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ARTICLE

An integrative ENCODE resource for cancer
genomics
Jing Zhang et al.#

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers

hundreds of cell types, providing a universal annotation for genome interpretation. However,

for particular applications, it may be advantageous to use a customized annotation. Here, we

develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and

whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this

annotation is comprehensive and experimentally derived networks of both transcription

factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dys-

regulation, is an ideal application for such a network-based annotation. Specifically, for

cancer-associated cell types, we put regulators into hierarchies and measure their network

change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, high-

lighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and

amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our

annotation allows us to place oncogenic transformations in the context of a broad cell space;

here, many normal-to-tumor transitions move towards a stem-like state, while oncogene

knockdowns show an opposing trend. Finally, we organize the resource into a coherent

workflow to prioritize key elements and variants, in addition to regulators. We showcase the

application of this prioritization to somatic burdening, cancer differential expression and

GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA

knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the

ENCODE resource.

https://doi.org/10.1038/s41467-020-14743-w OPEN
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The 2012 ENCODE release provided comprehensive func-
tional genomics data, such as RNA-seq, histone mod-
ification and transcription factor (TF) ChIP-seq, and

DNase-seq, to annotate the noncoding regions in the human
genome1. After the release, the cancer genomics community
embraced the ENCODE data, together with other functional
genomic data, to study the mutational landscape and regulatory
networks in cancer2–8.

The current release broadens the number of cell lines and
considerably expands the available tissue data. It also greatly
increases the depth by adding advanced assays, such as eCLIP,
RAMPAGE, ChIA-PET, Hi-C, and whole-genome STARR-seq.
The ENCODE encyclopedia takes advantage of the breadth of
ENCODE data to provide a universal annotation across hundreds
of cell types. It uniformly constructs regulatory elements using
assays common to all the cell types to provide an easy-to-use
annotation for a wide variety of circumstances. However, a
number of particular applications may require specialized anno-
tations tailored to specific data contexts and questions (e.g.,
investigation of nuclear architecture or systems biology). The
current ENCODE release, in fact, provides a data-rich context for
a subset of cell types. Deep integration over many advanced
assays allows us to connect many regulators and non-coding
elements into multi-modal networks, including proximal and
distal ones, such as TF and RNA-binding proteins (RBP) to gene,
enhancers to gene, and TF-to-enhancer-to-gene. Here, focusing
on these data-rich cell types, we developed an integrative and
network-associated annotation, which may serve as a valuable
resource for cancer genomics.

Cancer genomics is, in fact, one of the best applications to illus-
trate many key aspects of ENCODE. Unlike many other diseases,
cancer is very much a disease of whole-genome alteration and
dysregulation9–12. Moreover, cancer cells usually display aberrant
behavior of key regulators, extensive epigenetic remodeling, and
apparent transitions between cell states13–17. Finally, the systems
aspect of cancer has been extensively studied, providing a need to
connect linear genome annotation with pathways and networks18–24.

In the following sections, we first introduce the resource. We
then demonstrate its utility through several applications such as
evaluation of regulator activity, regulatory network rewiring,
investigation of tumor-to-normal cell-state trajectories, and
interpretation of expression and mutation profiles using extended
genes. Synthesizing these, we propose a framework to prioritize
regulators, elements, and nucleotides and then perform targeted
experimental validations using different techniques.

Results
The ENCODEC resource. ENCODEC is a specialized ENCODE
companion resource for Cancer genomics. First, using the
ENCODE data, for each cancer, we try to find the best tumor-
normal pairing available. To achieve this, we often constructed a
composite normal by reconciling multiple related cell types (see
Supplementary section 1.4). Although the pairings are only
approximate, many of them have been widely used in prior stu-
dies (see Supplementary section 1.3). Then we build a derived
resource. Overall, this consists of (1) comprehensive networks
that allow us to see global alterations in network rewiring and
regulatory hierarchy; (2) an annotated catalog of cell types that
allows us to place oncogenic changes relative to normal and stem
cells; and (3) compact noncoding annotations and extended gene
definitions that can potentially increase statistical power to
interpret genome variation (both germline and somatic) and gene
expression changes. Practically, the resource consists of a set of
annotation files and computer codes available online (ENCO-
DEC.encodeproject.org).

Figure 1 illustrates two key dimensions of the resource and the
ENCODE data: breadth across cell types and depth across assays.
From the depth of the ENCODE experiments in data-rich cell
types, we constructed a deep, integrated annotation with two key
characteristics: (1) noncoding elements are compactly defined to
more precisely locate functional sites, and (2) these discontinuous
regulatory regions are linked to genes to form extended-gene
definitions. Extended genes are highly dynamic and may change
considerably across cell types (similar in fashion to cell-type
specific isoforms for conventional gene structures).

In particular, to define distal regulatory elements (e.g. putative
enhancers), we integrated up to 10 histone modification ChIP-seq
experiments per cell type using a support vector machine
approach25. This procedure uses a shape-matching filter to
predict enhancers based on element-associated meta-profiles of
epigenetic features26. It has been extensively validated, giving an
overall error rate of ~20% at 80% sensitivity (see Supplementary
section 2.1.2.1). Next, where possible, we intersected these regions
with positives called from STARR-seq experiments (see Supple-
mentary section 2.1.2.2). This resulted in a substantially shorter
list of distal elements than one gets with conventional approaches.
Further, we restricted individual annotated elements down to a
core definition enriched for functional sites by pruning based on
binding motifs and using novel advanced assays such as eCLIP27.
As a result, our annotations are short in length but have a high
degree of conservation (see Supplementary section 2.4.1).

Thus, overall, our annotation is compact in two respects: it
contains fewer total elements (because the deep integration across
many assays removes many potential false positives) and each
individual element tends to be shorter in length yet is more
enriched in functionally relevant nucleotides. In principle, both
these facts benefit statistical power through decreasing multiple
testing burden or more sharply defining core regions by removing
nonfunctional nucleotides in each element.

We also linked together the above compact annotation
elements to define extended gene structures, which may also
increase power in many circumstances (see Supplementary
section 2.6). Diagramed in Fig. 1, the extended gene links the
non-coding promoters and enhancers to genes. To define
enhancer-gene linkages, we first used physically based linkages
from Hi-C. These are accurate but often with fairly low-
resolution, potentially spuriously connecting genes within the
same topologically associating domain (TAD). Therefore, we
pruned this with activity correlations: we correlated the
chromatin marks on enhancers and gene expression on potential
targets (both within the same TAD) using a machine learning
approach28, to generate a high-confidence subset (see Supple-
mentary section 2.2). The extended gene annotation potentially
enriches the number of functional sites being tested, thus
increasing power. Second, it helps with the interpretation of
noncoding elements by linking them to genes. Third, it allows us
to subset non-coding annotations by the many well-known gene
categories, for instance, cancer-associated and metabolic genes.

Building on the extended gene annotation, we constructed
detailed networks linking regulators to genomic elements to
target genes. Specifically, we built both distal and proximal
networks linking TFs to genes. This was accomplished by directly
inferring from ChIP-seq experiments either by TF-promoter
binding or indirectly via TF-enhancer-gene interactions in each
cell type (see details in Supplementary section 2.2). We then
pruned the full networks to just the strongest interactions using a
signal shape algorithm that keeps the most-relevant peaks by
weighting their location by the expected binding profile of each
TF29 (details in Supplementary section 2.3.3). Similarly, we also
defined an RBP network from eCLIP experiments. For the data-
rich cell types with numerous TF ChIP-seq experiments, we

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14743-w

2 NATURE COMMUNICATIONS |         (2020) 11:3696 | https://doi.org/10.1038/s41467-020-14743-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


further built cell-type specific regulatory networks and then
compared these between matched tumor and normal cell types,
enabling measurement of the change in connections during
oncogenesis (i.e., network rewiring). Compared to other network
definitions (e.g. via imputation based on motifs30), our ENCODE
TF and RBP networks are based on direct experimental evidence
and can capture more literature-supported regulations and
correlate better with knockdown experiments (see Supplementary
section 2.4.4).

Leveraging ENCODE networks to prioritize regulators. After
constructing the multi-modal TF-RBP network, we systematically
arranged it into a hierarchy (Fig. 2a, b). Here, regulators are
placed at different levels such that those in the middle tend to
regulate those below them and, in turn, are more regulated by
regulators above them (see Supplementary section 3.1). In the
hierarchy, we find that top-layer TFs and RBPs more significantly
drive differential expression (p-value < 2.2e-16, one-sided Wil-
coxon Test). The joint TF-RBP networks also enable investigation

of cross-regulation between TFs and RBPs. Interestingly, we find
that there are fewer TF-RBP interactions on the bottom level, as
compared to top and middle-level ones (p-value= 3.4e-16 and
1.2e-09, one-sided Wilcoxon Test, see Supplementary sec-
tion 3.7). Furthermore, we notice a well-known oncogene MYC is
one of the master TFs that sits on the top-level of the hierarchy.
Interestingly, MYC not only directly regulates the expression of
other TFs but also targets many RBPs.

Our networks also enable gene-expression analyses in tumor
samples. We used a regression-based approach to systematically
search for the TFs and RBPs most strongly driving tumor-normal
differential expression across different cancers (see Supplemen-
tary section 3.4). For each patient, we tested the degree to which a
regulator’s activity correlates with its target’s tumor-to-normal
expression changes. We then calculated the percentage of patients
with these relationships in each cancer type and presented the
overall trends for TFs and RBPs in Fig. 2c. As expected, we find
that the target genes of MYC are significantly up-regulated in
numerous cancer types—in fact, it has the most up-regulated
targets of any TF—consistent with its well-known role as a key
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oncogenic TF31,32. We further validated MYC’s regulatory effects
using knockdowns (Fig. 2d). Consistent with our predictions, the
expression of MYC targets is significantly reduced after MYC
knockdown in MCF-7 (Fig. 2d).

We analyzed the RBP network in a manner similar to the TF
network, finding regulators associated with each cancer. For
example, the ENCODE eCLIP profile for the RBP SUB1 has
binding peaks enriched on the 3′UTR regions of genes, and the
predicted targets of SUB1 were significantly up-regulated in many
cancer types (Fig. 3f, left). As an RBP, SUB1 has not been
associated with cancer previously, so we sought to investigate its
role. Knocking down SUB1 in HepG2 cells significantly down-
regulated its targets, and the decay rate of SUB1 targets is lower
than those of non-targets (Fig. 3f, right). Moreover, we find that
up-regulation of SUB1 targets may lead to decreased patient
survival in some cancer types.

We then used the regulatory network to investigate how
prioritized regulators interact with each other and other genes.
For TFs, we first looked at how MYC’s target genes are co-

regulated by a second TF. An accounting of all the possible three-
way co-regulatory relationships is shown in Fig. 2e. We find that
the most common pattern is the well-characterized feed-forward
loop (FFL). In this case, MYC regulates both another TF and a
common target of both MYC and that TF. Many of the FFLs
involve well-known MYC partners such as MAX and MXL1.
However, we also discovered many involving NRF1. Upon further
examination, we find that that the MYC-NRF1 FFL relationships
were mostly coherent, i.e., amplifying in nature (see Supplemen-
tary section 3.7). We further studied the FFLs by organizing them
into logic gates, in which two TFs act as inputs and the target
gene expression represents the output33. We find that most of
these gates follow either an OR or MYC-always-dominant
logic, very much in consonance with MYC’s role in driving
oncogenesis.

Similarly, with respect to RBPs, we find that the top co-
regulatory partner of SUB1 is, in fact, MYC. SUB1 is a direct
target of MYC in many cell types (see Supplementary section 3.7)
and also forms many FFLs with MYC in the regulatory network.
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We hypothesized that MYC binds to the promoter regions of key
oncogenes to initiate their transcription, whereas SUB1 binds to
their 3′UTRs to stabilize their RNA transcripts. Such collabora-
tion between MYC and SUB1 potentially could result in the
overexpression of several key oncogenes (see Supplementary
section 3.7). To validate this hypothesis, we knocked down MYC
and SUB1 in HepG2 and used qPCR to quantify changes in gene
expression. As expected, the expression of oncogenes (such as
MCM2, MCM7, BIRC5, and PLK1) is significantly reduced
(Fig. 2f and see Supplementary section 3.5).

Measuring network rewiring. In addition to the TF regulatory
activity change through expression analysis above, we also
directly measured the fractional number of regulatory edge
changes for tumor-normal pairs, to study how TF targets change
in oncogenesis. We call this the rewiring index and ranked TFs
according to it (Fig. 3c). In leukemia, well-known oncogenes
(such as MYC and NRF1) were among the top edge gainers, while
the well-known tumor suppressor IKZF1 is the most significant
edge loser (Fig. 3c). Mutations in IKZF1, in fact, serve as a

hallmark of various forms of high-risk leukemia34,35. We
observed a similar rewiring trend using distal, proximal, and
combined networks (Fig. 3c). This trend was also consistent
across a number of cancers: in particular, highly rewired TFs such
as BHLHE40, JUND, and MYC behaved similarly in lung, liver,
and breast cancers (Fig. 3c).

In addition to direct TF-to-gene conne7ctions, we also
measured rewiring using a gene-community model. Here, the
targets within the regulatory network were characterized in terms
of self-consistent modules of related genes (so-called gene
communities). Instead of directly measuring the changes in a
TF’s targets between tumor and normal cells, we determined the
changes in regulated gene communities (via a mixed-membership
model, see Supplementary section 4.3.3). Similar patterns to
direct rewiring were observed (Fig. 3c).

Overall, we find that the majority of rewiring events were
associated with notable gene-expression and chromatin-status
changes, but not necessarily with direct variant-induced motif
loss or gain events (Fig. 3b). For example, JUND is a top edge
gainer in K562. Most of its gained targets in tumor cells
demonstrate higher levels of gene expression, stronger active and
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weaker repressive histone-modification signals, yet few of its
binding sites are mutated, either by SNVs or SVs. This is
consistent with previous work36, and with a few notable
exceptions, we find a similar trend for the rewiring events
associated with JUND in liver cancer and, largely, for other
factors in a variety of cancers (see Supplementary section 4.4).

We also organized the cell-type specific networks into
hierarchies, as shown in Fig. 3a (similar to the universal, cross-
cell-type hierarchies described earlier in Fig. 2a, b). We find that
the strongest edge gainers and losers, driving the rewiring of the
regulatory network, sit at the top level of these hierarchies in
blood cancer. In addition, we find the TFs more associated with
driving cancer gene expression changes also tend to be at the top.
MYC is a most prominent example of both a highly rewired TF
and one driving expression. In contrast, the more mutationally
affected TFs sit at the bottom of the hierarchy. To some degree,
this is consistent with our results in Fig. 3b showing that binding
site mutations do not drive the regulatory change.

Placing cancer cells in the context of ENCODE biosamples.
ENCODE data provides an additional way of studying the
oncogenic transformation beyond network rewiring: via placing
various cancer cells in a context of many cell types (in cell space).
This is possible because of the wide variety of cell types profiled in
the new ENCODE release, which includes many stem cells,
especially the data-rich H1 cell line. We are particularly interested
in comparisons to stem cells since a decades-old paradigm has
held that at least a subpopulation of tumor cells can self-renew,

differentiate, and regenerate in a manner similar to stem cells37–42.
For such comparison, we first projected the RNA-seq data from
299 ENCODE cell types into a low-dimensional space (using the
procedure described in Li et al.43, see Supplementary section 5.1).
We find that various types of stem cells form a tight cluster
(Fig. 4). Moreover, there is a trend where the trajectory from
normal to tumor cells involves moving toward stem cells, along a
single stem-like component. This is true for a variety of different
cancers. This observation is consistent with previous efforts using
expression and methylation analysis44. Notably, we observed a
consistent (or even stronger) pattern from proximal and distal
chromatin data, which can be viewed as the underlying cause of
the observed gene expression changes.

It is well-known that dysregulation of oncogene TFs is a
hallmark of tumor progression11,45–48. Key genes, such as MYC,
initiate overexpression of other oncogenes in tumor cells32,49. We
can use the cell-space diagram to see the degree to which these
TFs contribute to the state of cell differentiation: in particular, we
measured the perturbations induced by oncogenic TFs through
expression comparisons before and after TF knockdowns.
Interestingly, the expression profiles usually reverted slightly
back towards normal state upon oncogene knockdown, along the
stem-like component. One can see this difference more precisely
and test it statistically if one restricts just to the single transition
between GM12878 and K562 (Fig. 4).

The extended gene representation. After identifying key reg-
ulators, we next aimed to prioritize their associated genomic
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elements. To do this, we combined the extended gene annotation
with expression and mutation data from patients. We show three
examples where this is useful.

First, our extended gene definitions can be used for associating
differential expression with mutational status. For example, we
combined the mutation and expression profiles from large
cohorts, such as those in TCGA, and found that mutation status
in extended genes can better explain the tumor expression than
other annotations, such as just canonical coding sequences
(CDS). That is, one can much better predict tumor-normal
differential expression from mutations in the extended gene as
compared to just in CDS or in individual promoters or enhancers
(see Supplementary section 6.1). One example of the explanatory
potential of the extended gene is seen for the splicing factor
SRSF2, which has been shown to affect liver cancer progression
and for which differential expression in HepG2 can be well
predicted using mutations in the extended gene (Fig. 5a, p-value
= 0.002, one-sided Wilcoxon test).

The second example is cancer genome-wide association study
(GWAS) variant enrichment. That is, the enrichment of cancer-
associated GWAS germline SNPs in particular genome regions.
The enrichment significantly increases in going from CDS to
extended genes for both breast cancer and leukemia (Fig. 5c).

This trend is much more pronounced when the newly added non-
coding annotations are from matched cell types. One may further
subset the genes according to different subcategories associated
with cancer and identify enrichment. For instance, we observed a
significant enrichment in genes from the Cancer Gene Consensus
(CGC) in breast cancer based on the extended gene annotation.
This sub-setting by well-known gene categories is not possible
using conventional non-coding annotations.

One can get a physical sense of the importance of the extended
gene by looking at a situation where a genomic variant rearranges
the extended gene structure without affecting the coding regions.
We find such an example in the breast cancer cell line T47D,
where a 130-kbp heterozygous deletion links a distal enhancer to
the ERBB4 promoter and results in the activation of this well-
known oncogene50,51 (Fig. 5b). The enhancer is not connected to
ERBB4 in normal breast tissue; however, in T47D, the deletion,
located around 45 kbp downstream from the ERBB4 promoter,
merges two Hi-C TADs in an allele-specific way. We tested this
through CRISPR editing, by excising an 86 bp sequence within
the wild-type allele of the heterozygous deletion containing the
CTCF binding sites at the boundary of the two TADs. This
CRISPR excision confirmed the elevated ERBB4 expression (see
Supplementary section 6.4).
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Another perspective on the effect of SVs changing chromatin
structure is provided from broadly surveying SVs in a number of
the data-rich ENCODE cells types. (Note, ENCODE provides SV
call sets based on integration of assays including Hi–C for a
number of these cell lines, see Supplementary section 6.5.3). In
particular, in Fig. 5d, we surveyed regions around somatic SV
breakpoints in K562. We find that the activating histone mark
H4K20me1 occurs preferentially around these breakpoints. This
enrichment was not observed using GM12878 histone mark data
at these exact same locations. We further examined the GM12878
H4K20me1 levels proximal to germline breakpoints (for common
variants as determined from the 1000 Genomes Project52) and
also find no enrichment (see Supplementary section 6.5). One
potential implication is that the somatic SVs in tumor cells may
be associated with creating active regions of chromatin.

Step-wise prioritization framework. Collectively, as described in
Fig. 6, ENCODEC enables a step-wise prioritization that allows us
to pinpoint key regulators, noncoding elements, and variants
associated with oncogenesis. Specifically, we first highlighted
regulators that are either greatly rewired, located in hubs, sit at

the top of the hierarchy, or significantly drive expression changes
in cancer. We then prioritize functional elements associated with
these regulators that are either highly burdened by mutations,
undergo large chromatin changes, or change in extended gene
linkages. Finally, on a nucleotide level, we prioritize SNVs by
estimating their ability to disrupt or introduce specific binding
sites and assessing to what degree they lie in a prioritized element.

We instantiated our prioritization workflow in a few select
cancers and experimentally validated the results. In particular, as
described above, we subjected some key regulators, such as MYC
and SUB1, to knockdown experiments (Fig. 2d, f) and we
measured the effect of SVs on element linkages via CRISPR
engineered deletions (Fig. 5b). Finally, we selected key SNVs
based on their disruption of enhancers with a strong influence on
gene expression. These SNVs were prioritized based on element-
level mutation recurrence in breast-cancer cohorts, as well as
motif disruption scores. Of the eight motif-disrupting SNVs that
we tested, six exhibited consistent up- or down-regulation relative
to the wild-type in multiple biological replicates (see Supplemen-
tary sections 7.2 and 7.3).

One particularly interesting example occurs in an intronic
region of CDH26 in chromosome 20 (Fig. 6c). The signal shapes
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for both histone modification and chromatin accessibility
(DNase-seq) data indicate its active regulatory role as an
enhancer in MCF-7. This was further confirmed by STARR-seq
(Fig. 6c). Hi-C and ChIA-PET linkages indicated that the region
is within a TAD and validated a regulatory connection to the
cancer-associated gene SYCP253. We further observed strong
binding of many TFs in this region in MCF-7. Motif analysis
predicts that a common mutation in breast cancer affects this
region, and significantly disrupts the local binding affinity of
several TFs, such as FOSL2 (Fig. 6c). Luciferase assays
demonstrated that this mutation introduces a 3.6-fold reduction
in expression relative to the wild-type, indicating a strong
repressive effect on enhancer functionality.

Discussion
In this paper, we describe a customized ENCODE annotation: a
companion resource providing an integrative network annota-
tion including extended gene. Cancer genomics is an ideal
application to highlight the value of the resource, and we show
how it can help describe oncogenic transformations in terms of
cell-space trajectories and network rewiring. We also use the
specialized annotation to prioritize key regulators, element, and
variants.

There remain several caveats associated with our resource. First
and most obviously, proper somatic variant annotation and,
especially driver discovery, is a multiple-step process that requires
coordinated, large-scale effort. Extensive follow-up validations are
required, in addition to the careful calibration required for sta-
tistical identification of mutation recurrence and the many biases
in sequencing (e.g. taking into account the elevated mutation rate
associated with TF binding sites2,6, sequence coverage and
mutational signatures54,55). While we hope that ENCODE data
and annotation can be useful in this context, they are not suffi-
cient. Second, our resource associates cancer types with ENCODE
cell lines and then secondarily pairs them with a composite
normal. Both types of pairings are, by nature, approximate.
Tumor cells from a given patient show distinct molecular, mor-
phological, and genetic profiles56–59. Moreover, linking cancer to
one specific cell-type may not even fully capture the heterogeneity
seen in actual tumors60. In the future, technological advances,
such as single-cell sequencing, may allow cell-type or tissue-type
comparisons at a higher resolution61–65. Nevertheless, we feel that
our annotation and networks currently provide the best available
view of the regulatory changes in oncogenesis.

Finally, we argue here that, somewhat counter-intuitively, a
comprehensive non-coding annotation that, in the extreme,
attempts to assign functional impact to every base in the gen-
ome may not always be best suited to specific disease-oriented
studies. Rather, the most useful annotation often has several
characteristics. First, it is useful to be as compact as possible,
both in terms of the extent of individual annotation blocks and
in the number of elements. Second, since the currently dis-
covered high impact variants tend to be tightly associated with
genes, an optimum non-coding annotation is best invisible,
folding itself into gene annotation for better variant inter-
pretation. Third, the network aspect is often needed to allow
larger-scale systems perspective. This is particularly valuable for
appreciating the overall cellular dysregulation in cancer. With
the depth and breadth of the ENCODE assays across thousands
of cell types, we endeavored here to provide such a customized
annotation resource for cancer and demonstrated its value
through several showcase applications. We anticipate that the
rapid accumulation of functional genomic data will make
possible further, potentially even more specialized, annotation
resources for future disease studies.

Methods
See supplementary information for details on methodology.

Data availability
The derived ENCODEC data have been deposited in the supplementary data website at
http://encodec.encodeproject.org/. The source data underlying Figs. 1–6 are provided as a
flat file in the supplementary data website as well. All the other data supporting the
findings of this study are available within the article and its supplementary information
files and from the corresponding author upon reasonable request. All of ENCODE data
referenced during the study are available in a public repository from the https://www.
encodeproject.org/ website. A reporting summary for this article is available as a
Supplementary Information file.
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