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ABSTRACT OF THE DISSERTATION

Return Distributions and Applications

by

Young Do Kim

Doctor of Philosophy in Economics

University of California, San Diego, 2007

Professor Allan G. Timmermann, Chair

The work presented in this dissertation was motivated by the observation

that return distributions are not-normally distributed. Under this circumstance,

some economic conclusions based on normal and elliptical distributions could be

altered. The three chapters of this dissertation investigate various economic prob-

lems using copula functions.

Chapter one studies the conditional time-varying dependence structure in

international stock markets. By comparing the conventionally used linear depen-

dence measure and various alternatives, this paper shows that some differences ex-

ist in the time path of dependence. Also, the ‘correlation breakdown’ phenomenon

clearly shown in the linear measure is not obvious when the copula model is ap-

plied.

Chapter two examines the impact of changes in the joint distribution of

asset returns on investors’ portfolio holdings under a CRRA utility function. Using

simulated returns with moments set to match actual data, I use linear projections

to explore how much of the variation in portfolio weights can be explained by dif-

ferent moments of the return distribution. Simple linear decision rules suggest that

expected returns can explain from 70% to more than 90% of portfolio holdings.

When higher-order moments are added to the decision rule, I find that volatility

and skewness are significant and add up to 10% to the explanatory power of the

xiv



linear projection, while kurtosis is insignificant in many cases. These results sug-

gest a simple and robust procedure for portfolio choice. This choice is based on

linear projections of portfolio weight on the first few (conditional) moments of the

return distribution. In a series of out-of-sample forecasting experiments, I find that

more information about risk factors may lead people to invest more aggressively.

However, this might ruin the performance of the investment, perhaps due to a

forecasting error.

Chapter three extends the complete conditional coverage test to multi-

variate cases to address whether different dependence structures are important

for evaluating interval forecasts. In an application to international stock returns, I

find that a GARCH-t model for the margins passes specification tests in most cases

regardless of dependence structure, while the GARCH-Normal does not. However,

there is little evidence that any specific dependence structure dominates others.

xv



I

Dependence Structure in

International Financial Markets:

Evidence from Asian Stock

Markets

I.1 Introduction

Dependence is one of the most important concepts to academic economists

and practitioners, because for multivariate distribution it matters to portfolio

choice and risk management. Although it is important, only the linear depen-

dence measure has been widely used because of its simplicity. However, such a

measure is only exhaustive under some very restrictive conditions, for example,

elliptical distributions. If such conditions are not satisfied, the linear measure may

fail to reveal true dependence among variables. The copula may be one possible

way to overcome shortcomings of the linear measure. The main goal of this paper

is to assess the dependence structure of international financial markets, especially

in Asian stock markets, using various dependence measures that can capture more

general measures of dependence than linear correlation.

1



2

Since 1990, technological development facilitated global portfolio man-

agement. As a result, there has been growing attention directed toward ‘Emerging

Markets.’ Asian equity markets, which form one major part of the Emerging Mar-

kets, also became one of the fastest growing financial markets. However, in late

1997, the Asian market experienced a financial crisis. The crisis first started in

Thailand, then spread rapidly, causing turbulence in other East Asian financial

markets, such as Indonesia, South Korea, Malaysia, and the Philippines. There

also were other regional financial crises during the 1990s, such as the Mexican cri-

sis in 1994, the Russian default crisis in 1998, and the Brazil devaluation in 1999.

This series of regional financial crises increased attention to the dependence struc-

ture between markets. People paid attention to dependence, because it is closely

related to one of the most fundamental concepts in finance, diversification.

There is recent research in international finance and econometrics regard-

ing dependence. Longin and Solnik (2001) find that international stock markets are

more correlated in bear markets, using extreme correlation with a copula model.

Ang and Chen (2002) and Ang et al. (2006) find that stock return correlation

increases during market downturns, and that downside correlations are related

to standard size and value factors, as well as momentum. However, recent ap-

plied math and econometrics research, such as Embrechts et al. (2002) and Patton

(2004), analyze the importance of an alternative measure of risk and apply this

alternative to asset allocation by comparing portfolio performances. As analyzed

in Embrechts et al. (2002), the conventional dependence measure has a weakness.

Rodriguez (2003) adopts the copula model with Markov switching parameters and

finds evidence of changing dependence structures during periods of financial tur-

moil, and increased tail dependence and asymmetry in times of high volatility.

If there are differences in dependence measured by the conventional measure and

alternatives, then many conclusions based on the conventional measure should be

re-considered and re-investigated. Therefore, it is important to take a look at

whether such a difference exists.
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As mentioned, this paper is devoted to Asian financial markets. Asian

markets have grown quickly; therefore, there has been growing practical and aca-

demic attention to these regional markets. Also, these markets have experienced

huge crises around 1997 and 1998. These events can give financial economists

some interesting features regarding market co-movements and dependence struc-

ture, and so on. There are a couple of aims of this paper. The first one is an

investigation of the differences between the linear measure and the alternative

copula model. The basic model is related to Patton (2001), who models copulas

with conditional time-varying parameters for the first time. Also, I utilize the dy-

namic conditional correlation multivariate GARCH model as a benchmark model

of the linear measure. Second, I investigate the difference in movements between

the general dependence and the tail dependence. Each measure has its own prop-

erties and interpretations. Finally, I investigate an asymmetric dependence effect

of negative and positive shocks.

I find that there exists differences between the linear and the copula-

based alternative measure. Specifically, when I closely examine the crisis period,

copula models do not in general provide an increasing dependence result for the

crisis period. Therefore this finding does not support the correlation breakdown

phenomenon, which is widely supported by the linear measure. This paper also

shows that there are different movements in general dependence parameters and

tail dependence parameters. Finally, I find that the asymmetric dependence effect

is not clear in this framework.

This paper is organized as follows. The next section provides an overview

of the copula as a measure of dependence and a comparison of different estimation

methods, with a brief simulation. In section 3, I provide a Dynamic Conditional

Correlation Multivariate GARCH model as a benchmark and a time-varying model

of estimation to apply to the Asian stock markets. Section 4 presents the empirical

results and section 5 concludes.
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I.2 Dependence Measures and Copula

I.2.A Correlation

In much of the economic literature, especially in the financial economic

literature, correlation is one of the most important notions. (Linear) correlation

is most frequently used in practice as a dependence measure between two or more

random variables.1 It is not going too far to say that almost all finance theories,

such as asset pricing theory and portfolio theory, are developed based on linear

correlation. However correlation is only one particular measure of stochastic de-

pendence among many variables and the correlation coefficient as a measure of

dependence should be used with caution. I summarize the basic properties of

linear correlation below:

Definition I.2.1. Let X and Y be a vector of random variables with nonzero finite

variances. Then the linear correlation coefficient for X and Y is

ρ(X, Y ) =
Cov(X, Y )√

V ar(X)
√
V ar(Y )

(I.1)

where Cov(X, Y ) = E(XY ) − E(X)E(Y ), the covariance of X and Y

This linear correlation is a popular measure of dependence, since it has

many advantages. First, it is easy to calculate. Second, it is also easy to ma-

nipulate under linear operations. Finally, it is invariant under strictly increasing

linear transformations. One other crucial feature of correlation is it is a natural

measure of dependence of spherical and elliptical distributions,2 such as the mul-

tivariate normal and the multivariate t-distribution. However, empirical research

shows that the distributions of the real world are hardly in this class of distribu-

tion. Usually, financial data are fat-tailed, leptokurtic and skewed; therefore, the

correlation coefficient might be inadequate in these cases. Therefore as already no-

ticed, correlation coefficients should be used with caution. Thus, it is worthwhile

1Embrechts et al. (2003) provide more dependence concepts. Other dependence concepts are presented such as
perfect dependence, concordance, Kendall’s tau and Spearman’s rho, tail dependence as well as linear correlation.

2For a more formal definition of spherical and elliptical distributions, see Embrechts et al. (2002).
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to re-examine conclusions in financial economic literature using the correlation

coefficient, if it does not provide correct information about the true dependence.

I.2.B Copula

What is a copula?3 In order to answer this question we need to know

about the joint distribution function. Basically, the dependence between the real-

valued random variables X1, ..., Xn is completely described by their joint distribu-

tion function

F (x1, ..., xn) = Pr[X1 ≤ x1, ..., Xn ≤ xn] (I.2)

Their joint distribution function can be separated into two parts. One is the part

where the dependence structure is described and the other is the part where the

marginal distribution is described.

A copula is a special multivariate joint distribution. We can construct

the copula by transforming the random variables X1, ..., Xn to standard uniform

marginal distributions. For simplicity, suppose each of random variables X1, ..., Xn

has a continuous marginal distribution(CDF), F1, ..., Fn. Then, this transformation

can be achieved by the following transformation T : Rn → Rn, (x1, ..., xn) 7→
(F1(x1), ...Fn(xn)). The joint distribution function C of (F1(x1), ..., Fn(xn)) is the

so-called copula of the random variables X1, ..., Xn. It follows that

F (x1, ..., xn) = Pr[F1(X1) ≤ F1(x1), ..., Fn(Xn) ≤ Fn(xn)]

= C(F1(x1), ..., Fn(xn))
(I.3)

The following is the formal definition of copula

Definition I.2.2. An n-dimensional copula is a function C : [0, 1]n → [0, 1] such

that 1. C is grounded and n-increasing. 2. C has margins Ck, k = 1, 2, ..., n, which

satisfy Ck(u) = u for all u in [0, 1].

Equivalently, an n-copula is a function C : [0, 1]n → [0, 1] with the fol-

lowing properties.

3For more formal definition and concepts, see Nelsen (1999).
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1. For every u in [0, 1]n, C(u) = 0 if at least one coordinate of u is 0, and C(u) = uk

if all coordinates of u are equal to 1 except uk.

2. For all (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n with ai ≤ bi for all i, VC([a,b]) ≥ 0, where

VC([a,b]) is the C-volume of [a,b]4

As mentioned above, the joint distribution can be separated into two

parts: the dependence structure part and the marginal distribution part. This

separating idea has led to the concept of a copula. The following theorem is

known as Sklar’s Theorem. This is the most important and fundamental theorem

in the theory and application of copula.

Theorem I.2.3. Let F be an n-dimensional distribution function with margins

F1, ..., Fn. Then there exists an n-copula C such that for all x in Rn,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (I.4)

If F1, ..., Fn are all continuous, then C is unique. Conversely, if C is an n-copula

and F1, ..., Fn are distribution functions, then the function F defined above is an

n-dimensional distribution function with margins F1, ..., Fn.

From this theorem, we can see that for continuous multivariate distribu-

tion functions, the univariate margins and the multivariate dependence structure

can be separated, and the dependence structure can be represented by a copula.

Although the copula has not achieved popularity in the economic literature yet,

there are many kinds of copulas that have been studied because of their nice proper-

ties.5 In this paper I use some popular copula models, including the one-parameter

family and the two-parameter family, which are used often in literature.6 Next, I

will introduce some properties of different copula models used in this paper.

4For the definition, see Embrechts et al. (2003).
5Joe (1997) summarizes many useful parametric families of copulas together with their properties. he includes

12 one-parametric, 10 two-parametric copulas, and some multivariate copulas as an extension of a (one-parameter)
bivariate copula family.

6It is possible to use different name for the same copula.
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I.2.B.a The Elliptical copula

Since the elliptical copula shares many of the properties of the multivari-

ate normal or t distribution, it is useful to use for general comparison. There are,

however, some drawbacks: elliptical copulas do not have closed form expressions

and are restricted to radial symmetry. This copula family has been derived from

certain families of multivariate distribution functions, so elliptical copulas are sim-

ply the distribution functions of componentwise transformed elliptically distributed

random vectors. I present two main elliptical copulas belonging to the elliptical

copula family and their properties.

Gaussian(Normal) copula If the univariate margins F1, · · · , Fn are Gaussians,

the random vector X = (X1, · · · , Xn) is multivariate normal, and the dependence

structure among the margins is described by the following copula function

CN(u1, · · · , un; Σ) = ΦΣ(Φ−1(u1), · · · ,Φ−1(un)) (I.5)

where ΦΣ denotes the joint distribution function of the n-variate standard normal

distribution function with linear correlation. matrix Σ, and Φ−1 is the inverse of

the standard univariate Gaussian. This copula form is called Gaussian copula.

When n = 2, the copula expression can be written as

CN(u, v; ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1 − ρ2)
exp

{−(r2 − 2ρrs+ s2)

2(1 − ρ2)

}
drds (I.6)

where ρ is simply the usual linear correlation coefficient of the corresponding bi-

variate normal distribution, so ρ ∈ (−1, 1). Remember that for nondegenerate

Gaussian margins with finite variances, ρ is just the usual linear correlation ma-

trix. But for nondegenerate non-Gaussian margins with finite variances, ρ does

not correspond to the linear correlation matrix exactly 7.

t copula If the univariate margins F1, · · · , Fn are Student t−distributions, the

random vector X = (X1, · · · , Xn) is multivariate t, and the dependence structure

7For more theoretical proof, see Embrechts et al. (2003).
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among the margins is described by the following copula function

Ct(u1, · · · , un; Σ, ν) = TΣ,ν(t
−1
ν (u1), · · · , t−1

ν (un)) (I.7)

where TΣ,ν denotes the joint distribution function of the n-variate standard Stu-

dent’s t distribution function with linear correlation. matrix Σ and the degree of

freedom ν, and t−1
ν is the inverse of the Student’s t distribution function. This

copula form is called Student’s t copula. When n = 2, the copula expression can

be written as

Ct(u, v; ρ, ν) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

(1 − ρ2)

{
1 +

r2 − 2ρrs+ s2

2(1 − ρ2)

}−(ν+2)/2

drds

(I.8)

where ρ is simply the usual linear correlation coefficient of the corresponding bivari-

ate tν-distribution if ν > 28. Like the Gaussian case, for nondegenerate Student’s t

margins with finite variances, ρ is just the usual linear correlation matrix. But for

nondegenerate non-Student’s t margins with finite variances, ρ does not exactly

correspond to the linear correlation matrix.

I.2.B.b The Archimedean copula

In contrast to the elliptical copula, the Archimedean copulas have closed

form expressions, allowing for a great variety of different dependence structures.

Also, it is relatively easy to construct and many parametric families of copulas

belong to this class. The general definition of Archimedean copula is the following:

Definition I.2.4. Let ϕ[−1] be the pseudo-inverse function of ϕ. An Archimedean

copula can be written in the following way

C(U1, ..., Un) = ϕ[−1][ϕ(U1) + ... + ϕ(Un)] (I.9)

for all 0 ≤ U1, ..., Un ≤ 1 and where ϕ is a continuous function, ϕ : [0, 1] → [0,∞],

termed a generator, of the copula satisfying:

8When ν ≤ 2, we cannot define the covariance matrix of Student’s t distribution. In this case we just interpret
ρ as being the shape parameter of the distribution.
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1. ϕ(1) = 0

2. ϕ(t) is a strictly decreasing function, ϕ′(t) < 0 for all t ∈ (0, 1)

3. ϕ(t) is a convex function, ϕ′′(t) ≥ 0 for all t ∈ (0, 1)9

This type of copula has nice properties to capture dependence in the

distribution tail. I summarize the concept of tail dependence and then I present

the most-used Archimedean copulas and their properties. Tail dependence10 is a

concept related to the amount of dependence in the upper-right-quadrant tail or

lower-left-quadrant tail of a multivariate distribution. This is very useful for inves-

tigating the dependence of extreme values. In many financial applications, espe-

cially in the financial contagion literature, a main concern is extreme events rather

than normal events. Therefore tail dependence gives more insight into analyzing a

high volatility period or some crises. An intuitive explanation of tail dependence

is a probability measure of extreme events, for instance, markets crashing together

or booming together.

Let (X, Y ) be a vector of continuous random variables with marginal

distribution functions F and G. The coefficient of upper tail dependence of (X, Y )

is

lim
u→1

Pr{Y > G−1(u)|X > F−1(u)} = λU (I.10)

provided that the limit λU ∈ [0, 1] exists. Then, X and Y have asymptotic upper

tail dependence if λU ∈ (0, 1], and asymptotic upper tail independence if λU = 0.

Since Pr{Y > G−1(u)|X > F−1(u)} can be written as

1 − Pr{X ≤ F−1(u)} − Pr{Y ≤ G−1(u)} + Pr{X ≤ F−1(u), Y ≤ G−1(u)}
1 − Pr{X ≤ F−1(u)}

(I.11)

the alternative definition is the following

Definition I.2.5. If a bivariate copula C is such that

λU = lim
u→1

(1 − 2u+ C(u, u))

1 − u
(I.12)

9For some background on bivariate Archimedean copulas see Genest and Rivest (1993). Also nice references
on this family copula in general is Nelsen (1999).

10This is based on Embrechts et al. (2003). Also see Joe (1997).
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exists, then C has upper tail dependence if λU ∈ (0, 1], and upper tail independence

if λU = 0.

The concept of lower tail dependence can be defined in a similar way.

The coefficient of lower tail dependence of (X, Y ) is

lim
u→0

Pr{Y < G−1(u)|X < F−1(u)} = λL (I.13)

provided that the limit λL ∈ [0, 1] exists. Then X and Y has asymptotic lower tail

dependence if λU ∈ (0, 1], and asymptotic lower tail independence if λL = 0. Since

Pr{Y < G−1(u)|X < F−1(u)} = Pr{Y ≤ G−1(u)|X ≤ F−1(u)} can be written as

Pr{X ≤ F−1(u), Y ≤ G−1(u)}
Pr{X ≤ F−1(u)} (I.14)

The alternative definition is the following:

Definition I.2.6. If a bivariate copula C is such that

lim
u→0

C(u, u)

u
= λL (I.15)

exists, then C has lower tail dependence if λL ∈ (0, 1], and lower tail independence

if λL = 0.

In the Gaussian copula, we can prove λU = 0 for ρ < 1 using a standard

result in the statistic theory11. Given the radial symmetry property of the Gaussian

distribution, the lower tail dependence also is null confirming the tail independence

in the Gaussian copula. In Student’s t copula, the tail dependence is λU = 2 −
2tν+1

[√
ν + 1 ·

√
1−ρ√
1+ρ

]
= λU , which is increasing in ρ and decreasing in ν. As the

number of degrees of freedom goes to infinity, λU tends to 0 for ρ < 1.

Frank Let ϕ(t) = − ln e−δt−1
e−δ−1

, where δ ∈ R\{0}. When n = 2,this gives the

Frank Copula form as the following

CF (u, v; δ) = −1

δ
ln

(
1 +

(e−δu − 1)(e−δv − 1)

e−δ − 1

)
, δ ∈ R\{0} (I.16)

11For a proof see Embrechts et al. (2003)
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The Frank copula is a strict12 Archimedean copula and characterized by upper and

lower tail independence. In this copula δ → 0 implies the independence copula,

i.e. CF (u, v; δ) = uv. δ → ∞ and δ → −∞ implies the upper Frèchet-Hoeffding

bound and the lower Frèchet-Hoeffding bound, respectively.13 is attained. But

lower and upper tail dependence is zero(λU = 0 and λL = 0). In general, the basic

feature of the Frank copula is symmetric and it assigns zero probability to events

that are deep in the both tails.

Gumbel Let ϕ(t) = (− ln t)δ, where δ ∈ [1,∞). When n = 2, this gives the

Gumbel Copula form14 as following

CG(u, v; δ) = exp
{
−
[
(− ln u)δ + (− ln v)δ

] 1
δ

}
, δ ∈ [1,∞) (I.17)

The Gumbel copula is a strict Archimedean copula and characterized by upper

tail dependence and lower tail independence. In this copula δ = 1 implies the

independence copula, i.e. CG(u, v; δ) = uv, and as δ → ∞, the upper Frèchet-

Hoeffding bound is attained. Lower tail dependence is zero(λL = 0) and upper tail

dependence is 2− 21/δ(λU = 2− 21/δ). In general, the basic feature of the Gumbel

copula is asymmetry and it assigns more probability mass to events in the upper

right tail.

Clayton (or generalized Cook and Johnson) Let ϕ(t) = t−δ−1
δ

, where δ ∈
[−1,∞)\{0}. When n = 2, this gives the Clayton Copula form as following

CC(u, v; δ) = max
{(
u−δ + v−δ − 1

)− 1
δ , 0
}
, δ ∈ [−1,∞)\{0} (I.18)

The Clayton copula is characterized by upper tail independence and lower tail de-

pendence. In this copula δ → 0 implies the independence copula, i.e. CC(u, v; δ) =

12If ϕ(0) = ∞, the ϕ is called as a strict generator and in this case, ϕ[−1] = ϕ−1 and C(U1, ..., Un) =
ϕ−1[ϕ(U1) + ...+ ϕ(Un)] is said to be a strict Archimedean copula.

13The upper Frèchet-Hoeffding bound is Min(u, v). This can be interpreted as perfect positive dependence
between random variables. Also the lower Frèchet-Hoeffding bound is min(u+ v− 1, 1) which can be interpreted
as perfect negative relationship.

14Longin and Solnik (2001) investigate the extreme correlation of international equity markets assuming each
marginal distribution as extreme value distribution(Generalized Pareto Distribution) and find asymmetric corre-
lation in right and left tail dependence. But the multivariate(more exactly bivariate) dependence function they
use is nothing but one of copulas, the Gumbel copula.
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uv. As δ → ∞, the upper Frèchet-Hoeffding bound is attained, and As δ = −1, the

lower Frèchet-Hoeffding bound is attained. Lower tail dependence is 2−1/δ(λL =

2−1/δ) and upper tail dependence is zero(λU = 0). In general, the basic feature of

Clayton copula is asymmetry and it assigns more probability mass to events in the

lower left tail.

I.2.B.c Other copula families

There are, of course, many other types of copulas. One well-known way to

construct copulas is using algebraic methods15, which use an algebraic relationship

between the joint distribution function and its margins. Here I introduce Plackett’s

copula.

Plackett In Plackett’s copula, a measure of dependence is the cross product

ratio, or odds ratio. Therefore this copula is restricted to the bivariate case. Using

the probability transforms u = F (x), v = G(y), we can write the dependence

measure as

θ =
C(u, v)[1 − u− v + C(u, v)]

[u− C(u, v)][v − C(u, v)]
(I.19)

and solve for C(u, v). Then, by the boundary condition for C(u, 0) and C(u, 1),

we can get the following form

CP (u, v; θ) =
1

2η

(
1 + η(u+ v) −

√
(1 + η(u+ v))2 − 4θηuv

)
, θ ∈ [0,∞)\{1}

(I.20)

where, η = θ − 1. In the Plackett copula, θ → 1 implies the independence copula

and the limits as θ goes to 0 and to ∞ are the lower Frèchet-Hoeffding bound and

the upper Frèchet-Hoeffding bound. Like the Gaussian and the Frank copula, the

tail dependence of this copula is 0. by the definition, the upper tail dependence is

lim
u→1

1 − 2u+ C(u, u)

1 − u
= lim

1 − 2u+ 1
2η

(
1 + 2uη −

√
(1 + 2uη)2 − 4θηu2

)

1 − u
(I.21)

15The other ways are the inversion methods, the geometric methods. For more theoretical explanation, see
Nelsen (1999)
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Solving this expression using L’Hospital’s rule, λU = 0. By the symmetry property,

the lower tail dependence also is 0.

Joe-Clayton This is one of two-parameter families and it is constructed by tak-

ing a particular Laplace transformation of a Clayton copula. Then, the functional

form is

CJC(u, v; θ, θ) = 1 −
(
1 − [(1 − ūθ)−δ − (1 − v̄θ)−δ − 1]−1/δ

)1/θ
, θ ≥ 1, δ > 0

(I.22)

The Clayton copula is obtained when θ = 1, and the Joe copula16 is obtained as

δ → 0. The upper Frèchet-Hoeffding bound obtains as θ → ∞ or δ → ∞. The

lower tail dependence parameter is 2−1/δ, independent of θ, and the upper tail

dependence parameter is 2 − 21/θ, independent of δ.

Table I.1 summarizes the characteristics of each copula. Also, Figure I.1

shows the contour plots of different copulas. Basically the Elliptical copula family,

the Frank and the Plackett are symmetric, and the Gumbel and the Clayton show a

high tendency to happen together in upper-right and lower-left corner, respectively.

However this tendency depends on each margin. Figure I.2 shows how different

margins affects the whole joint distribution. Depending on which margins are used,

we can see the different shape of the Gumbel copula contour plot. This is evidence

of the copula’s flexibility. In next section, I will discuss the model selection in

copula application.

I.2.C Model Specification

Using the copula seems to raise an issue about which type of copula

specification is right one among the many alternatives. This question is quite

natural. Although many studies, such as Baig and Goldfajn (1999), use well-known

distributions such as the multivariate normal distribution for modeling financial

16This copula is characterized by the upper tail dependence. For more information about this copula, see Joe
(1997)
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Table I.1 The Characteristics of Copulas

upper tail dep. lower tail dep. C∗
U C∗

I C∗
L

Normal CN(u, v; ρ) 0 0 ρ = 1 ρ = 0 ρ = −1
t Ct(u, v; ρ, ν) 2t̄

∗∗
ν+1

 

p

ν + 1

√
1 − ρ

√
1 + ρ

!

2t̄
∗∗
ν+1

 

p

ν + 1

√
1 − ρ

√
1 + ρ

!

ρ = 1 ρ = 0 ρ = −1

Frank CF (u, v; δ) 0 0 δ → ∞ δ → 0 δ → −∞
Gumbel CG(u, v; δ) 0 2 − 21/δ δ → ∞ δ = 1 -
Clayton CC(u, v; δ) −2−1/δ 0 δ → ∞ δ → 0 δ = −1
Plackett CP (u, v; θ) 0 0 θ → ∞ θ → 1 θ = 0

Note: CU , CI , and CL are used for the upper Frèchet-Hoeffding bound, independence and the lower
Frèchet-Hoeffding bound copulas, respectively.
t̄ν+1 denotes the tail of a univariate t-distribution.

markets, there is skepticism about using those distributions, because these may not

be correctly specified. In the copula literature, some authors, such as Embrechts

et al. (2002), are paying attention to this problem. The copula is nothing but

a joint distribution which has some nice properties, such as dividing the whole

distribution into two parts: the marginal distribution and dependence structure.

Therefore, one issue in the copula literature is choosing the ‘right’ or ‘best’ one

that provides the best fit with the data. In addition, since some copulas have

completely different dependence concepts, it is important to check whether some

copula models are appropriate to fit the data dependence structure. This procedure

usually can be done by goodness-of-fit tests statistically. Fermanian and Scaillet

(2003) suggest an informal test through nonparametric estimation using a kernel

method. Breymann et al. (2003) applied classical statistical tests such as χ2 and

the Anderson-Darling tests of a parametric copula specification to finance data.

Also, Chen et al. (2004) develop two simple goodness-of-fit tests for dependence

models. The first test is consistent but is recommended for testing the dependence

structure between a small number of assets because it requires the estimation of

a multivariate density function. Since I investigate the dependence structure of

bivariate cases in this paper, I will provide the first test result in Section I.417.

Another issue here is how to specify each marginal distribution and how

17See Genest and Rivest (1993) for Archimedean type copulas test, Fermanian et al. (2002) for the limiting law
of copula empirical processes, Fermanian (2003) for distribution free goodness-of-fitness test for i.i.d case, etc.
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Note: This graph shows how different margins in the same copula affect the contour shape.
Here the Gumbel copula with different margins shows a quite different shape. The
upper-left uses both normal margins. The upper-right uses the Normal and the student’s
t margin. The lower-left uses both the student’s t margins with different degree of
freedom parameter. The lower-right uses the Normal and the normalized Generalized
Error Distribution.

Figure I.2 Contour Plot of Gumbel Copula

to estimate the parameters in copulas. The copula is nothing but the joint distri-

bution, having a marginal distribution part and a dependence part. Therefore, if

we assume that the true copula belongs to a parametric family C = {Cθ, θ ∈ Θ},
then consistent and asymptotically normally distributed estimates of the parame-

ter θ can be obtained through Maximum Likelihood Estimation (MLE) methods.

There are mainly two estimation methods to be considered in this procedure: a
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parametric method and a semi-parametric method18. Parametric methods also

can be done using two different procedures: a one-step and a two-step estimation

estimation.

The one-step parametric method involves estimating the parameters of

margins and copula together. Given an assumption of each marginal distribution

and a parametric form of copula, the density of the copula function is

f(x1;α1, · · · , xn;αn; δ) = c(F1(x1;α1), · · · , Fn(xn;αn); δ) ·
n∏

i=1

fi(xi;αi) (I.23)

where fi is the density of the marginal distribution Fi, and αi and δ are the

parameters for each marginal distribution and for copula, respectively.

Suppose that we have data on n objects over T time periods which we are

interested in and the parameter vector is θ = (α1, · · · , αn; δ). The log-likelihood

function is the following:

l(θ) =

T∑

t=1

log(c(F1(x1,t;α1), · · · , Fn(xn,t;αn); δ)) +

T∑

t=1

n∑

i=1

log(fi(xi,t;αi)) (I.24)

The ML estimator θ̂ maximize equation (I.24) and it verifies the asymptotic nor-

mality.Durrleman et al. (2000)

√
T (θ̂ML − θ0) → N(0, I−1(θ0)) (I.25)

where I(θ0) is the Fisher Information matrix.

The two-step approach is sometimes called the Inference Functions for

Margins method (IFM). In the two-step approach, the marginal distribution pa-

rameters are estimated in a first step, and in the second step, we optimize the

copula likelihood for the copula parameter only. This procedure is less efficient

than the one step procedure. However, when there are large numbers of parame-

ters, the one-step approach result can be numerically misleading. The asymptotic

normality of the two-step estimators is verified in Joe and Xu (1996).

√
T (θ̂IFM − θ0) → N(0, V −1(θ0)) (I.26)

18for more formal detail about these two methods, see Genest et al. (1995)
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with V (θ0) the Godambe Information matrix. If we define the score function in

the following way g(θ) = (∂α1 l
1, · · · , ∂αn

ln, ∂δl
c), the Godambe Information matrix

is

V (θ0) = D−1M(D−1)′ (I.27)

where D = E[∂g(θ)′/∂θ] and M = E[g(θ)′g(θ)]. Note that the two step(IFM)

method could be viewed as a special case of the GMM with an identity weight

matrix.

The semiparametric estimation procedure, sometimes called the Canoni-

cal Maximum Likelihood (CML) method, is similar to the two-step procedure in

terms of two-step estimation. But it differs from the parametric method because

margins are left unspecified. This procedure reduces the risk on the right specifi-

cation of all margins, although it suffers from a loss of efficiency. The estimation

procedure of the semiparametric estimation is performed in two steps. In the first

step, the dataset (x1,t, · · · , xn,t), t = 1, · · ·T is transformed into uniform variates

(û1.t, · · · , ûn.t) using the rescaled empirical distributions, F̂n(·), defined as follows:

F̂n(·) =
1

T + 1

T∑

t=1

1{Xn,t≤·} (I.28)

where 1{Xn,t≤·} is the indicator function. In the second step, the copula parameters

are estimated as follows:

θ̂ = arg max

T∑

t=1

log(c(û1.t, · · · , ûn.t); θ)) (I.29)

The proposed estimator is shown to be consistent, asymptotically nor-

mal and fully efficient in independence case19, and the natural estimator of its

asymptotic variance is proved to be consistent. If the marginal distributions are

correctly specified, the two-step parametric and the semiparametric approaches

give the same results.

19Genest and Rivest (1993) and Genest et al. (1995) show this asymptotic result for independent and identically
distributed (i.i.d) data. But this is not hold for time-dependent data. Chen and Fan (2004) show the condition
for asymptotically normal and consistent in the class of β-mixing case.
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I.2.D Monte Carlo Results

In the parametric method, the specification of each margin is very im-

portant. Misspecified margins remain potential problem on the estimation of the

copula parameter. Table I.2 shows the impact of misspecified margin on the copula

parameter using Monte Carlo simulation. The design of the Monte Carlo simula-

tion is the following. In the first simulation, the true model is a bivariate Normal

copula with two AR-GARCH-Normal processes. The copula parameter, ρ, is equal

to 0.3 and each AR-GARCH process is the following:

Y1t = 0.05 + 0.01Y1,t−1 + e1t

e1t =
√
h1t · v1t, v1t ∼ i.i.d. N(0, 1)

h1t = 0.10 + 0.50h1,t−1 + 0.30e21,t−1

(I.30)

Y2t = 0.08 + 0.02Y2,t−1 + e2t

e2t =
√
h2t · v2t, v2t ∼ i.i.d. N(0, 1)

h2t = 0.02 + 0.45h2,t−1 + 0.35e21,t−1

(I.31)

The sample size n equals to 100, 500 and 1000. The pseudo model for the margins is

Gaussian N(µ, σ), that is, I estimate using a Gaussian instead of an AR-GARCH

process for each margin. The estimation procedures used here are the one-step

parametric, the two-step parametric, and the semiparametric method. This Monte

Carlo simulation is done 1000 times.

The second simulation reflects a similar setting except that the true model

is a Clayton copula (θ = 1.5) with two Gaussian margins (µ = 0, and σ = 2), and

the pseudo model for the margins is a student-t distribution. Table I.2 summarizes

this experimental result. According to this result, misspecified margins may lead to

negative bias in small samples, and this does not disappear even in large samples.

Although there is a tendency of upward bias in Panel B, using the nonparametric

estimation for each margin leads to smaller bias. Also, its Mean Squared Error

(MSE) is smaller than any other misspecified cases, and in large samples, MSE

is close to the correct specified case. Therefore, when we are not sure about the
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Table I.2 Effect of Misspecified Margins

Panel A ρ = 0.3
Incorrect Margins Correct Margins

One Step Two Step Semipara One Step Two Step

n=100
Bias -0.0229 -0.0206 0.0032 0.0003 -0.0117
MSE 0.0099 0.0099 0.0099 0.0090 0.0085

n=500
Bias -0.0271 -0.0266 -0.0145 -0.0047 -0.0070
MSE 0.0026 0.0025 0.0020 0.0017 0.0017

n=1000
Bias -0.0278 -0.0276 -0.0178 -0.0060 -0.0071
MSE 0.0017 0.0017 0.0012 0.0009 0.0009

Panel B θ = 1.5
Incorrect Margins Correct Margins

One Step Two Step Semipara One Step Two Step

n=100
Bias -0.3120 -0.2439 0.0684 0.0220 0.0156
MSE 0.1444 0.1195 0.1188 0.1047 0.1025

n=500
Bias -0.3107 -0.2486 0.0123 0.0053 0.0029
MSE 0.1054 0.0726 0.0193 0.0180 0.0178

n=1000
Bias -0.3074 -0.2457 0.0093 0.0061 0.0049
MSE 0.0991 0.0660 0.0107 0.0094 0.0094

correct marginal distributions, the semiparametric method offers a lot of gains and

little loss in estimation result. Figure I.3 shows the density plot of this simulation.

This also confirms that the incorrect margin assumption leads to bias which does

not disappear even in large samples.

I.3 Estimation Models

The main purpose of this paper is to estimate and assess the dependence

structure (parameter) of Asian markets using a copula model. Asian markets ex-

perienced a quite interesting rise and fall. Asian markets grew in the early 1990s

quickly, and suddenly plummeted together. Figure I.4 shows how the Asian market

indices changed during 1990s20, and for the purpose of comparison later, I separate

the sample into Thailand and the other countries. Each index is normalized to 100

on April 6th, 1990. As shown in Figure I.4, Thailand started to drop first around

early 1997 and then other markets crashed together, nearly 50% in most cases. The

20These indices are from Data Stream index
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Figure I.3 Simulation Density Plot

Hong Kong index dropped from nearly 600 to less than 300. This phenomenon is

named “Asian Flu.” Asian index except Japan also shows a sudden drop, implying

that this is not a one-country specific problem but a regional phenomenon. But

can this co-movement be explained by close relationships among these indices (or

markets)? There are a number of papers regarding this phenomenon. Specifically,

some literature reports that there is a significant change in the correlation between

the markets during the crisis period using the linear correlation coefficient.21 But

this conclusion could be from misleading evidence. As discussed in previous sec-

21One of literature about this problem is contagion literature. In order to detect the financial contagion between
the countries, many papers try to capture “Correlation Breakdown”, which means that a significant increase in
cross-market relationship after a shock to one or a group of countries. King and Wadhwani (1990) and Baig and
Goldfajn (1999) find that there is favorable evidence of correlation change between quiet and turbulent periods.
But recent papers, such as Boyer et al. (1999) and Forbes and Rigobon (2002), show the opposite conclusion, after
adjusting for upward bias in correlation coefficient.
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tion, the linear correlation coefficient is only one kind of dependence measure. In

addition if the joint distribution among variables is not a spherical or elliptical

distribution, this conclusion could fail to capture what really happened in their

dependence during this period. Therefore, this paper investigates the change in

dependence structure of Asian markets using different dependence measures.

I.3.A Data Description

The data used here are seven Asian Stock Market indices: Indonesia,

Hong Kong, S. Korea, Malaysia, Philippines, Thailand, and Taiwan. I use weekly

indices from the Data stream country index from April 6th, 1990 to September

24th, 2004, so there are total 756 data points.22 In this paper, I establish a bivariate

model23 between each country and Thailand, from which, people believe, the Asian

financial crisis started.24

Table I.3 shows descriptive statistics of each series. As usual, I take the

log-difference of each series and multiply by 100 to calculate each series return.

There is a significant skewness, although some are positive and some are negative,

and a significant kurtosis in each series. The most volatile market in terms of

standard deviation is the Taiwan market and the next are Thailand, S. Korea and

so on. As expected, every series strongly rejects the Jarque-Bera test, implying

non-normality of the series. This is one reason why using multivariate normal

distribution could be questionable.

I.3.B Model and Estimation Method

I.3.B.a Benchmark model

Asian markets seem to have high co-movement during the 1990s at the

index level. Also, each market shows similar volatility patterns in Figure I.5. Some

22Most of literature use the main stock market index in their empirical test. But the correlation between the
main stock market index and the Data stream country index is so high, therefore I assume that the coming result
would be similar. Also because of data availability of some countries, this data set starts from April 6th, 1990

23Of course it is possible to extend to multivariate model.
24Rodriguez (2003) does the same thing. He estimates the copula parameter between Thailand and each other

country for Asian markets and between Mexico and each other country for Latin-American markets.
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Note: Each index is normalized to 100 on April 6th, 1990. These indices are weekly data and from Data
Stream index data. Each graph of first three rows include the Thailand index scaled in right axis
and the corresponding country’s index scaled in left axis. The last row is Asian except Japan
index.

Figure I.4 Asian Market Index
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Table I.3 Descriptive Statistics Summary

IND HK KOR MAL PHI TWN THA ASIA

OBS 755 755 755 755 755 755 755 755
Mean 0.0111 0.0848 0.0329 0.0428 0.0525 -0.0152 0.0345 0.0206
Median -0.0271 0.1336 -0.0334 0.0605 0.0484 0.0312 0.0182 0.0606
Max 9.8681 6.1068 7.3602 10.0140 6.4019 11.1160 10.9730 5.0429
Min -8.8741 -8.7794 -8.5012 -8.6603 -9.1786 -10.2990 -11.6760 -6.6433
Std. Dev 1.9052 1.5353 1.9867 1.4886 1.5488 2.0856 2.0796 1.1715
Skewness 0.2187 -0.4835 -0.0449 -0.0740 -0.3004 0.1475 0.0973 -0.5185
Kurtosis 7.1381 5.9980 4.8627 9.3608 6.5603 6.9559 6.5804 5.8655
J-B stat. 539.8 309.1 107.9 1263.6 406.2 490.4 400.5 289.2
J-B p-val. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: This table presents descriptive statistics of each country series. The sample period runs from
April 6th, 1990 to September 24th, 2004.
Under the null hypothesis, the Jarque-Bera test statistics has a χ2 distribution with degree of
freedom 2.

markets, such as Indonesia, Taiwan, Thailand, were very volatile around 1990, but

in general, during the first half of 1990s, each market was relatively tranquil.

After that, they became so volatile, around 1997, starting from Thailand. Other

markets became volatile after Thailand. People call this phenomenon “Asian Flu.”

However, one thing noticed here is that after 2 years since 1997 it became less

volatile, although there are some differences in degree. Asian index except Japan

shows less volatility, but more volatility compared to the first half of 1990s as

a whole. Therefore, it is interesting to take a look at the dependence structure

changing as time goes on.

I use the copula framework to detect the change in dependence structure.

Of course, there is a huge literature in which researchers investigate the dependence

structure using the correlation coefficient. In this paper, I use the Dynamic Condi-

tional Correlation Multivariate GARCH model(DCC-MVGARCH) introduced by

Engle and Sheppard (2001) and Engle (2002) as the benchmark model of the cop-

ula framework. According to correlation coefficient literature, there exists evidence

of increases in correlation during the volatile period in sample25. More specifically,

25Although this result is skeptical in Boyer et al. (1999) and Loretan and English (2000), and etc, most academic
literature and non-academic articles tend to accept that.



25

Note: This graph shows that Asian markets became highly volatile around 1997 and became less
volatile but a bit more volatile comparing to the first half of 1990s as a whole.

Figure I.5 Asian Market Return from 1990 and 2004
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some recent literature, such as Tse (2000) and Engle (2002), report that conditional

correlation between equity returns is not constant. Since I use the conditional cop-

ula framework, previously introduced by Patton (2001), it is more attractive to use

the conditional correlation coefficient rather than to use the unconditional corre-

lation. In the DCC-MVGARCH model, univariate GARCH models are estimated

for each asset series, and then, using the standardized residuals resulting from

the first step, a time varying correlation matrix is estimated using a simple spec-

ification. This parameterization preserves the simple interpretation of univariate

GARCH models, so it is easy to compute correlation estimator. Therefore, I use

the DCC-MVGARCH model to parameterize the time varying correlation matrix.

Once the univariate volatility models are estimated, the standardized residuals of

each univariate series are used to estimate the dynamics of the correlation. The

conditional correlation matrix in a DCC multivariate GARCH model is modeled

as

rt|Ft−1 ∼ N(0, Ht)

Ht ≡ DtRtDt

(I.32)

where Dt is the k × k diagonal matrix of time varying standard deviations from

univariate GARCH models with
√
hit on the ith diagonal, and Rt is the time

varying correlation matrix. The proposed dynamic correlation structure is

Qt =
(
1 −

∑M
m=1 αm −

∑N
n=1 βn

)
Q+

∑M
m=1 αm(ǫt−mǫ

′
t−m) +

∑N
n=1 βnQt−n

Rt = Q∗−1
t QtQ

∗−1
t

(I.33)

where Q is the unconditional covariance of the standardized residuals resulting

from the first stage estimation, and

Q∗−1
t =





√
q11 0 0 · · · 0

0
√
q22 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · √
qkk





so that Q∗
t is a diagonal matrix composed of the square root of the diagonal el-

ements of Qt. The typical element of Rt will be of the form ρij,t = qij,t/
√
qiiqjj.
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In this paper, the lag of DCC MVGARCH model is DCC(1,1), which means that

m = 1 and n = 1 in equation (I.33) for simplicity. I do not report the parame-

ter estimates for DCC-MVGARCH model in this paper as these are not of direct

interest. However I will provide the time-varying conditional correlation plot in

order to compare to the estimation result of time varying copula model. The

other point that should be mentioned here is that I compare Thailand and each

country here. Although it is possible to estimate a number of series together in

DCC-MVGARCH model, it is more reasonable to match only a pair of countries

for comparison purposes.

I.3.B.b Time-varying Dependence Model

Now, I introduce the copula model to estimate the dependence structure

(each type copula parameter) for the Asian Markets during the 1990s. Simply by

allowing time-variation in the dependence parameter, I investigate how volatile pe-

riods affect the dependence between markets, how persistent the shock effect is, as

well as how different the dependence of copula is, compared to the linear conditional

correlation represented by the DCC-MVGARCH model. The conditional copula

model was first investigated by Patton (2001). Jondeau and Rockinger (2001) also

use the conditional copula model. Recently, Dias and Embrechts (2003) also apply

this method with high frequency data. For more theoretical justification about the

conditional copula, see Patton (2001).

In order to estimate a bivariate (or multivariate) distribution, the first

thing to do is to make an assumption about each univariate marginal distribution.

After that, we can estimate the dependence structure using each copula. In this

paper, I assume each marginal distribution follows three different processes. The

first one is an AR(p)-GARCH(1,1) normal process for simplicity.26 The AR(p)-

GARCH(1,1) normal process is the following form:

26This assumption could be reconsidered. Although GARCH process can capture the time varying volatility
of each series, each series has different feature which would not be considered in GARCH process. Table I.3 also
show that there is a skewness and a high kurtosis.
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yi,t = µi + λ1yi,t−1 + · · ·+ λpyi,t−p + εi,t for i = 1, 2

εi,t|It−1 ∼ N(0, hi,t−1)

hi,t = ci + αihi,t−1 + βiε
2
i,t−1

(I.34)

The second specification of each margin is an AR(p)-GARCH(1,1)-t pro-

cess introduced by Bollerslev (1987). General financial return data shows fat-tailed

and leptokurtic properties. Therefore, it is more reasonable to assume that each

margin process is an AR(p)-GARCH(1,1)-t process rather than just an AR(p)-

GARCH(1,1) normal process. The AR(p)-GARCH(1,1)-t process follows

yi,t = µi + λ1yi,t−1 + · · ·+ λpyi,t−p + εi,t for i = 1, 2√
ν

hi,t(ν − 2)
εi,t|It−1 ∼ t(ν)

hi,t = ci + αihi,t−1 + βiε
2
i,t−1

(I.35)

The last specification of each margin uses non-parametric estimation.

Wrong specification of each margin could be a source of a bias in estimation, as

seen in section I.2.C. The empirical distributions are calculated as the equation

(I.28).

After estimating each series process using three alternatives, the next

thing to do is to estimate the copula parameter. This is of course a two step esti-

mation procedure. Although estimating all parameters together would give more

efficient results, it is extremely hard to estimate all parameters at one time using

maximum likelihood estimation with many parameters. In the simple bivariate case

with a simple GARCH(1,1) normal process, for example, we have 9 parameters:

4 parameters from each GARCH(1,1) process and 1 dependence parameter from

the copula. Further, when we allow a time-varying dependence parameter, then

the number of parameters increases again. The dependency parameter(s) of the

copula may be modeled as a convoluted expression of the parameters. Therefore,

this two step estimation is convenient.

Estimating a copula parameter can be done by maximum likelihood es-

timation. Since the copula function is the same as the joint distribution function,
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it is easy to calculate the likelihood function. Let u = F (x; θx) and v = G(y; θy),

where θx and θy are the vectors of parameters of each marginal distribution. Given

C(u, v; δ) = C(F (x), G(y); δ), the copula density is

c(u, v; δ) =
∂2C(u, v; δ)

∂u∂v
(I.36)

Then the joint density of an observation (xt, yt) is

c(x, y; δ) =
∂2C(u, v; δ)

∂u∂v
· ∂u
∂x

· ∂v
∂y

(I.37)

= c(u, v; δ) · f(x) · g(y)

The likelihood of each observation is the same as the joint density of

an observation (xt, yt), so that the log-likelihood of a sample, as a consequence,

becomes

L(xt, yt; δ, θx, θy) =

T∑

t=1

ln(c(ut, vt, ; δ) · f(xt) · g(yt)) (I.38)

=

T∑

t=1

ln(c(F (xt; θx), G(yt; θy); δ) · f(xt; θx) · g(yt; θx))

One thing noticed here is that the density estimation of each margin,

f(xt; θx) and g(yt; θx)) does not matter in estimating the copula parameter with a

two-step estimation method. Since equation (I.38) can be written as

L(xt, yt; δ, θx, θy) =

T∑

t=1

ln(c(ut, vt, ; δ) · f(xt) · g(yt)) (I.39)

=

T∑

t=1

{ln c(F (xt; θx), G(yt; θy); δ) + ln f(xt; θx) + ln g(yt; θx)}

and in fact each margin is estimated in the first step, thus margins are only constant

in the second step. In order to estimate the copula parameter, therefore, we only

need to maximize
T∑
t=1

ln c(F (xt; θx), G(yt; θy); δ). But in this paper I use equation

(I.38) in order to compare the likelihood value of each specification.

The following expressions are for each copula density.27

27Joe-Clayton copula density is long and complicated, so I do not present it here. See Andrew Patton’s
homepage(http://fmg.lse.ac.uk/ patton/).
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1. Normal copula density

cN(u, v; δ) =

1√
1 − ρ2

exp

{
Φ−1(u)2 + Φ−1(v)2 − 2ρΦ−1(u)Φ−1(v)

2(1 − ρ2)
+

Φ−1(u) + Φ−1(v)

2

}

(I.40)

2. Frank copula density

cF (u, v; δ) = δη
e−δ(u+v)

[η − (1 − e−δu)(1 − e−δv)]2
(I.41)

where η = 1 − e−δ.

3. Gumbel copula density

cG(u, v; δ) = CG(u, v; δ)(uv)−1 (ũṽ)δ−1

(ũδ + ṽδ)2−1/δ
[(ũδ + ṽδ)1/δ + δ − 1] (I.42)

where ũ = − ln u and ṽ = − ln v.

4. Clayton copula density

cC(u, v; δ) = (1 + δ)[uv]−δ−1(u−δ + v−δ − 1)−2−1/δ (I.43)

Given these functional forms, first I estimate the copula parameter as-

suming it is constant. Second, I estimate the parameter(ρ or δ), assumed as

time-varying, with the following form.

δt = η0 + η1δt−1 + f(u∗t−1) + g(v∗t−1)

f(u∗t ) = ω1u
∗
t + λ1u

∗−
t

g(v∗t ) = ω2v
∗
t + λ2v

∗−
t

(I.44)

where u∗t = ut− 0.5, v∗t = vt− 0.5, ut = F (xt; θx), vt = G(yt; θy), u
∗−
t ≡ min[u∗t , 0],

and v∗−t ≡ min[v∗t , 0].

Basically, this time-varying modeling is a modification of Patton (2001).

But there are some different points, compared to the model used in Patton (2001)

and others. The first thing I want to point out is the form of f(u∗t ) and g(v∗t ). I

use two different evolution equations as equation (I.44). In this model δt evolves
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over time by the force of u∗t and v∗t . This may be a reasonable assumption, since u∗t

and v∗t are the factors which constitute the copula distribution.28 Unlike previous

papers, I assume that each evolution force, u∗t and v∗t may have different effects on

the dependence structure depending on its sign. In order to express different effects,

I include u∗−t and v∗−t in the evolution equation. Since many recent papers find

an asymmetric effect of positive and negative tails, it might be an improvement to

model the asymmetric effect of u∗t and v∗t . Therefore, when u∗t ≤ 0, the effect on δt is

ω1+λ1, and when u∗t > 0, the effect on δt is just ω1. For v∗t , the same thing happens.

This asymmetric information effect is the so-called ‘leverage effect.’ This kind of

effect should be considered if time-variation also has an asymmetric response. In

GARCH model extensions, this idea is reflected in the Threshold ARCH (TARCH)

model, introduced in Glosten et al. (1993). The idea of TARCH models is to divide

the distribution of the innovations into disjoint intervals and then approximate a

piecewise linear function for the conditional standard deviation. If there are only

two intervals, the division is normally at zero, i.e., the influence of positive and

negative innovations on the volatility is differentiated. I apply this time-varying

evolution equation to each copula to capture the leverage effect on the dependence

structure in asset return. Also, separating g(u∗t ) and g(v∗t ) would give a clear

picture of how ut and vt affect the dependence structure.

Finally, I want to mention the transformation of the evolution equation.

Unlike Patton (2001) and others, I do not use the transformation of the evolution

equation. This is because for almost all copula models, the parameter space is

not the whole real number line, but is restricted to a certain range. For example,

the normal copula dependence parameter should be in a range between -1 to 1,

and the Gumbel copula dependence parameter should be in a range between 1 to

∞. Therefore, the transformation of the function is one way to solve the problem

in case parameters go over a certain range. Patton (2001) and others use, for

instance, δt = Λ(η0 + η1δt−1 + f(u∗t−1) + g(v∗t−1)), where Λ is any function where
28Here I use u∗t and v∗t instead of ut and vt. ut and vt are uniformly distributed in [0,1], therefore u∗t and v∗t

are uniformly distributed in [-0.5,0.5] mapping from R. I found that using u∗t and v∗t gives more likelihood rather
than using ut and vt in evolution equation.
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the range is restricted to be within a certain interval, such as a logistic function.

But if we can estimate this MLE procedure without the transformation, it would

be better for interpreting the marginal effect of shocks and the persistence on the

dependence structure directly. In this paper, I estimate equation (I.44) without

any transformation, along with a numerical trick.

I.4 Estimation Results

I.4.A Simple Correlation

Before talking about the copula estimation, it is worthwhile to take a

look at the linear correlation and the Spearman correlation of the data series. Ta-

ble I.4 shows the linear correlation and the Spearman correlation among the data

series. The linear correlation is one of many possibilities to evaluate dependence.

As mentioned, to use it we must assume that the data in the pairs come from

Normal distributions and the data are at least in the category of equal interval

data. If these two conditions are not met, another possibility is to use the Spear-

man (Rank) Correlation Coefficient. Specifically the copula dependence parameter

is easily converted to this rank correlation with closed form. The linear correla-

tion coefficients range from less than 0.15 to more than 0.43 with different pairs.

According to Table I.4, Thailand, where we believe the crisis was triggered, has

relatively high correlations with other countries, showing values of more than 0.35

in most cases. The Spearman correlations range from about 0.13 to 0.40. This

rank correlation is a little bit less than the linear correlation as a whole. The

mnemonics are HK for Hong Kong, IND for Indonesia, KOR for South Korea,

MAL for Malaysia, PHI for Philippines, TWN for Taiwan, and THA for Thailand.

Before going on to the estimation result, it is worthwhile to take a look

at Table I.5. Table I.5 comes from Joe (1997, pp.146-7), and it gives an indication

of the amount of dependence that exists as the δ varies for some copula models.

For example, Kendall’s τ 0.3 corresponds to 1.86, 1.25 and 0.86 for the Frank,
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Table I.4 Correlation Coefficients among Countries

Correlation HK IND KOR MAL PHI TWN THA Asia

HK 1.0000
IND 0.2885 1.0000
KOR 0.3722 0.2424 1.0000
MAL 0.4266 0.3471 0.2185 1.0000
PHI 0.3876 0.4039 0.1797 0.4127 1.0000

TWN 0.3210 0.1453 0.2628 0.2588 0.2662 1.0000
THA 0.3988 0.3683 0.3771 0.4306 0.4229 0.2664 1.0000
ASIA 0.8019 0.4078 0.5720 0.5745 0.4923 0.6409 0.5636 1.0000

Spearman HK IND KOR MAL PHI TWN THA ASIA

HK 1.0000
IND 0.2600 1.0000
KOR 0.3547 0.1941 1.0000
MAL 0.3884 0.2935 0.2324 1.0000
PHI 0.3170 0.3543 0.1633 0.3352 1.0000

TWN 0.3110 0.1354 0.2728 0.2351 0.2627 1.0000
THA 0.3598 0.3200 0.3067 0.3936 0.3657 0.2359 1.0000
ASIA 0.7587 0.3624 0.5650 0.5377 0.4385 0.6164 0.5232 1.0000

Gumbel and Clayton copulas respectively. For all three cases, Spearman’s ρs is

greater than Kendall’s τ for the corresponding value of δ.29 In the sample, the

Spearman’s ρ(s) ranges from about 0.14 to about 0.4. 0.4 corresponds to 0.313 of

a Normal copula parameter, 2.61 of a Frank copula parameter, and so on.

I.4.B Test and Estimation of the Marginal Model

As seen in section I.2.C, correct estimation of the marginal distribution

is important, especially in two-step estimation. First, I select the different lags

model for the mean equation. The variance equation remains the GARCH(1,1) for

each country. The selection criterion is the Akaike Information Criterion(AIC).

Using AIC, I finally choose AR(2) mean equation for Hong Kong, AR(7) for In-

donesia, AR(4) for Korea, AR(7) for Malaysia, AR(3) for the Philippines, AR(4)

for Taiwan, and AR(2) for Thailand. I do not report this estimation result, since

29Spearman’s ρs and Kendall’s τ are one of dependence measures. In brief both measure can be interpreted as
concordance of random variables.
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Table I.5 Parameter Values corresponding to given Kendall τ and Spearman ρ

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normal ρ 0.0 0.156 0.309 0.454 0.588 0.707 0.809 0.891 0.951 0.988 1.0
Frank δ 0 0.91 1.86 2.92 4.16 5.74 7.93 11.4 18.2 20.9 ∞

Gumbel δ 1 1.11 1.25 1.43 1.67 2.00 2.50 3.33 5.00 10.0 ∞
Clayton δ 0 0.22 0.50 0.86 1.33 2.00 3.00 4.67 8.00 18.0 ∞

ρs 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normal ρ 0.0 0.105 0.209 0.313 0.416 0.518 0.618 0.717 0.813 0.908 1.0
Frank δ 0 0.60 1.22 1.88 2.61 3.45 4.47 5.82 7.90 12.2 ∞

Gumbel δ 1 1.07 1.16 1.26 1.38 1.54 1.75 2.07 2.58 3.73 ∞
Clayton δ 0 0.14 0.31 0.51 0.76 1.06 1.51 2.14 3.19 5.56 ∞
Note: This table is from Joe (1997).

it is not the main concern of this paper. After that, I test whether the marginal

distribution assumption is correct using a variety of techniques. White (1982)

proposed one easy way to test model misspecification. To conduct this test, all

we have to do is the simple OLS regression of the constant unity on the vec-

tor, (∇ ln f̂t|t−1, [vec∇ ln f̂ ′
t|t−1(∇ ln f̂t−1|t−2, . . . ,∇ ln f̂t−λ|t−λ−1)]

′A′) ,t = 1, . . . , n,

where ln f̂t|t−1 is the score vector evaluated at the MLE θ̂, and A is a finite non-

stochastic p×k2λ matrix. Here k is a number of parameters. Then, given assump-

tion of some regularity conditions satisfied, nR2 or the explained sum of squares

of this repression
A∼ χ2

p, where R2 is the squared multiple correlation coefficient of

the OLS regression.30

White (1982) and Hamilton (1996) provided interpretation of this dy-

namic information matrix test in some special cases. For example, in the AR(p)-

GARCH(1,1) normal case, there are total 4+p parameters, 1+p in mean equation

and 3 in variance equation. The (1,1) element of ∇ ln f̂ ′
t|t−1∇ ln f̂t−1|t−2, which cor-

responds to a constant term in mean equation, is
εt
ht

εt−1

ht−1
. Thus, E

( εt
ht

εt−1

ht−1

)
= 0

as a moment condition can be interpreted as a 1st-order autocorrelation test, which

is itself interpretable as a dynamic information matrix test. By adding the (1,1)

elements of ∇ ln f̂ ′
t|t−1∇ ln f̂t−λ|t−λ−1, λ = 2, . . . , k, this test leads to tests that

30Under appropriate conditions this is asymptotically equivalent to the familiar Lagrange Multiplier(LM)
statistic.
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are asymptotically equivalent to LM statistics for kth-order autocorrelation. In

a similar fashion, the (2+p,2+p) element of ∇ ln f̂ ′
t|t−1∇ ln f̂t−1|t−2, which corre-

sponds to a constant term in variance equation, is
ε2
t − ht
2h2

t

ε2
t−1 − ht−1

2h2
t−1

. Therefore,

E
(ε2

t − ht
2h2

t

ε2
t−1 − ht−1

2h2
t−1

)
= 0 as a moment condition corresponds to ARCH(1) test

under appropriate conditions. This is asymptotically equivalent to Engel’s LM test

for ARCH(1). Again by adjoining (2+p,2+p) elements of ∇ ln f̂ ′
t|t−1∇ ln f̂t−λ|t−λ−1,

λ = 2, . . . , k we can get dynamic misspecification indicators which is asymptoti-

cally equivalent to LM tests for kth-order ARCH.

Second, in the AR(p)-GARCH(1,1) t case, we can obtain a similar in-

terpretation using the (1,1) and (2+p,2+p) elements of ∇ ln f̂ ′
t|t−1∇ ln f̂t−λ|t−λ−1,

λ = 1, 2, . . . , k. The (1,1) element when λ = 1 is
(ν + 1)εt

ht(ν − 2) + ε2
t

(ν + 1)εt−1

ht−1(ν − 2) + ε2
t−1

.

Thus, E
( (ν + 1)εt
ht(ν − 2) + ε2

t

(ν + 1)εt−1

ht−1(ν − 2) + ε2
t−1

)
= 0 implies E(εtεt−1) = 0, and this

moment condition corresponds to a 1st-order autocorrelation test. Again we

can expand this test for kth-order autocorrelation by adding (1,1) elements of

∇ ln f̂ ′
t|t−1∇ ln f̂t−λ|t−λ−1, λ = 2, . . . , k. Likewise, the (2+p,2+p) element when

λ = 1 is
νε2

t − ht(ν − 2)

2ht(ht(ν − 2) + ε2
t )

νε2
t−1 − ht−1(ν − 2)

2ht−1(ht−1(ν − 2) + ε2
t−1)

and again, the moment

condition, E
( νε2

t − ht(ν − 2)

2ht(ht(ν − 2) + ε2
t )

νε2
t−1 − ht−1(ν − 2)

2ht−1(ht−1(ν − 2) + ε2
t−1)

)
= 0 implies E

(
(νε2

t −

ht(ν−2))(νε2
t−1−ht−1(ν−2))

)
= E

(
ν2
(
ε2
t − ht

(ν − 2)

ν

)(
ε2
t−1 − ht−1

(ν − 2)

ν

))
=

0. Therefore, again, this moment condition leads to the test to detect ARCH(1)

effect. The ARCH(k) effect can be tested by adding the lagged terms in the same

way.

Table I.6 summarizes the dynamic information matrix test result. Gener-

ally speaking, this result tells that the GARCH-t distribution assumption is better

than the GARCH-Normal distribution assumption. Since the null hypothesis of

this test is no autocorrelation or no ARCH effect on the residuals, accepting the

null leads to the conclusion of correctly specified model. In GARCH-t assumption,

we cannot reject the null except a few cases, whereas we can reject the null in
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many cases with the GARCH-Normal assumption.

Another way to test the model misspecification can be done by suggestion

of Diebold et al. (1998). In their paper, they suggested examination of, first, a less

formal, but more revealing, graphical density estimate of the probability integral

transform series and then, second, the correlogram of (z − z̄), (z − z̄)2, (z − z̄)3,

and (z− z̄)4, where z is the probability integral transform series. Figure I.6 shows

the graphical density estimate of the probability integral transform residuals from

each country’s model selection with 20 bins.31 Basically, the histograms of the

first row, GARCH Normal assumption, are close to uniform shape , but they still

display slight peaks in the middle indicating that many of the realizations fall in

the middle of density in some cases, such as Indonesia, Malaysia, etc. However,

the second row, GARCH-t assumption, has a uniform shape, almost all within

the confidential interval with a few exceptions. This result favors the GARCH-t

distribution assumption rather than the GARCH Normal, in addition to previous

results. Of course, the last row looks like exact uniform distribution, since that is

the empirical CDF of each series.

The second step, suggested by Diebold et al. (1998), is an examination

of the correlogram of (z − z̄), (z − z̄)2, (z − z̄)3, and (z − z̄)4. Each one will

reveal dependence operative through the conditional mean, conditional variance,

conditional skewness, or conditional kurtosis. Figure I.7 to Figure I.9 show the

correlogram of (z − z̄), (z − z̄)2, (z − z̄)3, and (z − z̄)4.32 In the GARCH Normal

case, the correlograms shows that there is no serial correlation in the first four mo-

ments. Also, the GARCH-t case of Figure I.8 shows that this density specification

may be adequate for the return series. The correlograms remain good with few ex-

ceptions. Combining the histogram and the correlogram, we may think GARCH-t

specification is slightly better than GARCH Normal specification. Finally, Figure

I.9 shows that this may not be the best choice with potential risk, because there

exist huge autocorrelations, especially in the 2nd and 4th moments, in almost all
31I did the same thing with 40 bins. General results with 40 bins are similar to that with 20 bins.
32The two lines superimposed on the correlograms are Bartlett’s approximate 95% confidence intervals under

the null that z is i.i.d.



37

Table I.6 Model Specification Test using Dynamic Information Matrix Test

lags HK IND KOR MAL PHI TWN THA

Panel A: GARCH-Normal distribution
A

u
to

co
rr

el
at

io
n

1
0.8503 5.7113 4.0705 2.5521 0.3767 3.2056 10.0336

(0.3565) (0.0169) (0.0436) (0.1101) (0.5394) (0.0734) (0.0015)

5
3.7387 13.8467 12.4569 5.8859 2.2733 9.9303 15.3845

(0.5876) (0.0166) (0.0290) (0.3175) (0.8102) (0.0772) (0.0088)

10
14.4369 14.9453 13.4853 8.8019 6.1392 26.4379 23.7324
(0.1540) (0.1341) (0.1978) (0.5510) (0.8034) (0.0032) (0.0083)

15
23.4912 23.2111 30.1787 16.1799 10.2087 35.4794 28.0403
(0.0743) (0.0798) (0.0113) (0.3702) (0.8064) (0.0021) (0.0213)

20
27.2466 27.8538 31.3072 20.4749 20.6087 43.6089 38.4081
(0.1285) (0.1129) (0.0513) (0.4286) (0.4205) (0.0017) (0.0079)

A
R

C
H

1
1.8195 1.5894 2.4454 0.0572 2.5067 0.0617 4.0945

(0.1774) (0.2074) (0.1179) (0.8110) (0.1134) (0.8038) (0.0430)

5
5.1138 15.4305 7.5531 7.4327 9.1431 9.9205 15.7785

(0.4022) (0.0087) (0.1826) (0.1904) (0.1035) (0.0775) (0.0075)

10
16.0516 17.1467 10.3724 13.3393 20.3510 12.8134 19.1297
(0.0982) (0.0712) (0.4085) (0.2053) (0.0261) (0.2343) (0.0386)

15
26.7145 27.7635 12.9807 22.0452 25.2737 16.9328 33.6799
(0.0312) (0.0231) (0.6038) (0.1066) (0.0464) (0.3229) (0.0038)

20
34.0261 31.8023 14.9654 31.1824 41.0788 22.3142 37.3704
(0.0259) (0.0455) (0.7784) (0.0528) (0.0036) (0.3237) (0.0106)

Panel: GARCH-t distribution

A
u
to

co
rr

el
at

io
n

1
1.3594 2.3207 4.9285 2.3232 3.4687 2.0905 7.1426

(0.2436) (0.1277) (0.0264) (0.1275) (0.0625) (0.1482) (0.0075)

5
3.6293 9.6214 11.0785 6.5169 3.8932 5.7060 9.9440

(0.6039) (0.0867) (0.0498) (0.2591) (0.5649) (0.3359) (0.0768)

10
15.9059 11.9922 12.5937 9.0589 9.7866 15.9688 15.3052
(0.1024) (0.2856) (0.2473) (0.5265) (0.4594) (0.1005) (0.1213)

15
24.5899 19.2460 23.8850 10.7577 11.5846 18.8961 21.7799
(0.0557) (0.2028) (0.0671) (0.7696) (0.7102) (0.2185) (0.1137)

20
29.5198 22.6549 26.3133 12.2195 16.0939 27.6695 28.1775
(0.0780) (0.3061) (0.1557) (0.9083) (0.7108) (0.1175) (0.1053)

A
R

C
H

1
0.8209 3.7689 2.9385 0.1762 0.2395 0.6855 0.8722

(0.3649) (0.0522) (0.0865) (0.6747) (0.6246) (0.4077) (0.3503)

5
2.0766 13.2397 7.5944 5.6007 6.5345 7.2713 7.6636

(0.8384) (0.0212) (0.1801) (0.3470) (0.2576) (0.2012) (0.1758)

10
9.8835 13.0269 10.8593 7.5626 16.6627 9.5036 10.4248

(0.4508) (0.2222) (0.3686) (0.6715) (0.0822) (0.4851) (0.4040)

15
19.5135 21.8472 13.0687 15.0509 17.2308 12.7375 26.5267
(0.1914) (0.1119) (0.5970) (0.4478) (0.3053) (0.6226) (0.0328)

20
24.6252 23.1322 15.0023 22.7164 27.0544 15.7621 37.4775
(0.2161) (0.2823) (0.7763) (0.3029) (0.1337) (0.7313) (0.0103)

Note: This statistic follows χ2(p), where p is the lags. Parentheses are p-value.
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Note: z is the probability integral transform of residuals from each country’s model selection.

Figure I.6 Estimate of the Density of Each z
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countries33.

I.4.C Test and Estimation of the Bivariate Model

In this section I present, first, the goodness-of-fit test result suggested by

Chen et al. (2004). After that, dynamic dependence structure using the bench-

mark model, DCC-MVGARCH will be presented. Finally, by presenting another

dependence structure using the conditional time-varying copula model, we can see

the existence of different patterns in the models.

I.4.C.a Copula Specification test

Chen et al. (2004) develop two simple goodness-of-fit tests for some de-

pendence models. These tests determine whether some dependence models are

compatible with given data sets. The first one is a consistent test that requires

the kernel estimation of a multivariate density function. This test is easily applied

and computed when the dimension of data, d is small. The null hypothesis of this

test is

H0 : Pr(C(U1, · · · , Ud) = C0(U1, · · · , Ud;α0)) = 1 for some α0 ∈ A

The alternative is

H1 : Pr(C(U1, · · · , Ud) = C0(U1, · · · , Ud;α0)) < 1 for all α0 ∈ A

The test statistic can be computed as follows:

Ẑ1,t = F̂1(Y1,t)

Ẑj,t = C0j(F̂j(Yj,t; α̂|F̂1(Y1,t), · · · , F̂j−1(Yj−1,t))), j = 2, · · · , d, t = 1, · · · , n
(I.45)

where, α̂ is a
√
n-consistent estimator of α0 under the null, and F̂j is the empirical

distribution function. After that, we can calculate test statistic, În, as follows:

În =

∫ 1

0

· · ·
∫ 1

0

[ĝ(z1, · · · , zd) − 1]2dz1 · · ·dzd (I.46)

33Potential risk of higher moment autocorrelation would be investigated later. I leave this for the future study.
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Note: z is the probability integral transform of residuals from each country’s model selection. This shows sample autocorrelations of (z − z̄), (z − z̄)2,
(z − z̄)3, and (z − z̄)4.

Figure I.7 Estimate of the Correlograms of Powers of z (GARCH Normal)
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Note: z is the probability integral transform of residuals from each country’s model selection. This shows sample autocorrelations of (z − z̄), (z − z̄)2,
(z − z̄)3, and (z − z̄)4.

Figure I.8 Estimate of the Correlograms of Powers of z (GARCH t)
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Note: z is the probability integral transform of residuals from each country’s model selection. This shows sample autocorrelations of (z − z̄), (z − z̄)2,
(z − z̄)3, and (z − z̄)4.

Figure I.9 Estimate of the Correlograms of Powers of z (Empirical CDF)
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where ĝ(z1, · · · , zd) is the kernel estimator from {Ẑt ≡ (Ẑ1,t, · · · , Ẑd,t)}nt=1 as fol-

lows:

ĝ(z1, · · · , zd) =
1

nhd

n∑

t=1

[
d∏

j=1

Kh(zj , Ẑj,t)

]
(I.47)

where Kh is a univariate boundary kernel used in Hong and Li (2002)34. Under

the some appropriate conditions, the asymptotic null distribution of În is

nhd/2În − cdn
σd

−→ N(0, 1) in distribution under H0

where, cdn = h
d
2

"

( 1
h
− 2)

1
R

−1

k2(w)dw + 2
1
R

0

z
R

−1

k2
z(y)dydz

#d

, σ2
d = 2

8

<

:

1
R

−1

"

1
R

−1

k(u + v)k(v)dv

#2d

du

9

=

;

2

,

and, where, kz(y) = k(y)/
∫ z
−1
k(u)du.

Table I.7 shows the test results. I examine the goodness-of-fit of some

different copulas for the Asian Stock Market indices. Each panel in Table I.7 rep-

resents the test results of different marginal distributions. The first and second

panels use the data filtered by an AR(p)-GARCH(1,1) normal and an AR(p)-

GARCH(1,1)-t process, respectively. The last one is for the unconditional dis-

tribution of asset returns. That is, I transform the returns by their empirical

distribution functions35. Since the models used in this paper are bivariate models,

I use the first consistent test36. This table shows that it is difficult to reject the

null hypothesis in any case. That is, we may say that any copula model tested

here may be appropriate or ‘right’ one with some appropriate dependence param-

eter, α̂0. The first case results, Normal copula, may be consistent with Chen et al.

(2004). In their paper the proportion of rejections of the bivariate Normal copula

with GARCH filtering is 0.00 for a randomly selected collection of 100 pairs of

equities. One surprising result is that we cannot reject the null with other copula

models, either. This result may suggest that using various copula models for asset

returns may be appropriate in many cases37.
34To see the functional form, see Hong and Li (2002) and Chen, Fan and Patton (2004)
35In this test, we assume that the data are i.i.d through time, so GARCH standardized residuals may be

appropriate without more assumptions.
36When the dimension is large, this test may suffer from the “curse of dimensionality”. In such case, we can

use the second test proposed in Chen et al. (2004)
37This result is only for the constant parameter specification. However, even with the time-varying parameter

specification, we cannot reject the null in almost all cases. The results is available upon request.
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Table I.7 The Goodness-of-Fit Test with Constant Dependence Assumption

HK/THA IND/THA KOR/THA MAL/THA PHI/THA TWN/THA

Panel A: GARCH-Normal filter

Normal
-0.2655 -0.6774 -0.7754 -1.1620 -0.7100 -0.5151

(0.7906) (0.4982) (0.4381) (0.2452) (0.4777) (0.6065)

Frank
-0.0922 -0.5132 -0.6264 -1.1566 -0.3333 -0.2588

(0.9265) (0.6078) (0.5311) (0.2474) (0.7389) (0.7958)

Gumbel
-0.1256 -0.4140 -0.6376 -0.6265 -0.2284 -0.1586

(0.9001) (0.6789) (0.5238) (0.5310) (0.8193) (0.8740)

Clayton
0.2825 0.1083 -0.1097 -0.5581 0.1839 -0.4660

(0.7776) (0.9138) (0.9127) (0.5768) (0.8541) (0.6412)

J-C
-0.6146 -0.4593 -0.9041 -1.0311 -0.6170 -0.6875

(0.5388) (0.6460) (0.3660) (0.3025) (0.5373) (0.4917)

Panel B: GARCH-t filter

Normal
-0.2090 -0.5601 -0.8627 -1.1872 -0.5712 -0.6351

(0.8344) (0.5754) (0.3883) (0.2351) (0.5679) (0.5254)

Frank
-0.0503 -0.4392 -0.7293 -1.1864 -0.2253 -0.3188

(0.9599) (0.6605) (0.4658) (0.2355) (0.8218) (0.7499)

Gumbel
-0.0468 -0.2405 -0.8193 -0.6348 -0.0633 -0.2845

(0.9626) (0.8099) (0.4126) (0.5256) (0.9495) (0.7761)

Clayton
0.2796 0.2039 -0.1929 -0.6293 0.2744 -0.5112

(0.7798) (0.4192) (0.8470) (0.5292) (0.7838) (0.6092)

J-C
-0.6255 -0.3194 -1.0461 -1.1055 -0.4862 -0.8307

(0.5316) (0.7494) (0.2955) (0.2689) (0.6268) (0.4061)

Panel C: Nonparametric

Normal
0.3946 -0.1995 -0.4500 0.0417 0.3576 -0.4441

(0.6931) (0.8419) (0.6527) (0.9667) (0.7206) (0.6569)

Frank
0.5906 0.1981 -0.0119 0.4763 0.8633 -0.3623

(0.5548) (0.8430) (0.9905) (0.6339) (0.3880) (0.7172)

Gumbel
0.6689 -0.1607 -0.7612 0.5575 0.6884 -0.3552

(0.5036) (0.8723) (0.4466) (0.5772) (0.4912) (0.7225)

Clayton
0.3454 0.7889 0.4268 0.1395 1.1329 -0.0987

(0.7298) (0.4302) (0.6695) (0.8891) (0.2573) (0.9214)

J-C
-0.3866 -0.4923 -1.0626 -0.7329 -0.0383 -0.6047

(0.6991) (0.6225) (0.2880) (0.4636) (0.9694) (0.5454)

Note: Under the null hypothesis, the test statistics follow N(0, 1). Parentheses are p-value.
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I.4.C.b Dynamic Conditional Correlation Multivariate GARCH

First, I use the DCC-MVGARCH model as a benchmark model. Some

recent literature report that conditional correlations between equity returns is not

constant. The DCC-MVGARCH model is one of appropriate models to cap-

ture varying conditional correlation; for a comprehensive survey of multivariate

GARCH modeling, see Bauwens et al. (2003). Here I do not report the parameter

estimates using this model, since these parameter estimates are not main concerns.

I only present the graph which shows that correlation between the markets esti-

mated by DCC-MVGARCH, more specifically DCC bivariate GARCH model after

199038. Recall that the proposed dynamic correlation structure, Qt, is equation

(I.33).

In order to estimate this model, first we must filter the residuals by the

same AR(p) models used in conditional copula models. With these residuals, we

can estimate the DCC bivariate model39. Figure I.10 shows how the conditional

linear dependence changed during the 1990s. The horizontal line in each graph

is the constant unconditional linear correlation coefficient shown in Table I.4, and

the shaded period is from July 1st, 1997 to June 30th, 1999 for 2 years, the same

period shown in I.4 and I.5. This figure has some striking features. In fact Figure

I.5 shows the similar pattern of each country’s return, having a volatile period

around 1997 and some times after that. Interestingly, in the first half of 1997, the

dependence decreases almost to the lowest level. But for the next two years after

that, the linear dependence seems to increase nearly in all cases, and, eventually,

the linear dependence become higher than its constant level. In some cases the

linear dependence rises from almost negative to more than 0.5. This finding might

be an extension of previous literature, such as King and Wadhwani (1990), Pesaran

and Pick (2003), etc. In the 1990s, there was a wide agreement of the existence

of correlation breakdown phenomena, increasing dependence after a big shock.

38Although DCC-MVGARCH model is very flexible to use many variables, I only report the DCC bivariate
case. In fact the difference of result between two is not so much in terms of the shape of dynamics, so I just
present the DCC bivariate GARCH model result.

39This procedure can be done by the matlab program in UCSD-GARCH toolbox by Sheppard, K.
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Thus we can say that this paper provides evidence of increasing correlation in the

volatile period. However, there is no clear evidence that the highest dependence

in the shaded period is the highest in the whole sample period. Therefore, we can

say that the volatile return is a sufficient condition for the high linear dependence

between the variables, but is not necessary.

Another distinguished mark is that some pairs show increasing depen-

dence even after that period. In the KOR/THA and TWN/THA cases, the de-

pendence is slightly higher than the constant level after 2000. But this fact does

not apply to every pair. Generally speaking, we cannot see strong evidence of

higher correlation in the recent period(after 2000). The other pairs just show that

some higher correlations exist, but those are not huge in the entire sample period.

Another point regarding use of the DCC model should be made before

moving to dynamic copula estimation. The persistence of these dynamics can be

seen through the parameters in equation (I.33) with similar explanation of just

the univariate GARCH model. I do not report the parameter estimates here, but

the persistent parameters in DCC model, the sum of the innovation term and the

lagged correlation matrices in the DCC estimator, is close to 1. In particular, it

ranges from the lowest 0.953 in PHI/THA to the highest 0.995 in TWN/THA,

implying a highly persistent processes.

I.4.C.c Time Varying parameter Model with GARCH-t margins

In this section I present the estimation result of the dependence struc-

ture using various copula models. Section I.4.C.a justify use of various copula for

the Asian Market Stock returns. Recall that we can interpret the different copula

parameters differently. The Gaussian copula parameter is very close to the linear

correlation. For nondegenerate Gaussian margins with finite variance, this parame-

ter is just the same as the usual linear correlation. The Archimedean copula family

has a great variety of different dependence structures. The Frank copula parame-

ter is another dependence measure without tail dependence. Gumbel and Clayton
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Note: This graph shows that correlation between the markets estimated by DCC bivariate GARCH
model since 1990. The horizontal line in each graph is the constant linear correlation coefficient
estimated in the sample period. The shaded period is from July 1st, 1997 to June 30th, 1999
for 2 years.

Figure I.10 DCC-Bivariate GARCH Model
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copula parameters represent the upper and lower tail dependence structure, respec-

tively. Also, we cannot compare the degree of dependence just by the parameter

magnitude since the parameter spaces are different, although we can convert the

parameter value into the Kendall’s τ or Spearman’s ρ and compare the converted

value using Table I.5. Therefore, investigating different time-varying copula pa-

rameters would be meaningful work comparing to dynamic linear correlation. First

I will present the result with Gaussian and Frank copula model and then I will

present the Gumbel, Clayton and Joe copula results. I found that the GARCH-t

specification was slightly better than the GARCH normal specification. Therefore

I present the GARCH-t specification results as a parametric model. In addition I

also present the semi-parametric model results, inspired by section I.2.C as a ro-

bust example in the next section. Before showing the results, I briefly summarize

the likelihood value of each estimation with a constant dependence parameter in

Table I.8. As expected, GARCH-t specification has better likelihood value than

GARCH Normal specification with every case. However the log likelihood values

with semi-parametric estimation are the best in almost all cases.

Gaussian and Frank result The Gaussian case can be interpreted as close

to the conventional dependence measure40. The Frank case also can be thought

of as abnormal dependence measure without tail dependence. Table I.9 shows

the estimation result for the Normal copula and Table I.10 for the Frank copula.

Panel A contains results under the constant assumption and panel B with the time-

varying assumption shown in equation (I.44). There are a couple of things to notice

in general. First, the closest relation is shown in THA/MAL, then THA/PHI,

THA/HK, THA/IND, THA/KOR, and THA/TWN in descending order according

to panel A of both tables. This is not the same order of simple correlation coefficient

shown in Table I.4. THA/KOR has higher correlation than THA/IND in Table

I.4. This could be evidence of the failure of linear correlation. However, the

40t-copula also has this property. But estimating with t-copula takes more time comparing to Gaussian, since
this procedure include a lot of inverse calculation.
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Table I.8 Log Likelihood Value of Estimations with Constant Dependence

Hong Kong Indonesia S. Korea Malaysia Philippines Taiwan

Normal
GARCH-t -2806.3 -2896.2 -2989.2 -2651.9 -2784.3 -2998.4

GARCH Normal -2830.6 -2927.7 -3009.7 -2687.8 -2820.5 -3027.6
Semi Parametric -2648.3 -2770.4 -2654.5 -2746.5 -2641.1 -2805.5

Frank
GARCH-t -2811.7 -2897.6 -2993.4 -2657.5 -2789.1 -3001.8

GARCH Normal -2835.3 -2927.3 -3014.5 -2691.9 -2821.9 -3031.2
Semi Parametric -2656.5 -2777.5 -2665.2 -2754.7 -2650.7 -2807.8

Gumbel
GARCH-t -2811.4 -2904.1 -2991.4 -2665.3 -2793.8 -3003.0

GARCH Normal -2840.0 -2940.0 -3016.4 -2706.8 -2835.8 -3037.1
Semi Parametric -2655.9 -2765.3 -2652.2 -2753.2 -2644.2 -2806.7

Clayton
GARCH-t -2811.3 -2902.1 -2995.0 -2656 -2787.4 -2997.6

GARCH Normal -2844.8 -2937.8 -3019.8 -2699.9 -2831.8 -3028.0
Semi Parametric -2647.4 -2781.6 -2665.1 -2743 -2646.8 -2805.7

Joe-Clayton
GARCH-t -2802.9 -2898.4 -2986.4 -2651.7 -2782.7 -2995.9

GARCH Normal -2835.9 -2935.0 -3011.7 -2696.1 -2828.4 -3027.5
Semi Parametric -2638.9 -2760.8 -2645.6 -2732.9 -2632.2 -2800.4

Note: Each column represent the log likelihood value with different models where investigate the de-
pendence parameter with Thailand. For example, Hong Kong means the log likelihood value of
model using Hong Kong and Thailand.

Spearman’s ρ coefficient is the same order as a constant case in panel A. Second,

the Likelihood Ratio Test(LRT) statistics show that we can reject the null in all

cases at the 10% level . The null hypothesis is H0 : η1 = ω1 = λ1 = ω2 = λ2 = 0.

This infers that the additional parameters are meaningful given our power to detect

such differences, and implies that the dynamic specification seems preferable. In

Panel B, there are two things to notice. The first thing to notice is the significance

of parameters, the λ1 and λ2. These parameters represent the asymmetric shock

effect on the dependence structure. However, this effect is not significant except

a few cases and there is no consistency in their sign. Therefore we cannot say

that there is clear evidence of asymmetric dependence. The last thing to notice is
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Table I.9 Estimation Results for Normal Copula with GARCH-t Margins

Normal Hong Kong Indonesia S. Korea Malaysia Philippines Taiwan

OBS. 753 748 751 748 752 751

Panel A: Constant Coefficient

δ
0.3574 0.3034 0.2938 0.3824 0.3717 0.2408

(0.0299) (0.0314) (0.0314) (0.0291) (0.0296) (0.0339)
Likeli -2806.3 -2896.2 -2989.2 -2651.9 -2784.3 -2998.4

Panel B: Time Varying Coefficient

η0
-0.0302 -0.0163 -0.0430 -0.0031 0.0735 0.0392
(0.0085) (0.0102) (0.0101) (0.0105) (0.0344) (0.0489)

η1
0.9905 1.0000 1.0000 0.9919 0.9430 0.8958

(0.0018) (0.0220) (0.0066) (0.0053) (0.0250) (0.0689)

ω1
-0.0721 0.0155 0.0406 0.1288 -0.1530 -0.1055
(0.0546) (0.0825) (0.0889) (0.0396) (0.0868) (0.1293)

λ1
0.0203 -0.0079 -0.1940 -0.2700 0.1862 -0.0496

(0.0803) (0.0624) (0.1394) (0.0572) (0.1436) (0.2226)

ω2
0.1865 0.0888 0.0836 -0.1103 -0.0879 -0.0417

(0.0500) (0.0953) (0.0672) (0.0585) (0.0932) (0.1312)

λ2
-0.2865 -0.1249 -0.1458 0.2219 0.2242 0.1676
(0.0860) (0.0803) (0.1260) (0.0952) (0.1583) (0.2564)

Likeli -2791.7 -2891.4 -2971.8 -2640.4 -2778.9 -2993.1

LRT 29.2∗∗ 9.6∗ 34.8∗∗ 23.0∗∗ 10.8∗ 10.6∗

Note: The panel A is the model with constant assumption and the panel B is with time-varying
assumption. The numbers in parentheses are the standard errors.
LRT statistic follows χ2(5) and ∗∗ represents the rejection of the null at 5% significant level
and ∗, 10% significant level, respectively.

the persistence parameter. The persistence parameter, η1 is very high41. In some

cases it is even 1, implying a unit root process. THA/PHI and THA/TWN have

relatively low persistent parameters, though still bigger than 0.88. This implies

that the shock effect on the dependence structure lasts for a long time in most

cases.

The meaning of such a high persistence is clear in Figure I.11. Figure

I.11 shows the time path of the dependence parameters of both the Normal copula

and the Frank copula. The solid line represents the normal copula path scaled on

the left side axis and the dashed line represents the Frank copula path scaled on

41η1 is the persistence parameter, so the parameter space of η1 is limited between -1 to 1.
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Table I.10 Estimation Results for Frank Copula with GARCH-t Margins

Normal Hong Kong Indonesia S. Korea Malaysia Philippines Taiwan

OBS. 753 748 751 748 752 751

Panel A: Constant Coefficient

δ
2.2008 1.9133 1.7626 2.3672 2.3006 1.3527

(0.2293) (0.2259) (0.2249) (0.2293) (0.2293) (0.2251)
Likeli -2811.7 -2897.6 -2993.4 -2657.5 -2789.1 -3001.8

Panel B: Time Varying Coefficient

η0
-0.2085 -0.1106 -0.2606 -0.0801 0.5229 -0.0569
(0.0589) (0.1213) (0.0830) (0.0641) (0.2197) (0.1661)

η1
1.0000 0.9910 1.0000 0.9963 0.9526 0.9587

(0.0039) (0.0144) (0.0052) (0.0056) (0.0173) (0.0007)

ω1
-0.4720 0.3038 0.1109 0.9438 -1.6370 -0.1372
(0.4035) (0.3094) (0.5218) (0.3112) (0.6683) (0.6308)

λ1
0.3992 -0.3818 -0.8596 -2.1111 2.2039 -0.8968

(0.5669) (0.7001) (0.8533) (0.5853) (1.1809) (1.0214)

ω2
1.4531 0.3514 0.6494 -0.7079 -0.4537 0.0215

(0.3459) (0.4814) (0.4628) (0.4087) (0.6679) (0.5041)

λ2
-2.0785 -0.6497 -1.1968 1.4151 1.0525 0.0012
(0.5999) (0.7046) (0.7983) (0.6415) (1.1664) (0.9076)

Likeli -2798.7 -2894.2 -2980.5 -2648.9 -2782 -2996.6

LRT 26.0∗∗ 6.8 25.8∗∗ 17.2∗∗ 14.2∗∗ 10.4∗

Note: The panel A is the model with constant assumption and the panel B is with time-varying
assumption. The numbers in parentheses are the standard errors.
LRT statistic follows χ2(5) and ∗∗ represents the rejection of the null at 5% significant level
and ∗, 10% significant level, respectively.

the right side axis. The horizontal line is the constant dependence parameter of

both copulas in Panel A of I.9 and I.10. It seems there is more fluctuation in the

time-varying parameter of Frank copula, but it is not because of difference in mea-

surement, but because of scaling problems. For instance, at the end of the sample

period, in the HK/THA case, parameter of Frank copula almost reaches 5. This

implies the Kendall’s τ is about 0.45, and this also is about the same when the

normal copula parameter is 0.64. For more comparisons, see table I.5. Therefore

we can say that the implied dependence transformed to the same measure such

as the Kendall’s τ or Spearman’s ρ is similar in both cases. In Figure I.11, the

higher persistence parameter sustains the shock effect longer than the relatively
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lower persistence parameter case. For example, PHI/THA and TWN/THA have

comparatively lower persistence and the time-varying path of dependence param-

eter is just a small fluctuation along with the constant path. We can clearly see

that there are so many differences in the time path pattern within Figure I.11 with

different pairs. Remember that from Figure I.4 and Figure I.5 we can see the sim-

ilarity of the indices and the return paths-similar up and down phases and similar

volatile periods. However, we also can see that similarity does not guarantee the

similar pattern in the dependence path here.

In comparing Figure I.10 to Figure I.11, we immediately see there exist

some differences, sometimes substantially, in two different measurements of de-

pendence, while there still exist a lot of similarities. In the first case, HK/THA,

the up and down pattern seems to be similar. But recent period dependence is

much different. Using a copula parameter shows the stronger relationship of this

pair more than using the DCC-MVGARCH model, recently. When the copula

model is used, the second case, IND/THA, also shows higher dependence recently

and the third case, KOR/THA, shows much lower dependence around 1995. In

addition, the fourth case, MAL/THA, seems to be more persistent than when

DCC-MVGARCH is used. Needless to say about the last two cases, we can see

many different patterns in both models.

Focusing on the shaded period, the difference looks bigger. Unlike Figure

I.10, there is no clear and consistent evidence of increasing dependence during the

shaded period, although some pairs show the increasing dependence. KOR/THA is

in an increasing phase, but the increase began more than one year ago. MAL/THA

and PHI/THA even show decreasing dependence for 2 years. In other words, a

volatile period does not lead to higher dependence among samples automatically.

This is counter evidence of higher volatility results in the higher dependence in

King and Wadhwani (1990), Baig and Goldfajn (1999) and so on. As mentioned,

these papers used the correlation coefficient as a dependence measure and found

a significant increase in cross-market relationship after a shock to one or a group
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of countries, the so-called ‘Correlation Breakdown.’42 The previous section of

this paper also supports this phenomenon. But this phenomenon is not clear

and consistent in every pair when we use a different measure here. Although

HK/THA, IND/THA and KOR/THA show increasing relationship after mid-1997,

this explanation is not suitable to all cases. Therefore the conjecture that the high

volatility results in the higher relationship should be reconsidered. In addition, we

cannot see any relation between the bullish or bearish market phase in Figure I.4

and the up and down momentum of the dependence shown in Figure I.11. This

could be because of the failure of linear dependence measure, so it should be used

with caution. Dependence is one of the important concepts in the academic area

as well as in the applied area. However, only the linear dependence measurement

is mainly used in both areas. But this empirical finding would justify using this

new measure for existing conclusions made by the linear measure.

Gumbel, Clayton and Joe-Clayton result(tail dependence) In this part,

I present a different parameter estimation. As mentioned, some Archimedean cop-

ulas, such as Gumbel, Clayton and so on, are characterized by upper or lower tail

dependence. These tail dependences can be thought of as the probability of events

like joint low(high) extreme event happening, given that one has an low(high) ex-

treme event. Therefore these measures could have a special meaning in the risk

management area and if these are not similar to usually used dependence measures,

then it is also worthwhile to re-examine the conclusions made by using the con-

ventional measure. Recall that Joe-Clayton copula has two parameters and each

of them can match to lower tail(θ) and upper tail(δ) dependence. Since empiri-

cal results show that estimating Gumbel and Clayton separately and Joe-Clayton

alone do not have many differences in the pattern of time path of dependence

parameters, I only introduce the Joe-Clayton copula’s result here43.

42This in a huge area in economic literature. For more literature review, see Claessens et al. (2001), and for
some counter example, see Boyer et al. (1999) and Forbes and Rigobon (2002).

43When I estimate the Gumbel and the Clayton separately, the constant parameter estimates are bigger than
estimating Joe-Clayton copula solely in every case. For example, the estimate of Gumbel parameter is 1.2826 and
that of the upper tail parameter in Joe-Clayton is 1.1996 in THA/HK case. I think it is because of the interaction
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Note: This shows the time path of the dependence parameters of both Normal copula and Frank
copula. The solid line represents the normal copula path scaled on the left side axis and the
dashed line represents the Frank copula path scaled on the right side axis. The horizontal
line is the constant dependence parameter in both copulas.

Figure I.11 Time Path of Dependent Parameters of Normal and Frank
Copulas with GARCH-t Margins
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Table I.11 is the estimation result using the Joe-Clayton copula. Here the

first thing to notice is that the higher dependence parameter in normal or Frank

copula does not guarantee a higher tail dependence. While the closest relation is

shown in THA/MAL in panel A of Table I.9 and Table I.10, the highest estimate of

upper tail dependence is THA/HK case in panel A of Table I.11. The descending

order of upper tail dependence also is a little bit different, although the lower

tail dependence order is not so different. The order is THA/HK, THA/KOR,

THA/PHI, THA/MAL, THA/IND and THA/TWN in descending manner. This

result may suggest that usual dependence and tail dependence could have special

characteristics, and one does not infer any implication of the other.

Next, the Likelihood Ratio Test(LRT) statistics show that we can reject

the null in almost all cases at the 5% level. The null hypothesis is H0 : ηδ1 =

ωδ1 = λδ1 = ωδ2 = λδ2 = ηθ1 = ωθ1 = λθ1 = ωθ2 = λθ2 = 0. This also implies

that the additional parameters to capture the dynamics are meaningful and implies

that the dynamic specification seems preferable in most case. However, the last

one, THA/TWN, shows that we cannot reject the null even at the 10% level.

This implication will be clear with the next graph, so I will talk about this case

later. In Panel B, we can notice two things again. The parameter’s significance

does not confirm the asymmetric shock effect on the dependence structure. Even

though some of λδ1, λδ2, λθ1, and λθ2 are significant, there is no consistency in their

sign. Another evidence of unclear asymmetry effect is in Panel A. When I convert

the each constant estimates in Panel A into the implied tail dependence(λU =

2 − 21/θ and λL = 2−1/δ), again we cannot see evidence of asymmetry. In some

cases, the implied upper tail dependence is greater than the implied lower tail

dependence, and in some other cases the upper one is smaller than the lower one,

so there is no consistency.

between two parameters in Joe-Clayton. Recall that when θ = 1, Clayton copula is obtained, and Joe copula is
obtained as δ → 0. Therefore There could exists the interaction between them when θ 6= 1 or δ 9 0. Gumbel and
Clayton results are available upon the request. And estimating Joe-Clayton copula is extremely hard and often
does not converge well, since the number of parameters is 12. I use Gumbel and Clayton estimation results as the
initial values for MLE routine. Even though estimating Gumbel and Clayton is not an easy task, this is much
easier than just estimating Joe-Clayton’s 12 parameters together in one time.
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Another thing to notice is that persistent parameter is also very high,

sometimes even 1 in this model again. Note that THA/PHI and THA/TWN

again have relatively low persistent parameters, ηδ1 and ηθ1.

Although the persistent parameters seem to be high and similar, the time

path of each parameter does not look similar. Figure I.12 represents the dynamics

of each lower and upper tail parameter. The upper line represents the upper tail

parameter(δt) path and the lower line represents the lower tail parameter(θt) path.

The horizontal line is the constant dependence parameter of Panel A. First of all,

these graphs do not seem to be similar to Figure I.11, although there still exists a

similar pattern in some sample period. I think that this is because of the charac-

teristics of tail dependence. As mentioned, this is further evidence that the usual

dependence and tail dependence could have their own special characteristics and

one cannot infer any implication of the other. Secondly, there is no clear evidence

that the volatile period has higher tail dependence at all in general. Again for the

shaded period, we cannot see the increasing pattern in general. In many cases,

the upper or lower dependence is even lower than the other periods during this

period. Another thing to be mentioned is that the parameter space are restricted

like 0 < θ < ∞, 1 ≤ θ < ∞. Therefore the time paths of some parameters are

bounded by 0 or 144. The bounded parameter period simply represents that there

is no lower or upper tail dependence at all, saying that the probability of lower or

upper extreme event happening is nothing.

Now I take a look at some individual cases closely. First, in the HK/THA

case, two parameters seem to move together, and this pattern is also similar with

normal and Frank parameters. But between about 1998 and 2002, the upper one

is lower than its constant level, but the lower one is higher than its constant level.

The IND/THA case also shows that there is no co-movement of both parameters

as a whole. However, KOR/THA and MAL/THA seem to have similar move-

ment patterns of the two parameters in the sample period. The PHI/THA and

44Although the parameter space of normal copula is also restricted, there is no case where the parameter is
bounded. This make sense, since that is a different dependence measure.



57

Table I.11 Estimation Results for Joe-Clayton Copula with GARCH-t Margins

Normal Hong Kong Indonesia S. Korea Malaysia Philippines Taiwan

OBS. 753 748 751 748 752 751

Panel A: Constant Coefficient

δ
1.1996 1.1205 1.1746 1.1407 1.1678 1.0817

(0.0582) (0.0576) (0.0500) (0.0545) (0.0570) (0.0481)

θ
0.3384 0.2929 0.2425 0.4265 0.4029 0.2502

(0.0588) (0.0596) (0.0551) (0.0643) (0.0662) (0.0561)
Likeli -2802.9 -2898.4 -2986.4 -2651.7 -2782.7 -2995.9

Panel B: Time Varying Coefficient

ηδ0
-0.0060 -0.0510 -0.0084 -0.0064 0.1015 0.1663
(0.0177) (0.0220) (0.0002) (0.0088) (0.0054) (0.1716)

ηδ1
0.9973 1.0000 0.9859 0.9997 0.9582 0.8719

(0.0059) (0.0050) (0.0013) (0.0088) (0.0045) (0.1532)

ωδ1
-0.0395 0.2022 0.1904 0.1670 -0.3158 -0.1512
(0.0465) (0.0629) (0.0041) (0.0309) (0.0130) (0.0716)

λδ1
0.0190 -0.3128 -0.3189 -0.3559 0.3755 0.2275

(0.0761) (0.0984) (0.0098) (0.0636) (0.0189) (0.1097)

ωδ2
0.1161 -0.0235 -0.0760 -0.1177 0.0313 0.0297

(0.0676) (0.0542) (0.0026) (0.0274) (0.0103) (0.0353)

λδ2
-0.0971 -0.0662 0.1231 0.3202 0.0368 -0.0123
(0.0566) (0.0981) (0.0029) (0.0675) (0.0019) (0.0660)

ηθ0
-0.0338 -0.0318 -0.0346 -0.0071 0.1639 0.0376
(0.0416) (0.0233) (0.0074) (0.0198) (0.0007) (0.0406)

ηθ1
0.9881 1.0000 0.9914 0.9901 0.8922 0.9214

(0.0209) (0.0085) (0.0008) (0.0059) (0.0094) (0.0511)

ωθ1
0.0357 -0.0035 0.1559 0.1753 0.1463 -0.1183

(0.1138) (0.0352) (0.0015) (0.0893) (0.0051) (0.1374)

λθ1
-0.1878 -0.0572 -0.3251 -0.3992 -0.0844 -0.0910
(0.1762) (0.0570) (0.0011) (0.1663) (0.0098) (0.1736)

ωθ2
0.0717 0.1754 0.0211 -0.1551 -0.5343 -0.0988

(0.2078) (0.0857) (0.0011) (0.1208) (0.0403) (0.1483)

λθ2
-0.1085 -0.2013 0.0299 0.3108 1.0299 0.2320
(0.3920) (0.1396) (0.0011) (0.1901) (0.0110) (0.2552)

Likeli -2786.2 -2888.6 -2973.6 -2639.9 -2773.5 -2989.2

LRT 33.4∗∗ 19.6∗∗ 25.6∗∗ 23.6∗∗ 18.4∗∗ 13.4

Note: The panel A is the model with constant assumption and the panel B is with time-varying
assumption. The numbers in parentheses are the standard errors.
LRT statistic follows χ2(10) and ∗∗ represents the rejection of the null at 5% significant level
and ∗, 10% significant level, respectively.
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TWN/THA cases, where the relatively lower persistent parameter is perceived,

show no specific pattern. Especially in the TWN/THA case the upper tail param-

eter seems to have no variation in the entire sample period. That is why we cannot

reject the null of the LRT test. It implies that additional parameters to capture

the dynamics are not adequate in TWN/THA case, in particular, the upper tail

dependence. As a summary, we cannot find the similarity and pattern of the time

path, not only between the upper and lower tail dependence, but also between

different pairs.

Recall again that we can convert the estimated parameter into lower and

upper tail dependence. The lower tail dependence parameter is 2−1/δ, independent

of θ, and the upper tail dependence parameter is 2−21/θ, independent of δ. Figure

I.13 shows the converted tail dependence. As mentioned earlier, the converted

tail dependence can be thought of as the probability of events like joint low(high)

extreme event happens, given that one has an low(high) extreme event. As ex-

pected, there is nothing in common among sample pairs in general. Sometimes the

time path of probability decreases to zero, implying zero probability of extreme

realization together given one extreme event. Sometimes the probability increases

to more than 0.4. Zero probability of tail dependence is reported in Poon et al.

(2002).

Individually, the HK/THA pair shows that the upper tail dependence

increases nearly 0.5 around 1995 and in the recent period and the lower tail depen-

dence is moving around 0.25, recently. The IND/THA pair shows that there is clear

evidence of increasing upper tail dependence but not in lower tail dependence. The

KOR/THA pair has the tendency of increasing in both tail dependence after about

1997, but such an increasing tendency started before 1997. The MAL/THA pair

have a quite high lower and upper tail probability around 1995 and even have lower

probability than normal for 2 years after 1997, and very low probability recently.

In PHI/THA and TWN/THA pairs, both tail dependences are fluctuating in the

whole sample period. According to this result there is no clear evidence that Asian
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Note: This shows the time path of the dependence parameters of Joe copula. The upper line
represents the upper tail parameter(δ) path and the lower line represents the lower tail
parameter(θ) path. The horizontal line is the constant dependence parameter of Joe-Clayton
copula.

Figure I.12 Time Path of Dependent Parameters of Joe-Clayton cop-
ula with GARCH-t Margins
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financial crisis leads to the higher probability of extreme event together. Therefore

we have to be careful to conclude that dependence structures are changed during

periods of financial turmoil and that increased tail dependence and asymmetry in

times of high volatility characterize Asian countries45. In terms of asset allocation,

the lower tail dependence can be used to reduce the risk of huge loss in financial

investments. Possible strategy is to invest in the pair of countries with high upper

tail dependence and low lower tail dependence. I will leave this issue for future

study.

I.4.D Robustness

I.4.D.a Nonparametric Two Step Approach

Here I present the results of the semi-parametric method. As shown

in section I.2.C, misspecified margins result in (under-estimated) bias. In such

situations, semi-parametric estimation is alternative choice. But there is a short-

coming of the semi-parametric method. If the main goal of estimation is ,for ex-

ample, forecasting, then non-parametric estimation of margins does not give any

intuition given information. Therefore I just present the estimation result with

non-parametric margins and compare that with the previous results here.

Table I.12 shows the results of constant parameters with different copulas.

As we can see, these estimates are greater than the estimates with GARCH-t

margins of Table I.9, I.10, and I.11 in most cases. The greatest difference is 0.0667

of THA/KOR case in normal copula, 0.3531 of THA/MAL in Frank copula and

the smallest difference is 0.0154 in normal, 0.1696 in Frank of THA/TWN case.

Although there exists differences in estimates, they do not seem to be large46.

And in Joe-Clayton copula the estimates with GARCH-t margins are even greater

sometimes. Therefore we can say that the GARCH-t margin assumption is not too

bad of a choice. However, since a constant parameter is not the main concern, I

45see, Rodriguez (2003)
46Table I.2 shows that semi-parametric estimation tends to estimate greater than the true value. Therefore we

can say that these differences are not so big.
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Note: This shows the time path of implied tail dependence of Joe copula. The dashed line represents
the implied upper tail dependence path and the solid line represents the implied lower tail
dependence path. The horizontal line is the constant implied upper and lower tail dependence
estimated by Joe-Clayton copula.

Figure I.13 Time Path of Implied Tail Dependence of Joe-Clayton
Copula with GARCH-t Margins
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Table I.12 Estimation Results of Each Copula with Non-Parametric Margins
Hong Kong Indonesia S. Korea Malaysia Philippines Taiwan

OBS. 753 748 751 748 752 751
Normal

δ
0.3975 0.3577 0.3605 0.4283 0.4091 0.2562

(0.0293) (0.0304) (0.0302) (0.0278) (0.0288) (0.0333)
Likeli -2648.3 -2770.4 -2654.5 -2746.5 -2641.1 -2805.5
Frank

δ
2.4605 2.1524 2.0902 2.7203 2.5098 1.5223

(0.2350) (0.2314) (0.2317) (0.2376) (0.2339) (0.2272)
Likeli -2656.5 -2777.5 -2665.2 -2754.7 -2650.7 -2807.8

Joe-Clayton

δ
1.1848 1.2751 1.2610 1.2066 1.2515 1.1215

(0.0502) (0.0538) (0.0512) (0.0527) (0.0523) (0.0444)

θ
0.4828 0.2904 0.3037 0.5589 0.4420 0.2630

(0.0656) (0.0603) (0.0599) (0.0692) (0.0661) (0.0634)
Likeli -2638.9 -2760.8 -2645.6 -2732.9 -2632.2 -2800.4

move on to the time-varying parameter model.

Here I do not report the estimation results in Table format. I only present

the time path of dependence(the graphical result) here. The time paths of depen-

dence parameters include all the information about the estimates. Figure I.14

shows the time paths of normal and Frank copulas. Comparing to Figure I.11,

we cannot see big differences between them; they are almost identical, though

there exist some minor differences, for instance, the recent declining dependence

in HK/THA. This is also true with the Gumbel and Clayton copulas, even though

I do not present both results here. Therefore we can say that the up and down

movement pattern of time-varying parameter is well-captured with the GARCH-t

margins and that the GARCH-t margin assumption is not too bad of a choice

again. In fact, GARCH-normal margins produce a lot of different results (different

parameter estimates and different time paths of dependence parameters), although

I do not present that here. As we have seen in section I.4.B, GARCH-normal may

not be one of the good choices for each margin. This is evidence that this misspec-

ified margin result in the bad(or wrong) estimation as a whole47. These results are

47A constant parameter estimates are surprisingly high, for example, the normal copula parameters range from
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available upon the request.

Finally, Figure I.15 shows the time paths of the dependence parameter in

the Joe-Clayton copula. In Figure I.15 we immediately see that it does not seem to

be similar to Figure I.12 in some time paths. First, the lower tail of PHI/THA and

the upper tail of TWN/THA seem to be more volatile. This might be explained

by the low persistence in these time paths. The persistent parameters are only

0.2123 and 0.4995, respectively. Therefore, the previous dependence level does not

give any contribution to next period’s dependence level, only depending mostly on

the forcing variables. The upper tails of IND/THA and MAL/THA seem to be

very different. However, this can be explained by the boundary constraint. As we

know, the parameter space of δ is restricted between 1 to ∞. In Figure I.12 we can

see that these two paths are clearly bounded by 1, since I impose the boundary

condition in the estimation procedure. These bounded results could distort the

estimation result. Therefore, when we have a lot of bounded results, we should

be careful to use that result, or try to estimate another single parameter model to

ensure that we have right time paths. Except these examples, we again can see

the similar up and down momentum in each time path of dependence parameters,

though there is a little bit difference in the magnitude. This implies that GARCH-t

assumption with appropriate AR(p) model may not be a bad choice for margins.

I.4.D.b Out of Sample Performance Evaluation

In this section, I present the result of out-of-sample evaluation of the

models. A number of recent papers, including Diebold et al. (1998), have gone

beyond the traditional evaluation of point forecasts to consider density forecasts

(see Christoffersen (1998) for the evaluation of interval forecasts, Clements and

Smith (2000) for the multivariate case evaluation, and so on). The basic idea is

that when the predicted density of a variable Yt corresponds to the true predic-

tive density, then zt ∼ U(0, 1), t = 1, · · · , n, and the sequence is independently

0.5168 of MAL/THA to 0.6957 of TWN/THA. The time paths of each parameter are not even close to the other
two cases.
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Note: This shows the time path of the dependence parameters of both Normal copula and Frank
copula. The solid line represents the normal copula path scaled in left side axis and the
dashed line represents the Frank copula path scaled in right side axis. The horizontal line is
the constant dependence parameter in both copulas.

Figure I.14 Time Path of Dependent Parameters of Normal and Frank
Copulas with Non-Parametric Margins
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Note: This shows the time path of the dependence parameters of Joe copula. The upper line
represents the upper tail parameter(δ) path and the lower line represents the lower tail
parameter(θ) path. The horizontal line is the constant dependence parameter of Joe-Clayton
copula.

Figure I.15 Time Path of Dependent Parameters of Joe-Clayton Cop-
ula with Non-Parametric Margins
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distributed, so {Zt}nt+1 is i.i.d. U(0, 1), where Zt =
∫ yt

−∞ zt(w)dw. Therefore we

can evaluate the predicted density of forecasting model by assessing uniformity

and independence of the probability integral transformation. In the copula model,

we also can evaluate the predicted density. Since some copula models have closed

form expressions of the joint CDF, it is relatively easy to calculate the probability

integral transforms of the realizations of the variables with respect to the predicted

densities48. With constant dependence parameter assumption49, first we estimate

each model using in-sample data. After that, with the assumption of GARCH-t

process for each series, we can calculate the predicted value of ut+1|t and vt+1|t of

out-of-sample data at time t easily.

ut+1 =

∫ εt+1|t

−∞
ft(ω)dω

where ft(ω) denotes the t distribution density. Given ut+1|t and vt+1|t, the sequence

of the joint CDF, {Zj
t }nt=1 = {C(ut+1|t, vt+1|t;α|Ωt)}nt+1 follows i.i.d.U(0, 1) under

correct specification of the model. In this application, the ‘in-sample’ observations

are from April 1990 to December 2000, and ’out-of-sample’ observations start from

January 2001, so there are 195 data points.

Testing for Uniformity Now we assess the uniformity aspect, conditioning on

no serial correlation, by plotting the graphical density estimate of the probability

integral transform. Figure I.16 and fig:outsample2 shows the density of {Zj
t }nt=1 for

different models. Although there are a few out-of-bound cases50, the histograms

in figure I.16 and fig:outsample2 are close to uniform. A misspecified likelihood

can lead to poor forecasts, therefore density forecast evaluation can help us to flag

misspecified likelihoods. In general, we can conclude that any copula model used

in this paper is well-specified.

48Although there is no closed form of the joint CDF, we can calculate the probability integral transforms.
Clements and Smith (2000) shows {Zj

t }n
t=1 = {Zc

1|2,t
× Zm

2,t}n
t=1, so we can use the predicted densities for

multivariate cases.
49This assumption could be expended to the time-varying dependence assumption. However, the dependence

variable is an unobservable variable, so I assume constant dependence parameter for this paper.
50If we consider the time-variation of dependence parameter, then we may improve the shape of histograms.
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Note: {Zj
t }

n
t=1 is the probability integral transform of different joint distribution assumption.

The first column is for the Normal copula and the second one is for the Frank copula.

Figure I.16 The Density of {Zj
t }nt=1 for Normal and Frank Model
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n
t=1 is the probability integral transform of different joint distribution assumption. The

first column is for the Gumbel copula, the second one is for the Clayton copula, and the last
one is for the Joe-Clayton copula.

Figure I.17 The Density of {Zj
t }nt=1 for Gumbel, Clayton and Joe-Clayton Model
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Testing for Independence The i.i.d. assumption is tested using LM tests for

serial correlation. In order to check dependence in higher moments, I also consider

(Z − Z̄)j for j up to 4, suggested in Diebold et al. (1998). Table I.13 reports

LM tests for autocorrelation. Here we are unable to reject the null of no serial

correlation in any case at the conventional 5% level.

Table I.13: LM tests for i.i.d. of out-of-sample

Lag Moment HongKong Indonesia Korea Malaysia Philippines Taiwan

N
or

m
al

1

1 0.951 0.704 0.516 0.342 0.680 0.623
2 0.719 0.094 0.480 0.390 0.810 0.953
3 0.867 0.483 0.471 0.676 0.766 0.804
4 0.914 0.226 0.637 0.523 0.857 0.582

5

1 0.948 0.863 0.482 0.610 0.981 0.821
2 0.972 0.473 0.120 0.932 0.854 0.657
3 0.967 0.616 0.532 0.972 0.909 0.896
4 0.985 0.513 0.474 0.963 0.939 0.846

10

1 0.927 0.653 0.814 0.381 0.858 0.948
2 0.954 0.839 0.214 0.387 0.815 0.722
3 0.997 0.753 0.828 0.950 0.891 0.989
4 0.997 0.734 0.855 0.951 0.955 0.954

F
ra

n
k

1

1 0.962 0.744 0.483 0.330 0.793 0.610
2 0.676 0.102 0.517 0.422 0.931 0.946
3 0.799 0.468 0.468 0.679 0.748 0.792
4 0.847 0.245 0.633 0.567 0.803 0.582

5

1 0.962 0.872 0.488 0.658 0.964 0.831
2 0.970 0.475 0.142 0.955 0.968 0.681
3 0.963 0.595 0.552 0.982 0.873 0.907
4 0.963 0.485 0.488 0.976 0.885 0.863

10

1 0.935 0.652 0.806 0.411 0.831 0.953
2 0.970 0.846 0.237 0.419 0.816 0.718
3 0.998 0.761 0.834 0.951 0.728 0.990
4 0.995 0.714 0.857 0.964 0.738 0.957

G
u
m

b
el

1

1 0.867 0.675 0.560 0.329 0.598 0.582
2 0.951 0.140 0.455 0.357 0.596 0.859
3 0.828 0.542 0.526 0.684 0.799 0.938
4 0.792 0.262 0.704 0.479 0.952 0.651

5

1 0.913 0.861 0.467 0.567 0.988 0.776
2 0.974 0.586 0.100 0.876 0.496 0.526
3 0.953 0.729 0.546 0.930 0.949 0.857
4 0.973 0.674 0.572 0.922 0.975 0.784

Note: The table reports the p-value for χ2 LM tests (Q statistics) of serial correlation up to 10th order.

Continued...
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Table I.13: (Continued) LM tests for i.i.d. of out-of-sample

Lag Moment HongKong Indonesia Korea Malaysia Philippines Taiwan

G
u
m

b
el

10

1 0.894 0.648 0.827 0.332 0.903 0.930
2 0.954 0.875 0.192 0.394 0.557 0.691
3 0.992 0.813 0.824 0.945 0.964 0.981
4 0.992 0.848 0.901 0.939 0.992 0.952

C
la

y
to

n

1

1 0.906 0.734 0.608 0.297 0.725 0.563
2 0.410 0.062 0.523 0.454 0.772 0.814
3 0.619 0.404 0.455 0.687 0.606 0.854
4 0.623 0.189 0.581 0.529 0.695 0.613

5

1 0.984 0.843 0.489 0.597 0.941 0.847
2 0.892 0.422 0.174 0.853 0.975 0.698
3 0.905 0.575 0.522 0.987 0.737 0.921
4 0.827 0.416 0.411 0.979 0.779 0.866

10

1 0.938 0.723 0.791 0.398 0.770 0.959
2 0.883 0.849 0.244 0.349 0.815 0.753
3 0.995 0.790 0.783 0.944 0.584 0.991
4 0.985 0.743 0.759 0.894 0.446 0.957

J
o
e-

C
la

y
to

n

1

1 0.865 0.692 0.575 0.298 0.639 0.570
2 0.773 0.102 0.468 0.416 0.843 0.836
3 0.987 0.484 0.502 0.692 0.720 0.861
4 0.983 0.227 0.665 0.491 0.853 0.605

5

1 0.948 0.855 0.458 0.573 0.977 0.828
2 0.975 0.524 0.107 0.870 0.828 0.651
3 0.960 0.672 0.500 0.962 0.910 0.903
4 0.989 0.588 0.483 0.944 0.962 0.838

10

1 0.917 0.680 0.807 0.342 0.862 0.953
2 0.955 0.859 0.194 0.343 0.783 0.730
3 0.996 0.785 0.795 0.939 0.933 0.988
4 0.998 0.786 0.854 0.900 0.984 0.948

Note: The table reports the p-value for χ2 LM tests (Q statistics) of serial correlation up to 10th order.

In summary, we can say that these results all show that we have sub-

stantial evidence of qualitative and quantitative time-varying dependence. Time

variation in the conditional copula seems significant. When the parameters of

the conditional copula are allowed to vary through time, they deviate quite sub-

stantially from the constant parameter. In addition, we have to notice that this

variation has also some deviation from the time-varying linear dependence mea-

sure. Sometimes these deviations are substantial, too. This may be because of the

failure of the linear dependence measure to capture the true dependence among
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variables. Although there exists evidence of time variation, there is little evidence

of a significant increasing change in dependence structure among Asian stock mar-

kets after 1997, when we use copula models. Some results show that there exists a

transition from low to high dependence with market crisis, but it is not true in all

pairs. In other words, dependency after 1997 and 1998 does not seem high, and is

sometimes even lower than the constant level.

We also see that there are different movements in general dependence

parameters and tail dependence parameters. Tail dependence can be thought to be

the probability of joint extreme realization given one extreme event. We can easily

convert to that using the tail dependence parameter. If every single parameter has

its own interpretation, then best model selection among many alternative copula

models could be meaningless. Also this paper showed that various copula models

are proper for analyzing the Asian stock markets. Thus, we have to be careful

to use the right dependence measure depending on the purpose and to interpret

the implicit meaning. For example, the parameter of Plackett copula introduced in

section I.2.B.c can be interpreted as the cross product ratio or odds ratio. Therefore

I can guess that the time path of this parameter to be different from the others.

The last thing to mention is in regards to asymmetric dependency. Some

of the previous literature found that there exists an asymmetric feature of depen-

dence, such as Longin and Solnik (2001) and Patton (2001). However, we cannot

see clear evidence of asymmetric dependency here. The parameters to capture this

asymmetry are not significant in all cases, and the sign of the parameters are not

even consistent through the sample pairs. This could be because I include two

forcing variables, u∗t and v∗t , into the evolution equation (I.44) and there is some

interaction between those two variables. Therefore another model of the evolution

equation would capture asymmetry well. In addition to that, we cannot see any

consistent pattern of dependence paths between the bullish phase and the bearish

phase, although some pairs have higher dependence during the bullish phase. This

suggests unclear evidence of asymmetric dependence in general at least among
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Asian stock markets.

I.5 Conclusion

Dependence is one of the most important measures in the economic or

financial literature. One of the most frequently used dependence measures is, of

course, the linear correlation coefficient. This linear correlation provides a very

simple and convenient summary of two associated variables. However, it is not a

complete measure of dependence in many situations. The multivariate distribution,

which is the main measure of dependence has complicated features, making it a

not so easy task to capture summary measure of dependence. Thus, the linear

measure is not suitable generally. Recently, some economists have paid attention

to the theory of copulas as an alternative to linear correlation, and the use of

copulas also is growing in the applied literature. Although copula was introduced

a long time ago, it has not been widely used in the economic literature. But some

nice features of copulas promise its wider use in the future.

In order to use a copula-based model, first of all, we have to consider

the right marginal distribution for each variable. Without the correct marginal

distribution, dependence parameter estimates will be biased downward. Simulation

results also show that when we are not sure about the parametric form of the

margins, non-parametric estimation of the margins provide a lot of gain, with little

bias. In order to test the misspecification of margins, I employed the information

matrix test of White (1982) and the nonformal test suggested by Diebold et al.

(1998). In this paper GARCH normal and GARCH-t assumption are tested using

those tests, and it turns out that GARCH-t is better than GARCH normal.

In this paper, I showed how the time-varying conditional dependence

of Asian markets has changed since 1990, using various copula models. During

that period, Asian financial (stock) markets experienced a deep financial crisis

around 1997 and the crisis lasted for some time after that. There has been a lot

of literature devoted to finding evidence of a significant increase in cross-market
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relationships after the financial crisis, the so-called “correlation breakdown.” In

the 1990s there was wide agreement of the existence of the correlation breakdown

phenomenon. But some recent work by Boyer et al. (1999) and Forbes and Rigobon

(2002) found almost no evidence of correlation breakdown using bias-adjusted cor-

relations. First, this paper shows that such a correlation breakdown is not clear

using time-varying copula models. As expected, using the DCC-MVGARCH as

a benchmark model provides an increasing dependence for 2 years after mid-1997

in all pairs, although that higher dependence period is not the only higher period

in the entire sample. However, copula models, which are shown to be appropriate

to the Asian stock market, do not provide an increasing dependence result for the

crisis period in general. This could be because the linear measure is inadequate in

capturing the real dependence.

Second, the time paths of the general dependence and the tail dependence

do not show the same or similar movements. In general, the higher dependence

in normal or Frank copula does not guarantee higher tail dependence. This could

be because both have different characteristics. Another empirical finding of this

paper is unclear evidence of asymmetric dependence. Although previous papers,

such as Longin and Solnik (2001), seem to find this asymmetry, that is not clear

here. This could be due to the difference in model construction or the different

interpretations of the result. All of these results are similar with non-parametric

margins.

Finally, we detect the relatively high persistence in the time path of de-

pendence. In most cases the persistence parameter exceeds 0.95, sometimes as

high as 1, implying high persistence in dependence. This might provide further

possibilities and applications of this modeling. For example, the asset allocation

based on the conditional time-varying copula parameter could provide better per-

formance. And the value-at-risk analysis related to the conditional tail dependence

could provide some insight to risk management. On a practical level, the finding

of this paper suggests that utilization of portfolio allocation weight among many
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choices from copula estimates could reduce the exposure of downside risk and could

provide information about what proportion to hedge actively. This work will be

extension of some theoretical and applied literature (Ang and Chen (2002), Ang

et al. (2006), and so on). Further, this conditional model method may be useful to

construct models for forecasting purpose in multivariate case, the focus of many

recent works.
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II

Return Distributions and Linear

Portfolio Choice Rules

II.1 Introduction

The classic mean-variance asset allocation problem studied by Markowitz

(1952) has given rise to a whole new area of modern portfolio theory. Under the

assumption of “compactness” or “small risk” of the distribution of stock returns,

Samuelson (1970) shows that the importance of all moments beyond the variance is

much smaller than that of the expected value and variance, and the variance is as

important as the mean to investors’ welfare. Even though mean-variance analysis is

consistent with expected utility maximization only when distributions are normal

or utility functions are quadratic, more general problems involving expected utility

optimization can be approximated through tradeoff between mean and variance.

(Levy and Markowitz, 1979; Kroll et al., 1984).

Recent papers, however, extend the Mean-Variance analysis to higher-

order moments and emphasize the need to consider moments beyond the mean

and variance in portfolio choice and asset pricing.1 The fundamental reason for

1Kraus and Litzenberger (1976) and Harvey and Siddique (2000) find that the market takes account of skewness
in the valuation of assets using, namely 3-moments CAPM, so that investors require compensation for the holding
of negatively skewed assets. Dittmar (2002) provides nonlinear pricing kernels, which is restricted by moment
preference. Also, see Harvey et al. (2004); Jondeau and Rockinger (2004); Guidolin and Timmermann (2005b),
etc.
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extending interest to higher moments departs from non-normality of distributions.2

Lai (1991) and Chunhachinda et al. (1997) use polynomial goal programming to

show that investors trade expected return of the portfolio for skewness. Athayde

and Flôres Jr (2004) give methods for determining higher dimensional ‘efficient

frontiers.’ Jondeau and Rockinger (2005) investigate the conditional allocation of

wealth, departing from non-normality.

It is difficult, however, to know the effective trade-offs among moments

and what the preference of investors is over the higher moments. We generally

believe that investors prefer higher expected returns and lower risk, consistent

with Markowitz’s insight. However, higher moments such as skewness have received

relatively little attention, apparently because of the difficulty of dealing with higher

moments. Markowitz’s insight leads to a trade-off relationship between mean and

variance in the simple mean-variance cases, but this offers no insight into people’s

reaction to higher moments in general.

This paper proposes one possible explanation for a trade-off relationship

among moments under general utility functions3 using flexible joint distributions

based on copula representations. In general, consideration of higher moment pref-

erences is intricately linked to the form of the utility function. Optimal asset

allocation problems can be very sensitive to the choice of the utility function in

the expected utility framework. Therefore, the choice of the utility function is

an important factor. A family of commonly used utility functions is the HARA

(Hyperbolic Absolute Risk Aversion) or LRT (Linear Risk Tolerance) class. The

problem of using that class of utility functions is that it is very difficult to get

closed form solutions for investors who maximize their expected utility.

One way to consider higher moments is to include these higher moments

2Recently, a great deal of empirical evidence suggests that characteristics of returns on financial assets can be
captured by predictability, time variation of moments, volatility clustering, and asymmetric correlation depending
on the underlying regimes. See Longin and Solnik (1995, 2001); Kandel and Stambaugh (1996); Ang and Bekaert
(2002a); Ang and Chen (2002); Guidolin and Timmermann (2005a), etc.

3Literature exists about the form of utility functions. As almost everyone agrees, the assumption of standard
agents’ preferences, and the standard arguments of positive marginal utility and risk aversion lead to U ′ > 0 and
U ′′ < 0. As shown in Arditti (1967), decreasing absolute risk aversion implies U ′′′ > 0. In order to rule out
certain counterintuitive risk-taking behavior with decreasing absolute risk aversion, Kimball (1993) and Pratt and
Zeckhauser (1987) show that U ′′′′ < 0 is sufficient condition. Also, see Scott and Horvath (1980).
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directly into the objective (utility) function and assign weights to each moment.

See Harvey et al. (2004). Another way is to expand a generic utility function to

an m-th order Taylor series, and then take expectations. For this method, one

has to define the relevant moments of the return distribution to analytically study

the effect of each moment on investment decisions. Also, one should very carefully

choose the approximation point. In practice, up to third or forth moments are

considered depending on the researcher’s interest and expansion has been done

around the expected final wealth from the previous period or the wealth of the

previous period.4 From this expansion, of course, we can see that higher expected

returns and right-skewed distributions lead to higher expected utility, while the

second and fourth moments decrease in expected utility: see Guidolin and Tim-

mermann (2005b). However, this fact does not give any direct information about

the relationship between the optimal asset allocation decision and each moment,

because the optimal asset allocation decision is an unknown non-linear function

of every moment and is not related to the level of the expected utility. The other

way is to calculate the portfolio choice decisions using numerical optimization pro-

cedures. See, Barberis (2000); Balduzzi and Lynch (1999), etc. However, this

method is a black box, thus it does not provide any idea about the relationship

between higher-order moments and portfolio choice decisions.

The first contribution of this paper is to investigate the average relation-

ship between a CRRA investor’s decision and moments (or moment parameters)

in a given data set. This relationship provides a simple tool to advise the investors

how to allocate wealth among assets. We use the Emerging Market (EM) index

and the S&P 500 index as our data set. That the Emerging Markets have non-

normal distributions is well known (Harvey, 1995), so it is difficult to apply the

standard mean-variance criterion. Here, we propose a useful approach, linear pro-

jection, to investigate the marginal effect of each moment parameter. Additionally

we use copulas to represent flexible joint distributions. The use of copulas allows
4In terms of expected utility, Loistl (1976) provides the idea of where to expand in Taylor series expansion

for convergence of expected utility with exponential, power and logarithmic utility function cases. For recent
applications, see Jondeau and Rockinger (2005), and Guidolin and Timmermann (2005b).
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us to disentangle the effects from margins and dependence, therefore we can easily

capture more precise characteristics of the return distribution found in empirical

data.

We find that these simple linear projections explain from 75% in very

poor cases and up to 99% of CRRA investors’ portfolio investment behavior. Also

we find that the first moment is a great deal more important than what we ex-

pected from the mean-variance criterion. For the second moment, we find that

the explanatory power is extremely low with lower risk aversion, although it in-

creases with higher risk aversion. One striking feature about the second moment

is that CRRA investors’ optimal choice leads to holding more of assets which be-

come more volatile in the presence of a riskless asset. Also, we find that skewness

is marginally important, but kurtosis information is not important to a CRRA

investor’s decision.

The second contribution is that we show that a linear decision rule can be

a preferable alternative decision rule to the Mean-Variance portfolio (MV) decision

rule. A linear decision rule can easily co-operate with the current information about

moments. Also we can easily include or exclude some uncertainty information due

to additivity of linear projection. We conduct performance comparisons between

CRRA investors’ decision rules with various levels of risk aversion under various

joint distributions and other decision rules (a MV decision rule and a naive decision

rule). We measure the portfolio’s performance using the Sharpe ratio, realized

wealth and realized utility. The CRRA decision rule under a multivariate normal

assumption outperforms the MV decision rule in terms of realized wealth. In

addition, we compare the decision rule based on different joint distributions. The

results suggest that more sophisticated models do not perform better, at least in

our sample, possibly because of forecasting errors.

This paper is organized as follows. In the next section, we set up the

‘pure’ asset allocation problem and describe various utility functions and distribu-

tions. In Section II.3, we examine the asset allocation problem under the regime
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switching model as a special case of a dynamic portfolio selection problem. Then,

in Section II.4, we present a simple linear projection based on the estimates of the

regime switching model processes. We provide the results of various specifications.

The results from Section II.4 are applied to investigate the case of time-varying

investment opportunities, time-varying mean and variance, and out-of-sample per-

formance test in Section II.5. Section II.5 provides out-of-sample performance

results and compares performances. Section II.6 offers our conclusions. Appendix

Apendix A provides details of the skewed Generalized t distribution used to con-

sider the flexible joint distribution, and Appendix Apendix B provides details of

using a Griddy-Gibbs Sampler.

II.2 Asset Allocation Problem

The ‘pure’5 asset allocation problem is to find the allocation where the

investor’s expected utility is maximized with some constraints. Suppose that the

investor’s utility function is U(Wt+T ; θ), which depends on wealth at time t + T ,

Wt+T , and θ describes the characteristics of the utility function. The investors

choose among N assets, whose returns, ri,t, i = 1, 2, · · · , N , are continuously

compounded. The Nth asset would be a riskless asset. Portfolio weights are

represented in the vector, αN,t ≡ (α1,t α2,t · · · αN,t)
′. One constraint about

weights is

N∑

i=1

αi,t = 1.6 In this setting, the asset allocation problem of buy-and-

hold investors who want to maximize the terminal expected utility at time t + T

conditional on the information up to t period, becomes

max
αN,t

E[U(Wt+T ; θ)|Zt]

s.t. 1 −αN,tiN = 0

Wt+T = α
′

N,t exp(RN,t+T )Wt

(II.1)

5This means there is no interim consumption
6If there is a riskless asset, the Nth asset is considered as a riskless asset. Therefore, (1−α′

N−1,t
iN−1), where

iN−1 is a vector of (N − 1) ones, is invested in a riskless asset. And return for a riskless asset is rf
t = rN,t.
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where, RN,t+T = rN,t+1 + rN,t+2 + · · · + rN,t+T , and rN,t+j is the (N × 1) vector

of returns at t + j period, where j = 1, 2, · · · , T . Therefore, rN,t+j is the vector

of N assets’ continuously compounded returns from t + j − 1 to t + j period,

and RN,t+T is the vector of continuously compounded returns over the T -period

horizon. Consequently, exp(RN,t+T ) is the vector of continuously compounded

gross returns of N assets. Depending on the problem, we can impose a short-

selling or borrowing constraint with αi,t ∈ [0, 1], i = 1, 2, · · · , N .

At this point, we face two decision problems in order to solve the opti-

mization problem. The first one is the choice of the utility function and the other

is the joint distribution in a parametric setting. These two elements are very im-

portant and the result of asset allocation is very sensitive to these choices. To see

how the choice of utility function, or different preferences, affects the result, we

consider two different utility models: Mean-Variance preferences and power utility

functions. Also, to see the effect of different distributions on the expected utility,

we consider flexible distributions, applying copula functions.

II.2.A Utility functions

II.2.A.a Mean-Variance Preference

Consider an investor with standard mean-variance preferences. These

preferences assign an uncertain prospect of Wt+T over the mean and variance. In

general, we can express the investor’s objective function in (II.1) as the following

E[U(Wt+T ; θ)|Zt] = E[Wt+T |Zt] −
γMV

2
V [Wt+T |Zt] (II.2)

where γMV ≥ 0 and measures the coefficient of absolute risk aversion.

This Mean-Variance (MV) preferences have, however, a major theoretical

drawback: they may fail to be monotone. It may happen that an agent with mean-

variance preferences strictly prefers less to more, thus violating one of the most

compelling principles of economic rationality.7 In addition, another defect of the

7Due to this violation of monotonicity, it also violates the independence axiom of expected utility theory.
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MV preferences could be that it does not count on higher moments of the distribu-

tions, which may sometimes matter to investors. Although this objective function

seems to be problematic, practitioners seem to use this MV very often. The main

virtue of this specification of preferences is due to its analytically simple tractabil-

ity, clear intuitive meaning, and ease of interpretation: investors are assumed to

maximize a preference functional defined simply over the mean and variance of

their portfolios. Due to this appealing feature of MV preferences, we use MV

preferences here. Thus, we can directly compare this result to other alternatives’

results.

Given this objective function, the optimal solution without a riskless asset

will be

α∗
N,t =

1

γMVWt
Σ−1
t+Tµt+T − i′NΣ−1

t+Tµt+T

γMVWti
′
NΣ−1

t+T iN
Σ−1
t+T iN +

1

i′NΣ−1
t+T iN

Σ−1
t+T iN (II.3)

where µt+T = E[exp(RN,t+T )|Zt] and Σt+T = V ar[exp(RN,t+T )|Zt]8. Furthermore

if the portfolio choice includes a riskless asset,

α∗
N−1,t =

1

γMVWt

Σex
N−1,t+T

−1µexN−1,t+T (II.4)

where µexN−1,t+T = E[Rex
N−1,t+T |Zt] and Σt+T = V ar[Rex

N−1,t+T |Zt]. Rex
N−1,t+T =

exp(RN−1,t+T )− iN−1 exp(Trft ) and Trft =

T∑

j=1

rft+j , thus, Rex
N−1,t+T is excess gross

return of risky assets. Therefore, the optimal choice is to allocate α∗
N−1,t of wealth

to the risky assets and to invest the remainder, (1 − α∗
N−1,t

′in−1) in the riskless

asset.
8For the distributions rather than the multivariate normal distribution, µT+T and Σt+T can be calculated by

the numerical approximation, which is used in the simulation part of this paper.
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II.2.A.b Power Utility

We also consider an investor with power or constant relative risk aversion

(CRRA) utility function9. The power utility function is

U(Wt+T ) =

{ 1

(1 − γP )
Wt+T

(1−γP ), if γP 6= 1 and γP > 0

logWt+T , if γP = 1
(II.5)

where, γP = −W U ′′(W )

U ′(W )
, thus γP is a relative risk aversion measure. In other

words, it represents decreasing absolute risk aversion. The power utility function is

by far one of the most popular utility functions in the portfolio selection problem.

This is largely because the investor’s portfolio policy is proportional to wealth

and the value function is homothetic in wealth. However, there is generally no

closed form solution for the optimization problem (II.1) with the this form of

utility function10. Due to this limitation, recent papers generally use approximate

solutions11 by Campbell and Viceira (1999, 2001) or numerical techniques, for

example, Monte Carlo simulations by Barberis (2000) and Detemple et al. (2003)

or Gaussian Quadrature methods by Balduzzi and Lynch (1999) and Ang and

Bekaert (2002a). In this paper, we simply apply the Monte Carlo method to find

the optimal portfolio weight.

Following Barberis (2000), we approximate the integral using the Monte-

Carlo methods and find the optimal portfolio weight in which the approximation

value is maximized.

max
αt

1

I

I∑

i=1

U(W i
t+T )

s.t. W i
t+T = α

′

N,t exp(Ri
N,t+T |Zt)Wt

(II.6)

where, Ri
N,t+T is the (N × 1) vector of returns in the i-th Monte Carlo simulation.

9As a special case of the HARA (hyperbolic absolute risk aversion) or LRT (linear risk tolerance) class of utility
functions, we consider power utility in this paper. Log utility function is considered one special case of the power
utility function.

10See, Geweke (2001) for more discussion on general cases. In a dynamic asset allocation framework, however,
Kim and Omberg (1996) provide closed form solutions with HARA preferences under mean-reverting asset return
assumption without interim consumption. Also, see Wachter (2002) and Liu (2006).

11Campbell and Viceira (1999, 2001) derive closed form expressions using log-linear approximations. Also, see
Campbell et al. (2003).
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Although quadrature method suffers from the curse of dimension, Monte Carlo

simulation can reduce this problem.

II.2.B Multivariate Joint Distribution

In order to investigate the impact of flexible distributions on the optimal

asset allocation rather than the multivariate normal distribution, we use the copula

function. Copula12 is a special multivariate joint distribution which separates

the joint distribution into two parts: the dependence structure and the marginal

distribution. This feature makes the construction of the joint distribution among

the random variables a bit easier and more flexible. The first step in constructing

the copula is to transform the random variables X1, ..., Xn to standard uniform

marginal distribution. Specifically, suppose each of random variables X1, ..., Xn

has a continuous cumulative marginal distribution (CDF), F1, ..., Fn. Then, by

the following transformation T : Rn → Rn, (x1, ..., xn) 7→ (F1(x1), ...Fn(xn)), we

can get uniformly distributed variable. Then the joint distribution function C of

(F1(x1), ..., Fn(xn)) is the so-called copula of the random variables X1, ..., Xn. It

follows that

F (x1, ..., xn) = Pr[F1(X1) ≤ F1(x1), ..., Fn(Xn) ≤ Fn(Xn)]

= C(F1(x1), ..., Fn(xn))
(II.7)

The following is the formal definition of copula

Definition II.2.1. An n-dimensional copula is a function C : [0, 1]n → [0, 1] such

that

1. C is grounded and n-increasing.

2. C has margins Ck, k = 1, 2, ..., n, which satisfy Ck(u) = u for all u in [0, 1].

Equivalently, an n-copula is a function C : [0, 1]n → [0, 1] with the fol-

lowing properties.

1. For every u in [0, 1]n, C(u) = 0 if at least one coordinate of u is 0, and C(u) = uk
12For a more formal definition, concepts and examples, see Nelsen (1999) and Embrechts et al. (2003).
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if all coordinates of u are equal to 1 except uk.

2. For all (a1, ..., an),≥ 0, where VC([a,b]) is the C-volume of [a,b]

In this paper we use various copula functions (Normal, Gumbel, and Clay-

ton) and two marginal distributions (Normal and Skewed Generalized T (Skewed

GT) distributions) in order to consider various specifications of joint distribution.

Skewed GT distribution by Theodossiou (1998) is an extended version of the Gen-

eralized t distribution, and several well-known distributions are nested within the

skewed GT. These include the symmetric t, Hansen’s (1994) skewed t, the power

exponential, the Laplace, the normal, and the uniform distributions. Appendix

Apendix A provides details on this distribution and some characteristics. Also we

derive a Cumulative Density Function (CDF) of this density function in Equation

(II.25). And since the bivariate joint normal distribution is a special case of nor-

mal copula under normal margins, later we will consider the normal copula with

normal margins as the benchmark.

II.3 Asset Allocation under Regime Switching

The presence of persistent regimes in various financial series is well re-

ported in empirical financial literature. For example, Perez-Quiros and Timmer-

mann (2000); Ang and Bekaert (2002a) and Guidolin and Timmermann (2005a)

provide evidence of persistency in stock market returns. Asymmetry of correlation

under different regimes also is well reported (Longin and Solnik, 1995, 2001; Ram-

chand and Susmel, 1998; Ang and Chen, 2002; Ang and Bekaert, 2002a). Since

a large number of papers, Perez-Quiros and Timmermann (2000); Ang and Chen

(2002); Guidolin and Timmermann (2005a), suggest that Markov Switching (MS)

process can capture these properties of return process very well, we adopt an MS

process for the return process as well as using flexible joint distributions. Ang

and Bekaert (2002a) use a MS model in an asset allocation problem for the first

time, and recently Guidolin and Timmermann (2005b,c) also adopted a Markov

Switching model in various optimal decision problems.
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Suppose that the vector of continuously compounded returns, rN,t =

(r1,t r2,t · · · rN,t)′ is generated by a Markov Switching process, that is, the mean

and covariance in returns are driven by a common state variable, st ∈ {1, 2, · · · , S}.

rN,t = µst
+ ArN,t−1 + Σ

1
2
stεt, εt ∼ IIN(0, IN) (II.8)

where A is a diagonal matrix to capture the first-order autocorrelation in each

series and the elements are aj, j = 1, 2, · · · , N13. µst
is a n × 1 vector of means,

depending on the regimes. And, in general, Σst
depends on the regimes and can

be expressed as

Σst
=





σ2
1,st

σ12,st
· · · σ1N,st

σ21,st
σ2

2,st
· · · σ2N,st

...
...

. . .
...

σN1,st
σN2,st

· · · σ2
N,st




(II.9)

When we use a multivariate normal distribution, there are
N(N + 1)

2
parameters

in the covariance structure. In this paper, the covariance structure is governed

by the copula functions, therefore N + 1 parameters are needed to construct the

covariance structure. Also we consider 2 risky assets, so the number of parameters

are the same. The regimes, st, follow a S-state Markov chain with the transition

probability

P =





p11 p12 · · · p1S

p21 p22 · · · p2S

...
...

. . .
...

pS1 pS2 · · · pSS




(II.10)

where pij = Pr[St+1 = j|St = i;Zt]. In this setting, the future return distribution

is a mixture of copula functions with weights, which depend on the current state

probability and the transition probabilities. Marron and Wand (1992) point out

that mixtures of normal distributions provide a flexible family, therefore we can

think that mixtures of copula functions provide even more flexible joint distribu-

tions. This model allows variation in means, variances and dependence structures
13When we consider A also as a regime switching variable, Ast , there is no considerable gain in terms of

likelihood value. Therefore we just consider A is not switching with regimes.
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of asset returns depending on states. One more attractive feature of this model is

that a change in probability can be easily interpreted as a change in distributions.

We will discuss this issue in more detail later. Since state variable, st, is unobserv-

able, estimation procedures follow the EM algorithm: see Hamilton (1989); Kim

and Nelson (1999).

II.3.A Data Description

This paper considers the effect of higher moments on the asset alloca-

tion problem. We use two risky assets in this paper. Therefore this analysis

uses monthly return on S&P 500 Composite Price Index and S&P/IFC Emerging

Markets Composite.14 A large number of papers has shown that market returns in

emerging markets strongly depart from non-normality (see, Jondeau and Rockinger

(2003), etc). In fact, the emerging market has experienced huge financial crises,

such as the Mexican crisis in 1994, the Russian default crisis in 1998, and the

Brazilian devaluation in 1999. These provide useful comparisons between relatively

volatile and stable returns’ effect of higher moments on the asset allocation. The

T-bill rate is used for a riskless asset, obtained from the CRSP dataset (Fama/Bliss

riskfree rate). The data covers the period from January 1967 to December 2003,

for a total of 444 monthly observations. Table II.1 summarizes the statistics of

the series. As noticed, the Emerging Market (EM) was characterized by a higher

mean and higher volatility, and the max and min value of EM is higher and lower,

respectively. Also the return of EM shows that there is a little autocorrelation.

Returns are strongly non-normal and strongly skewed with fat tails.

14The International Finance Corporation (IFC) introduced their indices back in 1988 with data calculated back
to 1984. Global Financial Data Inc. (www.globalfindata.com) added this data back to 1920. From 1967 on,
the following weights are used: Africa/Asia (20%), Latin America (40%) and East Asia (40%). In March 1998,
the indices included countries for Latin America (Argentina (32 stocks), Brazil (75), Chile (50), Colombia (16),
Mexico (61), Peru (24), and Venezuela (12)), East Asia (China (43), Korea (184), Philippines (49), and Taiwan
(98), South Asia (India (72), Indonesia (61), Malaysia (157), Pakistan (24), Sri Lanka (5), and Thailand (65)),
Europe (Czech Republic (6), Greece (54), Hungary (13), Poland (29), Portugal (23), Russia (30), Slovakia (5),
and Turkey (58)), Middle East/Africa (Egypt (28), Israel (46), Jordan (6), Morocco (11) South Africa (76) and
Zimbabwe (10)). In 1999, Standard and Poors took over the calculation of the IFC indices.
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Table II.1 Descriptive Statistics

S&P 500 Index Emerging Market US 1M T-bills

Mean 0.0059 0.0068 0.0048
Median 0.0085 0.0096 0.0044
Max 0.1510 0.2303 0.0126
Min -0.2454 -0.2951 0.0007

St. Dev. 0.0449 0.0571 0.0021
Skewness -0.5977 -0.6460 0.9110
Kurtosis 5.3647 6.6376 4.5058
J-B stat. 127.61∗∗ 271.46∗∗ 101.83∗∗

1st autocorr. 0.0096 0.2017 0.9614

Note: ∗∗ denotes 1% significance.
The sample period is 1967:01-2003:12.

II.3.B Estimation Results under the Regime Switching Process

Tables II.2 and II.3 summarize parameter estimates of the regime switch-

ing return process under various joint distribution assumptions. Subscript 1 rep-

resents the Emerging Market return. Superscript represents the regimes. The

margins are two cases: Normal and Skewed GT distributions. We consider various

copula functions: the mixture of the Normal, the Gumbel and the Clayton. The

normal copula represents the symmetric distribution, the Gumbel represents the

asymmetry and more probability mass to the upper right tail distribution, and the

Clayton represents the asymmetry and more mass to the lower left tail15. For ex-

ample, the distribution of the Normal copula with normal margins represents the

same as does the regime switching bivariate normal distribution. The mixture of

copulas implies that regime switching occurs in the joint distribution form between

the Normal and the Gumbel or between the Clayton and the Normal.

As demonstrated in Tables II.2 and II.3, the returns of regime 1 have

a negative mean, higher volatility, but lower dependence16. For example, ρ1 are

15Of course it is possible to use another copula function. However, the regime switching model itself is flexible
enough to capture complicated forms of heteroskedasticity, fat tails, and skews in the underlying distribution of
returns. See Timmermann (2000). To consider the positive or negative asymmetry in the joint distribution, we
include the Gumbel and Clayton copulas. In addition we use the Skewed Generalized T distribution, which may
give more flexibility. In fact when we use t copula, it is not a better model in terms of likelihood value.

16This is a bit different from what most empirical papers found. Generally asymmetry in dependence implies
higher volatility and higher dependence. See Longin and Solnik (2001); Ang and Bekaert (2002a).
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0.2936 and 0.1625, while ρ2 are 0.3862 and 0.3354 when normal and skewed GT

are used, respectively17. One thing to notice is that the Gumbel generally puts

more mass on the upper right tail. According to the estimation results, when

we use the mixture of the Normal and Gumbel copulas for the joint distribution,

the Normal detects regime 1, lower mean and higher volatility regime, and the

Gumbel detects regime 2, which might be thought of as the normal period in other

specifications. Therefore it may seem that this distributional assumption in the

mixture of Normal and Gumbel copulas is rather inappropriate to capture the

characteristics of the return processes. Another interesting result is that when we

use skewed GT distribution, it classified regimes better. The RCM values of Table

II.3 are less than those in Table II.2.

Once we use the regime switching model, one possible interpretation of

its results is that at any time during the period, the actual parameter values can

be between the parameter value of regime 1 and 2, given the data set. With this

interpretation, we can find the moment effect in the next section. We discuss

this issue in detail below. Furthermore, in order to compare the performance of

various specifications, we will consider some specifications in Tables II.2 and II.3.

Table II.2 demonstrates that the Normal and Normal specification is the best in

terms of the log likelihood value, therefore, we use that as the benchmark, Model

1, from here forward. In Table II.3, the mixture of Normal and Clayton copulas

and Skewed-GT margins is the best, therefore we use that as one of comparison

models, Model 3. To consider the margin effect, we consider the Normal copula

and Skewed-GT specification as another comparison model, Model 2.

II.3.C Asset Allocation under Regime Switching Assumption

In this section we provide the asset allocation results of the Monte Carlo

simulation under the Regime Switching assumption. We follow Barberis (2000)

17One difficulty in using the copula function is that it is difficult to compare with conventional dependence
measures, for example, correlation. Kendall’s τ is used for this conversion. Since there exists one to one mapping
between the copula dependence measure and Kendall’s τ , first we convert the dependence measure to Kendall’s
τ , then convert again to corresponding ρ.
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Table II.2 Regime Switching Model Estimation I

Copula Normal Normal/Gumbel Clayton/Normal

Margins Normal Normal Normal

R
eg

im
e

1
µ1

1 -0.0158 (0.0020) -0.0134 (0.0144) -0.0178 (0.0125)

µ1
2 -0.0120 (0.0080) -0.0125 (0.0086) -0.0125 (0.0094)

σ1
1 0.0906 (0.0091) 0.0947 (0.0110) 0.0921 (0.0094)

σ1
2 0.0634 (0.0060) 0.0644 (0.0058) 0.0638 (0.0060)

ρ1 (or δ1) 0.2936 (0.1138) 0.3755 (0.0633) 0.2541 (0.1338)

R
eg

im
e

2

µ2
1 0.0115 (0.0027) 0.0108 (0.0030) 0.0115 (0.0029)

µ2
2 0.0109 (0.0024) 0.0108 (0.0029) 0.0105 (0.0026)

σ2
1 0.0396 (0.0024) 0.0399 (0.0031) 0.0405 (0.0025)

σ2
2 0.0367 (0.0022) 0.0371 (0.0023) 0.0372 (0.0021)

ρ2 (or δ2) 0.3862 (0.0566) 1.2369 (0.1529) 0.4078 (0.0579)

Prob.
p 0.6596 (0.1096) 0.9164 (0.0350) 0.6387 (0.0937)

q 0.9070 (0.0451) 0.6687 (0.1009) 0.9117 (0.0297)

Auto.
a1 0.1865 (0.0478) 0.1996 (0.0493) 0.1801 (0.0501)

a2 -0.0328 (0.0442) -0.0357 (0.0490) -0.0251 (0.0474)

Log Likelihood 1479.93 1478.58 1479.48

RCM 35.2706 33.122 33.1175

Selection (Model 1)

Note: Dependence measures are different depending on the copulas. 0 ≤ ρi ≤ 1, i = 1, 2 is
for the Normal copula. 0 < δ1

C ≤ ∞ is for the Clayton copula. 1 ≤ δ2
G ≤ ∞ is for the

Gumbel copula.
RCM is the regime classification measure from Ang and Bekaert (2002b). 0 ≤ RMC ≤
100 and lower values denote better regime classification.

and approximate the integral using equation (II.6) for the CRRA utility function.

In order to comply with the regime-switching model, the approximation form of

the objective function is changed to the following form

max
αt

1

I

I∑

i=1

U(W i
t+T ; γP )

s.t. W i
t+T =

S∑

st=1

{
α

′

N,t exp(Ri
N,t+T |θ̂st

)Wt

}
× pst

(II.11)

where, Ri
N,t+T is the (N × 1) vector of returns in the i-th Monte Carlo simulation

conditioning on θ̂st
. Given pst

, state probabilities, we can calculate W i
t+T . Finally,



93

Table II.3 Regime Switching Model Estimation II

Copula Normal Normal/Gumbel Clayton/Normal

Margins Skew-GT Skew-GT Skew-GT
R

eg
im

e
1

µ1
1 -0.0542 (0.0001) -0.0542 (0.0000) -0.0563 (0.0000)

µ1
2 -0.0392 (0.0213) -0.0558 (0.0037) -0.0353 (0.0179)

σ1
1 0.0826 (0.0166) 0.0889 (0.0271) 0.0801 (0.0158)

σ1
2 0.0651 (0.0150) 0.3808 (0.0062) 0.0633 (0.0080)

ν1
1 50.141 (4.2376) 17.089 (0.3690) 118.21 (9.5313)

ν1
2 3.7028 (2.2473) 2.0159 (0.0025) 3.7812 (0.6492)

λ1
1 0.0864 (0.1191) 0.0423 (0.1183) 0.1053 (0.1106)

λ1
2 0.1297 (0.1963) 0.2480 (0.0114) 0.0968 (0.1882)

κ1
1 0.7036 (0.2058) 0.6259 (0.2338) 0.7381 (0.1915)

κ1
2 3.1599 (2.5725) 88.188 (2.4705) 3.1294 (1.4963)

ρ1 (or δ1) 0.1625 (0.1089) 0.3253 (0.0558) 0.2126 (0.1451)

R
eg

im
e

2

µ2
1 0.0116 (0.0026) 0.0118 (0.0027) 0.0110 (0.0032)

µ2
2 0.0144 (0.0052) 0.0131 (0.0058) 0.0148 (0.0063)

σ2
1 0.0426 (0.0031) 0.0444 (0.0030) 0.0417 (0.0032)

σ2
2 0.0364 (0.0018) 0.0368 (0.0016) 0.0364 (0.0018)

ν2
1 620.03 (55.124) 1476.1 (35.749) 475.36 (39.867)

ν2
2 5.7825 (2.7981) 5.7149 (1.4373) 5.8569 (3.5523)

λ2
1 0.0843 (0.0692) 0.0581 (0.0664) 0.1139 (0.0782)

λ2
2 -0.0234 (0.0949) -0.0092 (0.1008) -0.0235 (0.1061)

κ2
1 1.3375 (0.1616) 1.2807 (0.1606) 1.3621 (0.1973)

κ2
2 3.3892 (1.0758) 3.4682 (0.1372) 3.3352 (1.1958)

ρ2 (or δ2) 0.3354 (0.0603) 1.0676 (0.1134) 0.3352 (0.0562)

Prob.
p 0.5886 (0.0850) 0.9270 (0.0271) 0.5990 (0.0868)

q 0.9120 (0.0320) 0.5796 (0.0874) 0.9079 (0.0292)

Auto.
a1 0.1319 (0.0019) 0.1291 (0.00000 0.0992 (0.0001)

a2 -0.0568 (0.0422) -0.0445 (0.0334) -0.0567 (0.0425)

Log Likelihood 1491.12 1490.39 1491.62

RCM 24.6461 20.2765 24.6747

Selection (Model 2) (Model 3)

Note: Dependence measures are different depending on the copulas. 0 ≤ ρi ≤ 1, i = 1, 2 is
for the Normal copula. 0 < δ1

C ≤ ∞ is for the Clayton copula. 1 ≤ δ2
G ≤ ∞ is for the

Gumbel copula.
RCM is the regime classification measure from Ang and Bekaert (2002b). 0 ≤ RMC ≤
100 and lower values denote better regime classification.
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given γP and I = 100, 00018, we can optimize the objective function numerically

to get α∗
t . The optimal asset allocation is the function of the utility function,

the distribution, and the state probability. At this point, we only care about the

investors who use buy-and-hold strategy, and the investment horizon is only one

period, T = 1. For Models 2 and 3, we use the truncated version of the skewed

generalized T distribution only for this exercise, because the original skewed GT

distribution tends to generate an substantial amount of extreme samples19. We

choose the truncation points where the cumulative probability to the right or left

side of the density is 0.1%. That way, the maximum or minimum samples are very

close to the those of the historical data set20. For the both utility cases, we set

the initial wealth as 121. Finally we repeat the experiment 10 times and take the

average of the optimal asset allocation results of each experiment. In this exper-

iment, we do not consider the first order autocorrelation effect, assuming present

returns, rN,t, of equation (II.8) is 0. We, also, do not place any constraints on the

optimal asset allocation. As expected, the optimal asset allocation results vary

widely, depending on the objective function and distribution. This is confirmed by

the following figures. Figure II.1 show the optimal asset allocation results with the

CRRA utility function. For details of the graphs, see the note below each graph.

As mentioned, the results are very sensitive to distributions. Especially

when the skewed GTs are used as the marginal distributions (Models 2 and 3), we

can see more variation than when the normal distribution is the margin (Model

1). Comparing Models 2 and 3, in which different joint distributions are used, the

results do not change very much.22 This might indicate that the asymmetry in the

18Guidolin and Timmermann (2005c) show that sampling errors and random variation are substantial for sample
size, I, is less than 20,000. Also I = 30, 000 guarantees a substantial reduction in the incidence of sampling error,
therefore I = 100, 000 is ample to ensure negligible sample errors.

19These extreme samples seem to generate very different optimal asset allocation results. Guidolin and Tim-
mermann (2005c)’s experiment only consider the multivariate normal case, therefore it is not excusable to apply
their argument for the skewed GT distribution case. However, we try to use an ample sample later so that we
assume that we can reduce simulation errors even with the skewed GT marginal distribution.

20This truncation can ensure the existence of the moments with any distributions. Then we can approximate
the moments by the numerical integration. However, there exist the mth non-centered moment for the skewed
GT distribution.

21The optimal asset allocation result is the function of the initial wealth for the MV utility case, therefore
different initial wealth produces different results. However, we set 1 for convenience.

22Generally we can see the convergence of α∗ with higher risk averseness from the bottom rows of Panel A in
Figure II.1. Specifically, when the probability of state 1 is 1.0, α∗ tends to decrease and converge to a certain
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(a) Model 1 (b) Model 2 (c) Model 3

Panel A. Without a riskless asset
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Panel B. With a riskless asset
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Note: This is the optimal asset allocation results with the CRRA utility function among 2 risky assets
without and with a riskless asset. The first column is the result of Model 1, the second is for
Model 2, and the third is for Model 3. Panel A is for the case without a riskless asset, and α∗

indicates the weight on asset 2, the S&P 500 index. In Panel A, the lower row is the view from γP

axis of the corresponding upper row, therefore, the top line represents the optimal asset allocation
when the probability of state 1 is 1 and the bottom represents it when the probability is 0. The
lines from the bottom represent when the probability increases by 0.1 increments. Panel B is for
the case with riskless asset. The top layer, when the probability is high, is the optimal allocation
of the first risky asset, the emerging market index.

Figure II.1 Optimal Asset Allocation with CRRA Utility
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joint distribution does not play a very important role in the investors’ decision.

Also, more information about distribution may lead to more aggressive investment

decisions. The skewed GT margins can capture the fat-tail, skewness and kurtosis

of the marginal distributions, therefore this information might help people know

the risk factors better and invest aggressively.

In addition, less risk averse investors’ optimal asset allocation tends to

be more sensitive to the change in state probability than more risk averse in-

vestors. This is very consistent with general asset allocation results, since more

risk averse investors tend to diversify their investment than less risk averse in-

vestors, intuitively. Therefore more risk averse investors are less sensitive to the

state probability change. The difference between the CRRA and the MV utility

function is not notable. As shown in the CRRA utility case, the MV utility case

also shows similar results. However it could be that the unknown policy functions

with the CRRA utility are different from those with the MV utility.

II.4 Do Higher Moments Matter?

The previous results are rather predictable, because the optimal decision

is the function of the distribution and the objective function and in the previous

case, a change in the state probability means a change in the distribution. Now, we

have to ask what kind of factors make a difference in the asset allocation decision.

One of the questions we can ask here is ‘Do moments matter?’ The answer seems

to be ‘Yes’, because we already saw that different distributions result in different

optimal asset allocations and the different distributions can be characterized by

the difference in moments of distributions. Now, we can ask other questions, ‘Do

moments higher than the second moment matter?’, and ‘If the answer is yes, how

much and how many higher moments matter?’ Figure II.2 helps us conceptualize

level. However, if the risk aversion is extremely high, such as more than 25, and the Clayton copula, or the skewed
GTs, or both are used for state 1, α∗ tends to increase with non-zero probability of state 1 in the CRRA utility
case as a result of the optimization. Therefore, the asymmetry of joint distribution can be considered with really
extreme risk averse investors. We do not show this result in this paper, since an extreme risk averse investor is
not realistic.
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how to answer these questions.

∆D

∆M1

∆M2

∆M3

∆M4

...

etc.

∆α∗

Note: This graph shows that the change in distribution changes at each mo-
ment, and the change in each moment changes the optimal asset alloca-
tion. Here, ∆D represents the change in distribution, ∆Mi, i = 1, 2, · · · ,
represents the change in each moment, and ∆α∗ represents the change
in the optimal asset allocation.

Figure II.2 Effect of Changing Distribution

Now we define each moment as the conventional mean, covariance, co-

skewness, co-kurtosis, and so on. Following Jondeau and Rockinger (2005), we can

define covariance, co-skewness and co-kurtosis as the following:

M1 = Et[rN ]

M2 = Et[(rN − µ)(rN − µ)′]

M3 = Et[(rN − µ)(rN − µ)′ ⊗ (rN − µ)′]

M4 = Et[(rN − µ)(rN − µ)′ ⊗ (rN − µ)′ ⊗ (rN − µ)′]

(II.12)

where µt+1 = Et[rN,t+1]. In a parametric model for the joint distribution, however,

each moment is the non-linear function of the parameters of the joint distribution.

For example, assume the underlying distribution is the joint normal distribution

and it has 2N +
N(N − 1)

2
parameters. In the bivariate case, there are 5 parame-

ters. In this case, the change in µ1 alters every moment, implying that 5 parameters

fully capture the characteristics of the bivariate normal distribution. Therefore, it

is necessary to see how the parameters affect the asset allocation decision. To see

the higher moments’ effects, we can use a simple projection method.
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For the MV utility case, the choice of portfolio is determined by the first

two moments. In this case, closed form solutions exist (see, equation (II.3) and

(II.4)). Therefore, α∗ is the non-linear function of µ1, µ2, σ1, σ2 and ρ, for the

bivariate case. For the CRRA utility case, we do not know the form of the policy

function, however, we assume that the policy function, α∗, is the linear function

of the parameters, in order to see how higher moments matter.

α∗
j = ω +

N∑

j=1

Mj∑

m=1

βθj,m
θj,m +

D∑

d=1

βθd
θd + εj (II.13)

where, subscript j is the asset index, N is the number of assets, m is the pa-

rameter index and Mj is the number of parameters of jth asset distribution.

Subscript d is the dependence parameter index and D is the number of depen-

dence parameters. The sources of εj are linear approximation errors and simu-

lation errors. The coefficient parameters, βθj,m
, m = 1, · · · ,Mj , j = 1, · · · , N

and βθd
, d = 1, · · · , D, represent the marginal effect of each distributional pa-

rameter on the investor’s decision. Furthermore, in order to see the level effect

of distributional parameters, we can expand equation (II.13) to include the lin-

ear parameterizations of the non-linear function of the distribution parameters,

θ ≡ (θ1,1, · · · , θ1,M1, · · · , θN,1, · · · , θN,MN
, θ1, · · · , θD)′, following the suggestion by

White (2006). Then, equation (II.13) becomes:

α∗
j = ω +

N∑

j=1

Mj∑

m=1

βθj,m
θj,m +

D∑

d=1

βθd
θd +

Q∑

q=1

βψq
ψq(θ) + εj (II.14)

where Q is some finite integer number and ψq are nonlinear functions of θ.23

As mentioned before, we can reasonably think that the range of parameter

values is between two regimes, from the regime-switching estimates in Tables II.2

and II.3 for each model. Thus, based on the regime-switching model estimates, we

generate 500 of each parameter value through random sampling from a uniform

distribution between two estimate values of each regime. For example, the value

23White (2006) says that this specification delivers flexibility while simultaneously eliminating the computational
challenges arising from nonlinearity in the parameters.
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of µ1 is -0.0158 in regime 1 and 0.0115 in regime 2, so we generate uniform random

numbers between -0.0158 and 0.0115. Of course, this selection criterion might

seem to be very ad hoc. Another possible way to generate parameter samples

is using a bayesian framework. A bayesian framework makes it possible to get

posterior densities of each parameter. Then we can randomly sample from its

posterior distribution. However, in this paper, we simply use uniform random

sampling. Once we get the random parameter values, we generate the return data

for the Monte Carlo simulation given those parameter values. 500,000 return data

are generated for model 1, and 100,00 for Models 2 and 3. Finally, given the

return data, we find the optimal asset allocation at which the objective function

is numerically maximized. Then we can have the entire data set for the linear

projection. Next, we run the regression to see the parameter effect on the policy

function. Here, we use the bootstrapping method, whose resampling size is 1000,

to get a robust confidence interval of coefficients.

II.4.A Without a Riskless Asset

II.4.A.a Linear Marginal Effect

Figure II.3 shows the regression results based on the equation (II.13) for

Model 1, which is equivalent to the bivariate normal distribution. The coefficient

estimates can be interpreted as the average partial effect of each distribution pa-

rameter on the optimal decision. Here, we present the case in which the dependent

variable is the optimal asset weight of asset 2, α∗
2. In the case without a riskless

asset and with only 2 risky assets, the regression analysis for asset 1 is redundant,

since α∗
1 = 1 − α∗

2. This result is quite consistent with our conventional thought.

The weight on asset 2, α∗
2, increases, when asset 2’s expected return, µ2, increases

and asset 1’s volatility, σ1, increases. Also the magnitude of the first order mo-

ment’s partial effect decreases toward 0 and the second order moment’s partial

effect increases with higher risk aversion. At the lower level of risk aversion, the

partial effect of the first order moment parameters is extremely high. For instance,
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the expected return of asset 2 increases by 1%, the investor with γ = 2 increases

the weight on asset 2 almost by 1.
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Note: This graph shows the coefficient estimates based on equation (II.13) with Model 1, depending on
different risk aversion level, γ. Dependent variable is α∗

2, the Emerging Market Index. Dotted
lines are 95% confidence intervals.

Figure II.3 Coefficients on the Optimal Decision w/o Riskless asset of Model 1

Now, we can investigate the higher order moment’s marginal effect, using

Model 2 and Model 3. Figure II.4 summarizes the regression results for Model 3,

only focusing on the higher moments, as the results for the first and second order

moments’ effects are similar to Model 1, and are all significant. However, difference

exists in the marginal effect magnitude. Although we do not report it here, the

magnitude of the first moment’s partial effect, βµ1 and βµ2 , becomes significantly

smaller, compared to Model 1. This may be explained by the existence of higher

order moment risk. Model 2 also provides similar results to Model 3, therefore we

do not report the results from Model 2.

As mentioned above, the margins used for Model 2 and Model 3 are the

skewed GT distribution. The skewed GT distribution is controlled by 4 parameters

after considering µ. As shown in Appendix A, each moment is the complicated
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function of every parameter. However, in general, we can say that σ governs

the variance, ν controls the tails, λ controls the skewness, and κ, the heights of

the density. Unlike Model 1, the decision makers have to consider various risks,

variance as well as skewness, kurtosis, and so on. For the present task, we will

define risk as higher than the second order moment. From Figure II.4, we can

see what kinds of risk are very important to decision makers. The coefficients for

κj , j = 1, 2, controlling the heights, do not seem to be significant in almost any

case. The coefficients for λj, j = 1, 2, controlling the skewness, and νj , j = 1, 2,

controlling the tails, are significant. Therefore, we can say that the investors with

the CRRA type utility function react to the change in skewness and tailness, which

is not the factor which the investors with the MV type utility function consider.

A. Skewness B. Tails C. Height
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Note: This graph shows the coefficient estimates of higher order moment parameter based on the
equation (II.13) with Model 2, depending on different risk aversion level, γ. Dependent variable
is α∗

2, the Emerging Market Index. Dotted lines are 95% confidence intervals.

Figure II.4 Coefficients of Higher Order Moments Parameter on the Optimal
Decision w/o Riskless Asset of Model 2
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II.4.A.b Dependence Structure

We want to see whether dependence structure matters. Figure II.5 re-

ports the effects of dependence parameters. Recall that the dependent variable is

α∗
2. We can see the significant positive marginal effect for Model 1, implying that

the preference is for asset 2 (U.S. market) over asset 1 (Emerging Market) in the

presence of a higher dependent relationship. However, the marginal effects using

Model 3 are not significant, and Model 2 is in-between. The main difference be-

tween Model 1 and Models 2 and 3 is the assumption of the marginal distributions,

and the big difference between Models 1 and 2 and Model 3 is the assumption of

the joint density. Recall that we use the normal distribution for the margins for

Model 1. For Models 2 and 3, we alternatively assume the skewed GT distribution

for the margins. Once we consider the higher order moments, such as skewness,

in the margins and the asymmetric joint distribution, the dependence parameter

loses importance. This result continues to be the case with a riskless asset later.

This may provide a very important implication in the portfolio choice problem.

Depending on the assumption on marginal distributions and joint distribution, the

dependence structure may or may not be very important in the asset allocation

problem.

Model 1 Model 2 Model 3
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Note: This graph shows the coefficient estimates of dependence parameter based on equation (II.13),
depending on different risk aversion level, γ. Dependent variable is α∗

2, the Emerging Market
Index. Dotted lines are 95% confidence intervals.

Figure II.5 Coefficients of Dependence Parameter on the Optimal Decision w/o
Riskless Asset



103

II.4.A.c Nonlinearity

In this section, we investigate the relationship between the CRRA in-

vestor’s decision and the uncertainty characterized by the distributional param-

eters more deeply using equation (II.14). With the liner relationship framed in

this way, an important next question is, “What choices of basis functions, ψq, are

available?” Of course, there is a vast range of possible choices of basis functions.

However, we select some basis functions based on trial-and-error. In this paper,

the set of basis functions is ψ = (
µ1

σ1
,
µ2

σ2
, ρσ1σ2)

′, only considering the nonlinearity

of first two moments parameters for all models. The reason for choosing ψ is for

comparison. This will be discussed in detail later in this paper.

Table II.4 shows the linear projection results based on equation (II.14)

when γ = 3. When we include ψ, we can see the level effect of parameters.

For example, we can interpret the estimation results based on equation (II.13) as

a constant partial (marginal) effect,
∂α∗

j

∂θ
. However, inclusion of ψ changes the

partial effect as ψ is the function of other variables, so it is not constant any more.

From the estimation results of Model 1, we observe that
∂α∗

2

∂µ1
= 19.38 − 6.06

1

σ1
,

implying that the magnitude of the marginal effect of µ1 on α2 is getting smaller

with higher σ1. Also
∂α∗

2

∂µ2
= 15.42 + 3.14

1

σ2
implies that the magnitude of the

marginal effect of µ2 on α∗
2 becomes smaller with higher σ2. For second order

moment parameters, we can get the following:
∂α∗

2

∂σ1
= −0.61+6.06

µ1

σ2
1

+484.14ρσ2,

∂α∗
2

∂σ2
= −19.89 − 3.13

µ2

σ2
2

+ 484.14ρσ1, and
∂α∗

2

∂ρ
= −1.05 + 484.14σ1σ2. And the

coefficients of nonlinear terms are all significant, therefore we might say that a

level effect exists.

We also extend this interpretation to Models 2 and 3. However, the

coefficients of ρσ1σ2 for Model 2 and δσ1σ2 for Model 3 are not significant. This

may be explained by insignificance of ρ (or δ) even in linear regression based on

equation (II.13). Also none of the nonlinear basis functions using higher order

moment parameters, ψ(ν1, ν2, λ1, λ2, κ1, κ2), seems to be significant or add more

explanatory power. White (2006) states that basis functions should deliver a good
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Table II.4 Linear Parameterization of Non-Linear Functions of Distribution Pa-
rameters

Model 1 Model 2 Model 3

Const. 1.459 [ 0.672 2.235] -1.297 [-7.127 3.860] 0.343 [-2.541 3.349]
µ1 19.38 [ 10.29 28.52] -19.82 [-30.15 -10.17] -18.60 [-29.24 -8.354]
µ2 15.42 [-0.928 32.59] 19.64 [ 5.801 33.19] 26.24 [ 11.07 41.38]
σ1 -0.614 [-6.437 5.465] 6.157 [-4.825 17.22] 5.061 [-5.054 16.62]
σ2 -19.90 [-27.68 -11.94] -7.748 [-20.95 7.029] -2.842 [-15.37 10.51]

ρ (or δ) -1.047 [-2.307 0.199] -0.267 [-2.910 2.468] 0.645 [-0.794 2.144]
ν1 0.000 [-0.000 0.000] 0.000 [-0.000 0.000]
ν2 0.047 [-0.016 0.106] 0.014 [-0.046 0.077]
λ1 17.39 [-40.43 79.80] -8.686 [-24.11 6.641]
λ2 4.229 [ 3.368 5.088] 3.660 [ 2.591 4.751]
κ1 -0.040 [-0.244 0.156] 0.145 [-0.070 0.350]
κ2 -0.088 [-0.668 0.498] 0.073 [-0.532 0.712]

µ1/σ1 -6.062 [-6.614 -5.530] -1.522 [-2.108 -0.923] -1.723 [-2.327 -1.123]
µ2/σ2 3.137 [ 2.320 3.902] 1.127 [ 0.461 1.805] 0.878 [ 0.170 1.613]
ρσ1σ2 484.1 [ 119.4 833.4] 118.1 [-715.8 882.2] -168.8 [-671.4 296.5]

Note: The dependent variable is α∗
2, which represents the weight for the S&P 500 index. Square

brackets show 95% confidence interval.

approximation using as small a value for Q as possible. This is one reason not to

add more basis functions of higher order moment parameters.

II.4.A.d Explanatory Power

In this section, we investigate which elements of joint density function has

explanatory power, using the information from R̄2. For model 1, the first order

moment parameters, µj , j = 1, 2, seem to have strong explanatory power to α∗
2.

When γ is low, the explanatory power of µj is more than 90%, but it decreases

along with higher γ. When we include the second order moment parameters, σj ,

j = 1, 2, and ρ, their explanatory power increases with higher γ. For example,

the marginal R̄2 of σj , j = 1, 2, and ρ is almost negligible with lower γ, while it

increases sharply with higher γ. As a whole, the explanatory power of the first two

moment paramters is always over 90%. Also some non-liner terms add 4∼5% more

explanatory power. About 4% of that not explained may come from two sources:
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first, the other non-linearities of the policy function, and second, the Monte Carlo

simulation error.24 However, over 95% explanatory power means that linear forms

fit well enough to use these results as the approximation of the policy function.

Also assuming that the risk aversion of people in general is less than 5, we can say

that the first order moment parameters’ explanatory power dominates over that

of the second order moment paramter’s.

Recall that the difference between Model 1 and Models 2 and 3 is the

assumption of the marginal distribution. For Models 2 and 3, R̄2s of µj , j = 1, 2,

are still high, about 80% within γ from 1 to 10. However, we can see a bit different

pattern. It may seem to be that γ = 1 is a very special case, therefore we do

not discuss it. With this exceptiont, the marginal R̄2 of the first order moment

parameters does not monotonically decrease, unlike Model 1. It increases with

higher risk aversion from γ = 2 to 6, then decreases later. As a whole, the marginal

R̄2 of σj , j = 1, 2, and ρ (or δ) increases with higher γ, however not as much as

Model 1. The linear information of higher order moments, νj , λj, and κj , j = 1, 2,

explains only 1∼3% of the variation in α∗
2. Of course, when we define all higher

moment paramters including σ and ρ as risk factors, the explanatory power of risk

factors increases with higher risk aversion, consistant with our thought. However,

it is not as much as Model 1. The commnon feature is that the portion of the

unexplained sector becomes bigger, compared to Model 1. We believe there are

many other non-linear combinations of distributional parameters, which may be

important to explain the optimal policy function. Also, simulation errors based on

the skewed GT marginal distribution seem to be bigger than the normal marginal

distribution, although we do not present any evidence of it in this paper.

24As pointed out in Judd (1998) (See p.303), we must be much more careful in evaluating integrals when they
are not of direct interest but computed as part of solving an optimization problem. Especially when γ is low, the
optimal solutions vary in each simulation trial.
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including only a constant and µj , j = 1, 2 as independent variables. The second bottom sector
represents R̄2 of a regression including σj , j = 1, 2 and ρ (or δ) as well as dependent variables.

Figure II.6 R̄2 based on Independent Variables

II.4.B With a Riskless Asset

II.4.B.a General Results

Now we consider the asset allocation problem in the presence of a riskless

asset. Figure II.7 shows the regression results based on equation (II.13) for Model 1

in the presence of a riskless asset. Here, the dependent variable is α∗
1. The existence

of a riskless asset changes the magnitude of the partial effect. The magnitude

of
∂α∗

1

∂µ1
(or

∂α∗
1

∂σ1
) is almost more than twice (3 times for

∂α∗
1

∂σ1
) bigger than the

magnitude of
∂α∗

1

∂µ2

(or
∂α∗

1

∂σ2

). The magnitude of
∂α∗

2

∂µ2

(or
∂α∗

2

∂σ2

) is almost more than

4 times (3.5 times for
∂α∗

2

∂σ2
) bigger than the magnitude of

∂α∗
2

∂µ1
(or

∂α∗
2

∂σ1
), although

we do not report the result of the case with α∗
2 dependent variable. Compared to

the MV case, this result may seem to be a bit similar. Recall that the optimal

asset allocation with the MV case is shown in equation (II.4). In the case of 2
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risky assets, the optimal asset allocation becomes:

α∗
t =

1

γMVWt
Σex
t+T

−1µext+T =
1

γMVWt

1

(1 − ρ2)σ2
1σ

2
2



 σ2
2µ1 − ρσ1σ2µ2

−ρσ1σ2µ1 + σ2
1µ2



 (II.15)

where, Σex
t+T ≡



 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



 and µext+T ≡



 µ1

µ2



. In this case, the magnitude

ratio of
∂α∗

1

∂µ1
and

∂α∗
1

∂µ2
depends on the ratio of σ2

2 and ρσ1σ2, which is
σ2

ρσ1
. Given the

fact that
σ2

ρσ1

≈ 2 with this data set, it may imply that the CRRA utility case seems

to be similar to be the MV case. We also can extend this interpretation to α∗
2 case.

However, Figure II.7 shows results which are a bit strange regarding to σ1 and σ2.

According to Figure II.7, the optimal choice of investors with the CRRA utility

function suggests that when the volatility of asset 1 increases, investors should

hold more of asset 1. This seems to be counter-intuitive. In the standard portfolio

choice problem, we assume that investors dislike risk, so that when volatility (or

risk) of a certain asset increases, investors should not hold more of that asset. In

the next section, we will discuss about that.

II.4.B.b Higher Risk and Hold More?

In the 2 risky assets’ MV case,
∂α∗

1

∂σ1
=

1

1 − ρ2

ρσ1µ2 − 2σ2µ1

σ3
1σ2

and
∂α∗

1

∂σ2
=

1

1 − ρ2

ρµ2

σ1σ2
2

, assuming
1

γMVWt
= 1. In general,

∂α∗
1

∂σ1
is negative, unless ρσ1µ2 −

2σ2µ1 is positive. Also,
∂α∗

1

∂σ2

is positive, assuming that ρµ2 is positive.25 However,

this result suggests the opposite interpretation.
∂α∗

1

∂σ1

is positive, and
∂α∗

1

∂σ2

is nega-

tive. As the policy function is unknown, it is very difficult to imagine and analyze

this phenomenon in the Mean-Variance space. Figure II.8 shows the possible ana-

logue of only the case of two risky assets without a riskless asset. In this case, the

weight on asset 1 increases, even when σ1 increases. However, in the presence of a

riskless asset, the case where
∂α∗

1

∂σ1

is positive,
∂α∗

1

∂σ2

is negative, so that the weight

25In general, the case of ρσ1µ2 − 2σ2µ1 > 0 is a very rare occurance in the real world, as −1 < ρ < 1. The
case of ρµ2 < 0 may happen. However, given the data set of this paper, ρ > 0. Therefore we may say that the
possibility of ρµ2 < 0 can not be too high.
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Note: This graph shows the coefficient estimates based on the equation (II.13) with Model 1, depending
on different risk aversion level, γ. Dependent variable is α∗

1 , the Emerging Market Index. Dotted
lines are 95% confidence intervals.

Figure II.7 Coefficients on the Optimal Decision w/ Riskless Asset of Model 1

on a riskless asset increases with any increase in σ1 is very hard to resemble in

the Mean-Variance space. Therefore, positive
∂α∗

1

∂σ1

and negative
∂α∗

1

∂σ2

(or negative

∂α∗
2

∂σ1

and positive
∂α∗

2

∂σ2

) of the CRRA utility function seems to be very unique and

different from the case with the MV utility function. This discussion will extend

to higher order moment parameters in the next section.

II.4.B.c Higher Order Moment Parameters

Table II.5 summarizes the coefficient estimates of higher order moment

parameters based on equation (II.13). In the presence of a riskless asset, the mag-

nitude of
∂α∗

1

∂λ1
(or

∂α∗
2

∂λ2
) is bigger than

∂α∗
1

∂λ2
(or

∂α∗
2

∂λ1
) and also significant in almost

all γ, although it is not shown in Table II.5. This difference in the magnitude can

be explained by the existence of a riskless asset. Suppose
∂α∗

1

∂λ1
is positive, implying

that when λ1 increases, then the weight on asset 1, α∗
1, increases. However, this
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Note: This graph shows the possibility of positive
∂α∗

1

∂σ1
and negative

∂α∗
1

∂σ2
in Mean-Variance Space in

the absence of a riskless asset. When σ1 increases, the weight on asset 1 increases. However,
we have to notice that U1 > U2

Figure II.8 Positive
∂α∗

1

∂σ1
and Negative

∂α∗
1

∂σ2
in Mean-Variance Space without a

Riskless Asset

increase in α∗
1 comes not only from the weight of asset 2 but also from the weight

of a riskless asset. Therefore, the magnitude of
∂α∗

1

∂λ1

(or
∂α∗

2

∂λ2

) and
∂α∗

1

∂λ2

(or
∂α∗

2

∂λ1

)

is different. From Table II.5, we can see that positive and significant
∂α∗

1

∂λ1
and

∂α∗
2

∂λ2
may be used for indirect evidence that people with the CRRA utility function

prefer positive skewness. Of course, this may not be true as σj , j = 1, 2 case.

Therefore we may need further study on this issue.

The estimation results on other higher order moment parameters, µs and

κs, show the mixed results. First, for Model 2, ν2 is significant, while ν1 and κ2

are not significant at all. Model 3 also shows that only κ1 on α∗
1 and ν2 on α∗

2 are

significant. Of course, it is hard to extend this result globally, because our space

for sampling parameters is bounded based on the Regime-Switching estimation.

However, this may suggest a simple and robust procedure for portfolio choice. The

information about tailness and peak of distribution may not be very important.

Another thing to notice is that the sign of
∂α∗

2

∂ν2
seems to be counter-intuitive as
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∂α∗
1

∂σ1
and

∂α∗
2

∂σ2
. In our study, significant

∂α∗
2

∂ν2
< 0 and

∂α∗
1

∂ν2
> 0 without a riskless

asset, and
∂α∗

2

∂ν2
> 0 with it as shown in Figure II.4.

∂α∗
2

∂ν2
< 0 means that when

fat-tailness of asset 2 decreases (ν2 increases), the CRRA investors decrease the

weight on asset 2, α∗
2. Based on the general consensus that people may dislike

fat-tailness, this seems to be counter-intuitive as the variance parameter case.

Table II.5 Summary of Partial Effect of Higher Order Moment Parameters

Model Dep. Indep. Model 1 Model 2 Model 3

E
q
u
at

io
n

(I
I.
13

)

α∗
1

ν1 N.A. + (9) Insig (10) - (9) Insig (10)
ν2 N.A. + (10) Sig (9) + (10) Insig (10)
λ1 N.A. + (10) Sig (9) + (10) Sig (6)
λ2 N.A. - (10) Sig (9) - (8) Insig (10)
κ1 N.A. - (10) Sig (9) - (10) Sig (9)
κ2 N.A. + (5) Insig (10) - (10) Insig (10)

α∗
2

ν1 N.A. - (10) Insig (10) + (10) Insig (10)
ν2 N.A. - (10) Sig (9) - (10) Sig (9)
λ1 N.A. - (9) Insig (10) + (10) Insig (10)
λ2 N.A. + (10) Sig (10) + (10) Sig (10)
κ1 N.A. + (10) Insig (6) - (10) Insig (10)
κ2 N.A. - (10) Insig (10) - (6) Insig (10)

Note: +/- represent the dominant signs of coefficients on each distributional parameter. Sig/Insig
represent the dominant significance on each distributional parameter. The number in
parentheses represents the number of certain sign or significance within γ = 1 to 10. For
example, ‘+ (9) and Insig (10)’ means that there are 9 positive coefficients out of 10 and
10 out of 10 cases are statistically insignificant.

II.4.B.d Dependence Structure and Nonlinearity

Table II.6 summarizes the linear regression results on the dependence

parameter based on equation (II.13) and on nonlinear terms based on equation

(II.14). First, the coefficient for the dependence parameter is not significant except

for one. This result may suggest an important message about the portfolio choice

problem regarding the role of the dependence structure, which may not important.

Although many of them are not significant, the signs of the dependence parameter

on Models 2 and 3 are positive, implying that more risky assets are held when
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dependence is high. The MV utility case,
∂α∗

∂ρ
is negative, assuming a general

condition. This means that people with MV utility function tend to hold fewer

risk assets when ρ increases. However, it is not true with CRRA utility function,

reflecting a different decision rule of CRRA utility investors.

Regarding non-linear terms, we find mixed results. However, notice that
µ1

σ1

on α∗
1 and

µ2

σ2

on α∗
2 are significant. Remember that the existence of a riskless

asset makes the partial effect of an other asset’s distributional parameter smaller.

Therefore, significant µ1

σ1
on α∗

1 and µ2

σ2
on α∗

2 still indicate that there is the level

effect of first and second order moment parameters.

Table II.6 Summary of Partial Effect of Dependence Parameter and Nonlinear

Terms

Model Dep. Indep. Model 1 Model 2 Model 3

Eq (II.13)
α∗

1 ρ (or δ) - (10) Insig (10) + (10) Insig (10) + (10) Insig (10)
α∗

2 ρ (or δ) + (10) Insig (10) + (5) Insig (10) + (10) Sig (10)

Eq (II.14)

α∗
1

µ1

σ1

+ (10) Sig (10) + (10) Sig (10) + (10) Sig (10)

µ2

σ2
- (10) Sig (10) - (9) Insig (10) - (7) Insig (10)

ρσ1σ2 + (10) Insig (10) - (7) Insig (10) - (8) Insig (10)

α∗
2

µ1

σ1
- (10) Sig (10) - (9) Insig (10) - (9) Insig (10)

µ2

σ2

+ (10) Sig (10) + (10) Sig (10) + (10) Sig (10)

ρσ1σ2 + (10) Sig (10) - (9) Insig (10) - (10) Insig (10)

Note: +/- represent the dominant signs of coefficients on each distributional parameter. Sig/Insig
represent the dominant significance on each distributional parameter. The number in paren-
theses represents the number of certain sign or significance within γ = 1 to 10. For example,
‘+ (9) and Insig (10)’ means that there are 9 positive coefficients out of 10 and 10 out of 10
cases are statistically insignificant.

II.4.B.e Explanatory Power

Figure II.9 shows the R̄2 of linear projection in various settings. In the

existence of a riskless asset, the first order moment parameters, µj, j = 1, 2, again

have the greatest explanatory power. On average, 70∼80% of variation in the
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CRRA investor’s decision is explained by first order moment parameters. For α∗
2,

the explanatory power of first order moment is 65∼80%. (Not reported here.) One

interesting result is that the R̄2 of the linear model including non-linear terms is

almost 98.5∼99.5%. If we consider that simulation errors still exist, this result

seems to almost perfectly resemble the CRRA investor’s portfolio choice decision.

The portfolio choice problem of the MV investor without a riskless asset has one

more constraint than with a riskless asset. Therefore, the MV investor’s decision

rule without a riskless asset shown in equation (II.3) seems to be complicated

compared to equation (II.4). As an analogue of the MV investor’s decision rule

shown in the equations (II.3) and (II.4), we may think that the number of the

factors in a CRRA investor’s portfolio choice problem is smaller in the presence

of a riskless asset than in the absence of it. This is another reason to include
µ1

σ1
,

µ2

σ2
, and ρσ1σ2 as independent variables. Based on this reasoning, we may say

that the top portion in Models 2 and 3, which is unexplained, mainly comes from

the non-linearity of higher order moment parameters rather that that of first and

second order moment parameters.

The linear information of higher order moments from νj , λj, and κj ,

j = 1, 2, explains only less than 2%. Assuming that the portions 3 and 5 are due

to the higher order moment parameters, their explanatory power is from 8% to at

most 25%, depending on γ, in the CRRA investor’s decision. In the next section,

we will compare various portfolio choice rules’ out-of-sample performance to check

whether or not higher moment information helps to improve performance.

II.5 Out-of-Sample Performance

Once we have the linear approximated policy function, we can easily

apply these results to the portfolio choice problem when the parameters character-

izing investment opportunities vary over time. Also, we can eliminate a lot of the

computational burden using the liner approximated policy function. Another good



113

Model 1 Model 2 Model 3

2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2. σj andρ

1. µj

4.
µj

σj

, and ρσ1σ2

5. Unexplained: SE and Other NL

2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5. Unexplained: SE and Other NL

1. µj

2. σj and ρ

3. νj , λj , and κj

4.
µj

σj

, and ρσ1σ2

2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3. νj , λj , and κj

2. σj and δ

1. µj

4.
µj

σj

, and δσ1σ2

5. Unexplained: SE and Other NL

Note: This graph shows the mean of R̄2 of linear projection including each independent variable from
bootstrapping. Dependent variable is α∗
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including only a constant and µj , j = 1, 2 as independent variables. The second bottom sector
represents R̄2 of a regression including σj , j = 1, 2 and ρ (or δ) as well as dependent variables.

Figure II.9 R̄2 based on Independent Variables

feature of the linear approximation is that we can check which elements of joint dis-

tribution play an important role and which elements help to improve the portfolio

performance. In this section, we will discuss the possible dynamics of parame-

ters to apply the conditional portfolio choice problem first. Then we will provide

the results of the portfolio performance comparison. Finally, we will provide the

possible connection between the MV utility and the CRRA utility function.

II.5.A Dynamics of Parameters

For model 1, first, we focus on the model with time-varying expected re-

turns and a covariance matrix. One possible model considering time-varying first

and second moment parameters is the Dynamic Conditional Correlation Multivari-

ate GARCH model (DCC-MVGARCH), proposed by Engle and Sheppard (2001)

and Engle (2002). In the DCC-MVGARCH model, univariate GARCH models are

estimated for each series, then a time varying conditional correlation matrix is es-
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timated using a simple specification. We assume AR(1) process for each univariate

series. In many criteria such as AIC or BIC information criterion or the likelihood

ratio test, AR(1) seems to be the best-fit model. Similar to equation (II.8), AR(1)

process describes the conditional mean equation to capture the possible first-order

serial correlation as follows:

rN,t = µN + ArN,t−1 + ut (II.16)

where A is a diagonal matrix and the elements are aj, j = 1, 2, · · · , N26. µN is a

n × 1 vector of means. Following the DCC-MVGARCH model, the error term is

modeled as:

ut|Ft−1 ∼ N(0, Ht)

Ht ≡ DtRtDt

(II.17)

where Dt is the k × k diagonal matrix of time varying standard deviations from

univariate GARCH models with
√
hit on the ith diagonal, and Rt is the time

varying correlation matrix. The proposed dynamic correlation structure is:

Qt =

(
1 −

M∑

m=1

αm −
N∑

n=1

βn

)
Q+

M∑

m=1

αm(ǫt−mǫ
′
t−m) +

N∑

n=1

βnQt−n

Rt = Q∗−1
t QtQ

∗−1
t

(II.18)

where Q is the unconditional covariance of the standardized residuals resulting

from the first stage estimation, and Q∗
t is a diagonal matrix composed of the

square root of the diagonal elements of Qt.

For Models 2 and 3, there are 3 more parameters for each margin. Time

variation in higher moments has been analyzed in Hansen (1994), and Harvey

and Siddique (1999). In this paper, we use recent contributions by Jondeau and

Rockinger (2003), and Jondeau and Rockinger (2005). Here, we only consider

the first lag of error term as the time variation force, therefore each parameter is

26When we take A also as a regime switching variable, Ast , there is no considerable gain in terms of likelihood
value. Therefore we consider A as not switching with regimes.
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modeled as:
1

νi,t
=

1

νi,t−1

+ αν |ui,t−1|

λi,t = λi,t−1 + αλui,t−1

1

κi,t
=

1

κi,t−1
+ ακ|ui,t−1|

(II.19)

for i = 1, 2. In the estimation, we do not use any function to restrict the values of

each parameter, but we estimate parameters by adding time-varying parameters

one by one. Table II.7 reports the likelihood ratio test result for various models.

We find that considering time-varying variance, GARCH(1,1), is very helpful to

capture the dynamics of distribution, but the time-variation of higher moments,

νi,t, λi,t, and κi,t, i = 1, 2 are not useful for both margins. Therefore, we use

the time-varying variance and constant higher moment parameters for models 2

and 3, that is, AR(1)-GARCH(1,1)-Constant νi, λi, and κi, i = 1, 2. As shown

in a previous section, first and second order moment parameters are the most

important factors and the importance of other higher moment information may

not very great. Therefore, this model selection conforms with the results from a

previous section.

Once we select the marginal distribution model, the next step is to ensure

that it cooperates with the DCC model. In order to do that, we need two trans-

formations based on the copula model. In equation (II.16), ût is converted to get

uniformly distributed variables using the skewed GT CDF, FskewedGT (ui). Then we

convert again to get standard normally distributed variables, Φ(−1)(FskewedGT (ui)).

From the full sample estimation not shown in this paper, we can see that there

might be a structural break in the correlation structure between the EM index

and the S&P 500 index. At roughly 2000, the correlation between the two indices

jumps dramatically. In this paper, the structural break in the parameters is not

a central issue. Therefore, we consider the out-of-sample performance comparison

only before 2000. Once we eliminate the latest data and only include the data

before 2000, the persistence of the DCC model, captured by β1 in equation (II.18),
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Table II.7 Likelihood Ratio Test Results for Constant and Time-varying Models

LL d.f. Stat.

EM Index

Constant:
√
h1, ν1, λ1, κ1 Time-Varying: NO 676.78

Constant: ν1, λ1, κ1 Time-Varying: h1,t 699.69 1 45.82∗∗

Constant: λ1, κ1 Time-Varying: h1,t, ν1,t 700.39 1 1.40

Constant: κ1 Time-Varying: h1,t, ν1,t, λ1,t 700.40 1 0.02

Constant: NO Time-Varying: h1,t, ν1,t, λ1,t, κ1,t 700.47 1 0.15

S&P 500 Index

Constant:
√
h2, ν2, λ2, κ2 Time-Varying: NO 761.38

Constant: ν2, λ2, κ2 Time-Varying: h2,t 769.95 1 17.15∗∗

Constant: λ2, κ2 Time-Varying: h2,t, ν2,t 769.97 1 0.05

Constant: κ2 Time-Varying: h2,t, ν2,t, λ2,t 770.64 1 1.34

Constant: NO Time-Varying: h2,t, ν2,t, λ2,t, κ2,t 770.65 1 0.01

Note: 1% level critical value for χ2(1) = 6.63. 5% level critical value for χ2(1) = 3.84.
∗∗ denotes 1% significant level and ∗ denotes 5% significant level.

becomes small, almost zero for both models. The likelihood ratio statistic of Model

1 for the constant correlation matrix, R̄, is 4.0253, and the statistic of Model 2

is 5.0601, however the 5% level critical value for χ2(2) is 5.99. Therefore we can

reject the time-varying correlation model.

Based on this result, we use AR(1)-GARCH(1,1)-Constant other variables

for the out-of-sample performance comparison for both models.27 Also, in order to

account for estimation errors, we apply the one of Bayesian approaches,28 Griddy

Gibbs Sampling (GGS) method, proposed by Ritter and Tanner (1992), Bauwens

et al. (1999) is used. GGS is a very useful method when we do not have any idea

what the prior distributions are. In this case, we assume that we do not have any

priors of higher order moment parameters and GARCH parameters, therefore we

27Of course, we can use AR(1)-GARCH(1,1)-Time-varying other variables model. However, from section II.4,
we saw that some of the higher moment parameters are not significant, and the variation in the higher mo-
ment parameters is very small even with a time-varying Model. Therefore it is quite reasonable to use AR(1)-
GARCH(1,1)-Constant other variables model.

28Considerable effort has been devoted to the issue of handling estimation error with the goal of improving the
performance of asset allocation models. See DeMiguel et al. (2006).
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use flat priors for many parameters except two: νj and κj. For those, we use the

Half-Cauchy prior, such as (1 − ν2)−1, following the suggestion by Bauwens et al.

(1999). Details of GGS is shown in Appendix Apendix B. Table II.8 shows the

estimation results of Griddy Gibbs-Sampling.

Table II.8 In-sample Posterior Results using GGS

Model 1 Model 2 and Model 3

Mean 95% C.I. Prior Interval Mean 95% C.I. Prior Interval

µ1 0.007 [ 0.002 0.013] (-0.030 0.030) 0.011 [-0.004 0.027] (-0.030 0.060)

a1 0.194 [ 0.066 0.323] (-0.200 0.500) 0.246 [ 0.055 0.405] (-0.100 0.700)

ω1,ht
0.001 [ 0.000 0.001] ( 0.000 0.003) 0.010 [ 0.000 0.050] ( 0.000 0.050)

α1,ht
0.283 [ 0.044 0.521] ( 0.000 0.850) 0.557 [ 0.057 0.975] ( 0.000 0.990)

β1,ht
0.641 [ 0.346 0.913] ( 0.005 0.990) 0.140 [ 0.002 0.543] ( 0.000 0.990)

ν1 7.763 [ 2.114 5.964] ( 2.010 200.0)

λ1 -0.053 [-0.298 0.160] (-0.800 0.800)

κ1 1.738 [ 0.173 3.353] ( 0.100 50.00)

µ2 0.005 [-0.001 0.011] (-0.020 0.030) 0.012 [-0.016 0.042] (-0.030 0.060)

a2 0.017 [-0.107 0.142] (-0.250 0.350) -0.005 [-0.213 0.208] (-0.500 0.600)

ω2,ht
0.001 [ 0.000 0.002] ( 0.000 0.004) 0.010 [ 0.000 0.049] ( 0.000 0.050)

α2,ht
0.078 [ 0.006 0.202] ( 0.000 0.700) 0.367 [ 0.011 0.969] ( 0.000 0.990)

β2,ht
0.389 [ 0.016 0.858] ( 0.000 0.990) 0.187 [ 0.003 0.592] ( 0.000 0.990)

ν2 4.008 [ 2.054 3.933] ( 2.010 100.0)

λ2 -0.103 [-0.539 0.346] (-0.700 0.700)

κ2 2.591 [ 0.233 4.950] ( 0.100 75.00)

ρ 0.191 [ 0.069 0.309] (-0.100 0.500) 0.243 [ 0.024 0.815] (-0.300 0.900)

δ 0.418 [ 0.020 2.518] ( 0.010 5.000)

Note: These are the posterior results of Griddy Gibbs-Sampling for each model in the in-sample (Jan.
67 - Dec. 90). For the posteriors, we report posterior means, 95% confidence intervals in square
brackets, and prior intervals in parentheses. We use the flat priors for most cases. For νj and κj ,
j = 1, 2, we use the half-Cauchy prior. The number of draws is 1000 after discarding 100 initial
draws. For Models 2 and 3, we use the same marginal distribution, therefore we only report δ

for Model 3.
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II.5.B Performance Comparison

For buy-and-hold investors, the optimal asset allocation is the function of

expected moments. Since moments are the function of parameters, we can say that

the decision is the function of expected value of the parameters, α∗
t+T (E(θt+T |Zt)).

Estimation results represent low persistency in expected means and relatively high

persistency in volatility. Therefore, the expected return is very important to short

term buy-and-hold investors. Of course, the expected return is important to long

term investors as well. However, since the expected volatility has longer persistence

in our sample, after the expected return converges to the steady-state value in the

very short term, the level of expected volatility becomes the most important factor.

That creates different optimal asset allocation decisions between long and short

term investors. Given the estimates of the selected model, we can forecast the

expected values of parameters. Since we assume the AR(1) process for the mean

equation, the expected value of return at time t+ T is

Et[rt+T |Zt] =

T−1∑

i=0

AiµN + AT rt, T = 1, 2, · · · . (II.20)

The T -step ahead forecast of a GARCH(1,1) for ith asset is given by:

hi,t+1 = ωi,ht
+ αi,ht

u2
i,t + βi,ht

hi,t

hi,t+T = ωi,ht

∑T−2
i=0 (αi,ht

+ βi,ht
)i + (αi,ht

+ βi,ht
)T−1ht+1, T = 2, 3, · · · .

(II.21)

Based on these forecasting equations and results from Table II.8, we can compare

out-of-sample performances of various portfolio choice models. We use mainly

three sets of comparisons models. The first set of comparison models uses full

information, that is done by the Monte Carlo simulation. The second and third

set of comparison models uses the linear approximation results of the previous

section. The first usefulness of the linearly approximated decision rule is that it

does not need to rely on computational power, although recently computational

cost has decreased dramatically. The second useful aspect is that we can include
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and exclude each moment’s linear and non-linear information on the portfolio

choice problem, depending on how useful it is in terms of performance or investor’s

preference. For example, if we believe that only the sum of portions 1, 2 and

4 in Figures II.5 and II.9 is useful, then we can use only that, excluding other

information in a general portfolio choice problem. The linear approximation results

of the previous section make it possible. In this paper, the second set uses the

portions 1 through 5 in Figures II.5 and II.9, excluding simulation error and all

non-linear information of moment parameters except
µj
σj

, j = 1, 2 and ρσ1σ2.

The last set excludes the higher order moment information, shown in portion 3,

therefore, it only uses the linear information of the first and second order moment

information, the sum of portions 1, 2, and 4 in Figures II.5 and II.9. This is only

applied to Models 2 and 3. In addition, we include a naive decision (1/N) rule and

the Mean-Variance utility case for performance comparison.29

II.5.B.a Sharpe Ratio

First, we use the Sharpe Ratio (SR), which is the most common per-

formance measure of evaluation, although it may not be an appropriate measure

with the CRRA utility function. We measure the out-of-sample Sharpe ratio of

each decision rule d as the sample mean of out-of-sample excess returns (over the

riskless asset), µ̂ex,d, divided by their sample standard deviation, σ̂ex,d:

ŜRd =
µ̂ex,d
σ̂ex,d

(II.22)

First, we report the Sharpe ratios of each index and a naive decision (1/N) rule for

comparison purposes. Table II.9 shows those results. It is interesting that during

the out-of-sample period, the Emerging Market index performs very poorly; the

Sharpe ratio is negative. This might be explained by a series of financial crises in

the Emerging Markets during the 1990s. The poor performance of the EM index

causes the poor performance of the naive decision rule.
29Of course, the risk aversion of the MV utility function and power utility function is different, therefore they

can not map on to each other directly. However in order to compare their performances depending on the risk
aversion level, we just set γMV equal to 1 through 10.
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Table II.9 Statistics of Out-of-Sample Performance

Mean Std Sharpe Ratio

EM Index 0.0032 0.0616 -0.0250

S&P 500 Index 0.0124 0.0385 0.1964

Naive (1/2) w/o RF 0.0078 0.0438 0.0688

Naive (1/3) w/ RF 0.0068 0.0292 0.0690

Note: This table presents the means, standard deviations and Sharpe
ratios of out-of-sample returns of each index and a naive decision
(1/N) rule for the last 10 years (from Jan. 1991 to Dec. 2000).

Table II.10 shows sample means, standard deviations, and the Sharpe

ratios of various settings in the absence of a riskless asset. According to Table

II.10, MV allocation seems to be the best in terms of the Sharpe ratio. However,

its expected mean and standard deviation are extremely small. In other words,

MV strategies produce relatively conservative portfolio choice rules compared to

CRRA strategies, therefore, in the absence of a riskless asset, MV stategies seem

to have a higher Sharpe ratio. However, they do not perform well in terms of

realized wealth. This is discussed in more detail later in the paper.

When we compare the full models (M1 full, M2 full, and M3 full), Model

1 performs better than others. This is because when we consider higher order

moment parameters to capture characteristics of distribution well, the optimal

decision rules lead to holding more of the Emerging Market Index, at least in my

sample. As mentioned, the performance of the Emerging Market Index during

1990s is very poor. Therefore, the Sharpe ratios of M2 full and M3 full are lower.

Of course, the skewness and kurtosis information does not help to improve the

Sharpe ratio measure, because it only considers the mean and volatility of return

distribution. Therefore it is not reasonable to say that MV strategies perform

better than CRRA strategies.

The comparison of full, linear, and linear without higher order moment

information cases shows the best performance of a full case. The decision rules of

the linear model tend to put even more weight on the EM index than full cases,
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Table II.10 Statistics of Out-of-Sample Performance w/o a Riskless Asset

γ 1 2 3 4 5 6 7 8 9 10

MV
Mean 0.0095 0.0088 0.0085 0.0083 0.0081 0.0080 0.0080 0.0079 0.0079 0.0078
Std 0.0068 0.0042 0.0033 0.0028 0.0025 0.0022 0.0021 0.0020 0.0019 0.0018
SR 0.6956 0.9707 1.1380 1.2657 1.3693 1.4552 1.5268 1.5870 1.6377 1.6805

M1 Full
Mean 0.0350 0.0231 0.0185 0.0163 0.0150 0.0141 0.0135 0.0130 0.0127 0.0124
Std 0.1362 0.0840 0.0664 0.0582 0.0537 0.0510 0.0491 0.0479 0.0469 0.0461
SR 0.2216 0.2182 0.2071 0.1972 0.1901 0.1832 0.1771 0.1719 0.1680 0.1644

M1 Linear
Mean 0.0388 0.0256 0.0205 0.0179 0.0164 0.0153 0.0145 0.0140 0.0135 0.0132
Std 0.1610 0.1008 0.0770 0.0657 0.0591 0.0551 0.0524 0.0505 0.0490 0.0479
SR 0.2111 0.2069 0.2044 0.1998 0.1956 0.1909 0.1858 0.1816 0.1781 0.1750

M2 Full
Mean 0.0128 0.0107 0.0099 0.0094 0.0090 0.0087 0.0084 0.0081 0.0078 0.0076
Std 0.0681 0.0544 0.0500 0.0479 0.0468 0.0462 0.0459 0.0457 0.0457 0.0458
SR 0.1169 0.1079 0.1032 0.0960 0.0897 0.0837 0.0780 0.0724 0.0669 0.0618

M2 Linear
Mean -0.1261 -0.0268 -0.0102 -0.0125 -0.0115 -0.0094 -0.0073 -0.0066 -0.0045 -0.0040
Std 0.8819 0.2873 0.1808 0.1840 0.1717 0.1552 0.1399 0.1330 0.1194 0.1146
SR -0.1484 -0.1099 -0.0829 -0.0939 -0.0950 -0.0916 -0.0866 -0.0854 -0.0779 -0.0764

M2 L noH
Mean -0.0672 -0.0002 0.0039 -0.0010 -0.0020 -0.0010 0.0001 0.0002 0.0020 0.0019
Std 0.5398 0.1385 0.1059 0.1197 0.1186 0.1087 0.0993 0.0963 0.0850 0.0836
SR -0.1333 -0.0359 -0.0083 -0.0480 -0.0572 -0.0534 -0.0468 -0.0476 -0.0328 -0.0344

M3 Full
Mean 0.0129 0.0102 0.0098 0.0089 0.0081 0.0073 0.0065 0.0060 0.0055 0.0052
Std 0.0706 0.0551 0.0511 0.0490 0.0484 0.0489 0.0501 0.0516 0.0533 0.0547
SR 0.1149 0.0978 0.0983 0.0848 0.0682 0.0507 0.0351 0.0226 0.0135 0.0070

M3 Linear
Mean -0.1195 -0.0200 -0.0090 -0.0118 -0.0114 -0.0091 -0.0068 -0.0057 -0.0032 -0.0033
Std 0.8469 0.2496 0.1759 0.1799 0.1709 0.1533 0.1373 0.1286 0.1128 0.1110
SR -0.1468 -0.0993 -0.0783 -0.0920 -0.0946 -0.0904 -0.0845 -0.0818 -0.0711 -0.0724

M3 L noH
Mean -0.0672 -0.0002 0.0039 -0.0010 -0.0020 -0.0010 0.0001 0.0002 0.0020 0.0019
Std 0.5398 0.1385 0.1059 0.1197 0.1186 0.1087 0.0993 0.0963 0.0850 0.0836
SR -0.1333 -0.0359 -0.0083 -0.0480 -0.0572 -0.0534 -0.0468 -0.0476 -0.0328 -0.0344

Note: This table presents the means, standard deviations and Sharpe ratios of out-of-sample returns of various models without a riskless asset for the last
10 years (from Jan. 1991 to Dec. 2000).
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Table II.11 Statistics of Out-of-Sample Performance w/ a Riskless Asset

γ 1 2 3 4 5 6 7 8 9 10

MV
Mean 0.0285 0.0159 0.0122 0.0104 0.0093 0.0086 0.0081 0.0077 0.0074 0.0071
Std 0.1407 0.0610 0.0399 0.0299 0.0239 0.0200 0.0172 0.0151 0.0134 0.0121
SR 0.1684 0.1813 0.1852 0.1874 0.1887 0.1897 0.1904 0.1909 0.1914 0.1918

M1 Full
Mean 0.0419 0.0253 0.0186 0.0151 0.0131 0.0120 0.0111 0.0102 0.0098 0.0093
Std 0.1985 0.1103 0.0743 0.0554 0.0443 0.0363 0.0310 0.0269 0.0242 0.0218
SR 0.1872 0.1861 0.1855 0.1862 0.1886 0.1990 0.2028 0.2026 0.2068 0.2079

M1 Linear
Mean 0.0455 0.0286 0.0211 0.0171 0.0147 0.0131 0.0119 0.0110 0.0103 0.0098
Std 0.2010 0.1163 0.0811 0.0614 0.0493 0.0411 0.0353 0.0310 0.0275 0.0248
SR 0.2024 0.2044 0.2013 0.2012 0.2012 0.2020 0.2013 0.2012 0.2015 0.2016

M2 Full
Mean 0.0119 0.0082 0.0072 0.0066 0.0063 0.0061 0.0059 0.0058 0.0057 0.0056
Std 0.0529 0.0275 0.0185 0.0133 0.0110 0.0095 0.0081 0.0071 0.0063 0.0056
SR 0.1338 0.1240 0.1305 0.1352 0.1326 0.1386 0.1392 0.1421 0.1422 0.1389

M2 Linear
Mean -0.0854 -0.0458 -0.0390 -0.0314 -0.0260 -0.0197 -0.0163 -0.0132 -0.0115 -0.0104
Std 0.9373 0.4447 0.3279 0.2376 0.2037 0.1626 0.1409 0.1229 0.1086 0.1045
SR -0.0962 -0.1139 -0.1334 -0.1522 -0.1509 -0.1508 -0.1494 -0.1461 -0.1497 -0.1453

M2 L noH
Mean -0.0357 -0.0212 -0.0164 -0.0115 -0.0081 -0.0050 -0.0035 -0.0019 -0.0014 -0.0011
Std 0.5292 0.2469 0.1815 0.1246 0.1050 0.0804 0.0692 0.0599 0.0529 0.0514
SR -0.0764 -0.1054 -0.1170 -0.1310 -0.1231 -0.1222 -0.1205 -0.1109 -0.1172 -0.1151

M3 Full
Mean 0.0121 0.0085 0.0072 0.0067 0.0063 0.0060 0.0059 0.0057 0.0056 0.0055
Std 0.0563 0.0287 0.0194 0.0147 0.0118 0.0098 0.0084 0.0073 0.0066 0.0058
SR 0.1295 0.1277 0.1245 0.1269 0.1292 0.1193 0.1292 0.1293 0.1228 0.1238

M3 Linear
Mean -0.0339 0.0054 0.0047 0.0045 0.0035 0.0023 0.0024 0.0025 0.0019 0.0023
Std 0.1835 0.0516 0.0632 0.0563 0.0583 0.0537 0.0485 0.0442 0.0409 0.0374
SR -0.2109 0.0125 -0.0016 -0.0056 -0.0222 -0.0460 -0.0487 -0.0521 -0.0702 -0.0666

M3 L noH
Mean 0.0205 0.0365 0.0262 0.0212 0.0168 0.0136 0.0120 0.0107 0.0093 0.0088
Std 0.1636 0.2003 0.1290 0.0921 0.0627 0.0444 0.0340 0.0272 0.0207 0.0178
SR 0.0958 0.1584 0.1660 0.1786 0.1921 0.1987 0.2134 0.2164 0.2200 0.2253

Note: This table presents the means, standard deviations and Sharpe ratios of out-of-sample returns of various models with a riskless asset for the last 10
years (from Jan. 1991 to Dec. 2000).
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making the performance of the linear model even worse as a whole. When we

exclude the higher order moment information, the weight on the EM index is in

between. This is exactly reflected in the performance of each decision rule. Later,

the same pattern is shown the case with a riskless asset again.

Table II.11 shows the results of the case with a riskless asset. In this case,

the performance of Model 1 is dominant over others, unlike in the absence of a

riskless asset. However, Models 2 and 3 tend to invest in the EM index excessively,

like in the absence of a riskless asset. In turn, the performances of those models

are not particularly good. In fact, our samples in this paper are a little extreme

cases. During the 1990s, the US market was bullish; the Emerging Market was in

a bearish mood. Therefore, we need to extend this study to other cases to confirm

whether Models 2 and 3, which include higher order moment information, still

perform poorly or not. Also we need to check which moment information is helpful

in terms of performance of a portfolio choice problem. This will provide robust

conclusions about the usefulness of higher order moment information. We will

leave this for future research. In the next section, we will use another performance

measure, the realized wealth and the realized utility.

II.5.B.b Realized Wealth and Realized Utility

In this section, we compare the performance of Models by realized wealth

and realized utility. First, we assume that the investors have one dollar at the

beginning of the period (Jan. 1991), and that they invest one dollar according

to the optimal decision rule based on each comparison model and roll-over each

period. Another assumption here is that once the investors are bankrupt, Wt < 0,

they can finance by borrowing money from other people or other ways, and invest

one dollar and roll-over again.30 Figure II.10 shows the realized wealth of an

30Bankruptcy cases happen with low risk aversion, such as γ = 1. The following is the summary of the number
of bankruptcies: (1) In the absence of a riskless asset: M2 Linear (16 bankruptcies with γ = 1), M2 L noH (5
with γ = 1), M3 Linear (15 with γ = 1), and M3 L noH (5 with γ = 1). (2) In the presence of a riskless asset: M2
Linear (15 with γ = 1, 2 with γ = 2), M2 L noH (2 with γ = 1). Two reasons are suggested. Low risk aversion
investors tend to invest extremely, and the poor performance of the EM index in our sample. Therefore they may
experience bankruptcies many times during 1990s. However, the assumption that general investors’ risk aversion
is higher than 1 or even 2 may be reasonable. Therefore, we can disregard extremely low risk aversion cases.
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investor with γ = 3 who rolls-over his or her wealth during the out-of-sample

period for both with and without a riskless asset cases. Of course, the level of

realized wealth really depends on the degree of the investor’s risk aversion. Higher

γ means more conservative portfolio choice, so that the level of realized wealth

becomes lower. One example is that if we assume γ is bigger than 6, the level

of realized wealth at the last data point is lower than the case of investing only

on the S&P 500 Index, although volatility also is lower. Assumption of γ = 3

is not strange and is supported by a great deal of financial literature, therefore,

it may be a reasonable assumption. See, Bollerslev et al. (2004). In figure II.10,

we do not include the results based on Model 3, since they are very similar to

the results of Model 2. This might be futher evidence that the assumption of

dependence structure does not affect the optimal portfolio choice rule, and, in

turn, the performance of the decision rules.

However, we can see that Model 1, especially the linearly approximated

decision rule based on Model 1, is dominant. In the comparison to the Sharpe

ratio, the results from MV show that it outperforms others. However, MV strategy

seems to be very conservative so that it generates higher a Sharpe ratio, but not

higher realized wealth. The poor performance of Model 2 is confirmed here again.

Consideration of higher moment effects provides substantial losses in the rolling-

over realized wealth in our sample. As mentioned, this is because the decision rule

of Model 2 (or 3) place too much weight on the Emerging Market Index. However,

the better performance of by Model 1 might be due to a few isolated extremely

underperforming or outperforming months in our sample.

In order to eliminate that possibility, we perform the following test. First,

we assume that we invest one dollar in each period following the optimal strate-

gies, and then we can calculate the realized wealth, RW γ
i,t, and the realized utilities,

RUγ
i,t, of each model. Here, i is a model index. For MV preference (quadratic util-

ity) investors, the realized utilities are sometimes expressed in terms of Certainty

Equivalent (CEQ) returns: see, DeMiguel et al. (2006). However, in the CRRA
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(a) In the Absence of a Riskless Asset
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(b) In the Presence of a Riskless Asset
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Note: This graph shows the realized wealth of rolling-over strategies based on several portfolio choice
models. The results based on Model 3 are not here, since those are very similar to Model 2’s
results.

Figure II.10 Realized Wealth of Rolling-Over Strategy (γ = 3)
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Table II.12 Performance Comparison Test: Realized Wealth

γ 1 2 3 4 5 6 7 8 9 10

W
it

h
ou

t
a

R
is

k
le

ss
A

ss
et

E(ηγ1F−2F,t) 0.0222∗∗∗ 0.0125∗∗∗ 0.0086∗∗∗ 0.0069∗∗∗ 0.0060∗∗∗ 0.0055∗∗∗ 0.0051∗∗∗ 0.0049∗∗∗ 0.0048∗∗∗ 0.0048∗∗∗

SE (0.0076) (0.0041) (0.0028) (0.0022) (0.0019) (0.0017) (0.0015) (0.0014) (0.0014) (0.0014)
E(ηγ1F−3F,t) 0.0321∗∗∗ 0.0202∗∗∗ 0.0156∗∗∗ 0.0133∗∗∗ 0.0121∗∗∗ 0.0112∗∗∗ 0.0106∗∗∗ 0.0101∗∗∗ 0.0097∗∗∗ 0.0095∗∗∗

SE (0.0103) (0.0056) (0.0042) (0.0036) (0.0034) (0.0032) (0.0032) (0.0031) (0.0031) (0.0031)
E(ηγ2F−3F,t) 0.0098∗∗∗ 0.0077∗∗∗ 0.0070∗∗∗ 0.0065∗∗∗ 0.0061∗∗ 0.0057∗∗ 0.0054∗∗ 0.0052∗∗ 0.0049∗∗ 0.0047∗∗

SE (0.0031) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0023)
E(ηγ1F−1L,t) -0.0038 -0.0025 -0.0020 -0.0016 -0.0014 -0.0012∗ -0.0010∗ -0.0009∗ -0.0009∗ -0.0008∗∗

SE (0.0033) (0.0021) (0.0014) (0.0010) (0.0008) (0.0007) (0.0006) (0.0005) (0.0004) (0.0004)
E(ηγ2F−2L,t) 0.0774 0.0374 0.0201 0.0219 0.0205 0.0181 0.0157 0.0147 0.0123 0.0116

SE (0.0676) (0.0228) (0.0134) (0.0139) (0.0129) (0.0114) (0.0100) (0.0093) (0.0080) (0.0075)
E(ηγ3F−3L,t) 0.0693 0.0229 0.0119 0.0147 0.0143 0.0120 0.0097 0.0086 0.0061 0.0062

SE (0.0652) (0.0180) (0.0112) (0.0115) (0.0106) (0.0090) (0.0075) (0.0067) (0.0052) (0.0050)
E(ηγ3F−3nH,t) 0.0621 0.0031 -0.0010 0.0039 0.0049 0.0039 0.0028 0.0027 0.0009 0.0010

SE (0.0432) (0.0078) (0.0049) (0.0059) (0.0058) (0.0048) (0.0039) (0.0036) (0.0026) (0.0024)

W
it

h
a

R
is

k
le

ss
A

ss
et

E(ηγ1F−2F,t) 0.0301∗∗ 0.0171∗∗ 0.0114∗∗ 0.0085∗∗ 0.0069∗∗ 0.0059∗∗ 0.0052∗∗ 0.0045∗∗ 0.0041∗∗ 0.0037∗∗

SE (0.0138) (0.0078) (0.0053) (0.0040) (0.0031) (0.0025) (0.0022) (0.0019) (0.0017) (0.0015)
E(ηγ1F−3F,t) 0.0299∗∗ 0.0169∗∗ 0.0114∗∗ 0.0084∗∗ 0.0068∗∗ 0.0061∗∗ 0.0052∗∗ 0.0045∗∗ 0.0042∗∗ 0.0038∗∗

SE (0.0135) (0.0078) (0.0052) (0.0039) (0.0031) (0.0025) (0.0021) (0.0019) (0.0017) (0.0015)
E(ηγ2F−3F,t) -0.0002 -0.0003 0.0000 -0.0001 -0.0001 0.0001 0.0000 0.0001 0.0001 0.0001

SE (0.0005) (0.0004) (0.0003) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
E(ηγ1F−1L,t) -0.0035 -0.0032 -0.0026 -0.0020 -0.0016 -0.0011 -0.0008 -0.0008 -0.0005 -0.0005

SE (0.0039) (0.0025) (0.0018) (0.0013) (0.0011) (0.0009) (0.0008) (0.0007) (0.0006) (0.0006)
E(ηγ2F−2L,t) 0.0259 0.0535 0.0462 0.0380∗ 0.0322∗ 0.0258∗ 0.0222∗ 0.0190∗ 0.0172∗ 0.0160

SE (0.0773) (0.0413) (0.0304) (0.0219) (0.0188) (0.0150) (0.0130) (0.0114) (0.0100) (0.0096)
E(ηγ3F−3L,t) 0.0460∗∗ 0.0030 0.0025 0.0022 0.0028 0.0036 0.0034 0.0032 0.0037 0.0032

SE (0.0165) (0.0053) (0.0063) (0.0056) (0.0057) (0.0052) (0.0047) (0.0043) (0.0039) (0.0036)
E(ηγ3F−3nH,t) -0.0084 -0.0281 -0.0190∗ -0.0146∗ -0.0105∗ -0.0077∗ -0.0062∗∗ -0.0049∗∗ -0.0038∗∗ -0.0033∗∗

SE (0.0135) (0.0174) (0.0113) (0.0081) (0.0055) (0.0039) (0.0030) (0.0024) (0.0018) (0.0016)

Note: ∗∗∗ denotes 1% significant level, ∗∗ denotes 5% significant level, and ∗ denotes 10% significant level.
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Table II.13 Performance Comparison Test: Realized Utility

γ 1 2 3 4 5 6 7 8 9 10

W
it

h
ou

t
a

R
is

k
le

ss
A

ss
et

E(ζγ1F−2F,t) 0.0163∗ 0.0090∗ 0.0062 0.0051 0.0047 0.0045 0.0046 0.0048 0.0053 0.0059
SE (0.0090) (0.0051) (0.0041) (0.0039) (0.0041) (0.0045) (0.0051) (0.0060) (0.0074) (0.0091)

E(ζγ1F−3F,t) 0.0259 0.0177 0.0155 0.0152 0.0158 0.0168 0.0183 0.0201 0.0225 0.0254
SE (1.1165) (0.0395) (0.0198) (0.0303) (0.0378) (0.0413) (0.0433) (0.0535) (0.0520) (0.0642)

E(ζγ2F−3F,t) 0.0095 0.0088 0.0093 0.0101 0.0111 0.0122 0.0136 0.0153 0.0172 0.0196
SE (1.0852) (0.0262) (0.0168) (0.0262) (0.0347) (0.0366) (0.0369) (0.0428) (0.0365) (0.0496)

E(ζγ1F−1L,t) -0.0010 -0.0001 -0.0002 -0.0002 -0.0002 -0.0002 -0.0001 -0.0002 -0.0001 -0.0002
SE (0.0026) (0.0016) (0.0010) (0.0007) (0.0006) (0.0004) (0.0004) (0.0003) (0.0003) (0.0002)

E(ζγ2F−2L,t) 5.0195∗∗∗ 0.1477∗∗∗ 0.0733∗∗∗ 0.1090∗∗∗ 0.1260∗∗∗ 0.1278∗∗∗ 0.1239∗∗∗ 0.1391∗∗ 0.1261∗∗ 0.1421∗∗

SE (1.1165) (0.0395) (0.0198) (0.0303) (0.0378) (0.0413) (0.0433) (0.0535) (0.0520) (0.0642)
E(ζγ3F−3L,t) 4.7219∗∗∗ 0.0946∗∗∗ 0.0590∗∗∗ 0.0926∗∗∗ 0.1134∗∗∗ 0.1108∗∗∗ 0.1031∗∗∗ 0.1091∗∗ 0.0866∗∗ 0.1069∗∗

SE (1.0852) (0.0262) (0.0168) (0.0262) (0.0347) (0.0366) (0.0369) (0.0428) (0.0365) (0.0496)
E(ζγ3F−3nH,t) 1.6573∗∗ 0.0181∗∗ 0.0097∗ 0.0266∗∗∗ 0.0353∗∗∗ 0.0341∗∗∗ 0.0309∗∗∗ 0.0349∗∗ 0.0239∗∗ 0.0277∗∗

SE (0.6559) (0.0081) (0.0053) (0.0086) (0.0110) (0.0113) (0.0111) (0.0135) (0.0104) (0.0130)

W
it

h
a

R
is

k
le

ss
A

ss
et

E(ζγ1F−2F,t) 0.0144 0.0077 0.0049 0.0037 0.0030 0.0028 0.0025 0.0021 0.0020 0.0018
SE (0.0125) (0.0065) (0.0043) (0.0031) (0.0025) (0.0019) (0.0016) (0.0014) (0.0012) (0.0011)

E(ζγ1F−3F,t) 0.0143 0.0075 0.0049 0.0037 0.0030 0.0030 0.0026 0.0022 0.0021∗ 0.0019∗

SE (0.0123) (0.0065) (0.0043) (0.0031) (0.0024) (0.0019) (0.0016) (0.0014) (0.0012) (0.0011)
E(ζγ2F−3F,t) -0.0001 -0.0002 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0001

SE (0.0005) (0.0004) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
E(ζγ1L−1F,t) -0.0040 -0.0024 -0.0015 -0.0010 -0.0007 -0.0002 0.0000 -0.0001 0.0001 0.0001

SE (0.0041) (0.0025) (0.0018) (0.0011) (0.0010) (0.0008) (0.0007) (0.0007) (0.0006) (0.0005)
E(ζγ2F−2L,t) 4.4080∗∗∗ 1.1035∗ 0.3638∗∗∗ 0.2190∗∗∗ 0.1936∗∗∗ 0.1361∗∗∗ 0.1155∗∗∗ 0.0965∗∗∗ 0.0841∗∗∗ 0.0859∗∗∗

SE (1.0639) (0.6297) (0.1050) (0.0567) (0.0490) (0.0333) (0.0279) (0.0231) (0.0199) (0.0204)
E(ζγ3F−3L,t) 0.0636∗∗∗ 0.0048 0.0077 0.0078 0.0106∗ 0.0116∗∗ 0.0110∗∗ 0.0103∗∗ 0.0105∗∗∗ 0.0095∗∗∗

SE (0.0176) (0.0052) (0.0062) (0.0055) (0.0057) (0.0052) (0.0047) (0.0043) (0.0039) (0.0036)
E(ζγ3F−3nH,t) 0.0066 0.1620 0.0184 0.0070 0.0007 -0.0013 -0.0019 -0.0019 -0.0018 -0.0017

SE (0.0166) (0.1667) (0.0250) (0.0137) (0.0074) (0.0047) (0.0033) (0.0026) (0.0019) (0.0016)

Note: ∗∗∗ denotes 1% significant level, ∗∗ denotes 5% significant level, and ∗ denotes 10% significant level.
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case, the realized utilities depend on the realized wealth and the risk aversion, γP ,

and it is a completely different measure than the CEQ of MV preference investors.

Therefore, we only test the decision rules with the CRRA utility function, which is

indexed by Models 1, 2 and 3. In order to test whether Model i performs differently

than Model j, we define ηγi−j,t = RW γ
i,t−RW γ

j,t, and ζγi−j,t = RUγ
i,t−RUγ

j,t. Then we

test the nulls, E(ηγi−j,t) 6= 0 and E(ζγi−j,t) 6= 0. As mentioned, this test eliminates

the possibility where one or a few extremely good or bad samples distort the final

wealth results.

Table II.12 summarizes the results based on the realized wealth. Even

with this criterion, we can see that Model 1 performs better than Models 2 and

3 in both cases, supporting previous results. However, we can not see clear and

consistent evidence that full information models outperform liner approximation

based decision rules. Instead, there are some cases where linear approximated rules

perform better than full information decision rules. However, when we change

the performance measure to the realized utility shown in Table II.13, the results

look different. Full information models perform better than linearly approximated

decision rules. Also we do not observe strong evidence that Model 1 outperforms

Models 2 and 3. This is because of the shape of utility function.

We can summarize the results on the whole as following. If we consider

more sophisticated (joint or marginal) distributions, we might well get more infor-

mation about return distributions. In our sample, more information leads investors

to give more weight to the Emerging Market index to maximize their expected util-

ity. However, the poor performance of the EM index seems to negatively affect

portfolio performance. In other words, a large forecasting error in the EM index

process may result in the poor performance of decision rules of sophisticated mod-

els. Therefore, at least in our sample, the performance of decision rules from the

skewed GT marginal distribution does not seem to produce a dominant strategy

over the others. That is, aggressive decision rules may sometimes ruin the perfor-

mance of an investment along with a gross forecasting error. Of course, the EM
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Note: This shows the means and standard deviations of MV decision rule and CRRA decision
rule based on Model 1. Circled dots represent the combination of expected mean and
volatility of decision rules based on the CRRA utility function under the multivariate
normal distribution. Diamond dots represent the combination of expected mean and
volatility of decision rules based on the MV utility function under the multivariate
normal distribution.

Figure II.11 The Mean-Variance in Out-of-Sample

index in our out-of-sample seems to be very risky. As observed in the previous

section, CRRA investors tend to invest more on higher volatility risky assets. It

could be a main reason for the underperformance of Models 2 and 3.

II.5.C γMV vs γP

Here, γMV indicates the MV investor’s degree of risk aversion and γP

represents the CRRA investor’s risk aversion. Superscript P indicates the power

utility function. In this section, we present the possible connection between γMV

and γP induced by out-of-sample performance test results. As known, it is not easy

to compare the risk aversion level of MV utility and CRRA utility investors directly

as the utility functions are different. However, Figure II.11 provides an indirect

relationship between them. Circled dots represent the combination of expected
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mean and volatility of decision rules based on the CRRA utility function under

the multivariate normal distribution. Diamond dots represent the combination of

expected mean and volatility of decision rules based on the MV utility function

under the multivariate normal distribution. The decision rules of The CRRA

utility investors under non-multivariate normal distributions is also governed by

other factors. Therefore it is meaningless to plot them on the mean-variance space,

so we exclude those cases. As seen in Figure II.11, γP 6= γMV . We may say that

γP = 6 ≈ γMV = 3, γP = 8 ≈ γMV = 4, and so on. This implies that investors’

risk taking with the CRRA utility function is greater than the MV utility function

at the same level of numerical value.

II.6 Conclusion

This paper examines how investors with the CRRA utility function react

to changes in the return distribution as capturred by its moments. In other words,

we disentangle how investors’ decision rule changes depending on changes in each

moment. To do that, we generate a data set by simulation, then we use a simple

projection method based on the regime switching model. Further, based on the

projection results, we propose a linearly approximated portfolio choice rule by

CRRA utility investors, which makes it possible to include or exclude uncertainty

information. Finally, we apply these decision rules to compare their performances

under various distributional assumptions and the Mean-Variance decision rule,

taking into consideration the dynamics of parameters during out-of-sample.

As everyone agrees, the expected mean is the most important factor for

investors to make a decision on how to allocate and invest their wealth. Given

the data set used in this paper, the expected return can explain from about 70%

to upwards of 90% of their investment behavior, depending on the degree of risk

aversion and distributional assumptions. Of course, this interpretation comes from

an approximated linear decision rule, therefore we can not consider all possible non-

linearities of the optimal policy function. When we define risk as all other factors
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which describe the uncertainty of investment opportunities, its explanatory power

is modest at best, from nearly negligible with lower risk aversion to at most about

10%, even with higher risk aversion. In one extreme case, Model 1 and γ = 10

without a riskless asset, it can explain more than 25%. However, in general, we

can say that the risk factors explain a relatively small part of CRRA investors’

decisions.

One seemingly striking result is the relationship between volatility and in-

vestment weight in the presence of a riskless asset. It may seem that a risk averse

investor, who wants to maximize expected utility, tries to avoid volatility risk.

However, the truth is that he tries to maximize his expected utility by increasing

the weight of the riskier asset. Another interesting result is the effect of the depen-

dence structure on the asset allocation problem. With a naive multivariate normal

distribution, the dependence structure has a statistically significant effect on the

decision rule. However, once we use a more sophisticated distributional model,

which has more parameters to capture higher order moment characteristics such

as the skewed GT distribution, the dependence structure becomes insignificant in

the absence of a riskless asset. However, with a riskless asset, the dependence

structure does not seem to have significant explanatory power on the optimal

portfolio choice. Multivariate joint distributions are relatively harder to handle

in many problems than univariate distribution. Therefore, once we consider each

univariate distribution more carefully, information from the dependence structure

may not be very important, at least, in an asset allocation problem. Also, among

higher moment parameters, the skewness parameter is important in many cases,

while other higher moment parameters are not statistically significant.

Although we linearly approximate the allocation decision, it fits the un-

known true allocation function very well. Based on the return process, we can fa-

cilitate the linearly approximated allocation function. To do that, we use the time-

varying parameter model. As one possible model, we use an AR(1)-GARCH(1,1)-

skewed GT model. Estimation results represent low persistency in expected means
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and high persistency in volatility. Therefore, the expected return is very important

to short term buy-and-hold investors. Of course, the expected return is important

to long-term investors as well. However, since the expected volatility has longer

persistence in our sample, after the expected return converges to the steady-state

value in the very short term, the level of expected volatility becomes the most im-

portant factor. That creates different optimal asset allocation decisions between

long and short term investors.

Finally, we apply a linear decision rule in an out-of-sample performance

test for a 1-month buy-and-hold investor. In order to compare performances, we

use various decision rules and risk aversions along with different distributional as-

sumptions. Compared to the MV investment rule, the performance of the decision

rule from a multivariate normal distribution (Normal copula and Normal mar-

gins), Model 1, performs well. Especially, the performance of the linear decision

rule based on Model 1 is dominant in our sample in terms of realized wealth. How-

ever, when we compare the performances from the multivariate normal distribution

and the Normal copula with the skewed GT margins specification, there is no clear

evidence that the sophisticated distribution model performs better. It even seems

that the simpler model performs better. Additionally, more information about risk

factors may lead people to invest more aggressively. However, this might ruin the

performance of the investment, perhaps due to a forecasting error.

There are some limitations. First, we do not consider all possible non-

linearity of decision rules. Second, the linear portfolio choice rules could yield

local solutions, depending on the possible range of parameter values. Therefore,

we could extend it to find globally approximated rules under different sampling

schemes. Also, most obviously, we could extend it to include many other asset

cases. Emerging Markets are very volatile. If we apply this method to more stable

markets, we may well get a better-fitted linear approximated decision function.

Further, this framework easily cooperates with many other features of return pro-

cess so that we can create various portfolio choice rules, which may use selective
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information about risk factors. Possible extensions are the use of predictability or

others, such as a jump component of the return process. One assumption of this

framework is that the linearly approximated decision rule fits well enough to use in

this way. We may need to have some supporting research to make such conclusions

firm. Finally, this work does not impose any constraints, such as no short selling

or borrowing. We could extend this framework to include such constraints.
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Apendix A Skewed Generalized T Distribution

AA.1 Probability Density Function

f(x|σ, ν, λ, k) = C

(

1 +
k

(ν − 2)

{ |x|
σθ(1 + sign(x) · λ)

}k)− ν+1
k

(II.23)
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control the height and tails, the skewness parameter −1 < λ < 1 controls the rate

of descent of density around x = 1, and σ2 is the variance. ν has the degree of

freedom interpretation in case λ = 0 and k = 2.

The skewed GT distribution generates the Generalized t distribution for

λ = 0, Hansen’s skewed t for k = 2, the students’ t for λ = 0 and k = 2, the power

exponential for λ = 0 and ν = ∞, the Laplace for λ = 0, k = 1 and ν = ∞, the

Cauchy for λ = 0, k = 2 and ν = 1, the normal for λ = 0, k = 2 and ν = ∞,

finally the uniform for for λ = 0, k = ∞ and ν = ∞. This is from Theodossiou

(1998).

AA.2 mth Non-Centered Moment

Theorem Apendix A.1. The mth non-centered moment is

Mm ≡ E(xm) =
1

2

(
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(II.24)

Proof. see Theodossiou (1998)
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AA.3 Cumulative Density Function

Theorem Apendix A.2. The Cumulative Density Function (CDF) is

F (x) =
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(II.25)

where, y =
(
1 + q · |x|k

)−1
and q ≡ k

(ν − 2)

(
1

σθ(1 + sign(x) · λ)

)k

Proof. let’s q ≡ k

(ν − 2)

(
1

σθ(1 + sign(x) · λ)

)k
and m ≡ ν + 1

k
. Then q > 0 and

m > 0, further f(x|k, ν, λ, σ) = C
(
1 + q · |x|k

)−m
.

For x < 0, CDF of this probability function is

∫ x

−∞
C
(
1 + q · (−u)k

)−m
du (II.26)
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By substitution, the original integration becomes

∫ x
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where y =
(
1 + q · |x|k

)−1
, and 0 ≤ y < 1. And By

(
ν

k
,
1

k

)
is the incomplete beta

function.

For x ≥ 0, CDF of this probability function is

1 −
∫ ∞

x

C
(
1 + q · uk

)−m
du (II.29)
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Similarly, let’s ṽ =
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By substitution, the original integration becomes
∫ ∞
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Bỹ

(
ν

k
,
1

k

)

(II.31)

where ỹ =
(
1 + q · |x|k

)−1
, and 0 ≤ ỹ ≤ 1. Therefore, CDF for x ≥ 0 is
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Apendix B Griddy Gibbs Sampling

Suppose we have the simple ARCH model

yt = µ+ ǫt
√
ht

ǫt|Ft−1 ∼ N(0, 1)

ht = ω + α(yt−1 − µ)2

(II.33)

Let us assume a flat prior, then the conditional posterior density ϕ(µ|ω, α) has a

kernel as the following

κ(µ|ω, α) = Πt[ht(ω, α, µ)]−
1
2 exp− (yt − µ)2

2ht(ω, α, µ)
(II.34)

When ω and α are a given fixed value. If ht were fixed, equation (II.34) would be a

normal density. As ht is a function of ω, α, and µ as well, the conditional posterior
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density of µ contains ht, which is also a function of µ. Consequently, it cannot

be a normal or any other well known density from which random numbers could

be easily generated. However, the kernel of ϕ(µ|ω, α) conditioning on a previous

draw of the conditioning parameter, can be evaluated over a grid of points. One

can compute the corresponding distribution function using numerical integration

techniques. Afterward, one can generate a draw of µ by inversion of the distribution

at a random value sampled from a uniform distribution in [0,1]. This technique is

called the Griddy Gibbs Sampler. The GGS procedure follows for nth draw of the

posterior.

1. Given values of ωn−1 and αn−1, compute κ(µ|ω, α) over the G grid points

(µ1, µ2, · · · , µK), so we can get the vector φκ = (κ1, κ2, · · · , κG).

2. Using one of numerical integration techniques, compute the vector of the values

ΦΦ = (Φ1,Φ2, · · · ,ΦG) by Φi =

∫ µi

µ1

κ(µ|ωn−1, αn−1, y)dµ, i = 1, 2, · · · , G.

3. Compute the normalized cdf values ΦN = ΦΦ/ΦG

4. Generate u ∼ U [0, 1] and invert by numerical interpolation to get a draw of

µ|ωn−1, αn−1, y. Index µn and store this draw.

5. Repeat 1-4 for ωn|αn−1, µn, y. And repeat again for αn|µn, ωn, y.
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III

Quantile Forecasts and

Dependence Structure

III.1 Introduction

Recent work on economic forecasting has focused on evaluating interval

forecasts rather than point forecasts as measures of uncertainty. However, there

are relatively fewer studies of interval forecasts, although Christoffersen (1998)

indicates the usefulness of interval forecasts which indicate the likely range of

outcomes, while point forecasts are of limited value since they only describe one

possible outcome1. Although the usefulness of interval forecasts is frequently ad-

vocated, it has only been in limited use: applied only to univariate cases, although

some insights into multivariate extensions are provided in Christoffersen (1998).

In this paper, we extend our interest of interval forecasts to multivariate cases and

to portfolios of multivariate cases2.

Most of the interest in interval forecasts arises from the viewpoint of risk

management. Risk management for financial market participants usually concerns

portfolio risk. Therefore, it is natural to extend interest in interval forecasts to
1Clemen et al. (1995) provide an application involving precipitation probability forecasts. Crnkovic and Drach-

man (1996) propose to evaluate forecast models based on their forecasted distributions.
2There is similar extension of density forecasts from univariate to multivariate cases. Diebold et al. (1998)

illustrate the framework with a detailed application to density forecasting of asset returns in environments with
time-varying volatility. They devote their concern only to univariate cases. Later, Diebold et al. (1999), and
Clements and Smith (2002) extend density forecasting to multivariate cases.
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multivariate cases. When we extend our interest to multivariate cases, one of the

main concerns is how important the specification of the dependence structure is.

Unless each variable is independent, dependence structures matter for multivariate

models. Recent developments of copula methods help researchers model multivari-

ate cases in an easy and flexible way, and a growing number of research uses

copulas to model multivariate density functions. As a consequence of this devel-

opment, we try to address how dependence structure matters to interval forecasts

of multivariate cases.

Chatfield (1993) mentions that model misspecification is a much more

important source of poor interval forecasting than is estimation error. Although

dependence structure is one element of the multivariate density, little attention

has been paid to importance of dependence structure in the context of conditional

quantile forecasting. Since we can decompose multivariate density functions into

marginal distributions and joint dependence structures, it is possible to observe

whether a specification of dependence structures could be important in terms of

multivariate interval forecasts. Also we can use interval forecasts as a tool to evalu-

ate the model specifications. In this paper, we provide a simple, but attractive way

to assign interval of multivariate cases. After defining an interval, we provide the

simulation results and evaluate the interval forecasts of three international stock

markets. The evaluation is based on the likelihood ratio (LR) test by Christoffersen

(1998). Christoffersen (1998) first advocates the use of conditional expectations

in the evaluation of quantile forecasts, and his ‘conditional coverage’ test has now

become standard practice in the interval forecasting literature.

The upshot of this paper is that dependence structures in multivariate

cases is of little importance to interval forecasts, so that more thought must be

given to marginal distributions. First, we perform a Monte Carlo simulation to

study the power of the LR test. Simulation results suggest that the LR test

is hard to reject under an alternative dependence structure but under the same

margin assumption, as indicated in the literature, such as Berkowitz (2001), Lopez
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(1999), etc. This result may imply that there is little difference in the outcome

of adopting different dependence structure models. Through an application to

three international stock markets, we confirm this result. There is little difference

in the test result under different dependence structures, if margins are correctly

specified. And no dependence structure seems to dominate others. However, when

we turn our interest to the lower left tail case, none of the models used in this

paper are suitable to perform interval forecasting well, at least not in our weekly

return samples.

Finally, we apply the LR test to the portfolio interval forecasts as well

as the conditional quantile forecast evaluation (CQFE) test by Giacomini and

Komunjer (2005). After constructing portfolios, multivariate joint interval fore-

casting problems become univariate problems. Among the GARCH-Normal(1,1)

and the GARCH-t(1,1) models, the GARCH-t(1,1) specification passes the con-

ditional coverage tests in all cases. On the other hand, the GARCH-Normal(1,1)

fails the tests with extremely low coverage rates, generally used in value-at-risk

(VaR) applications, while it passes the tests with moderate coverage rates. The

test results of the CQFE test show that combinations of individual forecasts may

improve the performance of the interval forecasts of portfolios in many cases, al-

though sometimes the individual forecasts from the GARCH-t(1,1) outperform the

forecast combinations.

The remainder of the paper is structured as follows. Section III.2 gives an

overview of the LR test of Christoffersen (1998), and then shows how we can define

intervals in multivariate cases. In Section III.3, we present simulation results based

on various combinations of marginal distributions and dependence structures. Sec-

tion III.4 presents an empirical application to international stock markets, and

Section III.5 is devoted to portfolio interval forecasts using the LR test as well as

the CQFE test. Finally, we conclude the paper in Section III.6.
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III.2 Framework

In this section, we describe the conditional coverage test of Christoffersen

(1998) used in univariate cases. Next, we define the interval which provides a way

to evaluate the interval forecast of multivariate cases.

III.2.A Univariate Case

The indicator variable, It, given interval forecast, (Lt|t−1(p), Ut|t−1(p)) for

time t, made at time t− 1, is defined as the following,

It =

{ 1, if yt ∈
[
Lt|t−1(p), Ut|t−1(p)

]

0, if yt /∈
[
Lt|t−1(p), Ut|t−1(p)

]

A testing criterion is to test E[It|Ψt−1] = E[It|It−1, It−2, It−3, · · · , I1] = p, for all

t. And this test is equivalent to testing that the sequence It is identically and

independently distributed Bernoulli with parameter p, i.e., It
iid∼ Bern(p).

III.2.A.a The LR Test of Unconditional Coverage

The hypothesis that E[It] = p should be tested against the alternative

E[It] 6= p, given independence. The likelihood under the null is

L(p; I1, I2, · · · , IT ) = (1 − p)nopn1

and under the alternative

L(π; I1, I2, · · · , IT ) = (1 − π)noπn1

Testing for unconditional coverage can be formulated as a standard likelihood ratio

test,

LRuc = −2 log

[
L(p; I1, I2, · · · , IT )

L(π̂; I1, I2, · · · , IT )

]
asy∼ χ2(s− 1) = χ2(1)

where, π̂ =
n1

n0 + n1

is the maximum likelihood estimate of π, and s = 2 is the

number of possible outcomes of the sequence. However, this test does not have

any power against the alternative that the zeros and ones come clustered together

in time-dependent fashion.
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III.2.A.b The LR Test of Independence

Independence is tested against an explicit first-order Markov chain alter-

native3. A binary first-order Markov chain, It, with transition probability matrix

Π1 =




1 − π01 π01

1 − π11 π11





where πij = Pr[It = j|It−1 = i]. The approximate likelihood function for this

process is

L(Π1; I1, I2, · · · , IT ) = (1 − π01)
n00(π01)

n01(1 − π11)
n10(π11)

n11

where nij is the number of observations with value i followed by j. The parameter

estimates by MLE are simply ratios of the counts of the appropriate cells, π̂01 =
n01

n00 + n01
and π̂11 =

n11

n10 + n11
. Under the null that the sequence is independent,

the transition probability matrix becomes

Π0 =




1 − π0 π0

1 − π0 π0





and corresponds to independence. The likelihood under the null becomes

L(Π0; I1, I2, · · · , IT ) = (1 − π0)
(n00+n01)(π0)

(n01+n11)

and the ML estimate is π̂0 =
n01 + n11

n00 + n10 + n01 + n11

. From Hoel (1954), the LR

test of independence is asymptotically distributed as a following

LRind = −2 log

[
L(Π̂0; I1, I2, · · · , IT )

L(Π̂1; I1, I2, · · · , IT )

]
asy∼ χ2((s− 1)2) = χ2(1)

3Christoffersen and Diebold (2000) suggest the runs test, which does not depend on the nominal coverage of the
intervals, q, and is exact and uniformly most powerful against a first-order Markov alternative. Also, Pesaran and
Timmermann (2006) propose a new test of independence based on the maximum canonical correlation between
pairs of discrete variables. However, we simply use the likelihood ratio test to be consistent with Christoffersen
(1998).
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III.2.A.c The Joint Test of Coverage and Independence

The tests for unconditional coverage and independence are now combined

to form a complete test of conditional coverage. From Christoffersen (1998), the

LR test of conditional coverage is distributed as

LRcc = −2 log

[
L(p; I1, I2, · · · , IT )

L(Π̂1; I1, I2, · · · , IT )

]
asy∼ χ2(s(s− 1)) = χ2(2).

This, in turn, implies that three LR tests are numerically related by the following

identity,

LRcc = LRuc + LRind

This LR framework enables joint testing of randomness and correct coverage while

retaining the individual hypotheses as subcomponents. See Christoffersen (1998)

for more details4.

III.2.B The Multivariate Case

As an extension of the univariate case, evaluation of multivariate interval5

forecasts provides no conceptual difficulties. Define the indicator variable, It, for

a given a sample of an m-variate time series, {Yt}Tt=1, and a sequence of out-of-

sample region forecasts, {Rt|t−1(q)}Tt=1, where Rt|t−1(q) ∈ R
m for time t, made at

time t− 1, with the prespecified desired coverage, p, of the region as a following,

It =

{ 1, if Yt ∈ Rt|t−1(q)

0, if Yt /∈ Rt|t−1(q)

However, if the region is the Cartesian product of m closed intervals as in Christof-

fersen (1998),

Rt|t−1(q) =
{
xt | Pr

[
xt ∈ (L1,t|t−1, U1,t|t−1) × · · · × (Lm,t|t−1, Um,t|t−1)

]
= q
}

4Christoffersen (1998) and Christoffersen and Diebold (2000) also broaden the test methods to allow for mul-
tivariate and higher-order dependence using a regression method. There is some usefulness of the regression
representation. It can test the null hypothesis of correct conditional coverage by a simple F-test. Second, we can
include predictor variables, such as lagged squared returns. Finally, higher-order dependence can be tested via
simple inclusion of additional lags of the predictor vairables.

5The term, ‘interval,’ may only be appropriate when we use it for the univariate case. The term, ‘area,’ may
be more adequate to use for the multivariate case. However, we do not distinguish between these two terms in
this paper.
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where, xt is an (m × 1) vector, the region forecasts could be difficult because

computing a joint forecast region, given p, from m individual interval forecasts

{(Ln,t|t−1, Un,t|t−1)}mn=1 is not a easy task, according to the Bonferroni general in-

equality, Pr

(
g⋂

n=1

An

)

≥ 1 −
g∑

n=1

Pr
(
Ān
)
, where An and its complement Ān are

any events6. However, in a multivariate setting, as seen in Case A in Figure III.1,

we can calculate the probability of the region exactly as the following:

Rt|t−1(q) =
{
xt | F (U1,t|t−1, U2,t|t−1) − F (L1,t|t−1, U2,t|t−1)

− F (U1,t|t−1, L2,t|t−1) + F (L1,t|t−1, L2,t|t−1) = q
}

where, F (·) is the cumulative density function (CDF) of xt.

The choice of region, {(Ln,t|t−1, Un,t|t−1)}mn=1, given q, may depend on the

objective of the interval forecasts. There are some special cases, as seen in Case

B and Case C in Figure III.1. As one of special cases, if Ln,t|t−1 = −∞ for all

n, the region becomes the low-left tail (in a 2-dimension plane), compatible with

univariate Value-at-Risk (VaR) applications. If Ln,t|t−1 = −∞ and Un,t|t−1 = ∞
for n = 1, · · · , i− 1, i+ 1, · · · , m, then

Rt|t−1(q) =
{
xt | Pr

[
xi,t ∈ [Li,t|t−1, Ui,t|t−1]

]
= q
}

which is equivalent to the conditional coverage test of univariate case for ith vari-

able.

To investors who have higher weight on ith asset and are concerned with

big losses in their wealth, a choice of high value of Ui,t|t−1 and relatively small value

of Un,t|t−1 for n = 1, · · · , i − 1, i + 1, · · · , m would be suitable with Ln,t|t−1 = ∞
for all n. Case C can be used if we are concerned with one market crash given the

other market’s return in the international market, since there are discrepancies in

markets opening in international markets. In this paper, we assume, for simplicity,

Ln,t|t−1 = Lt|t−1 and Un,t|t−1 = Ut|t−1 for all n.

Computing x, such that F (x) = Pr[X ≤ x] =

∫

X≤x

f(x)dx = q, given

0 ≤ q ≤ 1, is computationally burdensome in many cases because of integrals.
6If An are disjoint sets for all n, then the inequality becomes an equality.
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Figure III.1 Comparison of forecasting regions

One example is a multivariate normal distribution, which does not have a closed

form cumulative density function (CDF). In this case, f(x) is the probability den-

sity function (PDF) of a multivariate normal distribution. However, we can apply

the closed form CDF using copulas. Copulas are distribution functions whose

one-dimensional margins are uniform. Some copulas, such as the Gumbel, Clay-

ton copula7, not only have a closed form, but have many additional beneficial

properties, including easy construction, asymmetric dependence structure, etc. In

this paper, we will apply some copulas to test whether or not asymmetry of the

dependence structure is important in terms of multivariate interval forecasting.

After defining the indicator function It, the testing procedure is identical to the

univariate case. Therefore, there is nothing further to be said at the theoretical

level.

III.3 Simulation of Multivariate GARCH Process

Now we turn to an empirical application of the conditional coverage test

of multivariate cases using simulated data. One of the main points of this paper is

to see the importance of dependence structure in multivariate interval forecasting.

7These copulas belong to the, so called, Archimedean copula. For more information, see Joe (1997) and Nelsen
(1999). Embrechts et al. (2003) provide some applications of copulas in risk management.
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To do this, assume a bivariate time series generated by bivariate normal-Gaussian

GARCH(1,1) model8 as the following:

yt|Ωt−1 ∼ N(0,Σt)

Σt =




h1,t ρ

√
h1,t

√
h2,t

ρ
√
h1,t

√
h2,t h2,t





hi,t = ωi + αiy
2
i,t−1 + βihi,t−1, for i = 1, 2

where, (ρ, ω1, α1, β1, ω2, α2, β2) = (0.30, 0.05, 0.10, 0.85, 0.10, 0.20, 0.70). The sam-

ple size is 2,000. Using first 1,000 of the sample, we estimate parameters of various

models, based on different dependence structure assumptions, so that the mar-

gins’ assumption is GARCH-Normal(1,1) through all models. In this paper, we

use three different models: Normal, Gumbel and Clayton copula. With param-

eter estimates, we can find {(Lt|t−1(q), Ut|t−1(q))}1000
t=1 for the remaining 1,000 in

the sample. There are two cases to find (Lt|t−1(q), Ut|t−1(q)). The first set of

(Lt|t−1(q), Ut|t−1(q)) ≡ (−Ut|t−1(q), Ut|t−1(q)), given q, is the one that satisfies

Cc

 

Φ

 

Ut|t−1
p

h1,t

; θ̂1

!

, Φ

 

Ut|t−1
p

h2,t

; θ̂2

!

; θ̂c

!

− Cc

 

Φ

 

Ut|t−1
p

h1,t

; θ̂1

!

, Φ

 

−Ut|t−1
p

h2,t

; θ̂2

!

; θ̂c

!

− Cc

 

Φ

 

−Ut|t−1
p

h1,t

; θ̂1

!

, Φ

 

Ut|t−1
p

h2,t

; θ̂2

!

; θ̂c

!

+ Cc

 

Φ

 

−Ut|t−1
p

h1,t

; θ̂1

!

, Φ

 

−Ut|t−1
p

h2,t

; θ̂2

!

; θ̂c

!

= q

where, θ̂i is the parameter estimates of ith variable for i = 1, 2, and θ̂c is the

parameter estimates of the dependence structure of Cc, where a subscript c is a

copula model index. The second case is the low-left tail case, so that Lt|t−1 = −∞

and Ut|t−1 is the one satisfying Cc

(

Φ

(
Ut|t−1√
h1,t

; θ̂1

)

,Φ

(
Ut|t−1√
h2,t

; θ̂2

)

; θ̂c

)

= q, given

q9. Figure III.2 shows the difference between cases. As seen in Figure III.2, Case

8In terms of copula, this means that the dependence structure is normal copula and the margins are Gaussian
GARCH(1,1).

9In some cases, such as multivariate normal, finding Lt|t−1 or Ut|t−1 incurs a computation burden, since there
is no closed form CDF. In this paper, we apply an algorithm by Drezner and Wesolowsky (1990) to find Lt|t−1

or Ut|t−1 with a reduced computation burden.
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Figure III.2 Difference between Cases

1 could be called a body-interval and Case 2 is low-tail interval case used in this

simulation section.

Finally, given {(Lt|t−1, Ut|t−1)}1000
t=1 , we can test the conditional coverage

test to see whether the dependence structure is important by the Monte Carlo

simulation. The number of Monte Carlo replications is 1,000. Figures III.3 and

III.4 show the power of the tests to reject the different dependence interval forecasts

when the data are generated by a Normal dependence structure.

As seen in Figures III.3 and III.4, the power of the tests is not high enough

to reject the alternative dependence structure outright10. Especially, the power of

the test in the case 1 is almost the same as the size of the test. In Case 2, the

power of the Gumbel dependence interval forecasts is the highest when q is small.

This might be because of the definition of the interval. In a body-interval case, as

q gets bigger, the area covered by this test gets larger toward the low-left tail and

upper-right tail. However, the coverage area still includes the body parts. Inclusion

10Berkowitz (2001) shows the low power of the Christoffersen (1998) Bernoulli test in the VaR case. The LR
test suggested by Berkowitz (2001) based on the truncated normal distribution would do a better job to evaluate
the interval forecasting with the higher power. Also, we may apply a loss function evaluation method. Lopez
(1999) also indicates that an alternative evaluation method using loss function based on probability forecasts is
only as capable of differentiating between forecasts from accurate and inaccurate models as the other methods.
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Note: This graph shows the power of the LR tests to reject the different dependence interval forecasts
of Case 1, when the data are generated by a Normal dependence structure. The solid lines
are the Type I error. Significance level of the test is 5%. The top graph is the unconditional
coverage LR test. The middle graph is the independence LR test. And the bottom graph is the
conditional coverage LR test.

Figure III.3 Power of Tests against Normal Dependence Structure of Case 1
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Figure III.4 Power of Tests against Normal Dependence Structure of Case 2
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of body parts can make it a little bit difficult to differentiate the asymmetry in

the dependence structure. And Case 2 still covers the low-left tail from lower q,

so the power of the test is higher with a lower q, generally. Since we assume the

GARCH-Normal(1,1) process for both the generating and estimating series, there

is nothing to say about the margin effect nor the independence. This may imply

that it is very hard to distinguish the difference of the interval forecasting in the

different dependence structures if margins are correctly specified. The next section

is devoted to interval forecasting of international stock markets.

III.4 Application: International Stock Markets

In this section, we apply the LR tests proposed by Christoffersen (1998)

to the international stock markets for multivariate cases. We employ weekly

stock market index returns11 of U.S. (S&P 500), France (FTSE100), and Japan

(Nikkei225). The weekly return is calculated using Wednesday closing prices. If

Wednesday is not a trading day, then we use Tuesday, Thursday, Monday, and so

on. From January 1984 to March 2007, we have a total of 1209 observations. Table

III.1 summarizes the descriptive statistics of the series. As evident in the Table

III.1, the stock market returns are strongly not-normal and strongly skewed with

fat tails.

The experiment entails, first, estimating the model parameters necessary

to form the forecasts on the first 626 observations (from January 1984 to De-

cember 1995). Then we calculated {(Lt|t−1(q), Ut|t−1(q))}1209
t=627 based on the fixed

estimates, as seen in Figure III.2. Finally we do out-of-sample interval forecasting

and forecast evaluation on the last 583 observations. In this application, we use

various underlying models. Recall that the main purpose of this paper is to check

whether the dependence structure is important in multivariate interval forecasting.

Therefore, we use various combinations of margins (the GARCH-Normal(1,1) and

11Some mismatches of trading dates exist among international stock markets. This is the reason why, instead
of daily returns, we employ weekly returns.
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Table III.1 Descriptive Statistics

S&P 500 FTSE 100 Nikkei 225

Mean 0.0018 0.0015 0.0004
Median 0.0032 0.0027 0.0023
Max 0.1018 0.1359 0.1214
Min -0.1666 -0.1782 -0.1089

St. Dev. 0.0214 0.0225 0.0281
Skewness -0.6443 -0.6292 -0.2386
Kurtosis 7.7250 10.5710 4.6221
J-B stat. 1202.03∗∗ 2954.01∗∗ 142.74∗∗

Note: ∗∗ denotes 1% significance. The sample period is 1984:01-2007:03.

GARCH-t(1,1)) and copulas (the Normal, Gumbel and Clayton copulas)

rt = α+ εt

= α+
√
ht · vt

√
ht · vt|Ωt−1 ∼ Cc

(
Fm

(
v1,t√
h1,t

, θ1

)
, · · · , Fm

(
vN,t√
hN,t

, θN

)
; θc

)

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1, for i = 1, · · · , N

where, Fm(·) is the CDF of normalized (standardized) margins, where a subscript

m is a margin index. And the bold characters are (N × 1) vectors12. In this

application, N is 2. The results of the testing are presented in Sections III.4.A and

III.4.B.

III.4.A Case 1: Body-Interval

Figure III.5 shows the LRcc test statistics of many cases. This body-

interval is based on Case 1 in Figure III.2, so first, we find Ut|t−1 satistying

Cc(Ut|t−1, Ut|t−1)−Cc(Ut|t−1,−Ut|t−1)−Cc(−Ut|t−1, Ut|t−1)+Cc(−Ut|t−1,−Ut|t−1) =

q, given q and Cc(·). Then we can calculate the indicator variable. Each panel

in Figure III.5 represents different combinations of three international stock mar-

kets. Clearly, the margin specification is important. In this application, we use
12We do not include the lagged returns terms, such as rt−1, in this specification. This might be fruitful for

future research.
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Note: The left column is GARCH-Normal(1,1) margin forecasts of different copula assumptions,
and the right column is GARCH-t(1,1) margin forecasts of different copula assumptions. The
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copula. The solid horizontal line represents the 5 per cent significance level of the appropriate
χ2(2) distribution. The test values are plotted for coverages ranging between 10 and 90 per
cent.

Figure III.5 LRcc Statistics of Case 1
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two different margins. The first one is the GARCH-Normal(1,1) assumption (left

column) and the second one is the GARCH-t(1,1) (right column).

In the FTSE100/Nikkei225 case, forecasts based on the GARCH-Normal

(1,1) margin assumption do not pass the conditional coverage test in most cases.

The GARCH-t(1,1) margins, regardless of the copula assumptions, pass the tests

in all coverage rates. However, in the Nikkei225/S&P500, we can see the mixed

test results. The GARCH-Normal assumption passes the tests with lower coverage

rates regardless of the copula assumptions, while The GARCH-t assumption passes

the tests with higher coverage rates. In the S&P500/FTSE100 case, the GARCH-t

assumption passes the tests except when q is 60%, 70%, and 80%. This result

implies that if we are interested in the partial model misspecification, we can

conclude that a universally well-specified model may not exist. Also, recall that

when q becomes higher, the coverage area becomes bigger including tail parts. The

test results show that the GARCH-t assumption passes the conditional coverage

test, while the GARCH-Normal does not. Therefore, the outskirts of joint density

seem to fit with the fat tailed model.

Another important finding is that the test results seem to depend on

the marginal distribution assumption rather than the dependence structure. We

observe similar test statistics under the same marginal distribution. Therefore,

no dependence structrue seems to be dominant over others, in general. These

results are consistent with the simulation results in the previous section. From the

previous section, we observed that it is hard to differentiate the performance of

interval forecasting from different dependence structures. One implication of this

application is that the most important part to model for body-interval forecasts is

the marginal distributions, not the joint dependence structure. Now we turn our

attention to see what causes the conditional coverage tests to be rejected in some

cases.

Figure III.6 shows the LRind statistics. As evident in the Figure III.6,

the LRind statistics show that the independence tests are passed across the joint
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Note: The left column is GARCH-Normal(1,1) margin forecasts of different copula assumptions,
and the right column is GARCH-t(1,1) margin forecasts of different copula assumptions. The
solid line is the Clayton, the dashed line is the Gumbel, and the dotted line is the Normal
copula. The solid horizontal line represents the 5 per cent significance level of the appropriate
χ2(1) distribution. The test values are plotted for coverages ranging between 10 and 90 per
cent.

Figure III.6 LRind Statistics of Case 1

dependence structures and across country pairs, except a few cases in which q is

60%, 70%, and 80% under the GARCH-t assumption. Recall that LRcc statistic

is the sum of LRind and LRuc. And LRind and LRuc statistics follow χ2(1) in the

bivariate case. Therefore, this result implies that the rejection of unconditional

coverage, that is, misspecified models, lead to rejection of the complete test of

conditional coverage according to the decomposition property of these statistics.

Therefore, we may need to model with caution in order to get the univerally well-

specified model.
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III.4.B Case 2: Low-tail Interval

Figure III.7 shows the low-tail interval case in Case 2 of Figure III.2.

This case is the one which most people are interested in, similar to VaR in the

univariate case. We do not include the LRcc statistics under GARCH-Normal(1,1)

margins, since they do not pass the test in all cases with large statistic values.

However, unlike the body-interval forecast cases, the complete conditional coverage

test results show that the low-tail interval forecasts fail the test when q is small,

even under GARCH-t(1,1) margin assumption. Also, this failure prevails across the

joint dependence structures and across the country pairs. There may be a serious

loss of information from having only a low-left tail (one-sided) interval forecast

when volatility dynamics are present. This problem will be discussed briefly later.

However, when q gets bigger, we can see that it tends to pass the tests. Yet, there

is no clear evidence that one among the many dependence structures dominates

others in conditional coverage tests.

This conflicts somewhat with previous literature. Longin and Solnik

(2001) find that international stock markets are more correlated in bear markets.

Ang and Chen (2002) and Ang et al. (2006) find that stock return correlation

increases during market downturns, and that downside correlations are related to

standard size and value factors, as well as momentum. Generally, the Clayton or

Gumbel copula can capture the asymmetry dependence, so it is adequate to model

more probability mass to events in the lower-left or upper-right tail. However, the

results of this paper suggest that none of these models are able to do a better job

in the low-left tail interval forecasting, at least our weekly return samples. If, for

example, the Clayton copula is dominant over others in the low-left tail interval

forecasts, we may say that asymmetry in dependence is a very important factor

and that there is a stronger correlation in downside markets. In this paper, we

can not find strong evidence that dependence structure is important in the interval

forecasts, which is consistent with the low power of simulation results.

Figure III.8 shows the decomposition of the complete conditional coverage
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Figure III.7 LRcc Statistics of Case 2
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Figure III.8 LRind Statistics under GARCH-t(1,1) margins

tests by LRind statistics. As in Case 1, the dependence tests are passed almost

everywhere, especially when q is small. Therefore, it is clear that the failure of

the unconditional coverage tests leads to the failure of the complete conditional

coverage tests.

We may suggest some reasons for this failure. First, the sample size of

this test is relatively small. The test statistics used in this paper are derived from

their asymptotic distribution. As seen in Figures III.3 and III.4, the probability of

the type I error is a little bit higher. Therefore, it is important to understand the

finite sample properties of these test13. Second is model misspecification. If there is
13Finding an answer to this question is outside the scope of this paper, so we do not perform any practice to
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room for improving in specifying the dependence structure, for example, using the

empirical quantiles, as is done in Engle and Gonzalez-Rivera (1991) for univariate

cases and Fermanian and Scaillet (2003) for multivariate cases, performance of

interval forecasts might be better. Other possible improvement can be achieved by

including the dynamics dependence structure specification, as suggested by Engle

and Sheppard (2001), Engle (2002) and Patton (2006). The last one is about

extreme quantiles. Extreme quantiles are very sensitive to the few observations in

the tails of the empirical distribution of the sample. In multivariate cases, we define

extreme quantiles as the low-left tail of distributions. However, if we decompose

multivariate variables into each single variable, extreme quantiles are the left end

or the low end of density. This discrepancy of defining extreme quantiles could

cause the failure of the tests.

III.5 Portfolio Interval Evaluation

In the previous section, none of dependence structures pass the test in

Case 2 with smaller coverage rate, q. This might be due to model misspecification.

Now, we turn our attention to the portfolio interval evaluation. Construction of

portfolio may make the tail of portfolio density fatter, depending on the dependence

structures. In general, the linear combinations of normally distributed random

variables are normally distributed. However, this statement is only true when the

dependence structure is normal. In order to check it, we perform simple simulation.

First, we generate three bivariate series with different dependence assumptions as

the following:

rt =
√
ht · vt

√
ht · vt|Ωt−1 ∼ Cc

(
Fm

(
v1,t√
h1,t

, θ1

)
, Fm

(
v2,t√
h2,t

, θ2

)
; θc

)

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1, for i = 1, 2

answer this question.
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where, (ω1, α1, β1, ω2, α2, β2) = (0.05, 0.70, 0.15, 0.05, 0.30, 0.40) and Fm is the CDF

of the GARCH-Normal(1,1). θc is set to 0.3000 for the Normal, to 0.4813 for

the Clayton, and to 1.2407 for the Gumbel copula14. Then, construct the equal

weighted portfolios. Finally we estimate parameters using the GARCH-t(1,1)

model and repeat 1,000 times. The median values of ν parameter estimates, repre-

senting the thickness of tails, are 27.21, 25.72, and 115.72 for the Clayton, Gumble,

and Normal copulas, respectively. The tail of portfolio constructed from assymet-

ric dependence structures seems to be thicker than normal dependence structure.

This result implies that the dependence structures could alter the tail behaviors

of portfolios even with the same margins15.

In this setion, first, we perform the LR tests of the portfolio interval

evaluation at moderate coverage rates, 0.05 ≤ q ≤ 0.5. Next, we focus on the

general VaR setting, q is 1%, 2.5%, and 5%. In this section, we include the con-

ditional quantile forecasts test by Giacomini and Komunjer (2005) to see whether

one forecasts outperforms the other forecasts as well as the general LR test.

III.5.A LR test at 0.05 ≤ q ≤ 0.5

Portfolio construction reduces the multivariate interval evaluation prob-

lem to the univariate problem. There is some literature on interval evaluation of

portfolios. Christiansen (1999) presents a methodology for calculating the VaR of

portfolios of Danish zero-coupon bonds using the factor-ARCH model. Lopez and

Walter (2001) evaluate the relative accuracy of different covariance matrix fore-

casts using a foreign exchange portfolio under a VaR framework. Generally, the

portfolio return is rp,t =

N∑

i=1

ωiri,t, where

N∑

i=1

ωi = 1. In this paper, we construct

equal weighted portfolios, so ωi =
1

N
. Table III.2 shows the descriptive statistics

of the equal weighted portfolios. By constructing portfolios, in general, we observe

14These value have the same Kendall’s rank correlation.
15We can easily show that Y ∼ N(µ,Σ) if and only if for each b ≡ (b1, · · · , bm)′ ∈ Rm, b′Y has a univariate

normal distribution with mean b′µ and variance b′Σb′. Therefore, by contrapositive, we know that if Y is not
distributed as N(µ,Σ), then b′Y is not distributed normally, for some b.
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higher negative skewness with smaller median values of each index, compared to

Table III.1 of each index.

Table III.2 Descriptive Statistics of Equal Weighted Portfolio

SP500/FTSE100 FTSE100/Nikkei225 Nikkei225/SP500 All 3 indexes

Mean 0.0016 0.0010 0.0011 0.0012
Median 0.0029 0.0021 0.0020 0.0025
Max 0.1096 0.0747 0.0730 0.0776
Min -0.1724 -0.1425 -0.1367 -0.1505

St. Dev. 0.0199 0.0209 0.0207 0.0191
Skewness -0.8698 -0.7092 -0.5993 -0.8657
Kurtosis 11.0630 6.3380 5.7687 8.0518
J-B stat. 3412.52∗∗ 658.86∗∗ 455.69∗∗ 1429.49∗∗

Note: ∗∗ denotes 1% significance. The sample period is 1984:01-2007:03.

Now we can do the LR test of each portfolio as a univariate case. Model

specification is the following:

rp,t = µp + εp,t

= µp +
√
hp,t · vp,t

hp,t = ωp + αpε
2
p,t−1 + βphp,t−1

We assume that the distributions of vp,t are standard normal and standardized t.

Like the multivariate case, the in-sample period is from Jan. 1984 to Dec. 1995.

We report the parameter estimates of the models in Table III.3. One notable result

is that the log-likelihood values of GARCH-t(1,1) are improved, having ν̂p values

of 5.6 to 7.4 . Therefore, we can select the GARCH-t(1,1) in terms of information

criteria such as AIC or BIC. Next, we apply these models and parameter estimates

to interval forecasting.

Figure III.9 shows the LR test results using one-sided quantiles, following

the procedure by Christoffersen (1998). According to Figure III.9, construction of

portfolios helps to pass the conditional coverage tests under different conditional

variance assumptions in the highest number of cases, although we fail to pass the

tests in the multivariate cases under various dependence structure assumptions.

If we only are concerned with the interval forecasting of constructed portfolio,
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Table III.3 Parameter Estimates of Equal Weighted Portfolios

SP500/FTSE100 FTSE100/Nikkei225 Nikkei225/SP500 All 3 indices

Panel A. GARCH-Normal (1,1)

µp 0.0029 (0.0006) 0.0024 (0.0007) 0.0023 (0.0007) 0.0024 (0.0007)
ωp 0.0001 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
αp 0.3048 (0.0000) 0.8560 (0.0052) 0.8844 (0.0021) 0.8700 (0.0012)
βp 0.4112 (0.0768) 0.1337 (0.0000) 0.1020 (0.0021) 0.1215 (0.0010)

LL 1649.57 1607.12 1614.12 1667.22

Panel A. GARCH-t (1,1)

µp 0.0029 (0.0006) 0.0029 (0.0001) 0.0028 (0.0007) 0.0027 (0.0006)
ωp 0.0001 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
αp 0.7036 (0.1228) 0.8024 (0.0343) 0.8725 (0.0001) 0.8246 (0.0509)
βp 0.1123 (0.0579) 0.1516 (0.0439) 0.1019 (0.0025) 0.1197 (0.0403)
νp 7.4012 (1.4838) 7.4468 (2.3098) 5.6521 (0.0002) 7.2623 (1.6312)

LL 1674.13 1630.34 1639.16 1698.48

the misspecification problem of joint interval forecasts becomes negligible. Also,

interval forecasting results does not show the dominance of the GARCH-t(1,1)

model. The results show that the LR tests are passed in both models, implying

that there is little difference between the two models in the interval forecasting,

unlike the model selection problem. In the section III.4, we observe that there are

noticeable differences between the GARCH-Normal(1,1) and the GARCH-t(1,1)

assumptions as margins. However, these differences are mitigated in the portfolio

interval forecasting problem, when the coverage rates are between 5% and 50%.

The observation made in Christoffersen (1998) that the Gaussian innovation as-

sumption fails at small coverage rates, as well as at large coverage rates, does not

hold in this portfolio application.

III.5.B VaR Evaluation of Equal Weighted Portfolios

Now, we turn our attention to the general VaR setting. In the general

VaR setting, the interesting quantiles are 1%, 2.5%, and 5%16. In this section,

16In the VaR literature, popular confidence levels usually are 99% and 95%, but we include 2.5% confidence
level.
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Note: The solid line is the GARCH-Normal(1,1), and the dashed line is the GARCH-t(1,1). The solid
horizontal line represents the 5 per cent significance level of the appropriate χ2(2) distribution.
The test values are plotted for coverages ranging between 5 and 50 per cent.

Figure III.9 LRcc Statistics of Equal Weighted Portfolios

first, we perform the LR test by Christoffersen (1998). Then, we perform the con-

ditional quantile forecasts encompassing (CQFE) test by Giacomini and Komunjer

(2005) for comparing conditional quantile forecasts in an out-of-sample framework.

The general idea of the encompassing test is to test whether forecast q̂1,t (or q̂2,t)

encompasses q̂2,t (or q̂1,t). The test statistics are

ENC1n = n
(
(θ̂1n, θ̂2n) − (1, 0)

)
Ω̂−1
n

(
(θ̂1n, θ̂2n) − (1, 0)

)′

ENC2n = n
(
(θ̂1n, θ̂2n) − (0, 1)

)
Ω̂−1
n

(
(θ̂1n, θ̂2n) − (0, 1)

)′

where (θ̂1n, θ̂2n) is the GMM estimates of forecasting combination and Ω̂n is some

consistent estimate of Ω ≡ (γ ′S−1γ)−1. Then under H10: forecast q̂1,t encompasses

q̂2,t, ENC1n
d−→ χ2(2), as n −→ ∞, and under H1a: forecast q̂1,t does not encom-

passes q̂2,t, ENC1n−→ + ∞, as n −→ ∞. This holds for H20 and H2a. For more

information, see Giacomini and Komunjer (2005).

In this application, we include one more forecast: the conditional quantile

forecasts based on the quantile regressions as the following

Qrp,t
(q|σp,t) = µq + βq,1σp,t
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Table III.4 Estimation of Quantile Regression

q = 1% q = 2.5% q = 5%

µq βq,1 µq βq,1 µq βq,1

S&P500/
FTSE100

-2.0676 -1.1051 -1.0646 -1.2060 -0.2882 -1.2842

(7.32E-05) (4.57E-06) (4.83E-05) (1.17E-05) (6.85E-05) (1.30E-05)

FTSE100/
Nikkei225

-0.6994 -2.3289 -0.2165 -1.9071 0.1547 -1.6476

(2.91E-06) (2.45E-06) (5.88E-05) (1.78E-05) (0.0002) (0.0001)

Nikkei225/
S&P500

-2.4563 -1.2203 -0.9347 -1.4573 -0.7465 -1.3033

(0.0002) (0.0001) (4.58E-05) (1.11E-05) (0.0008) (0.0004)

All 3
indices

-0.8731 -1.9024 0.0293 -1.9095 0.1034 -1.5604

(0.0007) (0.0003) (3.78E-05) (1.19E-05) (0.0004) (0.0004)

Note: These are the parameter estimates of quantile regression. µq is a constant and βq,1 is a coefficient
of the conditional volatility based on BARCH-Normal(1,1).

where σp,t is the conditional volatility based on GARCH-Normal(1,1). Estimating

of θq = [µq, βq]
′ is based on Komunjer (2005). Komunjer (2005) proposed esti-

mators which belong to the family of quasi-maximum likelihood estimators and

are based on a new family of densities which we call ‘tick-exponential.’ The tick-

exponential family is

ϕqt (y, η) = exp (−(1 − q)[at(η) − bt(y)]1y≤ηq[at(η) − cy(η)]1y>η) ,

and we set at(η) =
1

q(1 − q)
η and bt(y) = ct(y) =

1

q(1 − q)
y as a special case. In

this case, lnϕqt is proportional to the ‘tick’ function, known in the literature as

the asymmetrical slope or check function. Table III.4 summarizes the conditional

quantile regression estimation.

The LR test results of Christoffersen (1998) are summarized in Table

III.5. As seen in Figure III.9, the GARCH-Normal(1,1) assumption seems to be

good to pass the tests, when q is higher. However, when an interesting interval

is an extreme low-tail, such as 1% or 2.5%, the GARCH-Normal(1,1) fails the

conditional coverage test across portfolios, while the GARCH-t(1,1) assumption

passes the test with out of sample empirical coverage rates, q̂, which are very
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Table III.5 Conditional Coverage Test - Out of Sample

q = 1% q = 2.5% q = 5%

q̂ LRcc q̂ LRcc q̂ LRcc

Panel A. GARCH-Normal (1,1)

S&P500/FTSE100 0.0377 28.3360∗ 0.0463 11.3890∗ 0.0823 11.1220∗

FTSE100/Nikkei225 0.0206 5.5784 0.0412 7.3456∗ 0.0703 4.5837

Nikkei225/S&P500 0.0257 10.9830∗ 0.0480 10.1610∗ 0.0669 4.0476

All 3 indices 0.0274 13.0870∗ 0.0429 8.6028∗ 0.0686 3.8933

Panel B. GARCH-t (1,1)

S&P500/FTSE100 0.0172 2.8458 0.0292 1.4249 0.0549 0.3305

FTSE100/Nikkei225 0.0172 2.8458 0.0274 1.0483 0.0549 0.3305

Nikkei225/S&P500 0.0034 3.4065 0.0206 0.9923 0.0480 0.1261

All 3 indices 0.0120 0.3974 0.0326 2.5579 0.0532 0.4569

Panel C. Quantile Regression (QS)

S&P500/FTSE100 0.0223 7.2188∗ 0.0497 14.5170∗ 0.0840 12.3890∗

FTSE100/Nikkei225 0.0086 0.2092 0.0257 0.8079 0.0532 0.4569

Nikkei225/S&P500 0.0154 1.7870 0.0326 2.5579 0.0429 2.8821

All 3 indices 0.0189 4.1156 0.0395 6.1832∗ 0.0686 3.8933

Note: Out of sample empirical coverage q̂ =
X Ip,t+1

T
and likelihood ratio LRcc for different coverages.

Marked values with ∗ are rejected at 5% confidence level.

close to theoretical coverage rates, q. Also, the forecasts based on the quantile

regression model pass the conditional coverage test in almost all cases except the

S&P500/FTSE100 pair.

Now, we turn into the conditional quantile forecast test to see whether

one forecast encompasses the other forecasts. Given the forecasts, we estimate the

optimal combination weights (θ∗0, θ
∗
i , θ

∗
j )

′ in the forecast combination θ0+θiV aRi,t+

θjV aRj,t using the GMM approach. For the purposes of this empirical application,

we use W∗ ≡ (1, rp,t, V aRi,t, V aRj,t)
′ as instrument variables. Table III.6 presents

some results of the CQFE test.

As can be seen from Table III.6, test results are mixed. In some cases,

for example, 2.5% and 5% of S&P500/FTSE100 and 5% of FTSE100/Nikkei225,

GARCH-t forecasts encompass GARCH-Normal forecasts. These results suggest
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that the individual forecast by the GARCH-t model outperforms the forecast com-

bination. However, in some cases, neither forecast encompasses its competitor

for given levels of q in some cases: for example, GARCH-t and Quantile Regres-

sion forecasts of 1% of S&P500/FTSE100, 5% of FTSE100/Nikkei225, 2.5% of

Nikkei225/S&P500, and 5% of all indices. This implies that the forecast combina-

tion outperforms the individual forecasts.

Table III.6: Conditional Quantile Forecast Encompassing Test for VaR Measures

q θ̂0n θ̂1n θ̂2n ENC1n ENC2n J-stat.

S&P 500 / FTSE 100

1%
G-N vs G-t

0.8802 0.1560 0.8488
5.0207 0.1792 10.0615

(2.4928) (0.4695) (0.8420)

G-t vs QR
-1.8628 1.4884 0.1714

17.0430∗ 39.8610∗ 8.5779
(1.0264) (0.5899) (0.8284)

2.5%
G-N vs G-t

-0.1793 -0.0663 1.2803
50.5173∗ 0.0541 9.9943

(4.9816) (0.5588) (1.8500)

G-t vs QR
-0.0816 0.3848 0.8100

1.8553 0.0886 6.3645
(3.1652) (2.0028) (1.3762)

5%
G-N vs G-t

0.0090 -0.0292 1.0813
57.5479∗ 0.0126 4.7939

(1.4253) (0.2863) (0.7310)

G-t vs QR
-0.0996 1.1562 -0.0828

0.0476 24.4700∗ 4.7935
(1.2852) (0.7506) (0.3797)

FTSE 100 / Nikkei 225

1%
G-N vs G-t

-1.3215 0.4575 0.7787
3.2458 1.6022 4.3218

(0.9449) (1.2296) (1.1342)

G-t vs QR
-1.1221 -0.0474 1.1753

0.7448 0.4134 2.3827
(1.3114) (3.7012) (3.5782)

2.5%
G-N vs G-t

-0.8051 0.7499 0.6680
3.3232 3.0526 6.6212

(1.0008) (1.5809) (1.5489)

G-t vs QR
-0.4630 0.6057 0.7479

3.2587 2.2284 5.3642
(2.1274) (4.4600) (4.1680)

5%
G-N vs G-t

-0.2017 0.5380 0.6449
7.9069∗ 3.0781 7.0080

(0.2731) (0.5259) (0.4768)

G-t vs QR
-0.4340 0.3473 0.9086

6.0478∗ 8.8147∗ 7.5050
(0.2947) (0.7621) (0.8127)

Note: Out-of-sample CQFE test for VaR measure for equal weighted portfolios of a long position
with an investment horizon of 1 week. The consistent standard errors of the GMM estimator
(θ0n, θ1n, θ2n)′ were computed with the smoothing parameter τ = .01 and are reported in
parentheses. J-stat. is the value of the J-test statistics. The values marked with ∗ are significant
at the 5% level.

Continued...
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Table III.6: (Continued) CQFE Test for VaR Measures

q θ̂0n θ̂1n θ̂2n ENC1n ENC2n J-stat.

Nikkei 225 / S&P 500

1%
G-N vs G-t

-0.5130 0.0983 0.8318
1.8836 0.8960 4.0388

(1.4948) (4.9560) (3.8468)

G-t vs QR
-1.5501 1.1812 -0.01828

3.3543 65.024∗ 3.2491
(16.154) (2.7315) (6.6748)

2.5%
G-N vs G-t

-0.0419 0.7404 0.4268
1.5152 0.1017 7.7490

(1.5580) (6.7990) (5.7313)

G-t vs QR
-0.97643 1.6029 -0.46832

6.1821∗ 30.165∗ 8.3602
(9.5137) (6.2149) (9.9390)

5%
G-N vs G-t

-0.7873 0.5710 0.7659
11.3189∗ 6.1537∗ 5.1227

(0.4795) (1.6717) (1.5057)

G-t vs QR
-0.6572 1.1096 0.1534

4.7782 25.6080∗ 6.4837
(1.9436) (1.7185) (2.4060)

All 3 indices

1%
G-N vs G-t

-1.7299 0.5816 0.8440
4.5888 6.2000∗ 4.5466

(5.9222) (5.1065) (5.4395)

G-t vs QR
-0.5629 1.0342 0.1129

0.4159 1.5736 3.6859
(0.9365) (3.3354) (3.7906)

2.5%
G-N vs G-t

-0.6795 0.6548 0.6510
6.6460∗ 7.9908∗ 3.3987

(0.6716) (0.9324) (0.9600)

G-t vs QR
-0.3841 1.5219 -0.4000

0.9615 4.1193 1.2461
(0.6047) (0.7609) (0.7367)

5%
G-N vs G-t

0.5810 0.5257 0.3583
5.3740 2.1720 2.9759

(0.4334) (0.9512) (1.0070)

G-t vs QR
-1.3148 1.3417 0.2724

12.2800∗ 15.4030∗ 9.7833
(0.5002) (0.8988) (0.9394)

Note: Out-of-sample CQFE test for VaR measure for equal weighted portfolios of a long position
with an investment horizon of 1 week. The consistent standard errors of the GMM estimator
(θ0n, θ1n, θ2n)′ were computed with the smoothing parameter τ = .01 and are reported in
parentheses. J-stat. is the value of the J-test statistics. The values marked with ∗ are significant
at the 5% level.

In conclusion, if we are concerned about events, such as markets crashing

together, the dependence structures should be modelled with caution. However,

we observe that the misspecification problems in joint interval forecasting of low-

left tail might be reduced by portfolio construction, so that we do not need to pay

too much attention to the dependence structure modelling if we construct port-

folios assuming portfolio weights are given. Also, any model specification used
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in the paper seems to be fit to forecast intervals well if interesting intervals are

in the moderate ranges. However, if concerns are focused on the extreme left

tails, such as q is 1%, 2.5%, and 5%, the fat-tailed model specification of the

GARCH-t(1,1) passes the conditional coverage tests, while GARCH-Normal(1,1)

does not pass the test in almost all cases. Therefore, GARCH-t can be said to

be the ‘acceptably accurate’ VaR forecasts model. This result indicates that we

need to assume fat-tailed models for extremely low coverage rates, generally used

in the VaR applications. Therefore, it is important to set up the interval forecast-

ing models carefully depending on the interesting intervals to forecast. However,

when we include one other forecast from the quantile regression, the results of

conditional quantile forecasts test suggest that combination of individual forecasts

may improve the performance of the interval forecasts of portfolios in many cases,

although sometimes the individual forecasts outperform the forecast combinations.

III.6 Conclusion

This paper has extended the conditional coverage test of Christoffersen

(1998) to the multivariate cases to answer whether the dependence structure is im-

portant for evaluating interval (area) forecasts. We provide two different interval

forecasts: body interval and low-left tail interval forecasts. The complete condi-

tional coverage test is a likelihood ratio test and decomposes easily into subtests

of independence and unconditional coverage tests. The extension to multivariate

cases is done by using the copulas, which are simply the flexible cumulative density

functions (CDFs) with closed forms in some cases.

In Monte Carlo simulations, it is shown that the power of the test to

reject the different dependence interval forecasts is very low. This implies that the

dependence structure is not very important, which makes it difficult to discrimi-

nate among the interval forecasts from different dependence structures, if marginal

distributions are correctly specified.

An application to weekly returns of three international stock markets
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confirms this conclusion. The body-interval forecast (Case 1) from the GARCH-

Normal(1,1) margins passes the conditional coverage test for certain coverage rates

of Nikkei225/S&P500 pair, but fails the test for most others. However, no depen-

dence structure seems to be dominant. The GARCH-t(1,1) margins pass the tests

in most cases across the various dependence structures, passing both the indepen-

dent dynamics test and the unconditional nominal coverage test. Therefore, we can

conclude that it is more important to specify margins correctly rather than cor-

rectly specifying dependence structures even for modelling the multivariate joint

interval (area) forecasts.

Financial market participants have recently shown increasing interest in

one-sided interval forecasting, known as Value-at-Risk (VaR) measure. Therefore

it is natural to pay attention to low-left tail interval forecast in multivariate cases.

However, it is interesting that all dynamic and parametric forecast models used in

this paper are rejected when the interval is low-left tail (Case 2) with low coverage

rates. These failures are mainly due to the failures of the unconditional nominal

coverage tests. Considering a nonparametric multivariate specification or dynamics

of dependence structure may likely present favorable alternatives.

Finally, we perform the portfolio interval evaluation using the LR test

as well as the CQFE test by Giacomini and Komunjer (2005). Portfolio con-

struction reduces the multivariate interval evaluation problem to the univariate

problem. Selected forecasting models are the GARCH-Normal(1,1), the GARCH-

t(1,1), and the forecasts from the quantile regression. The test results indicate

that the GARCH-t(1,1) model passes the tests across the samples under the var-

ious moderate coverage rates, so it can be said to be ‘acceptably accurate’, while

the GARCH-Normal(1,1) fails the tests under extremely low coverage rates. This

result indicates that we need to assume fat-tailed models for extremely low cover-

age rates, generally used in the VaR applications. The test results of the CQFE

test shows that a combination of individual forecasts may improve the performance

of the interval forecasts of portfolios in many cases, although sometimes the indi-
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vidual forecasts from the GARCH-t(1,1) outperform the forecast combinations.

Recently, a number of academic studies and applications have paid atten-

tion to modelling the multivariate cases beyond the univariate cases. The results

of this paper suggest a couple of new directions for future research. Although this

paper does not provide a strong support for importance of modelling dependence

structure, especially after constructing portfolios, it might be important depend-

ing on the magnitude of dependency. Or it might be because of the trading (long)

horizon effect as pointed out in Christoffersen and Diebold (2000) for univariate

volatility forecasts.
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