.

200

Similar to the previous section, we perform a change of basis. The effect is equivalent to

making ai’s equal to basis vectors ei (and hence the tensor is equal to T =
∑d

i=1 e
⊗4
i . After

the transformation the equations become

min
∑

(i,j):i 6=j

h(u(i), u(j)) (A.157)

s.t. ‖u(i)‖2 = 1 ∀i ∈ [d]

Here h(u(i), u(j)) =
∑d

k=1(u
(i)
k u

(j)
k)2, (i, j) ∈ [d]2. We divided the objective function by 2 to

simplify the calculation.

Let U ∈ Rd2 be the concatenation of {u(i)} such that Uij = u
(i)
j . Let ci(U) = ‖u(i)‖2 − 1 and

f(U) = 1
2

∑
(i,j):i 6=j h(u

(i), u(j)). We can then compute the Lagrangian

L(U, λ) = f(U)−
d∑

i=1

λici(U) =
1

2

∑

(i,j):i 6=j

h(u(i), u(j))−
d∑

i=1

λi(‖u(i)‖2 − 1) (A.158)

The gradients of ci(U)’s are equal to (0, · · · , 0, 2u(i), 0, · · · , 0)T , all of these vectors are or-

thogonal to each other (because they have disjoint supports) and have norm 2. Therefore

the set of constraints satisfy 2-RLICQ. We can then compute the Lagrangian multipiers λ∗

as follows

λ∗(U) = argmin
λ
‖∇UL(U, λ)‖ = argmin

λ
4
∑

i

∑

k

(
∑

j:j 6=i

U2
jkUik − λiUik)

2 (A.159)

which gives:

λ∗i (U) = argmin
λ

∑

k

(
∑

j:j 6=i

U2
jkUik − λiUik)

2 =
∑

j:j 6=i

h(u(j), u(i)) (A.160)

201

Therefore, gradient in the tangent space is equal to

χ(U) = ∇UL(U, λ)|(U,λ∗(U)) = ∇f(U)−
n∑

i=1

λ∗i (U)∇ci(U). (A.161)

The gradient is a d2 dimensional vector (which can be viewed as a d×d matrix corresponding

to entries of U), and we express this in a coordinate-by-coordinate way. For simplicity of

later proof, denote:

ψik(U) =
∑

j:j 6=i

[U2
jk − h(u(j), u(i))] =

∑

j:j 6=i

[U2
jk −

d∑

l=1

U2
ilU

2
jl] (A.162)

Then we have:

[χ(U)]ik = 2(
∑

j:j 6=i

U2
jk − λ∗i (U))Uik

= 2Uik

∑

j:j 6=i

(U2
jk − h(u(j), u(i)))

= 2Uikψik(U) (A.163)

Similarly we can compute the second-order partial derivative of Lagrangian as

M(U) = ∇2f(U)−
d∑

i=1

λ∗i∇2ci(U). (A.164)

202

The Hessian is a d2× d2 matrix, we index it by 4 indices in [d]. The entries are summarized

below:

[M(U)]ik,i′k′ =
∂

∂Ui′k′
[∇UL(U, λ)]ik

∣∣∣∣
(U,λ∗(U))

=
∂

∂Ui′k′
[2(
∑

j:j 6=i

U2
jk − λ)Uik]

∣∣∣∣∣
(U,λ∗(U))

=

2(
∑

j:j 6=iU
2
jk − λ∗i (U)) if k = k′, i = i′

4Ui′kUik if k = k′, i 6= i′

0 if k 6= k′

=

2ψik(U) if k = k′, i = i′

4Ui′kUik if k = k′, i 6= i′

0 if k 6= k′

(A.165)

Similar to the previous case, it is easy to bound the function value and derivatives of the

function and the constraints.

Lemma A.19. The objective function (2.11) and p-th order derivative are all bounded by

poly(d) for p = 1, 2, 3. Each constraint’s p-th order derivative is bounded by 2, for p = 1, 2, 3.

Therefore the function satisfy all the smoothness condition we need. Finally we show the

gradient and Hessian of Lagrangian satisfy the (α, γ, ǫ, δ)-strict saddle property. Again we

did not try to optimize the dependency with respect to d.

Theorem A.8. Optimization problem (2.11) has exactly 2d · d! local minimum that corre-

sponds to permutation and sign flips of ai’s. Further, it satisfy (α, γ, ǫ, δ)-strict saddle for

α = 1 and γ, ǫ, δ = 1/poly(d).

Again, in order to prove this theorem, we follow the same strategy: we consider the trans-

formed version Eq.A.157. and first prove the following lemmas for points around saddle

203

point and local minimum respectively. We choose

ǫ0 = (10d)−6, ǫ = 2ǫ60, δ = 2dǫ0, γ = ǫ40/4, S(u) = {k | |uk| > ǫ0} (A.166)

Where by intuition, S(u) is the set of coordinates whose value is relative large.

Lemma A.20. Under the choice of parameters in Eq.(A.166), suppose ‖χ(U)‖ ≤ ǫ, and

there exists (i, j) ∈ [d]2 so that S(u(i)) ∩ S(u(j)) 6= ∅. Then, there exists v̂ ∈ T (U) and

‖v̂‖ = 1, so that v̂TM(U)v̂ ≤ −γ.

Proof. Again, since ‖χ(x)‖ ≤ ǫ = 2ǫ60, by Eq.(A.163), we have for each i ∈ [d], |[χ(x)]ik| =

2|Uikψik(U)| ≤ 2ǫ60. Therefore, have:

∀k ∈ S(u(i)), |ψik(U)| ≤ ǫ50 (A.167)

Then, we prove this lemma by dividing it into three cases. Note in order to prove that there

exists v̂ ∈ T (U) and ‖v̂‖ = 1, so that v̂TM(U)v̂ ≤ −γ; it suffices to find a vector v ∈ T (U)

and ‖v‖ ≤ 1, so that vTM(U)v ≤ −γ.

Case 1 : |S(u(i))| ≥ 2, |S(u(j))| ≥ 2, and |S(u(i)) ∩S(u(j))| ≥ 2.

204

WLOG, assume {1, 2} ∈ S(u(i)) ∩S(u(j)), choose v to be vi1 = Ui2

4
, vi2 = −Ui1

4
, vj1 =

Uj2

4

and vj2 = −Uj1

4
. All other entries of v are zero. Clearly v ∈ T (U), and ‖v‖ ≤ 1. On the

other hand, we know M(U) restricted to these 4 coordinates (i1, i2, j1, j2) is

2ψi1(U) 0 4Ui1Uj1 0

0 2ψi2(U) 0 4Ui2Uj2

4Ui1Uj1 0 2ψj1(U) 0

0 4Ui2Uj2 0 2ψj2(U)

(A.168)

By Eq.(A.167), we know all diagonal entries are ≤ 2ǫ50.

If Ui1Uj1Ui2Uj2 is negative, we have the quadratic form:

vTM(U)v =Ui1Uj1Ui2Uj2 +
1

8
[U2

i2ψi1(U) + U2
i1ψi2(U) + U2

j2ψj1(U) + U2
j1ψj2(U)]

≤− ǫ40 + ǫ50 ≤ −
1

4
ǫ40 = −γ (A.169)

If Ui1Uj1Ui2Uj2 is positive we just swap the sign of the first two coordinates vi1 = −Ui2

2
,

vi2 =
Ui1

2
and the above argument would still holds.

Case 2 : |S(u(i))| ≥ 2, |S(u(j))| ≥ 2, and |S(u(i)) ∩S(u(j))| = 1.

205

WLOG, assume {1, 2} ∈ S(u(i)) and {1, 3} ∈ S(u(j)), choose v to be vi1 =
Ui2

4
, vi2 = −Ui1

4
,

vj1 =
Uj3

4
and vj3 = −Uj1

4
. All other entries of v are zero. Clearly v ∈ T (U) and ‖v‖ ≤ 1.

On the other hand, we know M(U) restricted to these 4 coordinates (i1, i2, j1, j3) is

2ψi1(U) 0 4Ui1Uj1 0

0 2ψi2(U) 0 0

4Ui1Uj1 0 2ψj1(U) 0

0 0 0 2ψj3(U)

(A.170)

By Eq.(A.167), we know all diagonal entries are ≤ 2ǫ50. If Ui1Uj1Ui2Uj3 is negative, we have

the quadratic form:

vTM(U)v =
1

2
Ui1Uj1Ui2Uj3 +

1

8
[U2

i2ψi1(U) + U2
i1ψi2(U) + U2

j3ψj1(U) + U2
j1ψj3(U)]

≤− 1

2
ǫ40 + ǫ50 ≤ −

1

4
ǫ40 = −γ (A.171)

If Ui1Uj1Ui2Uj3 is positive we just swap the sign of the first two coordinates vi1 = −Ui2

2
,

vi2 =
Ui1

2
and the above argument would still holds.

Case 3 : Either |S(u(i))| = 1 or |S(u(j))| = 1.

WLOG, suppose |S(u(i))| = 1, and {1} = S(u(i)), we know:

|(u(i)1)2 − 1| ≤ (d− 1)ǫ20 (A.172)

On the other hand, since S(u(i)) ∩S(u(j)) 6= ∅, we have S(u(i)) ∩S(u(j)) = {1}, and thus:

|ψj1(U)| = |
∑

i′:i′ 6=j

U2
i′1 −

∑

i′:i′ 6=j

h(u(i
′), u(j))| ≤ ǫ50 (A.173)

206

Therefore, we have:

∑

i′:i′ 6=j

h(u(i
′), u(j)) ≥

∑

i′:i′ 6=j

U2
i′1 − ǫ50 ≥ U2

i1 − ǫ50 ≥ 1− dǫ20 (A.174)

and

d∑

k=1

ψjk(U) =
∑

i′:i′ 6=j

d∑

k=1

U2
i′k − d

∑

i′:i′ 6=j

h(u(i
′), u(j))

≤d− 1− d(1− dǫ20) = −1 + d2ǫ20 (A.175)

Thus, we know, there must exist some k′ ∈ [d], so that ψjk′(U) ≤ −1
d
+ dǫ20. This means

we have “large” negative entry on the diagonal of M. Since |ψj1(U)| ≤ ǫ50, we know k′ 6= 1.

WLOG, suppose k′ = 2, we have |ψj2(U)| > ǫ50, thus |Uj2| ≤ ǫ0.

Choose v to be vj1 =
Uj2

2
, vj2 = −Uj1

2
. All other entries of v are zero. Clearly v ∈ T (U) and

‖v‖ ≤ 1. On the other hand, we know M(U) restricted to these 2 coordinates (j1, j2) is

2ψj1(U) 0

0 2ψj2(U)

 (A.176)

We know |Uj1| > ǫ0, |Uj2| ≤ ǫ0, |ψj1(U)| ≤ ǫ50, and ψj2(U) ≤ −1
d
+ dǫ20. Thus:

vTM(U)v =
1

2
ψj1(U)U

2
j2 +

1

2
ψj2(U)U

2
j1

≤ǫ70 − (
1

d
− dǫ20)ǫ20 ≤ −

1

2d
ǫ20 ≤ −γ (A.177)

Since by our choice of v, we have ‖v‖ ≤ 1, we can choose v̂ = v/‖v‖, and immediately have

v̂ ∈ T (U) and ‖v̂‖ = 1, and v̂TM(U)v̂ ≤ −γ.

Lemma A.21. Under the choice of parameters in Eq.(A.166), suppose ‖χ(U)‖ ≤ ǫ, and for

any (i, j) ∈ [d]2 we have S(u(i))∩S(u(j)) = ∅. Then, there is a local minimum U⋆ such that

207

‖U − U⋆‖ ≤ δ, and for all U ′ in the 2δ neighborhood of U⋆, we have v̂TM(U ′)v̂ ≥ 1 for all

v̂ ∈ T (U ′), ‖v̂‖ = 1

Proof. WLOG, we assume S(u(i)) = {i} for i = 1, · · · , d. Then, we immediately have:

|u(i)j | ≤ ǫ0, |(u(i)i)2 − 1| ≤ (d− 1)ǫ20, ∀(i, j) ∈ [d]2, j 6= i (A.178)

Then u
(i)
i ≥

√
1− dǫ20 or u(i)i ≤ −

√
1− dǫ20. Which means u

(i)
i is either close to 1 or close to

−1. By symmetry, we know WLOG, we can assume the case u
(i)
i ≥

√
1− dǫ20 for all i ∈ [d].

Let V ∈ Rd2 be the concatenation of {e1, e2, · · · , ed}, then we have:

‖U − V ‖2 =
d∑

i=1

‖u(i) − ei‖2 ≤ 2d2ǫ20 ≤ δ2 (A.179)

Next, we show V is a local minimum. According to Eq.A.165, we know M(V) is a diagonal

matrix with d2 entries:

[M(V)]ik,ik = 2ψik(V) = 2
∑

j:j 6=i

[V 2
jk −

d∑

l=1

V 2
ilV

2
jl] =

2 if i 6= k

0 if i = k

(A.180)

We know the unit vector in the direction that corresponds to [M(V)]ii,ii is not in the tangent

space T (V) for all i ∈ [d]. Therefore, for any v ∈ T (V), we have

vTM(e1)v ≥ 2‖v‖2 > 0 for all v ∈ T (V), v 6= 0 (A.181)

Which by Theorem A.4 means V is a local minimum.

208

Finally, denote TV = T (V) be the tangent space of constraint manifold at V . We know for

all U ′ in the 2δ neighborhood of V , and for all v̂ ∈ T (x′), ‖v̂‖ = 1:

v̂TM(U ′)v̂ ≥v̂TM(V)v̂ − |v̂TM(V)v̂ − v̂TM(U ′)v̂|

=2‖PTV v̂‖2 − ‖M(V)−M(U ′)‖‖v̂‖2

=2− 2‖PT c
V
v̂‖2 − ‖M(V)−M(U ′)‖ (A.182)

By lemma A.7, we know ‖PT c
V
v̂‖2 ≤ ‖U ′ − V ‖2 ≤ 4δ2. By Eq.(A.165), we have:

‖M(V)−M(U ′)‖ ≤ ‖M(V)−M(U ′)‖ ≤
∑

(i,j,k)

|[M(V)]ik,jk − [M(U ′)]ik,jk| ≤ 100d3δ

(A.183)

In conclusion, we have v̂TM(U ′)v̂ ≥ 2− 8δ2 − 100d3δ ≥ 1 which finishs the proof.

Finally, we are ready to prove Theorem A.8.

Proof of Theorem A.8. Similarly, (α, γ, ǫ, δ)-strict saddleimmediately follows from Lemma

A.20 and Lemma A.21.

The only thing remains to show is that Optimization problem (2.11) has exactly 2d · d! local

minimum that corresponds to permutation and sign flips of ai’s. This can be easily proved

by the same argument as in the proof of Theorem A.7.

A.3.3 Extending to Tensors of Different Order

In this section we show how to generalize our algorithm to tensors of different orders. As a

8th order tensor (and more generally, 4pth order tensor for p ∈ N+) can always be considered

209

to be a 4th order tensor with components a⊗i ai (a
⊗p
i in general), so it is trivial to generalize

our algorithm to 8th order or any 4pth order.

For tensors of other orders, we need to apply some transformation. As a concrete example,

we show how to transform an orthogonal 3rd order tensor into an orthogonal 4th order tensor.

We first need to define a few notations. For third order tensors A,B ∈ Rd3 , we define

(A ⊗ B)i1,i2,...,i6 = Ai1,i2,i3Bi4,i5,i6(i1, ..., i6 ∈ [d]). We also define the partial trace operation

that maps a 6-th order tensor T ∈ Rd6 to a 4-th order tensor in Rd4 :

ptrace(T)i1,i2,i3,i4 =
d∑

i=1

T (i, i1, i2, i, i3, i4).

Basically, the operation views the tensor as a d3×d3 matrix with d2×d2 d×d matrix blocks,

then takes the trace of each matrix block. Now given a random variable X ∈ Rd3 whose

expectation is an orthogonal third order tensor, we can use these operations to construct an

orthogonal 4-th order tensor:

Lemma A.22. Suppose the expectation of random variable X ∈ Rd3 is an orthogonal 3rd

order tensor:

E[X] =
d∑

i=1

a⊗3
i ,

where ai’s are orthonormal vectors. Let X ′ be an independent sample of X, then we know

E[ptrace(X ⊗X ′)] =

d∑

i=1

a⊗4
i .

In other words, we can construct random samples whose expectation is equal to a 4-th order

orthogonal tensor.

210

Proof. Since ptrace and ⊗ are all linear operations, by linearity of expectation we know

E[ptrace(X ⊗X ′)] = ptrace(E[X]⊗ E[X ′]) = ptrace((

d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i)).

We can then expand out the product:

(
d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i) =

d∑

i=1

a⊗6
i +

∑

i 6=j

a⊗3
i ⊗ a⊗3

j .

For the diagonal terms, we know ptrace(a⊗i 6) = ‖ai‖2a⊗i 4 = a⊗i 4. For the i 6= j terms, we

know ptrace(a⊗3
i ⊗ a⊗3

j) = 〈ai, aj〉 a⊗i 2⊗ a⊗j 2 = 0 (since ai, aj are orthogonal). Therefore we

must have

ptrace((

d∑

i=1

a⊗3
i)⊗ (

d∑

i=1

a⊗3
i)) =

d∑

i=1

ptrace(a⊗6
i) +

∑

i 6=j

ptrace(a⊗3
i ⊗ a⊗3

j) =

d∑

i=1

a⊗4
i .

This gives the result.

Using similar operations we can easily convert all odd-order tensors into order 4p(p ∈ N+).

For tensors of order 4p+ 2(p ∈ N+), we can simply apply the partial trace and get a tensor

of order 4p with desirable properties. Therefore our results applies for all orders of tensors.

211

Appendix B

Appendix for Applying Online Tensor

Methods for Learning Latent Variable

Models

B.1 Stochastic Updates

After obtaining the whitening matrix, we whiten the data G⊤
x,A, G

⊤
x,B and G⊤

x,C by linear

operations to get ytA, y
t
B and ytC ∈ R

k:

ytA :=
〈
G⊤

x,A,W
〉
, ytB :=

〈
ZBG

⊤
x,B,W

〉
, ytC :=

〈
ZCG

⊤
x,C,W

〉
.

where x ∈ X and t denotes the index of the online data.

212

The stochastic gradient descent algorithm is obtained by taking the derivative of the loss

function ∂Lt(v)
∂vi

:

∂Lt(v)

∂vi
=θ

k∑

j=1

〈vj , vi〉2 vj −
(α0 + 1)(α0 + 2)

2

〈
vi, y

t
A

〉 〈
vi, y

t
B

〉
ytC − α2

0

〈
φt
i, ȳA

〉 〈
φt
i, ȳ

t
B

〉
ȳC

+
α0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ȳC +

α0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, ȳB

〉
yC

+
α0(α0 + 1)

2

〈
φt
i, ȳA

〉 〈
φt
i, y

t
B

〉
yC

for i ∈ [k], where ytA, y
t
B and ytC are the online whitened data points as discussed in the

whitening step and θ is a constant factor that we can set.

The iterative updating equation for the stochastic gradient update is given by

φt+1
i ← φt

i − βt∂L
t

∂vi

∣∣∣∣
φt
i

(B.1)

for i ∈ [k], where βt is the learning rate, φt
i is the last iteration eigenvector and φt

i is the

updated eigenvector. We update eigenvectors through

φt+1
i ← φt

i − θβt
k∑

j=1

[〈
φt
j, φ

t
i

〉2
φt
j

]
+ shift[βt

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC] (B.2)

Now we shift the updating steps so that they correspond to the centered Dirichlet moment

forms, i.e.,

shift[βt
〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC] := βt (α0 + 1)(α0 + 2)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ytC

+ βtα2
0

〈
φt
i, ȳA

〉 〈
φt
i, ȳB

〉
ȳC − βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, y

t
B

〉
ȳC

− βtα0(α0 + 1)

2

〈
φt
i, y

t
A

〉 〈
φt
i, ȳB

〉
yC − βtα0(α0 + 1)

2

〈
φt
i, ȳA

〉 〈
φt
i, y

t
B

〉
yC, (B.3)

where ȳA := Et[y
t
A] and similarly for ȳB and ȳC .

213

B.2 Proof of Algorithm Correctness

We now prove the correctness of our algorithm.

First, we compute M2 as just

Ex

[
G̃⊤

x,C ⊗ G̃⊤
x,B|ΠA,ΠB,ΠC

]

where we define

G̃⊤
x,B := Ex

[
G⊤

x,A ⊗G⊤
x,C

∣∣∣∣ ΠA,ΠC

](
Ex

[
G⊤

x,B ⊗G⊤
x,C

∣∣∣∣ ΠB,ΠC

])†
G⊤

x,B

G̃⊤
x,C := Ex

[
G⊤

x,A ⊗G⊤
x,B

∣∣∣∣ ΠA,ΠB

](
Ex

[
G⊤

x,C ⊗G⊤
x,B

∣∣∣∣ ΠB,ΠC

])†
G⊤

x,C.

Define FA as FA := Π⊤
AP

⊤, we obtain M2 = E
[
G⊤

x,A ⊗G⊤
x,A

]
= Π⊤

AP
⊤ (

Ex[πxπ
⊤
x]
)
PΠA

= FA

(
Ex[πxπ

⊤
x]
)
F⊤
A . Note that P is the community connectivity matrix defined as P ∈

[0, 1]k×k. Now that we know M2, E [π2
i] =

αi(αi+1)
α0(α0+1)

, and E [πiπj] =
αiαj

α0(α0+1)
∀i 6= j, we can get

the centered second order moments PairsCom as

PairsCom := FA diag

([
α1α1 + 1

α0(α0 + 1)
, . . . ,

αkαk + 1

α0(α0 + 1)

])
F⊤
A (B.4)

=M2 −
α0

α0 + 1
FA

(
α̂α̂⊤ − diag

(
α̂α̂⊤))F⊤

A (B.5)

=
1

nX

∑

x∈X
ZCG

⊤
x,CGx,BZ

⊤
B −

α0

α0 + 1

(
µAµ

⊤
A − diag

(
µAµ

⊤
X→A

))
(B.6)

Thus, our whitening matrix is computed. Now, our whitened tensor is T is given by

T = T Com(W,W,W) =
1

nX

∑

x

[
(W⊤FAπ

α0
x)⊗ (W⊤FAπ

α0
x)⊗ (W⊤FAπ

α0
x)
]
,

214

where πα0
x is the centered vector so that E[πα0

x ⊗ πα0
x ⊗ πα0

x] is diagonal. We then apply the

stochastic gradient descent technique to decompose the third order moment.

B.3 GPU Architecture

The algorithm we propose is very amenable to parallelization and is scalable which makes it

suitable to implement on processors with multiple cores in it. Our method consists of simple

linear algebraic operations, thus enabling us to utilize Basic Linear Algebra Subprograms

(BLAS) routines such as BLAS I (vector operations), BLAS II (matrix-vector operations),

BLAS III (matrix-matrix operations), Singular Value Decomposition (SVD), and iterative

operations such as stochastic gradient descent for tensor decomposition that can easily take

advantage of Single Instruction Multiple Data (SIMD) hardware units present in the GPUs.

As such, our method is amenable to parallelization and is ideal for GPU-based implementa-

tion.

Overview of code design: From a higher level point of view, a typical GPU based computation

is a three step process involving data transfer from CPU memory to GPU global memory,

operations on the data now present in GPU memory and finally, the result transfer from the

GPU memory back to the CPU memory. We use the CULA library for implementing the

linear algebraic operations.

GPU compute architecture: The GPUs achieve massive parallelism by having hundreds of

homogeneous processing cores integrated on-chip. Massive replication of these cores provides

the parallelism needed by the applications that run on the GPUs. These cores, for the Nvidia

GPUs, are known as CUDA cores, where each core has fully pipelined floating-point and

integer arithmetic logic units. In Nvidia’s Kepler architecture based GPUs, these CUDA

cores are bunched together to form a Streaming Multiprocessor (SMX). These SMX units

215

act as the basic building block for Nvidia Kepler GPUs. Each GPU contains multiple SMX

units where each SMX unit has 192 single-precision CUDA cores, 64 double-precision units,

32 special function units, and 32 load/store units for data movement between cores and

memory.

Each SMX has L1, shared memory and a read-only data cache that are common to all the

CUDA cores in that SMX unit. Moreover, the programmer can choose between different

configurations of the shared memory and L1 cache. Kepler GPUs also have an L2 cache

memory of about 1.5MB that is common to all the on-chip SMXs. Apart from the above

mentioned memories, Kepler based GPU cards come with a large DRAM memory, also

known as the global memory, whose size is usually in gigabytes. This global memory is also

visible to all the cores. The GPU cards usually do not exist as standalone devices. Rather

they are part of a CPU based system, where the CPU and GPU interact with each other via

PCI (or PCI Express) bus.

In order to program these massively parallel GPUs, Nvidia provides a framework known as

CUDA that enables the developers to write programs in languages like C, C++, and Fortran

etc. A CUDA program constitutes of functions called CUDA kernels that execute across

many parallel software threads, where each thread runs on a CUDA core. Thus the GPU’s

performance and scalability is exploited by the simple partitioning of the algorithm into fixed

sized blocks of parallel threads that run on hundreds of CUDA cores. The threads running

on an SMX can synchronize and cooperate with each other via the shared memory of that

SMX unit and can access the Global memory. Note that the CUDA kernels are launched

by the CPU but they get executed on the GPU. Thus compute architecture of the GPU

requires CPU to initiate the CUDA kernels.

CUDA enables the programming of Nvidia GPUs by exposing low level API. Apart from

CUDA framework, Nvidia provides a wide variety of other tools and also supports third

party libraries that can be used to program Nvidia GPUs. Since a major chunk of the

216

scientific computing algorithms is linear algebra based, it is not surprising that the standard

linear algebraic solver libraries like BLAS and Linear Algebra PACKage (LAPACK) also have

their equivalents for Nvidia GPUs in one form or another. Unlike CUDA APIs, such libraries

expose APIs at a much higher-level and mask the architectural details of the underlying GPU

hardware to some extent thus enabling relatively faster development time.

Considering the tradeoffs between the algorithm’s computational requirements, design flex-

ibility, execution speed and development time, we choose CULA-Dense as our main im-

plementation library. CULA-Dense provides GPU based implementations of the LAPACK

and BLAS libraries for dense linear algebra and contains routines for systems solvers, sin-

gular value decompositions, and eigen-problems. Along with the rich set of functions that

it offers, CULA provides the flexibility needed by the programmer to rapidly implement the

algorithm while maintaining the performance. It hides most of the GPU architecture depen-

dent programming details thus making it possible for rapid prototyping of GPU intensive

routines.

The data transfers between the CPU memory and the GPU memory are usually explicitly

initiated by CPU and are carried out via the PCI (or PCI Express) bus interconnecting

the CPU and the GPU. The movement of data buffers between CPU and GPU is the most

taxing in terms of time. The buffer transaction time is shown in the plot in Figure B.1.

Newer GPUs, like Kepler based GPUs, also support useful features like GPU-GPU direct

data transfers without CPU intervention.

217

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
CPU−GPU buffer round−trip transaction time

log
(

buffer size
8

)

T
im

e
(s
)

Figure B.1: Experimentally measured time taken for buffer transfer between the CPU and
the GPU memory in our system.

CULA exposes two important interfaces for GPU programming namely, standard and de-

vice. Using the standard interface, the developer can program without worrying about the

underlying architectural details of the GPU as the standard interface takes care of all the

data movements, memory allocations in the GPU and synchronization issues. This however

comes at a cost. For every standard interface function call the data is moved in and out of

the GPU even if the output result of one operation is directly required by the subsequent

operation. This unnecessary movement of intermediate data can dramatically impact the

performance of the program. In order to avoid this, CULA provides the device interface. We

use the device interface for STGD in which the programmer is responsible for data buffer

allocations in the GPU memory, the required data movements between the CPU and GPU,

and operates only on the data in the GPU. Thus the subroutines of the program that are

iterative in nature are good candidates for device implementation.

Pre-processing and post-processing: The pre-processing involves matrices whose leading

dimension is of the order of number of nodes. These are implemented using the CULA

standard interface BLAS II and BLAS III routines.

Pre-processing requires SVD computations for the Moore-Penrose pseudoinverse calculations.

We use CULA SVD routines since these SVD operations are carried out on matrices of

218

n k α0 Error Time (secs)

1e2 10 0 0.1200 0.5
1e3 10 0 0.1010 1.2
1e4 10 0 0.0841 43.2
1e2 10 1 0.1455 0.5
1e3 10 1 0.1452 1.2
1e4 10 1 0.1259 42.2

Table B.1: Synthetic simulation results for different configurations. Running time is the
time taken to run to convergence.

moderate size. We further replaced the CULA SVD routines with more scalable SVD and

pseudo inverse routines using random projections [66] to handle larger datasets such as DBLP

dataset in our experiment.

After STGD, the community membership matrix estimates are obtained using BLAS III

routines provided by the CULA standard interface. The matrices are then used for hypothesis

testing to evaluate the algorithm against the ground truth.

B.4 Results on Synthetic Datasets

Homophily is an important factor in social interactions [119]; the term homophily refers

to the tendency that actors in the same community interact more than across different

communities. Therefore, we assume diagonal dominated community connectivity matrix

P with diagonal elements equal to 0.9 and off-diagonal elements equal to 0.1. Note that

P need neither be stochastic nor symmetric. Our algorithm allows for randomly generated

community connectivity matrix P with support [0, 1]. In this way, we look at general directed

social ties among communities.

We perform experiments for both the stochastic block model (α0 = 0) and the mixed mem-

bership model. For the mixed membership model, we set the concentration parameter α0 = 1.

219

We note that the error is around 8%−14% and the running times are under a minute, when

n ≤ 10000 and n≫ k.

The results are given in Table B.1. We observe that more samples result in a more accurate

recovery of memberships which matches intuition and theory. Overall, our learning algorithm

performs better in the stochastic block model case than in the mixed membership model

case although we note that the accuracy is quite high for practical purposes. Theoretically,

this is expected since smaller concentration parameter α0 is easier for our algorithm to

learn [8]. Also, our algorithm is scalable to an order of magnitude more in n as illustrated

by experiments on real-world large-scale datasets.

B.5 Comparison of Error Scores

Normalized Mutual Information (NMI) score [113] is another popular score which is defined

differently for overlapping and non-overlapping community models. For non-overlapping

block model, ground truth membership for node i is a discrete k-state categorical variable

Πblock ∈ [k] and the estimated membership is a discrete k̂-state categorical variable Π̂block ∈

[k̂]. The empirical distribution of ground truth membership categorical variable Πblock is easy

to obtain. Similarly is the empirical distribution of the estimated membership categorical

variable Π̂block. NMI for block model is defined as

Nblock(Π̂block : Πblock) :=
H(Πblock) +H(Π̂block)−H(Πblock, Π̂block)(

H(Πblock) +H(Π̂block)
)
/2

.

The NMI for overlapping communities is a binary vector instead of a categorical vari-

able [113]. The ground truth membership for node i is a binary vector of length k, Πmix,

while the estimated membership for node i is a binary vector of length k̂, Π̂mix. This notion

220

coincides with one column of our membership matrices Π ∈ R
k×n and Π̂ ∈ R

k̂×n except

that our membership matrices are stochastic. In other words, we consider all the nonzero

entries of Π as 1’s, then each column of our Π is a sample for Πmix. The m-th entry of this

binary vector is the realization of a random variable Πmixm = (Πmix)m, whose probability

distribution is

P (Πmixm = 1) =
nm

n
, P (Πmixm = 0) = 1− nm

n
,

where nm is the number of nodes in community m. The same holds for Π̂mixm . The normal-

ized conditional entropy between Πmix and Π̂mix is defined as

H(Π̂mix|Πmix)norm :=
1

k

∑

j∈[k]
min
i∈[k̂]

H
(
Π̂mixi|Πmixj

)

H(Πmixj)
(B.7)

where Πmixj denotes the j
th entry of Πmix and similarly for Π̂mixi. The NMI for overlapping

community is

Nmix(Π̂mix : Πmix) := 1− 1

2

[
H(Πmix|Π̂mix)norm +H(Π̂mix|Πmix)norm

]
.

There are two aspects in evaluating the error. The first aspect is the l1 norm error. Ac-

cording to Equation (B.7), the error function used in NMI score is
H(Π̂mixi

|Πmixj)
H(Πmixj

)
. NMI is

not suitable for evaluating recovery of different sized communities. In the special case of a

pair of extremely sparse and dense membership vectors, depicted in Figure B.2, H(Πmixj) is

the same for both the dense and the sparse vectors since they are flipped versions of each

other (0s flipped to 1s and vice versa). However, the smaller sized community (i.e. the

sparser community vector), shown in red in Figure B.2, is significantly more difficult to re-

cover than the larger sized community shown in blue in Figure B.2. Although this example

is an extreme scenario that is not seen in practice, it justifies the drawbacks of the NMI.

221

Thus, NMI is not suitable for evaluating recovery of different sized communities. In contrast,

dense Π1

sparse Π2

length n membership vector

0

1

large sized community

small sized community

Figure B.2: A special case of a pair of extremely dense and sparse communities. Theoreti-
cally, the sparse community is more difficult to recover than the dense one. However, the NMI
score penalizes both of them equally. Note that for dense Π1, P (Πmix1 = 0) = # of 0s in Π1

n

which is equal to P (Πmix2 = 1) = # of 1s in Π2

n
. Similarly, P (Πmix1 = 1) = # of 1s in Π1

n
which is

equal to P (Πmix2 = 0) = # of 0s in Π2

n
. Therefore, H(Πmix1) = H(Πmix2).

our error function employs a normalized l1 norm error which penalizes more for larger sized

communities than smaller ones.

The second aspect is the error induced by false pairings of estimated and ground-truth

communities. NMI score selects only the closest estimated community through normal-

ized conditional entropy minimization and it does not account for statistically significant

dependence between an estimated community and multiple ground truth communities and

vice-versa, and therefore it underestimates error. However, our error score does not limit to a

matching between the estimated and ground truth communities: if an estimated community

is found to have statistically significant correlation with multiple ground truth communities

(as evaluated by the p-value), we penalize for the error over all such ground truth commu-

nities. Thus, our error score is a harsher measure of evaluation than NMI. This notion of

“soft-matching” between ground-truth and estimated communities also enables validation of

recovery of a combinatorial union of communities instead of single ones.

222

A number of other scores such as “separability”, “density”, “cohesiveness” and “clustering

coefficient” [165] are non-statistical measures of faithful community recovery. The scores

of [165] intrinsically aim to evaluate the level of clustering within a community. However our

goal is to measure the accuracy of recovery of the communities and not how well-clustered

the communities are.

Banerjee and Langford [26] proposed an objective evaluation criterion for clustering which

use classification performance as the evaluation measure. In contrast, we look at how well the

method performs in recovering the hidden communities, and we are not evaluating predictive

performance. Therefore, this measure is not used in our evaluation.

Finally, we note that cophenetic correlation is another statistical score used for evaluating

clustering methods, but note that it is only valid for hierarchical clustering and it is a

measure of how faithfully a dendrogram preserves the pairwise distances between the original

unmodeled data points [151]. Hence, it is not employed in this paper.

223

Appendix C

Appendix for Dictionary Learning via

Convolutional Tensor Method

C.1 Cumulant Form

In [12], it is proved that in ICA model, the cumulant of observation x is decomposed into

multi-linear transform of a diagonal cumulant of h. Therefore, we aim to find the third order

cumulant for input x.

As we know that the rth order moments for variable x is defined as

µr := E[xr] ∈ R
n×n×n (C.1)

Let us use [µ3]i,j,k to denote the (i, j, k)th entry of the third order moment. The relationship

between 3th order cumulant κ3and 3th order moment µ3is

[κ3]i,j,k = [µ3]i,j,k − [µ2]i,j[µ1]k − [µ2]i,k[µ1]j − [µ2]j,k[µ1]i + 2[µ1]i[µ1]j [µ1]k (C.2)

224

Therefore the shift tensor is in this format: We know that the shift term

[Z]a,b,c := E[xia]E[x
i
bx

i
c] + E[xb]E[xax

i
c] + E[xc]E[xaxb]− 2E[xa]E[xb]E[xc], a, b, c ∈ [n]

(C.3)

It is known from [12] that cumulant decomposition in the 3 order tensor format is

E[x⊗ x⊗ x]− Z =
∑

j∈[nL]
λ∗jF∗

j ⊗F∗
j ⊗ F∗

j (C.4)

Therefore using the Khatri-Rao product property,

unfold(
∑

j∈[nL]
λ∗jF∗

j ⊗F∗
j ⊗ F∗

j) =
∑

j∈[nL]
λ∗jF∗

j (F∗
j ⊙ F∗

j)
⊤ = F∗Λ∗ (F∗ ⊙F∗)⊤ (C.5)

Therefore the unfolded third order cumulant is decomposed as C3 = F∗Λ∗ (F∗ ⊙ F∗)⊤.

C.2 Proof for Main Theorem 4.1

Our optimization problem is

min
F

‖C3−FΛ (H⊙ G)⊤‖2F s.t. blkl(F) = U ·Diag(FFT(fl))·UH, ‖fl‖22 = 1, ∀l ∈ [L], (C.6)

where we denote D := Λ (H⊙ G)⊤ for simplicity. Therefore the objective is to minimize

‖C3 − FD‖2F . Let the SVD of D be D = PΣQ⊤. Since the Frobenius norm remains

invariant under orthogonal transformations and full rank diagonal matrix [57], it is obtained

225

that

‖C3 − FD‖2F = ‖C3 −FPΣQ⊤‖2F = ‖C3QΣ
† − FP‖2F = ‖C3QΣ

†P⊤ − F‖2F (C.7)

Therefore the optimization problem in (4.7) is equivalent to

min
F
‖C3((H⊙ G)⊤)†Λ†−F‖2F s.t. blkl(F) = U ·Diag(FFT(fl))·UH, ‖fl‖22 = 1, ∀l ∈ [L] (C.8)

when (H⊙ G) and Λ are full column rank.

The full rank condition requires nL < n2 or L < n, and it is a reasonable assumption since

otherwise the filter estimates are redundant. Since (C.8) has block constraints, it can be

broken down in to solving L independent sub-problems

min
fl

∥∥blkl(M) · blkl(Λ)† − U ·Diag(FFT(fl)) · UH
∥∥2
F

s.t. ‖fl‖22 = 1, ∀l ∈ [L]. (C.9)

C.3 Parallel Inversion of Ψ

We propose an efficient iterative algorithm to computeΨ† via block matrix inversion theorem[68].

Lemma C.1. (Parallel Inversion of row and column stacked diagonal matrix) Let JL = Ψ

be partitioned into a block form:

JL =

JL−1 O

R blkLL(Ψ)

 , (C.10)

226

where O :=

blk1L(Ψ)

...

blkL−1
L (Ψ)

, and R :=

[
blk1L−1(Ψ), . . . , blkLL−1(Ψ)

]
. After inverting blkLL(Ψ)

which takes O(1) time using O(n) processors, there inverse of Ψ is achieved by

Ψ† =

(JL−1 − OblkLL(Ψ)
−1
R)−1 −(JL−1)

−1
O(blkLL(Ψ)− R(JL−1)

−1
O)−1

−blkLL(Ψ)
−1
R(JL−1 − OblkLL(Ψ)

−1
R)−1 (blkLL(Ψ)−R(JL−1)

−1
O)−1

(C.11)

assuming that JL−1 and blkLLΨ are invertible.

This again requires inverting R, O and JL−1. Recursively applying these block matrix

inversion theorem, the inversion problem is reduced to inverting L2 number of n by n diagonal

matrices with additional matrix multiplications as indicated in equation (C.11).

Inverting a diagonal matrix results in another diagonal one, and the complexity of invert-

ing n × n diagonal matrix is O(1) with O(n) processors. We can simultaneous invert all

blocks. Therefore with O(nL2) processors, we invert all the diagonal matrices in O(1) time.

The recursion takes L steps, for step i ∈ [L] matrix multiplication cost is O(lognL) with

O(n2L/ log(nL)) processors. With L iteration, one achieves O(logn + logL) running time

with O(n2L2/(logL+ logn)) processors.

227

Appendix D

Appendix for Latent Tree Learning

via Hierarchical Tensor Method

D.1 Additivity of the Multivariate Information Dis-

tance

Recall that the additive information distance between nodes two categorical variables xi and

xj was defined in [41]. We extend the notation of information distance to high dimensional

variables via Definition 5.1 and present the proof of its additivity in Lemma 5.1 here.

Proof.

E[xax
⊤
c] = E[E[xax

⊤
c |xb]] = AE[xbx

⊤
b]B

⊤

Consider three nodes a, b, c such that there are edges between a and b, and b and c. Let

the A = E(xa|xb) and B = E(xc|xb). From Definition 5.1, we have, assuming that E(xax
⊤
a),

228

E(xbx
⊤
b) and E(xcx

⊤
c) are full rank.

dist(va, vc) = − log

k∏
i=1

σi(E(xax
⊤
c))

√
det(E(xax⊤a)) det(E(xcx

⊤
c))

e−dist(va,vc) = det
(
E(xax

⊤
a)

−1/2U⊤
E(xax

⊤
c)V E(xcx

⊤
c)

−1/2
)

where k-SVD((E(xax
⊤
c)) = UΣV ⊤). Similarly,

e−dist(va,vb) = det
(
E(xax

⊤
a)

−1/2U⊤
E(xax

⊤
b)WE(xbx

⊤
b)

−1/2
)

e−dist(vb,vc) = det
(
E(xbx

⊤
b)

−1/2W⊤
E(xbx

⊤
c)V E(xcx

⊤
c)

−1/2
)

where k-SVD((E(xax
⊤
b)) = UΣW⊤) and k-SVD((E(xbx

⊤
c)) = WΣV ⊤).

Therefore,

e−(dist(a,b)+dist(b,c)) = det(E(xax
⊤
a)

−1/2U⊤
E(xax

⊤
b)E(xbx

⊤
b)

−1/2−1/2
E(xbx

⊤
c)V E(xcx

⊤
c)

−1/2)

= det(E(xax
⊤
a)

−1/2U⊤AE(xbx
⊤
b)B

⊤V E(xcx
⊤
c)

−1/2) = e−dist(va,vc)

We conclude that the multivariate information distance is additive. Note that E
[
xax

⊤
b

]
=

E
(
E
(
xax

⊤
b |xb

))
= E

(
Axbx

⊤
b

)
= AE(xbx

⊤
b).

We note that when the second moments are not full rank, the above distance can be extended

as follows:

dist(va, vc) = − log

k∏
i=1

σi(E(xax
⊤
c))

√
k∏

i=1

σi(E(xax⊤a))
k∏

i=1

σi(E(xcx⊤c))

.

229

D.2 Local Recursive Grouping

The Local Recursive Grouping (LRG) algorithm is a local divide and conquer procedure for

learning the structure and parameter of the latent tree (Algorithm 6). We perform recursive

grouping simultaneously on the sub-trees of the MST. Each of the sub-tree consists of an

internal node and its neighborhood nodes. We keep track of the internal nodes of the MST,

and their neighbors. The resultant latent sub-trees after LRG can be merged easily to

recover the final latent tree. Consider a pair of neighboring sub-trees in the MST. They have

two common nodes (the internal nodes) which are neighbors on MST. Firstly we identify

the path from one internal node to the other in the trees to be merged, then compute the

multivariate information distances between the internal nodes and the introduced hidden

nodes. We recover the path between the two internal nodes in the merged tree by inserting

the hidden nodes closely to their surrogate node. Secondly, we merge all the leaves which

are not in this path by attaching them to their parent. Hence, the recursive grouping can

be done in parallel and we can recover the latent tree structure via this merging method.

Lemma D.1. If an observable node vj is the surrogate node of a hidden node hi, then the

hidden node hi can be discovered using vj and the neighbors of vj in the MST.

This is due to the additive property of the multivariate information distance on the tree and

the definition of a surrogate node. This observation is crucial for a completely local and

parallel structure and parameter estimation. It is also easy to see that all internal nodes in

the MST are surrogate nodes.

After the parallel construction of the MST, we look at all the internal nodes Xint. For

vi ∈ Xint, we denote the neighborhood of vi on MST as nbdsub(vi;MST) which is a small

sub-tree. Note that the number of such sub-trees is equal to the number of internal nodes

in MST.

230

For any pair of sub-trees, nbdsub(vi;MST) and nbdsub(vj ;MST), there are two topological re-

lationships, namely overlapping (i.e., when the sub-trees share at least one node in common)

and non-overlapping (i.e., when the sub-trees do not share any nodes).

Since we define a neighborhood centered at vi as only its immediate neighbors and itself

on MST, the overlapping neighborhood pair nbdsub(vi;MST) and nbdsub(vj;MST) can only

have conflicting paths, namely path(vi, vj;N i) and path(vi, vj ;N j), if vi and vj are neighbors

in MST.

With this in mind, we locally estimate all the latent sub-trees, denoted as N i, by applying

Recursive Grouping [41] in a parallel manner on nbdsub(vi;MST), ∀vi ∈ Xint. Note that the

latent nodes automatically introduced by RG(vi) have vi as their surrogate. We update the

tree structure by joining each level in a bottom-up manner. The testing of the relationship

among nodes [41] uses the additive multivariate information distance metric (Appendix D.1)

Φ(vi, vj; k) = dist(vi, vk)− dist(vi, vk) to decide whether the nodes vi and vj are parent-child

or siblings. If they are siblings, they should be joined by a hidden parent. If they are parent

and child, the child node is placed as a lower level node and we add the other node as the

single parent node, which is then joined in the next level.

Finally, for each internal edge of MST connecting two internal nodes vi and vj , we consider

merging the latent sub-trees. In the example of two local estimated latent sub-trees in

Figure 5.2, we illustrate the complete local merging algorithm that we propose.

D.3 Proof Sketch for Theorem 5.1

We argue for the correctness of the method under exact moments. The sample complexity

follows from the previous works. In order to clarify the proof ideas, we define the notion of

surrogate node [41] as follows.

231

Definition D.1. Surrogate node for hidden node hi on the latent tree T = (V, E) is defined

as Sg(hi; T) := arg min
vj∈X

dist(vi, vj).

In other words, the surrogate for a hidden node is an observable node which has the minimum

multivariate information distance from the hidden node. See Figure 5.2(a), the surrogate

node of h1, Sg(h1; T), is v3, Sg(h2; T) = Sg(h3; T) = v5. Note that the notion of the surrogate

node is only required for analysis, and our algorithm does not need to know this information.

The notion of surrogacy allows us to relate the constructed MST (over observed nodes) with

the underlying latent tree. It can be easily shown that contracting the hidden nodes to their

surrogates on latent tree leads to MST. Local recursive grouping procedure can be viewed

as reversing these contractions, and hence, we obtain consistent local sub-trees.

We now argue the correctness of the structure union procedure, which merges the local sub-

trees. In each reconstructed sub-tree Ni, where vi is the group leader, the discovered hidden

nodes {hi} form a surrogate relationship with vi, i.e. Sg(h
i; T) = vi. Our merging approach

maintains these surrogate relationships. For example in Figure 5.2(d1,d2), we have the path

v3−h1−v5 inN 3 and path v3−h3−h2−v5 inN 5. The resulting path is v3−h1−h3−h2−v5, as

seen in Figure 5.2(e). We now argue why this is correct. As discussed before, Sg(h1; T) = v3

and Sg(h2; T) = Sg(h3; T) = v5. When we merge the two subtrees, we want to preserve the

paths from the group leaders to the added hidden nodes, and this ensures that the surrogate

relationships are preserved in the resulting merged tree. Thus, we obtain a global consistent

tree structure by merging the local structures. The correctness of parameter learning comes

from the consistency of the tensor decomposition techniques and careful alignments of the

hidden labels across different decompositions. Refer to Appendix D.4, D.7 for proof details

and the sample complexity.

232

D.4 Proof of Correctness for LRG

Definition D.2. A latent tree T≥3 is defined to be a minimal (or identifiable) latent tree if

it satisfies that each latent variable has at least 3 neighbors.

Definition D.3. Surrogate node for hidden node hi in latent tree T = (V, E) is defined as

Sg(hi; T) := arg min
vj∈X

dist(vi, vj).

There are some useful observations about the MST in [41] which we recall here.

Property D.1 (MST − surrogate neighborhood preservation). The surrogate nodes of any

two neighboring nodes in E are also neighbors in the MST. I.e.,

(hi, hj) ∈ E ⇒ (Sg(hi), Sg(hj)) ∈ MST.

Property D.2 (MST − surrogate consistency along path). If vj ∈ X and vh ∈ Sg−1(vj),

then every node along the path connecting vj and vh belongs to the inverse surrogate set

Sg−1(vj), i.e.,

vi ∈ Sg−1(vj), ∀vi ∈ Path(vj, vh)

if

vh ∈ Sg−1(vj).

The MST properties observed connect the MST over observable nodes with the original

latent tree T . We obtain MST by contracting all the latent nodes to its surrogate node.

233

Given that the correctness of CLRG algorithm is proved in [41], we prove the equivalence

between the CLRG and PLRG.

Lemma D.2. For any sub-tree pairs nbd[vi;MST] and nbd[vi;MST], there is at most one

overlapping edge. The overlapping edge exists if and only if vi ∈ nbd(vj ;MST).

This is easy to see.

Lemma D.3. Denote the latent tree recovered from nbd[vi;MST] as N i and similarly for

nbd[vj ;MST]. The inconsistency, if any, between N i and N j occurs in the overlapping

path(vi, vj;N i) in and path(vi, vj;N j) after LRG implementation on each subtrees.

We now prove the correctness of LRG. Let us denote the latent tree resulting from merging

a subset of small latent trees as TLRG(S), where S is the set of center of subtrees that are

merged pair-wisely. CLRG algorithm in [41] implements the RG in a serial manner. Let us

denote the latent tree learned at iteration i from CLRG is TCLRG(S), where S is the set of

internal nodes visited by CLRG at current iteration . We prove the correctness of LRG by

induction on the iterations.

At the initial step S = ∅: TCLRG =MST and TLRG =MST , thus TCLRG = TLRG.

Now we assume that for the same set Si−1, TCLRG = TLRG is true for r = 1, . . . , i − 1. At

iteration r = i where CLRG employs RG on the immediate neighborhood of node vi on

TCLRG(Si−1), let us assume that Hi is the set of hidden nodes who are immediate neighbors

of i− 1. The CLRG algorithm thus considers all the neighbors and implements the RG. We

know that the surrogate nodes of every latent node in Hi belong to previously visited nodes

Si−1. According to Property D.1 and D.2, if we contract all the hidden node neighbors to

their surrogate nodes, CLRG thus is a RG on neighborhood of i on MST.

As for our LRG algorithm at this step, TLRG(Si) is the merging between TLRG(Si−1)and N i.

The latent nodes whose surrogate node is j are introduced between the edge (i− 1, i). Now

234

that we know N i is the RG output from immediate neighborhood of i on MST. Therefore,

we proved that TCLRG(Si) = TLRG(Si).

D.5 Cross Group Alignment Correction

In order to achieve cross group alignments, tensor decompositions on two cross group triplets

have to be computed. The first triplet is formed by three nodes: reference node in group 1,

x1, non-reference node in group 1, x2, and reference node in group 2, x3. The second triplet

is formed by three nodes as well: reference node in group 2, x3, non-reference node in group

2, x4 and reference node in group 1, x1. Let us use h1 to denote the parent node in group 1,

and h2 the parent node in group 2.

From Trip(x1, x2, x3), we obtain P (h1|x1) = Ã, P (x2|h1) = B and P (x3|h1) = P (x3|h2)P (h2|h1)

= DE. From Trip(x3, x4, x1), we know P (x3|h2) = DΠ, P (x4|h2) = CΠ and P (h2|x1) =

P (h2|h1)P (h1|x1) = ΠEÃ, where Π is a permutation matrix. We compute Π as Π =√
(ΠEÃ)(Ã)†(DE)†(DΠ) so that D = (DΠ)Π† is aligned with group 1. Thus, when all the

parameters in the two groups are aligned by permute group 2 parameters using Π, thus the

alignment is completed.

Similarly, the alignment correction can be done by calculating the permutation matrices

while merging different threads.

Overall, we merge the local structures and align the parameters from LRG locla sub-trees

using Procedure 7 and 8.

235

D.6 Computational Complexity

We recall some notations here: d is the observable node dimension, k is the hidden node

dimension (k ≪ d), N is the number of samples, p is the number of observable nodes, and

z is the number of non-zero elements in each sample.

Multivariate information distance estimation involves sparse matrix multiplications to com-

pute the pairwise second moments. Each observable node has a d×N sample matrix with z

non-zeros per column. Computing the product x1x
T
2 from a single sample for nodes 1 and 2

requires O(z) time and there are N such sample pair products leading to O(Nz) time. There

are O(p2) node pairs and hence the degree of parallelism is O(p2). Next, we perform the

k-rank SVD of each of these matrices. Each SVD takes O(d2k) time using classical methods.

Using randomized methods [66], this can be improved to O(d+ k3).

Next on, we construct the MST in O(log p) time per worker with p2 workers. The structure

learning can be done in O(Γ3) per sub-tree and the local neighborhood of each node can be

processed completely in parallel. We assume that the group sizes Γ are constant (the sizes

are determined by the degree of nodes in the latent tree and homogeneity of parameters

across different edges of the tree. The parameter estimation of each triplet of nodes consists

of implicit stochastic updates involving products of k × k and d× k matrices. Note that we

do not need to consider all possible triplets in groups but each node must be take care by a

triplet and hence there are O(p) triplets. This leads to a factor of O(Γk3 + Γdk2) time per

worker with p/Γ degree of parallelism.

At last, the merging step consists of products of k × k and d × k matrices for each edge in

the latent tree leading to O(dk2) time per worker with p/Γ degree of parallelism.

236

D.7 Sample Complexity

From [6], we recall the number of samples required for the recovery of the tree structure that

is consistent with the ground truth (for a precise definition of consistency, refer to Definition

2 of [41]).

Lemma D.4. If

N >
200k2B2t

(
γ2
min

γmax
(1− distmax)

)2 +
7kM2t

γ2
min

γmax
(1− distmax)

, (D.1)

then with probability at least 1− η, proposed algorithm returns T̂ = T , where

B := max
xi,xj∈X

{√
max{‖E[‖xi‖2xjx⊤j]‖},max{‖E[‖xj‖2xix⊤i]‖}

}
,

M := max
xi∈X
{‖xi‖} ,

t := max
xi,xj∈X

{
4 ln(4

E[‖xi‖2‖xj‖2]− Tr(E[xix
⊤
j]E[xjx

⊤
i])

max{‖E[‖xj‖2xix⊤i]‖, ‖E[‖xi‖2xjx⊤j]‖}
n/η)

}
.

γmin := min
{x1,x2}

{σ
(
E[x1x

⊤
2]
)
}

γmax := max
{x1,x2}

{σ
(
E[x1x

⊤
2]
)
}

From [7], we recall the sample complexity for the faithful recovery of parameters via tensor

decomposition methods.

We define ǫP to be the noise raised between empirical estimation of the second order moments

and exact second order moments, and ǫT to be the noise raised between empirical estimation

of the third order moments and the exact third order moments.

237

Lemma D.5. Consider positive constants C, C ′, c and c′, the following holds. If

ǫP ≤ c

λk

λ1

k
, ǫT ≤ c′

λkσ
3/2
k

k

N ≥ C

(
log(k) + log

(
log

(
λ1σ

3/2
k

ǫT
+

1

ǫP

)))

L ≥ poly(k) log(1/δ),

then with probability at least 1 − δ, tensor decomposition returns (v̂i, λi) : i ∈ [k] satisfying,

after appropriate reordering,

‖v̂i − vi‖2 ≤ C ′
(

1

λi

1

σ2
k

ǫT +

(
λ1
λi

1√
σk

+ 1

)
ǫP

)

|λ̂i − λi| ≤ C ′

(
1

σ
3/2
k

ǫT + λ1ǫP

)

for all i ∈ [k].

We note that σ1 ≥ σ2 ≥ . . . σk > 0 are the non-zero singular values of the second order

moments, λ1 ≥ λ2 ≥ . . . ≥ λk > 0 are the ground-truth eigenvalues of the third order

moments, and vi are the corresponding eigenvectors for all i ∈ [k].

D.8 Efficient SVD Using Sparsity and Dimensionality

Reduction

Without loss of generality, we assume that a matrix whose SVD we aim to compute has no

row or column which is fully zeros, since, if it does have zero entries, such row and columns

can be dropped.

238

Let A ∈ R
n×n be the matrix to do SVD. Let Φ ∈ Rd×k̃, where k̃ = αk with α is a scalar,

usually, in the range [2, 3]. For the ith row of Φ, if
∑

i |Φ|(i, :) 6= 0 and
∑

i |Φ|(:, i) 6= 0,

then there is only one non-zero entry and that entry is uniformly chosen from [k̃]. If either

∑
i |Φ|(i, :) = 0 or

∑
i |Φ|(:, i) = 0, we leave that row blank. Let D ∈ Rd×d be a diagonal

matrix with iid Rademacher entries, i.e., each non-zero entry is 1 or −1 with probability

1
2
. Now, our embedding matrix [46] is S = DΦ, i.e., we find AS and then proceed with

the Nystrom [85] method. Unlike the usual Nystrom method [67] which uses a random

matrix for computing the embedding, we improve upon this by using a sparse matrix for the

embedding since the sparsity improves the running time and the memory requirements of

the algorithm.

239

Appendix E

Appendix for Spatial Point Process

Mixture model Learning

E.1 Morphological Basis Extraction

We aim to characterize the morphological basis for all cells with different size, orientation,

expression profiles and spatial distribution. The traditional sparse coding introduces too

many free parameters and is not suitable for compact morphological basis learning. We

instead propose Gaussian prior convolutional sparse coding (GPCSC). The intuition for using

convolution is due to the frequent replication of cells of similar shapes and the translation

invariance property. Traditional sparse coding would learn both the shape of the cell and the

location of the cell. But the convolutional sparse coding would only learn the shape here.

We characterize cell spatial distribution via decoding the sparse activation map.

To formulate the problem formally: let I be the image observed, then the convolutional sparse

coding model generates observed image I using filters (resembling cell shapes)F superposed

240

at locations indicated by the activation mapM (whose sparsity pattern indicates cell spatial

distribution and activation amplitude indicates gene expression profiles.)

Our goals of segmenting cells, extracting cell basis, and estimating gene profiles and cell

locations are reduced to this optimization learning problem:

min
Fm,Mn

m

∥∥∥∥∥
∑

n

In −
k∑

m=1

Fm ⋆ Mn
m

∥∥∥∥∥

2

F

+
∑

n

∑

m

λ ‖Mn
m‖0 ,

s.t. Fm(x, y) ≥ 0, ‖Fm‖2F = 1,M (n)
m (x, y) ≥ 0. (E.1)

where In is the nth image associated with the gene we are interested in with Dx×Dy pixels,

i.e., In ∈ RD×D.

We call the Fm ∈ Rd×d filter, where d is set to capture the local cell morphological informa-

tion. The spatial coefficient for image In is denoted as H
(n)
m ∈ R(D−d+1)×(D−d+1) which repre-

sents the position of the filter Fm being active on image In. More precisely, if Hn
m(x, y) = 1,

then Fm is active at In(x : x+ d− 1, y : y + d− 1).

E.1.1 Gaussian Prior Convolutional Sparse Coding

The popular alternating approach between matching pursuit to learn activation map M and

k-SVD to learn F is general applicable to any object detection problem in image processing.

However, this approach causes inexact cell number estimation as filters with multi-modality

(i.e., multiple cells) are learnt. We resolve this issue by proposing an Gaussian probability

density function prior on the filters to guarantee single cell detection and achieve accurate

cell number estimation. The support ofM is also limited to the local maxima indicating cell

centers. Note that our cell are not donut shaped, and it is reasonable to assume the darkest

point being the cell center.

241

Therefore, we optimize over the objective min ‖∑n I
n −∑m Fm ⋆ Mn

m‖22+
∑

n

∑
m λ ‖Mn

m‖0
such that Fm are 2 −D Gaussian densities with priori set top 2 principal radius and orien-

tation. Alternating Minimization is used to solving the optimization problem. If we define

the residual as
∑

n I
n −∑n

∑
m F̂m ⋆ M̂n

m, the gradient of the objective reduced to an it-

erative approach of updating filters, compute residual, optimizing activation map based on

residual, compute residual and updating filters again. It is easy to see that both ∂L
∂Fm

(i, j)

and ∂L
∂Hm

(i, j) are convolution of the residual and the other variable rotated by angle π.

E.1.2 Image Registration/Alignment

A structure represents a neuronanatomical region of interest. Structures are grouped into

ontologies and organized in a hierarchy or structure graph. We are interested in the so-

matosensory cortex area. So we use the affine transform from Allen Brain Institute [1, 115]

to align all the in-situ hybridization images with the Atlas brain to extract the correct region.

242

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Summary of Contributions
	Globally Guaranteed Online Tensor Decomposition
	Deployment of Scalable Tensor Decomposition Framework
	Learning Invariant Models Using Convolutional Tensor Decomposition
	Learning Latent Tree Models Using Hierarchical Tensor Decomposition
	Discovering Neuronal Cell Types Using Spectral Methods

	Tensor Preliminaries
	Background and Related Works
	Online Stochastic Gradient for Tensor Decomposition
	Applying Online Tensor Methods for Learning Latent Variable Models
	Dictionary Learning through Convolutional Tensor Decomposition
	Latent Tree Model Learning via Hierarchical Tensor Decomposition

	Thesis Structure

	Online Stochastic Gradient for Tensor Decomposition
	Preliminaries
	Stochastic Gradient Descent for Strict saddle Function
	Strict saddle Property
	Proof Sketch
	Constrained Problems

	Online Tensor Decomposition
	Optimization Problem for Tensor Decomposition
	Implementing Stochastic Gradient Oracle

	Experiments
	Conclusion

	Applying Online Tensor Methods for Learning Latent Variable Models
	Tensor Forms for Topic and Community Models
	Topic Modeling
	Mixed Membership Model

	Learning using Third Order Moment
	Dimensionality Reduction and Whitening
	Stochastic Tensor Gradient Descent
	Post-processing

	Implementation Details
	Symmetrization Step to Compute M2
	Efficient Randomized SVD Computations
	Stochastic Updates
	Computational Complexity

	Validation methods
	P-value Testing
	Evaluation Metrics

	Experimental Results
	Conclusion

	Dictionary Learning through Convolutional Tensor Decomposition
	Model and Formulation
	Convolutional Dictionary Learning/ICA Model

	Form of Cumulant Moment Tensors
	Alternating Least Squares for Convolutional Tensor Decomposition
	Algorithm Optimization to Reduce Memory and Computational Costs
	Challenge: Computing ((HH) .(GG))†
	Challenge: Computing M= C3(HG)((HH) .(GG))†

	Experiments: Comparison with Alternating Minimization
	Application: Learning Word-sequence Embeddings
	Word-Sequence Modeling and Formulation
	Evaluating Embeddings through Downstream Tasks

	Conclusion

	Latent Tree Model Learning through Hierarchical Tensor Decomposition
	Latent Tree Graphical Model Preliminaries
	Overview of Approach
	Structure Learning
	Parameter Estimation
	Integrated Structure and Parameter Estimation
	Local Recursive Grouping with Tensor Decomposition
	Merging and Alignment Correction

	Theoretical Gaurantees
	Experiments
	Validation

	Conclusion

	Discovering Cell Types with Spatial Point Process Mixture Model
	Introduction
	Motivations and Goals
	Previous Work

	Modeling Cell-types Using Spatial Point Process Features
	The Marked Spatial Point Process Representation of ISH Images
	Representing Spatial Point Processes Using Joint Feature Histograms

	Un-mixing Spatial Point Processes to Discover Cell-types
	Generative Model: A Variation of Latent Dirichlet Allocation
	Estimating the Cell-type Dependent Gene Expression Profile
	Estimating the Cell-type Dependent Spatial Point Process Histogram h

	Results and Evaluation
	Implementation Details
	Evaluating Cell-type Gene Expression Profile Predictions
	Comparison to Standard Average Gene Expression Features
	A Brief Analysis of Recovered Cell Types in Somatosensory Cortex

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix for Online Stochastic Gradient for Tensor Decomposition
	Detailed Analysis for Section 2.2 in Unconstrained Case
	Detailed Analysis for Section 2.2 in Constrained Case
	Preliminaries
	Geometrical Lemmas Regarding Constraint Manifold
	Main Theorem

	Detailed Proofs for Section 2.3
	Warm Up: Maximum Eigenvalue Formulation
	New Formulation
	Extending to Tensors of Different Order

	Appendix for Applying Online Tensor Methods for Learning LVMs
	Stochastic Updates
	Proof of Algorithm Correctness
	GPU Architecture
	Results on Synthetic Datasets
	Comparison of Error Scores

	Appendix for Dictionary Learning via Convolutional Tensor Method
	Cumulant Form
	Proof for Main Theorem 4.1
	Parallel Inversion of

	Appendix for Latent Tree Learning via Hierarchical Tensor Method
	Additivity of the Multivariate Information Distance
	Local Recursive Grouping
	Proof Sketch for Theorem 5.1
	Proof of Correctness for LRG
	Cross Group Alignment Correction
	Computational Complexity
	Sample Complexity
	Efficient SVD Using Sparsity and Dimensionality Reduction

	Appendix for Spatial Point Process Mixture model Learning
	Morphological Basis Extraction
	Gaussian Prior Convolutional Sparse Coding
	Image Registration/Alignment

