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Abstract

High-field CW EPR with Gd(III) spin labels for structure studies of

membrane proteins

by

Jessica Ann Clayton

Electron paramagnetic resonance (EPR) in combination with site-directed spin labeling

(SDSL) is a powerful tool for elucidating the structure, organization, and dynamics of

biomolecules in native-like environments. With EPR and SDSL, we can site-specifically

label pairs of sites in a biomolecule and accurately measure the distance, or distribution

of distances, between them on length scales ranging from Ångstroms to several nanome-

ters. Of particular interest are membrane proteins and higher-order membrane protein

complexes, which have historically resisted traditional biophysical characterization tech-

niques. EPR as a means to measure protein structure becomes even more powerful at

high fields and using Gd(III) spin labels, which together provide much improved sensi-

tivity. This work expands on the capabilities of high-field continuous-wave (CW) EPR

for distance measurement with spin labels based on Gd(III) complexes. First, we inves-

tigate a model system of and show that CW EPR with Gd(III) labels allows for distance

measurements in the range of at least 1.2 - 3.4 nm at cryogenic temperatures. We addi-

tionally show that distance measurements are possible up to room temperature. Next,

x



we investigate the zero-field splitting - a property of great importance for determining

the EPR lineshape of high-spin systems - for a variety of different Gd(III) complexes.

Combining EPR spectra measured at 35 GHz, 95 GHz, and 240 GHz, we compare lit-

erature models for the broadly distributed second-order ZFS parameters D and E. We

test these results against a superposition model for predicting the magnitude of the ZFS

based on knowledge of the structure of a Gd(III) complex, which can potentially be use-

ful for designing new Gd(III) complexes tailored for use as spin labels with high-field

EPR. Finally, we apply high-field CW EPR with Gd(III) spin labels to the study of

proteorhodopsin (PR), a transmembrane protein that functions as a light-driven proton

pump for marine bacteria. Inter-PR CW EPR distance measurements in the range of

∼ 1.5 - 3 nm are used to elucidate the functionally relevant oligomeric structure of PR,

demonstrating the usefulness of this technique in targeting complex oligomeric systems.

Finally, we present the development of methods which will allow CW EPR with Gd(III)

to be used as a probe of protein dynamics, by measuring at a distance change induced

by motions of the E-F loop region of PR upon light activation.
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Chapter 1

Introduction

Electron paramagnetic resonance (EPR), also referred to as electron spin resonance

(ESR), is a spectroscopic technique for studying systems containing unpaired electrons.

These unpaired electrons may be either intrinsic to the system under study, or intro-

duced artificially by the spectroscopist. EPR is often thought of as the less well-known

cousin of NMR (nuclear magnetic resonance), sharing many of the same basic concepts.

EPR was discovered in the USSR by Yevgeny Zavoisky in 1944, only one year before

the first observation of NMR was recorded. However, while NMR has been wildly suc-

cessful since that time - resulting in Nobel prizes in physics, chemistry, and medicine -

the development of EPR was long hampered by the lack of necessary microwave com-

ponents and various experimental challenges related to fast relaxation times and broad

lines which make detection difficult. Only in the the 1980s was the first commercial pulse

EPR spectrometer available, followed ten years later by the first commercial high-field

1



spectrometer. In recent years, the availability of equipment and the development of new

methods has allowed a wide variety of users access to EPR spectroscopy. This versatile

spectroscopic technique has proven particularly useful in the field of structural biology,

where the use of EPR methods has expanded as modern EPR spectrometers become

more affordable, flexible, and user friendly.

The history of NMR as a spectroscopic tool has shown great benefit from operating

at higher magnetic fields or equivalently, since this is a resonance technique, at higher

microwave frequencies where spectral resolution and sensitivity is increased. However,

while the forward march of NMR is restricted primarily by the lack of commonly available

magnets operating above 20 T, EPR is limited by the lack of high-frequency (>100 GHz)

high-power microwave sources. This difference is the result of the magnetic moment of

electron spins being 660 times larger than that of a proton. Fortunately for the EPR

spectroscopist, this also means EPR has much higher spin sensitivity than NMR at a

given spin concentration, even allowing for single-spin detection. In the last 5-10 years,

high-frequency sources have begun moving from the realm of being very expensive, spe-

cialized laboratory equipment, to now having a commercially available EPR spectrometer

operating at 263 GHz. Power is still typically limited at these elevated frequencies, with

most > 200 GHz sources producing only tens of mW of power. This forces pulsed EPR

experiments to use very long excitation pulses, prohibiting the study of fast-relaxing sys-

tems [148, 135, 26, 47, 42, 160, 164, 38, 155]. Specialized laboratories operating with

a free-electron laser or synchotron as a source are exceptions to this, though these can
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hardly be said to be common [160, 111]. Fortunately, continuous wave (CW) EPR has

a much lower power requirement than does pulsed EPR, and much information can be

gleaned from CW EPR measurements. CW EPR also has the benefit of being fast, with

typical measurement times of order ten minutes, while many pulsed EPR experiments

require hours of signal averaging for a single measurement.

This dissertation discusses efforts to expand the capabilities and use of high-field/high-

frequency CW EPR. We focus on applications in structural biology, particularly in mem-

brane proteins and their assembly, which often resist other traditional biophysical char-

acterization techniques. Since paramagnetic electrons are relatively rare in nature, EPR

allows for site-specific investigation of protein structure and dynamics. Some biological

systems natively include paramagnetic centers which can be used directly as internal

probes. Systems which do not natively contain paramagnetic electrons, or in cases where

the native electron is not at the desired location, can be made paramagnetic through

the attachment of a spin label. Spin labels vary in the EPR active ion and the means

of attachment, but in general can be introduced site-specifically, singly or in pairs, to

specific site(s) of interest on a protein. Some of the most commonly used spin labels

are those based on the S = 1/2 nitroxide radical, which are very effective for structure

studies with X-band ( 9.5 GHz) EPR. When used in pairs, these spin labels have been

used to measure distances, though their range is limited and the magnetic properties of

nitroxides become unfavorable for distance measurements with high-field EPR. High-field

CW EPR, which in principle has higher sensitivity, has been insufficiently utilized as a
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tool for studying protein structure and dynamics, largely due to the lack of appropriate

spin labels for high-field EPR and lack of the experimental and theoretical techniques

necessary to effectively use these spin labels. We focus on a new class of spin labels

based on the Gd(III) ion, which have shown in recent years to show favorable magnetic

properties for use as spin labels for EPR at high (>100 GHz) frequencies. Additionally,

Gd(III) has an effective spin S = 7/2, giving rise not only to greater range and sensitivity

in EPR distance measurements, but also to interesting and complex spin physics.

We explore a variety of Gd(III) complexes in the course of this dissertation primarily

using a 240 GHz CW EPR instrument. We begin with the study of a model system to

explore the use of high-field CW EPR with Gd(III) for measuring inter-spin distances

- one of the primary means in which CW EPR can provide structural information. We

investigate distance limits, temperature dependence, sensitivity, and work towards devel-

opment of a comprehensive understanding of the line shape of the CW EPR signal. We

additionally discuss analysis techniques for teasing out information on the dipolar cou-

pling between two neighboring spins from this signal, necessary for future use of this as a

distance measurement tool. We show that high-field CW EPR with Gd(III) labels dou-

bles the distance range accessible by X-band CW EPR with nitroxide spin labels, and

furthermore, can be measured from cryogenic temperatures up to room temperature.

Next, we explore a fundamental property of Gd(III) complexes, the zero-field splitting

(ZFS), which arises from the high-spin (S = 7/2) nature of the Gd(III) ion. The ZFS is

an integral component to understanding the measured EPR signal and, to a large degree,
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determines which Gd(III) complexes are suitable for use with high-field EPR since the

ZFS directly impacts the intrinsic linewidth of the Gd(III) complex. Because the devel-

opment of new Gd(III) complexes for use as spin labels will be an essential component of

expanding the use of high-field EPR in the future, we rationalize the magnitude of the

ZFS of a particular Gd(III) complex using a superposition model, before it is synthesized

and measured by EPR. Finally, we take the first steps in applying high-field CW EPR

with Gd(III) spin labels to the study of structure and dynamics in a membrane protein.

We choose as a model system the membrane protein proteorhodopsin (PR), which has a

seven α-helical structure common to many proteins, including those found in humans. PR

exhibits functionally-relevant oligomerization and light-induced conformational changes,

both of which we investigate by CW EPR distance measurements which are enabled by

the long-range and high-temperature capabilities afforded by the use of Gd(III)-based

spin labels at high-field.

As a whole, the work in this dissertation elevates high-field CW EPR with Gd(III)

spin labels for distance measurement from the first proof-of-principle experiment to a

tool which is being actively pursued as an integral part of biophysical studies on the

membrane protein PR. However, in terms of application we have only begun to explore a

single biological system. As high-frequency EPR spectrometers and Gd(III) spin labels

continue to become more advanced and more widely used, the methods developed in this

dissertation will provide the background for new applications in the study of membrane

protein structure and assembly, in a small part, contribute to the continued advancement
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of EPR as a whole.

1.1 Fundamentals of Electron Paramagnetic Reso-

nance

Many introductory texts and comprehensive tombs have been written on the theory of

magnetic resonance, both EPR and NMR, and therefore we will not delve into great

depth here. Rather, this introduction will serve as a very cursory overview of the theo-

retical ideas and experimental techniques used throughout this dissertation. The more

interested reader is referred to the excellent texts by Abragam [2], Abragam and Bleaney

[3], Callaghan [36], Levitt [95], Poole [116], Saha and Das [137], Slichter [147], Schweiger

and Jeschke [139], and Weil and Bolton [173]. In addition to these standard texts, the

thesis of Devin Edwards [51] lays out much of the theoretical and experimental back-

ground that the work in this dissertation expands on and Methods in Enzymology vols.

563-564 [121, 122] very nicely summarize much of the related recent literature.

The basic description of spin systems and dynamics are the same for EPR and NMR,

as well as many of the experimental concepts, with the major differences arising from

the difference in magnetic moments between the proton and the electron. As a general

statement, experimental schemes are often far simpler for EPR compared to NMR, but

the spin dynamics are more complex.

An electron carries an intrinsic angular momentum, called spin. The theoretical de-
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scription of EPR is typically written out in terms of spin S = 1/2 for simplicity, which

can be straightforwardly expanded for the high-spin case. The intrinsic angular momen-

tum of an electron, also known as the electron magnetic moment or Bohr magneton, is

written as

µB =
e

2m
~S (1.1)

where S is the spin quantum number and ~ is the reduced Planck constant. In an EPR

experiment, the electrons are placed in a strong magnetic field B0, which by convention

points along ẑ. This induces a Zeeman splitting, creating two states of different energy

corresponding to the magnetic quantum numbers ms = ±1/2 (for S = 1/2). The Zeeman

splitting, or the energy difference between these spin states, is ∆E = E|+1/2〉 −E|−1/2〉 =

gµBB0, where for a free electron g ≈ 2.0023. The condition for resonance is satisfied

when applied microwaves satisfy the condition

∆E = hν = ~ω = gµBB0, (1.2)

that is, when the energy of the applied photons matches the energy separation of the

|+1/2〉 and |−1/2〉 states, then a photon can be absorbed and transitions between these

two states induced. The resonance frequency satisfying Equation 1.2 scales linearly with

the strength of the applied magnetic field B0. Table 1.1 lists some common spectrometer

frequencies used for EPR.

Due to the stong magnetic fields used in EPR, the Zeeman interaction is often the
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Microwave Band Range (GHz) Typical (GHz) Magnetic Field (T)

L 1 - 2 1.5 0.054
S 2 - 4 3 0.11
X 8 - 12 9.5 0.34
Ku 12 - 18 17 0.6
K 18 - 26.5
Ka 26.5 - 40
Q 30 - 50 35 1.25
W 75 - 110 95 3.4
D 110 - 170 140 5.0
G 110 - 300 240/263 8.6/9.4

Table 1.1: Common spectrometer frequencies and fields (assuming g=2) used for EPR.
These are often referred to by the corresponding microwave band designations - a holdover
from WWII RADAR use. Note: In most EPR literature, the letter band designations
are not consistently named at frequencies above ∼100 GHz.

dominant energy and other effects can be represented as perturbations on the eigenstates

determined by the Zeeman interaction. Other relevant interactions for EPR spectroscopy

include hyperfine interaction (electron spin/nuclear spin), the nuclear Zeeman interac-

tion (nuclear spin/static magnetic field), the nuclear quadrupole interaction (nuclear

spin/electric field gradient), the zero-field interaction for S > 1/2 (electron spin/electron

spin), the exchange interaction (electron spin/electron spin), and dipole-dipole interac-

tion. These interactions range in magnitude from MHz to GHz and, unlike in NMR,

it is possible in EPR to break the high-temperature approximation assumed here. For

the work presented in this dissertation we will focus primarily on the dipole-dipole inter-

action and the zero-field splitting interaction, which will be described in more detail in

Chapters 2 and 3.
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1.1.1 Continuous Wave EPR

The simplest conceivable magnetic resonance experiment is based on sweeping the mag-

netic field through the resonance condition defined by Equation 1.2 while the applied

microwave frequency is held constant. Equivalently, the magnetic field could be held

fixed and the frequency swept, though this is rarely done in EPR due to experimental

complications. The applied resonant microwaves are usually equivalently described as a

small irradiating magnetic field B1 which is applied perpendicularly to the large static

magnetic field B0. On resonance, transitions (both absorption and emission) are induced

between the | + 1/2〉 and | − 1/2〉 states, with the rates determined by the populations

of the states. In principle, for equally populated states no transitions would be induced.

However, the application of B0 and resulting Zeeman interaction gives energetic prefer-

ence to the |−1/2〉 state with the result being a net absorption of radiation. Because the

spin states obey Boltzmann statistics, we can increase the population of the −1/2 state

by decreasing the temperature. At high magnetic fields and low temperatures, nearly

complete polarization can be achieved, where > 99% of the spins are in the | − 1/2〉

state. Even for high-spin systems, it is relatively easy to generate > 90% population of

the lowest energy state (Appendix C.2).

A typical CW EPR experiment involves fixing the irradiation frequency and sweep-

ing the magnetic field through resonance with a slight modulation (at 10s - 100s of kHz)

applied to the magnetic field . Phase-sensitive lock-in detection of the signal modulation

at this frequency yields the derivative of the absorption spectrum. This CW EPR signal
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encodes information about the various terms present in the spin Hamiltonian. For exam-

ple, the location of the resonance according to Equation 1.2 gives us the g-value, which

often differs from that of a free electron. Because each spin in the system experiences a

slightly different environment, based on the various interactions of each spin with other

electrons and nuclei in the sample, the delta-function EPR resonance will become smeared

out. The shape and location of the CW EPR signal therefore encodes information about

the local environment surrounding paramagnetic centers, on length scales ranging from

Ångstrom scale to more than 10 nanometers. For example, the dipole-dipole interaction

results in a broadening of the CW EPR lineshape, with the magnitude of the broadening

related to the distance separating the two interacting electron spins.

1.1.2 Rapid-passage EPR

A closely related technique to CW EPR is rapid-passage EPR (also sometimes referred

to as fast-passage EPR). As it is used in this work, rapid passage EPR is experimentally

identical to CW EPR, with the exception that relatively high microwave power and

small modulation amplitudes are used. Instead of a derivative lineshape, the absorption

lineshape is directly obtained [117, 172, 137, 22]. Note the rapid passage EPR used here

is similar to, but distinct from the rapid-scan EPR technique developed by Eaton and

Eaton [159]. Rapid passage is an old magnetic resonance technique, dating back to the

original writings of Bloch [25], though it has been largely forgotten about in modern EPR

literature.
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Many measured EPR lineshapes are inhomogeneously broadened and can be thought

of as a combined series of individual resonances from spin packets each of which obey

the Bloch equations, resulting from a distribution of local magnetic fields around the

spin packets. In such a system, a condition can be reached where the amplitude of

the magnetic field modulation is comparable to the homogeneous line width of each

spin packet, so that an individual resonance is traversed in a time of the order of or

smaller than the mean relaxation time of the spin system. Under rapid passage, the

spin system is not allowed to come to equilibrium value at the start of every passage

through resonance and so the intensity of the measured line, which is proportional to

the transverse magnetization Mx and My, will be maximized on resonance [25, 117,

137]. There are a great many different passage regimes that can be observed in an EPR

experiment, depending on the various time scales associated with the spin system and

the experiment, and are discussed in detail by Weger [172].

1.1.3 Pulsed EPR

In addition to EPR experiments conducted in the frequency/field domain, but EPR

experiments can also be carried out in the time domain by using pulses of microwave ra-

diation to coherently manipulate the spins. Pulsed EPR is particularly useful for directly

measuring relaxation times and for isolating specific parts of the spin Hamiltonian. Much

as pulsed NMR offers many advantages, so to does pulsed EPR, though the technique is

comparatively limited due to difficulty in fully exciting the broad EPR spectrum. There
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are a great variety of pulsed EPR experiments, and the reader is referred to the text by

Schweiger and Jeschke [139] for a more complete description.

When an electron spin is placed in a magnetic field, a torque is exerted on the electron,

causing it to precess about the magnetic field. The angular frequency of this precession

is called the Larmor frequency and is related to the magnetic field B0 by ωL = −γB0,

where γ is the gyromagnetic ratio. For a bulk system of electron spins in a magnetic field

B0, there will be a net magnetization along the z-axis (denoted M0) with the various

transverse components of the magnetization in the x− y plane canceling each other out.

The source in the EPR experiment supplies linearly polarized microwaves to produce a

field B1 perpendicular to B0. These linearly polarized microwaves can be thought of as

a magnetic field oscillating at the microwave frequency.

Alternatively, we can consider this situation in a frame rotating at the microwave

frequency. In this rotating frame, the magnetization components precessing at the Lar-

mor frequency now appear stationary and the field B1 is also stationary. In the rotating

frame, the magnetization will precess about B1 at a frequency ω1 = −γB1 called the Rabi

frequency. For B1 parallel to the x-axis, this will rotate the magnetization M0 about the

+x-axis for as long as microwaves are applied, where the tip angle α depends on the

length of the applied pulse tp according to α = −γ|B1|tp. Pulses are often referred to by

their tip angle, e.g. a π/2 pulse corresponds to a rotation of M0 by π/2 or 90◦. A π/2

pulse results in magnetization along the −y-axis, while a π pulse results in a rotation

of the magnetization M0 to the −z-axis. In this way, combinations of pulses can be ap-
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plied to manipulate the spin system at the end of which the measured EPR signal comes

from any remaining transverse magnetization in the x − y-plane. In the time between

microwave pulses, the spins are allowed to ’relax’. This relaxation is characterized by

two time scales, T1 and T2, where the spin-lattice relaxation time/longitudinal relaxation

time T1 refers to the return of the component of M0 along B0 to thermal equilibrium and

the spin-spin relaxation time/transverse relaxation time T2 is the decay of the transverse

component of M0 to equilibrium as a result of dephasing of the electron spins.

One very important pulsed EPR experiment for structure studies is double electron-

electron resonance (DEER), also referred to as pulsed electron double resonance (PEL-

DOR). There are many variants of this experiment - here we will focus on 4-pulse DEER

since this is the most widely used. This experiment directly measures the dipolar cou-

pling between electron spins separately from other electron spin interactions. Microwave

pulses are applied at two nearby frequencies ωA and ωB, called the observer frequency

and the pump frequency. The observer frequency supplies a Hahn echo pulse sequence

with an additional third pulse at a later time to refocus the primary echo (π/2-τ1-π-τ1-

(echo)-τ2-π-τ2-echo), where the interpulse delays τ1 and τ2 are held fixed. Meanwhile,

a π inversion pulse at the pump frequency is applied at various time t with respect to

the first echo at the observer frequency. If we consider two electron spins A and B, the

pump pulse inverts the spin state of B, thus inverting the local magnetic field felt by

spin A. This results in a modulation of the echo as the pump pulse is incremented. The

frequency of the modulation is related to the dipolar coupling frequency and thus to the
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interspin distance, and can be found by Fourier transforming the signal into the frequency

domain. In addition to this oscillation, transverse relaxation of spin A and couplings to

other electron spins not excited by the observer pulses will lead to an attenuation of the

echo.

1.2 EPR for protein structure studies

EPR in combination with SDSL has become an essential tool for structure studies of a

variety of biomolecules, including proteins, synthetic polymers, nucleic acids, and lipids.

EPR methods - including pulsed EPR and CW EPR spectroscopy - complement conven-

tional high-resolutions structure measurements, such as X-ray crystallography and NMR

spectroscopy. EPR is particularly advantageous in the study of complex protein-lipid

assemblies where practical difficulties with low-yield expression and crystallization often

preclude other biophysical characterization techniques [72].

1.2.1 Site-directed spin labeling

Site-directed spin labeling (SDSL) allows for the investigation by EPR of local structure

and dynamics in proteins by introducing paramagnetic centers into a biomolecule at user-

defined sites. Some proteins contain naturally occuring paramagnetic centers, such as

metal ions, but most proteins are diamagnetic and are thus EPR silent. This allows for

SDSL to provide information on protein structure and dynamics at sites of interest with

virtually no background. Spin labels were first developed in 1965 in the lab of McConnell
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[158] and much pioneering work was done in the lab of Hubbell [8, 10].

Spin labels can be used to report on dynamics, solvent accessibility, polarity of the

local environment, and distance distributions between two spin labels in the nanometer

range. This last application will be our focus here. There are a wide variety of spin labels

available for EPR and are chosen based on the chemical and spectroscopic properties of

the spin label as well as the method of introduction into the protein under study. A spin

label typically consists of a paramagnetic center along with a functional group which

binds specifically to a given amino acid. Cysteine residues are most commonly used as

the amino acid which the spin label binds to, due to their relative scarcity in nature. In

this labeling scheme, site-directed mutagenesis is used to first remove any native cysteine

residues in the protein and then to reintroduce cysteine residues at the site(s) which

are to be spin labeled. The thiol group on the cysteine reacts specifically with the

functional groups methanethiosulfonate (MTS) and maleimide, creating a covalent bond

which attaches the spin label to the protein.

Labels based on the nitroxide radical, where the paramagnetic center is formed by

an electron localized on the N−O bond, have long the most commonly used spin label

due to their chemical stability and simple EPR signature [69]. However, nitroxides are

prone to reduction and cannot be used e.g. for in-cell applications without extensive

modification to supply steric shielding. However, the increase in size of the spin label

necessary to achieve this results in an increased potential to perturb the structure of

the labeled protein. In recent years, lanthanide spin labels based on complexes of the
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Gd(III) ion have been shown to be redox-stable, and have been successfully used to

demonstrate EPR distance measurement in-cell [119, 103, 163]. Gd(III) spin labels also

have drastically different spectroscopic properties than nitroxide labels, making them

much better suited for use with EPR at Q-band frequencies and above [118, 65, 56]. The

high-spin nature of Gd(III) gives rise to stronger dipolar interactions than does the S =

1/2 nitroxide label, so that longer distances may be measured between pairs of Gd(III)

spin labels. Furthermore, the linewidth of the central transition of Gd(III) narrows with

increasing magnetic field, giving rise to greater sensitivity to dipolar interactions in the

measured EPR signal compared to nitroxide spin labels whose EPR lineshape broadens

with increasing magnetic field. Unfortunately, the high-affinity chelating agents necessary

to avoid free Gd(III) ions are often bulky because affinity is largely controlled by denticity

of the complex. Besides Gd3+, Cu2+ [43, 44, 178] and Mn2+ [15, 104, 86] have been shown

to be interesting paramagnetic centers for structural studies of proteins with SDSL EPR.

Spin label pairs can also be of different type - a method referred to as orthogonal spin

labeling, where e.g. a nitroxide label is paired with a Mn2+ or Gd3+ label [60].

Another important property of spin labels is the conformational flexibility of both

the label and the linker joining the label to the protein. If the spin label is very flexible,

motions of the label will dominate EPR measurements of dynamics, rather than the

desired dynamics of the protein under study. Different strategies have been employed to

address this, including the use of short, rigid linkers [177] or bi-dentate spin labels [174]

which bind to two neighboring amino acids on the protein and thereby reducing motions
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of the spin label relative to the protein backbone.

Two of the most exciting frontiers of SDSL EPR are in vivo measurements and dis-

tance measurement at physiological temperatures. In both cases, Gd(III) spin labels have

yielded important breakthroughs and have the potential to greatly advance the use of

EPR for structural studies in cell biology [136].

1.2.2 Distance measurement by EPR

The determination of nanometer-scale distances between spin labeled sites in a biomolecule

via EPR spectroscopy can provide information on the structure and organization of

biomolecules, and can also be used for the tracking of conformational changes [158, 74,

80, 75, 28]. The basic concept for all EPR distance measurement relies on the simple

observation that the strength of dipole-dipole coupling, which can be inferred from vari-

ous EPR experiements, goes as the inverse of the distance between the spin labels cubed.

EPR distance measurements are complementary to Förster resonance energy transfer

(FRET), where distances between a donor and an acceptor fluorophore are detected

when the labels are positioned near the Förster radius. While this technique is very

sensitive, allowing for single-molecule detection, precise distances and distance distribu-

tions are often not measured. Additionally, the labels must be carefully chosen based

on the expected distance(s). On the other hand, EPR allows for precise, quantitative,

determination of distances and distance distributions over a wide range of distances (∼

0.8 - 10 nm). Labeling is also greatly simplified by the ability to use identical spin labels,
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which are also significantly smaller than typical fluorophores [136].

Nitroxide radicals are very commonly used for distance measurement with EPR at

X-band frequencies, with the spin labels placed at user selected sites to generate a system

with two proximal electron spins either by doubly spin labeling a biomoledule or by mul-

timer formation of sinlgy spin labeled biomolecules [152, 141]. The distance between two

such spin labels may be determined by pulsed EPR techniques such as DEER/PELDOR,

which can detect dipolar interactions between nitroxide radicals up to 8.0 nm apart at

X-band frequencies, but has limited utility below 2.0 nm [138, 82, 166]. This distance

range is limited at the upper end by short phase-memory relaxation times (Tm) and at the

lower end by complications of the exchange coupling becoming of comparable or greater

magnitude than the dipole-dipole coupling. Distance measurement by pulsed EPR is

complemented by lineshape analysis of the CW EPR signal, which, as demonstrated in

the seminal work of Rabenstein and Shin [123] and followed by many others [154, 76],

allows for the determination of distances in the range of approximately 0.7 - 2.0 nm

under favorable conditions for nitroxide radicals attached to a macromolecule. CW EPR

finds particular utility in the study of membrane proteins, offering a site-specific probe

of structure and dynamics in native or native-mimicking environments under ambient

solution conditions.

Despite the great success of nitroxide radicals for structure studies of biomolecules at

X-band frequencies, distances in the borderline region of applicability of CW EPR and

pulsed EPR, particularly in the 1.6 - 1.9 nm range, still remain difficult to access [16, 29].
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Given the importance of discerning the structure and structural changes in biomolecules

within this distance regime, we seek in this work to develop spin labels and EPR tech-

niques which can serve to span this gap, deliver rapid measurement times, and work at

ambient temperatures. We choose to focus on CW rather than pulsed EPR methods,

due to better sensitivity and easier application to measuring samples at physiologically

relevant temperatures. Unlike pulsed EPR, which typically requires cryogenic tempera-

tures and hours to days of signal averaging, CW EPR can be used directly at ambient

temperature with often a single, minutes long scan providing sufficient signal for analysis.

Emerging trityl spin labels present one possible alternative to traditional nitroxide spin

labels, as their very narrow linewidth allows for CW EPR distance measurements in the

range of 1.7 - 2.4 nm. These new labels also show promise for single-frequency pulsed EPR

experiments, where a long phase memory time and better stability allow for room tem-

perature distance measurements on immobilized biomolecules [134, 91, 142, 143, 6]. In

this dissertation we investigate another alternative, namely spin labels based on Gd(III)

complexes measured by high-frequency CW EPR.

1.3 Benefits and complications of moving to high fre-

quencies and Gd(III)-based spin labels

Increasing availability of microwave sources and components has allowed routine EPR

measurements to move from X-band and Q-band, up to W-band and higher frequencies.
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Figure 1.1: Typical Gd(III) EPR spectrum at 240 GHz, in this case for 300 µM Gd-
4-iodo-PyMTA (chemical structure in Figure 2.1) in D2O/glycerol−d8 (60:40, v:v) as
measured by rapid passage EPR at 5 K. The sharp central peak primarily results from
the | − 1/2 >→ |1/2 > transition, which to first order in perturbation theory narrows
with increasing magnetic field. The broad bell-shaped part of the spectrum is the result
of the remaining transitions in the S = 7/2 Gd(III) complex, which are broadened in
glassy solutions by a broad distribution of ZFS parameters.

Several EPR spectrometers, both home-built and commercial, are now in operation in

the range of 100 - 300 GHz [115, 63, 66, 148, 164, 73, 47, 38]. At these high frequencies,

sensitivity is increased [139], but the performance of nitroxide spin labels wanes due to

strong inhomogeneous line broadening. During the last 10 years, spin labels based on

Gd(III) have become an important tool for structure studies in biological systems with

EPR at Q-band frequencies and above. High-frequency EPR applications relying on

Gd(III) complexes have been demonstrated in peptides [68, 60, 106, 102], nucleic acids

[150], proteins [118, 176], and in in-cell environments [119, 103, 163, 105].

Gd(III)-based spin labels possess several spectroscopic advantages over nitroxide-
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based spin labels for EPR at high fields. These benefits include: (i) a high-spin S = 7/2

ground state which confers longer range dipolar interactions than an S = 1/2 system and

thus increases the accessible distance range in CW EPR measurements, (ii) an isotropic

g-value, (iii) a sharp central | − 1/2〉 → |1/2〉 transition that narrows with increasing

magnetic field, and (iv) no orientation selection, the latter three of which concentrate

the distance information into a single narrow resonance peak, resulting in increased sen-

sitivity.

For Gd(III) complexes with sufficiently small zero-field splitting (satisfying D �

gµBB0) and measured at suffiently high frequencies (Ka-band and above), the |−1/2〉 →

|1/2〉 transition appears as an intense central peak in the EPR spectrum on top of a

broad background due to all other transitions (Figure 1.1) [126]. This characteristic

shape of the EPR spectrum arises from the high-spin (S = 7/2) nature of Gd(III) and

the broad distributions of zero-field splitting (ZFS) parameters for Gd(III) in frozen

glassy solutions. The magnitude and distribution of the ZFS in turn arises primarily

from the interactions between the Gd(III) ion and the ligands, from a chelate complex

and/or solvent molecules, which bind the Gd(III). The details of the ZFS interaction

have been found to influence many of the effects observed when using Gd(III) spin labels

for EPR, including distortions of the Gd(III)-Gd(III) distance distributions measured

by the DEER experiment at short distance ranges [45, 129, 101], population transfer

in Gd(III)-Gd(III) DEER experiments [48], the effect of the reduction of the Gd(III)-

nitroxide DEER echo intensity [180, 97], the width and shape of the central Gd(III)
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transition [41], the absence of orientation selection for Gd(III) in the DEER experi-

ment [128], and the transition-dependent transverse relaxation of the Gd(III) complexes

[125]. In order to fully understand these experimental observations, the particulars of

the magnitude and distributions of the ZFS parameters in Gd(III) complexes must first

be understood. On one hand this may seem an obnoxious complication of using S > 1/2

spin labels, but on the other hand this creates a depth of interesting spin physics which

may be studied and utilized. And furthermore, unraveling how the ligand structure of

Gd(III) complexes determines the magnitude of the ZFS could help in the design of new

Gd(III) spin labels that are customized for the best performance with high-field CW or

pulsed EPR experiments.

The width of the central transition in CW EPR measurements of Gd(III) scales as

D2/gµBB0. For small D and large B0, this leads to a very narrow linewidth and therefore

greater sensitivity to dipolar broadening of the CW EPR lineshape at high magnetic field

as compared to lower magnetic fields where the central transition is prohibitively broad

[118, 65]. As a result of this narrow linewidth, it is possible to resolve the contribution of

the dipolar interaction with a proximal Gd(III) species to the lineshape of the CW EPR

spectrum, manifested primarily as an increase of the linewidth of the | − 1/2〉 → |1/2〉

transition. This was recently shown in a proof-of-principle study by Edwards et al.

in frozen glassy solutions of GdCl3 in D2O/glycerol−d8 at 240 GHz and 10 K [53].

In this work, substantial dipolar broadening was seen up to average Gd(III)-Gd(III)

distances of 3.8 nm, which is about twice the longest interspin distance resolvable by CW
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EPR lineshape analysis of nitroxide radicals at X-band. This is an important prospect,

given that pulsed EPR methods using Gd(III)-based spin labels are particularly prone

to artifacts in the extracted distance distributions below 3 nm [45, 129, 101] and X-band

CW EPR with nitroxide is only sensitive to distances of less than 2 nm.

Extending the CW EPR distance measurement sensitivity to above 3 nm is an impor-

tant milestone because this length scale spans many relevant intra-protein distances, as

well as many inter-protomer distances in protein oligomers. For a sense of scale, consider

a pair of nitroxide-based spin labels at X-band, which can easily give access to informa-

tion on an interspin distances of 1.5 nm, and ask what fraction of a typical protein can

be probed. Most proteins fold into globular domains, consisting of tightly packed atoms

with an approximate density of 1.37 g/cm3. A spherical region of mass M within such a

globular protein has a radius R (nm) = 0.6 × M1/3, where the mass is given in Daltons

[55]. A sphere of radius R = 1.5 nm encloses a protein mass of 18 kDa, encompassing

approximately 160 amino acids that could potentially be spin labeled. Now consider dou-

bling this radius to 3 nm, a distance easily accessible by Gd-based spin labels at 240 GHz.

This yields a protein mass of 94 kDa containing 850 amino acids - nearly eight times as

many residues in the protein that can potentially be spin labeled for the measurement of

intra-protein distances. This increased flexibility in choosing sites for mutagenesis and

spin labeling is particularly useful in cases where e.g. little is known about the structure

of a protein or protein complex and therefore the distance estimated from a model of the

protein may be different from the real distance, or in cases where mutation of certain
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amino acids is not possible due to the nature of the mutation (e.g. charged amino acids)

or is limited by geometric restriction of the site.
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Chapter 2

Distance measurement by Gd(III)

lineshape analysis

Material in Capter 2 and portions of the introductory material in Chapter 1 have been

previously published, and is reproduced from Ref. [41] with permission from the PCCP

Owner Societies.

JAC performed the CW EPR experiments and data analysis under the supervision of

Mark Sherwin and Songi Han. Mian Qi designed and synthesized the Gd(III) compounds

used in this chapter under the supervision of Adelheid Godt.

2.1 Introduction

The first report of using 240 GHz CW EPR lineshape analysis for distance measure-

ment with Gd(III) used as a simple model system random frozen solutions of GdCl3 in
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D2O/glycerol−d8 [53] where the average interspin distance was varied by changing the

concentration of GdCl3. However, the distribution of distances in such a system is neces-

sarily very broad, with the result that the measured spectra is a sum of the EPR spectra

arising from the many interspin distances present in the sample. The measured CW

EPR lineshapes of GdCl3 were found to be nearly Lorentzian, with the primary change

with average interspin distance being a broadening of the peak-to-peak linewidth. Ad-

ditionally, the relatively high concentrations required to achieve short average interspin

distances resulted in artifacts in the lineshape arising from refractive broadening due to

high spin concentrations, further complicating analysis. In contrast, a single measure-

ment presented in this work of a bis-Gd(III) complex with a flexible bridge (C2-595)

and a broad distance distribution centered about 1.6 nm showed a tantalizingly complex

lineshape in addition to strong peak-to-peak broadening.

When using site-directed spin labeling for distance measurement in biological systems,

the typical use case is a doubly-labeled biomolecule where two spin labels are separated

by a relatively fixed distance. Indeed, the motion of the linker connecting the spin label to

the biomolecule is often a dominant contributing factor to measured distance distributions

by this method. Therefore, in further developing CW EPR with Gd(III)-based spin labels

as a distance measurement tool, we relied on a series of model compounds of the type Gd-

PyMTA–spacer–Gd-PyMTA, which we call Gd-rulers, to provide known, fixed distances

between pairs of spin labels.

In this chapter, we present a fundamental study of the CW EPR lineshape analysis-
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based approach to determining Gd-Gd distances at very high frequencies (240 GHz). A

series of Gd-rulers were used to test the validity of this approach and provide a simple,

well-characterized model system with which to further develop data analysis methods.

Experiments with these Gd-rulers show that dipolar broadening of the central transition

of Gd(III) is detectable in a biradical system at cryogenic temperatures, and that the

maximal distance sensitivity is consistent with that estimated from the study with ran-

dom solutions of GdCl3 [53]. A simple procedure for simulating the dependence of the

Gd(III) lineshape on interspin distance was developed, in which the broadening of the

central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened

through electron-electron dipolar interactions with a neighboring S = 7/2 spin. The well-

known spacer stiffness, and therefore the calculable most probable Gd-Gd distances r of

the Gd-rulers, as described below, allows for a careful check on the relationship between

the measured EPR line broadening and the distance r, revealing that the peak-to-peak

broadening follows the expected 1/r3 dependence of the dipolar interaction. Furthermore,

we show that this correlation is maintained even at biologically relevant temperatures

– from around the protein dynamical transition temperature (≈ 190-220 K) [49] up to

room temperature for samples immobilized in a glassy matrix.
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2.2 The Gd(III) EPR spectrum

The general effective spin Hamiltonian for a pair of two interacting Gd(III) ions A and

B is written as [3, 139, 65]

H =
∑
i=A,B

[giµB
−→
B 0ŜZi + ~ ·Ai · Îi + ~ŜA ·Di · ŜB] + ~ŜA ·T · ŜB (2.1)

The first term gives the contribution from the isotropic electron Zeeman interaction,

where µB is the Bohr magneton, B0 is the external applied magnetic field, and g ∼1.992.

At high magnetic fields this term dominates, resulting in eight Zeeman levels and seven

allowed EPR transitions. The second term in Equation 2.1 is the contribution from hy-

perfine coupling, which arises from the 155Gd and 157Gd isotopes of gadolinium with a

30% combined natural abundance. However, the resulting hyperfine coupling is small -

on the order of 16 MHz. For most Gd(III) complexes prepared with the natural abun-

dance of isotopes, including all of those studied in this work, the hyperfine interaction

is not resolved in EPR experiments and is typically ignored. However, these unresolved

hyperfine interactions may contribute a small amount to the intrinsic CW EPR linewidth

of a Gd(III) complex [30].

The third term in Equation 2.1 is the zero-field splitting (ZFS) interaction, which

for most Gd(III) complexes used as spin labels is of order 1000 MHz. Typically, the

two Gd(III) are the same and therefore their principle D values are the same and the

subscript i can be dropped. Theory and measurements of the ZFS interaction related

to high-field EPR of Gd(III) complexes will be addressed more fully in Chapter 3. The
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magnitude of the ZFS interaction in Gd(III) is small compared to the electron Zeeman

interaction and thus can be treated by perturbation theory. To first order in perturbation

theory, the EPR transition frequencies are

ω
(1)
MS→MS+1

=
1

~
gµBB0 +

2MS + 1

2

[
D
(
3cos2β − 1

)]
(2.2)

where β is the angle between the static magnetic field
−→
B 0 and the ZFS tensor. To first

order in perturbation theory, the linewidth of the | − 1/2〉 → |1/2〉 transition of Gd(III)

is independent of the ZFS interaction, while the remaining higher-order transitions scale

linearly with the second-order axial ZFS parameter D. Carrying out perturbation theory

to second order gives the following contribution to the central transition

ω
(2)
1/2→1/2 =

~D2

16gµBB0

(4S(S + 1)− 3)
[
−2
(
sin22β

)
+
(
sin4β

)]
(2.3)

To second order, the linewidth of the | − 1/2〉 → |1/2〉 transition scales with D2/gµBB0.

Furthermore, if 4~D2

gµBB0
� 1, the central transition will be narrow. This results in the

characteristic high-field Gd(III) EPR spectrum (Figure 1.1) consisting of an intense nar-

row central peak arising from the | − 1/2〉 → |1/2〉 transition and a broad featureless

background due to all other transitions which are smeared out by the large distribution

of ZFS parameters, which will be discussed fully in Chapter 3. At fields of 8.6 Tesla (240

GHz), this portion of the Gd(III) spectrum can have peak-to-peak linewidths as narrow

at ∼0.5 mT while the broad component spans ∼1 T, and can be leveraged to measure

dipolar broadening induced by neighboring electron spins at distances of up to several
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nanometers.

The final term in Equation 2.1 is the electron spin dipole-dipole coupling, where T

is a tensor describing the total interaction between two electron spins. The dominant

contribution to this term comes from the secular part of the dipolar interaction, which

in the point dipole approximation is given by

Hsecular
dd = ω0

ddS
A
ZS

B
Z (3cos2θ − 1) (2.4)

and where the magnitude of the dipolar coupling is given by

ω0
dd =

µ0

4π

gAgBµ
2
B

~
1
−→r 3

AB

(2.5)

where θ is the angle between the interspin vector rAB and the static magnetic field B0,

gA and gB are the g factors of the two spins, and µB is the Bohr magneton. For short

interspin distances and small ZFS the pseudo-secular part of the dipolar interaction

Hpseudosecular
dd = −ω

0
dd

4
(SA+S

B
− + SA−S

B
+ )(3cos2θ − 1) (2.6)

will also contribute significantly to the measured central transition.

2.3 Gd-rulers as a model system

The Gd-rulers are based on oligo(para-phenyleneethynylene)s (oligoPPEs), which serve

as molecular building blocks for tailor-made spacers. Both ends of the rod-like spacer

molecule are terminated by the ligand PyMTA (a pyridine-based tetracarboxylate) which
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Figure 2.1: Chemical structures of Gd-4-iodo-PyMTA and of Gd-rulers 1n, 2n, and 3.
Gd-4-iodo-PyMTA served as a reference for the intrinsic CW EPR lineshape of the spin
label in the absence of dipolar broadening. The listed Gd-Gd distances are the calculated
most probable distances at 173 K, i.e. the glass transition of a 60:40 (v:v) mixture of
D2O and glycerol−d8 used as the matrix for the EPR experiments at 30 K.

binds the Gd(III) ion and is connected to the oligoPPEs via its pyridine ring. The PPE

spacers were made highly hydrophilic by the addition of porpargyloxy side chains on the

oligoPPEs which attach to water solubilizing poly(ethylene glycol) (PEG) chains through

a click chemistry reaction after spacer assembly [120].

A series of six water-soluble Gd-rulers 1n, 2n, and 3 spanning a Gd-Gd distance range

of 1.2 nm to 4.3 nm were used in this work (Figure 2.1). Gd-rulers of this type, and rulers

formed with the same spacers but different spin labels, have been carefully characterized

in the literature [84, 64, 48, 132, 45, 86]. These previous studies confirmed that the

Gd-rulers are very rigid, resulting in very narrow distance distributions, and additionally

experimentally determined the length and flexibility of the oligoPPE spacers.

The most probable interspin distance for each ruler at a given temperature may be
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aaaaaaaaa
T(K)

Gd-ruler
3 10 11 21 13 22

173 1.17 1.42 2.09 3.00 3.41 4.30
215 1.16 1.42 2.08 2.98 3.40 4.27
288 1.16 1.41 2.07 2.96 3.36 4.22

Table 2.1: Calculated most probable Gd-Gd distances of the Gd-rulers at 173 K, 215 K,
and 288 K using the worm-like chain model. Units are in nm. For the measurements at
30 K, the shape of the Gd-rulers became frozen at the glass transition temperature of
the mixture of D2O and glycerol−d8 (60:40, v:v), which is 173 K. Therefore, the most
probable Gd-Gd distances of Gd-rulers at 173 K were calculated for the measurements
at 30 K.

calculated by applying a worm-like chain model, as described by Dalaloyan et al. [45].

For measurements at 30 K, we assume that the shape of the Gd-rulers became frozen

at the glass transition temperature of the solution which was primarily composed of a

D2O/glycerol−d8 (60:40, v:v) mixture. If the sample is cooled slowly, as was done in

the data presented in this chapter, the glass transition temperature of this mixture is

173 K as determined by differential scanning calorimetry (DSC). In this slow cooling

process, a part of the water mixture crystallizes to ice at 221 K and the residual mixture

transforms to glass at 173 K. If instead the samples were shock frozen, the glass transition

temperature of the mixture is 157 K. For measurements at temperatures above 173 K,

the experimental temperature was used to calculate the most probable distance (Table

2.1). Calculation of the most probable distance is done by considering the Gd-rulers as

a poly(paraphenyleneethynylene) chain and disregarding deviations in the stiffness of the

Gd−N bond and the butadiyne moiety in Gd-rulers 21 and 22. The persistence length of

poly(para-phenyleneethynylene) in ortho-terphenyl at the glass transition temperature

of 246 K is known in the literature to be lps(246K). Assuming the bending modulus is

32



independent of temperature, the persistence length of poly(para-phenyleneethynylene)

at the glass transition temperature of 173 K for a D2O/glycerol−d8 (60:40, v:v) mixture

can be calculated by

lps(173K) = lps(246K)
246K

173K
(2.7)

to be lps(173K) = 23.7 nm. The length of Gd-ruler 11 is known from crystal structure

to be L(11) = 2.12 nm [71]. Taking this as a reference, the contour lengths lct of the

Gd-rulers 1n and 2n are calculated by adding up the lengths of the constituent units of

the spacers according to

lct(1n) = L(11) + (n− 1) · LPE (2.8)

lct(2n) = L(11) + (2n− 1) · LPE + LE (2.9)

where n is the number of repeating units as given in Figure 2.1 and the lengths of the

constituent units taken from DFT calculations to be LPE = 0.6864 nm and LE = 0.2579

nm. The mean Gd-Gd distances are then calculated according to

r =

√
2lps(173K)lct − 2l2ps(173K)

(
1− exp

(
− lct
lps(173K)

))
(2.10)

The Gd-Gd interspin distances of the Gd-rulers at maximum extension was computed

by DFT calculations and can be found in Table 2.2. These values, along with the per-
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Gd-ruler 10 11 21 13 22

Max Gd-Gd distance 1.43 2.12 3.06 3.49 4.43

Table 2.2: Gd-Gd distances calculated by DFT for the Gd-rulers at maximum extension.
Distances are given in units of nm.
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Figure 2.2: Calculated distance distributions (solid lines) and most probable Gd-Gd dis-
tance (dashed lines) for the Gd-rulers. These calculations assume the persistence length
of the Gd-rulers is that calculated in Equation 2.7 at the glass transition temperature of
173 K for a D2O and glycerol−d8 (60:40, v:v) mixture.

sistence length calculated in Equation 2.7, can be used to calculate the Gd-Gd distance

distribution by treating the Gd-rulers as a semiflexible polymer with a large bending

rigidity, as described by Wilhelm and Frey [175].

2.4 Dipolar broadening in 240 GHz CW EPR line-

shape of Gd-rulers

To investigate the effects of pairwise dipolar broadeing in Gd(III), a series of six water-

soluble Gd-rulers 1n, 2n, and 3 (Figure 2.1) spanning a Gd-Gd distance range of 1.2
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nm to 4.3 nm were used. Because the dipolar coupling is determined primarily via a

broadening of the CW EPR lineshape, it is necessary to have a measure of the intrinsic

lineshape of the spin label in the absence of dipolar broadening [123, 154]. For this

purpose, Gd-4-iodo-PyMTA, a Gd(III) complex closely resembling the spin label of the

Gd-rulers (Figure 2.1) was included in this study. We assume a negligible effect of the

type of substituent at the pyridine ring on the CW EPR lineshape (see also Appendix

C.19). These samples were prepared for cryogenic measurements by dilution to 300 µM

with a mixture of D2O/glycerol−d8 (0.6:0.4, v:v). A high fraction of glycerol was used to

ensure good glass formation upon freezing. Deuterated solvents were used to minimize

the broadening resulting from hyperfine interactions with neighboring water protons. A

final sample concentration of 300 µM was chosen to avoid contributions to the lineshape

from refractive broadening [53] and to ensure that the average intermolecular separation

was sufficiently large so that only intramolecular dipolar interactions are observed in the

lineshape.

For the initial investigation of dipolar broadening of the 240 GHz CW EPR lineshape

of the Gd-rulers with respect to Gd-4-iodo-PyMTA, measurements were conducted at 30

K, where the | − 1/2 >→ |1/2 > transition is nearly maximally populated (Figure C.2).

A sample volume 8 - 10 µL was used, and loaded into a Teflon sample cup backed by a

mirror within a modulation coil mounted at the end of the waveguide.

The CW EPR lineshape of the central transition of Gd-4-iodo-PyMTA is a single

peak (Figure 2.3 A-F, in green). For the purposes of a simple quantitative measure of

35



-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2 -4 -2 0 2 4

-4 -2 0 2 4
-1

0

1

-6 -3 0 3 6 -10 -5 0 5 10

FED

CB

C
W

 E
P

R
 s

ig
na

l (
ar

b.
u.

)

 Gd-4-iodo-PyMTA
 simulation
 22 (4.3 nm)

A

 

 13 (3.4 nm)

 

 21 (3.0 nm)

C
W

 E
P

R
 s

ig
na

l (
ar

b.
u.

)

Sweep Field (mT)

 11 (2.1 nm)

Sweep Field (mT)

 10 (1.4 nm)

Sweep Field (mT)

 3 (1.2 nm)

Figure 2.3: Lineshapes of the central transition of the Gd-rulers 1n, 2n, and 3 (A-F,
solid black curves) in D2O/glycerol−d8 measured by CW EPR at 240 GHz and 30 K.
Overlaid in (A-F) in green is the measured lineshape of Gd-4-iodo-PyMTA, which serves
as a reference of the intrinsic lineshape of the Gd-PyMTA spin label in the absence of
dipolar broadening. In dotted orange is plotted the simulated lineshapes for each Gd-
ruler resulting from simulations with a simple model consisting of an S = 1/2 spin whose
CW EPR lineshape is broadened through electron-electron dipolar interaction with a
neighboring S = 7/2 spin. In these simulations, the magnitude of the dipolar interaction
was taken to be that corresponding to the calculated most probable distance for each
Gd-ruler at the glass transition temperature of 173 K. (Table 2.1).
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the dipolar broadening in the CW EPR lineshape of the Gd-rulers, the peak-to-peak

linewidth was defined as the separation of the positive and negative peaks in the CW

EPR lineshape (which is typically plotted as the as-recorded signal, which is the first

derivative of the absorption lineshape). For Gd-4-iodo-PyMTA measured at 30 K, this

peak-to-peak linewidth is ∼ 0.77 mT. We take this linewidth to be the intrinsic linewidth

of the Gd-PyMTA complex in the limit of no electron-electron dipolar interactions. Of

course it is impossible to entirely remove all dipolar interactions in such a sample, however

further lowering the concentration of Gd-4-iodo-PyMTA to 100 µM did not decrease

the measured linewidth, while concentrations above 1 mM began to show evidence of

lineshape broadening resulting from dipolar interactions between neighboring Gd-4-iodo-

PyMTA complexes in the solution. The central transition of Gd-4-iodo-PyMTA and the

Gd-rulers were also recorded by echo-detected (ED) EPR at W-band (95 GHz) and 10

K, as a corollary measurements to the DEER studies in the work of Dalaloyan et al. [45].

While W-band measurements are not the focus of this dissertation, it is worth noting

that at this reduced field, the peak-to-peak linewidth of Gd-4-iodo-PyMTA was found to

be ∼1.6 mT. This increase in the intrinsic linewidth of the spin label from 240 GHz (8.6

T) to 95 GHz (3.4 T) is consistent with the expectation that the linewidth of the central

transition scales as D2/gµBB0.

The meausred 0.77 mT peak-to-peak linewidth of Gd-4-iodo-PyMTA is significantly

broader than the 0.55 mT intrinsic linewidth of GdCl3 in D2O/glyercol−d8 at 240 GHz

[53]. This is largely the result of contributions of the ZFS term on the intrinsic line-
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shape of the Gd(III) complex. Very roughly speaking, the higher degree of symmetry

in the atoms which coordinate the Gd(III), the smaller the ZFS and hence the narrower

the intrinsic linewidth of the complex. GdCl3, which has the nine possible coordination

sites of Gd(III) fulfilled by deuterium molecules in solution, presents a narrower line-

shape than Gd-4-iodo-PyMTA, in which the Gd(III) makes seven coordinating bonds

with the PyMTA ligand with the remaining two possible coordinations being fulfilled

by deuterium molecules in solution. This is at first glance concerning, since to extract

distances from this measurement one must be able to resolve broadening of the CW

EPR lineshape resulting from dipolar interactions on top of the intrinsic linewidth of the

Gd(III) complex. If the intrinsic linewidth is to large, as is the case in some commonly

used spin labels such as Gd-4MMDPA, the relatively small contribution to the linewidth

from dipolar interactions cannot be resolved [53]. We are fortunate in this work that the

0.77 mT intrinsic linewidth of the Gd-4-iodo-PyMTA complex is still sufficiently narrow

to resolve dipolar interactions at extended distances. In further developing high-field CW

EPR with Gd(III)-based spin labels as a distance measurement tool, much can be gained

by choosing existing or designing new spin labels with as small a ZFS as possible given

other constraints. Therefore in application of this distance measurement technique in

biological systems, as will be discussed in Chapter 4, spin labels based on the Gd-DOTA

complex were chosen, a decision based in large part on the narrower intrinsic linewidth

of the DOTA family of complexes.

The 240 GHz CW EPR spectra of all of the measured Gd-rulers at 30 K (in black) are
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overlaid with that of Gd-4-iodo-PyMTA (in green) in Figure 2.3 A-F. It is worth noting

that all of the CW EPR lineshapes in Figure 2.3 were acquired with a single scan of less

than 10 minute duration. While averaging is in principle possible on the 240 GHz EPR

spectrometer, for most measurements it is not necessary to achieve an acceptable SNR.

Additionally, this spectrometer does not currently employ a resonant cavity, as is common

in most EPR spectrometers, which greatly simplifies sample loading and measurement.

The speed and relative ease with which these kind of data are acquired greatly enhances

throughput of the measurement.

For the longest Gd-ruler studied, 22 (4.3 nm), there is no significant difference between

the measured lineshape of the Gd-ruler and of Gd-4-iodo-PyMTA (Figure 2.3 A). This

is because broadening resulting from intramolecular dipolar coupling, while certainly

present, is too weak at this distance to resolve on top of the intrinsic linewidth of the

spin label. For Gd-ruler 13 (3.4 nm), we begin to resolve the first hints of dipolar

broadening, and measure a slight broadening of the peak-to-peak linewidth to 0.97 mT

(Figure 2.3 B). This is slightly shorter than the 3.8 nm Gd(III) - Gd(III) distances that

Edwards et al. projected Gd(III)-based spin labels to be sensitive to [53]. However, this

is not surprising given that the intrinsic linewidth of Gd-4-iodo-PyMTA is ∼40% larger

than that of GdCl3 in D2O/glyerol−d8, so we expect that our ability to resolve dipolar

broadening of the CW EPR lineshape at extended distances using Gd-PyMTA as the spin

label will be somewhat reduced compared to random solutions of GdCl3. For Gd-ruler

21 (3.0 nm), the broadening is much more obvious, with a peak-to-peak linewidth of 1.15
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mT, an increase of nearly 50% with respect to the intrinsic linewidth given by Gd-4-iodo-

PyMTA (Figure 2.3 C). For the Gd-rulers 11 (2.1 nm), 10 (1.4 nm), and 3 (1.2 nm),

dramatic broadening of the peak-to-peak linewidth with respect to Gd-4-iodo-PyMTA is

observed, with linewidths of 1.75 mT (Figure 2.3 D), 3.47 mT (Figure 2.3 E), and 5.22

mT (Figure 2.3 F), respectively. For the Gd-rulers 11 (2.1 nm), 10 (1.4 nm), and 3 (1.2

nm), the EPR lineshape becomes distinctly asymmetric with the low-field side becoming

wider than the high-field side. For the two shortest Gd-rulers 10 (1.4 nm) and 3 (1.2 nm),

a number of additional peaks are seen to appear in the low-field side of the lineshape,

with the high-field side remaining virtually unchanged between these distances. Due to

the complex lineshapes of the short Gd-rulers, the peak positions were determined by

fitting the region about the peak with a cubic polynomial and determining the location

of the maximum (see Section 2.6) [53].

2.5 Dipolar broadening in Gd-rulers at physiologi-

cally relevant temperatures

The Gd-rulers were additionally studied at elevated temperatures to investigate the feasi-

bility of later applying distance measurement with Gd(III)-based spin labels to structure

studies of proteins at physiologically relevant temperatures. The first such measurement

was conducted at a temperature of 215 K, which was chosen by virtue of being at or near

the protein dynamical transition [49]. At this temperature, the Gd-ruler samples, which

40



were likewise prepared for 215 K measurements by dilution to 300 µM with a mixture

of D2O/glyercol−d8 (40:60, v:v), should still be sufficiently viscous such that the dipolar

coupling is not completely averaged out by molecular tumbling [67].

At 215 K, we measure an increase of intrinsic linewidth from Gd-4-iodo-PyMTA to

1.0 mT. This increase in linewidth with temperature was surprising, given that this was

not observed in the work of Edwards et al. [53] nor in our simulations, which will be

discussed later in this chapter. The precise cause of this will require further investigation,

but may be related to changes in T2 with temperature. At 215 K we also see a decrease

in SNR, which is likely primarily the result of the sample now being well above the glass

transition temperature for a mixture of D2O/glyercol−d8 (40:60, v:v), which will result

in significant absorption of microwaves by the water present in the sample. This can

be improved upon by the use of thin sample geometries for lossy aqueous samples to

maximize B1 at the sample position and minimize microwave absorption, as described in

Appendix A.2.3. Nevertheless, the lineshape of the Gd-rulers 1n, 2n, and 3 still display

broadening with respect to Gd-4-iodo-PyMTA. However at this temperature, while it is

possible to resolve a change in linewidth of the Gd-ruler 21 (3.0 nm) with respect to the

Gd-4-iodo-PyMTA lineshape, for the Gd-rulers 13 (3.4 nm) and 22 (4.3 nm) any dipolar

coupling effects fall within the noise of the measurement (Figure 2.4). This reduction

in maximum resolvable distance at 215 K to approximately 3.0 nm from 3.4 nm at 30

K is not surprising, given the increase in the intrinsic linewidth and reduction in SNR

with elevated temperature, as well as partially decreased dipolar broadening for elevated
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Figure 2.4: Lineshapes of the central transition of the Gd-rulers 1n, 2n, and 3 (A-F, red)
in D2O/glycerol−d8 measured by CW EPR at 240 GHz and 215 K. For reference of the
intrinsic lineshape at this temperature, the spectra of Gd-4-iodo-PyMTA is overlaid in
each plot (A-F, teal).

temperatures as a result of the changing spin populations with temperature.

Finally, the Gd-rulers and Gd-4-iodo-PyMTA were studied at 288 K, which is the

ambient temperature of the cyrostat in the 240 GHz EPR spectrometer in the absence of

heating or cooling. More importantly, we want to test the viability of lineshape analysis

for distance determination near room temperature, which is the ideal environment for

investigating protein dynamics and conformational changes. However, trying to extract

information about the magnitude of dipolar coupling is difficult at elevated temperatures

due to molecular tumbling [11]. Because the dipolar coupling tensor T (Equation 2.1)

is traceless (in the simplest representation of the spin Hamiltonian), the dipolar part of

the interaction is averaged to zero for fast and isotropic rotation of the spin label. For

this reason, in much of the body of EPR literature looking at dipolar-coupled spins the
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Figure 2.5: Lineshapes of the central transition of Gd-4-iodo-PyMTA (A-C, pink) and the
Gd-rulers 1n and 2n (A-C, blue) in a dehydrated amorphous trehalose matrix measured
by CW EPR at 240 GHz and 288 K. For the Gd-rulers 13 (3.4 nm) and 22 (4.3 nm), it was
not possible to record a CW EPR spectrum with sufficient SNR for analysis. Gd-ruler 3
(1.2 nm) was not available at the time of these measurements.

sample is typically immobilized by freezing, by greatly increasing the viscosity, or by

other methods.

In this study, we followed the method of Eaton and coworkers and others [109, 99, 113],

where the Gd-rulers were immobilized in dehydrated glassy trehalose. The trehalose

forms an amorphous matrix which is solid at room temperature and thus inhibits aver-

aging out of the dipolar interaction by molecular tumbling [? 113, 146]. The preparation

of these samples is described in Appendix A.

At 288 K, the intrinsic linewidth of Gd-4-iodo-PyMTA was again found to be signifi-

cantly broader (1.39 mT) than at lower temperatures. For the Gd-rulers 13 (3.4 nm) and

22 (4.3 nm), it was not possible to record a CW EPR spectrum with sufficient SNR to

determine a peak-to-peak linewidth. This was attributed to difficulties in sample prepa-

ration, which was not thoroughly investigated and optimized in this work, and not to

an intrinsic limitation of the experimental technique. It was observed that the drying

process took significantly more time for the longer Gd-rulers, possibly caused by the in-
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creased content of the hydrophilic PEG side chains. If there was a partial demixing of the

Gd-rulers from the trehalose matrix during the slow drying process, an increase in local

concentration of the Gd-rulers may have occurred. The fragile, dehyrated sample was

also very prone to static cling, making loading into the Teflon sample bucket difficult.

Nevertheless, a broadening of the CW EPR lineshape with respect to Gd-4-iodo-PyMTA

was observed for the Gd-rulers 10 (1.4 nm) and 11 (2.1 nm). Gd-ruler 3 (1.2 nm) was not

available at the time of these measurements. For Gd-ruler 21, broadening of the lineshape

can no longer be unambiguously determined given the increased intrinsic linewidth at this

temperature and dramatically decreased SNR as compared to frozen samples. Addition-

ally, the possible demixing of the Gd-rulers from the trehalose matrix could contribute

to the observed increase in linewidth and corresponding decrease in distance sensitivity.

Again, this poor SNR is attributed to difficulties in sample preparation. This can be

similarly improved upon by the use of thin sample as described in Appendix A.2.3, with

the addition of a viscogen, such as glycerol or sucrose, to minimze molecular tumbling.

2.6 Quantifying broadening in CW EPR spectra of

the Gd-rulers

There are many methods in the literature for extracting distance information from CW

EPR data, the majority of which has been developed for S = 1/2 spin probes due to the

popularity of nitroxide spin labels and relatively simple theory. Perhaps the simplest is
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a quantification of the peak-to-peak broadening of the CW EPR lineshape in a sample

with dipolar coupling relative to the lineshape of the sample in the absence of dipolar

broadening. Here, we define the peak-to-peak broadening to be the difference between

the peak-to-peak linewidth of a Gd-ruler and the intrinsic linewidth in the absence of

dipolar broadening, as given by the lineshape of Gd-4-iodo-PyMTA. While determining

the positions of the positive and negative peak in the derivative CW EPR lineshape is

straightforward in the case of a single, narrow peak, the more complex lineshape of the

Gd-rulers 11 (2.1 nm), 10 (1.4 nm), and 3 (1.2 nm) along with the poor SNR in the 215

K and 288 K measurements necessitated slightly more intensive analysis to determine

peak-to-peak linewidths as accurately as possible. First, the approximate locations of

the positive and negative peaks in the CW EPR spectrum were found by looking for

zero-crossings in the smoothed first derivative of the measured CW EPR spectra that

exceeded an input amplitude threshold chosen to exclude any zero-crossings that may be

present in the noise in the baseline. The region about these approximate peak locations

in the unsmoothed CW EPR spectra were then fit to a third-order polynomial and the

extrema of the cubic fits taken as the location of the positive and negative peak posi-

tions in the experimental CW EPR spectrum. This procedure was repeated for several

measurements of the lineshape of each Gd-ruler and Gd-4-iodo-PyMTA, and a weighted

average computed to determine the linewidth of each compound. The uncertainty in

measuring the peak-to-peak linewidths, as resulting from both SNR and the somewhat

poor approximation of using a cubic fit to determine the positive peak position in e.g.
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Figure 2.6: Peak-to-peak broadening in the 240 GHz CW EPR spectra of the Gd-rulers
measured at 30 K, 215 K, and 288 K plotted as a function of the calculated most probable
Gd(III)-Gd(III) distance for each temperature (Table 2.1). For all measured temperatures
the peak-to-peak broadening falls off as 1/r3, as expected for electron-electron dipolar
coupling (Equation 2.5).

Gd-rulers 10 (1.4 nm) and 3 (1.2 nm), was also calculated by propagating the errors in

the computation of the weighted average [161].

A plot of the peak-to-peak broadening in the CW EPR spectra of the Gd-rulers vs. the

calculated most probable Gd(III)-Gd(III) for each measurement temperature is shown

in Figure 2.6. For all temperatures (and significantly different sample composition in

the case of the 288 K measurements), the decrease of the peak-to-peak broadening with

increasing interspin distance r scales as 1/r3. Such a correlation is expected from the

form of the dipolar coupling term in the spin Hamiltonian (Equation 2.5). We can also

estimate from Figure 2.6 that the upper distance limit for measuring significant dipolar

broadening with a Gd-PyMTA type spin label is between 3.4 nm and 4.3 nm at 30 K.

This is consistent with the ∼3.8 nm upper limit estimated by Edwards et al. [53] for

resolving dipolar broadening between pairs of Gd(III). This is not expected to represent
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the absolute upper distance limit for this technique, as the distance sensitivity is highly

dependent on the intrinsic linewidth of the Gd(III) complex used. At 30 K, Gd-4-iodo-

PyMTA has a linewidth of ∼0.77 mT, which is somewhat broader than other complexes

such as the Gd-DOTA family of spin labels whose linewidths are typically in the range

of 0.5 - 0.7 mT at 240 GHz. The complex Gd-NO3Pic has one of the narrowest CW

EPR linewidths yet observed for a Gd(III) complex, of ∼0.45 mT at 240 GHz. If we

require, as an example, a 25% increase of the intrinsic peak-to-peak linewidth to clearly

resolve dipolar broadening (this approximately corresponds to the broadening measured

for Gd-ruler 13 (3.4 nm)), then a distance of ∼4.0 nm should be resolvable for a spin

label with a 0.5 mT intrinsic linewidth assuming a 1/r3 dependence on distance.

2.7 Modeling the lineshape of the Gd-rulers

In addition to this broadening of the peak-to-peak linewidth, a surprising amount of

structure in the CW EPR lineshape begins to emerge for short interspin distances, an

effect which was not previously observed in random solutions of GdCl3, but was perhaps

hinted at in the lineshape of a bis C2-Gd595 complex [53]. This work quoted an average

interspin separation of ∼1.6 nm for the bis complex, and while a rather more flexible

compound than the Gd-rulers studied in this dissertation, the complex lineshape of C2-

Gd595 qualitatively shares many features in common with the lineshapes of Gd-rulers 10

(1.4 nm) and 3 (1.2 nm). In the analysis by Edwards et al. [53] on the bis C2-Gd595

complex using a Pake convolution method, the dipolar convolved spectrum reproduced
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well the experimental peak-to-peak linewidth of the experimental data, but failed to

capture the finer details of the CW EPR lineshape of C2-Gd595. Here, we take a different

approach to analyze the lineshapes of the Gd-rulers.

Exact simulations of the spin Hamiltonian to reproduce the high-field CW EPR line-

shape of dipolar coupled Gd(III) spins are not yet available, due to the large computa-

tional cost and the requisite a priori knowledge of the magnitudes and distributions of

ZFS parameters which was not available at the time of this work. However, a simple

model was found that qualitatively reproduces many of the features observed in the 240

GHz CW EPR spectra of the Gd-rulers. In this model, we take as a starting point the

spin Hamiltonian for a pair of interacting Gd(III) ions A and B as given by Equation 2.1.

The observed CW EPR lineshape of the sharp central peak at 240 GHz is dominated by

the | − 1/2〉 → |1/2〉 transition, with all other transitions being sufficiently smeared out

by the broad distribution of ZFS parameters in a glassy sample that they are not explic-

itly resolved in this measurement. Therefore, we can approximate the central peak in

the Gd(III) spectra as arising from an S = 1/2 spin. In the spectra of the Gd-rulers, we

assume that the lineshape of this S = 1/2 spin is broadened through dipolar interactions

with a neighboring S = 7/2 spin. Next, we must consider the impact of the other terms

in the Hamiltonian on the lineshape of the central transition, namely the ZFS term and

hyperfine interactions. In general, for Gd(III) complexes the magnitude of the ZFS term

will be orders of magnitude smaller than the static magnetic field and will only affect

the central transition to second order in perturbation theory, contributing primarily to

48



the intrinsic linewidth of the Gd(III) complex. Hence, we introduce a further simplify-

ing assumption that the ZFS interaction can be accounted for by imposing an artificial

broadening on the line of the S = 1/2 spin.

Simulations of the 240 GHz CW EPR spectra for the Gd-rulers measured at 30

K were carried out based on the above simplifying assumptions using the EasySpin

toolbox (version 5.0.16) [156] for MATLAB (Mathworks 2014a). The function pepper,

which calculates CW EPR spectra for frozen solutions, was used with exact matrix

diagonalization. The simulated spin system consisted of an S = 1/2 spin and an S = 7/2

spin with ZFS was ignored for the S = 7/2 spin. Simulations included as an input

the experimental temperature of 30 K to account for the Boltzmann distribution of

S = 7/2 spin populations (Appendix C.2). The lineshape of Gd-4-iodo-PyMTA was first

reproduced so that simulations of the Gd-rulers contained the proper intrinsic linewidth

of the Gd-PyMTA complex. This was done by introducing an artificial broadening in the

simulations as a strain of the isotropic g-value of the S = 1/2 spin. This g-strain was

taken to be a Lorentzian distribution of g-values centered at g = 1.992 with a FWHM

of 0.00028, chosen so that the resulting simulated lineshape of the S = 1/2 spin in the

absence of dipolar interaction matches as closely as possible the measured CW EPR

lineshape and the 0.77 mT linewidth of the central peak of Gd-4-iodo-PyMTA (Figure

2.7).

The isotropic g-value of the S = 7/2 spin was also taken to also be g= 1.992. A

small Voigtian convolutional line broadening (lwpp = [0.2 0.5] in EasySpin) was in-
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Figure 2.7: Measured 240 GHz CW EPR lineshape of Gd-4-iodo-PyMTA at 30 K with
the corresponding simulated lineshape. The simulation is of a S = 1/2 spin was matched
to the lineshape of Gd-4-iodo-PyMTA by imposing an artificial broadening in the form
of a g-strain on the isotropic g-value of the S = 1/2 spin.

cluded so that the simulated derivative CW EPR lineshape produced a smooth line. The

g-strain on the S = 1/2 spin and the convolutional line broadening were the only free

parameters in these simulations and were determined by the criteria of reproducing the

lineshape of Gd-4-iodo-PyMTA. To simulate the broadening in the CW EPR spectra of

the Gd-rulers, an electron-electron interaction term was added to the simulation. This

function in EasySpin computes the full interaction tensor including contributions from

both the secular (Equation 2.4) and pseudo-secular (Equation 2.6) part the dipolar coul-

ing term. The through-space dipolar interaction between the two electron spins was input

by defining the principal values of the traceless electron-electron interaction matrix in

its eigenframe. The magnitude of the dipolar interaction (Equation 2.5) used in these

simulations corresponds to that at the calculated most probable Gd(III)-Gd(III) distance

for a Gd-ruler at 173 K (Table 2.1). Simulations were also run using the distance distri-
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butions for the Gd-rulers shown in Figure 2.2, but the Gd-rulers are sufficiently rigid that

the effect of the small distance distributions on the simulated CW EPR lineshapes were

negligible and therefore only the most probable distance was used in the final simulations.

The results of these simulations are overlaid on the spectra of the Gd-rulers in Figure 2.3.

Remarkably, given the many simplifying assumptions these simulations are based on, the

measured lineshape of the Gd-rulers are well described by the simulations. Particularly

in the case of the short Gd-rulers 10 (1.4 nm) and 3 (1.2 nm), many of the details of the

measured lineshape - including the approximate positions and amplitudes of the split-

tings resulting from interaction with an S = 7/2 spin - are reproduced. Furthermore,

the dramatic broadening and complex lineshape observed for Gd-Gd distances of 1.2 nm

and 1.4 nm suggest that sub-Ångstrom Gd-Gd distance discrimination within this range

is possible with Gd-based spin labels. While not quantitative at this level, these simu-

lations do validate the assumption that the observed broadening of the measured CW

EPR lineshape of the Gd-rulers is arising primarily from the electron-electron dipolar

interaction between two Gd(III) complexes. This allows us to confidently determined

Gd(III)-Gd(III) distances from the magnitude of the dipolar broadening of the 240 GHz

CW EPR lineshape.

Unfortunately, simulations of this type can become rather more complicated at tem-

peratures of 215 K or 288 K, i.e. at those temperatures which are physiologically relevant.

Simulation of EPR spectra in the rigid-limit, as was used for the above 30 K simulations,

is rather well defined in the literature, as is the rapid-tumbling limit. If samples prepared
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in glassy trehalose could be made such that there is a truly isotropic distribution of spin

labels and spin label orientation, then the rigid-limit case may be used for room tem-

perature simulations of CW EPR spectra. However, if we wish to measure some protein

or other biological system which has been spin labeled with Gd(III) and is in a liquid

solution, we can easily fall into an intermediate regime where the dipolar interaction

and the dynamical effects of the protein and the motion of the spin label relative to the

protein become important. It has been shown that there are at least some cases, for

nitroxide-labeled proteins where the rotational correlation time of the interspin vector is

sufficiently slow, where the rigid lattice case may still be used to a good approximation

at physiologically relevant temperatures [11]. In this work, the rigid-limit simulation did

not satisfactorily reproduce the high-temperature data, however it remains to be tested

whether or not this is the case for a Gd(III)-labeled protein.

2.8 Distance limits

The results of the lineshape analysis of 240 GHz CW EPR spectra of Gd-4-iodo-PyMTA

and the Gd-rulers place the upper distance limit for measuring significant dipolar broad-

ening between 3.4 nm and 4.3 nm at 30 K. However, this is not expected to represent an

absolute upper limit for this technique, as the distance sensitivity of this measurement is

highly dependent on the intrinsic linewidth of the chosen Gd(III) complex, as well as the

SNR and general quality of the data. For Gd-4-iodo-PyMTA, the peak-to-peak CW EPR

linewidth was measured to be 0.77 mT at 240 GHz and 30 K, while Gd(III) complexes

52



such as Gd-DOTAM and Gd-NO3Pic, which were previously shown to have very narrow

EPR linewidths at X- and W-band frequencies [30], have linewidths of 0.53 mT and 0.45

mT at 240 GHz, respectively. This corresponds to even narrower EPR lines than the

0.55 mT observed for solutions of GdCl3 in D2O/glycerol−d8 [53], allowing us to project

that the distance sensitivity by CW EPR linehsape analysis can be further improved by

an appropriate choice of Gd(III) complex for the spin label. If, conservatively, we assume

that a 25 % increase of the intrinsic peak-to-peak linewidth can be clearly resolved as

line broadening (as for Gd-ruler 13 (3.4 nm)), then assuming a 1/r3 dependence of the

broadening on interspin distance, a measured distance of ∼ 4.0 nm should be achievable

for a Gd(III) spin label with a 0.5 mT intrinsic linewidth. However, the rational design

of new Gd(III) complexes is not so straightforward, and it remains to be seen whether

or not the chemical alterations needed to make such complexes suitable for use as spin

labels will impact their intrinsic linewidth. This is discussed further in Section 3.9.

Achieving such narrow intrinsic linewidths for Gd(III) complexes in practical appli-

cation to spin labeling proteins or other biological systems remains a difficult challenge.

In order to employ a Gd(III) complex as a spin label it needs to be chemically altered,

e.g. by the introduction of an MTS or maleimide linker which binds to a cysteine residue

introduced into the protein at the site of interest by site-directed mutagenesis. The

addition of such a linker disrupts the the type, number, and organization of atoms in

the ligand which bind the Gd(III) ion, which in turn can alter the intrinsic linewidth

of the Gd(III) complex. Furthermore, non-covalent interaction with the compound to
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which the spin label is bound, such as by proteins or lipid systems, will likely impact the

linewidth. It is also desirable to have Gd(III)-based spin labels be as small as possible, so

that binding to buried or interfacial sites in a protein is not limited by steric hindrance.

This is often difficult to achieve in practice, as relatively small Gd(III) complexes such

as Gd-4MMDPA tend to have prohibitively large intrinsic linewidths, while those with

very narrow intrinsic linewidths, such as Gd-NO3Pic or Gd-DOTA, tend to be large in

physical size. Furthermore, since small Gd(III) complexes such as Gd-4MMDPA make

few coordinating bonds with the Gd(III), additional problems arise from the Gd(III)

not being tightly bound to the ligand, resulting in possible separation of the Gd from

the ligand or multiple 4MMDPA ligands coordinating a single Gd(III) ion. The intrinsic

linewidth of the central transition of is, to a large extent, determined by the second-order

ZFS parameters of the Gd(III) complex. As will be discussed in Chapter 3, it is generally

observed that the more symmetric, rigid complexes which satisfy as many as possible of

the 9 coordinating bonds of Gd(III) have the smallest second-order ZFS parameter val-

ues and thus the smallest intrinsic linewidth. It remains a concern for this work that

the Gd(III) complexes which display the narrowest intrinsic linewidths also tend to be

physically large, resulting in difficulties in spin labeling due to steric constraints.

The linewidth of the central transition may be further narrowed by moving to higher

measurement frequencies, since the | − 1/2〉 → |1/2〉 transition scales with D2/gµBB0.

This move to higher frequencies would be particularly advantageous for leveraging exist-

ing commercially available Gd-based spin labels such as Gd−4 MMDPA, whose intrinsic
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linewidth of 1.3 mT at 240 GHz is too broad for sensitive CW EPR distance measure-

ments at this frequency [53].

The upper limit for measurable Gd-Gd distances is also expected to improve with

improved data analysis methods. In this chapter, distances were extracted using only

the peak-to-peak linewidth of the 240 GHz CW EPR spectrum. However, the Gd(III)

lineshape can be rather complex, as seen in the case of the short Gd-rulers, and encodes

a great deal more information than merely the peak-to-peak separations. Indeed, this

simplification of the CW EPR spectra to a peak-to-peak broadening forces rather large

error bars on the shortest Gd-rulers due to ambiguity in defining peak positions (Figure

2.6). The complex spectra observed for these short Gd-rulers should, in principle, al-

low for more accurate fitting than the rather featureless spectra of the longer Gd-rulers.

Other methods for distance determination which rely on such simplistic interpretations

of the CW EPR spectra, such as second-moment analysis (Appendix B), present simi-

lar limitations. Additionally, the distribution of distances often contains information of

equal value to that of the mean interspin distance. For example, distance distributions

may inform on the relative frequency of conformers of a biomolecule or on aggregation

resulting in multiple label-to-label distances, making them an important analysis target.

CW EPR lineshape analysis should be sensitive to the interspin distance distribution,

but the extraction of this information will require a better understanding of the vari-

ous factors contributing to the CW EPR lineshape. The method of Pake convolution

(deconvolution), extended to the S = 7/2 case by Edwards et al. [53], is one poten-
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tial analysis method to determine distance distributions or multiple distances. However,

while the definition of the Pake pattern may be extended to arbitrarily high-spin, it does

not include other factors, such as zero-field splitting, which contribute significantly to

high-spin EPR spectra. In order to appropriately account for such additional terms in

the spin Hamiltonion, and the complicated interplay of the dipolar interaction with the

zero-field splitting terms, one must from first-principles simulate the full effective spin

Hamiltonian. The simulations discussed above provide a start in this direction by cap-

turing the primary contributions to the CW EPR lineshape, but a more detailed analysis

would require simulation of the full effective spin Hamiltonian of two interacting S = 7/2

spins, including contributions from the zero-field splitting term. Dalaloyan et al. have

shown that below a distance of 3.4 nm and with small ZFS - conditions under which the

high-field CW EPR technique is most sensitive - inclusion of the effects of the zero-field

splitting parameter D on the pseudo-secular part of the dipolar interaction is crucial for

extracting accurate distances and distance distributions from DEER of Gd-Gd systems

[45, 129]. The interplay of high-spin, zero-field splitting, and dipolar interactions in sys-

tems of interacting Gd pairs was recently investigated theoretically by Manukovsky et al.

[101], confirming the importance of considering the influence of the ZFS term on the re-

sulting EPR spectrum when conducting distance measurements with Gd(III)-based spin

labels.

In light of this work, one should consider as a first step to improving the CW EPR

simulations presented here the inclusion of the contributions ZFS term on the secular and
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pseudosecular parts of the dipolar interaction. In frozen glassy solutions, the second-order

ZFS parameters are the most important and may be determined by independent measure-

ments by the method(s) discussed in Chapter 3. However, while a fully first-principles

simulation of the 240 GHz CW EPR spectra would greatly enhance our understanding of

the contributions to the lineshape, such simulations are highly computationally intensive

and may not be very practical for day-to-day use in distance measurement in e.g. protein

systems. In the W-band DEER measurement of dipolar coupling of Gd(III) complexes,

this can be mostly avoided by choosing Gd(III) complexes with large ZFS [45, 129, 101].

Unfortunately, this is not possible for the 240 GHz CW EPR measurement, since we

rely very heavily on the Gd(III) complex having a narrow intrinsic linewidth which goes

hand-in-hand with a small ZFS. Ideally, one would find some simplifying approximation

which would speed computation time while preserving the integrity of the simulation, by

e.g. only diagonalizing the portions of the spin Hamiltonian which are most significant

[45]. Another approach may be extending the Pake convolution method to include ZFS.

While the high-spin extension of the Pake pattern proposed by Edwards et al. [53] does

not allow for inclusion of the ZFS, other EPR simulation software, such as the EasySpin

toolbox, may be able to provide an appropriate broadening function which does include

the ZFS interaction.
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2.9 Impact and Outlook

Lineshape analysis of 240 GHz CW EPR spectra of rigid Gd-rulers at 30 K demonstrates

scaling of dipolar line broadening with 1/r3 and distance sensitivity ranging from 1.2 nm

up to ∼ 3.4 nm when Gd-PyMTA is used as the spin label. The same 1/r3 dependence

is observed at biologically relevant temperatures of 215 K and 288 K, with the upper

distance limit reduced to ∼ 3.2 nm and ∼ 2.9 nm, respectively. The origin of this reduc-

tion in the upper distance limit with increasing temperature is not yet fully understood.

Fortunately, we have no indication that these distances represent fundamental limits of

this technique. The upper measurable distance by CW EPR could be further increased

by using a Gd(III)-based spin label with a narrower intrinsic linewidth and/or moving to

higher measurement frequencies. Additionally, further improvements in the analysis of

the CW EPR lineshape would serve to greatly enhance the reliability of the measurement,

and hopefully in future work be able to provide information on both mean distances and

their distributions. The lineshape simulations presented in this chapter represent a start

towards this goal, but need to be further improved in order to understand all the de-

tails of the complex lineshape of interacting Gd-Gd pairs, particularly for short interspin

distances.

The results in this chapter allow us to project that distance determination by lineshape

analysis of CW EPR spectra recorded at very high frequencies using Gd(III) complexes

as spin labels will be a highly useful technique for structure studies of complex biological

systems where the application of pulsed EPR techniques, such as DEER, is challenging
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or when measurements above the solvent glass transition temperature are desirable or

necessary. Practical applications of this technique will benefit from employing Gd(III)

complexes with very narrow central EPR lines, independent of the local environment of

the spin label. This calls for Gd(III) complexes with ligands filling all coordination sites

of the Gd(III) ion, being resistant to substitution of any coordinating functional group

moieties of the biomolecule, and being conformationally fixed as to keep the geometry

of the complex independent of the environment. Work is already underway to develop

improved Gd(III)-based spin labels for EPR which are more rigidly affixed to the protein,

either by using a short rigid linker [1], or by binding the spin label to two nearby residues

on the protein [174]. Recent reports indicate these new Gd(III) complexes give very

narrow distance distributions when measured by W-band DEER, and would be also be

interesting for high-field CW EPR applications.
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Chapter 3

ZFS paramters of Gd(III) complexes

The material in this chapter is being prepared in a different format for publication as:

Jessica A. Clayton, Katharina Keller, Mian Qi, Julia Wegner, Vanessa Koch, Henrik

Hintz, Adelheid Godt, Songi Han, Gunnar Jeschke, Mark S. Sherwin, and Maxim Yulikov,

”Quantitative analysis of zero field splittings in Gd(III) complexes.”

MQ, JW, VK, and HH synthesized the Gd(III) complexes under the supervision of

AG. KK performed the EPR measurements at Q-/W-band, worked on convergence crite-

ria for the simulations, and performed analysis and calculations related to Model 1 under

the supervision of MY and GJ. JAC performed the 240 GHz EPR measurements, worked

on the convergence criteria for the simulations, and performed the analysis and calcu-

lations related to Models 2 and 3 under the supervision of MSS and SH. GJ performed

the analysis with the superposition model. All authors analyzed the experimental and

computational results for all models.
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3.1 Introduction

After the study of the CW EPR lineshapes of Gd-rulers presented in Chapter 2, it

became evident that precise, detailed knowledge of the zero-field splittings of Gd(III)

complexes would be of great importance for further developments in simulating the CW

EPR lineshapes of Gd(III) complexes and for the design of new Gd(III) complexes for

use as spin labels.

In glassy frozen solutions of Gd(III) complexes, the lineshapes of EPR transitions are

dominated by the angle-dependent zero-field splitting (ZFS) term in the spin Hamilto-

nian. This interaction arises from interaction of the Gd(III) ion with ligands, as well

as some relativistic corrections and configuration interaction terms arising from the two

electron’s spin-orbit coupling operators [112]. Due to the angular dependence of this

term, there can arise cases of energy level crossings or resonant conditions when a single

microwave frequency corresponds to two different EPR transitions with or without a level

in common. Accordingly, several spectroscopic effects observed for Gd(III) complexes are

connected to the mean values and distributions of the ZFS parameters. In particular,

the following effects are thought to be influenced by the distribution of ZFS parameters:

distortions of the Gd(III)-Gd(III) distance distributions measured by W-band DEER for

short distances (<3.5 nm) [45, 129, 101], population transfer in Gd(III)-Gd(III) DEER

experiments [48], reduction of the Gd(III)-nitroxide DEER echo intensity [180, 97], the

width and shape of the central Gd(III) transition which is relevant for the CW EPR based

distance measurements discussed in Chapter 2 [41], the absence of orientation selection
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for Gd(III) measured by DEER [65], and the transition-dependent transverse relaxation

of Gd(III) complexes [125].

A detailed analysis and understanding of these various spectroscopic effects requires

knowledge of the distribution of ZFS parameters for the Gd(III) complex under study.

Currently, quantum chemistry calculations, including DFT, do not allow for the deter-

mination of the ZFS parameters of Gd(III) complexes with the precision necessary for

EPR applicaitons [93]. The computation of ZFS parameters is further complicated by the

broad distributions of ZFS parameters observed for Gd(III) complexes in frozen solutions

due to the dynamical rearrangement of the chelating molecule around the Gd(III) ions

in the solution before freezing [180]. As such, the most accurate method of determining

ZFS parameters is by the fitting of EPR spectra. Here, the quality of the EPR data,

reliability of the model, and the fitting procedures used are of crucial importance. The

major developments in this direction to date were in studies focused on the relaxivities

of difference Gd(III) complexes used for magnetic resonance imaging (MRI)[126, 22],

where Gd(III) complexes are often employed as contrast agents. These previous studies

used two somewhat different models for the distribution of ZFS parameters, which have

since become widely adopted in the literature. However, no study has been undertaken

to determine the precision and reliability of the ZFS parameters determined by these

methods, and the two models have never been directly compared.

Due to the importance of the reliable determination of these values, we undertake

in this chapter a detailed investigation of the fitting of EPR spectra to extract ZFS
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parameter values. In this work, we fit a set of multifrequency EPR data to the two models

provided by literature for the distribution of ZFS parameters and explore important

details of fitting procedures, compare the models, and compute typical errors bars for

the determined parameters. Finally, we studied correlations between the structures of

the Gd(III) complexes and the magnitudes and distributions of the ZFS parameters using

a superposition model [112, 126].

3.1.1 Theoretical background

The full effective Gd(III) spin Hamiltonian was introduced in Chapter 2. Here, we focus of

the contributions most important to the determination of the ZFS parameters of Gd(III)

complexes in frozen glassy solutions.

Two out of six stable isotopes of Gd are magnetically active, with nuclear spin of

3/2: 155Gd (14.8 % natural abundance, µ/µN = −0.2582) and 157Gd (15.65 % natural

abundance, µ/µN = −0.3385) [96]. The hyperfine coupling with these nuclei is small,

about 16 MHz, and is unresolved in the Gd(III) EPR spectrum [30]. Therefore hyperfine

interactions are typically ignored in EPR simulations. The other four stable isotopes

of Gd (154Gd, 156Gd, 158Gd and 160Gd) have zero nuclear spins. The main remaining

contributions to the spin Hamiltonian of an isolated Gd(III) ion are the electron Zeeman

(EZ) interaction and the zero-field splitting (ZFS) interaction. The general form of this

spin Hamiltonian can be written as

Ĥ = β
(
~B · g · ~̂S

)
+
∑
k,q

Bq
kÔ

q
k (3.1)
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where β is the Bohr magneton, ~B is the static magnetic field, g is the g-tensor, ~̂S is the

total spin vector operator, Ôq
k are spin operator equivalents for corresponding spherical

harmonics, and Bq
k are numeric coefficients for each of the spherical harmonics operators

using the notation of the extended Stevens operators. In the EPR spectral simulations

performed in this work, we assume an isotropic g-tensor that is described by a single

g-value of g = 1.992 [131, 31]. The sum can be expanded as∑
k,q

Bq
kÔ

q
k = B0

2O
0
2 +B2

2O
2
2 +B0

4O
0
4 +B2

4O
2
4

+B4
4O

4
4 + higher-rank terms (3.2)

where the Bi
2 (i = 0, 2) are the second-rank ZFS terms and the Bk

4 (k = 0, 2, 4) are the

fourth-rank ZFS terms for half-integer spins. For S ≥ 3, there are also sixth-rank ZFS

terms (omitted above) [90, 3].

In principle, all of the coefficients Bq
k can be determined from EPR data. Such studies

have been performed on Gd(III)-doped single crystals where the angular dependencies of

the EPR transitions could be precisely measured and a large number of ZFS coefficients

could be reliably determined [3, 34]. However, in all reported EPR studies so far of

Gd(III) complexes in frozen glassy solutions, a broad distribution of the second-order

ZFS parameters is always observed [127, 65, 179]. Because of the broad distributions of

the second-order ZFS parameters and no access to any angle-resolved information, it is
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not possible to determine the 4th and 6th order ZFS parameters for Gd(III) complexes

in frozen glassy solutions. Furthermore, the higher-order ZFS terms, while present for

Gd(III), are substantially smaller than the second-order terms and typically can be safely

neglected [58].

We therefore model the EPR spectra of Gd(III) complexes under the simplification

that only terms quadratic in the total electron spin operators are left in the spin Hamil-

tonian. The second-order ZFS term in the spin Hamiltonian is commonly parameterized

by two coefficients D and E,

ĤZFS = D ·
(
Ŝ2
Z −

1

3
S(S + 1)

)
+ E ·

(
Ŝ2
X − Ŝ2

Y

)

= 2D/3 · Ŝ2
Z + (−D/3 + E) · Ŝ2

X + (−D/3− E) · Ŝ2
Y . (3.3)

This approximation has been demonstrated to be physically reasonable on a number of

Gd(III) complexes in frozen glassy solutions, where typical fitted ZFS parameter distri-

butions show only a very small fraction of species with nearly axial symmetry (E ≈ 0)

and an even smaller fraction of high symmetry cases with D ≈ 0 and E ≈ 0 where higher

rank ZFS terms would become important [126].

We can write the eigenvalues of the ZFS operator in its eigenframe as DX , DY and DZ ,

such that the parameters D and E are defined as D = 3DZ/2 and E = (DX −DY ) /2.

Therefore,

DX = −D/3 + E
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DY = −D/3− E (3.4)

DZ = 2D/3

By convention, the DY value should lie between DX and DZ , and the relation

|DX | < |DY | < |DZ | (3.5)

must hold true. By this definition, |E| ≤ |D/3|, and D and E must have the same sign.

The ZFS tensor is traceless, so we have the additional relation DX +DY +DZ = 0.

In order to determine the second-order ZFS parameters for a particular Gd(III) com-

plex, we need to fit two distributions, P (D) and P (E), to the measured EPR spectra.

In many cases, it is convenient to instead of P (E) to fit the distribution P (E/D), since

it assumes the same range of values 0 ≤ E/D ≤ 1/3 for any D. To further restrict the

number of fit parameters, necessary as a result of the rather featureless EPR spectra

characteristic of Gd(III) complexes, a simple model for the form of the distributions of

P (D) and P (E/D) is typically assumed. This problem was tackled in two different ways

in the previous reports of Raitsimring et al. [126] and Benmelouka et al. [22]. The

models for the ZFS parameter distributions proposed by these authors are summarized

next.
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3.1.2 Model 1 (Benmelouka, et al.)

The simplest model for the distributions of D and E in the ZFS term of the spin Hamilto-

nian (Eqn. 3.3) was described by Benmelouka et al. [22]. The authors assumed that the

distributions of D and E in frozen glassy solutions of Gd(III) complexes can be described

by two uncorrelated Gaussian distributions (Figure 3.1 (A)), which can be written as

P (D) =
1√

2πσ2
D

· exp

(
−(D − 〈D〉)2

2σ2
D

)
;

P (E) =
1√

2πσ2
E

· exp

(
−(E − 〈E〉)2

2σ2
E

)
. (3.6)

The authors reported reasonably good agreement between EPR spectra of Gd(III) com-

plexes and their simulations with this model for spectra measured at 240 GHz, Q-band,

and X-band [22, 21]. Since the D and E values are linear combinations of the eigenvalues

of the ZFS tensor, this model essentially assumes Gaussian distributions for the DX ,

DY and DZ values, with identical widths of distributions for DX and DY . Note that if

these distributions are broad, some combinations of D and E values contradict Equations

3.4 and 3.5. Due to this conflict with the conventional definition of these parameters,

the distributions of D and E were redefined by a reordering of the indices to be in line

with Equations 3.4 and 3.5. The properly redefined distributions for D and E appear

bimodal, as described in more detail in Section 3.4. This situation is sketched in the

Figure 3.1 (B). Furthermore, due to the conventional definition, small variations in the
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DX , DY and DZ values can shift the position of a point in the D and/or E distributions

from the positive to the negative component of the distribution. The bimodality of the

distributions is therefore a consequence of the definitions of these variables, rather than

a true physical effect.

Model 1 (Benmelouka, et al.) Models 2/3 (Raitsimring, et al.)
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Figure 3.1: Graphical representation of the models for the distributions of the second-
order ZFS parameters used in this work. (A) Model 1 assumes P (D) and P (E) are
described by two uncorrelated Gaussian distributions. (B) Reshuffling of the indices
to correct for inconsistencies in the definition of this model result in an approximately
bimodal Gaussian distribution for D and E. (C) Model 2 assumes P (D) is a bimodal
Gaussian distribution, where the +D and −D contributions have equal amplitude and
width. (D) Model 3 adds an asymmetry parameter P (+D)/P (−D) to Model 2, which
allows the relative amplitudes of the +D and −D contributions to vary. (E) For Models
2 and 3, E/D follows a polynomial distribution given by P (E/D) ∝ (E/D)−2 · (E/D)2.

3.1.3 Models 2 and 3 (Raitsimring, et al.)

Another approach to model the broad distributions of ZFS parameters D and E was

suggested by Raitsimring et al. [126, 127]. The distributions of ZFS parameters were
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built computationally under the approximation that ZFS term can be represented as

a linear combination of the ZFS contributions from single coordinating atoms in the

ligand, where each coordinating atom is assumed to be identical and contribute an axial

ZFS (E = 0) of magnitude D directed along the Gd-atom bond. This model was then

incorporated into Monte Carlo simulations where the coordinating atoms were assumed to

have randomly distributed positions over a metal ion sphere. This Monte Carlo modeling

found that the D distributions are bimodal, with the centers of the two approximately

Gaussian modes placed nearly symmetrically with respect to D = 0. This result was

found to be qualitatively similar for many Gd(III) complexes with various numbers (7-9)

of ligands binding the metal ion. In application to fitting experimental EPR spectra, this

distribution was simplified to a bimodal Gaussian distribution, in which the positive D

and negative D peaks in the P (D) distribution were assumed to have equal amplitude

and width (Figure 3.1 (C)). The distributions P (E/D) were found to be slightly different

for the positive D and negative D modes, but could be approximately described by a

polynomial function of the form

P (E/D) ∝ (E/D)− 2 · (E/D)2. (3.7)

According to Equation 3.7, the maximum of the probability density function P (E/D)

corresponds to the value E/D = 0.25. At E/D = 0 (axially symmetric complexes) the

probability density is exactly zero and P (E/D) builds up approximately linearly for small

values of E/D (Figure 3.1 (E)).
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This model is a phenomenological assumption, as for typical Gd(III) complexes the

coordinating atoms about the Gd(III) ion physically cannot assume any arbitrary orien-

tation. Rather, the structure of the ligand dictates the average positions and mobility of

the coordinating atoms. For ligands which offer fewer than nine coordinating atoms, the

remaining coordination positions can be filled by solvent molecules. Nevertheless, the

authors reported that simulations with this model successfully reproduced experimental

EPR spectra of a series of Gd(III) complexes and the model has been widely adopted in

the EPR literature [126, 127].

In this work, in order to discuss the effect of the bimodality of the distribution of the

ZFS parameter D, we shall consider two versions of this model. In Model 2, we assume

that the relative weights (amplitudes) of the positive D and negative D components of

the P (D) distribution are equal (Figure 3.1 (C)). In Model 3, we allow different relative

weights of the positive and negative Gaussian modes in the D distribution, denoted by

the ratio of amplitudes P (+D)/P (−D) Figure 3.1 (D). This asymmetry in the bimodal

P (D) distribution was observed in the Monte Carlo simulations of Raitsimring et al.

[126], and was found in this work to be necessary to account for the experimentally

observed asymmetry of the Gd(III) EPR spectra at high fields. Both Models 2 and 3 use

the definition of the P (E/D) distribution given by Equation 3.7 and sketched in Figure

3.1 (E).
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3.2 Gd(III) complexes

A series of six Gd(III) complexes were chosen to be included in this work (Figure 3.2). Gd-

DOTA (2) was obtained commercially from Macrocyclics and was used without further

purification. The synthesis details of the remaining Gd(III) complexes, which include

Gd-NO3Pic (1), Gd-maleimide-DOTA (3), R-(Gd-PyMTA) (4ab), Gd-TAHA (5), iodo-

(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7) will be described in the upcoming publication

of this work [40]. The complex R-(Gd-PyMTA) (4a) is identical to the Gd-4-iodo-

PyMTA complex used in Chapter 2 of this dissertation. Details of the sample preparation,

EPR spectrometers used, and other experimental parameters can be found in Appendix

A.

Figure 3.2: Structural formulas and naming of the Gd(III) complexes (1) - (7) which
were studied in this work.
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3.3 Numerical simulations

The EPR spectra of Gd(III) complexes were simulated in MATLAB with home written

scripts based on the EasySpin toolbox [156]. Absorption powder spectra were computed

using full matrix diagonalization with the EasySpin function pepper. The spin system

structure in EasySpin was defined as a single spin S = 7/2 with an isotropic g-value

of 1.992. The strains for g, D, and E were set to zero. Distributions of the D and

E parameters were formed according to each of the three models presented in Sections

3.4 and 3.1.3 by computing an EPR spectrum for each pair (D,E) with the EasySpin

function pepper and then summing these spectra with the weights W (D,E) according to

the probability products W (D,E) = P (D) ·P (E). This was done to allow for additional

flexibility in the forms of the D and E distributions beyond that available from the

DStrain and EStrain options provided by EasySpin, as well as to avoid artifacts from

these functions which arise in cases where the strain is comparable to the 〈D〉 or 〈E〉

values which result from computing the line broadening from the D and E strains in the

linear approximation.

Orientational averaging was performed in 3 degree increments and a 10-fold inter-

polation of the orientation grid. The magnetic field range for simulation was chosen to

well cover the experimental field range, as the EasySpin function pepper forces the com-

puted spectra to zero at its boundaries. The number of field points was set to 8000 to

reach sufficient convergence. The simulation output was set to separate the subspectra

computed for each transition of the S = 7/2 Gd(III). For the 240 GHz spectra, whose
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data was obtained by rapid passage measurements, the contributions of the individual

transitions were summed as is to arrive at the final simulated spectra. For the spectra

obtained from EDEPR measurements (Q-/W-band data), each allowed transition was

computed separately and the final spectra were obtained by summing the contributions

of the individual transitions according to their effective flip angles (C.1.5).

Two different approaches to the sampling of the D and E distributions were inves-

tigated. First, the distributions of ZFS parameters were sampled by a regular grid of

points. Second, a Monte Carlo sampling was used, where a large set of randomly dis-

tributed (D,E) pairs is generated and the overall EPR spectrum is computed as a linear

combination of the EPR spectra for all (D,E) pairs. It was found in the course of this

work that the Monte Carlo sampling of the D and E distributions resulted in the optimal

computation cost and avoided unphysical artifacts in the simulated spectra associated

with oversampling in the vicinity of the D = 0 point of the D value distribution. Both

approaches require careful calibration of the number of points sampled in the D and E

distributions in order to reach convergence of the simulated EPR spectrum.

Extensive details of the numerical simulations can be found in C.1. For all simulations

presented in this Chapter, a Monte Carlo sampling of the D and E distributions was

used. Unless otherwise noted, no additional line broadening terms (e.g. lw or lwpp in

EasySpin, higher-order ZFS terms, unresolved hyperfine coupling, dipolar coupling, etc.)

were included.
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Figure 3.3: Contributions of the seven allowed EPR transitions for Gd(III) to the overall
EPR spectrum. (a) Q-band and 10 K, (b) W-band and 10 K, (c) 240 GHz and 5K.

3.3.1 Spectral features of the simulated EPR spectra

The simulated EPR powder spectra of Gd(III) complexes consists of seven allowed tran-

sitions |mS〉 ↔ |mS + 1〉, which are broadened by anisotropy of the ZFS. According to

Kramers’ theorem, for a half integer spin the levels |±mS〉 are degenerate in zero magnetic

field. When the ZFS is weak compared to the electron Zeeman interaction, as is the case

for all Gd(III) complexes studied in this work, the subspectrum of the |−1/2〉 ↔ |+1/2〉

transition is much narrower than the other transitions [12]. This central transition is

only broadened by ZFS to second-order in perturbation theory, while the other Gd(III)

transitions are broadened by ZFS at first-order, as was discussed in Section 2.2. Due to

the narrowing of the width of the |−1/2〉 ↔ |+1/2〉 transition with increasing magnetic

field, the peak intensity and the relative width of this transition with respect to the full

width of the Gd(III) EPR spectrum decreases with increasing magnetic field.

An illustration of these spectral features are shown in Figure (3.3). The |−1/2〉 ↔

|+1/2〉 transition contributes a sharp narrow feature at the center of the EPR spectrum,

while the other transitions are broad and contribute primarily to the envelope of the
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total lineshape. The relative populations of the seven allowed EPR transitions will vary

with temperature according to a Boltzmann population distribution. At a temperature

of 10 K, the |−1/2〉 ↔ |+1/2〉 transition dominates the overall spectrum at Q-band

and W-band. At 240 GHz and 5 K, the central transition is further narrowed and

reduced in intensity. Additionally, the low temperature and high magnetic field results in

approximately 90% of the population in the lowest energy level (Appendix C.2), such that

the broad envelope of the |−7/2〉 ↔ |−5/2〉 transition dominates the overall lineshape.

The lineshape of this transition is most asymmetric with respect to the position of the

narrow central peak, which remains visible due to its narrow width. This feature allows us

to trivially assign the sign of D. In the convention that 0 ≤ |E|/|D| ≤ 1/3, if the maxima

of the broad component of the spectrum is shifted towards high field D is negative, and

if it is shifted towards lower field, D is positive. If both positive and negative modes are

present in the D distribution, the anisotropy of the EPR lineshape indicates the difference

in the weights of these two modes (as in the P (+D)/P (−D) parameter in Model 3).

3.4 Analysis with Model 1

EPR spectra at Q-band, W-band, and 240 GHz were simulated using Model 1 with the

variablesD, σD, E, σE, and a small convolutional line broadening (Sys.lwpp in EasySpin)

taken as free parameters. Parameters were varied by visual inspection to obtain an

estimate of the relevant parameter space and to roughly gauge the performance of the

model in fitting the experimental data. Visually optimized simulations for the complexes
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Gd-NO3Pic (1) and Gd-PyDTTA (7) are shown in Figure 3.4. The analogous simulations

for all other complexes are found in Appendix C.3.
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Figure 3.4: Measured EPR spectra (black lines) and corresponding simulations with
Model 1 (light blue) for the complexes Gd-NO3Pic (1) and Gd-PyDTTA (7) at Q-band
and 10 K, W-band and 10 K, and 240 GHz and 5 K. The ZFS parameters for these
simulations are given in Table 3.1.

In the analysis with Model 1, it was observed that for certain values of the ZFS

parameters a conflict could arise in the definitions of the D and E as a pair of uncorrelated

Gaussian distributions (Equation 3.6). It has been found, in this work and previously

[126, 22, 61], that the widths σD and σE of the distributions are typically smaller but

comparable to the average values 〈D〉 and 〈E〉. Therefore, for many Gd(III) complexes

it is possible for a situation to arise where two uncorrelated Gaussian distributions for

D and E produce a large fraction of cases where either D and E have different signs, or

where the signs of D and E are the same but the relation |E| < |D/3| does not hold (e.g.
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Figure 3.5 (c, f)). In these cases one can still formally write Equation 3.3 for any pair

of values D and E and compute the values DX , DY , and DZ according to Equations 3.4

and 3.5. However, in order to satisfy the conditions of Equation 3.5 the indexes (X, Y, Z)

of the computed DX , DY and DZ values need to be reshuffled. After rearranging the

indices to satisfy Equations 3.4 and 3.5, the D and E values need to be recomputed. The

resulting distributions of P (D) and P (E/D) before and after this index rearrangement

are sketched in Figure 3.1 (A)-(B).

Complex Dinit σDinit Dpos σDpos Dneg σDneg
P (+D)
P (−D)

Gd-NO3Pic (1) 420 140 472 124 - 418 111 1.4
Gd-PyDTTA (7) 1800 514 1845 439 - 1275 271 3.3

Table 3.1: Change in 〈D〉 and σD upon reordering the ZFS parameters in Model 1
according to Equations 3.4 and 3.5 for the complexes Gd-NO3Pic (1) and Gd-PyDTTA
(7). The input distributions are single-Gaussian (Equation 3.6). Reshuffling of the indices
resuls in a bimodal Gaussian distribution of D. Units are given in MHz.

An example of the calculation reordering the P (D) and P (E) distributions for the

complexes Gd-NO3Pic (1) and Gd-PyDTTA (7) is shown in Figure 3.5. The corrected

distributions for the D and E parameters are both bimodal with different weights of the

positive and negative components. The distribution of newly computed E/D parameter

covers the full allowed range from 0 to 1/3. However, for some complexes there remains a

significant probability density at E/D = 0 (e.g. Figure 3.5 (C)), corresponding to an axial

(E = 0) ZFS, which is likely unphysical for most Gd(III) complexes. The maximum of

the probability distribution P (E/D) occurs at the value 〈E〉 / 〈D〉. Overlaying the newly

obtained D distribution by two Gaussians shows that the maxima are slightly asymmetric

with respect to zero, shifting towards larger values for the dominant component (Figure
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3.5 (a,d)). Additionally, the widths of the two new Gaussian distributions are slightly

narrower compared to the width of the input distribution. The input parameters values

and the recomputed parameter values after reshuffling of the indices for the complexes Gd-

NO3Pic (1) and Gd-PyDTTA (7) are given in Table 3.1. Table 3.2 summarizes the ZFS

parameters for all six Gd(III) complexes determined by visually optimized simulations

with Model 1 before reordering of the indices (the values obtained after reordering of the

indices are given in Table C.3). Because these reported parameter values are the result

of a fit-by-eye, error bars could not be computed.
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Figure 3.5: Distribution of ZFS parameters for Model 1 as defined in Equation 3.6 (black)
and after rearranging of the indexes (X, Y, Z) of the computed DX , DY and DZ values
according to Equations 3.4 and 3.5 (light blue) for the complexes Gd-NO3Pic (1) and
Gd-PyDTTA (7). Gaussian distributions positioned symmetrically about D = 0 are
overlaid on the rearranged distribution (dashed red). (a, d) D value distributions, (b,
e) E value distributions, and (c, f) E/D distributions. The green line shows P (E/D)
distribution from Equation 3.7 which was used in Models 2 and 3.

Comparing the corrected D and E/D distributions for Model 1 to those of Model 3
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(sketched in Figure 3.1 (B, D-E)) we note very similar forms of the distributions of ZFS

parameters. After learning that these models are so closely identical, with some particular

advantages to Model 3 which will be discussed in detail below, we did not pursue any

more rigorous fitting with Model 1 and instead turned to make a more detailed analysis

with Models 2 and 3.

3.5 Analysis with Models 2 and 3

Models 2 and 3 were also initially fit by visual inspection, and it was observed that

for rather broad ranges of the ZFS distribution parameters the correspondence between

experimental and simulated data was quite good. Additionally, the criteria for conver-

gence of the simulations (see Section 3.3 and Appendix C.1) required run-times of more

than 24 hours on a standard desktop computer to simulate a single EPR spectrum, so

that standard least-squares minimization routines (e.g. Nelder-Mead/downhill simplex,

Levenberg-Marquardt, etc.) for fitting were not practical. Therefore, in order to formal-

ize the finding of the best-fit solution and the determination of error bars on the resulting

ZFS parameters for Models 2 and 3, we generated a large library of simulated spectra for

each measurement frequency and temperature that map out a region of the parameter

space of D and σD containing the values of these parameters that we expect for the

Gd(III) complexes studied here. This library of simulations samples a parameter space

spanning D = 300− 1950 MHz and σD = 50− 600 MHz in steps of 50 MHz. In order to

have a common library to query all Gd(III) complexes studied in this work, typical val-
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ues for the measurement frequency (at Q-/W-band) and temperature (at 240 GHz) were

used in place of the exact experimental values for each Gd(III) complex, as detailed in

Table C.2. The small measurement-to-measurement deviations from these typical values

were found to not significantly impact the line shape of the simulated EPR spectra, and

hence are not expected to significantly alter the final determined ZFS parameter values.

For this library of simulations, the contributions to the line shape from each transition

and from the +D and −D modes of the bimodal D distribution for Models 2 and 3 were

saved separately. This allows for the same library of simulations to be used for both

Models 2 and 3, by either summing this contributions as is, or by adding a weighting

term denoted P (+D)/P (−D) which introduces the asymmetry in the D distribution for

Model 3. Further details of the inputs used to generate the library of simulated spectra

can be found in Appendix C.1.6.

Each simulated EPR spectrum in the library described above was compared to the

data at the corresponding measurement frequency by fixing the baseline, with a baseline

constant offset removed if necessary, and scaling the amplitude of the simulation to best

fit the data in a least-squares sense. The RMSD between each simulation and the data

was then computed according to

RMSD =

√√√√ 1

N

N∑
i=1

(sim(i)− dat(i))2 (3.8)

where N is the number of points of the measured EPR lineshape.

For all three models, the fraction of the P (D) distribution near D = 0 was significant
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enough to produce a sharp feature in the lineshape in the vicinity of the Gd(III) g-value

position. This results in the models predicting a sharper feature in the region of the

central peak than is observed experimentally. The effect of this overly sharp peak in the

simulated lineshape is sometimes in the literature reduced by the addition of an intrinsic

linewidth, as was done here in the analysis with Model 1. However, the addition of

an intrinsic linewidth of this form, while indeed reducing the overall RMSD of the fit,

does not have any physical interpretation and is used only as a beautifying parameter.

Because this linewidth parameter increases the parameter space but without helping in

determining the ZFS parameter values to any greater precision, we chose to leave out

any intrinsic linewidth terms in the analysis with Models 2 and 3. However, due to

the ambiguity in the models in correctly reproducing the region of the central peak,

as well as this region being poorly sampled in the measured 240 GHz EPR spectra,

we chose to initially exclude this region from the analysis. This was done by visually

identifying the ’kinks’ in the EPR spectrum where the sharp central peak meets the broad

envelope of the spectrum, and excluding points interior to this from the calculation of

the RMSD. This should result in approximately excluding from the fit contributions of

the |−1/2〉 ↔ |+1/2〉 transition, leaving only the remaining field ranges in the left and

right wings of the spectrum for computation of RMSD errors of the fit. The dependence

of the RMSD on the ZFS parameters was visualized as RMSD error maps. For Model

2, contour plots of the RMSD error as a function of the ZFS parameters D and σD are

shown for Gd-NO3Pic (1) and Gd-PyDTTA (7) in Figure 3.6 (full results can be found
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in Appendix C.4).
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Figure 3.6: Contours of constant RMSD as a function of (D, σD) parameter values using
Model 2 and for the complexes Gd-NO3Pic (1) and Gd-PyDTTA (7) at Q-band and 10
K, W-band and 10 K, and 240 GHz and 5 K. Simulated EPR spectra for each (D, σD)
pair were normalized to the experimental data using only the outer shoulders of the
EPR spectra and the region of the sharp central peak was excluded from calculation of
RMSD values. The asterisk denotes the set of parameter values available in the library of
simulated spectra which has the minimum RMSD value for each measurement frequency.
Each contour line represents a doubling of this minimum RMSD value.

The minimum RMSD values in these contour plots, as well as for all simulations

with best-fit parameter values computed in this Chapter, always exceed the noise level

of the experimental data. Additionally, the position of the minimum RMSD value in the

contour plots is not always the same for the three tested microwave bands. This is a

result of attempting to describe the ZFS interaction in an ensemble of Gd(III) complexes
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using a simplified model for the distributions of ZFS parameters. While the various

models available in literature seem to be relatively accurate, given the quality of the fits

to experimental data in our work and in the work of others, this does not necessarily

mean that the model is accurately describing the physical system. Therefore, caution

must be taken in attributing the best-fit ZFS parameter values for a particular model to

the true physical values.

In order to obtain a realistic estimate of the precision of the determined ZFS parameter

values, we take as a range of acceptable fit values as those which fall within the contour

of twice the minimum RMSD value. This region is bounded by the first contour line in

Figure 3.6 and elsewhere. This is, if anything, expected to be a conservative estimate of

the errors of the ZFS parameter values reported here. It can be further observed from

Figure 3.6 that the 50 MHz grid sampling of the (D, σD) parameter space in our library of

simulations is perhaps too coarse of a sampling for complexes with very small ZFS, as is

the case for Gd-NO3Pic (1). Therefore, we interpolate the ZFS parameter values on this

grid by making the assumption that the first contour line bounding the region of twice

the minimum RMSD should be smooth if we had arbitrarily fine sampling of the (D, σD)

parameters, and that the minimum RMSD should lie at the center of this contour. To

find this position, the first contour is fit by an ellipse, from which the best-fit (D, σD)

values are taken to be at the center of this ellipse, with the errors on these parameters

given by the lengths of the semiminor and semimajor axes. Taking a weighted average of

the determined values for D and σD and their associated errors at each frequency gives
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case.

the final best-fit results for Model 2, which are summarized in Table 3.2.

Two examples of the EPR spectra simulated at the three microwave bands using

the best-fit ZFS parameters (D, σD) for Model 2 (Table 3.2) and the complexes Gd-

NO3Pic (1) and Gd-PyDTTA (7) are shown in Figure 3.7. Full results can be found

in Appendix C.4. For the EPR spectra measured at Q-band and W-band, Model 2

gives very reasonable fits to the experimental data, despite the fixed equal ratio between

the positive and negative components of the bimodal D distribution (Figure 3.1 (C)).

The simulation also reproduces the position and width of the central peak, despite this
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region being excluded from the fit. However, the simulations at 240 GHz show significant

deviations from the simulations with Model 2.

Model 3 is identical to Model 2, but with an additional allowance for the optimization

of the relative contributions from the −D and +D components of the bimodal D distribu-

tion. The asymmetry of the D distribution is defined as the ratio between the amplitudes

of the positive and negative component, P (+D)/P (−D) (Figure 3.1 (D)). The asymme-

try parameter P (+D)/P (−D) was determined by fixing 〈D〉 to the closest available

value in the library of simulations to that determined using Model 2 (Table 3.2) and then

varying P (+D)/P (−D). Only the spectra at 240 GHz were used for the determination

of P (+D)/P (−D), since these were the available measurement conditions under which

the asymmetry in the experimental spectra were most prominent (Figure 3.3). We addi-

tionally attempted to determine P (+D)/P (−D) using the Q-/W-band data, but these

spectra were not sufficiently sensitive to variations in this parameter to assign a best-fit

value. The effect of this parameter was visualized with contour plots of RMSD errors as

a function of P (+D)/P (−D) and σD, and is shown for the complexes Gd-NO3Pic (1)

and Gd-PyDTTA (7) in Figure 3.8. Once the asymmetry parameter P (+D)/P (−D) was

determined via the minimum RMSD value in this error map, that value was fixed and

the (D, σD) RMSD error maps were recomputed for the three microwave bands to find

the best-fit values of these parameters. The resulting ZFS parameter values for Model 3

are given in Table 3.2 with the corresponding simulations plotted with the full dataset in

Figures 3.9 and 3.10. RMSD contour plots for all six Gd(III) complexes analyzed with
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Model 3 are plotted in Appendix C.5.
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Figure 3.8: Contours of constant RMSD as a function of P (+D)/P (−D) and σD param-
eter values using Model 3 and the complexes Gd-NO3Pic (1) and Gd-PyDTTA (7) at
240 GHz and 5 K. The mean of the ZFS parameter D was set to D = 500 MHz and D
= 1800 MHz, respectively, corresponding to the closet D value available in the library of
simulations to the D value as determined by Model 2 for this complex (Table 3.2). The
asterisk denotes the position of minimum RMSD.

In nearly all cases, with the exception of Gd-maleimide-DOTA (3), it appeared that

the P (+D)/P (−D) value is rather poorly constrained when the criterion of twice the

minimal RMSD is used as the measure of goodness-of-fit. This criteria, while used

here for consistency, is evidently not a reasonable error estimate for the P (+D)/P (−D)

parameter in Model 3. The most obvious effect of this parameter on the simulated

high-field EPR spectra is to set the relative positions of the broad component of the

spectrum with respect to the sharp central peak corresponding to the | − 1/2〉 → |1/2〉

transition. However, because the width of this central peak is so narrow compared to

the broad component of the spectrum at 240 GHz, it has a relatively small impact on

the overall RMSD of the fit. It was found that the separation between the sharp central

87



transition and the peak of the broad component of the 240 GHz EPR spectra varies

linearly with the P (+D)/P (−D) values determined from the RMSD contour plots, and

was used to estimate a typical deviation of 0.34 for the value of the P (+D)/P (−D)

parameter (Appendix C.8), though this varied between the different Gd(III) complexes.

Practically, due to the various approximations inherent to the model, it is difficult by

either method to assign an accurate value for P (+D)/P (−D). However, as was discussed

in Section 3.3.1, it is trivial to assign the overall sign of D based on the positioning of

the broad spectral component with respect to the sharp peak of the | − 1/2〉 → |1/2〉

transition. If D is positive (P (+D)/P (−D) > 1), then the broad feature will be shifted

towards lower fields. If D is negative (P (+D)/P (−D) < 1), then the broad feature will

be shifted towards higher fields. This condition places a further constraint on the value

of P (+D)/P (−D) which is not reflected in the RMSD contour plots.
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Figure 3.9: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-NO3Pic (1), Gd-DOTA (2) (240 GHz sepctra)/Gd-maleimide-DOTA (3) (Q-
/W-band spectra), and R-(Gd-PyMTA) (4a) (240 GHz spectra)/R-(Gd-PyMTA) (4b)
(Q-/W-band spectra). Overlaid are simulations with Model 3 using the best-fit ZFS
parameters presented in Table 3.2. The faded regions indicate the portion of the spectra
about the central transition which was excluded from the RMSD error map calculations.
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Figure 3.10: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-TAHA (5), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7). Overlaid are
simulations with Model 3 using the best-fit ZFS parameters presented in Table 3.2. The
faded regions indicate the portion of the spectra about the central transition which was
excluded from the RMSD error map calculations.
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3.6 Comparison of the models for ZFS parameter

distributions

A plot of the ZFS parameter distributions determined by Models 1 and 3 for all six

Gd(III) complexes is given in Appendix C.6. The ZFS parameter values determined with

Model 1 (Table 3.2) indicate that the width σD of the distribution is within 29-40 % of 〈D〉

and σE is within 33-50 % of 〈E〉. After reshuffling of the indices of Model 1 according

to the conventional parameter definitions, we noted that the corrected D distribution

for Model 1 becomes bimodal with the two approximately Gaussian modes placed nearly

symmetrically about zero. Further, these two modes have approximately the same width,

as in Models 2/3. The widths of the two modes in the corrected D distribution for Model

1 are slightly narrower than the width of the non-corrected single Gaussian distribution.

If the value of 〈D〉 is taken from the dominant mode, this value is approximately a 12

% increase from the initial single-Gaussian D value for complexes (1-5). For complexes

(6-7) with the largest ZFS, there is less than a 5 % increase in the corrected D value.

However, in these two cases the negative mode is shifted much closer to D = 0 than

for the other Gd(III) complexes. The corrected P (E) distribution for Model 1 similarly

becomes bimodal. Calculating the P (E/D) distribution from the corrected values for

Model 1 gives a result that is qualitatively similar to the P (E/D) distribution in Models

2/3, with a minimum probability density at E/D = 0 and a maxima around E/D = 0.25.

However, the overall similarity of the two E/D distributions is not as good as for the
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D distributions, with the maximum of the P (E/D) distribution of Model 1 varying by

about 15 % with respect to the maxima of the P (E/D) distribution of Models 2/3.

Additionally, the value E/D = 0 is exactly excluded in Model 3, but retains a significant

probability in Model 1.

For Models 2 and 3, the (D, σD) contour plots show that the value of D is rather

well constrained with error bars in the range of ± 5-10 %. By comparison, the value

of σD is much less well constrained by Models 2/3. In particular, for iodo-(Gd-PCTA-

[12]) (6) and Gd-PyDTTA (7), the contour plots suggest that the σD value can assume

essentially any allowed value. For the Gd(III) complexes with weaker ZFS - Gd-NO3Pic

(1), Gd-DOTA (2)/Gd-maleimide-DOTA (3), and R-(Gd-PyMTA) (4ab) - the σD value

is somewhat better constrained by the fit. But even in the best case of Gd-NO3Pic (1),

the σD value still varies by approximately ±30% within the area encompassed by the

doubled minimum RMSD contour curve (Figure C.4). Including an asymmetry of the

D value distribution helped to slightly better constrain the range for the σD values, but

did not significantly alter the best-fit values for D and σD. For the Q-band and W-band

spectra, the minimum RMSD value of the (D, σD) contour plots was not largely altered

by the addition of the asymmetry parameter which has minimal effects on the simulated

EPR lineshape at these frequencies. For the 240 GHz spectra, which displays the greatest

degree of asymmetry in the measured EPR spectra, the minimal RMSD value decreased

by more than a factor of two in some cases with the addition of the P (+D)/P (−D)

parameter in Model 3 compared to the fits using Model 2 (Appendix C.9).
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Figure 3.11: Comparison of the extracted values for the mean and width of the ZFS
parameter D for the three models. Model 1 was fit by visual inspection, and therefore
error bars on the ZFS parameters D and σD were not computed. For Models 2 and
3, mean values and error bars for D and σD were computed by combining results from
RMSD error maps which compare a library of simulated spectra to the data at the three
measurement frequencies. Models 2 and 3 were fit with the region about the central
transition excluded from analysis, and with the full EPR spectra included in the analysis.

For all six Gd(III) complexes studied, there is very good agreement in the mean value

of D between the three models. The determined D value from Model 1 initially appeared

to have the greatest deviation from Models 2 and 3, in some cases lying outside of the

range of uncertainty. However, after correction of the index ordering in Model 1, the

newly computed D value, taken as the mean of the dominant component in the bimodal

distribution, is in very good agreement with Models 2 and 3. The best-fit ZFS parameters

D and σD for all three models are compared in Figure 3.11.

In principle, both Models 1 and 2/3 appeal to physical intuition. Model 1 follows

from the central limit theorem, however this would require the presence of a virtually

unlimited number of different random ligand contributions to the D and E distributions
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in order to be strictly valid. Models 2/3 appeal to the near equality of the coordinating

atoms in the ligand and to the non-directional character of the bonds in the Gd(III)

complex. Model 2 is fundamentally limited by the restriction that the D distribution

must be fully symmetric. This appears to be an adequate description of the EPR spectra

acquired at Q-/W-band, but fails to capture the asymmetries present in the 240 GHz

data. Model 3 has two primary advantages over Model 1: (i) better cancellation in the

regions D = 0 and E = 0 which represent fully symmetric (i.e. unphysical) Gd(III)

complexes, and (ii) flexibility in varying the relative weights of the +D and −D modes

in the D distribution, which are fixed in Model 1. Additionally, Model 3 only has three

free parameters (D, σD, P (+D)/P (−D)), while Model 1 has four free parameters (or six

if lwpp is included). Given the relatively featureless EPR spectra characteristic of Gd(III)

complexes in frozen glassy solutions, having few free parameters is highly desirable in

order to have confidence in the fit.

3.7 Effects of including the central peak in the anal-

ysis with Models 2/3

For completeness, the analysis with Models 2 and 3 was repeated using the full range of

the EPR spectra, including the region of the sharp central transition. In this analysis,

the simulated spectra were scaled by a least-squares method to the experimental traces

using the full range of the experimental EPR spectra, and the resulting RMSD values
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were computed. The RMSD error contour plots, best-fit ZFS parameter values, and

corresponding simulated EPR spectra are given for both models in Appendix C.7. A

subset of these results, for the complexes Gd-NO3Pic (1) and Gd-PyDTTA (7) analyzed

with Model 2, are included in Figure 3.7 for comparison. The inclusion of the central

peak leads to RMSD values that are up to an order of magnitude larger for the Q-

/W-band spectra, where this region represents a significant fraction of the overall EPR

spectrum (Appendx C.9). For complexes with small ZFS parameter values measured

at Q-/W-band, this region can dominate the RMSD value of the fit. At 240 GHz,

there is only about a factor of two change in the minimum RMSD value of the (D, σD)

contour plots when the sharp peak is included due to the relatively small contribution

of the | − 1/2〉 ↔ |1/2〉 transition to the overall EPR spectrum at 240 GHz and 5 K.

However, despite the overall increased RMSD values, we noted enhanced stability of the

fit when the region of the central peak was included. This is particularly evident in the

case of Gd-DOTA (2)/Gd-maleimide-DOTA (3), whose fit at 240 GHz is significantly

improved when the full EPR spectrum is considered in the analysis. Additionally, since

the position of the broad background with respect to the sharp central transition in the

240 GHz spectra is one of the primary hallmarks of the P (+D)/P (−D) parameter, this

value is more readily determined if the full 240 GHz EPR spectrum, including the central

peak, is used.

Importantly, despite uncertainties in the best treatment of the region of the central

transition, the predictions for the best-fit D and σD values did not change significantly
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upon inclusion of the region of the central transition (Figure 3.11). However, the range of

acceptable D values within the doubled minimum RMSD contour was found to increase

upon the inclusion of the central peak due to the increased minimum RMSD value. This

effect is much more notable for Gd(III) complexes with small ZFS than those with larger

ZFS parameter values.

While the final results for the value of the ZFS parameterD do not significantly change

based on the treatment of the region of the central transition, the interpretation of the

RMSD contour plots becomes difficult when it is included. For the broad component of

the EPR spectrum, the spectral width increases linearly with D, as long as the high-field

approximation holds. However, the central | − 1/2〉 ↔ |1/2〉 subspectrum is broadened

only to second order in perturbation theory by the ZFS term, so the spectral width

increases quadratically with D. This difference in scaling of spectral components with

respect to the magnitude of the ZFS splitting makes it difficult to simultaneously fit

both regions well by the methods described here. Additionally, the | − 1/2〉 ↔ |1/2〉

transition, due to its narrow linewidth, is very sensitive to other potential sources of

line broadening such as higher-order ZFS terms, unresolved hyperfine couplings, dipolar

interactions, etc. These considerations in the treatment of the central transition make

little difference in the analysis of the 240 GHz data, where the width of the sharp central

peak represents merely a fraction of a percent of the total linewidth of the full EPR

spectrum and thus contributes only a very small fraction to the overall RMSD value of

the fit. At lower microwave frequencies such as Q-band, these considerations become

96



much more important. However, given the quality of agreement in the fits regardless

of the treatment of the central transition, it appears that the results are not largely

skewed by the inclusion of the central peak. Rather, uncertainties in the simple models

in describing the true ZFS parameter distributions seem to be the dominant source of

error.

3.8 Superposition model to predict ZFS of Gd(III)

complexes

The measurement of second-order ZFS parameters for frozen glassy solutions of Gd(III)

complexes by analysis of EPR spectra is currently one of the most accurate means of

accessing this information. However, measurements can only be carried out on existent

Gd(III) complexes and requires a high-frequency EPR spectrometer (or, preferably, spec-

trometers at multiple frequencies). While such spectrometers are becoming increasingly

available, they are by no means commonly laboratory equipment, especially at frequen-

cies above W-band. Due to the demand for new Gd(III) complexes with specific ZFS

characteristics that are suitable for bioconjugation, there is a need to be able to predict

the ZFS characteristics of a proposed ligand structure before beginning chemical synthe-

sis of a new Gd(III) complex. There has been effort in the realms of quantum chemistry

calculations and DFT in predicting ZFS parameters of Gd(III) complexes, however these

predictions are not yet accurate enough for EPR application. Here, we make use of
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a superposition model [112, 126] to simulate ZFS parameter distributions for Gd(III)

complexes.

In the superposition model, the ZFS tensor is expressed as a sum of ligand-field

contributions from individual nuclei in the coordination spheres of an s state ion [112].

Here we use the simplification for Gd(III) complexes in frozen glassy solutions that was

previously introduced by Raitsimring et al. [126], where only directly coordinating nuclei

are considered and only the first order contribution to the ZFS Hamiltonian is computed.

The contribution of each of the coordinating nuclei can be parameterized by the ZFS

parameters D and E/D. We follow Raitsimring et al. in first building a ZFS tensor,

D =
∑
k

(
r0,k
rk

)τ
R(0, θk, φk)

 dk 0 0
0 dk 0
0 0 −2dk

RT(0, θk, φk) , (3.9)

where r0,k is a reference ligand atom to Gd(III) distance, rk is the actual ligand atom to

Gd(III) distance, τ is a scaling exponent, R(0, θk, φk) is an Euler rotation matrix in zy′z′′

notation and RT(0, θk, φk) its transpose, and the dk are single-ligand ZFS contributions

that are assumed to have axial symmetry with the unique axis being along the vector

from the coordinating atom to the Gd(III). The parameters θk, φk, and rk are spherical

coordinates of the ligated atom in the frame where the ZFS tensor D is expressed.

In contrast to Raitsimring et al., we rely on coordination geometries from known

crystal structures of lanthanide complexes. We also allow for a distance dependence of

the single-atom contributions and for atom-type dependent ZFS magnitudes dk at atom-

type dependent reference distances r0,k. In particular, we distinguish between coordinated

oxygen atoms with rO = 2.42 Å and nitrogen atoms with rN = 2.65 Å. Our model thus
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has three fit parameters: the scaling exponent τ and the reference ZFS magnitudes dO

and dN. Note that the choice of rO and rN, which were taken as typical ligand atom

to Gd(III) distances for these complexes, is not critical since for a given τ changes in

these reference distances merely result in a well-defined change in dO and dN. We have

also tried to fit a model which does not distinguish between coordinating oxygen and

nitrogen atoms, but the fits were significantly worse and gave an unphysical negative

scaling exponent τ (data not shown).

The ZFS parameters D and E are obtained by diagonalization of the traceless sym-

metric tensor D and ordering of the principal values as described in Section 3.1.1.

3.8.1 Geometry of the Gd(III) complexes

The required ligation polyhedra were taken from crystal structures obtained from the

Cambridge Crystallographic Data Centre and converted to .xyz files using the Mercury

software. Homewritten MATLAB scripts were used for further processing. Oxygen and

nitrogen atoms closer than 3 Å to the lanthanide ion were considered as belonging to

the first coordination shell. For the structures of Gd-NO3Pic [62], of Gd(III) ligated

to a modified DOTA ligand that roughly resembles Gd-maleimide-DOTA [5], and of a

Gd-PyMTA-linker-Gd-PyMTA construct (the same as the 2.1 nm Gd-ruler in Chapter

2) [? ], a full set of nine coordinating bonds were detected. For the latter two complexes,

one of the ligands was water.

No structure was found for a lanthanide ion coordinated by the PCTA-[12] ligand.
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Instead, we used the structure of Ho(III) coordinated by a similar ligand with three

phosphonate groups substituted for the carboxylate groups [94], which we presume has

a very similar coordination polyhedron. Although this complex was synthesized in water

and the crystals contain nine water molecules per two Ho(III) complexes, none of the

water molecules are coordinated to the Ho(III) ion and the coordination number is only

eight. The same coordination type is observed for Lu(III). We tried to place an additional

water ligand at a typical lanthanide-oxygen distance for such ligation (2.43 Å), but this

lead to a situation where the oxygen atom came at least as close as 2.13 Å to another

coordinating atom. Since no distance between two directly coordinating atoms shorter

than 2.62 Å was detected in any other complex, we assume that the lanthanide complexes

of PCTA-[12] have low affinity for water as a ninth ligand.

No structures were found for a lanthanide complex with TAHA or PyDTTA as the

ligand. Hence, our model with three free parameters can be fit to only four of the six

Gd(III) complexes discussed in this chapter. As a fit criterion, we used the mean square

relative deviation
∑

i(1 − |Dmodel,i| /D̄exp,i)
2 of the modeled ZFS magnitude from the

mean experimental ZFS magnitude D determined by the fit with Model 3 as given in

bold in Table 3.2.

3.8.2 Superposition model fit results

The best fit was obtained for τ = 1.102, dN = 991.3 MHz, and dO = 915.9 MHz and

reproduces very closely the experimental values for the four complexes with known ge-
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ometries (Table 3.3). The fit value for PCTA-[12] was the only complex of the four which

showed deviation from the experimental value, however the exact coordination geometry

for iodo-(Gd-PCTA-[12]) is not known. The positive scaling coefficient τ and similar

reference values for the ZFS contributions by N and O ligands are physically plausible

and confirm that the ZFS is dominated by the symmetry of the first ligand shell.

Ligand Dexp (MHz) Dmodel (MHz)

NO3Pic 485 485
maleimide-DOTA 714 714
PyMTA 1213 1213
PCTA-[12] 1861 1684

Table 3.3: Experimentally determined magnitudes of the ZFS parameter D by Model 3
and magnitudes determined by a fit with a superposition model.

The model was further tested with related structures. For Gd-DOTA without a linker

in the ligand [37], we find a similar Dmodel value of 666 MHz and similar values for the

coordination geometry of DOTA complexes of other lanthanide ions [20], assuming that

Gd(III) takes the position of the other lanthanide ion. For the geometry of the Pr(III)

of DOTA, we find D = 689 MHz, for Nd(III) 688 MHz, for Dy(III) 679 MHz, but for the

coordination geometry of Ce(III) as strongly different ZFS with D = 301 MHz is found.

3.8.3 Superposition model for the distributions of ZFS param-

eters

Next we consider the form of the distributions of ZFS parameters. In the superposition

model, a distribution of the ZFS is caused by a spatial distribution of the coordinated

atoms. Raitsimring et al. [126] allowed for a random distribution of ligands on a sphere
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with the Gd ion in the center. This broad distribution of ligands is unrealistic given

steric constraints of the ligands. Here we assume that the ligand atom positions are

distributed about the mean positions found in the crystal structures. In the simplest

approximation, distributions of the individual atoms are independent and correspond to a

Boltzmann equilibrium distribution in an isotropic three-dimensional harmonic potential.

This approximation leads to an isotropic three-dimensional Gaussian distribution of the

atom positions that can be characterized by the standard deviation σxyz of the atom

positions along the x, y, and z coordinates. A distribution of atom position of this form

corresponds to the Debye-Waller factor (B factor) in crystal structure determination.

First, σxyz was varied for the maleimide-DOTA model. The experimentally observed

relative standard deviation σD/D of ≈ 1/3 was matched for σxyz ≈ 0.1 Å. For some

of the crystal structures, σxyz can be estimated from Debye-Waller factors to be in the

range of 0.15 - 0.25 Å at ambient temperature [20, 27]. It is not surprising that similar

values are found in frozen glassy solutions, where they likely correspond to the thermal

distribution of ligand atom positions at the glass transition temperature, but may also

be additionally influenced by strain in the glass.

However, this model led to a larger 〈D〉 than obtained with the same model parameters

for σxyz = 0. This is expected, since the spatial distribution of the atom position on

average causes more asymmetry of the ligand field. We corrected for this effect by

reducing dN and dO each by a factor of 0.845. This model successfully reproduced D and

σD/D for maleimide-DOTA and provided a mean value of 0.195 for E/D, which is in
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reasonable agreement with the experimental value of 0.25 obtained using Model 1 (Table

3.2). This model also reproduced the trend in D among the four tested ligands for which

there were both experimentally determined ZFS parameter values and crystal structures

available (Table 3.3). However, the variation between the ligands was much weaker than

observed experimentally and relative distribution width σD/D decreased more strongly

with increasing D than was experimentally observed.

Ligand Dexp Dsim

(
σD
D

)exp (σD
D

)sim (
P (+D)
P (−D)

)exp (
P (+D)
P (−D)

)sim
NO3Pic 485 514 0.32 0.30 1.8 1.2
DOTA 714 698 0.46 0.24 0.3 1.5
maleimide-DOTA 714 736 0.46 0.23 0.3 4.0
PyMTA 1213 1261 0.34 0.16 1.6 85
PCTA-[12] 1830 1654 0.25 0.13 3.6 5.2

Table 3.4: Fit of the distribution of the ZFS parameter D by a superposition model. D
is given in units of MHz. Experimental data analyzed with Model 3 (Table 3.2) are used
for comparison. Note that in the experimental results, DOTA and maleimide-DOTA
were analyzed as the same compound, while in the superposition model analysis the ZFS
parameter values were computed using the known structures for each complex.

Closer inspection of the structures with Debye-Waller factor information [20, 27] shows

that the thermal ellipsoids of directly coordinating atoms usually have a smaller extension

along the lanthanide ion to ligand atom bond than perpendicular to it. An attempt to

fit models with different Gaussian distributions σr and σθ,φ for spherical coordinates r on

the one hand and θ and φ on the other hand did not significantly improve the situation.

For the final distribution model, we returned to the σxyz parameterization, but reduced

σxyz to 0.05 Å in order to obtain a compromise between reproducing the mean values and

distribution widths of D for the four Gd(III) complexes. We also tested σxyz = 0.03 Å

and σxyz = 0.07 Å, but these choices provided worse agreement with experimental data
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when considering both D and σD/D. The results for this model with σxyz = 0.05 Å are

given in Table 3.4. The model parameters used for final calculations were dN = 989 MHz,

dO = 943.5 MHz, and τ = 0.100.

The probability density distributions for D and E/D for Gd-DOTA computed with

this model are shown in Figure 3.12. The distribution of D is bimodal, arising from the

definition of D via the principal value with the largest magnitude, irrespective of sign.

The asymmetry of P (E/D) arises from the sorting of the principal values that ensures

|E/D| ≤ 1/3.
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Figure 3.12: Distributions of ZFS parameters for Gd-DOTA predicted by the superposi-
tion model. (a) Distribution of D and (b) distribution of E/D.

3.8.4 Further predictions

Together with existing crystal structures of Gd(III) complexes, the superposition model

described above can now be used for prediction of ZFS values for additional Gd(III)

complexes (Table 3.5). The superposition model was used to predict ZFS parameter
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values for an additional seven Gd(III) complexes (Figure 3.13) for which there were

structures available. The predicted values, given in Table 3.5 are mostly within the

range of the values measured in this work with the exception of the HAM2 complex,

for which a larger ZFS is predicted. Note that the uncertainties of the predictions for

EDTA and HAM2 may be particularly large, because water coordination geometry is

likely to differ between the crystal and aqueous solution if three free coordination sites

are available.

Figure 3.13: Structural formulae and naming of the Gd(III) complexes 8 - 14 considered
in further predictions of ZFS with the superposition model.
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Ligand EDTA DOTAM DTMA DO4Py DO3A DTPA HAM2

Dsim (MHz) 520 751 781 968 1120 1213 2163
(σD/D)sim 0.30 0.23 0.22 0.19 0.16 0.16 0.07
(E/D)sim 0.20 0.18 0.21 0.20 0.21 0.24 0.27
Reference [162] [27] [23] [110] [37] [89] [24]

Table 3.5: ZFS parameters predicted by the superposition model for Gd(III) with addi-
tional ligands (Figure 3.13) and references for the crystal structures used.

3.9 Discussion and remaining questions

In this chapter, we have endeavored to determine the ZFS parameters for six Gd(III)

complexes of interest for use as spin labels in future EPR studies. We explored the use

of simple models which describe the distributions of the second-order ZFS parameters

D and E (or E/D) for Gd(III) complexes in frozen glassy solutions. These models were

evaluated by comparing simulated EPR lineshapes with experimental spectra recorded

at Q-band (∼ 35 GHz), W-band (∼ 95 GHz), and 240 GHz. Finally, we developed

a superposition model, calibrated with our determined ZFS parameter values for four

Gd(III) complexes, to provide predictions for additional Gd(III) complexes which can be

experimentally verified at a later date.

The three models investigated were found to give equivalent results for the magni-

tude of the ZFS parameters D and σD to within our determined uncertainty on these

parameter values. For all three models, the distribution of D was found to be a bi-

modal Gaussian distribution, with the +D and −D contributions placed approximately

symmetrically about D = 0. For spectra recorded at Q-band, the EPR lineshape can

be reasonably well reproduced under the assumption that the bimodal D distribution is
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symmetric about D = 0 (Model 2). However, the spectra recorded at 240 GHz displayed

a significant asymmetry which in order to reproduce in the simulations required the dis-

tribution of D to be asymmetric. In Model 3, this was introduced as an additional free

parameter P (+D)/P (−D) to set the relative amplitudes of the +D and −D modes in

the D distribution. Model 1 was originally defined as two uncorrelated single-Gaussian

distributions for D and E. However, after correcting these distributions according to

the standard definitions of the D and E parameters this model also produced a bimodal

distribution very similar to that of Model 3, though in Model 1 the relative amplitudes

of the +D and −D modes in the D distribution are fixed. Additionally the recomputed

bimodal D distributions from Model 1 have, for some Gd(III) complexes, a significant

probability at D = 0. This is unphysical and would lead in the simulated lineshape to

an artificially sharp and narrow central peak at the g-value position.

Models 2 and 3 employed an E/D distribution which was broadly distributed in the

range 0 ≤ |E/D| ≤ 1/3 and described by the polynomial P (E/D) ∝ (E/D)−2 ·(E/D)2.

After the correction to Model 1, a similar distribution of E/D was recovered, though the

agreement was not as good as for the distributions of D. In particular, the distribution of

E/D for Model 1 has a significant probability at E = 0, corresponding to full axial sym-

metry, which is likely not physical for Gd(III) complexes in frozen glassy solutions. The

maximum of P (E/D) in Model 1 also deviates from that in Models 2/3, particularly for

the complexes iodo-(Gd-PCTA-[12]) (6) and Gd-PyDTTA (7). For these two complexes,

the maxima is shifted towards smaller E/D compared to the P (E/D) distribution of
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Models 2/3. Interestingly, this result goes with physical intuition. Depending on the

overall sign of D, either the low-field or high-field side of the 240 GHz EPR spectrum can

be prominent. For non-axial ZFS (E 6= 0), the EPR spectrum becomes more symmetric

as E/D approaches 1/3. At the other extreme, for an axial ZFS (E = 0) the EPR line-

shape is extremely asymmetric. Therefore, it makes sense that for iodo-(Gd-PCTA-[12])

(6) and Gd-PyDTTA (7), which have the most dramatically asymmetric spectra of the

six complexes measured in this study, that the peak of the E/D distribution would be

shifted towards zero. Similarly, the complexes Gd-NO3Pic (1), R-(Gd-PyMTA) (4ab),

and Gd-TAHA (5), which have the most symmetric 240 GHz EPR spectra of the com-

plexes measured, have the peak of the E/D distribution shifted towards E/D = 1/3 with

respect to the P (E/D) distribution used for Models 2/3 (Appendix C.6).

For the six Gd(III) complexes considered in this chapter, the magnitude of the ZFS

was found to be in the range of approximately D = 450 - 2000 MHz. Of these, only

Gd-DOTA (2)/Gd-maleimide-DOTA (3) was found to have a negative D value. For all

three models, we find that σD/D ≈ 1/3, which is comparable to that which has been

assumed in the literature. Gd-TAHA (5) displayed the most symmetric EPR spectrum

at 240 GHz, which resulted in a fairly satisfactory fit with Model 2. In contrast, the

other Gd(III) complexes displayed a greater degree of asymmetry in the 240 GHz EPR

spectrum and the quality of the fit was found to improve greatly with the addition of

the asymmetry parameter P (+D)/P (−D) in Model 3. The effect of this asymmetry

parameter was less evident at the lower microwave bands, but still slightly improved the
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quality of the fit at Q-/W-band.

Of the three models tested in this work, the distribution of ZFS parameters described

by Raitsimring et al. [126], with the addition for the allowance of an asymmetry in

the bimodal D distribution and no additional line broadening terms, provides the best

compromise between a small number of fit parameters and good match between the

simulated and experimental EPR spectra. All three models investigated in this chapter

seem to be realistic approximations of the true ZFS parameter distributions, but do

not perfectly reproduce the experimental EPR spectra of the Gd(III) complexes. This

remaining discrepancy between the simulated and experimental lineshapes reflect the

limitations of such simplistic models to a complex physical system, and force us to set

relatively large error bars for D and particularly for σD. Because the model-related error

is so large, we do not expect a significant contribution to the RMSD of the fit from

noise present in the EPR spectra, with perhaps the exception of the 240 GHz spectra of

iodo-(Gd-PCTA-[12]) (6) and Gd-PyDTTA (7). The addition of a small convolutional

line broadening helps to reduce the RMSD of the fit, indicating that the model fails to

capture all of the contributions to the lineshape in the region of the central peak. This

region of the EPR spectrum is dominated by the |−1/2〉 ↔ |1/2〉 transition, which is only

broadened to second-order by the ZFS. This results in this transition remaining narrow

at high fields and thus very sensitive to other terms in the effective spin Hamiltonian

which may be present, such as higher-order ZFS terms, hyperfine interactions, dipolar

interactions, etc. However, the inclusion of a phenomenological line broadening term
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makes the parameter space too large to confidently assign parameter values given the

relatively featureless EPR spectra typical of Gd(III) complexes in frozen glassy solutions.

More careful assignment of other contributions to the width of the | − 1/2〉 ↔ |1/2〉

transition is beyond the scope of this work.

The combining of fit results from EPR data acquired at Q-band (∼ 35 GHz), W-band

(∼ 95 GHz), and 240 GHz served to greatly enhance the confidence of the determined

ZFS parameter values, as has been noted by previous studies of a similar nature [39, 21].

Beyond simply providing more data with which to compare fit parameters, the differ-

ent microwave bands give slightly different information on the ZFS due to the varying

contributions of the EPR transitions at different measurement frequencies and temper-

atures. However, the RMSD error contour plots for Models 2 and 3 imply that a rough

estimation of the ZFS parameters D and σD would be possible with data from only a

single measurement frequency at Q-band or above. The exception to this is the deter-

mination of the P (+D)/P (−D) parameter, which required the use of 240 GHz data

recorded at low temperature. At frequencies below Q-band, the determination of ZFS

parameters becomes difficult due to the magnitude of the ZFS becoming comparable to

the measurement frequency. The report of Benmelouka et al. [21] indicated that the ZFS

parameters determined using EPR measurements at 240 GHz could successfully simu-

late measurements carried out at X-band (∼ 9.5 GHz). However, when we attempt to

simulate X-band data recorded for a subset of the six Gd(III) complexes studied in this

work, we fail to reproduce the low-frequency lineshape using the determined best-fit ZFS
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parameters for Model 3 (Appendix C.10). We attribute this to the dominant contribu-

tion of the | − 1/2〉 ↔ |1/2〉 transition in the EPR spectra recorded at X-band and 30

K, which are simulations fail to accurately reproduce even for the high-field data. How-

ever, this result is still surprising given the success of Benmelouka et al. in simulating

low-frequency EPR data [21].

Several of the Gd(III) complexes studied in this Chapter were relatively recently

synthesized and so do not have ZFS parameter values available in the literature for

comparison. Fortunately, there is a large body of work regarding the ZFS of the DOTA

family of complexes, due to their more common use as MRI contrast agents. There are

also a couple of reported values for the PyMTA ligand due to the recent use of this

complex as a spin label for distance measurement by high-field CW EPR (see Chapter

2) and pulsed EPR techniques such as DEER and RIDME at high-field. Raitsimring et

al. [126] reported values of D = 669 MHz and σD = 334 MHz. This work also quotes

a value of D = 641 MHz from the work of Clarkson et al. [39]. Benmelouka et al. give

ZFS parameter values for Gd-DOTA of D = -570 MHz, σD = 570 MHz, E = 0 MHz,

σE = 390 MHz, with an estimated error of 60 MHz on each of these values [22]. Note

that the values reported by Benmelouka et al. were determined using what we refer to

as Model 1. If these values were corrected as discussed above, the D value would be in

much better agreement with that determined by Raitsimring, et al..

More recently, ZFS parameter values were reported for the complexes Gd-DOTA and

Gd-PyMTA based on EDEPR measurements at W-band. When the W-band data was
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analyzed using what we refer to as Model 2, this gave ZFS values for Gd-DOTA of D =

500 and σD = 190 MHz [101]. A previous report [129] analyzed the W-band spectrum

of Gd-DOTA using a model similar to our Model 1 and gave values of D = 500 MHz,

σD = 450 MHz, E = 167 MHz, σE = 100 MHz. However, this analysis differs from

our analysis with Model 1 in that the distribuitons of D and E were computed using

the EasySpin [156] functions DStrain and EStrain, which are input as the FWHM of a

Gaussian distribution of the parameters D and E. These functions compute the strains

in an approximate way, corresponding to the first term in a Taylor expansion or to first-

order perturbation theory, and are valid only as long as the width of the distribution is

much smaller than the parameter itself. Additionally, the analysis in this report assumed

that the D and E are correlated. Due to these differences, it is unclear how to interpret

the reported values for σD and σE, though the value for D is similar to that reported by

Manukovsky et al. [101]. Reported ZFS parameter values for W-band EDEPR spectra

of Gd-PyMTA analyzed with Model 2 gave D = 1150 MHz, σD = 575 MHz [45] and D

= 1150 MHz, σD = 300 MHz [101].

The available literature values for Gd-PyMTA are slightly lower than the values for D

that we find in this work, though still within our determined error bars for Models 2/3.

The literature values for Gd-DOTA are also in reasonable agreement with our findings,

though again generally somewhat smaller values for D are found in the literature. This is

likely in part due to our use of two distinct complexes, Gd-DOTA (2) (at 240 GHz) and

maleimide-Gd-DOTA (3) (at Q-/W-band), which were not differentiated in our analysis.
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However, inspection of the contour plots of RMSD error seem to indicate a smaller D

value for Gd-DOTA (2) than for Gd-maleimide-DOTA (3). This trend is also supported

by the analysis with the superposition model, which indicates a value of D = 698 MHz

for Gd-DOTA and D = 736 MHz for Gd-maleimide-DOTA (3). Not differentiating these

two complexes in the analysis perhaps also explains the larger degree of variation in the

best-fit ZFS parameters for this complex compared to the other Gd(III) complexes. Of

the ZFS parameter values we calculate for Gd-DOTA (2)/Gd-maleimide-DOTA (3), the

closest to literature value is the D = 660 MHz determined by Model 3 with the full EPR

spectra included in the analysis. If we instead separate the results for the two complexes,

we arrive at values of D = 600 MHz ± 198 MHz for Gd-DOTA (2) and D = 750 MHz ±

200 MHz for Gd-maleimide-DOTA (3), which is in much better agreement with literature

values and also to the predictions from our superposition model. This increase in the

magnitude of the ZFS for Gd-maleimide-DOTA (3) compared to Gd-DOTA (2) is most

likely due to the addition of the maleimido linker, which slightly lowers the symmetry

of the complex. The two measured R-(Gd-PyMTA) complexes did not show a similar

difference in the magnitude of the ZFS parameter D (see also Appendix C.11), likely

because the atoms which directly coordinate the Gd(III) are identical for both complexes,

with the change in functional group being well separated from the first coordination shell.

The change to the ZFS upon the addition of a maleimido, MTS, or other linker will

be an important consideration when designing new Gd(III) complexes for use as spin

labels. It is, at present, difficult to predict what effect the addition of a linker will have
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on the EPR spectrum of a Gd(III) complex. The superposition model discussed in this

chapter appears to predict reasonably well the change in ZFS between Gd-DOTA and

Gd-maleimide-DOTA, and so may be a useful tool in predicting the ZFS for new Gd(III)

complexes that are functionalized for use as spin labels for EPR.
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Chapter 4

Structure studies of proteorhodopsin

The PR samples studied in this chapter were prepared and spin labeled by several grad-

uate and undergraduate students working in the Han lab at UCSB. Evelyn Chang and

Naomi Baxter prepared the PR samples for the W-band DEER measurements, under the

supervision of Sunyia Hussain and Nikki Schonenbach. The PR samples for CW EPR

measurements were prepared by Chung-ta Han and Sirish Narayan. EPR measurements

and analysis in this chapter were performed by JAC. The capillary sample holders for

room temperature measurements were developed by C. Blake Wilson.

4.1 Introduction

As was shown in Chapter 2, 240 GHz CW EPR with Gd(III)-based spin labels has ex-

tended the upper measurable distance limit of the CW EPR technique to more than

3.5 nm, depending on the instrinsic linewidth of the spin label. CW EPR is readily
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applicable to proteo-liposomes and above the protein dynamical transition temperature,

and thus has become an important tool for providing targeted structural information

on the nanometer scale on biological systems in native-like environments. In this chap-

ter, we present an application of Gd(III)-based spin labels with high-field EPR to the

study of the structure, dynamics, and oligomerization of the membrane protein prote-

orhodopsin (PR), which functions as a light-driven proton pump and is found in many

marine bacteria [19, 18]. PR presents a rather ideal biological system for exploring the

benefits and limitations of high-field CW EPR distance measurement with Gd(III) spin

labels in a biological system. PR natively spans the lipid membrane of the cell, forms

functionally-relevant oligomers, is light-activated, and is structurally homologous to other

7-alpha-helical transmembrane proteins such as the more well-known bacteriorhodopsin

and human proteins such as G-protein coupled receptors (GPCRs).

PR was first isolated from a marine bacterioplankton and is similar in form and func-

tion to archaeal rhodopsins [19]. Many variants of PR have been found in nature which

are spectrally tuned to their environment, and are broadly classified into green- or blue-

absorbing PR (G-PR or B-PR) [170, 100]. The work presented in this chapter will focus

on the G-PR variant (BAC31A8), which is the most commonly studied proteorhodopsin

[18]. G-PR absorbs light at between 520 - 540 nm depending on the protonation state

of the primary proton acceptor residue (D97), which can be tuned experimentally by

controlling the pH [59].

Oligomers have been shown to be functionally relevant in a variety of proteins, yet the
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precise function of oligomerization remains in debate. Oligomeric proteins are generally

difficult to study due to their size, varying rigidity, and complex interactions both between

proteins which form the oligomer and interactions between the oligomer and lipid mem-

brane (or membrane-mimicking environments such as detergent micelles or nanodiscs).

Further, because their organization and function may be tuned by the local environment,

being able to study oligomeric organization in the native lipid membrane environment is

an important goal. PR has been shown to oligomerize into different states depending on

a variety of factors, predominantly organizing into hexameric oligomers with a smaller

fraction of pentameric oligomers as identified by AFM [88], which has been shown to have

functional implications [79]. The orientation of the individual PR within the oligomer has

been previously determined by short- and long-range distance contraints provided by CW

EPR and DEER experiments using traditional nitroxide spin labels and Gd(III)-based

spin label Gd-4MMDPA [157, 52].

The first goal of the work presented in this chapter is to extend this work with

additional distance constraints determined by W-band DEER and 240 GHz CW EPR

using Gd(III) spin labels from the DOTA family of ligands. In this work, we studied

oligomeric organization, or association of multiple PR molecules, in PR reconstituted

into a membrane-mimetic detergent micelle. In the future, the CW EPR technique may

allow for the study of the oligomerization of PR in different detergent environments or

even within the lipid membrane. Recent work has demonstrated that the function of PR

can be tuned by oligomerization, and that the distribution of monomeric and oligomeric
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forms of PR may be altered by controlling detergent composition [98, 81]. Further, certain

mutations, such as E50Q, have also been shown to disrupt oligomerization [98, 81]. Given

the complexity of this system, and for protein oligomers in general, a handful of carefully

chosen distance constraints determined by CW EPR could provide key clues to unraveling

the structural arrangement of the PR oligomer in response to various protein-protein and

protein-environment interactions.

Figure 4.1: Secondary structure of PR as determined by solid-state NMR studies
[144, 145, 171], with regions of the protein addressed in this chapter and important
functional residues highlighted. The proton donor E108 when mutated to Q results in
”slow-photocycle” PR. Residue E50 when mutated to Q enhances monomeric population
[98, 81]. Residues 55, 174, and 177 served as probes for studying conformational change
of the EF-loop during the photocycle of PR [78]. Residues 55, 58, 89, and 177 served
as probes for studies of PR oligomerization [52]. The signal peptide (residues 1-17) is
cleaved during expression of PR and is therefore not included in this figure.

The second aim of this work is to develop 240 GHz CW EPR as a tool to provide

information on the structural changes which occur in PR during its photocycle. PR

can be activated with light to trigger a synchronized cascade of conformational changes
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corresponding to different stages in the photocycle, which take place on time scales

ranging from <1 µs to more than 1 s. For the purpose of testing CW EPR distance

measurements to resolve conformational changes in a protein, we focus on the function-

relevant E-F loop segment of PR. This region, along with other residues discussed in

this chapter, is highlighted in the secondary structure model of PR shown in Figure 4.1.

Upon light activation, an opening of the PR towards the cytoplasmic surface by the

outward movement of the E-F loop and/or the F helix has been proposed to be a critical

step in facilitating proton pumping in PR, and is thought to be a conserved motif in

the activation of other 7TMs. This region is so significant for the function of PR that

a single mutation (A178R), which may change the plasticity of the E-F loop has been

shown to result in significant changes in the absorption maxima and in the timescale

of the photocycle of PR, despite the residue being well-separated from the chromophore

[107]. Previous work has shown that the E-F loop is a partially α-helical structure,

tucked against the cytoplasmic surface [78, 107]. The E-F loop, upon light activation,

twists and lifts outwards as a rigid body concurrent with the decay of the M-state of PR

[78]. However, the extent and timing of this motion, and whether or not it is coupled to

upward or outward motions of the E- or F-helices, is unknown. These questions could

potentially be answered by a carefully selected handful of distance measurements, in a

similar fashion to the study carried out by Altenbach et al. on rhodopsin [9].
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4.2 Pulsed EPR measurements of PR oligomers

In addition to developing Gd(III)-spin probes for distance measurements with 240 GHz

CW EPR, extensive work has been undertaken by others to develop Gd(III) distance

measurement techniques using high-field pulsed EPR. To date, W-band experiments with

the DEER pulse sequence has been the most widely used, and more recently experiments

based on the RIDME pulse sequence have been explored on model systems [132]. The

advantages of using Gd(III) spin labels with high-field pulsed EPR are similar to the

advantages described in the previous chapters for 240 GHz CW EPR - primarily increased

sensitivity [65].

In particular, W-band (95 GHz) DEER for distance measurement in biological systems

with Gd(III) spin labels has been extensively investigated, and has become the ’gold

standard’ in the field. Therefore, before embarking on 240 GHz CW EPR measurements

on PR, we first conducted a series of W-band DEER experiments on PR oligomers,

reproducing the work of Edwards et al. [52] but with maleimide-Gd-DOTA as the spin

label instead of Gd-4MMDPA. The Gd-DOTA spin label is expected to have several

advantages over the previously used Gd-4MMDPA. The DOTA family of spin labels has

some of the narrowest EPR lineshapes observed for Gd(III) complexes. Because this

complex was originally developed for use as an MRI contrast agent, there are a wide

variety of DOTA-type complexes available, all extensively characterized, displaying high

binding affinities, and are commercially available. Several Gd-DOTA complexes have

been functionalized for use as spin-labels, most commonly by the addition of a maleimide
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or MTS linker which binds to cysteine residues on the protein.

The work in this section had the following primary goals: (i) verify successful spin-

labeling of PR with maleimide-Gd-DOTA, (ii) demonstrate distance measurement in PR

oligomers with maleimide-Gd-DOTA as the spin label reproduces the distance constraints

on PR oligomer organization previously determined by Stone et al. [157] and Edwards, et

al. [52], (iii) explore if the narrow linewidth and longer relaxation time Tm of maleimide-

Gd-DOTA confers any greater sensitivity to the W-band DEER distance measurement as

compared to the results with Gd-4MMDPA, and (iv) explore the viability of conducting

these measurements in liposome environments. For this purpose, we generated three

mutants of PR singly-labeled with maleimide-Gd-DOTA at residues 55, 58, and 177.

Spin dilutions of 1:1 and 1:3 (spin labeled PR:unlabeled WT-PR) were prepared for each

sample to control for potential multi-spin effects, which occur when there are significant

dipolar interactions between more than two spins. However, based on previous literature,

multi-spin effects are expected to be small for Gd(III)-based spin labels compared to what

has been observed for nitroxide spin labels due to the small modulation depth when using

Gd(III) labels [83, 85, 52, 65]. W-band DEER measurements were carried out at 10 K and

distance distributions were extracted from the DEER trace using the MATLAB based

software DD [151, 32], and are presented in Figure 4.2. In all cases, a two-component

Gaussian distance distribution was found to give the best fit. The background decay was

assumed to be exponential and was included as a fit parameter. Background-subtracted

DEER traces for PR labeled with maleimide-Gd-DOTA at sites 55, 58, and 177 are
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presented in Figure 4.2A, and the corresponding best-fit distance distributions in Figure

4.2B. The spin dilutions of 1:1 and 1:3 gave comparable results for sites 58 and 177,

suggesting that multi-spin effects were negligible with the maleimide-Gd-DOTA spin

label. The 1:1 spin dilution for site 55 was not measured due to time constraints.

Figure 4.2: Results of W-band DEER measurements of PR oligomers in DDM detergent
micelles labeled 1:1 with maleimide-Gd-DOTA at sites 55, 58, and 177. (A) Background-
corrected time domain DEER traces and calculated best-fits, (B) distance distributions
corresponding to the best-fit calculated DEER traces in (A) using a two-component
Gaussian distribution, and (C) raw DEER traces for PR oligomers labeled at site 177 in
DDM detergent micelles and in POPC:POPG (4:1) lipid vesicles.

For a hexameric structure, we would expect two nearest-neighbors (r1), two next-

nearest neighbors (r2), and the diametrically opposed protein (r3). For hexagonal sym-

metry, these should occur with probability ratios of 2:2:1 and inter-protein distances

should have ratios of r1 : r2 : r3 = 1 : 1.73 : 2. For site 55, the nearest-neighbor distance

was not resolved, as the expected 1.6 nm inter-protein distance for this residue is below

the lower-limit resolvable by W-band DEER with Gd(III) spin labels. The next-nearest

neighbor distance for site 55 was found to be r2 = 2.8 nm with 55% population, which

is in agreement with the findings of Stone et al. [157] that r1 = 1.6 nm and assuming
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a hexameric organization of the oligomer. The second peak in the distance distribution

was very broad and ill-resolved, with a mean distance of 5.5 nm - well beyond the 3.2

nm distance predicted by a hexameric structure. This discrepancy was somewhat sur-

prising, as the 3 µs dipolar evolution time of this measurement should allow for accurate

distance determination up to ∼ 4.6 nm. This assumes the usual convention (used in e.g.

the DEER Analysis software) that for a 2 µs evolution time, the assignment of mean

distance and distribution width is reliable out to 4 nm, the assignment of mean distance

along is reliable out to 5 nm, and that these scale with (Tevo/2µs)
1/3 [52]. For PR labeled

at site 177, the two-Gaussian fit for the distance distribution gave mean distances of r1

= 4.1 nm and r2 = 6.7 nm, with 48% and 52% populations, respectively. This is in good

agreement with a hexameric assembly and with the findings of Edwards et al. [52], who

reported a nearest-neighbor distance of r2 = 3.9 nm. The furthest distance r3, expected

to be at ∼8 nm, could not be resolved in the 8 µs dipolar evolution window of this

experiment. W-band DEER measurements of PR labeled at site 58 gave two distances

centered at 4.4 nm and 6.8 nm, which is not consistent with the expected values of r1

= 2.3 nm, r2 = 3.9 nm, and r3 = 4.6 nm. Rather, this distribution is nearly identical

to that expected for PR labeled at site 177. This discrepancy was attributed to a misla-

beling of the ”PR-58” sample tube, which we believe based on the results of the DEER

measurement actually contained and sample of PR-177.

W-band DEER measurements were additionally attempted on PR oligomers labeled

at site 177 with maleimide-Gd-DOTA and reconstituted into POPC:POPG (4:1) lipo-
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somes, but no oscillations were observed in the DEER trace. It was observed that the

lipid sample had a much shorter phase memory time (Tm) compared to the detergent

sample and that the background decay of the DEER signal was much steeper, suggesting

a high local spin concentration possibly due to a high local concentration of the spin

label within the liposome.

These measurements successfully verified that the maleimide-Gd-DOTA spin label

reproduced the distances determined previously [52, 157] in the PR hexamer labeled

at residues 55 and 177. However, in light of recent publications regarding the analysis

of W-band DEER spectra with Gd(III) spin labels with small ZFS and separated by

short distances [45, 129, 101], these extracted distance distributions are likely not be

reliable with the current analysis, despite the agreement with literature values. The

measurement in liposome was unsuccessful in this attempt, and will need future work to

improve sample preparation protocols to reduce the local concentration of spin label in

the lipid membrane. This could perhaps be accomplished by using a very low protein to

lipid ratio, or by preparing PR in nanodiscs. These PR samples in DDM were additionally

measured by 240 GHz CW EPR at 30 K, but no peak-to-peak broadening of the lineshape

was observed, even for the PR-55 sample which the expected 1.6 nm inter-PR distance

and is expected to have a very large broadening of the CW EPR lineshape. This was

attributed to poor spin labeling efficiency, as will be discussed next.
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4.3 Quantitative estimation of spin labeling effi-

ciency

Poor spin labeling efficiency and possible non-selective binding with the maleimide-Gd-

DOTA spin label were identified as a key roadblock in studies of distance measurements

in PR with 240 GHz CW EPR lineshape analysis. Unlike the DEER technique, whose

signal comes only from dipolar coupled spins, the CW EPR lineshape is a combination of

contributions from all Gd(III) species present in the sample, including pairs of dipolar-

coupled spin labels, single non-dipolar-coupled spin labels, and Gd(III) ions or Gd(III)

spin label free in solution (i.e. not bound to the protein). Of these, the Gd(III) complexes

which do not have a close neighboring Gd(III) spin will have the narrowest CW EPR

lineshape and therefore dominate the overall measured CW EPR spectrum. Because low-

temperature 240 GHz CW EPR distance measurements are relatively time-consuming

and costly due to cooling time and liquid helium consumption, we sought a fast, simple

method of estimating labeling efficiency to quickly ascertain (i) which samples would be

most suitable for CW EPR distance measurement, (ii) identify new sites in PR which

display high labeling efficiencies, and (iii) optimize spin labeling protocols and test new

spin labeling chemistry.

The concentration of PR in a sample can be easily measured by a UV-VIS absorption

measurement and the application of Beer’s law. This measurement informs what the

Gd(III) concentration of the sample should be in the case of 100% spin labeling efficiency.
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The measurement of Gd(III) concentration was done by a method similar in concept to

a spin-counting experiment [50], though significantly less refined. In this measurement, a

calibration series of samples of known volume and concentration consisting of the Gd(III)

spin label in the PR buffer solution are measured by room temperature 240 GHz CW

EPR. As one would expect, the double integral of the CW EPR signal (i.e. the area

of the absorption lineshape) increases linearly with Gd(III) concentration (Figure 4.3).

The same measurement is then performed on an equal volume of spin-labeled PR sample

of unknown labeling efficiency, compared to a line fit to the calibration curve, and an

estimate of Gd(III) concentration is extracted and used to compute labeling efficiency.

The results of these spin labeling efficiency measurements for PR spin labeled at various

sites with maleimide-Gd-DOTA are summarized in Table 4.1.

0 100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025

0.030

In
te

gr
at

ed
 E

P
R

 s
ig

na
l (

ar
b.

u.
)

Concentration (uM)

 Gd-DOTA

Figure 4.3: Concentration calibration series of Gd-DOTA in PR buffer prepared at various
known concentrations. Plotted is the mean of the double integral of the CW EPR signal
taken from several measurements of the same sample. Error bars are two standard
deviations of the mean of those measurements. Measurements were carried out at ∼ 290
K.
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Unlike a true spin-counting experiment, the Gd(III) concentrations determined by this

method can only be considered as a rough estimate, accurate to within maybe a factor of

two. There are many sources which contribute to this inaccuracy, the primary of which

is repeatability of sample loading and stability of the spectrometer bridge alignment

over time. Additionally, the calibration measurement (e.g. in Figure 4.3) used Gd-

DOTA and not the actual spin label, since the spin labels maleimide-Gd-DOTA and Gd-

MTS-ADO3A were both found to partially dimerize or aggregate in solution. The CW

EPR lineshapes of these three Gd(III) complexes are similar enough to be approximately

accurate in a spin counting measurement, but obviously this poses another source of error

in the measurement. In order to conduct these measurements at room temperature, a

new sample holder geometry was developed to allow for the acquisition of high-SNR room

temperature EPR spectra (see Appendix A.2.3), which was not possible using the bucket-

style sample holder used for measurements at cryogenic temperatures. The amplitude of

the EPR signal resulting from measurements with this sample holder geometry is highly

sensitive to not only the sample volume and concentration, but also the positioning of the

sample within the spectrometer and the material backing the sample. Nevertheless, the

ability to quickly estimate the efficiency of labeling PR with Gd(III)-based spin labels

has been invaluable in troubleshooting sample preparation, despite the rather large error

bars on the measurement.
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4.4 Improving Gd(III) spin labeling of PR

Several residues were identified in PR as potential candidates for Gd(III) spin labeling

and study with 240 GHz CW EPR. Candidate residues were chosen to have inter- or

intra-PR distances in the range of 2.0 - 3.8 nm, as estimated from the PDB structure

(2L6X) of G-PR [133]. These residues were chosen with the primary goal of studying

movement of the E- and F-helices and conformational changes of the E-F loop that

occur during the photocycle of PR. The secondary goal of these candidate residues for

spin labeling was to study the oligomeric organization of PR by conducting inter-PR

distance measurements. Further, an attempt was made to identify residues which would

be most ameanable to spin labeling with Gd(III)-based spin probes, based on the known

protein structure, solvent accessibility of the residue, and prior spin labeling experience.

Finally, the choice of residues for spin labeling is further limited by the restriction that

the mutation should not otherwise affect the structure or function of the protein.

In particular, residue A174 at the solvent-protein interface on the E-F loop helix has

been previously shown to display a large conformational change upon light activation,

with the spin labeled residue becoming much more immobile in the light state compared

to the dark state [77]. Residue T177 on the E-F loop is also known to show changes

with light activation [78, 77]. The A- and C-helices have been hypothesized to not move

significantly during the photocycle, and so residues S55 (A-B loop on oligomer interface),

V49 (A-helix), and L111 (C-helix) were chosen as partner sites at appropriate distances

for studying motion at residues A174 and T177. Residues S55, W58, and S89 were
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identified as potential candidates for studying the oligomeric organization of PR. The

locations of these various residues are shown in Figures 4.1 and 4.4.
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Figure 4.4: Structural model of PR based on PDB 2L6X [133]. Candidate sites for
spin labeling with Gd(III)-based spin probes are highlighted. The dotted lines represent
intra-protein distances of interest to resolve the motion of the E-F loop. These pairs have
estimated intra-PR distances of 2.0 nm (55-177), 1.5 nm (111-174), and 3.5 nm (49-174).
The addition of a spin label extends these distances by 0.2 - 0.3 nm. Figure was created
using the UCSF Chimera package [114].

For the samples listed in Table 4.1, various of these identified residues in PR were

tested for spin labeling efficiency with maleimide-Gd-DOTA and where the sample prepa-

ration and spin labeling protocol was not changed significantly between these samples.

It was observed, in the small number of cases tested, that monomeric PR had the highest

labeling efficiencies, hexameric PR somewhat less, and high-order oligomers or aggregate

had very poor spin labeling efficiencies. This has been hypothesized to be due to better

accessibility of the residues for monomeric PR compared to the hexamer and higher-

order oligomers/aggregate. In particular, residue S55 may be difficult to spin label in
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the hexameric state due to its position at the oligomeric interface. The population of

monomeric PR in a sample can be enhanced either by size-exclusion chromatography to

remove oligomers and aggregates from the sample, or by the introduction of the E50Q

mutation. The E50Q mutation results in a greatly enhanced monomeric population com-

pared to wild type seemingly without any effects on the optical properties of G-PR, which

has been proposed to be the result of disruption of the H-bonding network that stabilizes

the hexamer [98, 81]. Recent work has also shown that different surfactant conditions

can be used to stabilize different equilibrium populations of monomeric and hexameric

PR [81].

Sample Labeling efficiency (%)

PR-S89C slow hex 1:1 144
PR-S89C slow hex 1:3 69
PR-S89C slow hex 1:6 90
PR-A174C-L111C hex 1:6 19
PR-A174C-V49C hex 1:6 41
PR-A174C hex 1:1 24
PR-V49C hex 1:1 46
PR-T177C slow hex 1:1 36
PR-S55C slow hex 1:1 92
PR-S55C-T177C slow mono 1:1 26
PR-S55C-T177C slow hex 1:1 26
PR-S55C-T177C slow agg 1:1 ∼5

Table 4.1: Estimated spin labeling efficiencies for various PR mutants spin labeled with
maleimide-Gd-DOTA. The concentration of PR was determined by UV-VIS absorption
at 520 nm. The concentration of maleimide-Gd-DOTA was estimated by a spin-counting
type experiment using room temperature 240 GHz CW EPR and compared to a Gd-
DOTA calibration. Estimated labeling efficiencies were calculated from these two num-
bers, taking into account the dilution with WT-PR for the 1:3 and 1:6 samples. Note:
due to various uncertainties in the measurement, these values have rather large error bars
- perhaps as large as a factor of two.

The measurements in Table 4.1 seem to indicate that the PR-S55C hex sample had
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very good labeling efficiency, however 240 GHz CW EPR measurements at 30 K did not

show the very dramatic lineshape broadening expected for the nearest-neighbor distance

of 1.6 nm in the hexamer. This effect was observed on multiple preparations of this sample

and the origin was never fully explained. However, there were hints from the 240 GHz CW

EPR data of PR labeled with maleimide-Gd-DOTA as well as unrelated experiments on

X-band DEER of Tau-187 G272C/S285C labeled with maleimide-TEMPO (a standard

nitroxide spin label) that the maleimide-Gd-DOTA may be non-selectively binding (i.e.

attaching to residues other than mutated cysteine at the residue of interest) to the PR,

possibly reacting with the primary amine on the protein [33, 4]. Oxidation of the cysteine

residues which the maleimide-Gd-DOTA spin label binds to could also be a potential

cause of poor spin labeling efficiency.

To test this hypothesis, two samples of PR-T177C 1:1 slow with maleimide-Gd-DOTA

spin label were prepared, with and without TCEP added during the spin labeling step.

TCEP (tris[2-carboxyethyl]phosphine) is a reducing agent which can prevent the forma-

tion of disulfide bridges and consequential inactivation of the cysteines [167, 87]. How-

ever, estimation of spin labeling efficiencies of these two sample preparations showed

that TCEP somewhat reduced the labeling efficiency from ∼ 36 % in the original sample

preparation to ∼ 21 % with the addition of TCEP during the spin labeling reaction.

This reduction in labeling efficiency could be the result of the reducing agent interfering

with the reaction between the cysteine and the spin label. This might be improved by

ensuring complete removal of the reducing agent before conjugation with the spin label
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so that the thiol group of TCEP does not compete with the target thiols in the protein

[87].

(A)

(B)

Figure 4.5: Labeling reaction of (A) maleimide-Gd-DOTA [103] and (B) Gd-MTS-
ADO3A [92] with cysteine residues.

Due to concerns of non-selective binding of the maleimide-Gd-DOTA spin label to

cysteine residues in PR, a situation which may be aggrevated at high pH [57], we did

not attempt any further optimization of the spin labeling protocol with maleimide-Gd-

DOTA and instead moved on to test a different labeling chemistry. We chose to use

the spin label Gd-MTS-ADO3A (Figure 4.5), which has a ligand structure similar to

the DOTA family of complexes that results in a narrow EPR lineshape and has been

previously used for W-band DEER distance measurements [106]. This spin label reacts

with cysteine residues in the protein via the methanthiosulfonate (MTS) group, which

provides specific conjugation to the targeted cysteine residue via a disulphide bridge [92].

Estimated labeling efficiencies with the Gd-MTS-ADO3A spin label for various PR

samples are listed in Table 4.2. The change in spin label from maleimide-Gd-DOTA
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to Gd-MTS-ADO3A increased the labeling efficiency of PR-T177C from 36% to 76%.

Again, we observe that monomeric samples have higher spin labeling efficiencies than

oligomeric samples. We made several attempts to increase the labeling efficiency further.

Increasing the pH from 5.8 to 7.5 during the reaction step of binding the spin label to

PR did not affect the labeling efficiency, nor did increasing the ratio of spin label to PR

during this reaction step. However, letting the spin labeling reaction go overnight at

room temperature did increase labeling efficiency compared to letting the reaction run

for a couple hours at 4◦C. Similarly to the studies with the maleimide-Gd-DOTA spin

label, the overall labeling efficiency can be increased by removing aggregate PR from

the sample, either by size-exclusion chromatography or by introduction of the E50Q

mutation.

Sample Effic. (%) Notes

PR-S55C-T177C slow FPLC mono 1:1 47
PR-S55C-T177C slow FPLC hex 1:1 32
PR-S55C-T177C slow E50Q 1:1 46 pH 7.5
PR-T177C slow mix oligomer states 1:1 76 ∼21◦ labeling
PR-S55C hex 1:1 35 ∼21◦ labeling

Table 4.2: Estimated spin labeling efficiencies for various PR mutants spin labeled with
MTS-Gd-ADO3A. The concentration of PR was determined by UV-VIS absorption at
520 nm. The concentration of MTS-Gd-ADO3A was estimated by a spin-counting type
experiment using room temperature 240 GHz CW EPR and compared to a Gd-DOTA
calibration. Note: due to various uncertainties in the measurement, these values have
rather large error bars.

For the PR-S55C-T177C sample, which will be interesting for future studies on the

motion of the EF-loop region, we have increased labeling efficiency from ∼25% to ∼50%.

Correspondingly, the CW EPR spectra for 50% labeling efficiency shows significantly
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more dipolar broadening of the lineshape in the doubly labeled sample than did the

sample with 25% labeling efficiency. This level of spin labeling efficiency may be sufficient

to begin estimating distances from dipolar broadening of the 240 GHz CW EPR lineshape,

as will be shown in Section 4.5, but is still far below our target of >80% labeling efficiency.

Future approaches to optimize spin labeling efficiency with Gd-MTS-ADO3A may include

(i) the addition of a reducing agent (DTT) during the PR purification step and careful

removal of the reducing agent during the spin labeling step so that cysteine oxidation

is prevented but the reducing agent does not interfere with the labeling reaction and/or

(ii) increasing the temperature (possibly to ∼30◦C) during the spin labeling reaction.

4.5 CW EPR measurements of PR oligomers

After confirming that we can reproduce the previously determined PR oligomer organi-

zation [157, 52] with W-band DEER using the new maleimide-Gd-DOTA spin labeling

scheme (Figure 4.5A), we moved on to replicating and expanding on these results with

the 240 GHz CW EPR distance measurement technique developed in Chapter 2. In the

DEER studies, the PR-55 sample provided a connection between the CW EPR studies of

Stone et al. at X-band with a nitroxide spin label [157] and the W-band DEER studies

with Gd(III)-based spin labels [52]. PR-58, while providing an ideal inter-PR distance

of ∼ 2.3 nm, where the 240 GHz CW EPR measurement is expected to be very sensi-

tive, was found to be too difficult to spin label likely due to geometric restriction of the

Gd-DOTA spin label and general inaccessibility of the residue. PR-177, while of great
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interest for study of the motion of the EF-loop region of PR as will be discussed later,

presents too long of an inter-PR distance in the hexamer (∼ 4.0 nm) to be measured by

240 GHz CW EPR. Therefore, several new mutations were generated for the purpose of

measuring additional inter-PR distances to refine the PR oligomer structure with high-

field CW EPR, and for potential future use in studying motions of the EF-loop region

(Section 4.4).

Of the various residues in PR where spin-labeling was attempted with maleimide-

Gd-DOTA, the PR-S89C samples displayed the highest binding efficiencies (Table 4.1).

For PR in a hexameric oligomer, the inter-PR distance at site 89 should be within the

range of distances measurable by 240 GHz CW EPR with Gd(III)-based spin labels.

Three samples of hexameric PR-89 were prepared with spin dilutions of 1:1, 1:3, and

1:6 with WT-PR (”wild-type” PR, which has all native cysteine residues removed so

that the spin label does not bind to the PR) for measurement by 240 GHz CW EPR.

The 1:6 spin dilution has, on average, only one spin labeled PR per hexamer and should

therefore display approximately no dipolar broadening of the CW EPR lineshape. This

sample therefore serves as a reference of the unbroadened, or intrinsic, linewidth of the

maleimide-Gd-DOTA spin label bound to residue 89 on PR. At the other limit, the 1:1

sample in principle has every PR in the hexamer spin labeled, though in practice this may

be somewhat less depending on the labeling efficiency. Similarly, the 1:3 spin dilution

has on average two of the six PR in a hexamer spin labeled.

CW EPR measurements at 240 GHz and 30 K of PR-89 hexamer showed significant
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Figure 4.6: CW EPR at 240 GHz and 30 K of PR hexamer labeled at residue 89 with
maleimide-Gd-DOTA at spin dilutions of 1:1, 1:3, and 1:6 with unlabeled WT-PR (left).
Peak-to-peak broadening of the CW EPR lineshape from the 1:6 to 1:1 spin dilutions
indicate an inter-PR distance at residue 89 of ∼3.1 nm in the hexamer. Model of the
structure of the G-PR hexamer (right) based on the B-PR crystal structure [130], G-PR
monomer structure [133], X-band CW EPR [157], W-band DEER [52] (also from this
work), and 240 GHz CW EPR (from this work), drawn using the UCSF Chimera package
[114]..

lineshape broadening between the 1:6 and 1:1 labeled samples, with the 1:3 spin dilution

displaying a small amount of intermediate broadening in the wings of the spectrum

(Figure 4.6). Analysis of the peak-to-peak broadening of the Gd(III) lineshape of the

1:1 sample compared to the 1:6 sample according to the method described in Section

2.6 gives in inter-PR distance of 3.1 nm, which is in good agreement with the 2.8 nm

distance estimated from the crystal structure of homologous B-PR hexamer [130]. These

measurements represent the first successful use of Gd(III)-based spin labels with 240

GHz CW EPR in measuring a distance in a biological system well beyond that which is

accessible by traditional X-band CW EPR with nitroxide spin labels.

Measurements of the oligomeric structure were attempted with 240 GHz CW EPR
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at 30 K on PR-55 hexamer labeled with maleimide-Gd-DOTA, including on the sample

successfully measured by W-band DEER (Figure 4.2 A-B), however despite nominally

good labeling efficiency at this site (Table 4.1), peak-to-peak broadening of the CW EPR

lineshape was not observed. Some small amount of broadening was observed in the wings

of these spectra, suggestive of poor spin labeling. In contrast, measurements of PR-55

hexamer spin labeled with Gd-MTS-ADO3A, which had approximately double the spin

labeling efficiency as for maleimide-Gd-DOTA, showed significant dipolar broadening

of the lineshape (Figure 4.7 A). Still, even with improved spin labeling efficiency, the

peak positions did not change significantly. This is further indication that while the

spin labeling efficiency was significantly improved by the use of the Gd-MTS-ADO3A

spin label, it was still not good enough to apply the peak-to-peak broadening analysis

developed in Chapter 2 to extract inter-PR distances.

In general, perfect spin labeling is not possible and, therefore, more sophisticated

analysis methods are required which can fit more than a single parameter of the line-

shape (such as the peak-to-peak linewidth as in Chapter 2, or the second-moment as

in Appendix B), account for contributions of contaminant with singly labeled sample

resulting from imperfect spin labeling, and ideally be able to fit multiple distances and

distributions. Some progress towards this goal was made in simulating the lineshapes of

the Gd-rulers in Section 2.7 using a simplified Hamiltonian. However, these simulations

are at present very time consuming and the resulting simulated lineshapes are imperfect

as a result the various approximations taken.
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Another approach to simulating dipolar broadened CW EPR lineshapes was de-

veloped in the work of Edwards et al. [53] in which the method of Pake convolu-

tion/deconvolution, commonly used for the analysis of interacting S = 1/2 spin labels at

X-band [123, 154], was extended to the S = 7/2 case for use with Gd(III)-based spin la-

bels measured at high field. In the work of Edwards et al. [53], a single-Gaussian distance

distribution was sufficient to describe the broadening of the CW EPR lineshape of ran-

dom solutions of GdCl3 in D2O/glycerol−d8. Further, this model successfully reproduced

the expected average interspin distance for various concentrations representing different

average interspin distances. For the case of spin labeled proteins, a slightly more sophis-

ticated version of this analysis is required to account for the contribution of singly labeled

contaminant in the sample as a result of imperfect spin labeling and for the possible mul-

tiple distances which may be observed, e.g. in an oligomer. A variety of software tools

for conducting Pake convolution/deconvolution analysis to extract distance distributions

have been used in the literature including ShortDistances [7], CWdipFit [140], DipCon

[16], and DipBF [16], among others. In this work, we employed the Pake convolution

method using MATLAB scripts based on the CWdipFit software [140]. This analysis

software assumes a sum of Gaussian shaped distance distributions between dipolar cou-

pled spins, and utilizes Monte Carlo/SIMPLEX curve fitting to the data. CWdipFit is

provided as source code, and could thus be altered to use a S = 7/2 Pake pattern instead

of the default S = 1/2 Pake pattern. The only other change made to the original software

was to change the default range of distances which are included in the fit. The S = 7/2
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Pake patterns were generated using the EasySpin toolbox [156], though high-spin Pake

patterns could alternatively be generated using the method described by Edwards et al.

[53].

The Pake convolution method was used to analyze 240 GHz CW EPR spectra of PR

hexamer labeled 1:1 at residue 55 with Gd-MTS-ADO3A (Figure 4.7). Spin labeling

efficiency has not been measured for this sample, though it is expected to be better than

the previously determined ∼35% labeling efficiency for a different preparation of the

same sample that did not have the hexamer isolated by size-exclusion chromatography.

However, the labeling efficiency was not sufficiently high to allow for the extraction of

interspin distances via peak-to-peak broadening of the CW EPR lineshape. Additionally,

the nearest-neighbor distance at site 55 in the PR hexamer is only 1.6 nm [157, 52],

meaning that 240 GHz CW EPR lineshape should also have contributions resulting from

the next-nearest neighbor, which has an inter-PR distance of 2.8 nm assuming a perfect

hexamer. Therefore, an analysis scheme was required that could account for multiple

distance distributions. Spin dilutions of PR-S5C were not available at the time of these

measurements, and so a sample of PRT177C labeled with Gd-MTS-ADO3A was used

as an approximate reference of the unbroadened lineshape. A fit to these spectra using

CWdipFit with a S = 7/2 Pake pattern gave as the best-fit a two-Gaussian distance

distribution with mean distances of 1.6 nm and 2.9 nm. The prior is in good agreement

with the previously determined r1 distance (Section 4.2) [157, 52] for PR-55 hexamer

and the latter is a very reasonable r2 distance assuming a hexameric organization of the
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oligomer. Further, the reconstructed broadened lineshape, simulated by convolving the

”monomer” spectrum with a broadening function generated by the determined distance

distribution and corresponding S = 7/2 Pake patterns, captures both the peak-to-peak

linewidth of the measured PR-S55C hexamer spectrum as well as the additional hump

on the low-field side of the spectrum (Figure 4.7).
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Figure 4.7: CW EPR at 240 GHz and 30 K of PR hexamer labeled 1:1 at site 55 with
Gd-MTS-ADO3A (blue) and PR labeled at site 177 (mix of oligomer states) with Gd-
MTS-ADO3A (grey), normalized to the double integral. Overlaid is the best-fit dipolar
broadened lineshape resulting from Pake convolution analysis (pink) with the correspond-
ing distance distribution shown on the right. The best fit was a two-Gaussian distance
distribution having mean distances of 1.6 nm and 2.9 nm, with a ∼20% monomer con-
tribution.

While this analysis is still preliminary, it is rather encouraging that not only do we

recover the correct nearest-neighbor distance for the PR-55 hexamer, we also measure

the next-nearest neighbor distance. Further encouraging is that this was in a sample with

imperfect spin labeling. The CWdipFit analysis indicates that this sample has a ∼20%

contribution from spins which are isolated enough to not display dipolar broadening.
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However, it is yet to be seen how accurate this estimation of the fraction of non-dipolar-

coupled spins from the data analysis is since in this case a proper reference sample was

not available, though a face-value interpretation would seem to indicate >50% labeling

efficiency for the PR-S55C hexamer labeled with Gd-MTS-ADO3A. The effectiveness

of the analysis software in determining monomer fraction in the broadened spectra was

tested on a sample of Gd-ruler 11 (2.1 nm) mixed with Gd-4-iodo-PyMTA (2:1 by vol-

ume), where a sample of pure Gd-4-iodo-PyMTA was used as the reference. In this case,

analysis with CWdipFit recovered the Gd-ruler distance of 2.1 nm and gave a monomer

fraction of 26%, which is reasonably close to the expected 33%.

From a practical use perspective, the Pake convolution analysis has great advantages

over both the analysis via peak-to-peak broadening and analysis by first-principles sim-

ulation of the effective spin Hamiltonian. The peak-to-peak broadening analysis, while

effective for the model system of the Gd-rulers and for other sufficiently clean systems

(such as the PR-S89C hexamer), is much too simplistic for generalized analysis of 240

GHz CW EPR spectra of a Gd(III) labeled protein. In these complex biological systems,

there are the additional complications to data analysis resulting from imperfect spin la-

beling and possible multiple distances and/or broad distance distributions, none of which

can be properly addressed by looking only at the peak-to-peak linewidth of the CW EPR

spectrum. On the other hand, a first principles simulation of the CW EPR lineshape

is highly desirable for understanding the complexities of the spin physics involved, but

is much too complex and time consuming to be practical for most data analysis. The
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Pake convolution method provides a nice intermediate between these two extremes of

analysis schemes, being grounded in spin physics and yet sufficiently simple to allow for

fast, flexible data analysis. In the two cases tested so far (PR-S55C hexamer and mixed

Gd-ruler 11 (2.1 nm)/Gd-4-iodo-PyMTA), the Pake convolution analysis seems to pick

out the expected mean distances, though the distance distributions were broader than

expected, particularly for the Gd-ruler. It is also evident from the imperfect reproduc-

tion of the broadened lineshape in Figure 4.7, particularly on the wings of the high-field

side, that this analysis does not properly capture all the details of the measured line-

shape. One main source of error in the Pake convolution analysis is the noise in the

measured CW EPR spectra and the quality of the baseline. The latter could be partic-

ularly challenging for analyzing Gd(III) spectra since the baseline is not truly zero, but

rather the broad component of the full EPR spectrum resulting from transitions other

than the | − 1/2〉 ↔ |1/2〉 transition. Due to the broadness of this component of the

EPR spectrum the CW EPR signal is approximately zero (the CW EPR measurement

can be thought of as the derivative of the EPR absorption lineshape), yet this could be

contributing uncertainty in the analysis. Furthermore, while the Pake pattern implicitly

includes contributions from the secular and pseudo-secular terms of the dipolar interac-

tion, it does not take into account contributions from the ZFS. Because 240 GHz CW

EPR is sensitive to distances below 4 nm, we know from the literature that contributions

from ZFS play in important role in the EPR spectrum [45, 129, 101].
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4.6 Towards monitoring conformational change of

the E-F loop with CW EPR

One of the primary research thrusts motivating the work of this dissertation is to study

protein structure and dynamics in as close to a native environment as possible. So far, we

have seen preliminary evidence that 240 GHz CW EPR with Gd(III)-based spin labels

can give structural information on the organization of PR oligomers in detergent micelles,

based on measurements at 30 K that show dipolar broadening of the CW EPR lineshape.

Next, we present the first preliminary evidence of a measurement of conformational

change in PR using 240 GHz CW EPR with Gd(III)-based spin labels.
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Figure 4.8: CW EPR at 240 GHz and 30 K of PR-S55C-T177C E50Q slow labeled with
Gd-MTS-ADO3A measured in the dark and under illumination with a 535 nm LED
light source. The lineshape of PR-T177C slow (mix oligomer states) labeled 1:1 with
Gd-MTS-ADO3A is overlaid for comparison.

Based on the measurements of spin labeling efficiency discussed in Sections 4.3 - 4.4,
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we chose PR-S55C-T177C as a target sample for observing motion of the E-F loop upon

light activation. These two residues showed comparatively high spin labeling efficiencies

compared to other residues that we have so far attempted to spin label with Gd(III).

Further, residue 177 on the E-F loop has been previously shown to exhibit conformational

changes upon light activation [78] and is separated by ∼2 nm from residue 55 on the A-B

loop (Figure 4.4), which is within the distance range where 240 GHz CW EPR is most

sensitive to distance changes. The sample was additionally prepared with the E50Q to

enhance monomeric population and was spin labeled with Gd-MTS-ADO3A, resulting in

approximately 50% labeling efficiency. CW EPR measurements at 240 GHz were carried

out at a temperature of 30 K in the usual manner, giving the lineshape for PR-55-177 with

the protein in the dark state (Figure 4.8). When compared to the lineshape of PR-T177C

slow (mix oligomer states) labeled 1:1 with Gd-MTS-ADO3A, which approximates the

intrinsic linewidth of PR labeled at residue 177 with Gd-MTS-ADO3A, the doubly labeled

PR-S55C-T177C sample shows clear dipolar broadening. Again, most of the broadening

is seen in the wings of the CW EPR spectrum while the peak-to-peak linewidth shows

little change as a result of poor spin labeling efficiency. The sample was then warmed

up and allowed to equilibrate at room temperature under illumination of a ∼535 nm

LED (Appendix A.2.3) before being cooled back down to 30 K. Upon freezing, there

should be a distribution of PR conformations present in the sample corresponding to

the various conformations explored by PR during the photocycle. A 240 GHz CW EPR

measurement at 30 K of this ”light state” of PR is shown in Figure 4.8. Compared to the
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dark measurement, this preliminary light measurement shows a slight broadening of the

CW EPR lineshape, which suggests a decreased distance between residues 55 and 177

when PR is activated by illumination with green light. While very preliminary at this

stage, this measurement suggests we have, for the first time, observed a conformational

change in a membrane protein using 240 GHz CW EPR with a Gd(III) spin label.

4.7 Impact and outlook

In this chapter, we explored the application of distance measurement using 240 GHz

CW EPR and Gd(III)-based spin labels in studying the structure and conformational

changes in the membrane protein proteorhodopsin (PR). These were some of the first

experiments of this nature, and so focused primarily on first reproducing known results

using the new experimental techniques developed in this dissertation. First, we explored

the use of a different Gd(III) spin label, maleimide-Gd-DOTA, which according to the

work presented in Chapter 3 has a small ZFS and therefore narrow EPR linewidth,

making it a much better candidate for distance measurement by 240 GHz CW EPR than

the Gd-4MMDPA spin label that was used in a previous PR study. We began with pulsed

EPR measurements at W-band on PR oligomers, and showed that we can indeed replicate

previous results of the hexameric organization of PR in detergent micelles [157, 52] using

a different Gd(III) spin label. The same hexameric organization of PR oligomers was

then reproduced by measurements of inter-PR distances using 240 GHz CW EPR and

maleimide-Gd-DOTA or Gd-MTS-ADO3A as the spin label. Additionally, we showed
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preliminary evidence that the CW EPR measurement can be used to measure multiple

distances in the PR oligomer simultaneously. Finally, we presented first progress towards

measuring protein dynamics using high-field CW EPR, by demonstrating a change in

distance between a residue on the E-F loop and the A-B loop of PR upon light activation.

High-field CW EPR with Gd(III) spin labels is a very young experimental technique

which is only now beginning to show its usefulness and limitations in the study of protein

structure and dynamics. For PR, there are many excited directions which could be

explored in the future. In this chapter and in previous studies [157, 52], the oligomeric

organization of PR was only studied in DDM detergent micelles. However, we know

that there are complex protein-protein and protein-lipid interactions which occur in the

oligomer and may alter or tune the function of PR. Therefore, it would be interesting to

see how the oligomeric organization changes in different detergent and lipid membrane

environments. For studies of conformational changes in PR, the ultimate goal of this

project is to film the protein in action. Measurement of intra-PR distance changes in

the active vs. inactive state of the protein, such as the preliminary data presented here,

provide merely a snapshot of the distribution of various PR conformations by virtue

of the protein being frozen during the measurement. There is the possibility of doing

this measurement in a step-wise time-resolved fashion, where the protein is flash frozen

at various increments of time after light activation and the distance changes associated

with conformational changes are measured. A perhaps more attractive option would

be to conduct similar measurements above the protein dynamical transition, or even at
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room temperature, such that the motions of the protein during the photocycle could be

observed in real time.

These are ambitious goals, and many experimental hurdles will need to be overcome

to accomplish them. In particular, the primary current bottleneck in further expanding

the use of 240 GHz CW EPR to study PR and other proteins is difficulties in achieving

reliable, high-efficiency spin labeling of the protein with Gd(III)-based spin labels. The

development of a method to estimate spin labeling efficiency has helped immensely in

troubleshooting problems in spin labeling and identifying samples in which spin labeling

was most successful. However, if Gd(III) spin labeling cannot be sufficiently improved,

this could severely limit the application of this technique. Fortunately, it seems that for

a minimum of ∼50% labeling efficiency, further advances in data analysis may be able

to partially compensate. Even when spin labeling efficiency is rather poor, we often still

observe a broadening of the CW EPR spectrum in a doubly labeled sample, though the

broadening is restricted to the outer wings of the spectrum which are less affected by

monomeric contributions to the signal. This means that for sufficiently short interspin

distances, we may still be able to resolve distance changes, even if the mean distance and

distance distribution cannot be quantitatively measured.
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Chapter 5

Conclusion

The work presented in this dissertation endeavors to expand the capabilities of CW EPR

for structural studies of biological systems, particularly for membrane proteins which

often resist other traditional biophysical characterization techniques. Our approach was

to use high-frequency (240 GHz) CW EPR combined with spin labels based on Gd(III)

complexes to increase the sensitivity, and hence the range, of distance measurements.

Studies of a model system, composed of two Gd(III) complexes connected by a rigid

molecular linker, showed that we can measure interspin distances ranging from at least

1.2 - 3.4 nm at a measurement temperature of 30 K when Gd-PyMTA is used as the spin

label. It was found that the peak-to-peak broadening of the CW EPR signal, relative to

the intrinsic linewidth of the Gd(III) complex, follows a 1/r3 dependence. Furthermore,

this 1/r3 dependence persisted at temperatures of 215 K and 288 K, showing that this

technique is applicable at physiologically relevant temperatures, and may even be used
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at room temperature given that the sample can be somehow immobilized. We developed

a very simple model to simulate the lineshape of this model system, where the dipolar

broadening of the central transition of Gd(III) is modeled as an S = 1/2 spin whose

CW EPR lineshape is broadened through electron-electron dipolar interactions with a

neighboring S = 7/2 spin. This very simple description, which ignores ZFS and that both

Gd(III) spins are S = 7/2, nevertheless captures many details seen in the experimental

CW EPR spectra, including the overall width and the smaller peaks and asymmetries

observed at short distances. Given that this model has no free parameters, apart from

matching the intrinsic linewidth of the monomeric Gd(III) complex, this suggests that

the majority of features observed in the broadened CW EPR lineshape can be directly

explained by dipolar interactions.

As a next step, we sought to both further improve on these simple simulations and to

also to potentially identify other Gd(III) complexes which are better suited for high-field

CW EPR distance measurement by virtue of having a narrow intrinsic linewidth. Both

of these goals rely on an accurate knowledge of the zero-field splitting (ZFS) parameters

of the Gd(III) complex. We conducted an extensive study of six different Gd(III) com-

plexes of interest for use in EPR studies. EPR spectra of these complexes were recorded

at frequencies of Q-band, W-band, and 240 GHz in order to provide the best-possible

determination of the ZFS parameters. These multi-frequency spectra were fit using the

most common models found in literature for the distribution of the second-order ZFS

parameters D and E. We found that, despite their apparently different descriptions,
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that the models converged to the same finding. Namely, that the distribution of D is

a bimodal Gaussian distribution, where the components centered at −D and +D may

occur with different probabilities. The distribution of E/D was found to be broadly dis-

tributed between 0 and 1/3, with a minima at E/D = 0 and a maxima at approximately

E/D = 0.25. Thus satisfied that we understand the relative performance of the various

models presented in the literature, and with multi-frequency EPR spectra at hand, we

were able to with reasonable confidence assign values of the ZFS parameters to each of

the six studied Gd(III) complexes. Of these, we found that Gd-PyMTA had a mid-range

ZFS magnitude while Gd-DOTA had a smaller ZFS magnitude, suggesting that the latter

would lend better sensitivity to CW EPR distance measurements using this spin label.

Finally, we attempted to relate the determined ZFS parameter values to the structure

of the Gd(III) complexes. We found that a superposition model can, at the very least,

provide an estimate of the magnitude of D for a given complex and hopefully in the

future will help inform the design of new, tailored Gd(III) spin labels for both CW and

pulsed EPR.

Finally, as a first real-world application of 240 GHz CW EPR distance measurement

with Gd(III) spin labels, we began structural studies of the membrane protein prote-

orhodopsin (PR). In light of our ZFS study of Gd(III) complexes, we transitioned to

using spin labels based on the Gd-DOTA complex. With this new spin label we were

able to replicate previous findings on the hexameric organization of PR oligomers using

pulsed EPR at W-band, and then also with 240 GHz CW EPR. The first CW EPR mea-
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surement of PR oligomers determined found an inter-PR distance of ∼ 3 nm at residue

89, which is well beyond the distance measurable by traditional CW EPR methods. The

next CW EPR study on PR oligomers probed a much shorter inter-PR distance of ∼ 1.6

nm, such that our CW EPR could successfully measure both the nearest-neighbor and

next-nearest-neighbor distance in the hexamer simultaneously. And last, we conducted

preliminary measurements of a conformational change in PR, by seeing a distance change

between a residue on the mobile E-F loop and a residue on the stationary A-B loop when

the protein is in the inactive state vs. a light-induced active state. We saw tantalizing

evidence that there is indeed a distance change and hence motion between these two re-

gions of the protein when activated by light. These measurements only begin to scratch

the surface of what this technique can contribute to the understanding of PR, as well as

to other systems. There are still many details to work out in improving data analysis

and spin labeling efficiency, but these look to be surmountable hurdles.

Given these very promising glimpses, the hope is that one day high-field CW EPR with

Gd(III) spin labels will be able to give both static structural information and real-time

dynamic information on conformational changes in a protein that allow it to do its job.

Additionally, it is the hope that this technique will also move into the realm of structural

studies of proteins in more native-like systems - including ambient temperatures and in

lipid membrane or in-cell environments. Both CW EPR and Gd(III) spin labels have

independently proven successful in these various realms - all that remains is to bring

them together. While high-field EPR has long been a somewhat esoteric sub-field of
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magnetic resonance, the march towards higher fields has done nothing but accelerate

in recent years as the technique matures, costs decline, and broader audiences become

convinced of this as a useful tool to solve a wide variety of problems. The understanding

of biological processes is a particularly interesting application of high-field EPR and,

given the never-ending variety that nature provides, will no doubt be puzzling us for

generations to come.
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Appendix A

Experiments and Methods

A.1 EPR spectrometers

The majority of experiments in this dissertation were performed on a home-built 240

GHz EPR spectrometer in the Sherwin group at UCSB. The Q-/W-band measurements

presented in Chapter 3 were performed on spectrometers in the Jeschke group at ETH

Zurich, and the X-band measurements in Appendix C were performed on an X-band

spectrometer in the Han lab at UCSB. The DEER measurements carried out in Chapter

4 utilized a home-built W-band spectrometer in the Goldfarb group at the Weizmann

Institute of Science. These instruments are briefly outlined below.

A.1.1 240 GHz spectrometer - Sherwin group, UCSB

The 240 GHz EPR spectrometer operates in both CW and pulsed modes using a low

power solid state source. The spectrometer can alternately operate as a high-power
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pulsed Free Electron Laser-powered EPR spectrometer, which is used for experiments

beyond the scope of this dissertation. This spectrometer has been described in detail

elsewhere [160, 53, 54, 41], and is similar in operation to other spectrometers [168].

In low-power operation, the spectrometer uses a solid state frequency-multiplied source

(Virginia Diodes, Inc.), which multiplies a 15 GHz source 16x to achieve an output

frequency of 240 GHz with CW power of order 50 mW.

The spectrometer operates in induction mode detection with optical transport of

240 GHz radiation achieved via a quasi-optical bridge. Superheterodyne detection is

used, with a Schottky subharmonic mixer (Virginia Diodes, Inc.) and a home-built

intermediate-frequency (IF) stage operating at 10 GHz, which is then mixed down to

baseband for detection. For CW and rapid passage measurements, field modulation at

20 kHz was used and the 0◦ and 90◦ signal components from the IF stage were passed

through a pair of pre-amplifiers followed by a pair of lock-in amplifiers.

The radiation from the 240 GHz source may be attenuated via a user-controlled

voltage attenuation of the source, or by a pair of crossed wire-grid polarizers. This

radiation is then passed to the sample which sits at the end of a 1.25 m long overmoded

waveguide (Thomas Keating, Inc.). The probe design allows for a wide variety of sample

geometries (Figure A.1). Typically for measurements of frozen glassy samples, or for

powder samples, a Teflon bucket-style sample holder of approximately 10 µL capacity

is used. For room temperature measurements of liquid samples, a rectangular glass or

quartz capillary containing approximately 0.5 µL of sample is used. For the CW and rapid
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Figure A.1: Schematic overview of various sample holder configurations, adapted from
reference [38]. Liquid samples which will be frozen for measurement are loaded into a
cylindrical Teflon ”bucket” and placed on a mirror inside the modulation coil at the end
of the waveguide. Aqueous samples are measured in a thin, rectangular glass capillary.
For light-activated measurements, the sample can be backed by glass coated with a
transparent conductor (e.g. FTO or ITO) and illuminated from below through a window
at the bottom of the cryostat.

passage measurements presented in this dissertation, the sample was placed inside one

of several modulation coils (depending on the required sample geometry and modulation

amplitude) mounted at the end of the waveguide. The calibration of these modulation

coils is discussed below. The waveguide assembly is mounted in a continuous-flow cryostat

(Janis Research Company, LLC) which sits in the room-temperature bore of a sweepable

12.5 T superconducting magnet (Oxford Instruments plc). The main coil of the magnet

can be swept through a range of field positions from 0 - 12.5 T. Alternatively, this main

coil may be clamped at a fixed field position and a smaller sweep coil used, which covers
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a range of ± 0.06 T about the main field position. Both the main coil and the sweep

coil of the magnet display hysteresis effects. If the true field position needs to be known,

e.g. for measurements of the g-value of a sample, a field-standard based on the hyperfine

splitting of Mn2+ has been used at room temperature [14]. Measurements of a Mn2+ field

standard showed that the as-recorded sweep coil position requires an additional linear

correction, as described below.

The spectrometer can be operated at sample temperatures ranging from 1.5 - 300

K. The sample temperature is recorded with a Cernox temperature sensor (Lakeshore

Cryogenics, Inc.), mounted on the outside of the waveguide just above the sample posi-

tion. A second temperature sensor, attached near the heater and helium intake at the

top of the cryostat, was used to control the sample temperature with a PID feedback

optimized temperature controller (Model 335 Lakeshore Cryogenics, Inc.). For operating

temperatures of 4.2 - 300 K, the cryostat can be run under atmospheric pressure or under

vacuum. For temperatures of ∼2.3 - 4.2 K, the pressure of the sample space is reduced

using a rotary vain pump. For operating temperatures below ∼2.3 K the cyrostat is op-

erated in batch mode (∼1 hour at 1.5 K), where liquid helium is collected in the cryostat

under low pressure.

Further details of the operation and maintenance of the spectrometer can be found

in the spectrometer user’s manual available from the Sherwin group at UCSB.
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Sweep coil correction

The recorded position of the sweep coil of the 12.5 T magnet was found to require a linear

correction in data processing, as determined by measurements with a Mn2+ field standard.

The appropriate correction factor is the recorded sweep coil field vector multiplied by

0.953654765362. The main coil of the magnet does not require this correction, however

the main coil does display hysteretic effects. If an accurate field position is required, a

field standard such as Mn2+ must be measured along with the sample of interest [14].

Digital attenuator correction

After detection of the EPR signal by the Schottkey subharmonic mixer, the 10 GHz

signal is passed through an amplifier and a digitally controlled attenuator before being

fed through the IF stage. If accurate EPR signal amplitudes are required (e.g. for the

spin label concentration estimation discussed in Chapter 4), the effect of attenuation of

the measured signal amplitude by the digital attenuator must be corrected for in the

data processing. The response of the EPR signal amplitude as a function of the digital

attenuator setting is shown in Figure A.2.
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Figure A.2: Response of measured EPR signal amplitude on the setting of the digital
attenuator.

Modulation coil calibration

CW EPR spectra are acquired by applying a small sinusoidal modulation to the B1

field. In general, a higher modulation amplitude will increase SNR. However, too large

a modulation amplitude will result in broadening of the peak-to-peak linewidth, and

will also affect the peak height. This is potentially very problematic in the CW EPR

distance measurements, which rely heavily on the accurate determination of peak-to-peak

linewidths. For the accurate lineshapes, the modulation amplitude should be kept to

< 1/10 of the intrinsic linewidth. If the area under the peak is the information required,

as is the case in a concentration measurement, then overmodulation is acceptable as the

area is linearly proportional to the modulation amplitude [50].

The most accurate way to determine the modulation amplitude at the sample position

is by a CW EPR experiment on a sample with a sufficiently narrow linewidth to show
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effects of overmodulation. An example of such a measurement on a Gd(III) sample is

shown in Figure A.3, where the current driving the modulation coil was successively

increased.
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Figure A.3: Overmodulation of the central transition of Gd(III) using the light accessible
modulation coil (left). The peak to peak linewidth is linearly proportional to the current
driving the modulation coil (right). This data was acquired at 30 K on ∼ 8µL of slow PR
E50Q doubly labeled with Gd-MTS-ADO3A at sites 177 and 55. The sample was loaded
into a Teflon sample cup which was placed on a sapphire substrate inside the modulation
coil.

The modulation amplitude can be calibrated by this overmodulation broadening with

the following expression [116, 46]

∆Hpp(obs) = ∆Hpp


(

Hm

∆Hpp

)2

+ 5− 2

[
4 +

(
Hm

∆Hpp

)2
]1/2

1/2

(A.1)

where ∆Hpp is the intrinsic peak-to-peak linewidth without modulation broadening,

∆Hpp(obs) is the measured peak-to-peak linewidth of the modulation broadened spec-

trum, and Hm is the modulation amplitude in Gauss.

Inserting the observed peak-to-peak linewidths in Figure A.3 into Equation A.1 gives a
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value of 0.235 Gauss/mA for the wide-bore light accessible modulation coil. The narrow-

bore modulation coil used for experiments not requiring light activation was calibrated

in a similar fashion using a sample of Mn:MgO, and gave a value of 0.92 Gauss/mA.

A.1.2 W-band spectrometer - Jeschke group, ETH Zurich

The W-Band spectra presented in Chapter 3 were measured on a Bruker Elexsys E680 X-

/W-band spectrometer using a EN 680-1021H resonator. The measurement temperature

was stabilized by a He-flow cryostat (ER 4118 CF, Oxford Instruments).

A.1.3 Q-band spectrometer - Jeschke group, ETH Zurich

The Q-band measurements presented in Chapter 3 were performed on a home-built high-

power Q-band pulse EPR spectrometer [70] equipped with a rectangular cavity accom-

modating for oversized 3 mm outer diameter cylindrical samples [165, 115].

A.1.4 W-band spectrometer - Goldfarb group, WIS

The W-band DEER measurements presented in Chapter 4 were performed on a home-

built W-band spectrometer described previously [108, 66].

A.1.5 X-band spectrometer - Han group, UCSB

The X-band measurements presented in Appendix C were recorded on an Elexsys E580

(Brucker Biospin) pulsed EPR spectrometer.
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A.2 Sample preparation and experimental details

In the following, further details of the samples used in this dissertation are described,

along with further details of experimental parameters. This information is organized by

chapter.

A.2.1 Chapter 2

The synthesis of the Gd-rulers 11 and 13 were previously published [120]. The synthesis

of Gd-rulers 21 and 22 were reported in reference [41]. The synthesis of Gd-rulers 10 and

3 will be reported elsewhere.

For sample preparation, stock solutions of Gd-rulers and Gd-4-iodo-PyMTA in D2O

were used. These solutions contained additional compounds remaining as a result of the

synthesis, as detailed in Table A.1. For measurements at cryogenic temperatures, stock

solutions of the Gd-rulers and Gd-4-iodo-PyMTA were diluted with a 60:40 (v:v) mixture

of D2O and glycerol−d8 (Cambridge Isotopes Laboratories, Inc.) to a concentration of

300 µM.

For measurements near room temperature, the Gd-rulers were immobilized in dehy-

drated amorphous trehalose [109]. For this purpose, stock solutions of the Gd-rulers

and Gd-4-iodo-PyMTA were diluted with a 0.2 M solution of trehalose dihydrate (Sigma

Aldrich) in D2O (Cambridge Isotopes Laboratories, Inc.). The resulting samples had a

mole ratio of 40:1 trehalose:Gd-ruler and 40:1 trehalose:Gd-4-iodo-PyMTA. These mix-

tures were then deposited onto a glass slide, allowed to dry for several days under a flow
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Compound Content of stock solution in D2O pH

Gd-4-iodo-
PyMTA

3 mM Gd-4-iodo-PyMTA, 5 mM
F3CCO2H/F3CCO2Na, 15 mM NaCl, 120
mM H2O

7

10 4 mM 10, 48 mM NaCl, 148 mM H2O 5
11 5 mM 11, 37 mM NaCl, 100 mM H2O 8
21 5 mM 21, 0.5 mM F3CCO2H/F3CCO2Na, 30 mM

NaCl, 180 mM H2O
7

13 5 mM 13, 28 mM NaCl, 100 mM H2O 8
22 5 mM 22, 30 mM NaCl, 100 mM H2O 8
3 5 mM 3, 32 mM NaCl, 122 mM H2O

Table A.1: Details of the content of stock solutions of Gd-4-iodo-PyMTA and Gd-rulers
1n, 2n, and 3 used to prepare samples for CW-EPR experiments, including pH and the
concentrations of additional compounds left over as a result of the synthesis.

of dry nitrogen at room temperature, and finally placed under vacuum for at least 24

hours before measurement. The fragile solid was removed from the glass slide, crumbled

into a powder, and transferred to a Teflon sample cup for measurements.

The phase of the CW EPR spectra was set in post-processing. Each lock-in amplifier

produces two components which are at angles φ and φ+ 90◦ with respect to a reference

signal taken from the field modulation frequency. The angle φ for each lock-in amplifier

was chosen such that the quadrature signal was minimized using a least-squares criterion,

giving maximum SNR in the in-phase signal [13]. The resulting in-phase signals after

this phase nulling procedure were the real and imaginary components of the CW EPR

spectrum. These real and imaginary components were then rephased to determine the

derivative CW EPR lineshape either by equalizing the positive and negative peaks of the

derivative lineshape, with a linear background correction applied [53].

162



A.2.2 Chapter 3

A series of six Gd(III) complexes were chosen to be included in the work presented in

Chapter 3. Gd-DOTA (2) was obtained commercially from Macrocyclics and used with-

out further purification. The synthesis details of the remaining Gd(III) complexes, which

include Gd-NO3Pic (1), Gd-maleimide-DOTA (3), R-(Gd-PyMTA) (4ab), Gd-TAHA

(5), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7), will be reported in the forthcoming

publication of this work [40]. The synthesis of Gd-NO3Pic has been previously published

[62].

For 240 GHz measurements, stock solutions of the Gd(III) complexes were diluted

to a final concentration of 300 µM in 0.4:0.6 (v:v) D2O/glycerol−d8. Sample solutions

of 10 µL volume were loaded into a Teflon sample cup of ∼ 3.5 mm i.d. and ∼ 5 mm

height and subsequently flash frozen in liquid nitrogen under ambient conditions. 240

GHz measurements were performed at a temperature of approximately 5 K. EPR spectra

were acquired using a rapid passage technique, which is similar in practice to CW EPR

but records an absorption-like lineshape rather than a derivative lineshape [22, 172, 117].

Rapid passage EPR measurements were carried out with field modulation at 20 kHz with

∼ 0.3 mT modulation amplitude. The main coil of the superconducting magnet was used

to carry out measurements at a sweep rate of 0.1 T/min.

The phase of the 240 GHz EPR spectra was set in post-processing. Each lock-in

amplifier produces two components which are at angles φ and φ+ 90◦ with respect to a

reference signal taken from the field modulation frequency. The angle φ for each lock-in
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amplifier was chosen such that the quadrature signal was minimized using a least-squares

criterion, giving maximum SNR in the in-phase signal [13]. The resulting in-phase signals

after this phase nulling procedure were the real and imaginary components of the EPR

spectrum. These real and imaginary components were then rephased to determine the

absorption rapid passage EPR lineshape by maximizing the integral of the real component

and minimizing the imaginary component, which in the fast passage regime should be

approximately zero. 240 GHz spectra were normalized to the envelope resulting from

the outer EPR transitions, as the relatively high powers and fast sweep rate necessary

to collect data in the rapid passage regime artificially broaden the very narrow central

transition of Gd(III).

For Q-/W-band measurements, stock solutions of the Gd(III) complexes were diluted

to a final concentration of 25 µM in 1:1 (v:v) D2O/glycerol−d8. Sample solutions were

filled into 3 mm o.d. quartz capillaries for Q-band or 0.5 mm i.d./0.9 mm o.d. quartz

capillaries for W-band and subsequently flash frozen in liquid nitrogen under ambient

conditions. Q-/W-band measurements were performed at a temperature of 10 K. Field-

swept EDEPR spectra were acquired using the Hahn-echo pulse sequence tp− τ −2tp− τ

and pulse length tp of 12 ns. The inter-pulse delay τ was set to 400 ns. The power

to obtain 12 ns - 24 ns, π/2 − π pulses was set at the central transition of the Gd(III)

spectrum by nutation experiments. The Q-/W-band spectra had a constant field offset

removed and were normalized to a maximum value of 1.0.

For X-band measurements, stock solutions of the Gd(III) complexes were diluted to
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a final concentration of 300 µM in 0.4:0.6 (v:v) D2O/glycerol−d8. Sample solutions of

4 µL volume were filled into quartz capillaries and subsequently flash frozen in liquid

nitrogen under ambient conditions. X-band measurements were performed at a sample

temperature of 30 K. Field-swept EDEPR spectra were acquired using the standard

Hahn-echo pulse sequence tp − τ − 2tp − τ with a pulse length of tp of 16 ns. The

inter-pulse delay τ was set to 200 ns. A 2-step phase cycle was used.

A.2.3 Chapter 4

Production and spin labeling of PR samples

Site-directed mutagenesis and spin labeling (SDSL) methods were used to introduce cys-

teine mutations at select sites in PR which form covalent bonds with applied spin labels.

The template green absorbing PR gene used for protein expression (referred to as ”wild-

type” in the main text) is a triple mutant version with substitution of the three naturally

occurring cysteine residues (107, 156, 175) with serines to prevent non-specific bind-

ing of spin labels. Further mutagenesis was conducted on select samples to create the

mutants (i) E108Q which extends the M-intermediate state of the photocycle by elimi-

nating a proton acceptor site (referred to as ”slow” PR), and/or (ii) E50Q which breaks

down interactions the stabilize oligomer formation to result in an increased population

of monomeric PR.

Desired mutations of specific residues of PR were generated using standard site-

directed mutagenesis methods. The PR gene template was modified by applying primers
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with mutations codons and polymerase chain reactions (PCR). A two-stage PCR tech-

nique was used to prevent the primers from forming self-dimers instead of binding to the

PR template during PCR. The PR gene template with the desired mutations incorpo-

rated was then recloned into a pET26b (+) vector (Novagen) for expression of the protein.

Protein expression was carried out by transforming the pET26b (+) vector with the PR

gene into E. Coli strain BL21(DE3) competent cells (Agilent), growing bacteria in liter-

scale flasks, and inducing overexpression by adding isopropyl-β-D-thiogalactopyranoside

(IPTG) al all-trans-retinal (Vitamin A aldehyde). The expressed PR in E. coli cells,

which were pink-colored in appearance, were then collected by centrifugation. This was

followed by purification of the PR, which involves cell lysis, freeze-fracture, and sonication

to break the E. coli cell membrane such that the PR in cell lysate can later be extracted

and solubilized by β-D-dodecyl-maltoside (DDM) surfactants. The surfactant-solubilized

PR was then further purified by a metal affinity resin which selectively binds to PR with

a hexahistidine tag at its C-terminus. The resin is washed several times with a buffer of

a mild concentration of imidazole to remove other impurities. The surfactant-solubilized

PR bound to resin is then eluted by a buffer with a high imidazole concentration. A

Sephadex desalting column was then used to remove excess salts and exchange PR into a

desired buffer (50 mM MES, 150 mM sodium chloride, 0.05 % DDM, pH 5.8) for storage

or measurement.

For some samples, hexameric species of solubilized PR were separated by injecting

samples onto a HiLoad 16/6000 SuperdexTM 200pg column (GE Healthcare) connected
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to a BioRad Duoflow FPLC, and 0.5 mL fractions were collected with a BioFrac fraction

collector (BioRad; Hercules, CA, USA). Fractions were analyzed for oligomeric state by

BN-PAGE.

For the CW EPR and DEER measurements presented in this dissertation, maleimide-

Gd-DOTA spin labels were attached to selected cysteine mutation sites on PR. Gadolin-

ium chloride (GdCl3) and maleimido-monoamide DOTA spin tags were first dissolved

in MilliO water with a 1:1 molar ratio. To drive the chelating reaction between Gd3+

ions and the DOTA spin tags, the solution was continuously adjusted to a pH of 5.8 by

titrations of basic buffer at room temperature for ∼ 2.5 hours. The pH of the solution

becomes stable after the formation of the Gd-DOTA complex reaches equilibrium. A

10x molar mass excess of the maleimide-Gd-DOTA complex solution was then added

to PR, and the mixture shaken overnight to allow for the conjugation reaction between

cysteine residues on PR and the maleimide-Gd-DOTA complex. The spin labeled PR

was later exchanged into the same MES buffer, but made with deuterium oxide (D2O),

using the Sephadex desalting column. The excess unreacted maleimide-Gd-DOTA was

also be removed during this step. For cyrogenic EPR measurements, 30% glycerol−d8

by volume was added to promote glass formation.

W-band DEER experiments and samples

For W-band DEER measurements, six PR samples in DDM were prepared with 30% (by

volume) glycerol−d8 as a glassing agent. These samples are detailed in Table A.2. The

amount of free Gd(III) ion in solution during the labeling step was monitored by the
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xylenol orange test [17] to ensure no free Gd(III) ions were present in the final samples.

Sample spin dilution (labeled:WT-PR) PR conc (µM)

PR-55 hex 1:1 90
PR-55 hex 1:3 365
PR-58 hex 1:1 52.5
PR-58 hex 1:3 171
PR-177 hex 1:1 124.6
PR-177 hex 1:3 348

Table A.2: PR samples prepared in DDM detergent micelles for W-band DEER measure-
ments. All samples contained 30% glycerol−d8 (by volume) as a glassing agent. Note:
the DEER data suggests that the PR-58 samples were mislabeled.

Additionally, three PR samples were prepared in a similar fashion and reconstituted

into POPC:POPG (4:1) liposomes. These are detailed in Table A.3.

Sample spin dilution (labeled:WT-PR) PR conc (µM)

PR-58 hex 1:3 324
PR-177 hex 1:3 248
PR-177 hex 1:4 123

Table A.3: PR samples reconstituted into POPC:POPG (4:1) liposomes for W-band
DEER measurements. All samples contained 30% glycerol−d8 (by volume) as a glassing
agent. Listed are PR concentrations measured before spin dilution and before addition
of glycerol−d8. No DEER oscillations were observed for these samples.

Samples were loaded into a quartz capillary of 0.6 mm I.D./0.84 mm O.D. and flash

frozen in liquid nitrogen under ambient conditions. EDEPR experiments were carried

out using a standard Hahn-echo pulse sequence π/2 − τ − π − τ with π = 15 ns and τ

= 550 ns. For DEER experiments, the observation frequency was set to the maximum

of the Gd(III) EPR lineshape at 94.85 GHz and the observation lineshape was set to the

low-field side of the central peak at 94.95 GHz. The pump pulse was of 15 ns duration

and the probe pulse used a Hahn-echo pulse sequence with π = 15 ns and τ = 550 ns.
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Improved sample geometry for high SNR room temperature EPR

Conducting measurements of protein structure and dynamics under ambient conditions

will require high SNR room temperature 240 GHz EPR measurements on liquid samples

of small volume and low spin label concentration. While PR is surprisingly amenable to

being concentrated to several 100s of µM, many membrane proteins of interest, cannot

be concentrated to more than ∼100 µM. Coupled with imperfect spin labeling and the

need to spin-dilute for certain experiments, this means working with Gd(III) spin label

concentrations of maybe 10s of µM. Additionally, the expression and purification of

protein samples often has low-yield, so we wish to use as little sample volume as possible

(at least < 10 µL, preferably less). The sample geometry described below has enabled

the measurement of 240 GHz CW EPR spectra of 50 µM Gd-DOTA samples using 0.5

µL sample volume at 290 K with reasonable SNR in a single measurement. The low-

concentration and low-volume sensitivity limits of this sample geometry for use in the

240 GHz EPR spectrometer has not yet been fully explored.

High SNR measurements of liquid samples is difficult, due to significant dielectric

losses of water at millimeter-wave frequencies. Typical samples used for cryogenic EPR

measurements, consisting of ∼10 µL of 100µM - 1 mM sample in a Teflon bucket-style

sample cup backed by a mirror, give very little if any measurable signal at room temper-

ature where the sample is now a lossy liquid instead of ice. For measurements on liquid

samples at room temperature, thin samples have been shown to give the best signal [149].

A thin, flat sample is easily achieved in practice by loading the aqueous sample into a rect-
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angular glass or quartz capillary. To achieve the greatest signal possible from the small

volume of sample available in such a geometry, the sample should be placed as close as

possible to the beam waist. Additionally, the B1 field should be maximized at the sample

position and the electric field minimized. This may be achieved by mounting the rect-

angular capillary filled with aqueous sample on top of an appropriate dielectric material

and backed by a mirror. A variety of dielectric materials and geometries are appropriate

for such a sample loading scheme. Performance of a particular mirror-dielectric-sample

stack may be predicted by transfer matrix calculations, as outlined by Budil and Earle

[35]. For the sample geometries used in this work, the sample was assumed to be water,

since accurate values of ε at 240 GHz needed for the transfer matrix calculations are

difficult to find for many samples and materials. However, for more accurate calculations

it may be necessary to consider the solute of the sample, since it has been suggested

that solutes such as sucrose and glycerol, which are commonly added to biological sam-

ples to modulate viscosity or promote glass formation, significantly alter ε at mm-wave

frequencies. Macromolecules in a sample may also modify the effective ε [35].

Sample handling for labeling efficiency measurements

For the measurements of Gd(III) concentration which were used to calculate spin label-

ing efficiency of PR samples, 0.5 µL of sample was pipetted into a rectangular (0.10 x

2.00 mm I.D.) glass capillary (Vitrocom 5012-300). For reproducible CW EPR signal

amplitudes, it was found to be important that the sample very nearly fill the capillary,

with a minimum of air space available for later wax sealing. The rectangular capillary
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may be easily cut to length by scoring a line with a diamond scribe and carefully break-

ing the capillary on the scored line. Glass capillaries were found to be the most readily

available commercially in the required dimensions. However, they were found to contain

an EPR active contaminant near g = 2 which overlaps with the position of the nitroxide

EPR signal. This contaminant is sufficiently separated from the Gd(III) EPR signal in

room temperature CW EPR measurements to not overlap the desired signal. Subse-

quently, quartz capillaries were purchased (Vitrocom 50105-100) which did not have a

contaminant at the g = 2 position and would thus be better suited for measurements

with nitroxide spin labels, though the different size of the capillary (0.10 x 1.00 mm I.D.)

necessitates a slightly different dielectric backing material and/or geometry.

The rectangular capillaries after being filled with sample were sealed with wax to

prevent rapid sample evaporation according to the following procedure:

1. Light a paraffin wax candle and let burn to melt a small amount of wax. The candle

should be pure paraffin without any added color or scent to prevent unwanted

contaminant EPR signals.

2. Gently heat the end of a glass Pasteur pipette over the candle flame and dip into

the melted wax. A small amount of wax should be sucked up into the pipette by

capillary action.

3. Gently heat the wax-loaded pipette over the handle flame, holding the pipette

horizontally, until a faint wisp of clear (not black) smoke is seen. The wax must

be sufficiently melted to flow easily, but not so hot so as to overheat or boil off the
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very small amount of sample in the capillary.

4. Quickly and gently touch the end of the wax-loaded pipette to the end of the filled

capillary to seal with wax. When doing this, the pipette should be held nearly

horizontally (rather than vertically oriented) to prevent the wax from flowing out

too fast.

5. Repeat the above procedure to seal the other side of the capillary.

6. Visually inspect the capillary to ensure a good seal has formed, and repeat the

above if necessary. Be careful to avoid a large amount of wax building up on the

outside of the capillary, as this can cause the sample to not lay flat.

The Gd-DOTA concentration calibration measurement and measurements of labeling

efficiency of Gd(III) labeled PR samples presented in Chapter 4 were carried out at ∼290

K, the ambient temperature of the cryostat in the absence of heating or cooling. The

sweep coil was used for CW EPR measurements with the correction described in Section

A.1.1 applied in post-processing of the data. CW EPR spectra were recorded at a sweep

rate of 0.2 mT/sec and using ∼30 Gauss of field modulation. These measurement param-

eters were optimized for speed and signal amplitude, and not for accurate measurement

of the CW EPR lineshape. The experimental parameters used for these measurements

likely distort (broaden) the measured lineshape, but so long as all measurements in the

calibration series and the samples compared to the calibration are recorded under the

same experimental conditions, the distortion of the EPR lineshape does not change the
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linear relationship of the double integral of the CW EPR signal with Gd(III) concen-

tration in the sample. The filled and sealed glass capillary was mounted on top of a

dielectric stack backed by a mirror, in which the index of refraction and thickness of the

dielectric material was chosen to result in an enhanced B1 field at the sample position.

Experimental setup for light activated measurements

For measurements of PR under light activation, a LED (Thorlabs M530L3) was used as

the light source, followed by a set of collimating lenses. The output wavelength of the

LED is fairly broadband and centered at ∼535 nm (Figure A.4), with a minimum output

power of 350 mW. No heat controller was used, so the peak wavelength may shift ± 0.5

nm about this measured value due to heating.
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Figure A.4: Output of the LED (Thorlabs M530L3) used for PR light activation experi-
ments.

A mirror was used to direct the green light from the LED up through the window
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at the bottom of the cryostat. The sample was backed by glass coated with FTO, a

transparent conductor. In this manner, green light may pass from below through the

FTO coated glass to the sample, while the 240 GHz radiation from above is reflected by

the FTO which acts approximately as a mirror at this frequency (Figure A.1).
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Appendix B

Second Moment Analysis of

Gd-rulers

One of the simplest ways to quantify lineshape broadening of CW EPR data resulting

magnetic dipole-dipole interactions of nearby spins is through second moment analysis

[169, 2]. The second moment, µ2, can be used as an empirical parameter to characterize

the extent of broadening resulting from spin-spin interaction and related to a pairwise

distance between spin labels. In practice, this simplified inter-spin distance determination

is typically done by calculating the difference of spectral second moments 〈∆B2
D〉 between

the absorption spectrum of a doubly spin labeled sample SD(B) and the corresponding

singly labeled reference spectrum SS(B) which does not have spin-spin interactions,

〈∆B2
D〉 =

∫
(B − B̄D)2SD(B)dB∫

SD(B)dB
−
∫

(B − B̄S)2SS(B)dB

SS(B)dB
(B.1)
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where B is the magnetic field and B̄i is the magnetic field corresponding to the mean of

each spectra (i.e., the spectral first moment). For the case of a powder sample of like

spins, the difference of spectral second moments can be related to the distance between

the two spins according to

〈∆B2
D〉 =

3

5
g2β2S(S + 1)

∑
j

r−6ij (B.2)

where g is the gyromagnetic ratio and β is the Bohr magneton [124]. This value is

typically quoted for S = 1/2 nitroxide spin labels as r = 2.32×108/〈∆B2
D〉 nm if 〈∆B2

D〉

is given in T 2. For S = 7/2 Gd(III) spin labels, assuming g = 1.992, this relation becomes

r = 3.85× 108/〈∆B2
D〉 nm if 〈∆B2

D〉 is given in T 2.

The results of applying second moment analysis to the series of Gd-rulers is summa-

rized in Figure B.1, which shows the calculated most probable distance for each Gd-ruler

at 30 K plotted against the interspin distance determined by second moment analysis.

For Gd-rulers 3 (1.2 nm), 10 (1.4 nm), and 11 (2.1 nm) there is relatively good agreement

with the expected interspin distance. However, for Gd-ruler 21 (3.0 nm) there is a pro-

nounced disagreement with the expected interspin distance and for the longer Gd-rulers

the difference in spectral second moments 〈∆B2
D〉 could not be reliably determined. This

failure of the second moment analysis to capture longer interspin distances is unfortunate,

but not surprising. Steinhoff quotes the upper limit using the method of second moments

to be between 1.5 and 1.7 nm for S = 1/2 nitroxide spin labels [153]. If we apply the

scaling argument of Edwards et al. [53], we can estimate the upper limit for S = 7/2
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Figure B.1: Second moment analysis of the Gd-rulers. The calculated most probable
distance for each Gd-ruler at 30 K plotted against the interspin distance determined by
second moment analysis. The second moment determined interspin distance for each
Gd-ruler shown here was taken as the average over tens of scans for each point, with
error bars taken to be one standard deviation from the mean. The dotted line is a guide
to the eye of perfect agreement. The yellow and red bands show approximate confidence
regions extrapolated from [153] via a scaling argument.

Gd(III) spin labels to be between 2.8 and 3.2 nm, as shown by the yellow band in Figure

B.1. This upper limit, and in general the reliability of this method, is strongly dependent

on the quality of the baseline in the experimental data. This is particularly difficult for

Gd(III), as the baseline of CW EPR spectra is not truly zero due to contributions from

transitions other than the | − 1/2〉 → |1/2〉 transition.
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Appendix C

Additional results and details for

Chapter 3

This appendix contains additional results and details related to Chapter 3: Determining

ZFS parameters of Gd(III) complexes.

C.1 Further details of numerical simulations

Initial fit by eye simulations with Models 1 and 3 were run on a PC. Simulations for

Models 2 and 3, including the full library of simulations used to generate RMSD error

maps and all final simulations with the determined best-fit ZFS parameters, were run

on the Knot cluster at the Center for Scientific Computing at CNSI/MRL, UCSB. The

use of the Knot cluster for running simulations scripts written in MATLAB is outlined

in Appendix D.
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C.1.1 Range and number of magnetic field points

The number of points in the magnetic field range was set to 8000 to reach sufficient

convergence, and is especially important to avoid deviations for the 240 GHz simulations.

The EasySpin function pepper forces the computed spectra to zero at its boundaries,

therefore the simulated magnetic field range was chosen to be sufficiently broader than

the experimental spectra so as to not induce numerical artifacts. Both the magnetic field

range and number of points within these ranges had minimal impact on computation

time.

C.1.2 Orientation averaging

Orientation averaging was performed in 3◦ increments and a 10-fold interpolation of

the orientation grid (Opt.nKnots = [31 10] in EasySpin). Reducing the orientation

resolution to 5◦ increments had only a very small influence on the simulated EPR spectra

given a sufficient number of points in the D and E distributions. Computation time is

reduced by reducing the resolution of the orientation averaging.

C.1.3 Regular grid vs. Monte Carlo sampling of D and E

(or E/D) distributions

Two different approaches to the sampling of the D and E distributions were investigated.

First, the distributions of ZFS parameters were sampled by a regular grid of points. The

advantage of this approach is that it allows for uniform sampling of all relevant D and E
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values. However, significant computational cost is spent to compute spectra with D and

E parameters far away from the maxima of the probability distributions. Additionally,

when sampling the vicinity of D = 0 point a grid sampling generates a sharp peak

corresponding to the smallest sampled value of D and is particularly problematic if the

point D = 0 is included in the sampling grid. Such a sharp line in the center of the

Gd(III) EPR spectrum is unphysical, since for nearly symmetric cases (E ≈ 0) the width

of this central peak would be dominated by inhomogeneous broadening mechanisms (e.g.

higher-order ZFS terms, small g anisotropy, unresolved hyperfine couplings, etc.) rather

than by the intrinsic homogeneous line width. Because the deviation in the simulated

spectra with grid sampling is only found at the peak of the | − 1/2〉 ↔ |1/2〉 transition,

this could be compensated for by the addition of an intrinsic linewidth.

An alternative to a regular grid sampling is a Monte Carlo sampling scheme, in which a

large set of randomly distributed (D,E) pairs is generated and the overall EPR spectrum

is computed as a linear combination of the EPR spectra for all (D,E) pairs. For the

D distribution, which is Gaussian in all three models, this was generated directly by

the MATLAB function randn(). The generation of the polynomial distribution for the

ratio E/D in Models 2 and 3 was computed by numeric calculation of the corresponding

E/D = A values from the uniformly distributed cumulative probability X = P (E/D ≤

A). In such a sampling scheme the number of points in a particular range of D and E

parameters is in line with the relative weight of this range in the overall EPR spectrum

and therefore corresponds optimal computational cost.
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For both sampling methods it is necessary to calibrate the convergence of the sim-

ulated EPR spectrum with respect to the number of points in the grid or the number

N of random steps. The number of points required for convergence will change with

the strength of the ZFS because the overall width of the spectrum scales approximately

linearly with the strength of the ZFS. It was found in this work that a set of N = 40000

random points was sufficient to reach convergence for any of the ZFS values within the

range typically observed for Gd(III) complexes.

C.1.4 Isotropic convolutional line broadening

The effect of an isotropic convolutional line broadening parameter (Opt.lwpp in

EasySpin) was investigated in the simulations with Model 1. This spectral broadening

is computed by convoluting the simulated stick spectrum with a Gaussian or Lorentzian

lineshape of a given width (the use of both results in a Voigtian lineshape). This broad-

ening does not assume any physical origin, and is therefore considered phenomenological.

Additionally, it is recommended by the authors of the EasySpin toolbox to only use

Sys.lwpp for S = 1/2 systems. However, in some cases it can be used to visually adjust

the broadening of a simulation to better match experimental data, though no physical

conclusions should be drawn from the value of parameter.

It was observed that the addition of the broadening parameter has the greatest influ-

ence on the sharp feature at the central peak of the EPR spectrum, while the shape of the

outer envelope remains largely unaffected. Increasing the Gaussian and/or Lorentzian
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Figure C.1: Influence of the addition of an isotropic convolutional line broadening (in
EasySpin, Sys.lwpp = [Gaussian Lorentzian]) on the line shape of simulated data for
the complexes (a) Gd-NO3Pic (1) and (b) Gd-PyDTTA (7) at W-band using the param-
eters for Model 1 given in Table 3.2. Simulated spectra are scaled to the outer envelope
of the experimental data (black dashed lines). Sys.lwpp = [Gaussian Lorentzian] is
input as the peak-to-peak width of the first derivative lineshapes, in units of mT.

convolutional broadening results in broadening of the sharp central peak. The effect of an

isotropic convolutional line broadening parameter in the form of Sys.lwpp = [Gaussian

Lorentzian] on the simulated spectra is demonstrated in Figure C.1 for W-band spec-

tra of the complexes Gd-NO3Pic (1) and Gd-PyDTTA (7). Adding a small broadening

to the simulation helps to improve the match between the experimental and simulated

Gd(III) EPR spectra.

C.1.5 Flip angle correction for Q-/W-band simulations

For the simulated Q-/W-band EPR spectra, each allowed transition was computed sepa-

rately and the final simulated spectra were obtained by summing the contributions of the

individual transitions according to their effective flip angles. The relative contribution of

182



each transition Pm to the normalized echo intensity with a π/2 - τ - π - τ pulse scheme

is given by [139]

Pm = sin (απ/2) cos (απ),

α = 〈mS|Ŝ+|mS + 1〉/〈−1/2|Ŝ+|+ 1/2〉

=

√
S(S + 1)−mS(mS + 1)√

S(S + 1) + 1/4
=

√
63− 4 ·mS(mS + 1)

64
. (C.1)

which results in the normalized transition probabilities given in Table C.1.

Transition(s) Pm

| − 7/2〉 ↔ | − 5/2〉, |5/2〉 ↔ |7/2〉 0.419
| − 5/2〉 ↔ | − 3/2〉, |3/2〉 ↔ |5/2〉 0.893
| − 3/2〉 ↔ | − 1/2〉, |1/2〉 ↔ |3/2〉 0.994

| − 1/2〉 ↔ |1/2〉 1

Table C.1: Flip angle correction applied to the different allowed transitions of Gd(III)
according to their normalized transition probabilities Pm.

Note that the weight coefficients listed in the Table C.1 are only valid with good

precision when the electron spin echo is tuned at the maximum of the Gd(III) EPR

spectrum. If the spin echo is set up at the high-field or low-field end of the spectrum the

microwave pulse power will be adjusted for optimal probability of the |−7/2〉 ↔ |−5/2〉

and |5/2〉 ↔ |7/2〉 transitions, resulting in over flipping of the other Gd(III) transitions.
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C.1.6 Parameters used to generate simulation library for

Models 2/3

The library of simulations generated for Models 2/3 used typical values for measurement

frequency (Q-/W-band) and measurement temperature (240 GHz), as detailed in Table

C.2. These values differ slightly from the exact experimental parameters due to tuning

of the resonant cavity for the Q-/W-band measurements and difficulty in stabilizing the

sample temperature at precisely 5 K for the 240 GHz measurements. The magnetic field

ranges of the simulations were set to well cover all of the experimental traces in order to

avoid numerical artifacts, and are also listed in Table C.2.

Exp.mwFreq Exp.Range Exp.Temperature

Q-band 34.50 [219 2219] 10
W-band 94.25 [2380 4380] 10
240 GHz 240 [7608 9608] 5

Table C.2: Experimental parameters used as EasySpin inputs to generate a library of
simulations for determination of ZFS parameters with Models 2/3. Frequencies are given
in units of GHz, magnetic field ranges in mT, and temperatures in K.

The simulation library for Models 2/3 employed Monte-Carlo sampling of the D and

E/D distributions, with the number of random steps set to N = 20000. No additional

line broadening terms were included. The number of points on the magnetic field axis

was set to Exp.nPoints = 8000, and orientation averaging was set to Opt.nKnots =

[31 10].
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Figure C.2: Boltzmann population of states as a function of temperature at 240 GHz.
The dashed lines indicate temperatures of 5 K, 10 K, and 30 K.

C.2 Boltzmann population of states at 240 GHz

Spin populations of states follow a Boltzmann distribution. At high-fields and low tem-

peratures, this can result in > 90% population of the ground state. Figure C.2 shows the

population of each of eight states for a S = 7/2 system as a function of temperature.

C.3 Additional results from Model 1

The Gd(III) spectra from the three measurement frequencies were fit by visual inspection

using Model 1. Random sampling of the D and E value distributions was used with a

convolutional line broadening parameter (lwpp in EasySpin) included. Selected fit values,

as determined by eye and before reordering of the indices, are presented in Table 3.2 of

the main text and Table C.3 below, with the corresponding simulated spectra plotted in

Figure C.3. Table C.3 additionally gives the ZFS parameter values D and σD for Model
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1 after reordering of the indices according to Equations 3.4 and 3.5.

The reording of the indices results in a bimodal distribution for D and so the asym-

metry P (+D)/P (−D) can now be computed for Model 1. These values, listed in Table

C.3, are quite comparable to the results from Model 3. This is especially comforting since

in Model 1 the asymmetry P (+D)/P (−D) is fixed by the definition of the model, while

for Model 3 it is taken as a free parameter in the fit.

Compound Dinit Dpos Dneg σDinit σDpos σDneg
P (+D)
P (−D)

Gd-NO3Pic (1) 420 472 - 418 140 124 111 1.4
Gd-DOTA (2)/ -600 515 - 675 240 160 204 0.6

maleimide-DOTA (3)
Gd-PyMTA (4ab) 1070 1200 - 1065 357 316 288 1.4

Gd-TAHA (5) 1250 1400 - 1117 417 311 272 1.4
Gd-PCTA (6) 1780 1850 - 1370 508 440 318 3.3

Gd-PyDTTA (7) 1800 1845 - 1275 514 439 271 3.3

Table C.3: Change in 〈D〉 and σD upon reordering the ZFS parameters in Model 1
according to their definitions convention (Equations 3.4 and 3.5) for all studied Gd(III)
complexes. Units are given in MHz.
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C.4 Additional results from Model 2

Figure C.4 displays the RMSD error as a function of (D, σD) parameter values computed

using Model 2. In these calculations, the region about the central transition was excluded

from the scaling of the simulation to the data and from the RMSD error calculations.

Figures C.5 and C.6 show simulations using the best-fit ZFS parameters D and σD for

Model 2, as given in Table 3.2 in the main text.
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Figure C.4: Contours of constant RMSD as a function of D and σD parameter values
using Model 2 with the region about the central peak excluded from the calculation of
RMSD errors. Simulated spectra were normalized to the experimental data using only
the shoulders of the spectra. The asterisk denotes the position of minimum RMSD on
the 50 MHz grid of parameter values available in the simulation library.

189



 Q-band

G
d-

N
O

3P
ic

 (1
)  Data

 Model 2 simulation
(central peak excluded)

 W-band  240 GHz

G
d-

m
al

ei
m

id
e-

D
O

TA
 (3

)
R

-(
G

d-
P

yM
TA

) (
4a
b)

Magnetic Field (mT) Magnetic Field (mT)

G
d-

D
O

TA
 (2

)

Magnetic Field (mT)

Figure C.5: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-NO3Pic (1), Gd-DOTA (2) (240 GHz sepctra)/Gd-maleimide-DOTA (3) (Q-
/W-band spectra), and R-(Gd-PyMTA) (4a) (240 GHz spectra)/R-(Gd-PyMTA) (4b)
(Q-/W-band spectra). Overlaid are simulations with Model 2 using the best-fit ZFS pa-
rameters determined with the region about the central peak excluded from the analysis
(Table 3.2). The faded region indicates the portion of the spectra which were excluded
from analysis.
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Figure C.6: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-TAHA (5), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7). Overlaid are
simulations with Model 2 using the best-fit ZFS parameters determined with the region
about the central peak excluded from the analysis (Table 3.2). The faded region indicates
the portion of the spectra which were excluded from analysis.
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C.5 Additional results from Model 3

Figure C.7 displays the RMSD error as a function of (D, σD) and (P (+D)/P (−D), σD)

parameter values computed using Model 3. In this calculation, the region about the

central transition was excluded from the scaling of the simulation to the data and from

the RMSD error calculations.
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Figure C.7: Contours of constant RMSD as a function of D and σD parameter values,
and as a function of σD and P (+D)/P (−D) parameter values, using Model 3 with the
region about the central peak excluded from the calculation of RMSD errors. Simulated
spectra were normalized to the experimental data using only the shoulders of the spectra.
The asterisk denotes the position of minimum RMSD on the 50 MHz grid of parameter
values available in the simulation library.
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C.6 Comparison of the D and E/D distributions

from Models 1 and 3

Models 1 and 3, after correction to ordering of the indices in Model 1, produced very

similar forms of the distributions for the ZFS parameters D and E/D. Figure C.8 gives

a comparison for the ZFS parameter distributions determined by Models 1 and 3. The

corresponding ZFS parameter values used to generate these plots are given in Tables 3.2

and C.4.
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Figure C.8: Comparison of D and E/D distributions for Model 1 (light blue lines),
Model 3 excluding the region of the central peak (dark cyan lines), and Model 3 including
including the region of the central peak (orange lines) for the different Gd(III) complexes.

194



C.7 Additional results from Models 2/3 with the

central peak included

In the main text of Chapter 3, results presented for Models 2 and 3 were calculated

with the region about the central transition excluded from the analysis. Here we present

contour plots of the RMSD errors computed using the full EPR spectra including the

region of the central peak, the corresponding calculated best-fit ZFS parameters, and the

resulting simulated spectra compared to the experimental dataset for both Models 2 and

3.

Model Complex D (MHz) σD (MHz) σD
D

P (+D)
P (−D)

2

Gd-NO3Pic 494 ± 36 126 ± 89 0.26 —
Gd-DOTA/
Gd-maleimide-DOTA

700 ± 71 218 ± 213 0.31 —

R-(Gd-PyMTA) 1214 ± 71 331 ± 194 0.27 —
Gd-TAHA 1307 ± 59 359 ± 159 0.28 —
iodo-(Gd-PCTA-[12]) 1821 ± 210 526 ± 305 0.29 —
Gd-PyDTTA 1829 ± 198 467 ± 346 0.26 —

3

Gd-NO3Pic 473 ± 30 130 ± 71 0.28 1.8
Gd-DOTA/
Gd-maleimide-DOTA

660 ± 50 210 ± 125 0.32 0.3

R-(Gd-PyMTA) 1203 ± 60 339 ± 160 0.28 1.5
Gd-TAHA 1307 ± 54 365 ± 144 0.28 1.4
iodo-(Gd-PCTA-[12]) 1812 ± 160 520 ± 230 0.29 3.2
Gd-PyDTTA 1814 ± 138 459 ± 258 0.25 3.9

Table C.4: Extracted D and σD values using Model 2 using the full EPR spectra for
analysis, and extracted D, σD, and P (+D)/P (−D) values using Model 3 using the full
EPR spectra for analysis.

195



Q-band

G
d

-N
O

3
P

ic
 (
1

)
G

d
-m

a
le

im
id

e
-D

O
T
A

 (
3

)

G
d

-D
O

T
A

 (
2

)

R
-(

G
d

-P
y
M

T
A

) 
(4
a
b

)
G

d
-T

A
H

A
 (
5

)
io

d
o

-(
G

d
-P

C
T
A

-[
1

2
])

 (
6

)
G

d
-P

y
D

T
T
A

 (
7

)

W-band 240 GHz

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(1)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(3)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(4b)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(5)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(6)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(7)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(1)

D (MHz)
σ

D
 (

M
H

z
)

500 1000 1500

100

200

300

400

500

600

(3)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(4b)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(5)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(6)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(7)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(1)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(2)

D (MHz)
σ

D
 (

M
H

z
)

500 1000 1500

100

200

300

400

500

600

(4a)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(5)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(6)

D (MHz)

σ
D

 (
M

H
z
)

500 1000 1500

100

200

300

400

500

600

(7)

Figure C.9: Contours of constant RMSD as a function ofD and σD parameter values using
Model 2 with the full EPR spectra used for calculation of the RMSD errors. Simulated
spectra were normalized to the experimental data using the full spectrum, including the
region of the central peak. The asterisk denotes the position of minimum RMSD on the
50 MHz grid of parameter values available in the library of simulations.
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Figure C.10: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-NO3Pic (1), Gd-DOTA (2) (240 GHz sepctra)/Gd-maleimide-DOTA (3) (Q-
/W-band spectra), and R-(Gd-PyMTA) (4a) (240 GHz spectra)/R-(Gd-PyMTA) (4b)
(Q-/W-band spectra). Overlaid are simulations with Model 2 using the best-fit ZFS pa-
rameters determined using the full EPR spectra in the calculation of RMSD error maps,
given in Table C.4.
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Figure C.11: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-TAHA (5), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7). Overlaid are
simulations with Model 2 using the best-fit ZFS parameters determined using the full
EPR spectra in the calculation of RMSD error maps, given in Table C.4.
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Figure C.12: Contours of constant RMSD as a function of D and σD parameter values,
and P (+D)/P (−D) and σD parameter values, using Model 3 with the full EPR spectra
used for calculation of the RMSD errors. Simulated spectra were normalized to the
experimental data using the full spectrum, including the region of the central peak. The
asterisk denotes the position of minimum RMSD on the 50 MHz grid of parameter values
available in the library of simulations.
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Figure C.13: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-NO3Pic (1), Gd-DOTA (2) (240 GHz sepctra)/Gd-maleimide-DOTA (3) (Q-
/W-band spectra), and R-(Gd-PyMTA) (4a) (240 GHz spectra)/R-(Gd-PyMTA) (4b)
(Q-/W-band spectra). Overlaid are simulations with Model 3 using the best-fit ZFS pa-
rameters determined using the full EPR spectra in the calculation of RMSD error maps,
given in Table C.4.
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Figure C.14: Measured EPR spectra at Q-/W-band and 240 GHz for the Gd(III) com-
plexes Gd-TAHA (5), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7). Overlaid are
simulations with Model 3 using the best-fit ZFS parameters determined using the full
EPR spectra in the calculation of RMSD error maps, given in Table C.4.
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C.8 P(+D)/P(-D) parameter error estimation for

Model 3

The criterion of an acceptable fit as being those values which are within the region

bounded by a contour of twice the minimum RMSD is not a reasonable estimate of the

error on the asymmetry parameter P (+D)/P (−D) in Model 3. The most obvious effect

of this parameter on the simulated spectra is to set the relative position of the broad

component of the EPR spectrum with respect to the sharp central peak corresponding

to the | − 1/2〉 ↔ |1/2〉 subspectrum, particularly in the high field data. The width of

this central peak is so narrow compared to the broad component of the 240 GHz EPR

spectrum that it has a relatively small impact on the overall RMSD of the fit, though

there is enough of an effect on the RMSD to assign a position of minimum RMSD in a

contour plot of P (+D)/P (−D) and σD, as was done to determine the other parameter

values for Models 2 and 3.

In order to estimate an error on this parameter value, we plot the separation of the

position of the | − 1/2〉 → |1/2〉 transition and the peak of the broad component of the

240 GHz EPR spectra with the value determined for P (+D)/P (−D) via contour plots of

the RMSD error as a function of P (+D)/P (−D) and σD. This is shown in Figure C.15

for analysis conducted with and without the region about the central transition included

in the calculation of RMSD error maps. The plot of the determined P (+D)/P (−D)

parameter value vs. the peak separation for the various Gd(III) complexes falls on a line.
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Figure C.15: Plot of determined P (+D)/P (−D) parameter values vs. the separation
in field between the broad component and the sharp central peak of the 240 GHz EPR
spectra, for analysis in which the central transition was excluded from the calculation of
the RMSD error maps and analysis using the full 240 GHz EPR spectra.

The average deviation in the determined P (+D)/P (−D) values from this line is 0.24 for

the analysis excluding the central transition and 0.43 for analysis using the full 240 GHz

EPR spectra.

C.9 Minimum RMSD errors for Models 2 and 3

Figure C.16 shows the minimum RMSD errors calculated for each of the contour plots

for Models 2 and 3 (denoted by an asterisk in the RMSD contour plots). The RMSD

errors for the 240 GHz spectra are about an order of magnitude larger than for the

Q-/W-band spectra. For the Q-/W-band spectra, the minimum RMSD error does not

change significantly whether Model 2 or Model 3 is used, but for the 240 GHz spectra the
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addition of the asymmetry parameter P(+D)/P(-D) significantly reduces the minimum

RMSD error. The asymmetry parameter has the largest effect on the minimum RMSD

value at 240 GHz for Gd-DOTA (2), iodo-(Gd-PCTA-[12]) (6), and Gd-PyDTTA (7). In

general, the minimum RMSD error is smaller if the region about the sharp central peak is

excluded, particularly for the Q-/W-band spectra where the | − 1/2〉 → |1/2〉 transition

makes up a significant portion of the EPR spectra and is particularly sensitive to any

additional broadening terms (e.g. higher-order ZFS or hyperfine interactions) which may

be present but are not accounted for in the simulations with Models 2 and 3.
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Figure C.16: Minimum RMSD errors from the (D, σD) contour plots for Models 2 and 3,
with and without the region about the central peak excluded in the calculation of RMSD
errors.
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C.10 X-band measurements and simulation with

Model 3

A subset of the Gd(III) complexes studied in Chapter 3 were additionally measured at

X-band. These data are plotted in Figure C.17, along with simulations using Model 3

and the ZFS parameter values given in Table 3.2. The simulations which gave quite nice

results at Q-band and above give very poor fits to the X-band data. Surprisingly, the sim-

ulations produced lineshapes which are broader than the experimental EPR lineshapes.

This is in contrast to our expectation that if the simulation produces an artificially narrow

central peak and the X-band spectrum is dominated by the | − 1/2〉 → |1/2〉 transition

(Figure C.18), then the simulated X-band spectrum should produce a narrower lineshape.

This was also unexpected given the success of Benmelouka et al. [21] in simulating X-

band spectra using ZFS parameter values determined from 240 GHz data. The cause of

this discrepancy has not yet been resolved.
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Figure C.17: X-band field-swept EDEPR spectra at 30 K measured for a subset of the
Gd(III) complexes from Chapter 3. Overlaid are simulations with Model 3 using the ZFS
parameter values from Table 3.2.
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C.11 Comparison of 240 GHz spectra of the com-

plexes R-(Gd-PyMTA) (4ab)

The two measured R-(Gd-PyMTA) complexes included in this work did not show any

significant difference in the magnitude of the ZFS parameter D, despite the slight differ-

ence in structure. After the completion of the initial study, the complex R-(Gd-PyMTA)

(4b) was measured at 240 GHz, and shows a nearly identical EPR spectrum to R-(Gd-

PyMTA) (4a), indicating that the two complexes have nearly identical ZFS parameter

values. This similarity is likely because the atoms which directly coordinate the Gd(III)

are identical for both complexes, with the change in functional group being well separated

from the first coordination shell.
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Figure C.19: Measured EPR spectra at 240 GHz and ∼ 5 K of R-(Gd-PyMTA) (4a) and
R-(Gd-PyMTA) (4b).
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Appendix D

UCSB Knot computing cluster

Knot is a computing cluster available to UCSB students and researchers. This cluster

specializes in highly parallel computing jobs, and made much of the simulation work in

Chapter 3 possible. Use of the Knot cluster is supported by the Center for Scientific

Computing at the CNSI and MRL through the grants NSF MRSEC (DMR-1121053)

and NSF CNS-0960316.

D.1 Accessing the Knot cluster

A user account may be requested through the UCSB CSC website at

http://csc.cnsi.ucsb.edu/acct. On Windows machines, an SSH client such

as PuTTY is required. In PuTTY, the Host Name for the Knot cluster is

knot.cnsi.ucsb.edu (or more generally machinename.cnsi.ucsb.edu). Alterna-

tively, you can log in directly to your account by using a Host Name in the format
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username@machinename.cnsi.ucsb.edu.

D.2 Navigating within Knot

The terminal connected to Knot uses standard Linux/Unix commands for naviga-

tion. Commands generally follow the structure command -[options] argument. Details

about commands and their options can be found using commandname --help. Some of

the more useful commands are:

pwd ”print working directory” displays the full path of the current directory

ls lists the contents of the current directory

cd folder changes current directory to the indicated folder

cd .. moves up one directory

mkdir foldername creates a new directory

cp location1 location2 copies the file at location1 to location2

mv file1 file2 renames or moves file1 into file2

rm file removes file

Adding the -r option to commands such as cp or rm will affect the directory and its

contents. Use caution when removing files as the linux terminal does not have an easily

recoverable equivalent of the Windows Recycle Bin if something is accidentally deleted.

The Tab button on the keyboard autocompletes the names of files and directories.
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D.3 Moving files to and from the server

A client such as PSCP (PuTTY Secure Copy client) is used to transfer files between

your local computer and the cluster using an SSH connection. On your local computer,

pscp.exe needs to be in the directory containing the files to be transferred. Files can be

copied from the current directory on your local computer to your home directory on the

server in the Windows Command Prompt using the command

pscp filename username@knot.cnsi.ucsb.edu:/home/username

Directories and their contents can be moved by adding the -r option to this command.

Files are moved from the server to your local computer by reversing the order of this

command

pscp username@knot.cnsi.ucsb.edu:/home/username/filename .

Instead of specifying the full path of the target directory on your local computer, the .

may be used to specify that the target directory is the current directory.

D.4 Editing files on the server

To edit files on the server, a basic text editor such as Vim is used. To open a file on the

server in Vim, type

vim filename
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Vim has two modes: (1) Insert mode where you can type like a normal text editor, and

(2) Command mode where you give commands to the editor to do things. Press i to

enter insert mode and ESC to enter Command mode. Some of the more useful commands

in command mode are

:q exit

:wq save and exit

D.5 Submitting Matlab jobs

To run jobs on Knot, they must be submitted to the queue. The server uses the TORQUE

resource manager to manage and schedule jobs. To submit a job, you supply TORQUE

with a batch job script (e.g. run.job) which contains the number of nodes and cores

required and the name of your job. This script is written in BASH. An example script

for submitting a MATLAB job would look like

#!/bin/bash

#PBS -l nodes=1:ppn=8

#PBS -l walltime=72:00:00

#PBS -m bae

#PBS -M youremail@ucsb.edu
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cd $PBS_O_WORKDIR

/sw/bin/matlab -nodisplay -nodesktop < simulation.m

In BASH scripts, # will generally indicate a comment line. However, #PBS starts a

line containing directions that will be read by the queue. The required number of nodes

and cores are defined in the second line (ppn is processors per node). The walltime

command tells the queue the maximum wall clock time allowed for the job. The default

maximum time allowed for jobs is 72 hours. This is useful for timing out potential run-

away jobs. TORQUE will also prioritize queuing for shorter jobs. The command #PBS

-M youremail@ucsb.edu tells the system to email you notifications about the submission

and failure or completion of the job. cd $PBS O WORKDIR ensures that we are in the

current working directory. The final line tells the server to run the script simulation.m

in MATLAB which is located on Knot at the location/sw/bin/matlab. The additional

commands -nodisplay -nodesktop ensures that MATLAB does not attempt to display

anything since we are not running a GUI.

The easiest way to use parallel processing in MATLAB is to parallelize for loops.

The Knot cluster is currently running the R2012b distribution of MATLAB. For initiating

parallel processing, this version uses the MATLAB command matlabpool, rather than

the updated parpool command. matlabpool can use up to all of the cores in a given

computing node in parallel, but cannot parallelize across different nodes. If the EasySpin

package is used in the script simulation.m, the necessary EasySpin functions must be
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saved in the same directory as simulation.m.

The job run.job is submitted to the queue using the command

qsub run.job

Short jobs that take less than one hour to run can be prioritized by the command

qsub -q short run.job

The status of jobs, in various levels of detail can be checked by the commands

qstat prints a detailed report of all jobs running

qstat -u username prints a detailed report of jobs submitted by username

showq prints a less detailed report of all jobs running

A job can be canceled with the command

qdel job_id

where job id is an unique identifying code assigned to each job submitted that can be

found by looking at the status of the job using one of the above commands.

213



Bibliography

[1] Elwy H Abdelkader, Michael D Lee, Akiva Feintuch, Marie Ramirez Cohen,
James D Swarbrick, Gottfried Otting, Bim Graham, and Daniella Goldfarb. A New
Gd3+ Spin Label for Gd3+-Gd3+ Distance Measurements in Proteins Produces
Narrow Distance Distributions. Journal of Physical Chemistry Letters, 6(24):5016–
5021, 2015.

[2] A. Abragam. The Principles of Nuclear Magnetism. Oxford University Press, 1961.

[3] A. Abragam and B. Bleaney. Electron paramagnetic resonance of transition ions.
Clarendon Press, 1970.

[4] Sara Ahlgren, Anna Orlova, Daniel Rosik, Mattias Sandström, Anna Sjöberg, Bar-
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