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Abstract

In this paper, we propose a multilevel process modeling approach to describing individual

differences in within-person changes over time. To characterize changes within an individual, re-

peated measurements over time are modeled in terms of three person-specific parameters: a baseline

level, intra-individual variation around the baseline and regulatory mechanisms adjusting towards

baseline. Variation due to measurement error is separated from meaningful intra-individual vari-

ation. The proposed model allows for the simultaneous analysis of longitudinal measurements

of two linked variables (bivariate longitudinal modeling), and captures their relationship via two

person-specific parameters. Relationships between explanatory variables and model parameters
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can be studied in a one-stage analysis, meaning that model parameters and regression coefficients

are estimated in the same step. Mathematical details of the approach, including a description of

the core process model—the Ornstein-Uhlenbeck model—are provided. We also describe a user

friendly, freely accessible software program that provides a straightforward graphical interface to

carry out parameter estimation and inference. The proposed approach is illustrated by analyzing

data collected via self-reports on affective states.

Keywords: intensive longitudinal data analysis, dynamical modeling, Ornstein-Uhlenbeck,

Bayesian modeling, individual differences

Introduction

Recent advances in social science data collection strategies have led to a proliferation of data

sets that consist of long chains of longitudinal measurements taken from different persons. For

example, the widely-used methods of experience sampling (Csikszentmihalyi & Larson, 1987), or

the more general ecological momentary assessments (Stone & Shiffman, 1994) provide researchers

with a wide variety of measurements in natural settings. Such data often require complex statistical

analyses. A new field, called intensive longitudinal data analysis (ILD, see e.g., Walls & Schafer,

2006; Mehl & Conner, 2012) has emerged to meet this demand. Its strategies focus on analyzing

temporal data of several participants with an emphasis on capturing interindividual variations

in terms of parameters describing intraindividual variability. Unpacking underlying characteristics

and processes related intraindividual variability has crucial importance in many domains, including

developmental research (see, e.g, Ram & Gerstorf, 2009), personality psychology and emotion

research (see, e.g, Kuppens, Oravecz, & Tuerlinckx, 2010; Kuppens, Stouten, & Mesquita, 2009).

We propose characterizing longitudinal measurements from an individual in terms of param-

eters of the Ornstein-Uhlenbeck (OU, Uhlenbeck & Ornstein, 1930; Oravecz & Tuerlinckx, 2011;

Oravecz, Tuerlinckx, & Vandekerckhove, 2011) process. Modeling within-person change over time

in one longitudinal variable with a univariate OU process enables us to describe dynamic charac-
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teristics such as intraindividual variation and dynamic, stability maintenance processes, such as

regulation and adaptation. Extending this framework to two longitudinal variables within-person,

a bivariate OU process can additionally capture coupled within-person variation in terms of cross-

effect parameters, such as covariation.

Consider an experience sampling study that aims to study affective instability; see an example

later in the Application section. In such study participants (commonly more than 20) are semi-

randomly prompted for example through a mobile app to report their arousal (activation) and

valence (pleasantness) levels at the moment of the prompt, during their everyday life. This integral

blend of pleasure and arousal is often labeled as core affect (Russell, 2003) in the emotion literature,

and change over time in terms of self-reported core affect has been the focus of several studies (see,

e.g., Barrett, 2004; Kuppens, Tuerlinckx, Russell, & Barrett, 2013). Recently, neural correlates of

core affect has also been found (Wilson-Mendenhall, Barrett, & Barsalou, 2013).

The resulting data set would naturally have different numbers of observations per partici-

pant, taken at different time points (unbalanced, unequally spaced data). Commonly used models

to analyze these data often resort to models that assume equal spacing of measurements, for exam-

ple discrete time-series models (Walls & Schafer, 2006; Bolger & Laurenceau, 2013). Not only can

discretization bias inference (Delsing, Oud, & Bruyn, 2005), but it turns out that unequally sam-

pling designs might be more advantageous when the sampling rate is low (Voelkle & Oud, 2013),

which might occur in experience sampling studies when researchers try to decrease burden on the

participants. The proposed OU model assumes that the underlying change mechanisms behind

the core affect self-reports take place in continuous time, and the unequally spaced and unbalanced

observed data are samples from this process, therefore it is especially well-fit for analyzing intensive

longitudinal data from experience sampling studies.

The latent OU process proposed to model the observed data can be characterized in terms of

the following parameters: each participant can be described with a baseline (which is a baseline core

affect in our example), and regulatory mechanisms with different levels of intensity to adjust towards

this baseline. Around this baseline people exhibit different levels of intra-individual variation,
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which in the proposed model is separated from measurement error variation through state space

modeling (Fahrmeir & Tutz, 2001). That is to say that the OU framework allows us to decompose

manifest variance in the raw self-reports of pleasantness and activation scores into psychologically

meaningful parameters such as intra-individual affect variation and measurement error. Moreover,

synchronicity in changes between activation and pleasantness levels along with concurrence in

regulatory dynamics are captured through two person-specific model parameters. The baseline,

variation, regulatory mechanisms and synchronicity are parameters of the OU model and can be

considered as meaningful indicators of affective system quality.

In the proposed OU framework all of these indicators describing the within-person change

can be made function of time-invariant covariates (TIC). These can be any explanatory variables

that are considered relatively stable over time. For example, we hypothesized that a person’s

tendency for rumination (for its measurement see Trapnell & Campbell, 1999) might be connected

to the self-regulation parameter of our model, therefore we regressed this parameter (and other

model parameters as well) on this covariate. Moreover, the baseline levels of pleasantness and

activation for each individual can be adjusted as a function of time-varying covariates (TVC),

therefore allowing for example adaptation mechanisms to enter into the model. For example,

actual measurement time can be turned into a TVC to investigate whether (and how) the baseline

changes over time. To conclude, the proposed framework enables the researcher to approach a

multifaceted substantive problem with a realistic and necessary level of complexity.

The proposed model carries several desirable characteristics from the statistical inference

point of view as well. Most importantly, inference in all parameters is performed in a single

step. Traditional approaches routinely derive point estimates for parameters, for example for intra-

individual variance, and then in a second step link these point estimates to covariates, for example

regressing intra-individual variation in affect on neuroticism scores. This approach is problematic

as relying on point estimates neglects the error that is in the parameter estimates. In a one-step

approach, process model parameters, regression terms and error terms are all estimated simulta-

neously, providing a principled way of propagating error in the parameter estimates. Finally,
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implementing parameter estimation in the Bayesian statistical framework results in probability

distributions for each model parameter. This allows us to evaluate likely values of the model pa-

rameters in probabilistic terms, such as how likely it is that a parameter is larger than 0, or that

it is within a certain range.

The Ornstein-Uhlenbeck process model shows correspondence to other modeling techniques

often utilized for modeling for ILD. It is similar to the traditional bivariate linear mixed models

(LMM, see, e.g., MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997) in the sense that the mean

structure (baseline for OU) can be made a function of TICs and TVCs. However, there are several

distinctions as well. First, the proposed bivariate OU model assumes that dynamics occur on the

latent level, therefore the intra-individual variation and autocorrelation structure are modeled on

the latent level. Moreover, while autoregressive error term can be added to LMMs, they are typically

not allowed to vary across individuals nor can be made function of covariates. The OU model’s

self-regulation parameter controls for the autocorrelation in the changes, and turned into a random

effect. Besides the correspondence with the LMM framework, the OU model falls into the class of

dynamical models termed as stochastic differential equations (SDEs; see e.g., Oud & Jansen, 2000;

Oud, 2007; Molenaar & Newell, 2003; Chow, Ferrer, & Nesselroade, 2007), which extend ordinary

differential equations (ODEs; e.g., the oscillator model; Chow, Ram, Boker, Fujita, & Clore, 2005;

and the reservoir model; Deboeck & Bergeman, 2013) in allowing for process noises or uncertainties

in how the latent processes change over time. When compared to oscillatory models of change, the

OU model does not reinforce an oscillatory pattern on the dynamics itself, but can include cyclic

changes in baseline levels (as TVCs), while at the same time capturing stochastic variation that is

separate from measurement noise. The proposed modeling framework also extends other current

SDE models in the psychometric literature or their discrete-time difference equation and time series

counterparts (e.g., Wang, Hamaker, & Bergeman, 2012; Browne & Nesselroade, 2005; Chow, Ho,

Hamaker, & Dolan, 2010) by also allowing for random effects, or between-person variations in

terms of meaningful process model parameters (baseline, intra-individual variation, self-regulation,

and synchronicity), as well as ways to incorporate the effects of time-varying covariates on these
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parameters.

Beside expounding on the technical account of the proposed model and illustrating its ad-

vantages, we also aim to provide guidelines on how model fitting can be done in a practical sense.

This stems from the recognition that our proposed approach does not represent the mainstream of

methods used in the field of intensive longitudinal data analysis. Therefore we describe the basic

notions of Bayesian data analysis, including posterior predictive model checks. The research tool

to carry out inference, the Bayesian hierarchical Ornstein-Uhlenbeck Modeling (BHOUM) program

will also be discussed. BHOUM is a user-friendly parameter estimation engine with a graphical

user interface. BHOUM is a standalone program, and can be downloaded (optionally with its

MATLAB source code) from the first author’s website.1 The focus of this paper is on carrying out

the data analysis and the interpretation of the results, and we further refer prospective users to the

detailed User’s Guide on the BHOUM software (available on the journal’s website as supplemental

material).

Investigating temporal dynamics in terms of process model parameters has potential appli-

cations in many areas. One example is core affect, which we described above. Kuppens et al.

(2010) formulated the DynAffect theory that linked general characteristics of core affect changes to

Ornstein-Uhlenbeck process parameters such as attraction point or baseline, intra-individual vari-

ation and regulatory force. We chose the DynAffect framework to demonstrate data analysis with

the hierarchical OU model, and we will re-analyze data from Kuppens et al. (2010), Study 1. Our

approach goes several steps further than the original analysis as we will introduce time-varying and

time-invariant covariates in a one-stage analysis. Moreover, we study the cross-effect parameters

of the two dimensions of core affect.
1
www.zitaoravecz.net
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The bivariate hierarchical Ornstein-Uhlenbeck model

Model specification: the bivariate Ornstein-Uhlenbeck state space model

The core of the proposed model is the Ornstein-Uhlenbeck stochastic process that was first

described by two Dutch scientists Leonard Ornstein and George Eugene Uhlenbeck (Uhlenbeck

& Ornstein, 1930). The OU process is chosen to characterize the within-person dynamics on the

latent level, for example the underlying changes in ones core affect. The process can be seen as

a continuous time analogue of a discrete-time first-order autoregressive (AR1) process. In an AR1

process we regress the current position of the process on its previous position one time unit earlier.

Similarly, the current position of the OU process depends on its previous position, but instead

of one time unit of difference, the elapsed time between the two positions can take any positive

value. This idea is formalized by a differential equation formulation of the process, which describes

the rate of change in the process level over any chosen amount of time. Adding to that, the OU

process is also perturbed by some noise, therefore therefore its mathematical formula is a stochastic

differential equation, defined as follows: :

dΘ(t) = B(µ−Θ(t))dt+ΣdW(t) (1)

The equation above is referred to as the “dynamics (or state) equation” in the state-space modeling

framework. Let us expound on Equation 1: Θ(t) (2×1) is a two-dimensional latent random variable,

for example levels of pleasantness and activation at time t. dΘ(t) (2×1) represents the change in

these levels with respect to time t, and the right side of the equations shows that this is partly

determined by the distance between the current position of the process Θ(t) (2×1), from the

baseline, µ (2×1). 2 The level of self-regulation is expressed through the 2×2 regulatory force

(or drift or dampening) matrix, B. The other factor governing change in the latent process is the

second term on the right side of Equation 1, ΣdW(t), which represents the stochastic component

2As a result of the mean reverting specification (as shown in Equation 1) the OU process does not have an ever
expanding variance expectation as in basic random walk processes.
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of the process. The term W(t) stands for the position of a Wiener process (also known as Brownian

motion) at time t: this process evolves in continuous time, and its position is uninfluenced by its

previous positions, meaning that it follows a random trajectory. Practically speaking, the dW(t)

term adds random variation (noise) to the system. Finally, the effect of this is scaled by the diffusion

matrix Σ (2×2), see details below.

Integrating over the transition equation, Equation 1, results in position equation:

Θ(t) = e−Bm
Θ(t−m) + µ(1− e−Bm) +Σe−Bm

∫ t

t−m

eBudW(u),

which shows the position of the process after elapsed time m. The last term on the left hand

side is a so-called stochastic integral. Stochastic integrals cannot be solved by regular calculus,

but require special approaches, such as the Ito calculus. The Ito calculus extends the methods of

regular calculus to the domain of stochastic processes. The solution in our case (Dunn & Gipson,

1977) leads to the following equation:

Θ(t+m) | Θ(t) ∼ N2(µ+ e−Bm(Θ(t)− µ), Γ− e−Bm
Γe−B

′m) (2)

resulting in an equation that describes the conditional distribution of the position of the process

after elapsed time m.

Equations 2 and 3 (below) additionally feature the matrix Γ, which is the stationary covari-

ance matrix of the process—that is, the variance of the process run for an infinitely long time. Γ

is related to the diffusion matrix Σ and drift matrix B through the following equation (see e.g.,

Gardiner, 1986, p. 110):

ΣΣ
T = BΓ+ ΓB

T. (3)

Equation 3 demonstrates that the scale of the diffusion process can be partitioned into a

dampening contribution of the mean-reversion process (governed by the regulatory force matrix B)
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and the stationary covariance. This is particularly useful, since this re-parameterization allows us to

express the process in terms of psychologically meaningful parameters. Finally, coupled influences

are captured by the off-diagonal elements of Γ (covariation) andB (synchronicity in self-regulation).

As can be seen, over time the OU process tends to drift towards its long-term mean, due

to the mean-reverting dynamics. Additionally, there is a stochastic input term that influences the

change trajectory. Psychological processes for which this type of perturbation and mean reversion

can be an appropriate model include emotion, mood and affect regulation (Gross, 2002), semantic

foraging (Hills, Jones, & Todd, 2012), and so on.

The empirical measurements, Y(t), for example pleasantness and activation self-reports, are

typically discrete. Therefore we link the observed discrete data to the continuous underlying state

(or levels) of the process by adding some measurement error. In the state space modeling framework

the equation describing this idea is called the “observation equation”. We map the latent dynamics

to the manifest data through the following specifications:

Y(t) = Θ(t) + ǫ(t). (4)

The measurement error is represented by ǫ(ts), which is distributed according to a bivariate normal

distribution with expectation (0, 0)
T

and covariance matrix Σǫ. Next we expand this basic state

space model with a hierarchical structure to be able to fit a multilevel OU model to intensive

longitudinal data.

Hierarchical extension: the bivariate multilevel OU model for intensive longitudinal data

A typical structure for an intensive longitudinal dataset would be the following: longitudinal

variables for a person p (p = 1, . . . , P ) are measured at np time points: tp1, tp2, . . . , tps, . . . , tp,np .

We restrict our attention to two variables here, denoted as Y (tps) = (Y1(tps), Y2(tps))
T at time

point tps. The index s denotes the sth measurement occasion of that individual. In the hierarchical

Ornstein-Uhlenbeck (HOU) model we assume that these observations are functions of a latent
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underlying state denoted as Θ(tps) = (Θ1(tps),Θ2(tps))
T and some measurement error.

As proposed above, the underlying latent states, for example changes in one’s core affect, are

assumed to be governed by a two-dimensional OU process. For simplicity, we use only the indices p

and s when denoting parameters or data which are related to the specific observation at tps. Then

an HOU model for a single person p can be written as:

Y ps = Θps + ǫps, (5)

where Y ps is a shorthand for Y (tps) and stands for the observed random vector, Θps denotes

the latent state (or true score, shorthand for Θ(tps)) and ǫps for the measurement error with the

distributional assumption: ǫps
iid∼ N2(0,Σǫ). Based on Equation 2, the latent underlying level of

the bivariate process for person p at time point s can be written as:

Θps|Θp,s−1 ∼ N2

(

µps + e−Bp(tps−tp,s−1)(Θp,s−1 − µps),Γp − e−Bp(tps−tp,s−1)Γpe
−B

T
p (tps−tp,s−1)

)

. (6)

Parameter µps is the person-specific bivariate baseline, which can also be referred to as home base,

bivariate attractor, or attraction point and is somewhat similar to a mean vector. It can change over

time as a function of time-varying covariates. For example, baseline valence and arousal levels can

change as function of actual time during the daily cycle. Variation around the baseline is modeled

through Γp, which is a person-specific intra-individual 2-by-2 covariance matrix. In terms of valence

and arousal, the two diagonal elements represents variation in these, while the off-diagonals capture

the covariation in the changes.

The model assumes that there is always some level of attraction, or regulation over time

towards the baseline level, and the dynamics of this is modeled through the 2-by-2 regulatory force

matrix Bp. Following our core affect example, for each person arousal and valence levels can be

regulated with different intensity, represented by the two diagonal elements of the Bp matrix, and

the cross-effect of these dynamics , the off-diagonal of Bp, is also a person-specific parameter.



11

Finally, for the the first observation, Θp1 it is assumed that Θp1 ∼ N2(µps,Γp). This is

because Equation 2 cannot be used for the first observation as there is no previous position to

condition on. Therefore we assume that the first observation is simple a function of the person’s

baseline level and intra-individual variance. Next we expound upon the parameterizations, define

level-2 distributions and introduce time-varying and time-invariant covariates.

The two-dimensional baseline as a function of time-varying and time-invariant covariates

The latent baseline levels (or attraction point parameter) µps can be made function of person-

specific time-varying and person-specific time-invariant covariates. Let us assume that we measure

time-invariant covariate j, for person p xjp, which could be for example their tendency to ruminate.

We can have k TICs measured, (j = 1, . . . , k), and can be collected into a vector of length k + 1,

denoted as xp = (xp0, xp1, xp2, . . . , xpk)
T, with xp0 = 1. Even if there is no time-invariant covariate

information, we assume an intercept in the model.

Regarding the time-varying aspect, suppose that we measure covariate z for person p, and

z = 1, . . . , E, then the vector zps = (zps1, . . . , zpsE)
T collects all these values. No intercept is

introduced in the vector zps. The index s indicates that values may change from one observation

point to the next. A natural candidate for a TIC to regress baseline levels of valence and arousal is

the time of the self-report: for example, we expect some people to show low levels of pleasantness

and activation in the morning.

The level-2 distribution (distribution on the “population” level) of µps with regression on the

time-invariant and time-varying covariates and allowing for a person-specific random deviation can

be written as follows:

µps ∼ N2 (∆pµzps +Aµxp,Σµ) , (7)
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where the covariance matrix Σµ is defined as follows:

Σµ =

[

σ2
µ1

σµ1µ2

σµ1µ2
σ2
µ2

]

. (8)

The matrices ∆pµ and Aµ are parameter matrices of dimension 2E×P and 2×(k+1), respectively,

containing the regression weights for the time-varying and the time-invariant covariates.

The intra-individual covariance matrix as a function of time-invariant covariates

The matrix Γp stands for the stochastic or intra-individual 2× 2 covariance matrix

Γp =







γ1p γ12p

γ12p γ2p






. (9)

Its diagonal elements (i.e., γ1p and γ2p) determine the intra-individual variances in the two measured

longitudinal variables, and the off-diagonals can be decomposed into γ12p = ργp
√
γ1pγ2p, where

ργp is the cross-correlation of the observations. Since the diagonals elements (γ1p and γ2p) are

variances, they are constrained to be positive. For computational convenience, we log-transform

these variances so that they take values on the real line. Then we specify their level-2 distributions

as normal distributions of these log-transformed values. For γ1p that is:

log(γ1p) ∼ N(xT

pαγ1 , σ
2
γ1
).

The mean of this distribution is modeled via the product of time-invariant covariates and their

corresponding regression weights. More specifically, all TICs are collected in the vector xT

p , which

has k + 1 components. The first elements of this vector is a constant 1, representing an intercept,

and in case there are no TICs added, the mean of the distribution above reduces to a simple level-2

mean that is the same for all persons. The vector αγ1 contains the (fixed) regression coefficients for

the covariates. The parameter σ2
γ1

is the residual variance in the random log variance of the first
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dimension, after having taken the covariates into account. If only the intercept is present in the

model, σ2
γ1

reflects the total amount of inter-individual variability in the log-variance of the first

dimension. A similar logic applies in the modeling of γp2.

The cross-correlation ργp is bounded between −1 and 1. By taking advantage of the Fisher

z-transformation F (ργp) =
1
2 log

1+ργp
1−ργp

, we can transform its values to the real line:

F (ργp) ∼ N(xT

pαργ , σ
2
ργ ).

with epγ2 ∼ N(0, σ2
ργ
). The density of the original ργp can be derived by applying a transformation-

of-variables technique (see e.g., Mood, Graybill, & Boes, 1974), but it is not a common density

function. Again, αργ contains k+1 regression weights, xT

p the k covariate values for person p with

1 for the intercept and σ2
ργ

represents inter-individual variation in terms of cross-correlation.

The regulatory force as a function of time-invariant covariates

The regulatory force or centralizing tendency is parameterized by the matrix Bp, which is

decomposed in the same manner as the covariance matrix Γp in Equation 9, so that it stays positive

definite. Matrix Bp has to stay positive definite by definition to ensure that there is always an

adjustment towards the baseline, and never away from it. This implies that the process is stable,

and stationary.

The elements of the person-specific matrix Bp are assumed to come from level-2 distributions

that are defined in the same manner as for Γp, and can be made the function of time-invariant

covariates in the same manner. This way it contains two centralizing tendencies, one for each

dimension (i.e., β1p and β2p), and a standardized cross-centralizing tendency parameter (ρβp
) that

represents the concurrence in regulatory dynamics. These parameters control the strength and the

direction of the self-regulation towards the baseline. As β1p and β2p go to towards zero (i.e., no

self-regulation), the OU process approaches a Brownian motion process, that is, a continuous time

random walk process. When the two parameters become very large and tend toward infinity, the



14

OU process becomes a white noise process.

Bayesian statistical inference in the HOU model

We implemented parameter estimation for the hierarchical OU model by taking advantage

of Bayesian statistical methods. The Bayesian approach features two main advantages in our

current settings. First, parameters in this framework have probability distributions, which offers an

intuitively appealing way of describing uncertainty and knowledge about the parameters. Second,

there are distinct computational advantages, namely that the use of of Markov chain Monte Carlo

(MCMC) methods sidesteps the high-dimensional integration problem over the numerous random

effect distributions.

When carrying out Bayesian data analysis, we use these stochastic numerical integration

methods to sample from the posterior density of the parameters. The posterior density is the

conditional density function of the parameters given the data, and it is directly proportional to

the product of the likelihood of the data (given the parameters) and the prior distribution of the

parameters.3 The prior distribution incorporates prior knowledge about the parameters, and if

there is none, it is can be set to a vague (diffuse) distribution. The BHOUM toolbox follows this

philosophy: all priors are set to be vague. Also, the more data one acquires, the less influential the

prior becomes on the posterior as its shape is overwhelmed by the tighter shape of the likelihood.

Markov chain Monte Carlo methods are a general-purpose method for sampling from the

high-dimensional posterior of the presented model. MCMC algorithms perform iterative sampling

during which values are drawn from approximate distributions that are improved in each step, in

such a way that they converge to the targeted posterior distribution. After a sufficiently large

number of iterations, one obtains a Markov chain with the posterior distribution as its equilibrium

distribution and the generated samples are random draws from the posterior distribution. Summary

statistics of the so generated sample can then be used to characterize the posterior distribution (i.e.,

3Formally, p(ξ|Y ) ∝ p(Y |ξ)p(ξ), where ξ stands for the vector of all parameters in the model. The normalization
constant, p(Y ), where Y stands for the data, does not depend on the parameter and is therefore not considered here.
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to estimate its mean, variance, mass over a certain interval, etc.) More details about the Bayesian

methodology and MCMC can be found in Gelman, Carlin, Stern, and Rubin (2004) and Robert

and Casella (2004). For the HOU model there is no closed-form analytical solution for the main

parameters of interest, therefore high-dimensional numerical integration is required to calculate

posterior point estimates. With MCMC methods we can solve this problem while avoiding having

to explicitly calculate p(Y ).

In the BHOUM toolbox, a specific MCMC algorithm—the Metropolis-within-Gibbs

sampler—is implemented to estimate the HOU model parameters. In this algorithm, alternat-

ing conditional sampling is performed: The parameter vector is divided into subparts (a single

element or a vector), and in each iteration the algorithm draws a new sample from the conditional

distribution of each subpart given all the other parameters and data; these conditional distribu-

tions are called full conditional distributions. In the our application, several such Markov chains

are initiated from different starting values in order to explore the posterior distribution and avoid

local optima. The BHOUM toolbox offers a default convergence check using the the Gelman-Rubin

R̂ statistic (for more information, see Gelman et al., 2004).

Data: Experience sampling study on core affect

Study settings

In this section we provide a description of how to use the BHOUM software through analyzing

data from an experience sampling study. The corresponding data set was collected at the University

of Leuven (Belgium), and contains repeated measurements of 79 university students’ pleasantness

and activation levels (i.e., their core affect).

Per the principles of the experience sampling design, measurements were made in the partici-

pants’ natural environments: They carried a Tungsten E2 palmtop computer that was programmed

to beep at semi-random times during waking hours over 14 consecutive days. When signaled by

a beep the participants were asked to mark their position on a 99 × 99 core affect grid with
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unpleasant–pleasant feelings forming the horizontal dimension, and arousal–sleepiness the vertical.

Moreover, several dispositional questionnaires were administered to measure a range of co-

variates in the participants. These variables were: neuroticism and extraversion (part of the Five

Factor model of personality, or Big Five, Costa & McCrae, 1992, for the current study a translated

version was used, see in Hoekstra, Ormel, & De Fruyt, 1996), positive and negative affect (PA

and NA, Hoeksma, Oosterlaan, Schipper, & Koot, 1988, self-esteem (and self-esteem variability,

Rosenberg, 1989), satisfaction with life (Diener, Emmons, Larsen, & Griffin, 1985), reappraisal and

suppression (Gross & John, 2003), and rumination (Trapnell & Campbell, 1999). These covariates

were used as time-invariant covariates in the analysis that follows.

Summary of the proposed data-analytical approach

Although several HOU models were fit to the this data set in Kuppens et al. (2010), none of

those models involved covariates. That is to say, so far all analyses were performed in two stages:

OU parameters were estimated and correlation coefficients (in the classical sense) were calculated

between the person-specific Bayesian posterior point estimates and the covariate scores from the

dispositional questionnaires. In the current analysis, the latent OU parameters are regressed on

the time-invariant dispositional measures described above at the same time as the latent dynamical

process model parameters are estimated. This way, uncertainty in the parameter estimates is

directly accounted for in the results, so that the analysis avoids generated regressor bias (Pagan,

1984). Additionally, as part of the same analysis we incorporate time-varying covariates on the

baseline, thereby further improving the accuracy of the parameter estimation.

Methods: Analyzing data with the hierarchical OU model

The BHOUM toolbox contains several functions to deal with various aspects of Bayesian

statistical inference. BHOUM is primarily intended to be used as a standalone software program

(no MATLAB licence is required) through a graphical user interface (GUI). 4 While no coding is

4The standalone BHOUM version with the accompanying free MATLAB Compiler Runtime (MCR) has been
tested for Windows 32bit and 64bit. If the user does not want to install MCR because they have a MATLAB license
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required from the user’s part, all MATLAB scripts are available for download.

Parameter estimation

In the current analysis we model pleasantness and activation levels of 79 people from the above

described experience sampling study with a hierarchical OU process. All latent process parameters

(baseline, intraindividual variation, regulation, cross-effects) are modeled as functions of 10 time-

invariant covariates, namely: neuroticism, extraversion, positive affect, negative affect, self-esteem,

within-person standard deviation of self-esteem, satisfaction with life, reappraisal, suppression, and

rumination. Moreover, circadian rhythm in the core affect baseline is modeled in terms of linear

and quadratic time-effects.

Running BHOUMtoolbox.exe displays a user-friendly Data reader GUI that allows the re-

searcher to load the data and specify which variables are chosen to be part of the analysis. For the

data format needed to use the BHOUM program please consult the Appendix A.

Once the required data have been input, the user can move to the next window (Model spec-

ifier) where model and sampling algorithm specifications can be set. The default model is the

one described in the previous section. In this fully specified model, all process model parameters

are random effects. This way, the means of the two dimensions (µ1p and µ2p), the corresponding

stochastic variances (γ1p and γ2p) and the cross-correlation (ργp), as well as the two regulatory

forces (or centralizing tendencies, namely β1p and β2p) parameters and their cross-effect (ρβp
) are

allowed to be person-specific and regressed on time-invariant covariates if any was previously loaded

and selected in the Data reader window. Alternative models are offered as well, which are simplified

versions of the default fully person-specific HOU model. For example, the measurement error can

be removed from the model. Another option is assuming that the changes in two dimensions are

independent, that is all ργp and ρβp
are equal to 0. By using this option we can also model only one

longitudinal variable measure by inputting the same variable twice (i.e., choosing twice the same

column name in Data reader, OU process dimensions) and then choosing the Independent dimen-

already, that MATLAB should be run in 32bit mode.
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sions option in the Model specifier. The program will then fit two independent one-dimensional

HOU models.

The Model specifier window allows setting the properties of the Markov chain Monte Carlo

sampling algorithm. Some default values are pre-set and these will provide sufficient exploration of

the posterior distribution in most cases. The properties are the following: (1) number of posterior

samples (per chain, same for each chain), used for posterior inference, (2) length of some necessary

adaptive period (the burn-in) preceding the samples set in box (1), (3) the number of chains that

are run from different starting values to explore the posterior density and (4) thinning factor. The

thinning option is primarily implemented for computer memory capacity considerations. Because

of high within-chain autocorrelation, some parameter estimates might require long chains to be

run to explore the posterior density. By thinning these long chains, we store only every xth value,

where x equals the input of the Thin field.

It is good practice to report the setting of these for values when reporting the results the

analysis. For the current analysis, we set 4 chains each consisting of 3000 iterations thinned

by factor 3, following an adaptation period of 2000 iterations resulting in a final total of 12000

posterior samples (4 × 3000) for each parameter. We also enabled the option to calculate the

Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der Linde, 2002), for use

in later model comparison.

When the iterations are finished, two new windows pop up: the Result browser and a non-

interactive table which gives a summary of the posterior statistics of the most important parameters.

This window shows the posterior means, standard deviations and percentiles of these parameters.

Moreover, it provides information about convergence by displaying R̂ statistics (Gelman et al.,

2004), effective number of samples (the number of independent samples, computed by using the

total number of posterior samples and a measure of their mutual dependence where more dependent

samples count as fewer, while entirely independent samples count fully) and sample sizes.

The Result browser window offers several ways to explore the results. By default, the interface

shows a warning if convergence is not reached for all parameters in terms of any(R̂) > 1.1, and
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graphical tools are included to explore the posterior samples of the parameters. For the current

analysis, the MCMC procedure converged with all R̂ statistics lower than 1.1.

Moreover, there are two posterior predictive checks (PPC) implemented in the program.

Both them are based on generating new data sets based on the full posterior distribution of the

parameters and comparing certain properties of the observed and generated data sets. The first

check assesses the similarity between the observed and replicated trajectories: it computes the

degree of overlap between the observed and simulated trajectories by calculating the correlation

between the frequencies with which the observed data fall in a certain area in a two-dimensional

space and the average frequency with which they fall in that area across replicated data sets. The

resulting measure is a correlation coefficient averaged over participants. The correlation was 0.86

for the current data set, slightly improved fit compared to the same measure reported in Kuppens

et al. (2010) (0.80), in the analysis without covariates.

The second PPC indicates whether the observed and replicated trajectories are similar in

terms of turning angles. A turning angle is a clockwise angle between two line segments that connect

three subsequent points in time in the two-dimensional space created by the two longitudinally

measured variables. We average over all turning angles person-wise, resulting in a person-specific

average turning angle value. We calculate this measure for replicated data sets and based on these,

a 95% prediction interval is established for every person. The program returns which proportion

of the observed average turning angles fall within this interval. With respect to this measure,

the current analysis showed that 95% of the generated person-specific average turning angles fell

within the 95% prediction interval, showing an adequate fit of the HOU model (for more details on

posterior predictive checks, see Gelman, Meng, & Stern, 1996).
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Results

General characteristics

Table 1 shows level-2 results in terms of posterior mean estimates and 95% posterior credible

intervals (PCI). As can be seen, the baseline core affect is rather pleasant (αµ1
= 5.7833) and not

particularly aroused (αµ1
= 4.4786 on a measurement scale that ranged from 0.1-9.99). Note that

this baseline point was allowed to change as a function of measurement time nested in the diurnal

cycle, specifically in terms of linear and quadratic time-varying covariates centered around noon,

meaning that we allow for each person’s attraction point to vary with the time of day. The average

pleasantness and activation feelings in this analysis correspond to the baseline core affect at noon.

The black lines in the two panels of Figure 1 represent the average (across persons) diurnal pattern,

based on the posterior mean estimates of the linear and quadratic time-effects in the valence and in

the arousal dimensions. For the valence dimension, the linear time-effect has a very low magnitude

(δLµ1
= −0.0871), and its 95% PCI is rather wide, meaning that the valence baseline did not

change as a linear function of time of day. However, there was a small quadratic time effect

(δQµ1
= 0.0043) with a comparatively narrow PCI that suggests that on average there was a small

quadratic trend in the valence baseline position, which is somewhat noticeable on the black line

in Figure 1, left panel. With respect the black line in the right panel, there is a more remarkable

quadratic trend in the level-2 mean arousal change over time. Indeed, with respect to arousal both

linear and quadratic effects have relatively large magnitudes (δLµ2
= 0.9334, δQµ2

= −0.0303) with

comparatively narrow PCIs, (0.7343, 1.1351) and (−0.0366,−0.0241), respectively. In both plots,

the gray lines correspond to the person-specific diurnal profiles in the baseline levels. There appears

to be large variation in these profiles, especially in terms of intercept, and there seems to be more

between-person variability with respect to arousal (σ2
µ2

= 0.8212) than valence (σ2
µ1

= 0.5270).



21

Table 1:: Summary of the results from the BHOUM model on level-2.

Model Posterior
parameter Description mean 95% PCI

Valence

αµ1
Baseline 5.7833 5.6097 5.9537

σ2
µ1

Inter-individual variation in baseline 0.5270 0.3535 0.7630

δLµ1
Linear time-effect −0.0871 −0.2026 0.0225

δQµ1
Quadratic time-effect 0.0043 0.0008 0.0080

e(αγ1) Intra-individual variability 2.9777 2.4637 3.5089
e(αβ1

) Self-regulation 1.8535 1.4005 2.5695
σ2
1ǫ Measurement error 0.2197 0.1485 0.2883

Arousal

αµ2
Baseline 4.4786 4.2594 4.6973

σ2
µ2

Inter-individual variation in baseline 0.8212 0.5580 1.1889

δLµ2
Linear time-effect 0.9334 0.7343 1.1351

δQµ2
Quadratic time-effect −0.0303 −0.0366 −0.0241

e(αγ2) Intra-individual variability 3.8756 3.3555 4.5051
e(αβ2

) Self-regulation 1.8113 1.3931 2.4668
σ2
2ǫ Measurement error 0.4646 0.3436 0.5826

Cross-effects

σµ1µ2
Covariance between the baseline levels −0.2678 −0.4813 −0.0943

αργ Cross-correlation −0.2342 −0.3056 −0.1621
αρβ Self-regulation correlation −0.0237 −0.1197 0.0965

Note. The e(.) stands for the expected value of that parameter on the normal scale (these parameter
were estimated using the log-scale).

The average intra-individual variability was higher in the arousal dimension (αγ2 = 3.8756)

than in the valence (αγ1 = 2.9777) dimension. These values are on the log scale. These values are

large compared to the measurement errors (σ2
1ǫ = 0.2197, σ2

2ǫ = 0.4646), showing that the latent

process explains a large part of the variation in the data—people’s movements through affect space

appear to be well described by an OU process.

The magnitude of the regulatory force is larger in the arousal than in the valence dimension.

This means that on average, people return to their baseline faster when their arousal level fluctuates

than when their valence does. This is especially interesting since the results described above also

show that there is more variability in the arousal dimension. Together, these findings demonstrate
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Figure 1. : Daily patterns in baseline core affect dimensions.

that these two dynamical aspects are distinct, and more variation in the observed data does not

necessary mean the lack of self-regulation. There was no evidence that regulatory dynamics in

valence and arousal are systematically related to one another , as αρβ was practically zero.

Finally, Figure 2 provides yet another example of the evaluation of the model fit (see also

posterior predictive checks before). While a stochastic model such as the OU model cannot be

expected to fit the data perfectly, the primary utility of a process model lies in its ability to capture

and quantify those qualitative aspects of the data that are relevant for psychological interpretation.

The figure shows data from two participants (on the left) and four sets of model-generated data

for each (on the right). In both cases, and in general for our participants, the data generated by

the model strongly resemble the observed data.

The current analysis revealed links between the instantaneous changes in valence and arousal

(average cross correlation αργ = −0.2342). This indicates that changes in the valence dimensions

were likely accompanied with changes in the arousal dimension, in the opposite direction, and vice

versa. This finding suggests, for example, that when people were aroused, their valence was likely

to drop slightly. A somewhat related effect was shown by the covariance between the baseline

levels: σµ1µ2
= −0.2678 indicated that people who had higher arousal baseline tended to have
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Table 2:: Summary of the regression weights with a 95% posterior credible interval not containing 0.

Model Displayed name Posterior 95% Posterior
parameter in BHOUM Description Covariate mean credible interval

Valence

αµ1PA alpha Mu 4 Attractor Positive affect 0.24 0.01 0.47
αγ1SESD alpha gamma1 7 Variation Self-esteem variability 0.28 0.11 0.46
αβ1N

alpha beta1 2 Self-regulation Neuroticism −0.59 −1.08 −0.12
αβ1NA alpha beta1 5 Self-regulation Negative affect 0.32 0.03 0.64
αβ1SESD alpha beta1 7 Self-regulation Self-esteem variability 0.41 0.15 0.67

Arousal

αµ2RUM alpha Mu 22 Attractor Rumination −0.37 −0.66 −0.09
αγ2SESD alpha gamma2 7 Variation Self-esteem variability 0.20 0.05 0.36
αβ2E

alpha beta2 3 Self-regulation Extraversion −0.36 −0.65 −0.08
αβ2NA alpha beta2 5 Self-regulation Negative affect 0.30 0.02 0.59
αβ2SESD alpha beta2 7 Self-regulation Self-esteem variability 0.32 0.09 0.57
αβ2RE alpha beta2 9 Self-regulation Reappraisal 0.36 0.14 0.58

Cross-effects

αργRUM alpha rho gamma 11 Cross-correlation Rumination 0.10 0.00 0.19

Note. Model parameters refer to the regression weights. For example, αµ1PA is the regression weight for positive
affect relating to the valence baseline (µ1).

lower valence baseline and vice versa.

Results on time-invariant covariates

All eight person-specific process model parameters were regressed on ten time-invariant co-

variates. Based on the posterior samples, Table 2 displays the result on the regression coefficients

whose 95% PCI did not contain 0: These were the effects for which the magnitude was relatively

high and the corresponding 95% PCIs were comparatively narrow, providing substantial evidence

that the latent process parameters differed markedly as a function of these covariates.

As expected, positive affect was positively related to the valence baseline point: people

who frequently experienced positive effect tended to feel more pleasant on average. However, with

respect to the baseline, there was only one more remarkable covariate, namely the lack of rumination

strategy for controlling emotional experience predicted a more aroused baseline level.
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With respect to intra-individual core affect variation, only the within-person variability in the

measurement of self-esteem5 showed a marked effect: people with more variable self-esteem had

higher levels of variation in their core affect in general. This way, an important cognitive/evaluative

aspect (how one thinks of oneself) was connected to affect variation.

Possibly the most compelling aspect of HOU model analysis concerns the regulatory mech-

anism and the cross-effects. We would like to point out that self-regulation in the model refers

to a stronger mean-reverting tendency. That is to say that its desirability might depend on the

actual baseline level. As can be seen from Table 2, most of the credible effects actually relate

to these aspects. First, people with higher neuroticism scores showed lower levels of valence self-

regulation, while extroverts had lower levels of arousal self-regulation. Higher negative affect and

self-esteem variability scores predicted better self-regulation of core affect. This suggest that people

who frequently experienced negative emotions and fluctuations while reflecting on their own worth,

showed higher levels of affect regulation. This brings up the question whether pathologies that are

associated with negative affect and self-doubting might have underlying dynamical characteristics

where negative baseline associated with strong self-regulation lead to pathological consequences.

While this is only theoretical at this point as the current study is not conclusive (NA and self-

esteem variability did not show remarkable association in this study), it appears to be a promising

question for further exploration. Finally, from the three emotion self-regulation strategies (reap-

praisal, thought suppression and rumination), only reappraisal predicted better self-regulation, and

only in the arousal dimension. In fact, the other two strategies (thought suppression and rumina-

tion) are considered to be maladaptive when it comes to emotion self-regulation (see, e.g., thought

suppression in Wegner & Zanakos, 1994, and rumination in Nolen-Hoeksema, 2000).

It is interesting to note the discrepancies between our current results and those obtained from

the original two-stage analysis reported in Kuppens et al. (2010). The most striking differences are

in the valence dimension. With respect to the baseline, Kuppens et al. (2010) reported significant

5Note that, while the self-esteem measure was collected at every measurement occasion, the person-specific variance

in self-esteem is time-invariant.



25

correlations with neuroticism, extraversion, positive affect, negative affect, and satisfaction with

life. The current analysis only found positive effect a meaningful covariate. While the directions

of the regression weights for abovementioned covariates were the same in the current analysis as

well, their posterior credibility intervals were comparatively wide to draw any conclusions. With

respect to intra-individual variability, we found only self-esteem variability as a reliable covariate,

while in terms of traditional correlation measures in Kuppens et al. (2010) not only self-esteem

variability, but self-esteem, negative affect, and neuroticism were also significant. Finally, Kuppens

et al. (2010) did not note any significant correlations with respect to valence self-regulation, while

our analysis showed that neuroticism, negative effect and self-esteem variability all have predictive

power.

These differences serve to highlight the importance of handling of parameter uncertainty

across model components: While the original two-stage analysis disregarded each parameter’s esti-

mation uncertainty (by collapsing an entire posterior distribution into a single measurement point),

our analysis was able to account for the posterior uncertainty in each parameter individually. As

a result, outlying parameter estimates that may have driven a two-stage correlation, might be

down-weighted to make the correlation disappear. Alternatively, parameters central in the distri-

bution might be down-weighted, bringing a previously unobserved correlation to the surface. The

propagation of uncertainty in parameter estimates is a considerable advantage of the hierarchical

Bayesian approach applied broadly.

Discussion

The HOU process model is a psychometric modeling tool that can be applied to various

phenomena that are assumed to change dynamically over time. Through an example application,

we demonstrated how various aspects of the temporal change mechanism can be explored by the

Ornstein-Uhlenbeck model.

Intensive longitudinal data are expected to become more common with the increased avail-

ability of technology for collecting ecological repeated measures data. Methods for the analysis
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of such data are therefor of great interest to both methodologists and applied researchers. Sub-

stantial contributions of the HOU model to emotion and personality psychology involve separating

substantively different mechanism underlying observed scores. For example, variability measured

through experience sampling studies can be decomposed into measurement error and person-specific

dynamical patterns in terms of intra-individual variability and self-regulation. Moreover, the bi-

variate aspect of the framework allows us to take dependency between two longitudinally measured

variables into account, along with studying inter-individual differences in terms of synchronicity

parameters.

We further demonstrated how individual difference can be explained through the addition

of meaningful covariate covariates. The ability to regress model parameters onto covariates in a

single step increased the accuracy of the estimated regression coefficients. We expect that these

desirable properties, together with a user-friendly parameter estimation implementation, will cause

the model to be more widely applied among substantive researchers.

Finally, we would like to address the question of study design. The presented model is most

useful for intensive longitudinal data: data from several individuals, with more than a handful

of data points each. Ideally, data have some degree of variance: the model is not ideal for

measurements that only take one or two different values. If data do not contain enough information

for efficient estimation of the model, convergence issues and/or large uncertainties in the parameter

estimates may occur.
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Appendix

Data formatting and reading in data to BHOUM

A commonly used data format in intensive longitudinal data analysis is such that the mea-

sured longitudinal variables and their measurement times are listed in separate columns with one

row corresponding to one observation, accompanied by a column containing a participant identi-

fying number. Figure A1 displays a small extract from such a data file, opened in a spreadsheet

program. The variables are named with string variables as the top row of the data set. The
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first column, labeled PP, contains the person identifiers. The next two columns show the two

longitudinally measured variables that will be modeled as OU process dimensions.

In this example they are labeled PL and AC, as they stand for the pleasantness and activation

levels. The following three columns provide the time when the measurements were taken. From

this information, cumulative measurement time of the observation in hours is calculated, as seen

in column 7 with header CeHours6 in Figure A1. Note that if the measurements are taken over

several days, the CeHours variable within an individual should not start over with each day. The

person index, the two longitudinal variables and the cumulative measurement time (i.e., the first

four columns) represent all the necessary data for fitting an hierarchical Ornstein-Uhlenbeck model.

The 9th and 10th columns, labeled Z1 and Z2 in Figure A1 display some examples of time-

varying covariates. The bivariate baseline (µp) can be made a function of time-varying covariates.

A straightforward time-varying covariate is the measurement time itself (i.e., time of the day). In

our example, it seems interesting to investigate whether time of the day affects how pleasant and

activated the participants feel on average. Hence, we add measurement time nested within day as

a time-varying covariate: Z1 is the measurement time in hours centered around the middle of the

day, namely 12pm (noon), and Z2 is the squared measurement time in hours, also centered around

noon. This way, we will be able to model the latent bivariate baseline as function of linear and

quadratic time effects. The intercept will be the average baseline, namely the average affect at

12pm. Of course, any other variables, such as state anger, appraisal level, or body temperature,

measured at the same time, could be added to the analysis as well.

The rest of the columns (11-19) show possible time-invariant covariates. As can be seen,

the values of the different time-invariant covariates have to be listed in separate columns for each

measurement occasion, meaning that the same value is repeated several times for all the observations

of one participant. For example, in Figure A1, the 11th column is an example of a time-invariant

covariate, a participant’s neuroticism score, that is repeated as many times as there are observation

6If the CeHours column were labelled as time (default label), the program would automatically recognize it and
load it to the right field.
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points. All latent process parameters can be turned into a function of these c covariates.

The default missing value assigned by the program is NaN. However, the example data set

in Figure A1 is coded in such a way that −999999 stands for the missing values, as can be seen for

the fifth pleasantness observation for the first person. If any other value than NaN is used to code

missing values, the user needs to enter that missing value code in the Missingness indicator box of

the data reader interface.

Running BHOUMtoolbox.exe displays a user-friendly data reader GUI that allows the re-

searcher to load the data and specify which variables are chosen to be part of the analysis. For

the example data set provided with the program, the covariate fields in the GUI are automatically

populated because BHOUM recognizes the default variable names used as headers in the data file.

Figure A2 displays the ready state of the Data reader. From the left panel we can see that all

time-invariant covariates (ranging from X1 to X10) and both time-varying covariates (Z1 and Z2)

were read in for the analysis. The right panel of Figure A2 offers graphical ways to check the data.
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Figure 2. : An illustration of the qualitative aspects of our data that are captured by the Ornstein-
Uhlenbeck model. In the top left, the data from one participant are plotted. This participant has
their home base in an area of low pleasantness but high activation (i.e., upset/distress), has medium
variation in pleasantness but is stable in activation, and has medium levels of self-regulation. Each
of the four panels in the top right contain data generated from the model using this participant’s
parameters. The data in the bottom left are from a participant with a home base in an area of high
pleasantness and medium activation. Their volatility is low in pleasantness but high in activation,
and their self-regulation is average. In both the top row and the bottom row, and in general for
our participants, the model recreations of participant data well capture the salient qualities of the
real data.
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Figure A1. : Sample from a data set format readable with BHOUM.

Figure A2. : Screenshot of the first window of BHOUM: A ready Data reader




