
UCLA
UCLA Electronic Theses and Dissertations

Title
Numerical simulation of a closed rotor-stator system using Large Eddy Simulation

Permalink
https://escholarship.org/uc/item/975761j8

Author
Amouyal, Solal

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/975761j8
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Numerical simulation of a closed

rotor-stator system using Large Eddy Simulation

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Aerospace Engineering

by

Solal Abraham Teva Amouyal

2014





Abstract of the Thesis

Numerical simulation of a closed

rotor-stator system using Large Eddy Simulation

by

Solal Abraham Teva Amouyal

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2014

Professor Jeffrey D. Eldredge, Chair

A large eddy simulation of an enclosed annular rotor stator cavity is presented. The

geometry is characterized by a large aspect ratio G = (b-a)/h = 18.32 and a small radius

ratio a/b = 0.152, where a and b are the inner and outer radii of the rotating disk and h is

the interdisk spacing. The rotation rate Ω under consideration is equivalent to the rotational

Reynolds number Re = Ωb2/ν = 9.5x104, where ν is the kinematic viscosity.

The main objective of this study is to correctly simulate the rotor stator cavity using a low

order numerical scheme on unstructured grids. The numerical simulations were run on the

software AVBP developed by the Centre Européen de Recherche et de Formation Avancée

en Calcul Scientific. The results were compared to the experimental results obtained by

Sebastien Poncet of Université Aix-Marseille. Two large eddy simulations techniques were

used: the Smagorinsky and Wall-adapting local eddy-viscosity models. The simulations were

run on three set of grids, each with a different cell resolution-14, 35 and 50- along the thickness

of the system. Results from each mesh show a good qualitative agreement of the mean

velocity field with Poncet’s experimental results. It was found that the Samgorinsky model

is more appropriate for this configuration, due mainly to the associated strong turbulent

viscosity which helps capture the large velocity gradients close to the disks.
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CHAPTER 1

Introduction and Background

Fluid flows in rotor-stator systems are of great importance in scientific research and engineer-

ing practice. It is one of the most fundamental flow in fluid mechanics and has been studied

for more than a century. It also has many engineering applications as the gas cooling of

turbine blades or wind energy. Turbomachinery, which includes multiple rotor-stator stages,

is responsible for more than 80% of the world’s energy production today. Therefore, a good

knowledge of heat transfer and fluid flows in rotor-stator systems is crucial. For example,

an excessive amount of coolant is often supplied to the turbine cavity which imposes an

unnecessary penalty on the engine cycle, which in turn induces a loss of efficiency.

In this study, the author focused on a simple, academic rotor-stator system. This con-

figuration has been studied extensively experimentally, theoretically and numerically in lit-

erature and particularly by Sébastien Poncet of Université Aix-Marseille. Poncet’s and

Randriamampiania’s experimental results [1] were chosen as a reference. Poncet has also

studied the rotor-stator system numerically, using Reynolds Average Navier Stokes equations

(RANS), Large Eddy Simulations (LES) and Direct numerical simulations (DNS). He often

used high-order methods, such as probability density functions or the weighted essentially

non-oscillatory schemes (WENO), with an axisymmetric structured grid build specifically

for this geometry. The goal of this study is to reproduce S. Poncet’s experimental results

using low-order methods on an unstructured mesh. The software used is AVBP build by the

Centre Européen de Recherche et de Formation Avancée en Calcul Scientific (CERFACS).

Here, only LES is used.

First, the following section will summarise the research done on the rotor-stator cavity
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in the 20th century in a chronological fashion. Chapter 2 presents a throughout literature

review of Poncet’s work on rotor-stator systems with no through-flow. Then, in chapter 3,

the governing equations and general methodology used in AVBP is presented followed by

a review of the fundamentals of LES and the models used in the study. Chapter 4 then

presents the numerical parameters and the meshes used followed by the simulation results;

the last section of the chapter discusses the satisfaction and issues related to those results.

Furthermore, the conclusion outlines the main findings of this study and the perspectives of

further investigations.

1.1 Historical Context

The rotor-stator flow has been a fundamental problem for more than a century. It is one

of the simplest flow where rotation plays a crucial role in turbulence. It also has an exact

solution to the Navier-Stokes equations as found by Von Kármán [1].

The first work on this kind of flow is credited to Ekman. In 1905, he studied the effect

of the rotating earth, approximated as a infinite plate, on the oceanic current [2]. Later, as

previously mentioned, Von Kármán solved the Navier-Stokes equations for the laminar flow

over an infinite rotating disk in a quiescent fluid [1]. He found that the flow is confined within

a thin boundary layer on the rotating disk. Von Kármán analysis was subsequently followed

by the work of Bödewadt. He studied the opposite case, in which an infinite stationary disk

is sitting in a fluid in solid body rotation [3]. Batchelor studied the case of a fluid confined

between two infinite disk, one rotating and one stationary [4]. He found the formation of a

non-viscous core in solid body rotating confined between the boundary layer of each disk.

However, Stewartson found in 1953 that the tangential velocity of the fluid is zero everywhere

except in the rotor’s boundary layer [5].

An intense controversy persisted for nearly thirty years after Stewartson’s work. The

problem of the existence or not of a core solid body rotation justified many works during that

span of time. In 1983, Kreiss and Parter gave reason to both party proving the existence of a
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multiple class of solutions, depending on the rotating speed of the rotor and the geometrical

configuration of the system [6]. Daily and Nece performed theoretical and experimental

studies on the closed rotor-stator system [7]. They pointed out that the different solutions

were dependent on two non-dimensional numbers, the Reynolds number ReΩ and the aspect

ratio G:

ReΩ =
Ωb2

ν
G =

h

b− a
(1.1)

where Ω is the rotational velocity of the disk, a and b the inner and outer radius of the

cavity respectively, and h the interspace between the two disks. Note that the Reynolds

number is strictly a geometrical and fluid parameter, as it contains no information of the

flow itself. The geometrical configuration of the system is shown in figure 1.1 [7].

Figure 1.1: System geometry

Daily and Nece found the existence of four different regimes depending on the combination

of the Reynolds number and aspect ratio: two laminar and two turbulent regimes, each

of which corresponding either to merged or separated boundary layers. Their results are

presented in figure 1.2.

Wether the flow is laminar or turbulent mostly depends on the Reynolds number. At

ReΩ ≥ 2x105, the flow will most likely be turbulent whatever the aspect ratio. The results

of Daily and Nece were later confirmed numerically by that of Lance and Rogers [8], and

Owen and Rogers [9].
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Figure 1.2: The four flow regimes in an enclosed rotor-stator cavity. Merged boundary layers:

I (laminar) and III (turbulent). Unmerged boundary layers: II (laminar) and IV (turbulent)

[7].

The terminology specific to the rotor-stator cavity literature will be adopted in this

paper. The rotor and stator boundary layers are referred to as the Ekman and Bödewadt

layers respectively, as a tribute to two of the pioneers of this field. The merged and separated

boundary layer regimes are called the Stewartson and the Batchelor flow, respectively.
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CHAPTER 2

Literature Review

Poncet et. al. has performed analytical, experimental and numerical work on the closed

rotor-stator cavity, with the exception of [10] in which, although the cavity remains with-

out through flow, measurements and simulations were performed on both shrouded and

unshrouded cavities. He used the three main approach to simulate the system: RANS, LES

and DNS. In this section, Poncet’s work on the closed rotor-stator cavity has been divided

according to those three numerical approach.

2.1 RANS simulations

The only work with RANS has been done by Nour, Poncet, Debuchy and Bois [10]. In this

paper, they performed a analytical, experimental and numerical investigation of turbulent

air flow in a rotor-stator system. As mentioned above, the shroud of the rotor-stator is

removable. The geometry used in this work is shown below.

In this study, H and Ω, the inter-disk space and the rotational velocity of the rotor, are

fixed to 30 mm and 1500 rpm, respectively. Thus, the significant dimensionless parameters of

the problem, which are the axial ratio of the cavity G = H/R and the Reynolds number ReΩ

remain constant at 0.08 and 1.47x106, respectively. Two values of the geometrical parameter

λ, defined by λ =
∆R

H
, are tested on the shrouded case: λ = 0 and λ = 0.27, while it remains

fixed at λ = 0.27 for the unshrouded case.

The system studied shows several complexities for a numerical simulation, including
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Figure 1: Abdel Nour et al., Mécanique et Industries 

 
 
 

 

Figure 2: Abdel Nour et al., Mécanique et Industries. 

Figure 2.1: System geometry for [10]

high rotation rate, wall effects and transition zones, which are a severe test for turbulence

modeling methods. The computational approach is based on a finite volume method using

staggered grids for mean velocity components with an axisymmetry hypothesis in the mean.

The authors’ approach in this study are based on a one-point statistical modeling using a low

Reynolds number second-order full stress transport closure derived from the Launder and

Tselepidakis model [11] and sensitised to rotational effects by Elena and Schiestel [12]. Poncet

et al. investigated these numerical methods on the rotor stator system in a previous study and

found it to be adequate for such flow configuration [13]. Comparaisons between, on one hand

the shrouded and unshrouded configurations, and on the other hand the experimental and

numerical results are shown below in figures 2.2 and 2.3, respectively. The non-dimensional

tangential and radial velocities are defined in equation (2.1):

V ∗θ =
Vθ
Ωr

Vr =
Vr
Ωr

(2.1)

In figure 2.2, the authors noted that for a radius r∗ < 0.613, the radial flow circulates

only through the boundary layers while for r∗ ≥ 0.773, the radial exchange of fluid also

happens in the core region. Also, the dimensionless tangential velocity in the central core

is a decreasing function of r∗ until it reaches a constant value for r∗ ≤ 0.533. The central

core flow rotates as a solid body with a velocity approximately equal to 38-40% of the local

6



Figure 2.2: Axial profiles of the mean radial and tangential velocity components at various

radii. Shrouded configuration: λ = 0 (©), λ = 0.27 (�); Unshrouded configuration: (
a

)

[10].

velocity of the rotating disk.

In figre 2.3, the authors observe a good agreement between the experimental and numer-

ical results, especially at the periphery of the cavity. The three distinct zones of the flow are

well observed for both cases. Although the Ekman layer along the rotor is well reproduced

by the model, a small discrepancy is observed along the stator, where the RSM model tends

to underestimate the thickness of the Bödewadt layer.

For the analytical derivation, the authors assumed the flow to be incompressible, axisym-

7



Figure 2.3: Axial profiles of the mean radial and tangential components for the enshrouded

case. Experimental results: (©); numerical results (lines) [10]

metric with negligible turbulence effects, and G << 1, Re >> 1. Since this paper focuses

on numerical methods, the derivation will not be shown here but the reader is encouraged

to refer himself to [10] for more details. The authors found an expression for the core swirl

coefficient K, defined by K =
Vθ
Ω

, as a function of the core swirl coefficient corresponding

to the solid body rotation KB. Introducing the boundary condition K = KP at r∗ = 1 [10]:

K

KP

=

(
KP

KB

)K − KP

KB −KP

a r∗
(2.2)

This model was compared to the results obtained both experimentally and numerically

for the case of the unshrouded rotor-stator cavity. The comparison is shown in figure 2.4.
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Figure 2.4: Radial distribution of the core swirl ratio [10]

The theoretical distribution is obtained from (2.2) with KB = 0.382, KP = 0.22 and

a = 0.6. The authors note that the three results are in very good agreement for this range

of radial location. The core swirl coefficient increases when approaching the axis of rotation

until it reaches a constant value of 0.382 for r∗ < 0.5. The authors attribute this variation

to the opening at the periphery which strongly modifies the inlet/outlet conditions.

2.2 Large Eddy Simulations

Poncet has also done numerical simulations on the closed rotor-stator cavity using high-order

LES. The author simulated the system using the Spectral Vanishing Viscosity approach on

a rotor-stator configuration shown in figure 1.1 with and without heat transfer [14], [16]. In

another work, he compares two high-order LES methods with an RSM model and previous

experimental work [17].

The LES approach consists of a pseudospectral method based on a collocation-Chebyshev

9



method in the r and z non-homogeneous directions and a Galerkin-Fourier method in the

azimuthal periodic direction θ [14], [16]. The time scheme is semi-implicit and second order

accurate. It is a combination of an explicit treatment of the convective terms and an implicit

treatment for the diffusive terms using the Adams-Bashforth and second-order backward Eu-

ler scheme, respectively. The Spectral Vanishing Viscosity approach (SVV), first introduced

by Tadmor [18] for stabilizing the inviscid Bürger equation, is incorporated into the govern-

ing equations. It was shown by the author that this technique leads to stable discretizations

without sacrificing the formal accuracy of the spectral approximation [14].

Referring to figure 1.1, the geometrical parameters used for this simulations are defined

as follows:

G =
b− a

h
= 5 ; Rm =

b+ a

b+ a
= 1.8 ; 105 ≤ Re =

Ωb2

ν
≥ 106 (2.3)
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Figure 3: Séverac et al., Phys. Fluids.Figure 2.5: Mean velocity profiles at different Reynolds number at r∗ = 0.5 [14]

Figure 2.5 and 2.6 show the velocity profiles Vθ and Vr and the Reynolds stresses for

different Reynolds number. R∗rr and R∗θθ are defined below:
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Figure 6: Séverac et al., Phys. Fluids.Figure 2.6: Mean axial profiles of the non-dimensional radial and tangential Reynolds stress

tensor components R∗rr and R∗θθ at different Reynolds number at r∗ = 0.5. Comparisons

between the LES (-) and experimental (◦) results [14]

R∗rr =
v′2r

(Ωr)2 R∗θθ =
v
′2
θ

(Ωr)2 (2.4)

Whatever the Reynolds number, the mean flows correspond to separated boundary layer

flows, belonging to the regime IV denoted by Daily and Nece [7]. There is a good agreement

between the experimental and numerical results, although some discrepancies appear at Re

= 106. On both disks, the boundary layer thickness decreases with increasing Reynolds

number. Table 2.1 summarises the results obtained by Poncet et. al. [14]. δE and δB refer

to the Ekman and Bödewadt boundary layers, located on the rotor and stator, respectively.

Once again, K refers to the entrainment coefficient of the core region located between the

two boundary layers.

The swirl coefficient K increases slightly with the Reynolds number. The increase of

the rotational velocity of the rotor is primordially felt in the boundary layers rather that
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Reynolds number K δE/h δB/h

105 0.35 0.104 0.222

4x104 0.36 0.071 0.147

106 0.38 0.055 0.084

Table 2.1: Influence of the Reynolds number on the entrainment coefficient K and the

boundary layers’ thickness for r∗ = 0.5 [14]

the core region of the flow. The authors stipulate that the boundary layers are known to

behave like that of a infinite plate in a moving fluid, namely in this case

√
ν

Ω
. Although

the Bödewadt layer δB seems to be in agreement with that hypothesis, the thickness of the

Ekman boundary layer δE, decreases by a factor of 2 between Re = 105 and Re = 106. This

is characteristic of a rotating boundary layer which becomes turbulent. This is confirmed

by the Reynods’ stress results shown in figure 2.6: the bödewadt layer is turbulent at all

Reynolds number while the Ekman layer becomes turbulent at Re = 4x105. The maximum

error of the LES results occurs in the prediction of the peak values. At Re = 106 for Rrr, the

experimental data shows the turbulent intensities of the two boundary layers to be equal,

while LES predicts the rotor to reach higher turbulence. Poncet explains that such behaviour

may come from the anisotropy of the grid, which is globally coarser in the radial direction.

Figure 2.7 shows the turbulent intensities at different radii [14].

As expected, the boundary layers become more turbulent with increasing radius. The

turbulent intensities therefore depends on the local Reynolds number Rer =
Ωr2

ν
. Except

at r∗ = 0.9 where the finite cavity effects are no longer negligible, the turbulence intensities

remain confined in the two boundary layers. Also, whatever the radial location, the R∗θθ

component remain twice as large than R∗rr.

In [17], Viazzo, Poncet et. al. compare different LES models with Reynolds Stress

Modelling (RSM) of Elena and Schiestel [12] and the experimental results on a simple closed

rotor-stator cavity similar to that shown in figure 1.1. In this study, conservation equations
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Figure 12: Séverac et al., Phys. Fluids.Figure 2.7: Mean axial profiles of the non-dimensional radial and tangential Reynolds stress

tensor components R∗rr and R∗θθ at different radii Re = 106. Comparisons between the LES

(-) and experimental (◦) results [14]

are solves using a Fourier approximation in the homogeneous tangential direction. In both

non-homogeneous radial and vertical directions, the solutions are approximated using either

fourth-order compact finite difference scheme (LES-FD) [19] or a collocation Chebyshev

approximation (LES-SVV) [15], similar to the one used in [14]. The reader is encouraged to

refer himself to the associated papers for more details. The tangential and radial velocity

profiles are shown in figure 2.8.

The agreement between experimental measurements and both LES simulations is satis-

factory and furthermore, they provide better overall results than the RSM prediction. Both

LES methods slightly underestimate the rotor and stator boundary layers’ thickness, espe-

cially at large radii for LES-FD. The velocity maxima are well predicted over the stator but

greatly overestimated over the rotor. The LES-FD slightly underestimates the core swirl

ratio K, predicting a value of K = 0.345 at r∗ = 0.5 with respect to K = 0.36 obtained by
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Figure 2.8: Tangential (Vθ) and radial (Vr) velocity profiles at different radii and using

different numerical methods.

Figure 2.9: Axial variations of two normal Reynolds stress tensor components Rθθ and Rrr

at different radii and using different numerical methods.
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LES-SVV and the experimental results. This underestimation is more pronounced by the

RSM which predicts K = 0.315.

Second-order statistics available from experimental measurements in the radial and tan-

gential directions have been computed in figure 2.9. The authors point out that the LES

simulations provide an overall agreement with the experimental data both in boundary lay-

ers and in the core. Note however a slightly better estimation of the turbulence intensity

by LES-SVV and LES-FD. On the other hand, RSM seems to strongly overestimate the

maxima of the normal components of the Reynolds stress tensor within the stator boundary

layer at all radii. Also, it predicts zero stress in the core except at r∗ = 0.7. The two LES

models over predict Rθθ in both boundary layers, the maximum being reach by LES-SVV

along the stator at r∗= 0.5. The leads to a much stronger anisotropy by of the Reynolds

stress tensor than in the experiments. The authors suggest that such behaviour could be

related to the anisotropy of the grid computation, which is globally much coarser in the

tangential direction, especially at large radius.

Overall, the authors agree that both LES methods are well suited for the rotor-stator sim-

ulation, while giving a slight preference to the LES-FD simulations due to the odd behaviour

to the LES-SVV methods in the boundary layers for the Reynolds’ stresses.

2.3 Direct Numerical Simulations

Poncet performed three studies on the rotor-stator configuration shown in figure 1.1 using

Direct Numerical Simulation (DNS) [20], [21], [22]. Note however that in these three papers,

the z-axis points downward: the rotor and stator are thus respectively located at z∗=1 and

z∗=0. In these publications, the author combined a 3D DNS simulation with a laboratory

study to describe the turbulent flow in a closed rotor-stator cavity characterised by a large

aspect ratio, G = 18.32. The Reynolds number of this study was set to Re = 9.5x104, which

according to previous studies corresponds to a turbulent stator boundary layer and a laminar
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rotor boundary layer.

The author used a pseudospectral collocation-Chebyshev and Fourier method for the

spatial discretisation associated with a second order time scheme based on a combination of

Adams-Bashforth and backward differentiation formula schemes. The spatial resolution of

the grid was set to 300, 80 and 100 in the radial, axial and azimuthal directions respectively.

After a statistically steady state was reached, the turbulent characteristics were recorded

during 15 time units, which is based on the rotational speed of the rotor, τ = Ω−1 [20], [21],

[22].

Figure 2.10 shows the axial profiles of the mean tangential and radial velocity, V ∗θ and

V ∗r at four radial locations [21]. The flow exhibits a typical Batchelor behaviour, similar to

the regime IV of Daily and Nece [7]: two developed boundary layers separated by a central

rotating inviscid core. The two disks’ boundary layer is defined by the axial coordinate at

which its velocity reaches 0.99K, where K is the rotational speed of the core. The author

states that the stator boundary layer’s layer thickness is a decreasing function of radius r∗.

However, the rotor boundary layer’s thickness remains constant independently of r∗, which

is characteristic of laminar flows. The entrainment coefficient K varies between 0.375 and

0.418 in the radial range considered. It is to be compared to the theoretical value of 0.431

obtained by Owen and Rogers [9] and the semi-empirical value of 0.438 found by Poncet et

al. [23].

A polar plot of the mean radial and tangential velocity components is shown in figure

2.11. The DNS results are compared to the experimental results obtained by the authors as

well as results from Lygren and Andersson [24] and Von Karman’s laminar solution [1]. The

polar profile of the stator side, where the radial velocity is negative, falls between the typical

fully turbulent behaviour and the laminar solution from the Von Karman similarity solution.

The polar plot of the rotor boundary layer is very close to the laminar solution. This confirms

the laminar nature of the flow next to the rotor while the turbulence is concentrated on the

stator side.

Comparisons between measurements and numerical results of the Reynolds stress vari-
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Figure 2: Randriamampianina et Poncet, Phys. Fluids.Figure 2.10: Tangential (V ∗θ ) and radial (V ∗r ) velocity profiles at: (a) r∗ = 0.44, (b) r∗ =

0.56, (c) r∗ = 0.68, (d) r∗ = 0.80 [21]. 31
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Figure 3: Randriamampianina et Poncet, Phys. Fluids.Figure 2.11: Polar plot of the non-dimensional velocity [21]

ations along the radius are shown in figure 2.12. The axial profiles of the Reynolds shear

stress R∗θr are nearly zero except close to the stator, implying that the reynolds shear stress
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is concentrated in the stator boundary layer. The intensities of the normal stresses are also

mostly concentrated in the stator boundary layer. This indicates that at this rotation rate,

Re = 9.5x104, the rotor boundary layer remains laminar. Also, the experimental results

show that the flow along the stator becomes more turbulent at large radius, although the

numerical simulation does not seem to capture this variation.
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Figure 4: Randriamampianina et Poncet, Phys. Fluids.Figure 2.12: Tangential (R∗θθ), radial (R∗rr) and shear (R∗rθ) stress profiles at: (a) r∗ = 0.44,

(b) r∗ = 0.56, (c) r∗ = 0.68, (d) r∗ = 0.80 [21].

Figure 2.13 shows the isocontour of the turbulent Reynolds number and kinetic energy

defined as such:

Ret =
k2

νε
k∗ =

k

(Ωb)2
(2.5)

Figure 2.13 confirms that the rotor boundary layer remains laminar [21]. Also, the

turbulent intensities are strongest at large radius and decrease as the fluid flows inward.

The presence of isocontours close to the junction between the stationary disk and the shroud

18



suggest that the turbulence may start to develop in this zone. Also, as expected, the low

value of the maximum turbulent Reynolds number Ret = 20.52 confirms the weakly turbulent

nature of this flow.
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Figure 7: Randriamampianina et Poncet, Phys. Fluids.
Figure 2.13: Regularly spaced isocontours of: (a) the turbulent Reynolds number 0 < Ret

≤ 20.52; (b) the turbulent kinetic energy 0 ≤ k∗ ≤ 1.377x10−2 [21]
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CHAPTER 3

Governing Equations and Methodology

3.1 Governing equations

In this section are presented the governing equations that are used by the software AVBP. The

equations below are the ones solved by AVBP regardless of the assumptions made by a specific

simulation. For example, the flow in a simulation cannot be specified as incompressible, the

incompressibility of the flow is a consequence of the governing equations. Therefore the

equations are presented in their most general form, as they are treated by AVBP.

In the following sections, unless specified otherwise, the Einstein’s index notation will be

implied in repeated indices. Note however that the index k refers to the kth species and does

not follow the summation rule.

3.1.1 Navier-Stokes Equations

The dynamical behavior of a fluid element is determined by three conservation laws: the

conservation of mass, momentum and energy. In differential form, the general form of the

conservation laws are given as follows:

∂ρk
∂t

+
∂

∂xj
(ρkui) = − ∂

∂xj
[Jj,k] + ω̇ (3.1)

∂ρui
∂t

+
∂

∂xi
(ρuiuj) = − ∂

∂xj
[Pδij − τij] (3.2)

∂ρE

∂t
+

∂

∂xj
(ρEuj) = − ∂

∂xj
[ui(Pδij − τij) + qj] + ω̇T +Qr (3.3)

where ρ is the fluid density, ui the ithvelocity component, P the pressure and E the total

energy. The stress tensor is given by τij, δij is the Kronecker delta and qj the heat flux. The

20



source terms ω̇, ω̇T and Qr are the mass, chemical and radiative source terms.

It is conventional to express the governing equations in terms of the conservative variables

vector, UUU defined below:

UUU =


ρk

ρui

ρE

 (3.4)

Therefore, in terms of the vector UUU the conservation laws can be written as:

∂UUU

∂t
+

∂

∂xj
(FcFcFc −FvFvFv) = QQQ (3.5)

where QQQ is the source term, FcFcFc and FvFvFv the convective (or inviscid) and viscous flux terms,

respectively. They are defined as follows:

QQQ =


ω̇k

0

ω̇T +Qr

 , FcFcFc =


ρkuj

ρuiuj + Pδij

(ρE + Pδij)uj

 , FvFvFv =


Jj,k

−τijui + qj

−τij

 (3.6)

AVBP uses a Finite Volume Method for the discretization of the domain space. Therefore,

it solves the integral form of equation (3.5). Consider a control volume Ω fixed in space and

bounded by a close surface ∂Ω represented in figure 3.1. We also introduce a surface element

dS with an associate outward pointing normal vector ~n:

6 Chapter 2 

The discussion of the conservation laws leads us quite naturally to the idea of 
dividing the flow field into a number of volumes and to  concentrate on the mod- 
elling of the behaviour of the fluid in one such finite region. For this purpose, 
we define the so-called finite control volume and try to  develop a mathematical 
description of its physical properties. 

Finite control volume 

Consider a general flow field as represented by streamlines in Fig. 2.1. An 
arbitrary finite region of the flow, bounded by the closed surface dS2 and fixed 
in space, defines the control volume R. We also introduce a surface element as 
dS and its associated, outward pointing unit normal vector as 6. 

-. n 
L L 

L 

L 

Figure 2.1: Definition of a finite control volume (fixed in space). 

The conservation law applied to an exemplary scalar quantity per unit volume 
U now says that its variation in time within 0, i.e., 

is equal to the sum of the contributions due to the convective flux - amount 
of the quantity U entering the control volume through the boundary with the ., 

velocity v' ~ hence Uv' 
r 

Figure 3.1: Definition of a finite control volume fixed in space
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Therefore, following the definition of the control volume Ω, the integral form of the

Navier-Stokes equations is given in equation (3.7):

∂

∂t

∫
Ω

UUU +

∮
∂Ω

(FcFcFc −FvFvFv)dS =

∫
Ω

QQQdΩ (3.7)

3.1.2 Thermodynamic Equations

There are two more equations required for the system to be well posed, as the pressure and

temperature remain to be solved for. AVBP deals strictly with gaseous flow; therefore the

equation of state for an ideal gas is used:

P = ρ rg T (3.8)

where rg is the gas constant of the mixture, rg = R/W , R being the universal gas constant

and W the molecule weight of the mixture. It is given by equation (3.9):

1

W
=

N∑
k=1

Yk
Wk

(3.9)

where Yk is the mass fraction of the kth species.

The last equation relates the total energy E and the temperature. The standard reference

state used is:

Po = 1 bar, To = 0 K (3.10)

AVBP uses a table listing of the sensible enthalpies from 0 K to 5000 K in a 100 K interval.

Therefore the sensible enthalpy can be evaluated using the following equation:

hs,k(Ti) =

Ti∫
To

Cp,k dT =
hms,k(Ti) − hms,k(To)

Wk

(3.11)

hs,k(Ti) is defined as the sensible enthalpy at temperature Ti, Cp,k the mass heat capacity

at constant pressure and hms,k the molar sensible enthalpy. The subscript k refers to the kth

species as it will for all variables in this section. Using equation (3.11), the sensible energy
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can be calculated using equation (3.13):

es,k(Ti) =

Ti∫
To

Cv,k dT = hs,k(Ti) − rTi (3.12)

= hs,k(Ti) −
p

ρ
(3.13)

where es,k(Ti) is the sensible energy at temperature Ti and Cv,k the mass heat capacity at

constant volume. The ideal gas law was used to derive equation (3.13). Finally, the total

energy E can be related to the sensible energy by (3.14):

E(Ti) =
N∑
k=1

es,k(Ti) +
1

2
ujuj (3.14)

herefore, the pressure and temperature can be obtained from the conservative variables using

the combined equations (3.8), (3.11), (3.13) and (3.14).
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3.2 The Large Eddy Simulation Approach

3.2.1 The LES Concept

Turbulence is a natural phenomenon of fluid mechanics and is due to the non-linear convective

terms in the Navier-Stokes equation (3.3). The main issue in numerically reproducing a

turbulent flow is that it contains vortices of very large different sizes.

Direct Numerical Simulation (DNS) calculates directly the Navier-Stokes equations as

is, without modeling any part of the structures’ spectrum. The solution is therefore exact.

However, the mesh size is dictated by the smallest turbulent structures. Their size is given

by Kolmogorov scales η:

η =

(
ν3

ε

)1/2

(3.15)

where ε is the rate of dissipation of the kinetic turbulent energy per unit mass, and ν the

kinematic viscosity of the fluid. There is an energy cascade from large vortices to smaller

vortices. The structures with characteristic sizes η are then directly dissipated by the fluid’s

viscosity. As a result, to capture all the turbulent kinetic energy of the flow, the mesh size

is proportional to N = Re9/4, which is much to large for today’s computer to handle except

for very simple, academic geometries. The alternative is to calculate only a part of the flow

and model the other. The most used modeling methods today use the Reynolds-Averaged

Navier-Stokes (RANS) equations and the Large Eddy Simulation (LES).

The RANS equations are time-averaged equations of motion. These equations give ap-

proximate averaged-solutions to the Navier-Stokes equations. All of the turbulent structures

are modeled. LES stands between RANS and DNS, as it calculates directly the large scale

structures that contain most of the turbulent kinetic energy and models the smaller ones.

The small scales vortices are modeled by a algebraic subgrid-scale (SGS) turbulent model.

LES is less sensitive to models than the RANS equations but require less dissipative schemes

in order to capture correctly the energy cascade. The RANS, LES and DNS properties are

summarized in Figure 3.2 [25]:
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E(k) Modeled in RANS

Computed in DNS

Computed in LES Modeled in LES

Figure 4.7: Turbulence energy spectrum plotted as a function of wave numbers. RANS, LES and
DNS are summarized in terms of spatial frequency range. kc is the cut-o↵ wave number used in LES
(log-log diagram).

modeled). In RANS, only mean flow fields are resolved: no turbulent motion is explicitely
captured.

In terms of computational requirements, CFD for non-reacting and reacting flows follow
similar trends: DNS is the most demanding method and is limited to fairly low Reynolds
numbers and simplified geometries. LES works with coarser grids (only larger scales have to
be resolved) and may be used to deal with higher Reynolds numbers but require subgrid scale
models. The computation quality and the results accuracy are directly linked to these physical
subgrid models. In current engineering practice, RANS is extensively used because it is less
demanding in terms of resources but its validity is limited by the closure models describing
turbulence and combustion.

DNS methods are limited in terms of parameter range and geometry to academic situations.
For example, a DNS simulation of a three-dimensional turbulent flame at atmospheric pressure
typically requires 1 to 2 million grid points and the computational box corresponds to a
physical size of 5 ⇥ 5 ⇥ 5 mm3. Fig. 4.8 shows an example of DNS result corresponding to
an instantaneous realization of a premixed flame front interacting with isotropic turbulence
(Trouvé and Poinsot511, Boger et al.47, Boughanem and Trouvé53).

The advantage of RANS is its applicability to any configuration and operating conditions:
a standard RANS mesh can contain 105 points and the domain of calculation may be as large
as needed. For example Fig. 4.9a shows an isosurface of mean high temperature (1100 K)
in a turbulent premixed flame stabilized by swirl (see § 6.2.3) obtained with RANS. The
configuration corresponds to a 1:1 burner of a large-scale industrial gas turbine (Selle et
al.475). On the isosurface, the average temperature is 1100 K but RANS does not explicitely
solve for possible turbulent fluctuations around this mean value.

Figure 3.2: Turbulence energy spectrum plotted as a function of wave numbers. RANS, LES

and DNS are summarized in terms of spatial frequency range. kc is the cut-off wave number

used in LES (log-log diagram).

LES is nowadays recognized as an intermediate approach in comparison to the now classi-

cal RANS methods. This is especially true for industrial applications where an understanding

of the unsteady aspect of the flow is essential.

From a mathematical perspective, the major difference between LES and RANS comes

from the operator employed in the derivation of each methods’ governing equation. In RANS,

the operator consist of a temporal or ensemble average over a set of realization of the studies.

The enclosed terms are representative of the physics taking place of over the entire range of

frequencies present in the ensemble of realization under consideration.

In LES, the operator is a spatially localized time independent filter of given size, ∆, to

be applied to a single realization of the studied flow. Resulting from this spatial average is a

separation between the scales larger and smaller than the filter size. The unclosed terms in

LES are representative of the physics associated with the small structures with high frequen-

cies present in the flow. Due to the filtering approach, LES allows a dynamic representation

of the large scale motions whose contributions are critical in complex geometries. The LES

predictions of complex turbulent flows are therefore closer to the physics than the RANS

predictions since large scale phenomena such as large vortex shedding and acoustic waves are
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embedded in the set of governing equations (3.18). Figure 3.3 illustrates the results obtained

by the three different numerical approach, RANS, LES and DNS [25]:

Figure 3.3: Results comparisons obtained with RANS, LES and DNS.

For the reasons presented above, LES has a clear potential in predicting turbulent flows

encountered in industrial applications. The accuracy of the solution depends on the size of

the spectrum that is being model and therefore the filter size ∆.

3.2.2 The Governing Equation for LES

In LES, variables are filtered either in spectral space, where components greater than a

given cut-off frequency are suppressed, or in physical space where the variables are weighted

average over a given volume. The filtered quantity f is defined as [25]:

f̄(x) =

∫
f(x′)F (x− x′)dx′ (3.16)

where F is the LES filter. A mass-weighted Favre filtering is then introduced according to

the definition given in equation (3.17):

ρ̄f̃ =

∫
ρf(x′)F (x− x′)dx′ (3.17)

The filtered quantity is resolved in the numerical simulation whereas f ′ = f - f̄ cor-

responds to the unresolved part, the subgrid scale term due to unresolved motion. The

governing equations for LES are obtained by filtering the instantaneous balance equations,
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which lead to the following:

∂

∂t

∫
Ω

Ũ̃ŨU +

∮
∂Ω

(F̃c̃Fc̃Fc − F̃ṽFṽFv)dS =

∫
Ω

Q̃̃Q̃QdΩ +

∮
∂Ω

StStStdS (3.18)

where, as in the regular Navier-Stokes equations, the vector Ũ̃ŨU is the conservative variable,

Q̃̃Q̃Q the source term and F̃c̃Fc̃Fc and F̃ṽFṽFv correspond to the inviscid and viscous flux terms. These

variables are defined below:

Ũ̃ŨU =


ρ̄k

ρ̄ũi

ρ̄Ẽ

 , Q̃̃Q̃Q =


¯̇ωk

0

¯̇ωT + Q̄r

 , F̃c̃Fc̃Fc =


ρ̄kũj

ρ̄ũiũj + P̄ δij

(ρ̄Ẽ + P̄ δij)ũj

 , F̃ṽFṽFv =


J̄j,k

−τijui + q̄j

−τij

 (3.19)

The additional term StStSt in equation (3.18) is the subgrid scale or turbulent flux term

introduced by the filtration process done for the LES methodology. It is defined in equation

(3.20):

StStSt =


J̄ tj,k

q̄tj

−τ̄ tij

 (3.20)

The vector StStSt introduces a closure problem as each of its element is a non-linear fluctuation

that cannot be directly calculated. Therefore, a model needs to be supplied for each of these

term. Only the quantity τ̄ tij will be discussed below as the other terms, set to zero in the

rotor-stator simulations, are irrelevant in this paper.

3.2.3 Viscosity Models

The LES method depends on the filter size ∆ and the LES model used for the turbulent for

the turbulent viscosity νt.

These models are derived assuming that the corresponding LES filter ∆ is independent on

time and space. Therefore, the variations in the filter size due to a non-uniform or moving

mesh are not directly accounted for in the derivation of the LES models. However, the

27



change of cell topology is still taken into account through the local cell volume according to

equation (3.21):

∆ = V
1/3
cell (3.21)

The filtered compressible Navier-Stokes equations exhibit SGS tensors and vectors de-

scribing the interaction between non-resolved and resolved motion. This interaction is ac-

counted for through the introduction of the turbulent viscosity. Such an approach assumes

the effect of the SGS field on the resolved field to be purely dissipative.

As mentioned in the previous section, τ̄ tij is the result of the non-linearity term in the

Navier-Stokes equations. Its is given by equation (3.23):

τ̄ tij = −ρ̄ (ũiuj − ũiũj) (3.22)

= −2 ρ̄ νt

(
S̃ij −

1

3
δijS̃kk

)
(3.23)

where S̃ij the strain rate tensor and is defined by the following equation:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
δij
∂ũk
∂xk

(3.24)

S̃ij can be directly calculated from the Favre filtered velocity vector. Therefore, the turbulent

viscosity νt is the only variable that requires modeling for closure. The different LES models

used are discussed in the following section.

3.2.3.1 Smagorinsky Subgrid-Scale Model

The Smagorinsky model, named after its author, was the first developed SGS model [26]. It

is given by equation (3.25):

νt = (Cs∆)2
√

2S̃ijS̃ij (3.25)

Cs is constant dimensionless empirical parameter, called the Smagorinsky coefficient and

is set to 0.18. This model has the particularity of supplying the right amount of dissipation
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of kinetic energy in homogeneous isotropic flows. However, locality is lost and only global

quantities are maintained. It is generally regarded as being too dissipative and is therefore

not suited for transitioning flows.

3.2.3.2 WALE Subgrid-Scale Model

The Wall adaptive local eddy-viscosity (WALE) model was developed by Ducros, Nicoud

and Poinsot for wall-bounded flows in an attempt to recover the scaling laws of the wall [27].

It is given by the following equations:

νt = (Cw∆)2

(
SdijS

d
ij

)3/2(
S̃ijS̃ij

)5/2

+
(
SdijS

d
ij

)5/4
(3.26)

where C2
w ≈ 10.6C2

s . For reasons connected to the wall behavior of the SGS model, a new

operator Sdij based on the traceless symmetric part of the square of the gradient velocity

tensor ḡij, was defined [27]:

sdij =
1

2

(
g̃2
ij + g̃2

ji

)
− 1

3
g̃2
kkδij (3.27)

ḡkk =
∂ūij
∂xj

(3.28)

where ḡ2
ij = ḡikḡkj.
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3.3 Numerical Scheme and Discretization Method

In the previous sections, the complete system of governing equations required to solve the

fluid problem, along with the viscosity models, was introduced. In this section, the two

numerical methods used in the AVBP rotor-stator simulations will be presented. Only the

general approach will be introduced here, the reader is encouraged to consult the references

for details [28].

AVBP was designed to solve flow problems with complex industrial geometries. It uses

unstructured grids to discretize the physical space. The main advantage of the unstructured

grids is based on the fact that the tetrahedral grids can be generated efficiently and auto-

matically, independently of the complexity of the domain. However, only low-order methods,

generally no higher than 2nd order, can be used with unstructured grids. This deficiency is

generally compensated by the large number of nodes used in the discretization of the physical

domain.

As mentioned in the previous section, flow solver used for the discretization of the gov-

erning equation is based on the Finite Volume (FV) method. This approach utilizes directly

the integral form of the Navier-Stokes equations (3.7). AVBP uses the cell-centered approach

for implementing the FV method. In this technique, the flow quantities are stored at the

grid nodes and the mean value of the fluxes are obtained by averaging along the cell edges.

The mathematical formulation of the numerical methods is presented below in its most

general form. The two methods used, the Lax-Wendroff and the Two-setp Taylor Galerkin

(TTGC) schemes, were rewritten to comply with the Arbitrary Lagrangian Eulerian meth-

ods.
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3.3.1 Lax-Wendroff Scheme

Un+1
iU
n+1
iU
n+1
i = Un

iU
n
iU
n
i − ∆t

V
n+1/2
i

V n+1
i

(RiRiRi +Un
iU
n
iU
n
i ) (3.29)

RiRiRi =
1

V
n+1/2
i

∑
j | i εΩj

V
n+1/2

Ωj

(
D

(1)
i,Ωj
RΩj
RΩjRΩj

+D
(2)
i,Ωj

[
RΩj
RΩjRΩj

+RΩj
RΩjRΩj

c
])

(3.30)

D
(1)
i,Ωj

=
1

nv
(3.31)

D
(2)
i,Ωj

=
δtΩj

2NdV
n+1/2

Ωj

(
AnΩj
AnΩj
AnΩj

− ẊΩj
ẊΩjẊΩj

)
· dSn+1/2

idS
n+1/2
idS
n+1/2
i (3.32)

RΩj
RΩjRΩj

=
1

NdV
n+1/2

Ωj

∑
i | i εΩj

(
F n
iF
n
iF
n
i −Un

iU
n
iU
n
i Ẋi

)
· dSn+1/2

idS
n+1/2
idS
n+1/2
i (3.33)

Rc
Ωj

Rc
Ωj

Rc
Ωj

= Un
Ωj

Un
Ωj

Un
Ωj

1

NdV
n+1/2

Ωj

∑
i | i εΩj

ẊiẊiẊi · dSn+1/2
idS
n+1/2
idS
n+1/2
i (3.34)

In the above equations, Un
iU
n
iU
n
i one of the four conservative variables -ρu, ρv, ρw or ρe-, nv

the number of vertices of the grid element Ωj, Nd the number of dimensions, XiXiXi the nodes

position and Ẋi their speed [28].

3.3.2 Two Step Taylor Galerkin scheme

The predictor and corrector steps of the two step Taylor Galerkin scheme (TTGC) are given

as follows:

ŨnŨnŨn = UnUnUn − ∆t
(
Mn+αMn+αMn+α

)−1
[
αLn+α/2(UnUnUn) + β∆tLLn+α/2(UnUnUn) +

Mn+αMn+αMn+α −MnMnMn

∆t
UnUnUn

]
(3.35)

Ũn+1Ũn+1Ũn+1 = UnUnUn − ∆t
(
Mn+1Mn+1Mn+1

)−1
[
Ln+1/2(ŨnŨnŨn) + γ∆tLLn+1/2(UnUnUn) +

Mn+1Mn+1Mn+1 −MnMnMn

∆t
UnUnUn

]
(3.36)

where MMMn+α and MMMn+1 are the mass matrices of the predictor and corrector steps, respec-

tively. α, β and γ are constant parameters chosen to regulate the dissipation and dispersion

properties of the numerical scheme. The other terms are given by equations given below

[28]:
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Ln+τ
i (UUUn

i ) =
∑
j | i εΩj

VΩj

nv
RRRn+τ

Ωj
(3.37)

LLn+τ
i (UUUn) =

1

Nd

[
AAAnΩj

− Ẋ̇ẊXΩj

] (
RRRn+τ

Ωj
+ (RRRc)n+τ

Ωj

)
· dSdSdSn+τ

i (3.38)

RRRn+τ
Ωj

=
1

NdV
n+τ

Ωj

∑
i | iεΩj

(
FFF n
i −UUUn

i Ẋ̇ẊX i

)
· dSdSdSn+τ

i (3.39)

RRRn+τ
Ωj

= Un
ΩU
n
ΩU
n
Ω

1

NdV
n+τ

Ωj

∑
i | iεΩj

Ẋ̇ẊX i · dSdSdSn+τ
i (3.40)
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CHAPTER 4

Results and Discussion

In this section the input parameters, geometric configuration and the mesh used in the AVBP

simulation are first discussed. The velocity profiles obtained are then presented, followed by

their discussion.

4.1 Meshing and Input Parameters

The Poncet experiment selected to be reproduced numerically in AVBP can be found in [20].

The general geometry used in this study in the same as the one used by Daily and Nece and

shown in Figure1.1 [7]. The geometrical parameters are presented in table 4.1.

In Poncet’s experiment, water is confined in a closed rotor-stator system. The rotor,

located on lower side of the system, is rotated at a fixed velocity. The results are obtained

after the flow has statically converged [20]. The geometry used in AVBP is the same.

However, the viscosity and the rotor velocity were altered to increase the rate of statistical

Parameter Value Units

a 38 mm

b 250 mm

h 11.6 mm

Ω 1.43 rad/s

µ 9.44x10−7 m2/s

Table 4.1: Geometrical parameters of Poncet’s experiment
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Parameter Experiment AVBP Units

Ω 1.43 250 rad/s

ν 9.44x10−7 1.79x10−4 m2/s

ReΩ 9.5x104 9.5x104

Table 4.2: The experimental and simulation parameters

convergence while maintaining the same geometric Reynolds number, defined by (1.1). Since

AVBP only deals with gaseous flow, the rotor velocity was increased to the maximum value

which allowed the flow to remain incompressible, 0.2a0, where a0 is the speed of sound. A

table summarising the geometric and simulation parameters is table 4.2.

Three different meshes were used in the simulations of the rotor-stator systems. The

main difference between the grids is the amount of cells used in the thickness of the rotor-

stator. The first mesh’s resolution is uniform across all directions. It has 14 cells across the

geometry’s thickness and a total of 17 millions nodes. It will be referred to as ”first mesh”.

It is shown in figure 4.1.

Figure 4.1: First mesh
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In the second mesh, the thickness direction was favored over the others to obtain more

precise results. It has 35 cells in the thickness’ direction and a total of 2.6 millions nodes.

It will be referred to as ”smart mesh”. It is shown in figure 4.2.

Figure 4.2: Smart mesh

In the third mesh, only a 120◦ section of the rotor-stator geometry was simulated as

previous results successfully proved the system’s axisymmetry, as expected. The resolution

in the x-direction was increased to 50 cells. This mesh has a total of 967,000 nodes. It will

be referred to as ”camembert mesh”. It is shown in figure 4.3.

In the camembert mesh, the two side cuts were assigned periodic rotating boundary

condition. At first, the code would diverge because it could not handle the singularity at

the intersection between the hub’s rotating boundary condition with the side cut’s periodic

boundary condition. Therefore, at the intersection, the side cuts were assigned a fixed no

slip boundary condition on from r∗ = 0 to r∗ = 0.02. The boundary patch had negligible

effects on the rotating flow of the system.

For each mesh, simulations were run with the Lax-Wendroff numerical scheme coupled
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Figure 4.3: Camembert mesh

with both LES models Smagorinksy and WALE. However, only results with TTGC and

Smagorinsky are shown because none of the simulations coupling TTGC and WALE con-

verged.
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4.2 Results

On each mesh, the results of simulations using combinations of the Lax-Wendroff and Two-

step Taylor Galerkin schemes with the LES models Smaogrinksy and WALE are presented.

Then, for each couple of numerical scheme and LES model, results depending on the meshes

are shown.

4.2.1 First Mesh Results
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Figure 4.4: First mesh results for the tangential velocity Vθ
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Figure 4.5: First mesh results for the radial velocity Vr
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4.2.2 Smart Mesh Results
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Figure 4.6: Smart mesh results for the tangential velocity Vθ
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Figure 4.7: Smart mesh results for the radial velocity Vr
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4.2.3 Camembert Mesh Results
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Figure 4.8: Camembert mesh results for the tangential velocity Vθ
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Figure 4.9: Camembert mesh results for the radial velocity Vr
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4.2.4 Mesh Comparison Results

4.2.4.1 Lax-Wendroff with the Smagorinsky Model
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Figure 4.10: Mesh comparisons of the Lax-Wendroff scheme with the Smagorinsky model

for the tangential velocity Vθ
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Figure 4.11: Mesh comparisons of the Lax-Wendroff scheme with the Smagorinsky model

for the radial velocity Vr
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4.2.4.2 Lax-Wendroff with the WALE Model
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Figure 4.12: Mesh comparisons of the Lax-Wendroff scheme with the WALE model for the

tangential velocity Vθ

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
r
*

X
*

r* = 0.44

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
r
*

r* = 0.80

 

 

First Mesh
Smart Mesh
Camembert
Experimental Data

Figure 4.13: Mesh comparisons of the Lax-Wendroff scheme with the WALE model for the

radial velocity Vr
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4.2.4.3 Two-setp Taylor Galerkin with the Smagorinsky Model
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Figure 4.14: Mesh comparisons of the Lax-Wendroff scheme with the WALE model for the

tangential velocity Vθ
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Figure 4.15: Mesh comparisons of the TTGC scheme with the Smagorinsky model for the

radial velocity Vr
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4.3 Discussion

On the first mesh, in figures 4.4 and 4.5, the simulations reproduce quantitatively the ex-

perimental results. The flow along the thickness can be divided in three distinct regions:

a boundary layer on the rotor and the stator separated by a core region of approximately

constant tangential velocity. For the three simulations, Lax-Wendroff with Smagorinsky,

Lax-Wendroff with WALE, and TTGC with Smagorinsky, the overall shape of the velocity

profiles were correctly obtained. From figure 4.4 and 4.5, the thickness of the two boundary

layers seem to be overestimated by AVBP, especially at large radius. From figure 4.4 at r∗ =

0.44, the the rotational velocity of the inner core is the same for the three simulations and

the experimental results. However, at r∗ = 0.80, the core velocity varies from 0.43 and 0.55

depending on the simulation. Also, from figure 4.5, in the three simulations, the core does

not reach a region of zero radial velocity. These discrepancies may be explained by the lack

of cells in each of the boundary layers. Only two or three mesh nodes are in the boundary

layer obtained by the experimental results, which is greatly insufficient.

On the smart mesh, in figures 4.6 and 4.7 the two Smagorinsky simulations qualitatively

reproduces the experimental results while the Lax-Wendroff with WALE simulation does

not accurately obtain the desired velocity profiles. From figure 4.6, the WALE simulation

underestimate the thickness of the rotor and stator boundary layer by a factor of 4 and

the tangential velocity of the core by 40%. Comparing the two other simulations, for the

tangential velocity in figure 4.6, the TTGC simulation seems closer to the experimental data

than the Lax-Wendroff with Smagorinsky simulation, especially for r∗ = 0.80. As for the first

mesh, the rotational velocity of the core varies more with increasing radii. Also, the thickness

of the boundary layers seem to be overestimated. In figures 4.7, for the radial velocity, the

Lax-Wendroff with Smagorinsky and TTGC simulations obtained relatively similar results,

except at r∗ = 0.80 where the TTGC simulations seems to overestimate the the maxima

velocity in the stator boundary layer by more than 50%.

On the camembert mesh, in figures 4.8 and 4.9, as for the smart mesh, the WALE
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results do not capture correctly the velocity profiles obtained by the experimental data.

The thickness of the boundary layer is greatly overestimated and the rotational velocity of

the core is underestimated. Looking at the two other simulations, the Lax-Wendroff with

Smagorinsky seems to be in better concordance with the experimental data than the TTGC

simulation, especially for the tangential velocity at r∗ = 0.80 on the stator side. This is

surprising considering the TTGC is a higher order scheme than Lax-Wendroff. From 4.8

and 4.9, the two simulations seem to reproduce better the simulation at smaller radius. The

rotor boundary layer and the tangential velocity of the core are correctly captured at r∗ =

0.44 while, at r∗ = 0.80, the former is overestimated by 70% and the latter is overestimated

by up to 20%. In 4.9, the two simulations capture the region of zero radial velocity in the

core, especially for r∗ = 0.44. At r∗ = 0.80, the velocity profiles are correctly reproduced but

seem to be stretched towards the core region.

From the results of the three simulations ran in different meshes, it can first be concluded

that the WALE LES model is not appropriate for the rotor-stator geometry. It clearly under-

estimates the thickness of both boundary layer and the velocity and the core. Also, although

the TTGC scheme is about 2.5 times more expensive than the Lax-Wendroff scheme, it did

not output substantially more accurate results despite being of higher order. Therefore, the

Lax-Wendroff scheme coupled with the Smagorinsky LES model seems to be the best suited

approach so numerically simulate the rotor-stator geometry.

In figures 4.10 through 4.15, the results of the three simulations Lax-Wendroff with

Smagorinsky, Lax-Wendroff with WALE and TTGC with Smagorinsky are compared on

the three meshes used. The Lax-Wendroff with WALE simulation, in figures 4.12 and 4.13,

clearly differs from its two counterpart as the results’ accuracy does not increase with the grid

resolution in the thickness. The first mesh results qualitatively reproduce the experimental

data. The three distinct regions, the rotor and stator boundary layer and the core, are clearly

visible. However, in the smart mesh and camembert mesh results, the core region makes up

for about 90% of the flow. The WALE model is clearly not appropriate to simulating the
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rotor-stator system, especially if high grid resolution is desired along the thickness of the

geometry. This may be due to the fact that the WALE model has a very low associated

turbulent viscosity. By comparison, the turbulent viscosity is about 100 times stronger in the

Smagorinsky model than in the WALE model. The strong viscosity helps capture the strong

velocity gradients if the mesh is not fine enough. This also explains why the simulations with

both TTGC and the WALE model did not converge. The Lax-Wendroff numerical scheme

is of low-order and generates much more dissipation than the 3rd order TTGC scheme. The

relatively low viscosity and dissipation in the TTGC/WALE simulations lead to singularities

next to the disks which in turn make the code diverge.

In figures 4.10 and 4.11, the results’ accuracy are increasing with the grid resolution as

expected. This is true especially for for smaller radius at r∗ = 0.44. This can be explained

by the fact that the larger the radius, the larger the local Reynolds number Rer =
Ωr2

ν
.

The increase in Rer in turn increases the local turbulence. Therefore, if the accuracy of the

simulation decreases with the radius, it implies that the grid resolution is not fine enough.

This hypothesis is supported by figures 4.16 shown below.
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Figure 4.16: Comparisons of the camembert results at r∗ = 0.80 with that of the smart mesh

at r∗ = 0.44 and r∗ = 0.80 for the Lax-Wendroff Smagorinsky simulation.

Figure 4.16 shows that the results of the camembert mesh at r∗ = 0.80 are similar to
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that of the smart mesh at r∗ = 0.44 than that at r∗ = 0.80. As the smart mesh simulation

at r∗ = 0.44 where improved with the grid refinement along the thickness in the camembert

mesh, the same can apply for the camembert mesh results at r∗= 0.80. It can therefore be

concluded than although the camembert results at small radius are very satisfactory, the grid

resolution along the thickness should be increased to obtain similar results at large radius.

In figures 4.14 and 4.15, as in the Lax-Wendroff with Smagorinsky simulations, the re-

sults’s accuracy increases with the resolution of the grid, except in figure 4.14 at r∗ = 0.80

where the velocity profile of the camembert mesh does not seem to capture well the boundary

layer on the stator. In figure 4.15, only the camembert mesh is fine enough to capture the

region of zero radial velocity in the core located between the two boundary layers. However,

as for the smart mesh, the simulations for the camembert mesh at r∗ = 0.44 for both velocity

profiles are closer to the experimental data than the results at r∗ = 0.80. Therefore, as for

the smart mesh, it can be concluded that better results could be obtained with a finer grid

along the thickness of the rotor-stator system.
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CHAPTER 5

Conclusion

A large eddy simulation of an enclosed rotor-stator cavity of large aspect ratio, G = 18.32, has

been performed. The rotational Reynolds number under consideration in this investigation

was fixed to Re = 9.5x104. According to Poncet’s work [20], [14], this configuration should

correspond to a weakly turbulent flow, with turbulence intensities found only along the

stator.

The simulations were performed on three different grids with different cell resolution

along the thickness. The numerical schemes used are the second order Lax-Wendroff and

third order Two-step Taylor Galerckin schemes. Two different LES models were tested, the

classic Smagorinsky model and the WALE model. The mean velocity results were recored

once the kinetic energy of the system converged. The results from the three grids yielded

qualitatively satisfactory results. The Batchelor type of flow was correctly reproduced: a

boundary layer on each disk separated by a core region of zero radial velocity and constant

tangential velocity.

The WALE simulation results were on par with that of the Smagorinsky for the first

mesh-the 14 axial cell resolution grid. However, for the two other grids of higher resolution

in the thickness, it failed to reproduce correctly the mean velocity profiles. The boundary

layer thickness along the two disk were underestimated by a factor of 5 while the core region

velocity was underestimated by 44%. Also, it is important to note that no simulation were

performed with both the TTGC scheme and the WALE model since no convergence could be

achieved. This may be explained by the relatively low turbulent viscosity generated by the

WALE model in comparison the Smagorinsky model. The turbulent viscosity helps capture
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the strong velocity gradients in the boundary layers close to the disks.

The Smagorinsky simulation yielded very satisfactory results. As expected, the results

discrepancy with the experimental results increased with the cell resolution along the thick-

ness. Overall, a slight advantage to the TTGC scheme over the LW scheme was found

although it was not always the case. Also, it was showed that better results could be ob-

tained with an even higher resolution along the thickness direction.
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