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ABSTRACT. 

The Liapunov s~tability theory is applied to models of 

energy and nutrient flow in ecosystems. The domain of stability 

undernon-infinitesimal perturbations is discussed and signifi-

cant differences are pointed out between models with and with-

out detritus-decomposer feedback loops ... Possible practical 

·implications are suggested. Speculations concerning the role 

of fluctuations in ecosystems and the possibility of determining 

successional trends from an optimization procedure are also 

discussed. 
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I. INTRODUCTION 

The ability to predict ecosystem instabilities is of 

great importance today because so many environmental conflicts 

are essentially disputes about stability:::-they boil down to a 

difference of opinion about whether a given man-induced aistur-

bance of a system is likelyto result in a severe disruption or 

merely a gentle recoil. What intensifies the importance of this 

problem is the fact that our species is now capable of adding 

to or subtracting from our natural su~roundings on a scale com-

parable to the scale of.natural processes. Thus, for example, 

the intensity at which waste heat is released by urban dwellers 

into their surroundings is in many cities 20% or more of the 

solar fluX. Other disturbances such as the unsettling and dis­

persal of heavy metals into marine food chains during dredging 

operati~ns, the disruption of fresh water supplies and sub-sur­

face organisms during and after strip mining operations, or the 

release of toxic substances in fuel combustion, are not merely 

perceptible, but gross alterations of our no-longer natural 

environment. Potential instabilities that may result from these 

and other perturbatiOns range from the loss of certain species 

to the creation of local dustbowls to global climate·modification. 

Because the disturbances of our .environment are not 

infinitesimal but finite, the traditional tools for studying the 

stability of complex systems are clearly inadequate. From a 

practical view, not only do we have to deal with finite perturba-
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tions, but also with ecosystems which do not settle down to precisely 

their unperturbed states after we disturb them. Rather, what we 

can reasonably hope.for is that the initial perturbation will not 

propagate in such a way that the system is pushed beyond tolerable 

limits. 

· Thus, we are led to the concept of practical stability. 1 

This concept is intermediate between local and global stability. 

Local stability, utilizing the community matrix approach to a 

linearized system, is a mathematical nicety but, as we have men­

tioned, both too weak (as it is only reliable for infinitesimal 

perturbations) and too stringent (as it requires the system to 

return to its unperturbed state after the perturbation.) On the 

other hand, the requirement of global stability is too strong 

because we do not expect real systems to be stable under arbitrarily 

large perturbations. 

A mathematical method exists for dealing with practical 

stability1-- a modification of the Liapunov Direct Method. The 

results of some ecosystem studies using this method will be 

described here. We have obtained some interesting results, 

especially pertaining to the role of decomposers and feedback 

loops in an ecosystem. Furthermore, our methods allow some new 

insight into the role of fluctuations in systems and a possible 

understanding of the direction of successional trends . 

. The goal of our studies is the elucidation of ecosystem 

parameters which correlate with stability. To be of practical 
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use, such quantities should depend upon general features of the 

system such as the topology of the material and energy flow path-

ways -and not upon detailed knowledge of all the system's components 

and their dynamical interactions. Currently, much empirical acti­

vity in ecoiogyis focused on measurements of quantities such as 

the biomasses and productivities of the components of the system, 

species diversity, and retention times of various nutrients. these 

measurements, while important, do not reflect the organization 

of an ecosystem and have not allowed ecologists to infer or under-

stand ecoystem stability properties. Rather, they are largely 

indicatorsof the state of the components. If this work is to be 
. ' 

successful, that is verifiable and of practical use, then it must 

ultimately point the way to measurable indicators of ecosystem 

organization and stability. A lot of work lies ahead. 

II. MATIIEMATICAL PRELIMINARIES 

Assume we are given a reasonable mathematical model 

describing an ecosystem which can be written in the form of a 

set of coupled, nonlinear, first order differential equations for 

the time rate of change of the components of the system. By 

'component' we refer, quite generally to the energy content, or 

the carbon content, or any other convenient measure (e.g. DDT 

content!) of individuals or species or conveniently chosen aggre-

gates of species or perhaps just physical sectors comprising the 

ecosystem. These equations are assumed to have the form 

1 
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i=l,···,N 

The xi refer to the components of the system and the~wi are any 

other parameters upon which the time derivatives may depend. 

(1) 

Phenomena such as time delays or.stochasticity can be incorporated 

within this general form. 

Suppose we are given an initial, unperturbed state of 

the system,. xi' which may be time-independent { a steady state) 

or time-dep~ndent (e.g. a limit cycle.) In Fig. 1 we plot the 

trajectory of such a state. If the state is perturbed at some 

time to a new value x. + 6.x. shown in the figure (6.x. not necessarily 
' 1 1 1 

infinitesimal) then two options (see Fig. 1) are possible: i) the 

perturbed state, xi' may or may not return ultimately to the unper­

turbed state, x., but it will never evolve further from the unper-
1 

turbed state than some preassigned tolerance; ii) it will evolve in 

time so as to exceed the preassigned tolerance. Our problem is to 

determine which option occurs. 

Fig. 2 summarizes the Liapunov direct method for stability 

analysis. As shbwn, the crux of the method is to construct a 

function, ·L(6.x1, ... ,6.~), which vanishes at the origin, and within 

some domain about the origin is positive and monotonically increasing 

with 6.xi' and in addition has a negative time derivative. For ini-

tial perturbations confined to that domain, the existence of such a 

function·guarantees both the asymptotic stability of the system 

;. . 

•. 
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(that is, the x. will ultimately settle at x.) arid a finite domain 
1 1 

of practical stability. 2 the size of this domain of practical 

stability depends upon the preassigned tolerance. A slight modif­

cation3 of the asymptotic stability criteria allows treatment of 

the more realistic case in which it is not required that the system 

return asymptotically to its unperturbed value. This, and other 

subtleties of the method such as the extension to the case in which 

the function L is explicitly time dependent or the case in which 

the perturbation is made not only upon the x. but also upon the 
1 

form of the equations of motion, are easily handled but will not be 

delved into now as they would only obscure the underlying principles 

which we wish to elucidate here. 

' 4 
· For a wide class of ecological models , .some of which are 

described in the following section, a Liapunov function can be 

constructed for any in.itial steady state or periodic5 state, x .. 
' ·, ' ' 1 

This function has the property that it vanishes at the origin, it 

is monotonically increasing in the entire /J.x. plane, and 
1 

-dL _ ~ ~ -
dt - ~~B .. (x,x,w) !J.x./J.x. 

i j 1J 1 J 

where the B .. are strictly positive for all values of the x .. 
11 1 

Moreover, in realistic models, many of the B .. , for i " j, are 
l.J 

(2) 

zero. 

It is convenient to write the coefficients, B .. , in the 
1J 

form of a symmetric matrix, B, here after called the B-matrix. The 

matrix elements are given by [B] .. =~(B .. +B .. ). Now, a theorem 
1J 1J J 1 

on the.positive definiteness of quadratic forms asserts that the 
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(3) 

is positive for all val~es of the Y i if and only if the determinants 

of all the principal minqrs of the symmetric matrix of coefficients, 

Q, are positive. 6 ·Therefore, the do~in of asymptotic stability of 

our~system is at least as big7 as the domain of_the 6xi for which 

the determinants of the principal minors of the matrix B(x, i, w) 

are positive. We emphasize that the B-matrix is not the community 

matrix. The latter describes infinitesimal stabiiity of a linearized 

' 
system while the B-matrix.encapsulates the finite stability proper~ 

ties of a nonlinear system. 

Clearly, were it not for the presence of off-diagonal, 

non-zero elements in the B-matrix, we would have global stability. 

It is the organizational structure (patterns of pathways) of the 

ecosystem which determines which of the off-diagonal elements 

are non-zero, and therefore which places limits ori the size of the 

domain of stability. In the following section we explore the im-

plications of these ideas for various models of ecosystem. 

III. MODELS AND APPLICATIONS 

Let us consider three broad categories of ecological 

organization: 

i. Open flow without cycling. An example would be the flow 

of energy through the pathways of the food web from photosynthesizers 

on up to top carnivores. Tnis is subsidized and therefore open flow, 
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the source of'sustenance being the sun. Admittedly a certain frac­

tion of chemical energy is recoverable froin detritus but it is 

usually a good approximation to ignore th~s. 

ii. Closed flow with cycling. · An example would be any global 

material.cycle for which the nUlilber of molecules of the material is 

conserved. A mathematical description of a closed cycle is, however, 

likely to be elusive because of the difficulty' in accounting for 

all of the compartments in the cycle. Perhaps the global carbon 
( 

cycle is the most natural one to model, with the dominant compart-

ments being the atmosphere, plants, organic litter, decomposers, the 

oceans, animals, fossil fuel, and the geosphere. In practice, most 

models will be geographically non-global and will not incorporate 

all compartments; thus one is led to: 

iii. Open flow with cycling. The nitrogen flow in a field is 

a fine example. Inputs and outputs such as the addition of fertilizer 

or washout from erosion might be driving forces behind this open 

flow, and yet the character and stability of the steady state or 

limit cycle solutions will be strongly influenced by the cycling 

capability of the system. 

In Figs. 3, 4, 5 we illustrate examples of these three 

types of organization. The pictures illustrate the pathway patterns. 

In addition, model equations are present which correspond to the 

flow diagrams. Other equations could be written-we have onlf shown 

these in order to focus on specific examples. What can we learn 

about the stability properties of these three systems from a Liapunov 
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analysis, and, in particular, what properties are reasonably inde-

pendent of the detailed mathematical model used to describe the 

flow diagrams? 

Type i Systems. The Liapunov method has been employed 
. 8 

by Huang and Morowitz to analyze the stability properties of the 

steady state solutions of the Lotka-Volterra equations for predator-

prey interactions. _These authors show that if the xi are constant, 

then 

L = EL. = E ~- [x. 
i l. i 1 • l. 

-x. -x. 
1 1 

X. 
l. In(=-)] x. 
l. 

is a Liapunov function for the system. Moreover 

B = 
(

kll ~ ). 

" ~22.~ 

(4) 

(5) 

for all x., indicating·· global stability if all k .. < 0. Because the 
. 1 1.1 

steady state solutions are globally stable, the equations clearly 

possess no limit cycle solutions. On the other hand, if we set the 

k .. = 0 then the equations do possess oscillatory solutions but 
11 

they are unfortunately not asymptotically stable nor are they 

structurally stable against small changes in the form of the equations 

of motion. 

If a more general mathematical model describing the uni-

directional flow of energy through an ecosystem is employed, restricted 

only by the constraints mentioned in footnote 4, then Eq. 4 is still 

a Liapunov function but the structure of the 8-matrix is more compli-

cated. In general, simply increasing the number of trophic levels 
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will not affect stability, but increasing the number of pathways in 

the food web by introducing, for example, more competitors at each 

trophic level will add off-diagonal elements to the B-matrix; this 

tends to diminish the size of the domain of stability. 

Type ii Systems. Fig. 4 s~ows the pattern of pathways of 

a closed nutrient cycle.· This cycle, and the model equations shown 

in the figure are a simple representation of carbon flow in a four 

level system consisting of photosynthesizers, the inorganic nutrient 

pool (which we take in this case to be the atmosphere), th,e decompo-

sers', and organic Litter (fallen leaves, dead trees, etc.) We have 

assumed that negligible amounts of carbon are added to or lost from 

the system (for example, there is no exchange with the ocean.) 

It is possible to construct a Liapunov function for this 

system and with it to establish the asymptotic stability of its 

steady state solutions under the class of finite perturbations which 

are constrained to conserve the total amount of carbon. The Liapunov 

function is 
x. 

L = I: c. (x. ,a,B,o) [x. - x. - i. ln(_~)] 
. i ~ ~ . ~ 1 ~ . xi 

(6) 

-where the ci are moderately complicated functions of the xi. 

Thus the closed system is asymptotically stable against 

the arbitrary sliding of carbon from one level to another. From 

this result., and the fact that a steady state solution exists for 

every value of the total quantity of carbon in the system, it follows 

that this closed system is not asymptotically stable against perturbations 

which do not conserve the total amount of carbon. If the perturbation 
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changes the total amount of carbon, then a new steady state will 

be approached asymptotically. An interesting question then arises: 

which steady state solutions are approached relatively rapidly when 

disturbed? This is amplified upon in Section 4 where we discuss 

successional trends. 

It is straightforward but tedious to include more compart­

ments such as the oceans into the model. We have not. looked :in · 

detail at extremely complicated and Jinclusive models of the global 

carbon cycle~ but from experience gained by working with relatively 

simple systems we suspect that the above results will remain valid 

for the quite general class of models characterized in footnote 4 

provided the system is closed. 

Type iii systems. If we open the systelJl, that is allow 

for the incomplete cycling of the nutrient, then the situation 

changes. For example, consider the flow of a nutrient (such as 

nitrogen) in a six level system consisting of carnivores, herbivores, 

photosynthesizers, inorganic nutrient pool, decomposers, and organic 

litter (plant litter, excrement, and corpses) 9 . Referring to Fig. 5, 

we note that in our model equations we have adjoined a simple Lotka-

Volterra-type predator-prey web upon the substratum of feedback 

dynamics describing the detritus - decomposer path ways. 

A Liapunov function can be constructed, again of the 

general form of Eq. 6. Its properties are best encapsulated by the 

B-matrix, which for steady state solutions has the form: 
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0 0 0 0 -bCL 

0 ~ 0 0 0 :-bHL 

0 0 ';>p 0 0 -bPL 
B = 0 0 0 ali '-biD -bTL 

(7) 

0 0 0 -biD aDD -bDL 

-beL -bHL · -bPL -b . 
lL -bDL aLL 

where the a .. and b .. are always positive. The a's and.b's are 
11 1] .· . 

simple functions of the x. ,i .. and the parameters c.' ··a..' n.' y.' 
1 1 1 1. 1 1 

e .. , a.. (see Fig. 5 for an explanation of the symbols). · By the 
1] 1] 

theorem on quadratic forms discussed above, our system is stable 

for perturbations which are initially within a domain of the x. 
. ' 1 

such that the determinant of the principal minors of B are positive. 

Now the first four principal minors are diagonal and clearly posi-
. 

tive. Adding more superstructure to the system (that is, more predator-

prey links in the Lotka-Volterra part of the system) would not affect 

the positivity of the first N-2 determinants. 1° Constraints on the 

domain of stability, if they exist, will show up in the evaluation of 

the last· two determinants. The fifth determinant is given by 

2 
ace ~ app [all aDD - b ID] 

(8) 

We see that the domain of stability may now no longer be global; for 
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fixed xi and for sufficiently small values of QI and 

x0 , or for sufficiently large values of xi or xL' the determinant 

becomes negative. Thus type iii systems can be quite vulnerable to 

perturbations in the litter, the inorganic nutrient pool or the 

decomposers. 

The sixth determinant is complicated and we have not yet 

extracted all the information in it. For a range of cycling rate 

parameters cr and a) and external input and output parameters 

(QI' QL' ai' aL) a finite domain of stability can be shown to exist. 

It is possible to show that in type iii systems in which the exter-

nal input rate of litter is proportional to the amount of litter 

present, that a certain critical minimum value of the cycling efficiency 

parameter, r, is necessary in order to have a finite domain of asymptotic 

stability. On the other hand, if the system is approximately closed, 

i.e. external inputs and outputs relatively small, then the sixth 

determinant can become' negative. This is simply a reflection 

of the fact discussed earlier that exactly closed systems are not 

asymptotically stable against displacements which do not conserve 

the total quantity of nutrient. This instability is a relatively 

harmless one, however, as long as the perturbed system does not 

evolve far away from where it is initially perturbed to. It remains 

to be seen whether thresholds of dangerous instability are more likely 

in high-r or low-r systems and in high-Q. or low-Q. systems. There 
1 1 . 

are many other unanswered questions which we hope to explore. For 

- - 2 example, do systems in which the inequality a.x.«y.x.· is satisfied 
1 1 1 1 
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tend to have a greater stability domain: 'than systems satisfying the 

opposite inequality? In other words, are resource-limited systems 

more stable than those existing well below a saturation level? 

An.amusing relation between div'ersity and stability 

also emerges from this analysis. Let us enlarge the Latka-

Volterra "superstructure" of the system by extending the matrix, 

Eq. 7, to the upper left so that we consider anN-component system. 

We denote by ON the determinant of the mth principal minor of the 
m 

N 
N X N matrix and choose the values of x0 , xL' and xi so that ON-l 

is positive. N . 
How does ON then behave as N + <»? The answer d,epends 

upon two factors: the shape of the trophic structure of the system 

andthe ratios fL./8 ..• In general, ONN will remain positive as N 
1] J 1 

increases'and thus systems with an ever-increasing number of inter-

acting components, arranged vertically in trophic hierarchy, will 

remain stable. 

In order to show this we number the rows and columns of 

the N X N matrix in an unorthodox manner, letting N denote the first 

row or column and 1 the last. Thus the matrix element ~N is that 

appearing in the top left corner of the matrix and corresponds to 

the top carnivore. Then the following recursion relations are easily 

derived: 

These can be easily solved. 

N 
0N-l 

Let cfl = o3 and 1jJ = 
2 

o3 both of which 
3 

(9) 



-14-

are assumed to be positive as is required for stability. Then 

N 
== <PIT a .. 

j=4 JJ 

( N 2 \ N N 
= { ~ bli , n DN - <P I: a .. 

i=4 -;. JJ 
\ a .. , J=4 
' 

11/ 

N 
DN-l clearly remains positive if the aii's 

. N 
positive in Fig. 5). The value of DN will 

are positive (or y. 
1 

depend upon the b1i•s 

(10) 

and the aii's. Now bli is proportional to the rate, per unit mass, 

at which x. is cycled back to the organic litter level. We expect 
1 

this quantity to be roughly independent of i and we henceforth take 

it to be a constant. Referring to Eq. 10 we note that if a .. in-
11 

creases less rapidly than i, then the summation will diverge as 

N 7 oo and D~ will become negative at some critical value of N. · D~ 

can remain positive as N ~ oo only if a .. increases faster than i. 
11 

What does this imply? Fori> 3, a .. = ~.y .. 
11 1 1 

The y. 
1 

behave roughly proportional to x~ 1 and thus increase with i for 
1 

ordinary trophic hierarchies. Moreover 

c. 
1 --= Si-l,i ; 1 

si,i'-1 
(ll) 

since retention is < 100% and so the c.'s will not decrease with i. 
1 

i If S .. 1 is a constant multiple of 8. 1 . then c. = c and the sum 
1,1- ' 1- ,1 1 

will not diverge. To create a divergence and thus drive the determinant 

negative, we would have to assume that both S .. 1 ~ S. 1 . and 
1,1- 1- ,1 

x. 7 x. 
1 

as i ~ oo. Thu. s the trophic structure would not peak as 
1 1-

rapidly as is usually observed in real systems. Such unpeaked systems 
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could exist but we have shown that they are likely to become unstable 

rapidly, as N grows large. Moreover, systems with inverted struc-

ture in which the top levels are more "populated" than the lower 

ones should be of very simple (small N) structure for stability. 

For most systemS, with peaked trophic structure and small retention 

factors (13 .. 1/e. 
1 

.), increasing the value of N will not seriously , 
. 1,1- 1- ']. 

affect stability. 

IV. SUMMARY AND SPECULATIONS 

We have described here several results of an investigation 

of the finite stability domain of ecosystem models including those 

incorporating decomposer and detritus pathways. While only the 

surface of this subject has been scratched by our work, several 

pertinent results have emerged. Among these are two which may be 

of practical interest: 

i. Stability and diversity. . We have distinguished several 

kinds of diversity here. There is vertical diversity referring to 

the number of levels in the trophic structure, and horizontal diver­

sity, referring to the variety of competitors at each leveL And 

then there is diversity of species and diversity of pathways. What 

we have shown here is that increasing the number of trophic levels 

generally has no effect on the size of the domain of asymptotic 

stability. The exception to this occurs if the food web is not 

pyramidal in shape but rectangular or inverted. Then the system 

can rapidly destabilize as the number of levels grows. We have also 
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shown that increasing horizontal diversity generally leads to a 

decreasing domain of asymptotic stability, although if the ratio 

of the number of pathways to the number of species is kept sufficiently 

bounded, then both can increase without diminishing stability. 

ii. Sensitivity of feedback systems. We have shown that damage 

to the decomposers or the organic or inorganic.nutrient pools in 

an ecosystem is a potential sourceof instability- greater, perhaps, than 

that arising from tampering with the more visible predator-prey 

components of the system. Activities of man which diminish the 

cycling capability of an ecosystem should be viewed with caution 

if these results stand up under further analysis. 

There are numerous practical problems to which stability 

analysis such as this might be applicable. Study of the global 

carbon cycle might reveal thresholds for climatic instability, or 

at least provide insight into the ultimate fate of the carbon 

dioxide released by fossil fuel consumption. 

Our methods might also be useful for evaluating the 

potential for rehabilitating strip-mined lands which have had their 

detritus-decomposer pathways altered. Insight into the vulnera-

bility of desert and tundra systems with low reserves of litter and 

slow cycling times might also be obtainable. 

We close with several speculations. Let us recall the 

11 observation that during the course of ecological succession, 

certain observables such as cycling rates, productivities, and 

biomass tend to show systematic time development. Is it possible 

/ 
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to view succession as the progression of the system into an ever. 

more resilient configuration? If so, then the evaluation of a suit-

able measure of resilience may provide a guide to the direction 

of these successional trends. 

As a suitable measure, we propose the use of.either the 

quantity 

ld 
A= - minimum over ~xi of Czdt ln L) 

or, if one is only concerned with neighborhood stability, 

A= -minimum over i of (A.) 
1 

(12) 

(13). 

where the \ are the eigenvalues of the community matrix of the system. 

Fora stable system, either is roughly a measure of the lowest resilience 

or recovery rate for a perturbed state to return to its unperturbed 

value. In the limit of small ~x., the .two definitions of A agree. 
1 

A is a quantity which should be of practical interest to those con-

cerned with environmental impacts. For even though mathematical 

modeling may suggest that a system is asymptotically stable, a high 

resilience is still desirable as it proves a safety factor against the 

unexpected. 

lf we assume that A is maximized during succession, then 

we may be able to understand the course .of succession. Moreover, 

if the equations of motion were sufficiently reliable, then if 

A is evaluated for a time-dependent solution it may be possible to 

use the dynamical equations to show that A is increasing in time. 

We have only been able to apply this idea so far to several 

simple models. A number of simple two and three level systems 
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describing the flow of carbon have been analyzed arid lead to the 

result that A is maximized for a certain fixed ratio (which turns 

out to be 4) of the equilibrumamount of carbon in plants to carbon 

in the atmosphere. This result will be described in detail in a 

forthcoming paper. It will be interesting to determine how A 

depends upon such quantities as the total biomass,·pathway diversity, 

or productivity of model and laboratory systems. 

We have also begun to assess the role of fluctuations or 

noise in ecosystems. Several authors12 have shown that fluctuations 

in the k .. terms in Fig. 3 are destabilizing. On the other hand we 
l.l. 

have obtained some preliminary evidence from computer generated 

solutions of our model equations that noise in the values of the 

k .. ' for i f. j , renders the system more resilient-more like a piece of 
l.J 

rubber than a crystal. To be more precise, consider the admittedly 

over-simplified.Lotka-Volterra equations as an example. If the 

saturation effect is ignored (k .. = 0) then the equations possess 
l.l. 

solutions with interesting cyclic time dependence, but this system 

is structurally unstable and the solutions possess no domain of 

asymptotic stability; hence the model is unrealistic. On the other 

hand, if the damping factors, k .. , are negative definite, then the 
l.l. 

system is structurally stable, but the solutions all approach 

steady states. We hypothesize that in the latter cas·e, with damping, 

the presence of small fluctuations in the kij (for i f. j) will not only 

preserve the stability of the system but also excite the cyclic modes of the 
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undamped system. A linear system could not obey this hypothesis; 

a more thorough study of nonlinear systems is needed before this and 

other potential surprises are understood. 

Much work remains in this exciting field. The search for 

a deeper understanding of the workings of complex, non-linear, self-

organizing systems is a challenge in its own right; moreover, the 

results may be of ultima~e benefit to our species. 



-20-

ACKNOWLEDGEMENTS 

We are extremely grateful to Michael Dudzik for sharing 

his insights and computational expertise. One of us (J.H.) is 

deeply appreciative of Harold Morowitz for his guidance and 

encouragement, and Daniel Botkin and Matthew Sobel for helpful 

conversations. 



0 0 0 0 7 6 

-21-

FOOTNOTES AND REFERENCES .. 

1. 1J, Lasalle and S. Lefshetz, Stability by Liapunov's Direct Method, 
Academic Press,. 1961 . 

2. For practical stability, we require that at finite times the pre­
assigned tolerance is not exceeded. Thus the domain of asymptotic 
stability could be larger than the domain ofpractical stability. 

3. See the discussion following P. 121 of Ref. 1. 

4. This class of models includes those characterized as follows: 
Separate the net increasing and decreasing contributions to dxi/dt 

dx. 
b . . 1 f ( f y wr1t1ng dt = · . x 1 ,~~ ..• xN)-g. (x1 ,~;~,xN) where . and g. are 1 1 - . .. 1 1 
positive and can be expanded in a sum of products of positive 
powers of the x. ~ Further assume that gi (xi =0, Xj ;H arbitrary) =0, 
that fi does nof grow faster than linearly in xi and that fi/gi--+- 0 

x.-+ oo 
1 

Then such a B-matrix can be constructed. Of course, a wider class 
of models which are not expressible as sums of products of powers 
and which are quite difficult.to characterize, will also lead to 
such a B-,matrix. 

5. The treatment of an unperturbed periodic or nearly periodic state 
involves an averaging procedure which will be discussed in a forth­
coming paper. For the rest of this paper,attention will be limited 
to steady states. 

6. See R. Fraser, W. Duncan, and A. Collar, Elementary Matrices, Cambridge 
University Press, 1957. 

7. We say "at least as big"_because the actual domain of stability can be 
larger than that calculated from the principal minors. This is true 
for two reasons. First, the condition on the determinants arose 
from the requirement that the quadratic form be positive for all 
values of the 6xi's. Yet the condition restricts the 6xi's and thus 
the requirement on the quadratic form was overly stringent. Secondly, 
even if some of the determinants are negative so that dL/dt is no 
longer negative definite, dL/dt is not necessarily positive definite 
and thus there may not necessarily be a true instability. A better 
Liapunov function might be needed to resolve this ambiguity. For 
both these reasons we haVe a built in "safety factor" in our analysis. 
We suspect that safety factors are desirable in practical ecosystem 
stability modeling if for no other reason than that model descriptions 
of ecosystems are inevitably only approximate. It remains to be seen 
whether this is the most appropriate way to build in the margin of 
safety. 
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8. H. Huang and H. Morowitz, Journal of Theoretical Biology, Vol. 35, 
p. 389, (1972). 

9. A recent paper by M. Austin and B. Cook, Journal of Theoretical 
Biology, Vol. 45, p. 735, (1974) describes the results of some' 
computer simulations of model systems w~th decomposers. 

10. Provided, of course, that the horizontal structure of the web does 
not grow so complex that the Lotka-Volterra form of Eq. is impos­
sible. The tendency will be for off-diagonal elements in the 
principal minors to diminish the domain of stability. 

11. See, for example, E.P. Odum, Science, page 262, April 18, 1969. 

12. See R. May, Stability and Complexity in Model Ecosystems, Princeton 
University Press, 1973 and references therein. 
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FIGURE CAPTIONS 

Time evolution of.unperturbed and perturbed states. rhe axes 

label the co!'lponent of the system. The solid.line represents the 

unperturbed system (xi) and.would be a single point for a 

steady state (x. = constant}. The dashed line represents the 
1 

perturbed state and its. subsequent time evolution. In the top 

diagram the perturbed state remains near the unperturbed state, 

while in the bottom diagram the perturbed state wanders into a 

forbidden region (e.g. a region where algae concentration 

accelerates dramatically). 

An outline of the proceedure for using the Liapunov function 

to determine stability properties of an ecosystem. 

A schematic figure of a simple open system with no cycling of 

energy flow •. At each trophic level above the plants, energy 

is lost. A typical set of equations describing such a system 

is the Lotka-Vol terra equations shown in the figure. In these 

equations: The a. are simple death rates, the k .. are related 
1 11 

to carrying capacities, the k .. are the interaction terms, and 
1] 

the T· are retention factors. The simple form of the Lotka-
1 

Volterra equations and the antisymmetry constraints limit their 

usefulness. 

A simple closed system with carbon cycling consisting of plants, 

atmosphere (C02), decomposers, and organic litter. The x. 's 
1 
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measure carbon content. The various numbered terms in the 

equations indicate: 

1) plant death rate including resource saturation effect, 

2) plant growth due to co2 absorption during photosynthesis, 

3) decrease in co2 due to plant a9sorption, 

4) production of co2 by decomposer action on litter, 

5) decomposer death rate including resource saturation effect, 

6) decomposers growth due to feeding on litter, 

7) litter increase due to decomposer and plant death, 

8) litter decrease by decomposer action. 

(all constants are positive.) 

A simple open system with nutrient cycling consisting of car­

nivores, herbivores, plants, inorganic nutrient pool, decompo­

sers, and"organic litter. The numbered terms indicate: 

1) carnivore death rate including resource saturation effect, 

2) carnivore growth due to eating herbivores, 

3) herbivore death rate including resource saturation effect, 

4) herbivore decrease due to carnivore grazing, 

5) herbivore increase due to feeding on grass, 

6) plant death rate including resource saturation effect, 

7) plant decrease due to herbivore grazing, 

8) plant growth due to absorbtion of inorganic nutrients, 

9) addition of inorganic nutrient pool (e.g. fertilizer), 

10) washout of inorganic nutrient, 

11) nutrient decrease due to plant use, 
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12) nutrient increase due to decomposer action on litter, 

13) decomposer death rate including resource saturation effect, 

14) decomposer growth due to feeding on litter, 

15) addition to litter (e.g. sewage dumping), 

16) washout of litter, 

17) litter increase from excrement (r is efficiency factor), 

18) litter decrease due to decomposer action, 

19) litter increase due to death of organisms. 

' (all constants are positive.) 
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ALLOHABLE D!STURB.I\NCE 

FORBIDDEN 
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~----------------X4 

x1 
Fig. 1. 
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I) . FIND A FUNCTION L ( AX1 J •••• • • 1 1;.){,). WHICH SATISFIES 

II) 

III) 

L = 0 IF ALL A X: = 0 

L) o IN SOME DOMAIN ABOUT AX:.= 0 

EVALUATE dL_ . USING THE EQUATIONS --
OF MOTION 

dt 

IF dL - < 0 THE SYSTEM IS ASYMPTOTICALLY STABLE. 

dt 
IF II ,, 0 THE SYSTEM IS NEUTRALLY STABLE. 

IF , I# > 0 , THE SYSTEM IS UNSTABLE. 

THE DOMAIN OF PRACTICAL STABILITY DEPENDS UPON THE PREASSIGNED 

TOLERANCE ON THE h X. (t). IT MAY BE LARGER THAN THE DOMAIN OF 
1 

ASYMPTOTIC STABILITY BECAUSE PRACTICAL STABILITY DOES NOT REQUIRE 

X.(t)~X. AS t-=> 0(), OR IT MAY BE SMAtLER BECAUSE THE~ X.(t}, 
1 1 . . 1 • 

FOR AN ASYMPTOTICALLY STABLE SYSTEM, MAY EXCEED TilE TOLERA.NCE 

AT FINITE TIMES. 

Fig. 2. 
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TOP CARNIVORES 

CARNIVOP.ES 

PLA.~TS 

k .. <0, k •. = - k.. ( I I J) 
I I I J J I 

Fig. 3. 
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P,LANTS 

ORGANIC 
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·l 

dX0 . 
-=-aX -yX 2 +S XX dt 0 D 0 D DL 0 L 
~ 

5 6 

7 

- (SOL + 0 DL) XOXL 
~ 

8 

note the system is closed i.e. 
dX .· . ' 

E _l:: 0 or E X 
1 

dt i = constant 
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Fig. 4. 

ATMOSPHERE xA 

DECOMPOSERS ~ 

J 
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CARNIVORES xC 
~ external ipput or output 

HERBIVORES ~ 

PLANTS ORGANIC 
LITTER 

INORGANIC xi 

NUTRIENT POOL 
DECOMPOSERS 

dX.. 
-= dt 

dXp 
dt = - aPXP - YpXp2 

~ 

6 

- 8PHXPXH + 8PIXPXI 
'---v---' 1...--.y---' 

7 8 

dX
1 

. 
dt = 0 1 - aiXI - 8JPXIXP + 0 DL XDXL. 

'-'v-' ...._.... '----y--- ~ 

9 10 11 12 

dX0 dt = - aDXD - yDXD2 
~ 

13 

.• .. 

,._ < • 

' I 

• 

-BLDXLXD + I'{aCXC+yCXC2 + aHXH+yHXH2 + aPXP+yPXP2 + aDXD+yDXD2} 
~ 

18 19 

Constraints are: BHC > BCH' BPH > BHP' BLD > SOL+ oDL. 

Fig. 5. 

.. 



~-----------------LEGAL NOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that it.s use would not infringe privately owned rights. 
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