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Double-couple earthquake focal mechanism: Random rotation

and display
Yan Y. Kagan?

! Department of Earth and Space Sciences, University of California, Los Angeles, California, USA

Abstract.

This paper addresses two problems: the random rotation of double-couple

(DC) earthquake sources and the display of earthquake focal mechanisms. We consider
several equivalent representations for DC sources and their properties and provide math-
ematical expressions for their mutual transformation. Obviously, a 3-D rotation of any
object is more intricate than a 2-D rotation. Any rotation of a DC source is further com-
plicated by its symmetry properties. Applying statistical tests to a DC distribution of-
ten requires one to compare it to a completely (or uniform) random DC pattern. We re-
view several methods for obtaining random distribution of DC orientation; some of these

seemingly natural techniques yield an incorrect result.

The DC random rotation problem is closely connected to displays of focal mechanisms.
In such displays, a strike or an azimuth of a focal mechanism can be neglected; hence,
we are confronted with mapping a two-dimensional distribution onto a flat surface. We
review different methods for such displays and discuss more specifically how to project
a random focal mechanism distribution on a flat 2-D display with uniform probability
density. Such displays can be used to analyze earthquake patterns statistically in var-

lous tectonic regions.

INDEX TERMS: Seismology (ESE): 7215 Earthquake parameters; 7209 Earthquake dy-

namics and mechanics;
KEYWORDS:
dom rotation, focal mechanism displays
KEYWORDS:
Seismotectonics, Statistical methods

1. Introduction

In this paper we discuss various mathematical represen-
tations for the double-couple (DC) earthquake focal mecha-
nism, algorithms for DC random rotation and several meth-
ods to display DC sources. Recently there has been an in-
creased interest in 3-D random rotation of earthquake fo-
cal mechanisms. Results of rotation simulation are being
used in statistical tests of accuracy in determining earth-
quake source (Hardebeck & Shearer, 2002) or in studying
how static stress triggers earthquakes (Steacy et al., 2004).

The 3-D rotation, however, exhibits some complicated,
counter-intuitive properties. Kendall & Moran (1963, Chap-
ter 4.25) show that rotating an object around an axis se-
lected uniformly from all possible axes in space and using
a uniformly distributed angle yields no truly (or uniform)
random 3-D rotation. They propose several methods for
representation of 3-D rotation. Therefore, a 3-D rotation
simulation requires more substantial analysis and testing.
The results of such testing will help us propose and inves-
tigate new methods for displaying earthquake focal mech-
anisms. Such displays may be useful in studying compli-
cated deformation patterns in earthquake zones. Moreover,
increased availability of focal mechanism data in the Har-
vard CMT (Ekstrém et al., 2005, and references therein)
and other catalogues makes such investigation essential.

Among the methods for DC description we discuss the
quaternion, eigenvector, and geologic/tectonic representa-
tions. Though mathematically equivalent, each of these

Earthquake focal mechanisms, their representations, double-couples, ran-

Earthquake-source mechanism, Fault-plane solutions, Seismic moment,

methods, depending on their application, has certain advan-
tages and disadvantages. Quaternions are especially useful
in describing and simulating the 3-D rotation (Sections 3.1
and 3.4).

In this paper we commonly use the term ‘DC source’ to
describe an arbitrarily oriented earthquake source, requir-
ing at least three parameters for its full characterization.
If the azimuthal source orientation is neglected, the ‘focal
mechanism’ parameterization has two degrees of freedom.

2. DC representations

Several equivalent mathematical parameterizations are
used to describe the DC earthquake source: eigenvectors or
principal axes (T-, B-, and P-axes), geologic (fault/rupture
plane and auxiliary plane, or nodal planes), normalized
quaternion (Kagan & Knopoff, 1985; Kagan, 1991; Ward,
1997; Kuipers, 2002), and normalized seismic moment ten-
sor. Of these, quaternions are least known to earth scien-
tists, although, for example, Le Pichon et al. (1973, p. 38)
state that the quaternion representation of 3-D rotations “...
provide[s] a most concise development.” Other representa-
tions of finite 3-D rotations are less computationally conve-
nient, especially if the sequence of rotations or an inverse
rotation problem is considered (Kuipers, 2002). Three de-
grees of freedom are sufficient to fully describe a DC source
orientation.

A standard display of a DC source employs a lower
hemisphere stereographic or equal-area projection (Aki &
Richards, 2002, their Figs. 4.16 and 4.17). Such plots are
commonly called ‘beachball’ projections. However, earth-
quakes are often clustered in space, making beachball plots
too complex to display and interpret. Although such spa-
tial, temporal, and DC source distributions can be studied
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either by descriptive characterization or more formal statis-
tical techniques (Kagan, 1992a;b; 2001), the results of such
investigations are difficult to visualize and evaluate. In addi-
tion, one may be interested not in the earthquake’s position
and distribution of DC sources, but instead the distribution
of different focal mechanisms and their inter-relation. For
such purposes the displays of mechanisms and their statis-
tical analysis may be more advantageous.

2.1. Eigenvector representation

Three orthogonal axes T, P, and B describe the radia-
tion of P-waves from a point DC source (Frohlich, 1996).
They are eigenvectors of the seismic moment tensor. Since
the tensor is symmetric, the direction of vectors can be se-
lected arbitrarily; traditionally the axes are directed only
downwards. Each is parameterized by two angles, plunge o
and azimuth §. Since the DC source is defined by 3 degrees
of freedom, 3 of these angles can be calculated if the other
three are known.

We also categorize earthquakes according to their preva-
lent focal mechanism: thrust, strike-slip, and normal. For
example, an earthquake is considered to have a normal fo-
cal mechanism if its most-compressive principal axis of the
moment tensor (P-axis) is more vertical than either princi-
pal axis B or T (Frohlich 1992; 2001). Similarly, we define
earthquakes with the thrust and strike-slip mechanism when
the T-axis or B-axis is more vertical than the other axes, re-
spectively.

2.2. Geologic/tectonic fault representation

Aki & Richards (2002), Jost & Herrmann (1989), Pujol
& Herrmann (1990) and Dziewonski & Woodhouse (1983)
discuss representing earthquake faults and connecting geo-
metric fault plane parameters with the seismic moment ten-
sor properties. The standard parameterization of a fault
rupture plane involves defining its strike (azimuth) ¢, dip 4,
and rake A. The plane orthogonal to the fault plane and slip
vector is an auxiliary nodal plane. It is usually impossible
to distinguish between these planes on the basis of far-field
seismic radiation: this effect is known as the ambiguity of
earthquake nodal planes. The nodal planes are usually ar-
ranged so that their dips 62 > 6.

The other nodal plane parameters can be obtained from
the first plane by the following relations (cf. Ben-Menahem
& Singh, 1981, p. 190):

d2 = arccos[sin d; sin Aq], (1)
_ cos é1/ sin é2
Az = arctan —siné; cos A;/sindy ’ (2)
and
_ cos A1/ sin 2
¢1— ¢z = arctan —1/(tané; tandz) (3)

In (2) and (3) we do not cancel similar terms from the nom-
inator and the denominator; these terms are needed when
estimating the function arctan (ATAN2) in FORTRAN. If
A1 < 0°, 6; = 180° -4, A; = —Ag,and (¢1—¢2)' = ¢2—¢1.

2.3. Quaternion representation

Kagan (1982) presented the orientation of a DC source
by a normalized quaternion. The normalized quaternion
d = [q1,92,93,q4] contains four terms which can be inter-
preted as defining a 3-D sphere in 4-D space:

G+ +ah+ai=1. (4)
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Hence the total number of degrees of freedom is 3. The nor-
malized quaternion can be used to describe a 3-D rotation:
in this case the first three terms in (4) characterize the di-
rection of the rotation axis, and the fourth term stands for
the angle of rotation (Kagan, 1991).

When applied to DC parametrization,
quaternion (zero rotation)

the identity

I=]o0,0,0,1], (5)

is identified with the strike-slip DC source having plunge
angles

ar=ap =0°, and ap =90°, (6)

and azimuths

Br=0° and Bp =90°, (N
(Kagan, 1991). Any other DC source corresponds to a
quaternion describing 3-D rotation from the reference source
(Egs. 5-7).

The FORTRAN programme which determines the 3-
D rotation of DC sources is available on the Web -
ftp://minotaur.ess.ucla.edu/pub/kagan/dcrot.for (see also
FORTRAN90 adaptation of the programme by P. Bird
ftp://element.ess.ucla.edu/2003107-esupp/Quaternion.f90).
Frohlich & Davis (1999) also discuss the programme.

3-D rotations for quaternions of opposite signs are equal

-q. (8)

Given the symmetry of the DC source (Kagan & Knopoff,
1985; Kagan, 1990; 1991) the g term in (4) can always be
presented as the largest positive term in this parameteriza-
tion. In particular, to obtain the standard DC quaternion
representation, we right-multiply an arbitrary normalized
quaternion g by one of the elementary quaternions (Kagan,
1991):

q:

i= [1701070];
j: [0711070];
k =[0,0,1,0], (9)

if the first, second, or third term has the largest absolute
value, respectively. For example, for the largest first term

If the resulting fourth term is negative, the sign of all terms
should be reversed (see 8).

Thus, in our representation, an arbitrary quaternion is
both a rotation operator and after simple transformations
(8-10) is a DC source. Although the quaternion does not
have the advantage of a clearly identifying the DC source
properties, its benefits are obvious. Multiple rotations of
the DC source as well as the inverse problem determining
the rotation from one source to another are easily computed
using methods of quaternion algebra (Kagan, 1991; Ward,
1997; Kuipers, 2002).

2.4. Seismic moment tensor representation

The seismic moment tensor is commonly represented as
a symmetric second-order matrix. Formally it has 6 degrees
of freedom, but the DC source corresponds to the normal-
ized trace-free tensor with the zero determinant, so the total
number of free parameters is 3.

Many textbooks show how to calculate the moment ten-
sor for known faults or eigenvector parameters (see, for ex-
ample, Aki & Richards, 2002). Kagan & Jackson (1994)
propose formulae for calculating the seismic moment tensor
for a known quaternion DC representation.
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3. Random DC rotation

3.1. 3-D rotation angle distribution

Kagan (1990; 1992b) derived the distribution of the ro-
tation angle ® for a uniform random rotation of the DC
source. That is, he demonstrated that a rotation of 27/3
or less about some axis is adequate to generate any double
couple from any other double couple. He derived the distri-
bution of the smallest such angle for pairs of double couples
selected randomly from the distribution of all possible dou-

ble couples. The p.d.f. is

f(®) = (4/7)(1 —cos®) for 0K & <m/2; (11)
f(®) = (4/7)(3sin® +2cos® — 2)
for /2 <® < ®g; (12)
and
f(®) = (4/7){ 3sin® +2cos® —2 —
: COSs 1/2
(6/7) |2 sin ® arccos (%) —
(1 — cos ®) arccos I_ZCCZSS‘;]
for &5 <®< I, (13)
where
$s = 2arccos (3_1/2) = arccos (—%) ~ 109.47°(14)

This angle is called the isogonal angle in 3-D (Lévy-Leblond,
2004): the angle between lines connecting the centre of a
regular tetrahedron with each of its vertices.
For the cumulative function we obtain
F(®) = (4/7)(® —sin®) for 0< & < m/2;

(15)

and

F(®) = (4/7) 25in‘§—3cos‘§—2‘§+37"—

for w/2<® < ®g; (16)

For 5 < ® < Z* we compute F(®) by numerical integra-
tion of (13).

3.2. Earthquake fault rotation

The naive way to simulate a random distribution is to
select the strike, dip, and rake of a fault plane randomly

¢ = 360° x R, (17)
§ = 90° x Ry, (18)

and
A = 360° x R; — 180°, (19)

where R; are selected as uniformly random variables in the
interval [0, 1].

To check whether such a distribution is truly random, we
may determine a 3-D angle of rotation or disorientation of
a DC source compared to any given DC (Kagan, 1991). In
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particular, we determine the rotation angle starting with the
strike-slip DC (Egs. 5-7).

In Fig. 1, we display a 3-D rotation angle for two differ-
ent random simulations. The naive approach (dashed line)
produces a distribution incompatible with the theoretical
random distribution (Egs. 11-13): there are too many large
rotations with the angle ® close to 90°. This happens be-
cause for small dip angles, the rotations of the strike and
rake angles are almost equivalent; hence too many among
synthetic DCs have a small dip angle. This explains why
Fig. 1 shows an excess of large 3-D rotation angles: the
reference DC (Egs. 5-7) has § = 90°; therefore a simulated
DC with § close to zero requires that the rotation close to
90° coincide with the reference DC (5).

The proper method to calculate the random dip angle is
by using a cosine transformation

6 = arccos R; , (20)
rather than selecting the uniformly random dip angle (18).
The result of this simulation is shown in Fig. 1 and coincides
with the theoretical curve.

We also checked whether the position of the rotation axis
is distributed randomly over a 2-D sphere. It is not random
for the first method of dip angle simulation (18), but it is
uniformly random for the cosine transformation of the dip
angle (20).

3.3. Eigenvector rotation

Several methods work for random rotation of eigenvectors
(T-, P-, and B-axes). For example, we can select a random
point on the surface of a 2-D (regular) sphere and use an
axis through this point (pointing down). Another axis can
be selected randomly in a plane orthogonal to the first, and
a third axis orthogonal to the first two.

It is also possible to rotate a standard system of coor-
dinates using the random orthogonal matrix described by
Kendall & Moran (1963, Chapter 4.29). Again, the direc-
tions of the axes should be downward.

Perhaps the simplest technique is proposed by Frohlich
(2001): select a random point on a sphere octant with its
coordinates corresponding to sines of plunge angles (zr, zp,
and zgp) for three axes (see Eq. 24). To simulate a ran-
dom distribution of points on the surface of an octant, we
first create a stochastic pattern of points on the surface of
a sphere, using Marsaglia’s (1972) algorithm. We then take
the absolute values of synthetic coordinates. The plunge
angles are

ar = arcsin zr, (21)
and similarly for all other axes.

The azimuth of one axis (T-axis, for example) is selected
randomly in the interval 0° < Br < 360°. The azimuths
for other axes can be calculated using the condition of axes
orthogonality:

Bp = fr + arccos[—tanartanap], (22)
similarly
Bp = Br — arccos[—tanartanag]. (23)
3.4. Quaternion rotation
To achieve quaternion random rotation, we use

Marsaglia’s (1972) method to generate a random point
on the surface of a 3-D sphere in a 4-D space, and
then interpret it as randomized rotation quaternion (Ka-
gan, 1990; 1991; 1992b). The quaternion then is
adjusted to represent a DC source (see Section 2.3).
Other representations of DC source can be calculated
if needed (Kagan, 1991, see FORTRAN programs in
http://scec.ess.ucla.edu/~ykagan/dcrot_index.html).
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4. Focal mechanism displays

4.1. Eigenvectors display

Frohlich (1992; 2001) remarks that three plunge angles
satisfy the relation
.2 2 2
sin“ d7 +sin“dp +sin“dg = 1. (24)
Since all angles are positive, the above equation describes
an octant of a sphere of the unit radius. Thus, the dip angle

35.26°,

(25)

.1 1
ds = arcsin — = arctan — =

is a symmetry point of a sphere octant: the equal angle
between the symmetry line and the orthogonal planes of a
coordinate system in 3-D.

Displaying the surface of a sphere on a flat surface has
long occupied cartographers and astronomers. The major
problem is that a sphere is not a developable surface (Sny-
der, 1993, p. 2): it cannot be laid flat without distortion.
Many methods to address this challenge have been proposed
over the last 2000 years (Snyder, 1993). Reignier (1957),
Richardus and Adler (1972), and Bugayevskiy & Snyder
(1995) discuss mathematical aspects of the problem. Ge-
ographical maps of globe octants go back to Leonardo da
Vinci (Snyder, 1993, p. 40); Ward (1943) published an oc-
tant world map using equal-area projection.

Frohlich (1992) proposed displaying focal mechanisms us-
ing gnomonic projection of a sphere octant on an equilateral
triangle. Later Frohlich (2001) indicated that this projec-
tion substantially distorts the area of a spherical surface,
a distortion which may inhibit the study of focal mecha-
nism distribution. He proposed another possible projection
method to alleviate the problem.

Kaverina et al. (1996) proposed an equal-area projection:
if zr =sinér, zp = sinédp, and zp = sin ép, then the equal-
area projection of a sphere octant can be obtained as follows.
We compute the length of the vector connecting the centre
of the display with the projection point

1 zr + zp + 2B
5 arccos ———=——| ,

V3

L =2sin (26)

and the normalisation factor

N = \/2 [(z8 — zp)? + (2B — 27)? + (27 — zp)?]. (27)

The coordinates of a point in a triangle are

X =1 (225 — zp — 21), (28)
L
Y = N (z7 — zp). (29)

The areas where thrust, normal, and strike-slip mechanisms
reside are separated by three lines which start at the [0, 0]
point. The ends of the lines are: [v/3Ys/2, Ys5/2], [0, —Y5],
and [—/3Ys/2, Ys/2], where

Ys — 1 2/3] — 2sin[5s/2]

|1
2 sin [— arccos

0.606 .

= 2(1— 2/3)z

(30)

An example of the display is shown in Fig. 2.

4.2. Geologic fault parameters display
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Both nodal planes are separated in the (4, A) diagrams by
functions (solid line in Fig. 3)
8¢ = 90° & arctan(sin A). (31)
To illustrate the relationships between the two nodal
planes in Fig. 3 we show several rectangles in the second
nodal plane display and their image in the first plane, cal-
culated according to Egs. (1-3). Although the number of
events in each polygon is the same, the images are rotated
and their area significantly increases in the lower plot.

For the [(1 — cosd), A] or [z, A] plots

sin A
/1 +sin? A

Thrust /normal focal mechanisms are separated in the
(6,A) diagram by vertical lines (shown as solid lines in
Fig. 3), going from § = 0° to és = 35.26° for A =
0° and =+ 180°. Thrust/normal focal mechanisms are sepa-
rated from strike-slip mechanisms by the following lines (also
shown as dashed lines in Figs. 3)

ze = 1+ (32)

L
¢ = arctan\/—

2cos A—sin A

for 0°<A<As = arctan /2

= arccos (371/2) ~ 54.74°, (33)

i.e.,

As = 90° — &g, (34)
(see Eq. 25). For other branches of the separation line the
abscissa values need to be reflected at zero or at 180°, or
shifted to —180° (cf. Fig. 5).

The rake angle Ag ~ 54.74° is an equi-axial angle in 3-D
(Lévy-Leblond, 2004): the equal acute angle between a line
and orthogonal axes. As Lévy-Leblond (2004) remarks, in
3-D

As = Ps/2, (35)
(see Eq. 14). Hence, all the symmetry angles ®5, 65, and
As are connected by simple relations (34) and (35).

Thrust /normal focal mechanisms are separated in the
[z,A] plots by vertical lines (shown as solid lines in Fig. 4
and by dashed lines in Fig. 5), going from z = 0 to
z =1—4/2/3 ~ 0.184. Thrust/normal focal mechanisms
are separated from strike-slip mechanisms by the following
lines (also shown as dashed lines in Figs. 4, 5)

' 1
z = 1- \/ T (Voo rmeim )2

for 0° <A< As (54.74°). (36)
The abscissa for other branches of the separation line follows
the same rule as (33).

As in Fig. 3 we show several rectangles in the second
nodal plane display and their image in the first plane, calcu-
lated according to Egs. (1-3). The images are rotated but
their area remains the same in the lower plot. This feature
is to be expected since the cosine transformation of the dip
angle () is area preserving. Calculating the integral for z,
we obtain

T sin A )
0 /1+sin2A

i.e., each nodal plane occupies one-half of the [(1 — cosd), A]
plane rectangle.

= n/2, (37)
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The advantage of the display in Figs. 3 and 4 is that
the full plot is a cylinder (see also Fig. 5 description below)
or developable surface. That is it can be laid flat without
distortion. However, the drawback is that each earthquake
is plotted twice on a diagram. In many types of analysis we
would need to distinguish a fault from an auxiliary plane, a
task not easy to perform.

4.3. Quaternion display

The quaternion DC representation does not submit it-
self to easy visualization, but for completeness sake we
briefly consider how one can display focal mechanisms given
their quaternion characterization. The general normalized
quaternion

q= [q17q27q37q4]7 (38)
can be rotated around a vertical axis into a position with
gs = 0. To accomplish this we use a quaternion

P= [0707p37p4] ’ (39)
where ps = g3/+/¢% + g2 and ps = g1/+/q> + g3. Then the
rotated quaternion is obtained as in (10).

s = pq. (40)

The quaternion s has 3 components (s = [s1, 52,0, 54]),
but since it is normalized, it has only 2 free parameters.
These 2 degrees of freedom correspond to a 2-D sphere.
Thus, we have the old problem (see Section 4.1) of display-
ing a spherical surface on a flat 2-D space. Because of our
quaternion parametrization (Section 2.3), we must convert

the quaternion space to an octant similar to that in Section
3.3. We calculate

| sin[2 arccos(s4)] % [1 + (sf/sg)] —1/2 B

|(s1/s2) sin[2 arccos(s4)] % [1 + (si/sg)] —1/2 B
(41)

sindr =
sindp =

sinég = |25 —1]|.

Thereafter, the display can be carried out as in Section 4.1.

5. Discussion

How can we use the methods discussed in this paper? Sets
of randomly rotated DC sources can be produced by any of
the techniques proposed here. If needed, any variable in the
simulations can be restricted to a certain interval, and as a
result, the rotation distribution would be uniform inside the
new smaller restricted domain.

The displays of focal mechanisms can be used to investi-
gate deformation patterns in seismogenic zones. For exam-
ple, Frohlich (2001), Kagan (2000), Huc & Main (2003) did
so when investigating aspects of focal mechanism statistical
distributions.

As an example of such displays, Figs. 5 and 6 show a set
of focal mechanisms of earthquakes occurring on the ocean
side of subduction zones (Bird & Kagan, 2004). In Fig. 5
the left boundary of the plot is identical to the right; hence,
the diagram can be considered a surface of a cylinder (see
the last paragraph of Subsection 4.2). Most focal mech-
anisms are either thrust or normal type. Since they are
shown on the area-preserving maps, their distribution can
be studied without any bias from probability density distor-
tions (Frohlich, 2001).

How can the distributions of focal mechanisms be stud-
ied in these displays? Frohlich (2001) proposes dividing the
gnomonic triangular display into equilateral sub-triangles to
separate mechanisms into a discrete number of cells. These
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discrete arrays would be of value for statistical comparisons
with a model or some other set of mechanisms.

One disadvantage of the triangular subdivision is that tri-
angles have a large diameter (length of a side) compared to
their area. In many applications it is preferable that com-
parison cells be as close to a circle as possible. A second
drawback is that these triangles are not easy to visualize
without a computer.

In contrast, Saff & Kuijlaars (1997) propose equal-area
sphere partition which uses rectangular, square-like cells.
Since these cells have parallels and meridians as their bound-
aries, they are easier to visualize. Kagan & Jackson (1998,
their Fig. 3) apply a similar subdivision to a sphere octant.
The number of focal mechanisms in each triangular or rect-
angular spherical cell can again be compared against other
distributions. However, in an octant partition, one corner
is included in a spherical triangle, whereas rectangular cells
contain two triangle corners. Therefore, one of the eigenvec-
tors has a distinctive role in the subdivision, a feature which
may hinder statistical analysis.

It is perhaps more difficult to find a partition for geo-
logic/tectonic displays (Figs. 3, 4, and 5). For example,
the dip angle may change within one tectonic province so
that its distribution straddles the boundary between two
nodal planes, as we see in Fig. 5 for normal earthquakes.
However, the distribution of thrust earthquakes in Fig. 5
exhibits evident separation which can be used for statisti-
cally select the fault plane. Methods statistical analysis of
these displays need to be explored and developed.

6. Conclusions

o We discussed four representations for a DC earthquake
source: eigenvector, tectonic, seismic moment, and quater-
nion. These expressions are mathematically equivalent, but
each has certain advantages and drawbacks.

¢ Random 3-D rotation of a DC source is often needed
for statistical tests. This rotation presents a more difficult
problem than a 2-D rotation. Some seemingly obvious tech-
niques for rotating any object and a DC source especially
produce an erroneous result. We provide formulae for a 3-D
random rotation for all four representations of a DC source.

o We discussed requirements for displaying earthquake
focal mechanisms. Two displays — one based on eigenvector
and the other based on geologic/tectonic representation —
may be useful to analyze focal mechanism distributions in
various tectonic provinces.
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Random rotation of double—couple earthquake source, geologic representation
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Figure 1. Distributions of rotation angles for DCs, ge-
ologic parametrization. Solid line represents theoretical
DC random rotation (Egs. 11-13), dashed line represents
simulations (107 realizations) in which strike, dip, and
rake are selected randomly (Egs. 17-19). Thin solid line
corresponds to the simulation with cosine transformation
of the dip angle (Eq. 20). We simulated this distribu-
tion with a small number of events (105 realizations);
otherwise the curve would coincide with the theoretical
distribution.

Random rotation (eigenvectors) of DC source, ROTDCEZ2, Octovue projection
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Figure 2. Focal mechanism display for DC eigenvector
representation. 1000 DC random mechanisms are simu-
lated and shown as points at octant equal-area projec-
tion. The DC distribution is uniform over the projection
plane. Dashed lines are boundaries of strike-slip, normal,
and thrust mechanisms. Plunge angles 30° and 60° for
all mechanisms are shown by thin solid lines.
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Figure 3. Focal mechanism display for DC geologic
representation. 1000 DC random mechanisms are simu-
lated and shown as points at (6, A) diagram. The diagram
for negative rake (0° > A > —180°) angle is analogous.
Thrust events are replaced by earthquakes with a normal
focal mechanisms for 0° > A. The distribution is not
uniform along the §-axis. Solid line separate two nodal
planes, so that §2 > §;. Dashed lines are boundaries
between strike-slip, normal, and thrust mechanisms. To
illustrate interrelations between two nodal planes, several
rectangles are selected in the second nodal plane and their
transformations shown in the first. Note distortion in the
area of each rectangle pair using this presentation.



X-8 KAGAN : RANDOM ROTATION FOR DOUBLE-COUPLES

Random rotation of double—couple earthquake source, all eqs
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Figure 4. Focal mechanism display for DC geologic
representation. 1000 DC random mechanisms are sim-
ulated and shown as points at [(1 — cosé), A] diagram.
The diagram for negative rake (0° > A > —180°) angle
is analogous; thrust events are replaced by earthquakes
with a normal focal mechanisms. The distribution is
uniform over the plane. Solid line separate two nodal
planes, so that §2 > §;. Dashed lines are boundaries
between strike-slip, normal, and thrust mechanisms. To
illustrate interrelations between two nodal planes, several
rectangles — the same as in Fig. 3 — are selected in the
second nodal plane and their transformations shown in
the first. The transformed rectangles preserve their area,
demonstrating the desired equal-area uniformity of the
presentation. However, distances between various focal
mechanism points may be significantly modified.

CMT catalog, subduction zones, ocean side, 1977-2002, all egs, N = 216
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Figure 5. Focal mechanism display for DC geologic rep-
resentation. Earthquakes on the ocean side of subduction
zones are selected by Bird & Kagan (2004) from the Har-
vard catalogue of 1977-2002/9/30. The total number of
earthquakes is 216. Each earthquake is displayed twice
for both nodal planes; the relation between symbol po-
sitions of each event is illustrated in Fig. 4. Solid lines
separate two nodal planes, so that §2 > §;. Dashed lines
are boundaries of strike-slip, normal, and thrust mecha-
nisms.

CMT catalog, subduction zones, ocean side, 1977-2002, all egs, N = 216
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Figure 6. Focal mechanism display for DC eigenvector
representation. Earthquakes on the ocean side of sub-
duction zones are selected by Bird & Kagan (2004) from
the Harvard catalogue of 1977-2002/9/30. Focal mecha-
nisms are shown as symbols at octant equal-area projec-
tion (Egs. 28-29). The total number of earthquakes is
216. As in Fig. 2 dashed lines are boundaries of strike-
slip, normal, and thrust mechanisms. Plunge angles 30°
and 60° for all mechanisms are shown by thin solid lines.





