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ABSTRACT
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as
the number of spatial locations becomes large. There is a burgeoning literature on approaches for ana-
lyzing large spatial datasets. In this article, we propose a divide-and-conquer strategy within the Bayesian
paradigm. We partition the data into subsets, analyze each subset using a Bayesian spatial process model,
and then obtain approximate posterior inference for the entire dataset by combining the individual pos-
terior distributions from each subset. Importantly, as often desired in spatial analysis, we offer full poste-
rior predictive inference at arbitrary locations for the outcome as well as the residual spatial surface after
accounting for spatially oriented predictors. We call this approach “spatial meta-kriging” (SMK). We do not
need to store the entire data in one processor, and this leads to superior scalability. We demonstrate SMK
with various spatial regressionmodels includingGaussian processeswithMatern and compactly supported
correlation functions. The approach is intuitive, easy to implement, and is supported by theoretical results
presented in the supplementary material available online. Empirical illustrations are provided using dif-
ferent simulation experiments and a geostatistical analysis of Pacific Ocean sea surface temperature data.
Supplementary materials for this article are available online.

1. Introduction

Increasing accessibility to computerized Geographical Informa-
tion Systems (GIS) and related technologies have led to growing
demands for analyzingmassive spatially and temporally indexed
databases on a variety of geographically referenced outcomes.
See, for example, the books by Gelfand et al. (2010), Cressie and
Wikle (2015), and Banerjee, Carlin, and Gelfand (2014) for a
variety of methods for spatial data analysis. Gaussian processes
are widely employed in spatial analysis, being especially attrac-
tive as a flexible and conveniently interpretable spatial interpo-
lator acting as a stochastic surrogate for the underlying physi-
cal processes generating the data. Today, a primary challenge in
geostatistics is the analysis of massive spatially referenced data.
This stems from the onerous Gaussian likelihood computations
involvingmatrix factorizations (e.g., Cholesky) and determinant
computations for large spatial covariance matrices that have no
computationally exploitable structure. This is referred to as the
“Big-N” problem in spatial statistics.

There is a burgeoning literature on the analysis of large spatial
datasets which is too large to be comprehensively reviewed here.
Briefly, thesemethods seek “dimension-reduction” by endowing
the spatial covariance matrix either with a low-rank structure or
with a sparse structure. Low-rank structures are usually derived
from expressing the Gaussian process using basis functions such
as fixed-rank kriging (Cressie and Johannesson 2008), or predic-
tive processes and variants thereof (e.g., Banerjee et al. 2008; Fin-
ley et al. 2009;Guhaniyogi et al. 2011; Sang andHuang 2012) and
multi-resolution approximations (e.g., Katzfuss 2017). Wikle
(2010) and Banerjee, Carlin, and Gelfand (2014) provide more
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comprehensive reviews. Sparse structures intuit that spatial cor-
relation between two distantly located observations is nearly
zero, so little information is lost by assuming conditional inde-
pendence given the intermediate locations. For example, covari-
ance tapering (Furrer, Genton, and Nychka 2006; Kaufman,
Schervish, and Nychka 2008; Du et al. 2009; Shaby and Rup-
pert 2012) uses compactly supported covariance functions to
create sparse spatial covariance matrices that approximate the
full covariance matrix. Alternately, one could introduce spar-
sity in the inverse covariance (precision) matrix using condi-
tional independence assumptions or composite likelihoods (e.g.,
Vecchia 1988; Rue, Martino, and Chopin 2009; Stein, Chi, and
Welty 2004; Eidsvik et al. 2014; Datta et al. 2016; Stroud, Stein,
and Lysen 2017; Guinness 2016). In related literature pertain-
ing to computer experiments, localized approximations ofGaus-
sian process models are proposed, see for, for example, Gramacy
and Apley (2015), Zhang, Lin, and Ranjan (2016), and Park and
Apley (2017).

Some variants of dimension-reduction methods partition
the spatial domain into subregions containing fewer spatial
locations. Each of these subregions is modeled using Gaussian
processes which are then hierarchically combined by borrowing
information from across the subregions. Examples include
non-stationary models (Banerjee, Carlin, and Gelfand 2014),
multi-level and multi-resolution models (Gelfand et al. 2007;
Nychka et al. 2015; Katzfuss 2017) and the Bayesian TreedGaus-
sian Process models (Gramacy and Lee 2012). These models
usually achieve scalability by assuming block-independence at
some level of the hierarchy, usually across subregions, but lose
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scalability when they borrow across subregions. Furthermore,
the models and the inference are usually very sensitive to the
specific partition adopted for the model.

Most existing methods for large spatial data are based upon
approximations of the single Gaussian likelihood. Our cur-
rent offering differs from these methods, and hence the afore-
mentioned work, by focusing upon pooling posterior inference
across a partition of data subsets. In some simple cases, for
example with conjugate Bayesian linear regression models that
we will revisit in a later section, one can exactly recover full
posterior inference. However, such exact recovery is precluded
for spatial and spatiotemporal process models and, more gen-
erally, for correlated data. Our objective is to develop a gen-
eral approximation framework for obtaining the full posterior
from posterior densities calculated over smaller subsets. The
posteriors from various subsets (also known as “subset poste-
riors”) are combined to yield a single posterior distribution (the
“meta-posterior”) for themodel parameters. Thus, we conduct a
“meta-analysis” of the different datasets and also provide pooled
posterior predictive inference for the spatial surface at arbitrary
locations. We coin this as “spatial meta-kriging or SMK.” To
achieve this, we adapt the notion of a geometric median of a
subset posterior (see, e.g., Minsker et al. 2014). Unlike Minsker
et al. (2014) who developed predictive models for independent
data, we perform full Bayesian inference on each of the subsets
using spatial process models. We obtain posterior samples for
the process parameters and spatial random effects and derive
the meta-posterior for the Bayesian model. This approach can
be used to considerably enhance the computational scalability
of other Bayesian models for large spatial data. Once the post-
burnin samples are stored for these models, sampling from the
meta-posterior is extremely fast. For example, if it is feasible to
estimate spatial process models to each subset of the data for n
locations and one can run them on K subsets in parallel, then
SMK will allow us to draw inference on nK locations. The val-
ues of n and K will depend upon the computational resources
available and the model being fit to each dataset.

The article follows this outline. In Section 2.1, we motivate
the approach in conjugate non-spatial linear model. Our SMK
approach will work with posterior samples from such models.
Section 2.2 develops the framework for “spatial meta kriging”
(SMK) and discusses how to compute it. A detailed simulation
study followed by a large data analysis is performed in Section 3
to justify usage of SMK for real data. Finally, Section 4 discusses
what SMK achieves and proposes a number of future directions
to explore. Theoretical developments, including results on pos-
terior consistency for the proposed SMK approach applied to
Gaussian process models withMatern and compactly supported
correlation functions are described in the Web Supplement.

2. Pooled Bayesian Inference

2.1 Conjugate Bayesian LinearModel

For some simple Bayesian models, one can exactly recover the
posterior distributions of the parameters based upon quantities
computed for subsets of the data. For example, consider the con-
jugate Bayesian Gaussian linear regression model

y = Xβ + ε; ε ∼ N(0, σ 2D), (1)

where y is an N × 1 random vector of outcomes, X is a
fixed N × p design matrix of explanatory variables, β is
an unknown p× 1 vector of slopes, D is a fixed N × N
correlation matrix for y. This is extended to a Bayesian
hierarchical model by assigning prior distributions β | σ 2 ∼
N(μβ, σ 2Vβ ), and σ 2 ∼ IG(a, b). The joint posterior density
p(β, σ 2 | y) is available in the closed form as p(β, σ 2 | y) =
p(σ 2 | y) × p(β | σ 2, y), where the marginal posterior density
p(σ 2 | y) = IG(σ 2 | a∗, b∗) and the conditional posterior den-
sity p(β | σ 2, y) = N(β |Mm, σ 2M) with a∗ = a + N/2, b∗ =
b+ c/2, m = V−1

β μβ + X�D−1y, M−1 = V−1
β + X�D−1X and

c = μ�
βV

−1
β μβ + y�D−1y − m�Mm. Therefore, exact posterior

inference can be carried out by first sampling σ 2 from IG(a∗, b∗)
and then samplingβ fromN(Mm, σ 2M) for each sampled value
of σ 2. This results in samples from p(β, σ 2 | y). Besides the fixed
hyperparameters in the prior distributions, this exercise requires
computingm,M, and c.

Now, consider a situation where N is large enough so that
memory requirements for computing (1) is unfeasible. One pos-
sible resolution is to replace the likelihood in (1) with a compos-
ite likelihood that assumes independence across blocks formed
by partitioning the data. We partition the N × 1 vector y into K
subvectors with yk as the nk × 1 subvector forming the kth sub-
vector, where

∑K
k=1 nk = N. Also, let Xk be the nk × pmatrix of

predictors corresponding to yk and letDk be themarginal corre-
lationmatrix for yk. The conjugate Bayesianmodel with a block-
independent composite likelihood assumes that

yk = Xkβ + εk; εk
ind∼ N(0, σ 2Dk). (2)

The Bayesian specification is completed by assigning priors to
σ 2 and β as in (1). If we distribute the analysis to K different
computing cores, where the kth core fits the above model but
only with the likelihood N(yk |Xkβ, σ 2Dk), then the quantities
needed for sampling from the full p(β, σ 2 | y) can be computed
entirely using quantities obtained from the individual subsets
of the data. For each k = 1, 2, . . . ,K we independently com-
pute mk = V−1

β μβ + X�
k D

−1
k yk and M−1

k = V−1
β + X�

k D
−1
k Xk

based upon the kth subset of the data. We then combine
them to obtain m = ∑K

k=1(mk − (1 − 1/K)V−1
β μβ ) and

M−1 = ∑K
k=1(M

−1
k − (1 − 1/K)V−1

β ). Subsequently, we com-
pute c = μ�

βV
−1
β μβ + ∑K

k=1 y
�
k D

−1
k yk − m�Mm. Therefore,

sampling from the posterior distribution of β and σ 2 given
the entire dataset can be achieved using quantities computed
independently from each of the K smaller subsets of the data.
There is no need to interact between the subsets and one does
not require to store or compute with large objects based upon
the entire dataset.

This strategy will be efficient when the composite likelihood
in (2) is a reasonable approximation for (1). In fact, for inde-
pendent data modeled using D as an N × N identity matrix
or a diagonal matrix, (1) and (2) are equivalent and the above
method will exactly recover the inference from fitting the full
model in (1) irrespective of how we partition the data. With
correlated data, however,D is a non-diagonal correlationmatrix
and the analytical tractability above is lost. The composite like-
lihood in (2) is now only an approximation for (1) and will no
longer be able to exactly recover the inference from (1). For
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finite-sample inference, the performance of (2)may not be satis-
factory andwill depend upon a number of factors including how
we partition the data. In the next section, we discuss a computa-
tionally efficient algorithm to achieve accurate and robust infer-
ence by pooling posterior samples from the subsets of the data
and subsequently apply this to spatially indexed data.

2.2 Pooled Bayesian Inference for Spatial Models

Consider a customary spatial regression model given by

y(s) = x�(s)β + w(s) + ε(s), (3)

where x(s) is a p× 1 vector of spatially referenced predictors, β
is a p× 1 vector of regression coefficients, w(s) is a stochastic
process capturing spatial dependence, while ε(s) captures vari-
ation at fine scales including those arising from measurement
error. Customary specifications posit w(s) is a zero-centered
spatial Gaussian process with a covariance function Cθ (s, s′)
modeling cov{w(s),w(s′)} and ε(s) is a white-noise process
independent of w(s). Given a set of locations S = {si : i =
1, 2, . . . ,N} where y(s) and x(s) have been observed, the spa-
tial regression in (3) is extended to a hierarchical linear mixed
model framework

y = Xβ + w + ε, ε ∼ N(0,D(θ )), (4)

where y, w, and ε are N × 1 vectors with elements y(si), w(si)
and ε(si), respectively, X is the N × pmatrix of regressors (p <

N) with x�(si) as its ith row,D(θ ) is anN × N covariancematrix
corresponding to ε, w ∼ N(0,C(θ )),C(θ ) is the N × N spatial
covariance matrix with entriesCθ (si, s j), β ∼ N(μβ,�β ) is the
prior distribution for the slope vector, μβ and �β are assumed
fixed, θ is a set of unknown parameters specifying the distri-
butions for w and ε and is assigned a proper prior distribution
p(θ ). Though C(θ ) and D(θ ) are functions of different subsets
of θ , we present both of them as functions of θ to avoid nota-
tional complications. Note that here we do away with the conju-
gacy in Section 2.1, so Bayesian inference proceeds, customar-
ily, by sampling� = {β, θ} from (4) usingMarkov chainMonte
Carlo (MCMC) methods (e.g., Robert and Casella 2009).

Fitting the model in (4) entails matrix computations involv-
ing C(θ ) and D(θ ). While D(θ ) is often specified as a diagonal
(or sparse) matrix, for example, τ 2I which will arise by spec-

ifying ε(s) iid∼ N(0, τ 2), the spatial covariance matrix C(θ ) is
a dense N × N matrix. Irrespective of the specific parameter-
ization or estimation algorithm, model fitting usually involves
matrix decompositions for C(θ ) requiring ∼ N3 floating point
operations (flops) and ∼ N2 memory units in storage. These
become prohibitive for large N since C(θ ), in general, has
no exploitable structure. Evidently, multivariate and spatial–
temporal settings aggravate the situation.

Let the data be partitioned into {yk,Xk}, for k = 1, 2, . . . ,K,
where each yk is nk × 1 and Xk is nk × p. Let Dk(θ ) and Ck(θ )

correspond to the kth subset of the data. Assume that we are
able to obtain posterior samples for� = {β, θ} from (4) applied
independently to each of K subsets of the data. To be specific,
assume that �k = {�(1)

k ,�
(2)
k , . . . , �

(M)

k } is a collection of M
posterior samples from p(� | yk). We refer to each p(� | yk) as
a “subset posterior.” The subset posteriors are computed from

subsets of the data and posterior inference from one subset will
be substantially different from another. This is especially true
for block-independent spatial models when the blocks (sub-
sets) may not adequately represent the entire random field. One
approach is to design partitions of the data that will ensure the
block independent model is a good approximation to the full
spatial model. This, however, is generally difficult to achieve and
will depend upon the dataset. The meta-kriging approach we
outline below should be more widely applicable. It attempts to
combine meaningfully, the subset posteriors to arrive at a legit-
imate probability density. We will refer to this as the “meta-
posterior” and will tend to be more immune to the drawbacks
of pooled inference using block-independent models.

Our approach relies upon the unique geometric median (GM)
of the subset posteriors (Minsker 2015 andMinsker et al. 2014).
Assume that the individual posterior densities pk ≡ p(� | yk)
reside on a Banach spaceH equipped with norm ‖ · ‖. The GM
is defined as

π∗(· | y) = argmin
π∈H

K∑
k=1

‖pk − π‖ρ, (5)

where y = (y�
1 , y�

2 , . . . , y�
K )�. The norm quantifies the distance

between any two posterior densities π1(·) and π2(·) as ‖π1 −
π2‖ρ = ‖ ∫

ρ(�, ·)d(π1 − π2)(�)‖, where ρ(·) is a positive-
definite kernel function. In what follows, we assume ρ(z1, z2) =
exp(−‖z1 − z2‖2).

The GM is unique and lies in the convex hull of the indi-
vidual posteriors, so π∗(� | y) is a legitimate probability den-
sity. Specifically, π∗(� | y) = ∑K

k=1 αρ,k(y)pk,
∑K

k=1 αρ,k(y) =
1, each αρ,k(y) being a function of ρ, y, so that

∫
�

π∗(� | y)
d� = 1.

Computing the GM π∗ ≡ π∗(� | y) is achieved by the popu-
larWeiszfeld’s iterative algorithm that estimatesαρ,k(y) from the
subset posteriors pk for each k = 1, 2, . . . ,K. To further eluci-
date, we use a well-known result that the GM π∗ satisfies π∗ =∑K

k=1 ‖pk−π∗‖−1
ρ pk∑K

k=1 ‖pk−π∗‖−1
ρ

, so that αρ,k(y) = ‖pk−π∗‖−1
ρ∑K

j=1 ‖pk−π∗‖−1
ρ

. Since there is

no apparent closed form solution for αρ,k(y) satisfying this
equation, we resort to theWeiszfeld iterative algorithm outlined
in Algorithm 1 (Minsker et al. 2014).

Algorithm 1 Algorithm to compute Geometric Median (GM)
of posterior distributions

a. Initial Condition: α(0)
ρ,k(y) = 1

K .
b. Form ≥ 1

i. mth iterate of α
(m)

ρ,k (y) is given by α
(m)

ρ,k (y) =
‖pk−π∗(m−1)‖−1

ρ∑K
j=1 ‖p j−π∗(m−1)‖−1

ρ

.

ii. mth iterate of π∗ (denoted as π∗(m)) is given by
π∗(m) = ∑K

k=1 α
(m)

ρ,k (y)pk.
Note that the posterior pk is approximated
by the corresponding empirical posterior
1
M

∑M
j=1 1�

( j)
k

so that π∗(m−1) is approximated by
1
M

∑K
k=1

∑M
j=1 α

(m−1)
ρ,k (y)1

�
( j)
k
.

c. Stopping Condition: Iteration proceeds until
‖π∗(m) − π∗(m−1)‖ρ < ε, where ε is a user-specified tol-
erance level.
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A closed form expression for ‖pk − π∗(m−1)‖ρ is easily
obtained by referring to the formula

‖π1 − π2‖ρ =
M1∑
i=1

M1∑
j=1

γ1iγ1 jρ(z1i, z1 j) +
M2∑
i=1

M2∑
j=1

γ2iγ2 jρ(z2i, z2 j)

− 2
M1∑
i=1

M2∑
j=1

γ1iγ2 jρ(z1i, z2 j), (6)

where π1 = ∑M1
i=1 γ1i1z1i and π2 = ∑M2

i=1 γ2i1z2i . z1i, z2i’s are
dummy variables representing atoms of �, 1z1i , 1z2i are indica-
tor functions at z1i, z2i, respectively.Weiszfeld’s algorithm yields
the geometric median of points lying on a separable Banach
space.

In the online supplementarymaterial, we show that for a large
sample,π∗(· | y) provides a theoretically guaranteed approxima-
tion of the full posterior distribution when error variance and
range parameters in the Gaussian process are kept fixed. In the
theoretical treatment of Gaussian processes, these assumptions
are pretty common, see, for example, Vaart and Zanten (2011).
Note that, in the context of combining subset posteriors, one
could possibly employ consensusMonte Carlo (Scott et al. 2016)
to combine subset posteriors.While consensusMonte Carlo has
been demonstrated to be effective for parametric models, its
effectiveness (theoretical or empirical) is yet to be explored for
nonparametric regression models such as the Gaussian process
models discussed here.

It is, therefore, reasonable to approximate the posterior pre-
dictive distribution p(y(s0) | y) by the subset posterior predic-
tive distributions p(y(s0) | yk). Let {y(s0)( j,k)}Mj=1, k = 1, . . . ,K,
be samples obtained from the posterior predictive distribution
p(y(s0) | yk) for the kth subset posterior. Then,

p(y(s0) | y) ≈
K∑

k=1

αρ,k(y)p(y(s0) | yk)

=
K∑

k=1

αρ,k(y)
∫

p(y(s0) | �, yk)p(� | yk)d�,

Therefore, the empirical posterior predictive distribution of
the meta-posterior is given by

∑K
k=1

∑M
j=1

αρ,k(y)
M 1y(s0 )( j,k) , from

which the posterior predictive median and the 95% posterior
predictive interval for the unobserved y(s0) are readily available.

Regarding inference for the spatial process w(·) at arbitrary
location s0, we use posterior samples {w(s0)( j,k)}Mj=1 from the kth
subset posterior p(w(s0) | yk) for each k = 1, . . . ,K. Again, an
approximation for p(w(s0) | y) is readily available through the

meta-posterior

p(w(s0) | y) ≈
K∑

k=1

αρ,k(y)p(w(s0) | yk)

=
K∑

k=1

αρ,k(y)
∫

p(w(s0) | �, yk)p(� | yk)d�.

Approximate posterior sampling from p(w(s0) | y) then pro-
ceeds by drawing samples from the empirical approximation
given by

∑K
k=1

∑M
j=1

αρ,k(y)
M 1w(s0)( j,k) . Obtaining the approximate

posterior median and 95% credible interval for w(s0) are now
easily achieved.

3. Illustrations

3.1 IllustratingWeiszfeld’s Algorithm for the Conjugate
Bayesian LinearModel

As described in Section 2.1, conjugate Bayesian linear models
(1) yield the joint posterior distribution of {β, σ 2} in the closed
form and is easy to sample from. It is, therefore, instructive to see
the accuracy of the approximation offered by themeta-posterior
of β in comparison with the exact posterior distribution of β .
This section presents such an analysis by fitting both the full
posterior and the meta-posterior from (1) on FORMGMT data
from the spBayes package. The FORMGMT dataset contains
information on a response and 6 predictors at 1342 locations.
To evaluate the meta posterior, this dataset is divided randomly
into six subsets approximately of the same size. Weiszfeld’s algo-
rithm is then applied to the subset posteriors to obtain an empir-
ical approximation of the meta-posterior for each component of
β . Table 1 demonstrates the accuracy of the meta-posterior by
presenting the 2.5%, 25%, 50%, 75%, and 97.5% quantiles for
each component of β from the meta-posterior and the exact
full posterior. The figure shows that the quantiles of β from
the meta- and the exact full posterior are very similar. A sim-
ilar story is told by the meta-posterior of σ 2. Performance of
the meta-posterior in nonspatial models are convincing enough
to propel careful implementation of SMK on more general spa-
tial process models. The next few sections lay them out in
detail.

3.2 Simulation Experiments

We use synthetic datasets to assess model performance with
regard to learning about process parameters, interpolating
the unobserved residual spatial surface and predicting at

Table . Quantiles for the full posterior distributions and the meta posterior distributions of β1, . . . , β6 .

SMK Full

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

.% . . − . − . − . . . . − . − . − . .
% . . − . − . − . . . . − . − . − . .
% . . − . − . − . . . . − . − . − . .
% . . − . − . − . . . . − . − . − . .
.% . . − . − . − . . . . − . − . − . .
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new locations. Though SMK potentially adapts to any spatial
regression model, we confine ourselves to studying SMK for
(i) Gaussian process based geostatistical models (GP) and
(ii) Gaussian process with compactly supported correlation
functions (CSC). Further theoretical results are presented in the
Web Supplementary Material.

This section presents two simulation studies. Simulation 1
is presented for moderately large datasets with 3,500 loca-
tions, while Simulation 2 presents a study with 41,000 locations.
The moderate size in Simulation 1 allows full Bayesian imple-
mentation of the full Gaussian process (GP) model (without
approximation) and theGaussian processmodel with compactly
supported correlation (CSC) for comparison with SMK approx-
imations to the full GP (SMK-GP). For both simulations, data
are generated from a standard Gaussian process model with the
RandomFields package. Simulation 2 presents two additional
case studies. In one of them, data are generated from CSC. For
this simulation, inference from SMK with compactly supported
correlation function (SMK-CSC) model fitted to each subset is
studied to assess how good an approximation to the full CSC is
offered by SMK–CSC. In another simulation, samples are gen-
erated from two sides of a spatial domain keeping a hole in
between. It would be interesting to observe how SMK-GP esti-
mates the spatial activity on both sides.

Competitors: As competitors to SMK, we employ
(a) locally approximated Gaussian process models (laGP)

(Gramacy and Apley 2015). This is a state-of-the-
art procedure in computer emulations and is not
designed to provide full scale Bayesian inference. How-
ever, predictive point estimates with associated stan-
dard errors can readily be obtained from laGP. They
are used to compare predictive inference including
point estimates and uncertainties between SMK and
laGP. Gramacy and Apley (2015) mention that laGP
often outperforms nearest neighbor methods. Thus, in
the absence of easily implementable R package/publicly
available codes for nearest neighbor methods, compar-
ison with laGP serves as a reasonable indicator. The
laGP package (Gramacy 2015) in CRAN (https://cran.r-
project.org/web/packages/laGP/index.html) is used to
implement laGP.

(b) Multiresolution kriging based on Markov
random fields (LatticeKrig) (Nychka et al.
2015). The LatticeKrig package (Nychka
et al. 2012) hosted on CRAN (https://cran.r-
project.org/web/packages/LatticeKrig/index.html) offers
frequentist implementations of LatticeKrig. Similar to
laGP, predictive point estimates with associated stan-
dard errors can readily be obtained from LatticeKrig.
We often refer to LatticeKrig as LK.

(c) Block independent pooled spatial models, referred to as
BISP. BISP is a two stage procedure. In the first stage, sim-
ilar to SMK, one fits a spatial model independently on K
exhaustive and mutually exclusive subsets of data. In the
second stage, weighted inference is drawn based upon
subset posteriors andweights 1/K corresponding to each
subset posterior. For fair comparison between BISP and
SMK, two models are fitted under the same subset parti-
tioning scheme.

In Simulation 1 with moderately large number of data loca-
tions, we could also implement a full Gaussian process without
any approximation and the full CSC as competitors to assess
the accuracy of the approximation offered by SMK-GP. How-
ever, in Simulation 2 with 41,000 locations, full Bayesian infer-
ence for the full Gaussian process is prohibitive and is not con-
sidered. Moreover, full Bayesian inference on CSC also comes
with a lot of computational expense, primarily due to com-
puting the determinant of the covariance matrix in each itera-
tion. Therefore, the CSC model is also omitted from the bigger
simulation study.We also implement Treed GP (Treed-GP) with
the tgp package in R for Simulation 1 (not shown) and find
that the Treed-GP’s inferential performance is less than the full
GP. Treed-GP is found to be computationally prohibitive for
Simulation 2.

We consider a parallel implementation of the SMK over mul-
tiple cores. The entire analysis implementing parallelization is
carried out in R with the doParallel (Calaway et al. 2015)
andforeach (Analytics andWeston 2013) packages on aUnix
workstation with 64 cores. All the interpolated spatial surfaces
are obtained using the R package MBA (Finley and Banerjee
2010). All predictive inferences are based upon 25 simulated
datasets.

3.3 Simulation 1

Simulation 1 is performed under moderately large-sample sizes
to accommodate the full GP model. We generate 3500 obser-
vations within a unit square domain from the classical geo-
statistical model with likelihood y ∼ N(β0,Vy(θ )), Vy(θ ) =
{κ(si, s j)}Ni, j=1 + τ 2I, θ = {σ 2, τ 2, φ, ν}. For this article we
will only use the exponential covariance function κ(si, s j) =
σ 2 exp(−φ‖si − s j‖), where θ = {σ 2, τ 2, φ} which arises from
the popular Matérn class with the smoothness parameter
ν = 1/2 (see, e.g., Stein 2012).

To fit GPmodels in every subset, we assign a noninformative
prior to β0. τ 2 and σ 2 are assigned an IG(2, 1) prior (mean is 1).
The spatial decay parameter φ is assigned a U (0.3, 300) which
corresponds to a slow decay in spatial correlation and a strong
spatial signal in the simulated data, given that themaximumdis-
tance between any two observations is 1.4.

One important ingredient of the SMK is partitioning the
dataset into subsets. Consequently, we have explored differ-
ent partitioning schemes for the dataset to assess their impact
on the inference. For example, we have investigated the SMK
by partitioning the domain into disjoint subdomains followed
by choosing each subset consisting of observations from these
sub-domains. This, however, is inefficient because many sub-
domains are not representative of the full dataset and there
is the risk of incorrectly estimating the process parameters
from the subdomains. This scheme also does not work well
for block-independent models. The Treed-GP model attempts
to circumvent this problem by averaging over the partitions.
This improves inferential performancewith regard to estimation
but posterior predictive inference at arbitrary locations is still
complicated.

The GM, hence SMK, tends to be more robust to partition-
ing schemes and one need not average over partitions. However,
simply partitioning the data according to subregions may still

https://cran.r-project.org/web/packages/laGP/index.html
https://cran.r-project.org/web/packages/LatticeKrig/index.html
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Table . Parameter credible intervals,  (. .) percentiles of all the parameters for SMK-GP, full GP and Gaussian process compactly supported correlation function
(CSC). SMK with Gaussian process is fitted for K = 3, 6, 10 number of subsets.

SMK-GP

Parameter True value GP CSC   

β0  . (−.,.) . (.,.) . (−.,.) . (−., .) . (−., .)

τ 2 . . (.,.) . (.,.) . (., .) . (., .) . (., .)
σ 2  . (., .) . (.,.) . (., .) . (., .) . (., .)
φ  . (., .) . (., .) . (., .) . (., .) . (., .)
Time (in min) – . . . . .

be unwise. Instead, we adopt a random partitioning scheme that
proceeds as follows:

� Draw S1, the first subset, randomly from the full data
(denoted by S).

� For k = 2, . . . ,K, draw Sk, the kth subset, randomly from
S − (∪k−1

i=1 Si).
The random partitioning (RP) scheme creates subsets with

points from every subregions of the domain. Alternatively, one
can cluster N points to K different clusters using the k-means
clustering and use each of these clusters as a subset. Later we
demonstrate that this k-means clustering (KM) of locations into
subsets leads to inferior inference than SMK fitted on sub-
sets constructed with the random partitioning scheme. A more
sophisticated approach would be to partition the domain into
subdomains and include representative samples from each sub-
domain in a subset. We refer to this partitioning scheme as
random-block partitioning (RBP) and show its indistinguishable
performancewith randompartitioning. All these evidenceswith
brief discussions are provides at the end of Simulation 1.

To demonstrate the SMK for various choices of the num-
ber of subsets (K) under the random partitioning scheme,
we experiment with K = 3, 6, and 10 subsets of the data with

n = 1000, 500, and 300 observations in each subset, respec-
tively.

Table 2 shows point estimates of the parameters along with
their 95% credible intervals for a representative simulation.
While true values of β0 and τ 2 are always contained within the
95% credible intervals for all of the parameters, σ 2 and φ esti-
mates in SMK-GP are also found to be consistent with the full
Gaussian process. As expected, computation time for SMK-GP
is much smaller than both GP and CSC.

In terms of surface interpolation, Figure 1 shows, not sur-
prisingly, that the performance of SMK-GP improves by reduc-
ing the number of subsets. Clearly, in surface interpolation,
the full Gaussian process sets the benchmark. It is observed
that the estimated spatial surface from SMK-GP with K = 3
subsets is indistinguishable from the surface obtained using
the full Gaussian process, barring some negligible smoothing
effects.

Predictive performance of the different approaches are com-
pared using mean squared prediction error (MSPE), length and
coverage of 95%predictive intervals. Figure 2 demonstrates sim-
ilar coveragewith narrower predictive interval for SMK-GPwith
K = 3 compared to K = 10. It is also observed that naively

Figure . Residual spatial surface for: (a) synthetic spatial random effect generated using  observations; (b) full Gaussian process; (c) CSC; (d) estimated spatial random
effects for meta-posterior with K = 3; (e) estimated spatial random effects for meta-posterior with K = 6; (f ) estimated spatial random effects for meta-posterior with
K = 10.
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Figure . Plot at the top indicates boxplot of mean squared prediction error for all competitors over  replications. Second and third plots show coverage and length of
% predictive intervals for the competitors over the same replications. LatticeKrig shows extreme under-coverage compared to the others and is not presented alongside
the others.

combining subset posterior inferences using BISP leads to sig-
nificantly higher MSPE. In terms of MSPE, SMK-GP demon-
strates almost indistinguishable performance with full GP, CSC,
and other approaches such as laGP and LK. Additionally, SMK-
GP exhibits slightly higher predictive coverage with slightly
wider prediction intervals than the full GP, CSC, and laGP.
On the other hand, LK shows severe under-coverage (not
shown) with narrower predictive intervals. In fact, the aver-
age length and coverage of 95% predictive intervals for LK
is given by 0.63 and 0.52, respectively. The under-coverage
of LK is perhaps caused due to using asymptotic predictive
interval.

We demonstrate through Figure 3 that for all three cases
(K = 3, 6, 10), substantial reduction in MSPE is achieved by
the meta posteriors as compared to subset posteriors. This is
expected since the meta-posterior is centered closer to the full
un-approximated posterior than the individual subset posteri-
ors. Finally, Figure 4 presentsMSPE, length and coverage of 95%
predictive intervals for SMK-GP corresponding to random par-
titioning, random block partitioning and k-means clustering of
points in the construction of subsets, as described before. The
figure suggests identical performance for random partitioning
and random block partitioning, while k-means clustering shows
inferior performance. Intuitively, both random partitioning and
random block partitioning lead to subset posteriors which are

noisy approximations to the full posterior. On the contrary,
k-means clustering of points constructs subsets which are not
represented by points from the entire domain. Henceforth, we
stick to the random partitioning scheme and present all subse-
quent results based on it.

Figure . Plots theMSPE calculated from subsets for one representative simulation.
Blue, golden, and red colors represent subset MSPE values for K = 3, 6, 10 subsets,
respectively. Corresponding MSPEs from meta-posteriors are provided in the solid,
dotted, and dashed lines, respectively.
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Figure . MSPE, coverage, and length of % predictive intervals for SMK-GPwith randompartitioning (RP), randomblock partitioning (RBP), and K-means clustering (KM)
scheme of subsetting.

Simulation 1 thus presents a convincing case about the ability
of SMK-GP to act as a computationally convenient approxima-
tion to the full GP. The next section strengthens our argument
further using simulations with much larger sample sizes.

3.4 Large Simulation Studies

.. Simulation 
While Simulation 1 compares SMK-GP with the full Gaussian
process, we shall ultimately be interested in assessing the per-
formance of SMK-GP in large data settings that prohibit fit-
ting full Gaussian processes. Accordingly, Simulation 2 gener-
ates 41,000 observations from the Gaussian processes with an
exponential correlation kernel, of which N = 40,000 are used
for model fitting, and the rest for prediction. Following the gen-
eral SMK algorithm, training data with N samples are divided
into K nonoverlapping subsets of equal size with Gaussian pro-
cess models fitted to each subset. Choice of prior distributions
on φ, τ 2, σ 2, β0 are kept similar to Simulation 1.

To study the performance of SMK-GP with respect to the
number of subsets, SMK-GP’s architecture is employed with
K = 20, 25, 40. Table 3 presents the posteriormedian alongwith
95% credible intervals for all parameters for a representative
simulation. SMK-GPdelivers accurate point estimates of param-
eters with 95% credible intervals containing the true parameter
values except φ. This is not entirely unexpected, given that φ

is weakly identifiable. Also, unsuprisingly, the credible intervals
are a little wider for K = 40 than K = 20. The range parameter
shows a little underestimation which is not entirely surprising
as φ is weakly identifiable. Most importantly, SMK-GP approxi-
mation to the full GP is able to deliver full Bayesian inference
for 40,000 observations within a few hours, which otherwise

Table . Parameter credible intervals,  (. .) percentiles for all the parameters.
SMK with Gaussian process is fitted for K = 20, 25, 40 number of subsets.

SMK (Gaussian Process)

Parameter
True
value   

β0  . (−.,.) . (−., .) . (−., .)

τ 2 . . (., .) . (., .) . (., .)
σ 2  . (., .) . (., .) . (., .)
φ  . (., .) . (., .) . (., .)
Time (in min) – .  .

would have taken a month for the full GP without the SMK
approximation.

A comprehensive study of predictive inference for SMK-
GP along with BISP, laGP and LK is presented in Figure 5.
Consistent with our earlier findings, SMK-GP performs signifi-
cantly better than BISP with regard to MSPE. The laGP and LK
approaches perform little better for point prediction although
SMK-GP is competitive. As discussed before, SMK-GP credi-
ble intervals tend to be slightly wider than laGP resulting in
marginally higher coverage. BISP exhibits marginally lower cov-
erage while LK suffers from severely lower coverage. Similar to
Simulation 1, subset posteriors are found to provide significantly
higher MSPE than the meta-posterior, but we omit this analysis
here.

.. SMK on Gaussian processes with Compactly Supported
Correlations (CSC)

We now turn to SMK on Gaussian processes with compactly
supported correlation functions, referred to as CSC. Investi-
gating the computationally convenient SMK approximation of
CSC, referred to as SMK-CSC, is significant for multiple rea-
sons. Employing Gaussian processes with compactly supported
correlation functions is common practice inmany real life appli-
cations pertaining to the environmental and geological sci-
ences. Additionally, Kaufman, Schervish, and Nychka (2008)
argued that Gaussian processes specified with the Matérn class
of covariance functions (see Stein 2012) can be well approxi-
mated by a certain class of computationally convenient alter-
native Gaussian processes with compactly supported correla-
tion functions. Such an edge in terms of computation for CSC
over GP disappears for large sample sizes primarily due to
evaluating determinants of large N × N covariance matrices.
Therefore, it is important to investigate if a fast approxima-
tion to the CSC can emerge from the spatial meta kriging
approach. We fit a CSC in data subsets in different processors
and combine subset posteriors using Algorithm 1 to compute
themeta-posterior. To carry out posterior inference in each sub-
set, prior distributions similar to Section 3.4.1 are assigned to
the parameters of interest {β0, φ, τ 2, σ 2}. As a tapering kernel,
the popularly usedWendland tapering kernel (Wendland 2004),
κδ(s, s′) = (1 − ||s−s′||

δ
)4+(1 + 4 ||s−s′||

δ
) is employed, where δ is

a tuning parameter that controls the sparsity of the covari-
ance matrix and is chosen depending on the computational
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Figure . Plot at the top indicates boxplot of mean squared prediction error for all competitors over  replications. Second and third plots show coverage and length of
% predictive intervals for the competitors over the same replications. LatticeKrig shows extreme under-coverage compared to the others and is not presented alongside
the others.

architecture available to the user. For our analysis, δ = 0.1 is
chosen, which yields ∼ on an average 8% nonzero entries in the
dispersion matrix in each subset.

Similar to Section 3.4.1, we find that the meta-posterior for
tapered GP demonstrates ∼ 30–40% improvement in MSPE
over subset posteriors. The range of MSPE for subset posteri-
ors is (0.37,0.44), (0.43,0.52) and (0.46,0.55) for K = 20, 25, 40,
respectively. This indicates that themeta-posterior for CSC con-
centrates significantly better than subset posteriors. Parameter
estimates along with their 95% credible intervals are presented
in Table 4. All parameters are correctly estimated with their
95% credible intervals covering the truth. Additionally, Figure 6
shows that the residual spatial surfaces for SMK-CSC quite
accurately reconstruct the true spatial surface. Interestingly,

Table . Parameter credible intervals,  (. .) percentiles for all the parameters.
SMK with Gaussian process is fitted for K = 20, 25, 40 number of subsets.

SMK (CSC)

Parameter True value   

β0  . (.,.) . (., .) . (., .)

τ 2 . . (., .) . (., .) . (., .)
σ 2  . (., .) . (., .) . (., .)
φ  . (., .) . (., .) . (., .)
Time (in min) – . . .

even with increasing K, surface interpolation for SMK-CSC
deteriorates minimally. One explanation might arise from the
fact that the data generated from CSC has minimal long
range dependence that facilitates better performance of SMK-
CSC. Similar to Section 3.4.1, SMK-CSC achieves proper well-
calibrated prediction bymaintaining predictive uncertainty little
over 95% as observed in Figure 7. The MSPE, length and cover-
age of 95% predictive interval for laGP are given by 0.22, 1.80,
and 0.94, respectively. Thus, laGP and SMK-GP show the same
performance in terms of point prediction, while SMK-GP has
more coverage with a wider predictive interval.

.. SMK on Gaussian Process Data with Gaps
Given that laGP turns out to be very competitive to SMK, it
would be interesting to observe performances of SMK-GP with
laGP, when the data have large gaps and both SMK-GP and laGP
might not be able to provide good approximation of the Gaus-
sian process covariance function. It remains to be seen that how
much the performance suffer for these two competing methods
in terms of kriging.

For this simulation, we generate a set 41,000 locations on the
domain (0, 1)2 with half the locations in (0, 0.3) × (0, 1) and
the remaining half in (0.7, 1) × (0, 1). This creates a large gap
in the middle where there is no data. Out of these 41,000 points,
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Figure . Residual spatial surface for: (a) synthetic spatial random effect generated using , observations using CSC; estimated spatial random effects for meta-
posterior with CSC fitted in each subset for (b) K = 20; (c) K = 25; (d) K = 40.

40,000 are used formodel fitting and the rest for predictive infer-
ence. Table 5 shows true parameter values with 95% credible
intervals for SMK-GP fitted with K = 20, 25, 40 subsets. The
parameter estimates turn out to be satisfactory except for the
range parameter φ, which understandably exhibits underesti-
mation. The estimated response surfaces for laGP and SMK-GP
presented in Figure 8 demonstrate over-smoothing. However, in
terms of point prediction, SMK-GP performs little better than
laGP.

Computation time
Further, to study the effect of the number of subsets on the

predictive performance of the meta-posterior and the computa-
tional advantages they fetch, computation times for SMK-GP are
provided for every simulation study. With parallel implementa-
tion of subset GPs in different processors, one needs to evaluate
the subset likelihood for the Metropolis step in every proces-
sor. The metropolis step in every processor requires a Cholesky
decomposition of an (NK ) × (NK ) matrix involving O((NK )3) flop
counts. It is a well-known fact that the computational complex-
ity of GP regression per iteration is dominated by this term.
Thus, with a parallel implementation of the algorithm, the com-
putational complexity is given by O((NK )3). Even if the entire

computation is performed in one processor, the computational
complexity for the entire data is given by O(K(NK )3). Clearly,
the number of subsets K plays a central role in controlling the
computational complexity. Ideally, the choice of K is decided
depending upon the computational architecture so as to keep
the computation fast without losing much performance accu-
racy. Depending on the available computational resources, the
natural idea would be to vary K slowly with N, that is, K ∼ Nc,
for some 0 < c < 1. This leads to a computational complexity of
O(N3−3c) for each subset. Additionally, SMK-GP frees the stor-
age of theN × N covariancematrix in thememory and requires
storage of K N

K × N
K matrices. Indeed with K = Nc, SMK-GP

reduces storage complexity from O(N2) down to O(N2−2c).
Finally, it is to be mentioned that the computational complexity
of the SMK framework is dependent upon the computational
complexity of the model fitted to each subset. Complexity of
computation in each subset can be substantially mitigated by
fitting a fast nearest neighbor or a multiscale approach to each
subset. In fact, SMK framework applied to such models may
dramatically reduce the computational complexity, even to the
point of being sublinear in N. We propose to pursue this in a
future article.

Figure . Figures present MSPE, length and coverage of % predictive intervals for SMK-CSC with different number of subsets. SMK(), SMK(), and SMK() stand for
SMK-CSC with 20, 25, 40 subsets, respectively.
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Table . Parameter credible intervals,  (., .) percentiles for all the parameters. SMKwith Gaussian process is fitted for K = 20, 25, 40 number of subsets. The domain
has a gap in the middle with no data points.

SMK (Gaussian Process)

Parameter True value   

β0  . (−.,.) . (−., .) . (−., .)

τ 2 . . (., .) . (., .) . (., .)
σ 2  . (., .) . (., .) . (., .)
φ  . (., .) . (., .) . (., .)
Time (in min) – .  .

laGP SMK (Gaussian Process)

MSPE . . . .
Coverage of % PI . . . .
Length of % PI . . . .

3.5 Analysis of Sea Surface Temperature Data

An important ecological issue concerning our planet is climate
change. It is generally accepted that the Earth’s climate will
change in response to radiative forces induced by the changes
in atmospheric gases, cloud temperature, sea surface tempera-
ture, water vapor, aerosol (liquid and solid particles suspended
in the air), among others. Developing conceptual and predictive
global climate models to accurately assess climate and potential
climate changes are of major interest in recent years. Of par-
ticular interest is the collection of sea surface temperature data
(in Centigrade). This is important for tropical cyclogenesis as
well as for studying the formation of sea breezes and sea fog
and for calibrating measurements from weather satellites. For
a long time, sea surface temperature data from ocean samples
has been collected by voluntary observing ships, buoys, military,
and scientific cruises. In the early days, interest resided mainly
in the mean climatological state of the ocean so as to under-
stand the flow and distribution of water streams. As climato-
logical research started to emerge, another important require-
ment became quantifying the variability around the mean in
spatial and temporal scales. A number of articles have appeared
to address this issue in the recent years, see, for example, Higdon
(1998), Lemos and Sansó (2009), Lemos and Sansó (2006), and
Berliner, Wikle, and Cressie (2000).

In this article, we consider the problem of capturing the
spatial trend and characterizing anomaly (uncertainty) in the
sea surface temperature (SST) in the West coast of mainland
USA, Canada, and Alaska, between 30◦ − 60◦ N. latitude and
122◦–152◦ W. longitude. The dataset has been obtained from
NODC World Ocean Database 2016 and we use data collected

in the month of October for all the spatial locations. Note
that SMK implemented with Gaussian process does not pos-
sess any temporal component, and so data collected in the same
month across the domain are used for the analysis. We per-
form screening of the data to ensure quality control and then
choose a random subset of 120,000 spatial observations over the
domain of interest. Out of the total observations, about 98%, i.e.,
N = 117,600 observations are used formodel fitting and the rest
are used for prediction. The domain of interest is large enough to
allow considerable spatial variation in SST from north to south
and provides an important first step in extending these models
for the analysis of global scale SST database.

The plot of the sea surface is provided in Figure 9(b). As
expected, the plot reveals a clear trend of decrease in the sea
surface temperature with increasing latitude. Thus, sea surface
temperature data possesses inherent directional anisotropy that
makes fitting ordinary Gaussian process model with station-
ary covariance kernel unreasonable. Consequently, we add lati-
tude and longitude as linear predictors to each subset while fit-
ting the SMK-GP. To justify our approach, a nonspatial model
with latitude and longitude as linear predictors is fitted and
surface plots of ordinary least square (OLS) residuals are pre-
sented in Figure 9(c). No clear anisotropic pattern emerges
from Figure 9(c). Further, the empirical semivariogram (see
Figure 9(a)) of the OLS residuals confirms nearly isotropic
behavior of the spatial covariance function.

For spatial GP models, the full posterior distribution can-
not be obtained in a closed form. Thus before fitting the full
spatial SMK-GP, we turn our attention to the nonspatial con-
jugate Bayesian linear model (1) that yields closed form joint

Figure . Predicted surface for: (a) synthetic response surface generated using , observations using GP; estimated response surface for meta-posterior with GP fitted
in each subset for (b) K = 20; (e) estimated response surface for laGP.
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Figure . (a) Presents the empirical semivariogram for OLS residuals. (b) The plot of the sea surface temperature data. Estimated OLS residual from the non-spatial model
is presented in (c). (d) and (e) show estimated residual spatial surfaces for SMK-GP fitted with K = 40 and K = 60, respectively. (f ) and (g) present interpolated surfaces
for laGP and LatticeKrig, respectively. x and y axes in every figure represent Longitude and Latitude in the scale of [,] and [,], respectively.

posterior distributions for (β, σ 2) belonging to the NIG fam-
ily of distributions. It is instructive to see the accuracy of
approximation offered by meta-posterior of β in comparison
with the exact posterior distribution of β from the nonspatial
NIG model on this dataset. Similar to Section 3.1, the sea sur-
face temperature dataset is divided into 40 subsets and exact
posterior quantiles from each component of β is plotted (see
Table 6) with corresponding posterior quantiles from the meta-
posterior. The quantiles from the exact and meta-posterior are
found to be indistinguishable for any practical purpose. How-
ever, the tail of meta-posterior is little more spread out than the
tail of the full posterior with large number of subsets. Quantiles

Table . Posterior quantiles of full posterior and meta posterior of β0 , β1 , and β2 .

full SMK

β0 β1 β2 β0 β1 β2

.% . − . − . . − . − .
% . − . − . . − . − .
% . − . − . . − . − .
% . − . − . . − . − .
.% . − . − . . − . − .

in both extremes tend tomatch for full andmeta-posterior as the
number of subsets decreases. Next, we move to the more com-
plex spatial analysis of the data and judge performance of meta-
posterior when the Gaussian process model is fitted to each
subset.

Memory in our workstation was insufficient to store the
N × N distancematrix to run the full GPmodel and the tapered
Gaussian process model. Other popular methods such as the
treed Gaussian process on the full data takes a long time to
run and is deemed impractical as a competitor for the dataset
of interest. Subsequently, we fit SMK-GP and BISP for vari-
ous choices of K. Additionally, laGP and LatticeKrig are fit-
ted as competitors of SMK to study predictive inference. For
brevity, results of SMK-GP are presented forK = 40 andK = 60
subsets.

All spatial locations are transformed to lie in [0, 1] × [0, 1]
intervals for our analysis. For all the competing models, the
intercept is assigned a flat prior and τ 2 and σ 2 are assigned
an IG(2,1) prior. The spatial range parameter is assigned a
U (0.3, 300) prior that ensures huge support given that the trans-
formed coordinates belong to [0, 1] × [0, 1] domain. Parameter
estimates along with their estimated 95% credible intervals for
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Table . Parameter credible intervals,  (., .) percentiles for all the parameters.
SMK with Gaussian process is fitted for K = 40, 60 number of subsets.

SMK (Gaussian Process)

Parameter K = 40 K = 60

β0 . (., .) . (., .)
β1 − . (−.,.) − . (−.,.)
β2 − . (−.,-.) − . (−.,-.)
τ 2 . (.,.) . (., .)
σ 2 . (., .) . (., .)
φ . (.,.) . (., .)
Time (in min) . 

Table . Mean squared prediction error (MSPE), length and coverage of % pre-
dictive intervals of SMK-GP (K = 40, 60), BISP (K = 40, 60), laGP and LatticeKrig.

SMK-GP SMK-GP BISP BISP
(K = 60) (K = 40) (K = 60) (K = 40) laGP LatticeKrig

MSPE . . . . . .
Length of % PI . . . . . .
Coverage of % PI . . . . . .

SMKwithK = 40 and 60 are presented in Table 7. Both of them
yield high estimates of the signal to noise ratio σ 2

τ 2 , which sug-
gests a sophisticated spatial model to capture looming spatial
dependence of the sea surface temperature.

Predictive power of the proposed architecture, along with
the other approaches, is assessed based on MSPE, coverage
and length of 95% predictive intervals. The nonspatial model,
SMK-GP with K = 60 and SMK-GP with K = 40 yield MSPE
1.31, 0.13, and 0.11, respectively. Such dramatic improvement
in MSPE for spatial models (shown in Table 8) corroborate the
strong spatial story inherent in the data. Further, Table 8 demon-
strates about 30% improvement in terms of mean squared pre-
diction error for SMK over BISP. Additionally, BISP suffers from
a little under-coverage, presumably due to simplifying the cor-
relation structure among different subsets that fails to capture
complex spatial association. laGP and SMK-GP demonstrate
almost indistinguishable performance in terms of MSPE but
vary in characterizing predictive uncertainty. LatticeKrig turns
out to be the superior performer in terms of point prediction, but
suffers heavily in characterizing predictive uncertainty. Overall,
SMK-GP positions itself as a competitive performer in predic-
tive inference. Predictive surfaces in Figure 9 further corrobo-
rate this fact. Importantly, the in-built parallel structure in SMK
leads to full Bayesian inference and prediction in approximately
4 hours and 10 hours (with parallel implementation) forK = 60
and 40 partitions, respectively. Fitting SMK-GP beyond K = 40
unnecessarily exacerbates computational burden with minimal
improvement of inferential and predictive performance.

4. Conclusion and FutureWork

This article has developed a practical approximation to Bayesian
spatial inference for “big-N” problems. We propose dividing big
datasets into multiple subsets, carrying out independent infer-
ence in each subset followed by combining inference from all
subsets. The entire procedure is “trivially parallelizable,” offers
rapid computation for big data and also eliminates the need to
store the entire dataset in one processor. The approach seems
to accrue dramatic gains in computation and storage and offers

inference essentially indistinguishable from full Gaussian pro-
cess models and other competitive approaches for big spatial
data. Further, SMK provides a generic “divide and conquer”
algorithm that is potentially applicable to any spatial process
model for data subsets. For example, SMK can be applied to scal-
able Gaussian process models, such as predictive processes and
nearest-neighbor Gaussian processes, to considerably enhance
gains in computation and storage.

This article introduces and implements SMK for station-
ary Gaussian processes and tapered Gaussian processes. We
demonstrate competitive predictive performance of SMK-GP
with state-of-the-art models. Unlikemany other state-of-the-art
models, SMK-GP provides full scale Bayesian inference and that
too withinmanageable time. The potential of SMK-GP or SMK-
CSC are best understood by acknowledging the fact that these
are fast and accurate approximations of stationary GP or CSC
for big data.

Our detailed investigation indicates laGP as an important
competitor to SMK-GP. While in some simulations laGP excels
over SMK-GP, there are simulations presented in Sections 3.4.2
and 3.4.3, where SMK-GP performs better or competitive with
laGP. It is also worth mentioning that in a recent article (Heaton
et al. 2017) that compares performances of several spatial big
data methods, SMK-GP seems to outperform laGP in terms of
point prediction in a simulation study. However, it is difficult
to identify clear situations where one may be preferable to the
other. Preference, perhaps, will depend upon the type of infer-
ence sought. For example, SMK-GP may have benefits in terms
of ease of implementation when partitioning the data is con-
venient, one seeks full Bayesian inference comprising parame-
ter estimation, spatial interpolation and prediction of outcomes.
laGP, on the other hand, will likely be preferred for its fast
and efficient emulation of Gaussian process surfaces and high-
dimensional functions in computer experiments.

The current article is but a first look at SMK and there are
several avenues of related research still to be explored. For exam-
ple, our current investigations have been restricted to station-
ary processes only and it remains to explore SMK’s effectiveness
for nonstationary models. A potential concern with the current
specification of SMK is that if the underlying spatial process has
substantial nonstationary local behavior, then the subset poste-
riors are likely to miss important local behavior if samples are
sparsely drawn from each subset and this will lead to the SMK
missing some local nonstationary features as well.While one can
increase the number of data points in each subset to improve
SMK’s performance, this will detract from the computational
gains and perhaps preclude applying SMK to infer frommassive
datasets exhibiting nonstationary behavior. Some of our ongo-
ing research comprises extending SMK to deliver full Bayesian
inference for a dataset with 2 million observations and having
significant local nonstationarity. The extension also allows us
to match a few prefixed quantiles of parameters in the “meta-
posterior” with the corresponding quantiles of the full posterior.
Thus, uncertainty characterization is found to be more precise
with the proposed extension to SMK.

Other avenues of future research could include more elab-
orate and comprehensive comparisons with alternate subset
aggregation methods such as consensus Monte Carlo (Scott
et al. 2016) when applied to spatial process models. It is also of
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interest to adapt SMK for large scale spatio-temporal spatial
models. We intend to explore the possibility of scalable infer-
ence in two different situations: (a) when spatio-temporal inter-
polation is sought at discrete time-points (e.g., monthly or yearly
data), and (b) when spatiotemporal interpolation is sought at
arbitrary locations and timepoints. It remains an important
question as to how one should partition spatio-temporal data for
SMK to capture both spatial and temporal associations.Ongoing
research is also extending SMK tomultivariate spatial data anal-
ysis usingmeta-posteriors derived frommultivariate spatial pro-
cess models.We anticipate reporting on these in the near future.

SupplementaryMaterials

GB_revision_new_appendix1: This file provides results on
posterior concentration of meta-posterior as sample size
grows. (.pdf file).

R code formeta posterior: Please find the R code to implement
the meta-posterior from https://github.com/rajguhaniyogi/
Spatial-Meta-Kriging.

References

Analytics, R., andWeston, S. (2013), “Foreach: Foreach Looping Construct
for R,” R package version, 1. [5]

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014), Hierarchical Modeling
and Analysis for Spatial Data, Boca Raton, FL: CRC Press. [1]

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008), “Gaussian
Predictive Process Models for Large Spatial Data Sets,” Journal of the
Royal Statistical Society, Series B, 70, 825–848. [1]

Berliner, L. M.,Wikle, C. K., and Cressie, N. (2000), “Long-Lead Prediction
of Pacific SSTs via BayesianDynamicModeling,” Journal of Climate, 13,
3953–3968. [11]

Calaway, R., Weston, S., Tenenbaum, D., and R Analytics. (2015), “doPar-
allel: Foreach Parallel Adaptor for the Parallel Package,” R package
version, 1. [5]

Cressie,N., and Johannesson,G. (2008), “FixedRankKriging forVery Large
Spatial Data Sets,” Journal of the Royal Statistical Society, Series B, 70,
209–226. [1]

Cressie, N., and Wikle, C. K. (2015), Statistics for Spatio-Temporal Data,
New York: Wiley. [1]

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016), “Hierarchi-
cal Nearest-NeighborGaussian ProcessModels for Large Geostatistical
Datasets,” Journal of the American Statistical Association, 111, 800–812.
[1]

Du, J., Zhang, H., Mandrekar, V. (2009), “Fixed-Domain Asymptotic Prop-
erties of Tapered Maximum Likelihood Estimators,” The Annals of
Statistics, 37, 3330–3361. [1]

Eidsvik, J., Shaby, B. A., Reich, B. J.,Wheeler,M., andNiemi, J. (2014), “Esti-
mation and Prediction in SpatialModelsWith Block Composite Likeli-
hoods,” Journal of Computational and Graphical Statistics, 23, 295–315.
[1]

Finley, A., and Banerjee, S. (2010), “MBA: Multilevel B-Spline Approx-
imation,” R package version 0.0-7, Available at http://CRAN.R-
project.org/package=MBA. [5]

Finley, A. O., Banerjee, S., Waldmann, P., and Ericsson, T. (2009), “Hierar-
chical Spatial Modeling of Additive and Dominance Genetic Variance
for Large Spatial Trial Datasets,” Biometrics, 65, 441–451. [1]

Furrer, R., Genton,M. G., andNychka, D. (2006), “Covariance Tapering for
Interpolation of Large Spatial Datasets,” Journal of Computational and
Graphical Statistics, 15, 502–523. [1]

Gelfand, A. E., Banerjee, S., Sirmans, C., Tu, Y., andOng, S. E. (2007), “Mul-
tilevel Modeling Using Spatial Processes: Application to the Singapore

Housing Market,” Computational Statistics & Data Analysis, 51, 3567–
3579. [1]

Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010),Handbook of
Spatial Statistics, Boca Raton, FL: CRC Press. [1]

Gramacy, R. B. (2015), “laGP: Large-Scale Spatial Modeling via Local
Approximate Gaussian Processes in R,” Journal of Statistical Software
(available as a vignette in the laGP package). [5]

Gramacy, R. B., and Apley, D. W. (2015), “Local Gaussian Process Approx-
imation for Large Computer Experiments,” Journal of Computational
and Graphical Statistics, 24, 561–578. [1]

Gramacy, R. B., and Lee, H. K. (2012), “Bayesian Treed Gaussian Process
Models With an Application to Computer Modeling,” Journal of the
American Statistical Association, 1119–1130. [1]

Guhaniyogi, R., Finley, A. O., Banerjee, S., andGelfand, A. E. (2011), “Adap-
tive Gaussian Predictive Process Models for Large Spatial Datasets,”
Environmetrics, 22, 997–1007. [1]

Guinness, J. (2016), “Permutation Methods for Sharpening Gaussian Pro-
cess Approximations,” arXiv:1609.05372. [1]

Heaton, M. J., Datta, A., Finley, A., Furrer, R., Guhaniyogi, R., Gerber,
F., Gramacy, R. B., Hammerling, D., Katzfuss, M., Lindgren, F., et al.
(2017), “Methods for Analyzing Large Spatial Data: A Review and
Comparison,” arXiv:1710.05013. [13]

Higdon, D. (1998), “A Process-Convolution Approach to Modelling Tem-
peratures in the North Atlantic Ocean,” Environmental and Ecological
Statistics, 5, 173–190. [11]

Katzfuss, M. (2017), “A Multi-Resolution Approximation for Massive Spa-
tial Datasets,” Journal of the American Statistical Association, 112,
201–214. [1]

Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008), “Covariance
Tapering for Likelihood-Based Estimation in Large Spatial Datasets,”
Journal of the American Statistical Association, 103, 1545–1555. [1,8]

Lemos, R. T., and Sansó, B. (2006), “Spatio-Temporal Variability of Ocean
Temperature in the Portugal Current System,” Journal of Geophysical
Research: Oceans, 111. [11]

——— (2009), “A Spatio-Temporal Model for Mean, Anomaly, and Trend
Fields of North Atlantic Sea Surface Temperature,” Journal of the
American Statistical Association, 104, 5–18. [11]

Minsker, S. (2015), “Geometric Median and Robust Estimation in Banach
Spaces,” Bernoulli, 21, 2308–2335. [3]

Minsker, S., Srivastava, S., Lin, L., and Dunson, D. B. (2014), “Robust
and Scalable Bayes via a Median of Subset Posterior Measures,”
arXiv:1403.2660. [2,3]

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., and Sain, S.
(2015), “AMultiresolution Gaussian Process Model for the Analysis of
Large Spatial Datasets,” Journal of Computational and Graphical Statis-
tics, 24, 579–599. [1,5]

Nychka, D., Hammerling, D., Sain, S., and Lerud, T. (2012), “LatticeKrig:
Multiresolution Kriging Based on Markov Random Fields,” R package
version, 2. [5]

Park, C., andApley,D. (2017), “PatchworkKriging for Large-ScaleGaussian
Process Regression,” arXiv:1701.06655. [1]

Robert, C., and Casella, G. (2009), Introducing Monte Carlo Methods with
R, Berlin: Springer Science & Business Media. [3]

Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian Infer-
ence for Latent Gaussian Models by Using Integrated Nested Laplace
Approximations,” Journal of the Royal Statistical Society, Series B, 71,
319–392. [1]

Sang, H., and Huang, J. Z. (2012), “A Full Scale Approximation of Covari-
ance Functions for Large Spatial Data Sets,” Journal of the Royal Statis-
tical Society, Series B, 74, 111–132. [1]

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I.,
and McCulloch, R. E. (2016), “Bayes and Big Data: The Consensus
Monte Carlo Algorithm,” International Journal of Management Science
and Engineering Management, 11, 78–88. [4,13]

Shaby, B., and Ruppert, D. (2012), “Tapered Covariance: Bayesian Estima-
tion and Asymptotics,” Journal of Computational and Graphical Statis-
tics, 21, 433–452. [1]

Stein, M. L. (2012), Interpolation of Spatial Data: Some Theory for Kriging,
Berlin: Springer Science & Business Media. [5,8]

https://github.com/rajguhaniyogi/Spatial-Meta-Kriging
http://CRAN.R-project.org/package=MBA


TECHNOMETRICS 15

Stein,M. L., Chi, Z., andWelty, L. J. (2004), “Approximating Likelihoods for
Large Spatial Data Sets,” Journal of the Royal Statistical Society, Series
B, 66, 275–296. [1]

Stroud, J. R., Stein, M. L., and Lysen, S. (2017), “Bayesian and Maximum
Likelihood Estimation for Gaussian Processes on an Incomplete Lat-
tice,” Journal of Computational and Graphical Statistics, 26, 108–120.
[1]

Vaart, A. V., andZanten,H.V. (2011), “InformationRates ofNonparametric
Gaussian Process Methods,” Journal of Machine Learning Research, 12,
2095–2119. [4]

Vecchia, A. V. (1988), “Estimation andModel Identification for Continuous
Spatial Processes,” Journal of the Royal Statistical Society, Series B, 50,
297–312. [1]

Wendland, H. (2004), Scattered Data Approximation (vol. 17), Cambridge
University Press. [8]

Wikle, C. K. (2010), “Low-Rank Representations for Spatial Processes,” in
Handbook of Spatial Statistics, 107–118. [1]

Zhang, R., Lin, C. D., and Ranjan, P. (2016), “Local Gaussian ProcessModel
for Large-scale Dynamic Computer Experiments,” arXiv:1611.09488.
[1]


	Abstract
	1.Introduction
	2.Pooled Bayesian Inference
	2.1.Conjugate Bayesian Linear Model
	2.2.Pooled Bayesian Inference for Spatial Models

	3.Illustrations
	3.1.Illustrating Weiszfelds Algorithm for the Conjugate Bayesian Linear Model
	3.2.Simulation Experiments
	3.3.Simulation 1
	3.4.Large Simulation Studies
	3.5.Analysis of Sea Surface Temperature Data

	4.Conclusion and Future Work
	Supplementary Materials
	References



