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" ABSTRACT .

0

The Liapunov stability theory is applied to models of

energy and nutrient flow in ecosystems. _The'domain of stability

under non-infinitesimal perturbations is discussed and signifi-

‘cant differences are pointed out between models with and with-
out detritus-decomposer feedback loops. = Possible practical
;implicatiOns are suggested. Speculations concerning the role

‘of fluctuations in ecosystems and the possibility of determining

successional trends from an optimization procedure are also

discussed.

C



INTRODUCTION -

' The ability t§»predict_ecosystem'ihstabilitiés.is of
' -greaﬁ‘impdftancé.today‘Eecaﬁée so ﬁany enVirbnmental conflicts
~are essentially'disputes about stabilityi-theyfbbil doﬁn ﬁo a
diffefence of'opinionbabOQt whether a'giﬁen man-iﬂduced diétﬁr—.-
bance of a system is likely to result in a Sevéré'disrﬁption or -
merély'a'gentlé.reéoil. What inteﬁsifies”the importancé of this'
probleﬁ'i; the fact fhat our species is‘now capable of adding
to or Subtracting from our natural su?roundings on a scale com-
parable fo the scalevdf‘natural processes. Thus;ffor example;
the intenSify at which waste heat is released by ufban‘dWelleré
into their sﬁrrOundings ié in many éitigs 20% or'ﬁbre'of,the'
solarﬁflux. Othef.disturbances such as the unsettling and dis-
pgrsél‘of heavy metals into marine food Chains during'dredging
_opératiqns, the»disruptioh of frésh water suppliés éﬁd sub-$ur4
faée ofganisms during and after strip mining operations;.or the
release df”ﬁoxic'substances in fuel combustiOn,‘ére not.merely
perceptibie, but groés alterations'bf our no-longer‘hatural
énvironmenf.' Potential instabilitie#'that may result‘fromvthese
'aﬁd'othér perturbations range from the loss of certain species
to the creation of local dustbowls to global éiimété>modificati6n.'

Because the disturbances of our environment are not

iﬁfiniteéimél but finite, the traditional tools for étudying the
stability Of complex systems are clearly inadequate.: F:om a

practical view, not only do we have to deal with finite perturba-



tlons, but also with ecosystems which do not settle down to prec1se1y
their unperturbed states after we dlsturb them. Rather, what we
can reasonably hope for is that the initial perturbatlon w111 not
.propagate in such a way that the system is pushed beyond tolerable
- limits. pvh o ; :n L

o Thus' we are 1ed to the concept of practical'stability.1
Thrs concept is 1ntermed1ate between local and global stab111ty
Local stability, utlllzlng the communlty matrix approach toa
:11nearlzed system, is a mathematical n1cety‘but as we have men-
tioned, both too weak (as 1t is only rellable for 1nf1n1te51ma1 |
perturbatlons) and too strlngent (as it requires the system to
return to its unperturbed state after the perturbatlon ) On the
.other hand, the requirement of global stability is too strong |
because we do not-expect real systems to be stable under'arbitrarily
large‘perturbations,t | |

| | A mathematical method exists for dealing_with practical

stability;-;-a modification of the Liapunov Direct Method. The |
resultsbof some ecosystem'studies using this methodeill be
described here. Wedhave obtained some interestingfresuits,
.especially.pertaining to the role of decompoSers and feedback
1oops in an ecosystem; Furthermore, our methods aIIQW»some_nemm
~insight into the role of fluctuations in systems and a possible
understanding of the direction of successional trends.

| : The goal of our studies is the elucidation of ecosystem.

parameters which correlate with stability. To be of practical
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_use, such quantities should depend upon general features of the

syStem'Sucﬁ as the topdlogy of the matérial and énérgy £low path-
ways?aﬁd'nbt upon detailed knowledge of all the system's compdnents
énd'their dynamical interactions. 1Curréht1y,:much'empiricalvacti;_
ﬁity iniecoIogy“is'fo¢Used on measureﬁents of quantitieé.such és |

the biqmaSses and productivities of the componentsvof the system, .

species diversity, and retention times of various nutrients. These
measurements, while important, do not reflect the organization

. of an ecosystem and have not allowed ecologists to infer or under-

stand ecoystem stability properties. Rather, theyﬁare largely
indicators'bf the state of the componenfs.. If tﬁié_ﬁork is to be
suécessfpl,_that is verifiable and qf practical use; thenjit.must
ultimatélyrpoinf_the way to measurable indicatqrs of ecosystém

organizatioh and stability. A lot of work lies ahead.

MATHEMATICAL PRELIMINARIES -

Assume we are given a reasonable mathematical model -

describing an écosystem which can be written in the form of a.

set of coupled, nonlinear,jfirst order differenfial'equations for
the-time rate 6f change of the components of tﬁe system. By
'componént' we refer, quite generally to‘the energf content; or
the carbon content; dr any other éonvenient meqSufe (e.g. DDT

content!j of individuals or species or conveniently chosen aggre-.

~ gates of species or perhaps just physical sectors. comprising the

3

ecosystem..'Thése equations are assumed to have the form



f.dxi_ - : ‘
. Xi(xl’ T X Wy oo Wm)
‘ i=1, «+,N | (1)
The Xi'refer to thevcomponentsvof the system and-the;wi are any

" other parameters upon which the timevderivativés.may depend.ﬁx
Phenomena suéh as time deiays‘or'stochasticity can be_iﬁéorporatedi
within this general form.

_Suppqse we ére given aﬁ initial, unpertgrbedfspate'df
.thg system;.ii, which may be timé—iﬁdependenfi( a éteady §taté1
of'time4dép¢ndént-(é.g; a limit cycie;) In Fig. 1 Qe plbt fhe
trajectbiy‘df such a stéte.v If the state is perturbed at some
time to a mew value ii + Ox, shown in the figure (Ax; not necessérily
infinité%imél) then fwo‘optiOns (see.Fng 1) are bossible: i) the
pérturbed étate,'xi, may or may not return ultimétely to.the unper-
turbed state, ii; but it will never evolve furthef‘frbm the unper-
turbed state than some'preaSSigned tolerance; ii) it will e?olvé in
time so as tb excéed the preassigned‘tolefance. ‘Our problem is to.
determiﬁeYWhiCh optiqn occurs.

'Fig. 2 summarizes‘the>Liapunov direct_ﬁéﬁhod for stability
analysis.  As shown, the crux of the meﬁhod is to,tbnétruct a
function,'L(Axl,;ff,AxN),‘which,vanishes at the origin, and Qithin
some doﬁaiﬁ‘about the origin is'positive aﬁd moﬁotonically incfeasiﬁg
with Axi, ana in addition{has a negative fime derivative. For ini-_
tial pertufbafions confined to that domain, the exigténce.of such a

function guarantees both the asymptotic stability of the syStem '
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(that is, the x, will ultimately settle at ii)'énd a finite domain

of practical Stability.2 Tﬁe size of_thi$ domain bf practical
stability depends ﬁpon_the preaSsigned"toleranée. A slight modif-
cation® of the asymptbtic stability criteria allows treatment of
the more reéiiétic case in which it is not required that the system 
return‘asymptoticaliy to ‘its unperturbed value. This, aﬁd other

subtleties of the mefhod such as the exténsion to the case in which

the function L is explicitly time dependent or the case in.which

the perturbafion is made not only upoﬁ the ii but also upon the
fpfm of thé»équationé of hotion, are easiiy héndled but will ﬁbf be
delved into nbw as th§Y would‘only obécure the undeTIYing principles
which we wisﬁ t6 elucidate heré. | |

~For a wide class of ecological mddéls4;‘soﬁe of which are
déscribed in the following section, a Liapunov funbtion can be
cénéfructéd for gpy‘initialbstéady state o.rbperi'od‘ic5 state, ii’
This fuﬁcfion haé the property thét itvvaniShesvét'the origin, it
is monotoniéally increasing in the entiie Ax; plane, and |

~dL _ . _ . | ' |
a—t— - iz ? Bij (X,X,WJ Axiij (2)

‘where the Bii are strictly positive for all valuesvof the X

' Moreover, in realistic models, many of the Bij’ for i # j, are zero.

It is convenient to write the coefficients, Byj» in the

~form of a symmetric matrix,-B,'here after called the B-matrix. The

_ matrix elements are given by [B]ij = %(B.. + B..). Now, a theorem

_ 1) J1 .
on the positive definiteness of quadratic forms asserts that the
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is positive for all velpes of the Yi if and only,if;the'determinantg;;

of all the'principal minors of the symmetric matrix‘of_coefficients,_

Q, are positive.6"Therefore,rthe domain of asymptotic stability of -
our 'system is at least as big7'as the domain ofuthe Axi'for which

the determinants of the principal minors of the matrix B(x, X, W)

are positive. We emphasize that the B-matrix is not the community

matrix. "The latter describes infinitesimal stabilityvof a linearized
system wh11e the B-matrix encapsulates the finite stability proper-
ties of a nonlinear system. |

Clearly, were it not.for the presence of off-diagonal,
non-zero._elements in the B-matrix, we would have global stability.
It is the organizational structure (patterns of pathways) of the
ecosystem which determines which of the off- d1agona1 elements;
are non-zero, and therefore whlch places limits on the size of the

domain of stabllity In the following section we explore the im-

: plications of these ideas for various models of ecosystem.

MODELS AND APPLICATIONS

Let us consider three broad categories of ecological
organization:

i. Open flow without cycling. An example would be the flow

of energy through the pathways of the food web from photosynthesizers

on up to top carnivores. This is subsidized and therefore open flow,
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the source of sustenance being the sun. Admittedly 4 eertdin frac-
tion of chemicél energy is recoverable ffom detritus but it is
usually a good approx1mat1on ‘to ignore th1s

ii. Closed flow w1th cycllng “An example would be any global

materiél.eyCle for which the number of molecules of the material is
conserved. A mathemat1ca1 descr1pt1on of a closed cycle 1s, however,
11ke1y to be e1u51ve because of the d1ff1cu1ty in’ accountlng for -
all of the c0mpartments,1n the cycle;[ Perhaps the global carbon
cycle is the mdst_naturaf.one to model; ﬁlth the domineht compart -

ments being the atmosphere, plants, organic litter, decomposers, the

oceans, an1mals, f05511 fuel, and the geosphere In pract1ce; most

models will be geographlcally non- global and will not 1ncorporate
all compartments, thus one is led to:

iii. - Open flow with cyc11ng. The nitrogeh flow in a field is

a fine example. ' Inputs and outputs such es thexadditioh of fertilizer
or washout.from.er05ioh'might be'drivihg forces behind this opeﬁv' |
flow, and yet the'charaetervand stability of the steady state or
limit cycle solotions will be.stfongly influenced by_the cycling
capability of the system

In Flgs 3 4, 5 we illustrate examples of these three
types of organlzat1on. The plctures 111ustrate the pathway patterns.
In addltlon, model equations are presentihhich correspond to the

flow diagrams. Other'equations could be written-we have only shown

" these in order to focus on specific examples. What can we learn

about the stability properties of these three systems from a Liapunov



analysis, and, in particular, what properties are reasonably inde-.
pendent of the detailed mathematical model used to describe the

fldw diagrams?

Typ¢ i Systems; -The Liapupbv_methodfhas béeﬁ eﬁplOyéd
by Hugng and Mérowi_tz8 tofanalyze the‘ﬁtability’pfopertigs of the
- steady stafersolﬁtipﬁs of~the_LptkaQVolterfa:equatibns,for‘ppédator—
prey ipteractions. ,Thesefauthors show that if_th¢ X, are constant,
then |

L=32L =ZI1 [Xx -X -X. 1n(:—i-).] R W

s L .11‘ i i Xs o , '
is a Liapunov function for thé_system. Moreover . .
(M, QN
: ‘ (::) ,.’kNﬁ , - B -
for all xi;- indicating global stability if all k;;<0. Because the
steady’staté'sdlutioné érq'glbbally'stable, the éQuatiohs.clearly;
pQSSess nQ'limit CYcle,sdlﬁtions. - On the Othéf‘hﬁnd, if we set the
kys =‘O'thenithe equations do possess oscillatory solutions but
they are unfortunately not asymptotically stable nor é&e they
structurally stable agaiﬁét small changes in the form éf fhé eQuationS
of motion.

If a mérebgeneral mathématical‘model describing the uni-
_directioﬁal_fipw of‘energy ;hrough'an ecosjstem is.gmployed, restricted
only by the cbnstréints méntioned in foétnote 4,fthen Eq,f4 is stiil’.
: a-Liapuﬁov fﬁﬁction'but thé étruéture of the B-matrix is'moré compli-

cated. In general, simply increasing the number of trophic levels



Will-nothaffect stability,_but_increasing the;number of pathways in'
the'foodmweb by introducing, for example, moreycompetitors at each:
trophic level will add off-diagonal'elements to the.B-matrin; this
tends to dimlniSh the'size of the domain of stabilityl |

-Type ii Systems; Fig; 4 shows the pattern of pathways of

a closed nutrlent cycle._ This cycle, and the model equatlons shown
in the flgure are a 51mp1e representatlon of carbon flow in a four
level system con51st1ng of photosynthe51zers the 1norgan1c‘nutr1ent ’
pool (whlch we take in thls case to be the atmosphere), the decompo-
sers, and organlc L1tter (fallen leaves, dead trees etc. ) We have
assumed that negllgible amounts of carbon are added to or lost from
the system (for example, there is no_exchange w1th;the ocean.)
| It isfpossible.to construct a Liapunov functionifor thisv

system and mithvit to establish the asymptotic stability of its
steady state solutions under the class of_finite perturbations which
are constrained to conserve the total amountioficarbon:‘ The Liapunogv
function is | 7 | |

_ o , x. .

L=1Ig, (i.,a,-e_,o) [x; - %; - X »mj(:i)] = ) (e

T | _ S .
where the ¢, are moderately compllcated functlons of the xl.

Thus the closed system is asymptotlcally stable agalnst
the arhitrary sliding of.carbon from one\level to another. From
this result,‘and the fact that»a'steady state_solution exists for
‘every value of the total quantlty_of"carbonlin the system, itvfolloms
"that thisvclosed system ls not asymptotically stable-agalnst'perturhations

which do not conserve the total amount of .carbon. If the perturbation



changes'thé:tofai amount Of'carbon, then a neu_steady state Will S
be-approached.asymptotically. An inteiesting ouestion then arises:
whlch steady state solutions are approached relatlvely rap1d1y when
d1sturbed7 This is amp11f1ed upon in Sectlon 4 where we dlSCUSS
succe551ona1 trends.

It is stra1ghtforward but tedlous to 1nc1ude more compart-
ments such as the oceans 1nto the model We have not looked in S
detail at extremely comp11cated andilnc1u51ve models of the global‘
vcarbon cycle but from. experlence ga1ned by worklng with relat1ve1y
‘>s1mp1e systems we suspect that the above results w111 remaln valid
for the qu1te general class of models characterized in footnote 4
prov1ded the system is closed.

Type iii systems. If we open theﬁsystem that is allow

‘for the 1ncomp1ete cyc11ng of the nutr1ent then the 51tuat10n -"
changes.l For example, cons1der the - flow of a nutrlent (such as
n1trogen) in a 51x level . system cons1st1ng of carnlvores, herblvores,
photosynthe51zers, 1norgan1c nutrient pool decomposers, and organ1c
litter (plant 11tter, excrement, and corpses) Referrlng to Fig. 5,
we note that in our model equatlons we have adJo1ned a 51mp1e Lotka—
Volterraftype predator—prey webvupon the substratum»of feedback
~dynamics describing the detritusb— deoomposer_path Ways;

, A Llapunov funct1on can be constructed again of the
general form of Eq. 6. Its propertles are best encapsulated by the'y?

B-matrix, which for steady state solutions has the form:
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(D)

where thé asy and bijvare always positive. The a's and b's are

simple functions of the xi’ii‘ ahd the parameters ci,‘ai,-Qi, Yy

'Bij’ cijf‘(see Fig-,5 for an explanation of the symbolsj. fo the
~ theorem on quadraticvforms discussed above, our system is spablé
for pértufbations which are initially within a‘ddmain‘of the X;
such<that‘the determinant of the principal miﬁofs'of B“are positiVe. '
Now the;firét four principal minors afe diagonal an&vclearly posi-
tive. Adding more superstructure to the sysfem (that‘is;.more bredatqr-v”
prey 1inks in the Lotka-Volterra part of the system) would not affect
the po;itiVity of the first N-2 determinaﬁts}lo Coﬁstrainis on the
_ dqmain offstability{_if they eXist, will show up in the eva;ﬁation of
therlast'twqgdeferminants. The fifth‘determinént is given by .
é,‘cc 3y 2pp [217 app - b
‘é CC“CCHQHCPYP[CICD(UXDXL + 91)751 | _. ._"» , -(8):'
T
_ep lx + %)

» g
"l§ xI2 R

1p]

We see that the domain‘of stability may now no ldnger be,global; for
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fixed‘;cfi and fof sﬁfficiently small values of QI and.v
Xpy, OT for ngficientiy large values of X OT X, the determinant
becomes.negative. Thus fype iii systems can be quite vulneiable'to
perturbations in tﬁe litter,'tﬁe inorganic nutrient pool orithe
decomprers. | |

’Tﬁe sixth determinant is complicated and we haVevnot yet
extracted all theliﬁformatioﬁ in it. Fbr'a range 6f,cyc1ing rate
parametérs (r énd o) and exterha) input and outpﬁt parémeters
(@, 9> aI,‘aLj a finite domain of Stabiiity’can be shown tovéXist.
It is possible to show that in type iii systems in which the exter-
nal input rate of’litter is proportional to the amount of litter'
present, that a certain critical minimum value of 'the cycling efficiency
parameter, f, is necessary in order to ha?e a.fihite domain of'asymptotic
stability. On the other hand, if the system is approximately cidsed,
i.e. éxtetnal inputs and outputsvrelatively small, then the sixth
determinant can bécome; negative. This is simply”a refiectioﬁ
of the fact diécussed earlier that éxactly closed systems are not
asymptotically stéble against displacements which do not conserve
the total quantity of nutrieﬁt. This‘instability isva relatively
“harmless one, however, as long as the pefturbed system does not |
evolve far away from where it is initially perturbed to. It remains
to be seen whethér threshoids of dangerous,insfability are more likely’
in high-T or low-T syétems'and in high-2, or low-Q. systeﬁs. There 3
are many other uhanSwered questions which we Hope ﬁb explore. For

example, do systems in which the inequality a.i.<<y.i.2 is satisfied -
_ Siti i



ot

‘These can be easily solved. Let ¢ = D

tend to have a greater stability domain ‘than systems satisfying the

oppoéifé inequality? In other words, are resouiée-limited systems -

more sféble than those existing well below:avéaturation level?
An amusing reiation bétweeﬁ diférsity- and stability

also. emerges from thig'analysis: ‘Let us eﬁlarge the Lotka-

Volterra'"sﬁpérgfructufe" of the system by exfending the matrix,

Eq{ 7, to the upper left so that we'conéider an N-éomponent system.

We denote:by Dg the detérminant'of the mfh prihcipai minor of the

N XN yatrixiand choose the values of Xp» xL; and XI sq thgt DE-I

is positiVé. How doés Dg then behave as N + »? The answér depends

upon two factors: the shape of the trophic'structure'Of'the system

- and the ratios Bij/sji" In general, DE will remain positive as N

increases and thus. systems with an ever-increasing number of inter-

'acting components, arranged vertically in trophic hierarchy, will

remain stable.

~ In order to show this we number the'roWs_and columns of

the N X N matrix in an unorthodox manner, letting N denotévthe first

row or column and 1 the last. Thus the matrixvelement'aNN is that
appearing in the top left corner of the matrix and corresponds to
the top carﬁivore, Then the following recursion relations are easily

derived: .

N N-1

Dn-1 = 2anPN-2 -
2 9

N - N-1 IN N

p, =a p+ - 1IN p

N 3NNN-1 a, N1

g and ¢ = DZ both .of which



-14- | | \

are assumed to be positive as is required for stability. Then

: N .
N
Oner T 00255 o
J : (10)

/. N Z\N ’

.DII: =(w-¢z YRR
\ i=4 3 ) j=4 7
\ ii/

DE_I clearly remains positive if the aii's areIPOSitive (or'yi "

positive in Fig. 5). The value of bg will depend'upoh'the bii;s
and the aii's;' Néw bli is'prOPQrtiOnal to thé rate, per unit mass,
at which xi'is cycled_back to the organic litter level. We expéct
this qﬁantity to be rbughly indépendent of i and we henceforth take
it to be a constant. Referring to Eq.510 we note that if aii in-

creases less rapidly than i, then the summation will diverge as

N
N

can remain positive as N » « only if as; increases faster than i.

N

N + » and D, will become negative at some critical Vaiﬁe‘of N. DN

is i ? ; = el '
What doeg this imply? For i > 3, as; CiY;- The Yi

behave roughly proportional to xil and thus increase with i for
ordinary trophic hierarchies. Moreover

. . . ' ’ _
cl - 21-1,1 51 . _ (11)
i-1. ) ' .

i,i-1
since retention is < 100% and so the ci's will not decrease with i.

If B, is a constant multiple of B, , . then ¢, = ¢’ and the sum

l,ifl ‘
will not diverge. To create a divergence and thus drive the determinant

negative, we would have to assume that both Bi -1 7 Bi—l i and

X, * as i + «. Thus the trophic structure would not peak as

. X.
i i-1

rapidly as is usually observed in real systems. Such unpeaked sYstéms
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~ could exist but we have shown that they are likely to. become unstable’

rapidly, ‘as N Erows large. Moreover, systems with 1nverted struc—

ture in which the top levels are more "populated" than the lower

. ones should be of very simple (small N) structure for stability

For most systems with peaked trophic structure and small retention

factors.(si i_1/8

i-1 i), ‘increasing the value of N will not SethUSlY'ﬂ

-affect stability;

SUMMARY AND]S?ECULATIONS

e¥we have described here several results of an investigation
of the finite stability domain of ecosystem models 1nc1ud1ng those
1ncorporating_decomposer and detritus pathways. While only the
surface of_this‘subject has been scratched by our,work, several
pertinent results have emerged. - Among these are two which may be
of practicaluinterest:

i. Stability and diversity. - We have distinguished several

kinds'of diversity here. There is vertical diversity referring‘to
the'number of levels in the trophic structure, and_horizontal:oiver-"
sity, referring to the variety of competitors atieach'level, “And
then there is diversity of spec1es ‘and- diver51ty of pathways. ;What
we have shown here is that increasing the number of trophlc levels
generally‘has no effect on the size of the domain of asymptotic
stability. The exception to this occurs if the food_web,is not.

pyramidal in shape but rectangular or inverted.i Then the“system

can rapidly destabilize as the number of levels grows. We have also

'
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shown that increasing horizontal diversity generally leads to a
decréasing'domain of asympfOtic stability, although if the ratio
of the number of pathways to the number of species is kept sufficiently

bounded, then both can increase without diminishing stability.

ii. Sensitivity of feedback Systemé._ We have shown that damage
to the decomprers Or'the'orgahic oi inofganic,nﬁtrient poois in
" an ecosystem is a pofentialISOdrce’df inétabilitf.f gréater, perhaps, than
- that érisihg from tampering with the more visibie predator-prey | |
components. of thé'system. "Activities of man which dimihisﬁ the
cycling capability of an ecosystem should be viewed with Caﬁtion
if these results stand'up‘uﬁder further analysis.
| There:ére'numerous practical problems to which stability
anaiysis such as this might be applicable.v'Study'of the .global
carbon cycle might reveai thresholds'for.climatic'instability, or
at'least provide insight into the ulfimate fate of the carboﬁ-_
dioxide rélease&:by fbssii fﬁel consumption. |
Our methods might also be useful for eﬁaluaﬁing the 
~potential for rehabilitating strip-mined lands which have had their
dgtritusgdecomposer pathways altered. Insight into ﬁhé vulnera-
bility of desert and-tundra systems with low reservésvof litter and
slow cycling-timeslmight also be obtainable.
.“We close with several speculatioﬁs. Let us recall ther

1‘ -'.., ’ ) . .
1 that during the course of ecological succession,

observation
certain observables such as cycling rates, productivities, and

biomass tend to show systematic time development. Is it possible

/.
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to view succession as the progression of theVSystem“into an ever
.more reSilient configuration? If so, then the evaluation -of a suitf'
able measure of resilience may provide a guide to the direction

‘of these successional trends.

As a suitable measure, we propose the'uSe”of:either the
quantlty
' 1d ' S
A— - minimum over Ax of (2dt In L) o (A2)

or, if ene is iny'concerned with neighborhood stability,.

BN

A - minimum over i ofv(Ai) : '“ ” _. | (13).
where thef}i are the eigenvalues of the communitjvmatrix of tﬁevSystem.
For-e stabieesystem? either is'roughly a measure:of the lowest resilience
or recovery rate for a perturbed state to Teturn to its unperturbed
v31Ue. ﬂin the limit of small Ax., the two definitioné of A agree.
Ais a quantlty whlch should be of practlcal interest to those con-
',cerned w1th env1ronmenta1 1mpacts For even though mathemat1ca1
modellng may suggest that a system is asymptotlcally stable,_a h1gh
" resilience is still desirable as it proves a safety factor‘aga;nst the
unexpected;. | |

| IfIWe'assume_that A is maximized duringAsucceséidng'then
we:may be.able to ﬁnderstand.the course-ofvsuccessieﬂ. Moreover,
if the equations of motion were sufficiently'reliable, then if
A is evaluated for a time-dependent solution 1t may be p0351b1e to
use the dynamlcal equatlons to show ‘that A is 1ncrea51ng in time.

We have only been able to apply this idea so far to several

simple models. A number of simple two and three levei'systems
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describing the flow of cefbon haveebeen enaiyzed.andiiead'te'the'
result that A is maximiZed.for a certain fixedbratio (Whicﬁ‘tﬁrns
out to be'4) qf the-eﬁuilibrum'emount7of‘carbbn'in plants to carbon
in the atmosphere. This ;esuit'will be'described inedeteil in a
forthcoming paper. It Will.be iﬁtefeetiﬁg to.determine how A
depends upon such quantities as the total biomass, pathway diversity,
or productivity of model and laboratory systems. |

We have also begun to assess the role of fluctuations orl
noise 1n‘eCOSYStems.' Several author512 have shown that flﬁdtuationsv
in the kii terms in Fig.'svare destabiliZingg On the other'hend_we
héye'obtained some preliminary evidence from eomputer.generated
solutions_ef our model equétibns that noise in fhevﬁalues ofvthe
kij’ fer-i # j, renders the systememofe ?esilient_more like:a piece of
rUbber'thaﬁ A cryétall - To be more precise,VCOnsider the admittediy
over-simﬁlified_Lotka—Volferra equetiens as'an'example; If the
saturation‘effect is ignofed (kii = Oj then thevequatiens possess
solutions with interesting cyclic time dependence, but this system
is sfructurally uhstabie‘and the solutions possess no‘domaiﬁ.of
asympto;ic stability; hence.the model ie unrealistic. On' the other
hand, if ihe damping factors, kii’ are ﬁegétive definite, fhen the
system is structurally stable, but fhe splutions all apbrdaeh -
ﬂsteady states. We hypothesize that in the latter case, with,damping;'

the presence of small fluctuations in the kij (for i # j) will not Only

 preserve the stability of the system but also excite the cyclic modes of the



undamped system.

‘a more thorough

A
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lineérvsysfém could not obey this hypotheésis;

study of nonlinear systems is needed before this and

~ other potential surprises are understood.

: Much:wdrk remains in this exciting field. The search for

a deeper understanding of the workings of complex; non-linear, self-

organizing systems is a challenge in its own right; moreover, the

results may be of ultimate benefit to our species. -
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FOOTNOTES AND REFERENCES |

1. . Lasalle and - S Lefshetz, Stab111ty by Llapunov s D1rect Method,
Academlc Press, 1961

2. For practical stability, we require that at finite times the pre-
assigned tolerance is not exceeded. Thus the domain of asymptotic
stability could be larger than the domain of practical stability.

3. See the discussibnvfollowiﬂg P. 121 of Ref 1.

4. This class of models includes those characterized as follows
Separate the net increasing and decreasing contributions to dx /dt
o dx.
i_. . L
by writing Fr e f.(xl,..-,xN)—g.(xl,..,,x ) where f. and g5

p051t1ve and can be expanded in a sum of products of positive

powers of the x- Further assume that gl(x1 =0, Xxj #1 arbitrary)=0,
that f does: not grow faster than linearly in X and that f; /g — 0
i

Then such a B matrix can be constructed. Of course, a wider class
of models which are not expressible as sums of products of powers
and which are quite difficult to characterize, will also lead to
such a B-matrix.

5. The treatmeht of an unperturbed periodic or nearly periodic state
involves an averaging procedure which will be discussed in a forth-
coming paper. For the rest of thls paper, attentlon will be limited

to steady states

6. See R. Fraser, W. Duncan, and A. Collar, Elementary Matrices, Cambridge
University Press, 1957.

7. We say "at least as big'" because the actual domain of stability can be
larger than that calculated from the principal minors. This is true
for two reasons. First, the condition on the determinants arose
from the requirement that the quadratic form be positive for all
values of the Axj's. Yet the condition restricts the Axj's and thus
the requirement on the quadratic form was overly stringent. Secondly,
even if some of the determinants are negative so that dL/dt is no
longer negative definite, dL/dt is not necessarily positive definite
and thus there may not necessarily be a true instability. A better
Liapunov function might be needed to resolve this ambiguity. For
both these reasons we have a built in "safety factor' in our analysis.
We suspect that safety factors are desirable in practical ecosystem
stability modeling if for no other reason than that model descriptions
of ecosystems are inevitably only approximate. It remains to be seen
whether this is the most appropriate way to bu1ld in the margin of
safety
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H. Huang and H. Morbwitz, Journal of Theoretical Biology,'Vol. 35,
p- 389, (1972).

A recent paper by M. Austin and B. Cook, Journal of Theofetiéal'
Biology, Vol. 45, p. 735, (1974) describes the results of some"
computer simulations of model systems with decomposers.

Provided, of course, that the horizontal structure of the web does
not grow so complex that the Lotka-Volterra form of Eq. is impos-
'sible. The tendency will be for off-diagonal elements in the
principal minors to diminish the domain of stability.

See, for example, E.P. Odum, Science, page 262, April 18, 1969.

See R. May, Stability and Complexity in Model Ecosystems, Princeton
University Press, 1973 and references therein._,,
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FIGURE CAPTIONS

FIGURE 1 ‘Timéjevolutién offunﬁerturbed and perturbed states. -The_axés
lébeiithe_cgmpbnent of the system. ‘The Qplidfliﬁe.represents the
unpeftgrbed syStem.CEA) and. would be é single point for a
steady state'(ii-=:con§tant)1_ The'dashéd line repfesentS-the-
pértufbedYState‘and'its subséquenf”timé evoiutioﬁ‘ -In the top

‘diagfah“thé'pefturbed'stafé_femainsvnear fhé‘uhperturbed sfate,
whilé'iﬁ the bottom diagram the periuibédvstaté.wdndersvinto a
forbidden region (e;g. a fegion whete algae chcentration

accelerates dramatically).

FIGURE 2 An outline of the proceedure for using the Liapuhov function

to determine stability properties of an ecosystenm.

FIGURE 3 A schematic figure of a simple open system with no cyclinglof
vené:gy flow.ﬁ_At.éaqh_perhic leye} above the plénts;_enefgy
is-los£.; A tYpiééi set of equations describihg Such a syétem
is_the.Lotka—Voltérra equations shown in the figure. In these ’
equgfions: The ai‘éfe éimp}e degth rates, the kii are related
to ;arrying capacities, the kij are_the interactipn terms, and
'the'ri are retention factors. The simple form of the Lotka-
Vqltérra equations and thebantisymmetry constraiﬁtsvlimit their

usefulness.

FIGURE 4 A simple closed'system,with‘carbon cycling consisting of plants,

atmospheré (COZ), decomposers, and organic litter. The xi's
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measure carbon content. :The'Various numbered terms_in_the
equations indicate: |

1) plant death rate in;luding resource saturation effect,

2) plant.gfowth due to CO2 absorption during photosynthesis,
3) decrgasé in CO2 due to plant absorptiqh,

4) production of CO2 by decomposer action on litter,

5) decomposer death fate including resoﬁrce satﬁration éffect,
6) decémposers growth due to feeding on litterf

7) litter increase:due to decomposer and planf.deafh;
8) litter decrease by decomposer action.

(all constants are positive.)

FIGURE 5 A simple open system with nutrient éycling copsistiﬁg of car-
nivores, herbivores, plants, inorganic nutrient pool, decompo-
 sers, andworganic litter. The numbered terms indicate:
1) carni&ore death rate including resource saturation effect,
2) carniVore-growth due td eating herbivores,
3) herbivdre death rate including resource saturation effe@t,
4) herbivore decrease due to carnivore grazing, .
5) herbivore increase due to feeding on grass,
6) plant death rate including resource saturation effect,
7) plant decrease due to herbivore grazing,
8) plant growth due to absorbtion of inorganicvnutrients,
9) addition of inorganic'nutrient pool (e.g. fertilizer),
10) washout of inérganic nutrient,

11) nutrient decrease due to plant use,
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nutrient increase due to decomposer action on litter,

decomposer death rate including resource saturation effect,

decomposer growth due to feeding on litter,
addition to litter (e.g. sewage dumping),

washout of litter,

‘litter increase from excrement (T is efficiency factdr),

litter decrease due to decomposer action,

litter increase due to death of organisms,

' {all constants are positive.)
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_'FIND A FUNCTION L ( AX., Cvie e b AK,.) WHICH SATISFIES

L = OIFALL AK.-. o
L > o IN SOME DOMAIN ABOUT AX.

evaLuate dl _ > BL d bxe ._UsING,THE EQUATIONS .
OF'MOTION.d-t, | ,aM“"‘,'b
v dl ¢ o - ,_THE SYSTEM IS ASYMPTOTICALLY‘_S'VI“ABLE,‘A-

IF ae = O, THE SYSTEM IS NEUTRALLY STABLE,

IF « 0 > O  , THE SYSTEM IS UNSTABLE.

THE DOMAIN OF PRACTICAL STABILITY DEPENDS UPON THE PREASSIGNED

 TOLERANCE ON THE A X (t). IT MAY BE LARGER THAN THE DOMAIN OF"

ASYMPTOTIC STABILITY BECAUSE PRACTICAL STABILITY DOES NOT REQUIRE

X, (t)-—)\( AS t-> oo, OR IT MAY BE SMALLER BECAUSE THE A X; (t),‘

FOR AN ASYMPTOTICAILY STABLE SYSTEM MAY EXCEED THF TOLERANCE

AT FINITE TIMES

Fig. 2.
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external input and/or - o ' TOP CAFNIVORES
output ' :
A CARNIVORES

=

- - Y1 PLaves

HERBIVORES

dx N k
=X+ L oxx
where k'|<0, kij'= - kjf’ (i #))

~° Fig. 3.
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c

A\ external ipput or output

A

PLANTS  x, B « .| ORGANIC X o~
- : 7 LITTER -

 INORGANIC x

I ' DECOMPOSERS .
NUTRIENT POOL - ¥p NN
CLO o, |
gt = " %X T YeXe t BenXcMu
—7 3 |
d,
—_— e . - 2 _
gt = " %% T Y% T BucXeXc t Buetu®e
N e — e
3 i 5 |
dx

P _ _ - 2_ : vy
= T o%%e T Ye%e T BenXpXy * Bpr¥p¥g
| '

6 B 7 8
a0 | o
T e & S 126 U TR
- — —
9 10 n 12
™ - -
—=-a X -y X<+ B XX
p ~ Yoo * Bp¥oXL
at D
13 14
R +'riffﬂf_:’fgglf;§ﬂ{i(“PH = Bpy) XpXy )
, 5 16 R A
- &7 2 Y24 o 2 x 2
BLoX Xp + TlagXetveXe? + oyXbvy Xy ® + apXphvpXp® + apXprypXp™)
18 - 19 |

Constraints are: By > Beys Bpy > Byps Bp > BoL * oL
' - Fig. 5.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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