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ABSTRACT OF THE DISSERTATION

Towards a Mathematical Theory of Group Creativity and Collaboration

By

Santiago Ortolano Guisasola

Doctor of Philosophy in Mathematical Behavioral Sciences

University of California, Irvine, 2018

Professor Donald Saari, Chair

This dissertation is a stepping stone into an in-depth study of group creativity. The founda-

tion for this work concerns collective musical improvisation, and the project grew from an

experiment with improvising musicians on networks of controlled listening. This experiment

served as a source for intuition and its many sessions records of the unfolding creative and

collaborative process in real-time.

A literature review of related themes suggested potential games as a starting point for the

theoretical modeling due to their embodiment of the many facets of coordination, undeniably

a strong force in music and group creativity. The current status of these games proved to be

insufficient for the goal of this thesis. For this reason, the beginning of this thesis, chapter

2, provides a fairly complete picture of 2-strategy potential games for any number of agents,

and for 2-agent 3-strategy games.

In chapter 3, to show the power of the coordinate system developed for potential games in

chapter 2, issues in the literature involving possible conflicts between measures of “good”

group outcomes are elucidated. Finally, in chapter 4, the collective improvisation experiment

is described followed by models of an improvising trio, an orchestra, and the collective

generation of information. Admittedly, the work in chapter 4 is still in progress, and will be

improved on in the years to come.

x



Chapter 1

Introduction

The total objective of this dissertation is to start an in-depth study of group creativity and

collaboration. The first step in this challenge involves laying a concrete foundation from

which to draw analogies and results. Consequently, as described in more detail in chapter

4, collective musical improvisation was selected as an anchor to the idea of group creativity.

The topic of group creativity has been, although perhaps not explicitly stated, at least

implicitly considered in a lot of the game theory literature. Some implicit work has been

done by Young [18] [19], Newton and Sercombe [12], Bala and Goyal [1] [2], Zollman [21] [22]

[20], and many others. In [18] [19] [12] the work focuses on the diffusion of innovation on

networks, which relates to questions in group creativity concerning the spread of new ideas.

The results of [1] [2] detail models of network formation and the transmission of information.

On the other hand, [21] [22] [20] examines scientific collaboration and the collective pursuit

of truth.

The initial stage of this exploration involved an experiment with musicians where the mu-

sicians improvised over several networks of controlled listening. The intention behind the

experiments was to observe and draw intuition from an unfolding creative process in real-

1



time, under varying topologies of information flow. Because this experiment was done prior

to the theoretical research, it cannot be used to justify the theoretical discussion which fol-

lows, but it most surely has motivated what has been done. In this manner, it has played a

crucial role in the development of this project and for this reason, it is included in this thesis

and more explicitly spelled out in chapter 4.

In music, controlling the feedback of information is a common technique for achieving certain

creative goals. For instance, “overdubbing” in music production is where specific parts to

a song are recorded over those that have already been recorded [3]. The reasons for this

may be that the musicians involved are geographically separated, unavailable at the same

time, or that, purposely, control over the network of influence is desired. A notable example

comes from bassist Jaco Pastorious’ recording of “Crisis” [13]. Pastorious’ intention, an

experiment in free-jazz, was to create a song that was mostly “chaotic” but whose parts

still had a common underpinning, giving rise a strong, but not complete sense of dissonance

[10]. Roughly, Pastorious recorded his bass part and then engaged other musicians, one

or a few at a time, to play their piece over the recorded bass lines, sometimes guiding the

musician(s) with gestures and leaking in other recorded parts. In total, including Pastorious,

11 musicians participated in the generation of “Crisis.” For more details see [10].

In many ways the above is alluding to the strong presence of coordination in group creativity

and music, where controlling the network of influence extends to control over coordination.

After reviewing the literature, it became apparent that a good starting point for the theo-

retical modeling of the creative effort is with potential games. The reason for this is that

potential games, also referred to as common interest games, are those in which the agents are

in some strong sense trying to coordinate, which is undoubtedly a factor in music and group

creativity. Indeed, there have been several papers which have captured interesting aspects,

such as Young [18] [19] and Newton et. al. [12]. But for the purposes of this research, it

became clear that the current status of potential games was not sufficiently developed.

2



Therefore, in chapter 2, a fairly complete description of potential games is offered for any

number of players with 2 strategies and and for 2 agents and 3 strategies. More specifically,

a coordinate system with intuitive parameters is developed, offering a precise language to

analyze potential games and coordination. As a result, it goes beyond the 1-dimensional

model used by Young [19] and the 2-dimensional model by Newton et. al. [12], where

for 2-agent games the 7-dimensional situation can be covered in the framework. As such,

there are several new results. The many variants of coordination for n-agents are exposed

through the coordinate system, detailing situations of pure coordination, anti-coordination,

and the many possibilities in between. Moreover, this framework pays special attention to

the structure of externalities in games, which has been shown in [8] to slip through most

solution concepts in game theory.

How does one measure whether an effort in a game for group creativity is successful? There

are several ways, and two of them are described in this dissertation. One of them is the

utilitarian social welfare function, which adds up the individual benefits, and is often used a

measure for what is good for the group. The second is the coordination involved in potential

games. In the literature, some preliminary results in this direction have shown they can be

in conflict but there is not a strong understanding of why this is so. Consequently, in chapter

3, the conflict between social welfare and the potential function is spelled out completely.

The externality structure of games is shown to be a major culprit behind this conflict.

Finally, chapter 4, which admittedly is work still in progress, and probably will be for years

to come, pulls together some of these elements and looks at what happens on networks, which

is the area in which the experiments were conducted. One of the goals of modeling group

creativity is to offer an alternative perspective to the literature on scientific collaboration as

a social enterprise. There, the focus is on the pursuit of an underlying “truth”, where the

networks represent information flow, specifically the sharing of results and theories. Group

creativity, on the other hand, generally has no “truth” to be uncovered, which is especially

3



true in musical improvisation. At the same time, as is the case of scientific collaboration, the

flow of information is instrumental in the process. In chapter 4, the collective improvisation

experiments are described briefly before some seeds are planted for future work. These are

the beginnings of a model of an improvising trio, an orchestra, and the collective generation of

information in a collaboration. Roughly, the improvising trio comprises a multi-dimensional

game that takes into account the rhythmic, harmonic, and melodic elements of music, and

the role of different instruments in pronouncing these elements. The model for the orchestra

makes an argument for the conductor’s role in assisting the coordination of interpretations.

Lastly, the model of collaboration uses the structure of game theory to model the generation

and transmission of information.

4



Chapter 2

Potential Structure of 2× . . .× 2

Games

2.1 Introduction

Potential games grew from Rosenthal’s 1973 congestion game [14], a model of agents choosing

a road to a nearby town. Rosenthal showed that congestion games always have pure strategy

Nash equilibria, and his method was generalized in 1996 by Shapley and Monderer in their

work on potential games [11].

The key characteristic of a potential game is its potential function, a global payoff function

that contains information about the game’s unilateral incentive structure. The potential

function is nice because it aggregates an entire game into a single function. It is no surprise

that it is behind most research into potential games. Potential games, in addition, capture

a strong essence of coordination, which is reflected in their guaranteed existence of pure

strategy Nash equilibria. These games are often called “common interest games.”
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A recent decomposition of games [8], which is described in the beginning of this chapter,

showed that a game can be uniquely decomposed into a trivial component, a component

that contains the structure of unilateral deviations, and a component that describes the

externality structure of the game. This externality structure was shown to be ignored by

most solution concepts that focus on unilateral deviations in game theory.

Because the potential function is tied to a potential game’s unilateral structure, an initial

intuition, which is proved to be the case, is that the potential function ignores the externality

component. In games where “common interest” is of major concern, the externality structure

should play an important role.

To clarify the structure of potential games, this chapter describes a coordinate system for

2-strategy potential games with any number of agents, and for 3-strategy 2-agent potential

games following a similar methodology as in [8]. We begin by reviewing the decomposition,

before uncovering the structure of 2 × . . . × 2 potential games, building up from the 2 × 2

and 2× 2× 2 structures. After all of this, the structure of 3× 3 potential games is unveiled.

Special attention is paid to the externality structure of potential games. Lastly, a special

case of the externality structure gives rise to identical play games, which are those where all

agents receive the same payoff in a given strategy profile. This is given attention due to its

relevance in group creativity and the collective generation of information, the focus of the

following chapters.

The analysis begins with 2 × 2 games. We decompose the potential structure, and prove

several structural results. These include identifying the class of games that are orthogonal

to potential games, and relating the structure of potential games to the structure of identical

play games.

Then, we look into 2×2×2 games and once certain structures emerge, we extend the results

to 2 × . . . × 2 games. Here we prove that the pure Nash strategy structure of a symmetric

6



game is given by the dominant potential component. We discuss how this result generalizes.

2.2 Strategic and Behavioral Decomposition

In this subsection we review the essentials of a recent decomposition of games [8]. We

discuss only 2×2 games and note that the results extend to any finite number of agents and

strategies. For a full exposition see [8].

Let us define a game G.

Definition 2.1. A game G consists of a set of agents N = {1, 2} where each agent i ∈ N

has a set of strategies Si = {σi1, σi2}. and a payoff function πi : S1× S2 → R. We write this

as 〈N , S1, S2, π1, π2〉

For simplicity, refer to strategies σ11 and σ21 as strategy A, and to σ12 and σ22 as strategy

B. The space of all games G forms a vector space, which we denote by G. In the case of

2× 2 games we have that dim(G) = 8. The canonical basis for G is e1 = (1, 0, 0, 0, 0, 0, 0, 0),

e2 = (0, 1, 0, 0, 0, 0, 0, 0), . . . , e8 = (0, 0, 0, 0, 0, 0, 0, 1). We show the normal-form representa-

tion of e1 and e2 in Table 2.1.

A B

A 1 0 0 0

e1 = B 0 0 0 0

A B

A 0 1 0 0

e2 = B 0 0 0 0

Table 2.1: The Basis Vectors e1 and e2 in Normal-Form

For for an arbitrary game G ∈ G with payoffs given in Table 2.2, we can write G =

(a1, a2, b1, c2, c1, b2, d1, d2). Alternatively,

G = a1e1 + a2e2 + b1e3 + c2e4 + c1e5 + b2e6 + d1e7 + d2e8
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A B

A a1 a2 b1 c2

B c1 b2 d1 d2

Table 2.2: Arbitrary 2× 2 Game G

The decomposition offered in [8] amounts to a change of basis that reflects meaningful sym-

metries inherent to games. This basis is then categorized into three components, the Nash

component GN , the behavioral component GB, and the kernel GK . In other words, for any

game G, we can write G = GN + GB + GK .

The kernel contains the average of all payoffs of each agent, which we denote by κ1 and κ2

for agents 1 and 2 respectively. There is no contribution to the payoff structure of G beyond

a common value, for each agent, in all strategy profiles. We can express the basis of the

kernel using the canonical basis, where eK1 = e1 + e2 + e3 + e4, and eK2 = e5 + e6 + e7 + e8.

Then, any kernel component GK can be written GK = κ1e
K
1 + κ2e

K
2 . It is immediate that

dimGK = 2, where GK is the kernel subspace of the vector space of games G. We write the

kernel in normal-form in Table 2.3.

A B

A κ1, κ2 κ1, κ2

GK = B κ1, κ2 κ1, κ2

Table 2.3: The kernel component GK

The kernel component simply scales the game. Any method of comparing payoffs will elim-

inate the common kernel quantity. Because of this, throughout this dissertation, we mostly

ignore the kernel except for important cases.1

1In theory, the effect of the kernel component when analyzing games is non-existent or negligent. Like
we stated, this is because any method of comparing payoffs will get rid of the common kernel quantity. In
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Beyond this common value, any differences between unilateral payoffs is captured by the

Nash component, GN . The authors in [8] show that many solution concepts, like the Nash

equilibrium, quantal response equilibrium, and best response dynamic, only focus on this this

component of a game. Indeed, the GN component contains only, and all of the information

necessary to compute these solution concepts.

This has important implications. For example, suppose we have two seemingly different

games G1 and G2 such that GN1 = GN2 . These games will have the same set of Nash equilibria

and will behave exactly the same under all related, unilateral-focused, solution concepts. In

other words, varying the GK and GB (soon to be defined) components will have no effect on

these solution concepts.2

The Nash component GN is given in Table 2.4, where the change of basis here is given

by eN1 = e1 − e5, e
N
2 = e3 − e7, e

N
3 = e2 − e4, and eN4 = e6 − e8. In this case we have

dimGN = 4, where GN is the Nash subspace of G, and a Nash component GN can be

written as GN = α11e
N
1 + α12e

N
2 + α21e

N
3 + α22e

N
4 .

A B

A α11 α21 α12 −α21

GN = B −α11 α22 −α12 −α22

Table 2.4: The Nash component GN

In GN , an agent’s payoffs, for a fixed strategy of the opponent, are centered around zero.

This way, the positive value always represents the direction of unilateral incentives, while

reality, however, the effect of the kernel component has not been explored. One might imagine that extremely
large GK compared with GN and GB will wash out the effects of GN and GB . Imagine playing a game with
another person to win one of $1,000,000.10, $1,000,000.06, $1,000,000.00, and $1,000,000.02 dependent on
both of your decisions. Here the kernel is $1,000,000. Would you try to be strategic or cooperative in this
scenario? Probably not. Nonetheless, we will ignore the kernel component throughout this dissertation,
unless explicitly brought up.

2In [7], the authors have experimental subjects play a variety of games with constant GN structure but
varying GB . The theory predicts constant behavior, which is far from what was observed. An implication of
this is that the GB structure plays an important role in game theory that must be better understood.
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preserving the difference. For example, if α11 > 0 in Table 2.4, then agent 1’s best response

to agent 2 playing A is to play A, and their change in payoff is 2α11. It follows that any

strategy profile with positive payoffs for all agents is a Nash equilibrium. We will state this

as a theorem but leave the formal proof to [8].

Theorem 2.2. A strategy profile is a Nash equilibrium of a game G, where each player has

only two strategies, if and only if all payoffs in this strategy profile are positive in GN

Together, the kernel and the Nash component are 6-dimensional, where the space of all 2×2

games is 8-dimensional. One might wonder, what else could there be? After all, a game’s

unilateral deviation structure is captured in GN , and any additional scaling is contained

in GK . The remaining 2 dimensions form the behavioral component, GB, that, because

of its orthogonality to GN , cannot contain any unilateral information, and, because of its

orthogonality to GK , is not trivial. Before discussing the behavioral component further, it is

useful to visualize it in normal-form, as displayed in Table 2.5, where the change of basis is

given by eB1 = e1 − e3 + e5 − e7 and eB2 = e2 + e4 − e6 − e8.

A B

A β1, β2 −β1, β2

GB = B β1, −β2 −β1,−β2

Table 2.5: The behavioral component GB

It is clear that there is no information on unilateral deviations in the payoffs of GB. However,

this is not a trivial structure, but, because it had not been introduced to the game theory

literature, it is ignored by most modern solution concepts. By including this component,

as done in this thesis, new results and explanations are derived. We see that when column

player chooses strategy A, row player gets a payoff of β1 invariant over their own strategy.

On the other hand, if column player chooses B, row agent gets the payoff of −β1. Similarly

we have row player, in a way, giving column player either β2 or −β2 as a consequence of

10



choosing A or B. Because of this, one interpretation of GB is that it describes the structure

of externalities in a game.

The interplay of the GN and GB components is a fascinating feature of game theory that

has not been properly explored simply because modern solution concepts analyze only GN .

Its presence, however, pervades. It is the tension between where unilateral incentives lead

and what they produce in terms of externalities that is behind, among others, the enigmatic

prisoner’s dilemma and stag hunt, giving rise to the fragile and elusive notion of cooperation.

It is obvious, with this decomposition, that if agents are only playing inside of GN , then

they will never get to taste the fruits of GB. Most, if not all, techniques of achieving and

sustaining cooperation must involve somehow bridging the information from GB and GN .

In [8] the authors show this to be the case in the grim-trigger and tit-for-tat strategies of

repeated games, where the values of GB play a crucial role.

In what follows, we use the decomposition to analyze the structure of potential games, or

“common interest” games. We begin with 2× 2 games before moving on to 2× 2× 2. Once

certain structures emerge, we extend the results to n-agent 2× . . .× 2 games. Throughout

this exposition, we keep in mind the externalities, and show that a specific alignment of the

GN and GB constitutes identical play games.

To summarize this section, the Nash decomposition induces the following change of basis

eN1 = e1−e5, eN2 = e3−e7, eN3 = e2−e4, eN4 = e6−e8, eB1 = e1−e3+e5−e7, eB2 = e2+e4−e6−e8,

eK1 = e1 + e3 + e5 + e7, and eK2 = e2 + e4 + e6 + e8. A game G, then, decomposed into GN ,

GB, and GK , with payoff values given in Tables 2.4, 2.5, 2.3, can be written as the vector

(α11, α21, α12, α22, β1, β2, κ1, κ2). Alternatively, we can write,

G = α11e
N
1 + α12e

N
2 + α21e

N
3 + α22e

N
4 + β1e

B
1 + β2e

B
2 + κ1e

K
1 + κ2e

K
2 .
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2.3 2× 2 Potential Structure

2.3.1 Introduction

For a game G to belong to the class of exact potential games, G must admit a potential

function. A potential function is a global function that keeps track of all agents’ payoffs

under unilateral deviations. In other words, for a given a strategy profile σ, the payoff

change of an agent for their unilateral deviation from σ is the same as the change in the

potential function. Let us make this precise.

Definition 2.3. Consider a game G = 〈N,S1, S2, π1, π2〉, where N = {1, 2} is the set of

agents, and, for i ∈ N , Si = {A,B} is agent i’s strategy set, and πi : S1 × S2 → R

is i’s utility function. The game G is an exact potential game if there exists a function

P : S1 × S2 → R, called a potential function, such that,

1. P (A, σ2)− P (B, σ2) = π1(A, σ2)− π1(B, σ2)

2. P (σ1, A)− P (σ1, B) = π2(σ1, A)− π2(σ1, B)

where σ1 and σ2 are arbitrary strategies for agents 1 and 2, respectively.

In the literature this definition is sometimes extended to consider weighted potential games

and ordinal potential games. A weighed potential game has a vector of positive weights that

scales the differences in unilateral deviations for each agent. An ordinal potential game,

discussed later, means that the potential function only preserves information pertaining to

the sign of the payoff difference. This dissertation will not consider weighted potential games;

later we will describe the necessary adjustments to our results so that they extend to ordinal

potential games.
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The potential function is often praised for its properties in detailing the Nash structure of

the potential game. For instance, the potential function is maximized at the Nash equilibria.

Any unilateral deviation from a Nash equilibrium will give the deviating agent a smaller

payoff; hence a negative difference in payoffs. By definition of the potential function, the

change in the potential function from the Nash equilibrium profile must also be negative.

Therefore the potential function must be at a maximum since any deviation by any agent

causes the potential function to decrease in value.

Mapping the agents’ strategies to numerical values, we construct payoff functions for the

agents. These payoff functions are used throughout this thesis. In this chapter, we use them

to construct the general potential function for a given potential game.

2.3.2 Utility Functions from the Decomposition

The discussion so far on potential games and the GN ,GB, and GK components described

at the beginning of the chapter, hints at strong connection between the decomposition and

the potential function. This is because the important quality of a potential function is its

reflection of unilateral changes in the game. The potential function must be connected, then,

to the GN component of a potential game G. This is true, and this fact will permit deriving

several new conclusions. First, let us use the decomposition to build payoff functions for the

decomposed game G shown in Table 2.6.

Define the function t : S1 × S2 → {−1,+1} × {−1,+1} such that for σ ∈ S, t(σ) = t(σ1, σ2)

= (t(σ1), t(σ2)), and t(A) = +1 and t(B) = −1. In other words, the strategy A is mapped

to the value of +1 for both agents, and the strategy B is mapped to −1. As in Table 2.6, we

will now refer to any strategy pair (σ1, σ2) by the pair (t1, t2) = (t(σ1), t(σ2)). With this, we

can summarize the complete payoff structure of the game using the payoff functions defined

in Theorem 2.4.
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+1 −1

+1 κ1 κ2 κ1 κ2

−1 κ1 κ2 κ1 κ2

Kernel

,

+1 −1

+1 α11 α21 α12 −α21

−1 −α11 α22 −α12 −α22

Nash

,

+1 −1

+1 β1 β2 −β1 β2

−1 β1 −β2 −β1 −β2

Behavioral

Table 2.6: Decomposed Game G

Theorem 2.4. A game G = GN + GB + GK, as written in normal-form with separated

components in Table 2.6, can be represented by payoff functions

πi(t1, t2) =
αi1 + αi2

2
ti +

αi1 − αi2
2

tit¬i + βit¬i + κi (2.1)

where ¬i ∈ {1, 2}\{i}, for each agent i = 1, 2.

Proof. The four corners of the game matrix represented by strategy profiles (A,A), (A,B),

(B,A), and (B,B) get mapped, respectively, to (+1,+1), (+1,−1), (−1,+1), and (−1,−1).

At each of the points the value of the function for each agent is exactly the value found in

G.

These functions are almost unique. The uniqueness of the coefficients comes from the unique-

ness of the decomposition of G. However, notice that replacing the ti with tmi for odd m

describes the same payoff structure. By restricting the exponent of the ti to 1 for i = 1, 2,

then the functions are unique. To see this, simply take a polynomial in t1 and t2 up to power
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1, and show that its coefficients are exactly those given in Theorem 2.4. Throughout this

dissertation we always assume that the ti variables have a maximum exponent of 1.

Let us now associate components of this function with the components of the game G.

Definition 2.5. Define the Nash component of πi(t1, t2) to be

πNi (t1, t2) =
αi1 + αi2

2
ti +

αi1 − αi2
2

tit¬i.

Similarly define the behavioral component of πi(t1, t2) to be

πBi (t1, t2) = βit¬i.

Finally, define the kernel component of πi(t1, t2) to be

πKi (t1, t2) = κi.

Let us now build a potential function using the agents’ utility functions. We first state a

theorem without proof and refer the reader to [8].

Theorem 2.6. G is an exact potential game if and only if α11 − α12 = α21 − α22.

Let us call this difference d.

Theorem 2.7. If G is an exact potential game, then an appropriate potential function is

P (t1, t2) =
α11 + α12

2
t1 +

α21 + α22

2
t2 +

d

2
t1t2 + c

where d = α11 − α12 = α21 − α22 and c ∈ R is an arbitrary constant.

Proof. Going through the calculations shows that P (A, t2)−P (B, t2) = π1(A, t2)−π1(B, t2)

and that P (t1, A)− P (t1, B) = π2(t1, A)− π2(t1, B).
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This gives the immediate corollary,

Corollary 2.7.1. If G is an exact potential game, then its potential function depends only

on πNi for each i ∈ N .

Proof. The proof of this is immediate from Theorem 2.7. The parameters of the potential

function of G depend only on the payoff values in GN .

An implication of this is that varying the values of β1 and β2 (and κ1 and κ2) has no effect

on the potential function. Although the potential function captures the Nash structure of a

game, it paints an incomplete picture of the game as a whole. The remainder of this picture

lies in the GB component, on which the potential function makes no restrictions. Because

of this, we focus on the Nash structure GN first, before discussing the GB structure. At this

point, it is worth noting that the space of potential games is seven dimensional. This is

because of the eight dimensions for the space of games, only the constraint (Thm. 2.6) is

imposed on the Nash structure. Already, this fact suggests how the decomposition permits

more general conclusions. In his influential paper [19], Young for example, concentrates on a

one-dimensional subspace. As such, generalizations can be, and are, offered in what follows.

We now state another corollary to Theorem 2.7.

Corollary 2.7.2. If GN = G̃N for two exact potential games G and G̃, then, restricting the

exponents of ti for i = 1, 2 to 1, their potential functions differ only by a constant.

Proof. Suppose GN = G̃N for two exact potential games G and G̃. Then the payoff values

are the same in GN and G̃N . This means πN1 (t1, t2) = π̃1
N(t1, t2) and πN2 (t1, t2) = π̃2

N(t1, t2).

Since an exact potential game’s potential function depends only on the Nash component of

the payoff functions, and because the exponents of ti for i = 1, 2 are bounded by 1, we have

that P (t1, t2) = P̃ (t1, t2). Therefore, G and G̃ have the same potential function.
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As stated in the previous subsection, two seemingly different games with the same underlying

GN component result in the same predictions offered by several solution concepts, such as

the Nash equilibrium. We now see that the same is true for potential games and their

corresponding potential functions. If two seemingly different exact potential games have the

same GN structure, then, up to a constant, they have the same potential function.

The restriction potential games place on a game’s Nash structure, described in Theorem 2.6,

means a degree of freedom is lost, and the dimensionality of the Nash structure is reduced

from 4 to 3. We explore this further by changing the basis of GN to reflect the structure

of the potential function. In doing so, we are able to partition the space GN into the 3-

dimensional Nash subspace of potential games, and its orthogonal complement, GN
P and

(GN
P )⊥, respectively.

2.3.3 New Basis for Utility Functions3

As shown in Corollary 2.7.1, the potential function of a game G depends only on its Nash

component GN . We also mentioned, in Theorem 2.6, that α11 − α12 = α21 − α22. This means

that one of the values can be written as a linear combination of the other three independent

values. In other words, there is a Potential Nash subspace of GN , which we will denote by

GN
P , such that dimGN

P = 3. Moreover, GN = GN
P ⊕ (GN

P )⊥ where dim(GN
P )⊥ = 1. Let us

find the basis for GN
P and for (GN

P )⊥.

The canonical basis for GN is given in Table 2.7.

This is the basis developed by Jessie and Saari in [8]. Notice how we can also represent

this basis using vectors, namely, eN1 = (1, 0, 0, 0), eN3 = (0, 1, 0, 0), eN2 = (0, 0, 1, 0), and

eN4 = (0, 0, 0, 1). Here, for the coordinate (x1, x2, x3, x4) we have that x1 is agent 1’s payoff

for the strategy profile (+1,+1), x2 is agent 1’s payoff for the strategy profile (+1,−1), x3 is

3Heavily influenced by discussions in the weekly research seminars with Don Saari.
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Table 2.7: Basis for the Space of 2× 2 GN Components

+1 −1 +1 −1

+1 1, 0 0, 0 +1 0, 0 1, 0

eN1 = −1 −1, 0 0, 0 eN3 = −1 0, 0 −1, 0

+1 −1 +1 −1

+1 0, 1 0, −1 +1 0, 0 0, 0

eN2 = −1 0, 0 0, 0 eN4 = −1 0, 1 0, −1

agent 2’s payoff for strategy profile (+1,+1), and finally x4 is agent 2’s payoff the strategy

profile (−1,+1). This is enough to generate all payoffs in the Nash component of a 2 × 2

game G since all remaining entries are simply negatives of their unilateral counterparts. For

example, agent 1’s payoff for strategy profile (−1,+1) is simply the negative of their payoff

in (+1,+1). This is due to the symmetry structure inherent to the space GN .

Now, for any GN ∈ GN , we can find unique coefficients α11, α12, α21, and α22, so that GN =

α11e
N
1 + α12e

N
3 + α21e

N
2 + α22e

N
4 .

Since the functional forms for π1 and π2 are polynomials in t1 and t2, a change of basis can

be performed so that the constants in front of t1, t2, and t1t2 are elements of the new basis.

In other words, for agent i we would like to find αi, not to be confused with αij, and γi¬i

such that αi = αi1+αi2

2
and γi¬i = αi1−αi2

2
.

Solving for αi1 in both equations gives αi1 = 2αi − αi2 and αi1 = 2γi¬i + αi2. Adding them

and diving by 2 gives αi1 = αi + γi¬i. Substituting this αi1 and solving for αi2 in either of

the previous two equations for αi1 gives αi2 = αi − γi¬i. We now substitute all α11, α12, α21,
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and α22 in GN = α11e
N
1 + α12e

N
3 + α21e

N
2 + α22e

N
4 , giving

GN = (α1 + γ12)e
N
1 + (α1 − γ12)eN2 + (α2 + γ21)e

N
3 + (α2 − γ21)eN4 .

Rearranging,

GN = α1(e
N
1 + eN3 ) + γ12(e

N
1 − eN3 ) + α2(e

N
2 + eN4 ) + γ21(e

N
2 − eN4 ).

This suggests defining the vectors n1 = eN1 + eN3 = (1, 0, 1, 0), n3 = eN1 − eN3 = (1, 0,−1, 0),

n2 = eN2 + eN4 = (0, 1, 0, 1), and n4 = eN2 − eN4 = (0, 1, 0,−1). It is easy to verify that

n1, n2, n3, and n4 is an orthogonal set of vectors. Furthermore, since there are four of them,

these vectors form an orthogonal basis for R4, the space of GN . We can now write

GN = α1n1 + γ12n3 + α2n2 + γ21n4.

These vectors are shown in normal-form in Table 2.8.

Table 2.8: A New Basis for GN

+1 −1 +1 −1

+1 1, 0 1, 0 +1 1, 0 −1, 0

n1 = eN1 + eN3 = −1 −1, 0 −1, 0 n3 = eN1 − eN3 = −1 −1, 0 1, 0

+1 −1 +1 −1

+1 0, 1 0, −1 +1 0, 1 0, −1

n2 = eN2 + eN4 = −1 0, 1 0, −1 n4 = eN2 − eN4 = −1 0, −1 0, 1
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The derivation of the basis started with taking αi = αi1+αi2

2
. Hence, the value αi is agent i’s

average payoff for choosing strategy +1. Consequently, the value −αi is agent i’s average

payoff for choosing strategy −1. We see that this value is obtained by the agent independent

of what is played by the others. For this reason, αi is interpreted to be agent i’s inherent

preference of +1 over −1. We will use the terms individual preference and personal preference

to refer to the αi parameters.

On the other hand, we see that if γ12 is positive, it describes how much agent 1 gains from

coordinating with agent 2. Conversely, if γ12 is negative, it describes how much agent 1

gains from not coordinating with agent 2. The same argument is true for γ21 with agent

1 and 2 swapped. In other words, interpret γi¬i to be the benefit, or detriment, of agent i

coordinating with agent ¬i. We refer to this as the coordinative pressure of the game. We

will also use the terminology pressure to conform to refer to these coordinates.

To reiterate, this new basis describes the entire space of GN using two vectors for each

player. One of these vectors, αi, describes agent i’s inherent preference over A and B, where

α1 scales n1, and that α2 scales n2. The other vector, γi¬i, describes if, and how much, agent

i wants to coordinate with agent ¬i, where ¬i identifies the agent who is not agent i. Here

we have that γ12 scales n3 and that γ21 scales n4.

GN = α1n
∗
1 + γ12n

∗
2 + α2n

∗
3 + γ21n

∗
4.

Moreover, we can now represent the functional forms given in Theorem 2.4 using the new

basis. We have πNi (t1, t2) = αiti + γi¬itit¬i, where, again, ¬i identifies the agent who is not

agent i. We remind the reader that before we had πNi (t1, t2) = αi1+αi2

2
ti + αi1−αi2

2
tit¬i.

Lastly, we rewrite Theorem 2.6 in terms of this basis.

Theorem 2.8. G is an exact potential game if and only if γ12 = γ21.
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Proof. The result follows immediately from Theorem 2.6 together with the fact that γ12 =

α11 − α12 and γ21 = α21 − α22.

Theorem 2.8 shows that the requirement for a game G to be an exact potential game becomes

γ12 = γ21. We denote this common value by γ and henceforth any use of γ implies γ =

γ12 = γ21. There are no restrictions placed on the individual preferences, and, of course, no

restrictions placed on the externalities and the kernel component (since they are not picked

up by the potential function in the first place). We see, then, that for a game G to be an

exact potential game, the agents both need only have the same pressure to conform, γ > 0,

or to not conform, γ < 0.

This allows us to rewrite the potential function given in Theorem 2.7.

Theorem 2.9. A potential function for G is given by

P (t1, t2) = α1t1 + α2t2 + γt1t2 + c

where γ = γ12 = γ21 and c ∈ R is an arbitrary constant.

We are now ready to discuss the bases for GN
P and (GN

P )⊥.

2.3.4 A Basis for GN
P and (GN

P )⊥

We know that a game G can be written as G = GN+GB+GK where dimGN = 4, dimGB = 2,

and dimGK = 2. In other words, a game G has 8 degrees of freedom; 4 for the Nash

component, 2 for the behavioral component, and 2 for the kernel. For this game G to be an

exact potential game, we need γ12 = γ21. That is, two independent parameters collapse into

one, or, the dimensionality of the Nash subspace of potential games is reduced by 1.
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More precisely, denote the potential subspace of G by GP , and its Nash subspace by GN
P .

Then dimGP = 7 and dimGN
P = 3. Furthermore, for an exact potential game G ∈ GP we can

write its Nash component GN ∈ GN
P as GN = α1n1 +α2n2 +γ(n3 +n4). Letting nγ = n3 +n4,

this becomes GN = α1n1 + α2n2 + γnγ. It is clear that nγ is orthogonal to both n1 and n2

since nγ is composed of a linear combination of n3 and n4, both of which are orthogonal to

n1 and n2. Then, since dimGN
P = 3, it is immediate that GN

P = span{n1, n2, nγ}.

Since dimGN = 4, if we find a vector ñ such that {n1, n2, nγ, ñ} is a linearly independent set,

then we have that GN = span{n1, n2, nγ, ñ}. The implication of this is that we can partition

the Nash space of games into a potential subspace, GN
P , and a, yet to be interpreted, “anti-

potential” subspace, denoted by (GN
P )⊥, i.e., GN = GN

P ⊕ (GN
P )⊥. Finding this vector ñ will

illuminate the structure of the anti-potential space.

Because nγ = n3+n4, we can simply take ñ = n3−n4. The dot product of nγ and ñ is clearly

zero. In addition, since ñ is a linear combination of n3 and n4, this vector is orthogonal to

both n1 and n2. Hence we now have

GN
P = span{n1, n2, nγ} (2.2)

(GN
P )⊥ = span{ñ} (2.3)

GN = GN
P ⊕ (GN

P )⊥ = span{n1, n2, nγ, ñ}. (2.4)

The point of view offered by linear algebra allows us to rephrase the conditions required for a

game to be an exact potential game in terms of orthogonality. We capture this in the below

Theorem 2.10.

Theorem 2.10. Let G be a game. G is an exact potential game if and only if for every

G⊥P ∈ (GN
P )⊥ we have that G ⊥ G⊥P .

Proof. Let G be a game. Consider its Nash component GN = α1n1 + α2n2 + γ12n3 + γ21n4.
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Suppose that G is an exact potential game. Then γ12 = γ21, which we denote by γ. Hence

GN = α1n1 + α3n2 + γnγ. Let G⊥P ∈ (GN
P )⊥. Then we can write G⊥P = γ̄ñ for some γ̄ ∈ R.

One can easily verify that G · G⊥P = 0. Hence, G ⊥ G⊥P .

Now, suppose that for every G⊥P ∈ (GN
P )⊥ we have G ⊥ G⊥P . Write GN = α1n1 +α2n2 +γnγ +

γ̄ñ. Furthermore, write G⊥P = γ̄′ñ. Since G ⊥ G⊥P , we have that G · G⊥P = 0. This means that

γ̄ · γ̄′ = 0. Since γ̄′ is arbitrary, we must have γ̄ = 0 for this equality to hold in general. This

implies G is an exact potential game.

In order to fully understand the implications of Theorem 2.10, let us further explore the

vectors nγ and ñ. Consider the basis vector nγ given in Table 2.9.

+1 −1

+1 1, 1 −1,−1

nγ = −1 −1,−1 1, 1

Table 2.9: The Basis Vector nγ

It is immediate that the vector nγ is a fully symmetric coordination game. From here we

can think of the Nash component of an exact potential game in a new way. We know we can

write the Nash component of an exact potential game G as GN = α1n1 + α2n2 + γnγ. The

quantities α1 and α2 tell us how much each agent invariably prefers +1 or −1. The value γ

tells us the equal value both agents receive from coordinating (or not coordinating if γ < 0).

Let us now explore the class of games that are orthogonal to exact potential games. For

these games the Nash component can be written as GN = b · ñ, for some b ∈ R, where ñ is

shown in Table 2.10.

Immediately we see that the basis vector ñ has the form of a fully symmetric matching

pennies game. We state two theorems regarding this.
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+1 −1

+1 1,−1 −1, 1

ñ = −1 −1, 1 1,−1

Table 2.10: The Basis Vector ñ

Theorem 2.11. The class of symmetric 2 × 2 matching pennies games is orthogonal to

potential games.

Proof. The proof follows immediately from the fact that the class of symmetric 2×2 matching

pennies games is spanned by ñ, which is orthogonal to all vectors spanning the class of

potential games, namely n1, n2, and nγ.

Theorem 2.12. Any game G ∈ G with respect to the Nash structure can written uniquely

as a sum of a potential game and a matching pennies games.

Proof. This is an immediate consequence of GN = span{n1, n2, nγ, ñ} = span{n1, n2, nγ} ⊕

span{ñ}.

These results are directly linked to Candogan et. al.’s decomposition of games into a potential

component, harmonic component, and nonstrategic component [5]. In our language these

components are GNP , (GNP )⊥, and GB + GK , respectively. Candogan et al describe that the

potential component represents the common interest in a game, and the harmonic component

of a game represents the conflict in interest. The second statement is clear from the structure

of (GNP )⊥. The first statement deserves a deeper discussion, which we save for later in the

chapter, after we have extended the theory to n-agent games.
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2.3.5 Three Classes of Potential Games

The possible relationships between the parameters of the Nash component of potential games,

α1, α2, and γ, give rise to three different classes of potential games. The first class is when

the magnitudes of both α1 and α2 are greater than the magnitude of γ. In this class of

potential games, the effect of γ is overpowered by α1 and α2 (notice that this class includes

the case where γ = 0). Here, the agents simply play their individual preferences. We call

these independent potential games.

Another class of potential games is where the magnitude of γ is between the magnitude of

α1 and α2. In this case, the agent with the larger magnitude individual preference, α1 or

α2, plays their preference. The other agent, receiving greater influence from γ, either wants

to coordinate (γ > 0) or anti-coordinate (γ < 0) with the first agent, who is playing their

preference. In other words, the first agent can play their preference and the second agent,

despite what their preference might be, should follow (or go against) the first agent’s choice.

We call these quasi-independent potential games.

The third class of potential games is where the magnitude of γ is greater than the magnitudes

of both α1 and α2. In this case both agents receive most of their influence from γ and

hence want to coordinate with each other when γ > 0, and anti-coordinate when γ < 0.

When γ > 0, this class of potential games may manifest as a Bach or Stravinsky game if

the preferences are in opposing directions.4 If the individual preferences are in the same

direction, then the game is a coordination game with a superior equilibrium reflecting these

preferences. When γ < 0 the game is an anti-coordination game. If the preferences are

opposing, they will simply anti-coordinate on their preferences. If the agents have the same

preferences, however, then only one will play their preference. These potential games are

referred to as dependent potential games.

4In the literature this game is commonly referred to as a “Battle of the Sexes” game. We choose to use
the name “Bach or Stravinsky” in an effort to disassociate the game from gender.
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2.3.6 An Application: The 2× 2 Congestion Game

The origin of potential games comes from Rosenthal’s 1973 study of congestion games [14].

The basic idea behind a congestion game is that there are two roads connecting two cities.

One of these roads is preferred by all agents until it is too crowded. Rosenthal showed that

this game always has a pure strategy Nash equilibrium. Using the language of what has been

developed so far it is easy to demonstrate Rosenthal’s assumptions in terms of the individual

preference parameters, αi for i = 1, 2, and the common interest parameter γ.

The agents both have the same individual preference, which means that sgnα1 = sgnα2.

The agents also both have the common interest of not taking the same road. This means

that γ < 0. Let us analyze the congestion game for the classes of potential games defined in

the previous section.

In the case of an independent potential game, despite not wanting to coordinate, the agents’

preferences for the road dominates the pressure to not conform. Here, the unique pure

Nash equilibrium is where both agents take the preferred road. In the case of a quasi-

independent potential game, the unique pure Nash equilibrium is where the agent with the

greater preference takes their desired road, and the other agent yields and takes the less

preferred road. Lastly, in the case of a dependent potential game, there are two pure Nash

equilibria, both where only one agent takes the preferred road.

The purpose of this short subsection is to show how the assumptions in common interest

games can be directly observed in the parameters developed so far in this chapter.

2.3.7 Ordinal Potential Games

In this section we briefly extend what has been done to the more general class of ordinal

potential games.
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We already know that a game is a potential game when there is no component from (GN
P )⊥.

When there is a component from (GN
P )⊥, however, the game may still have a strong essence

of a potential game– it can be an ordinal potential game. We remind that reader that a

game G is an ordinal potential game if and only if there exists a function that preserves the

sign of the differences in unilateral deviations. Here we use a theorem by Voorneveld5 that

roughly says that a game G is an ordinal potential game if and only if it contains no weak

improvement cycles.6

Hence it suffices for us to show that the matching pennies component of the game coming

from (GN
P )⊥ does not dominate the other components coming from GN

P in such a way that

it brings about unilateral deviation cycles. We will state this as a theorem.

Theorem 2.13. A game G is an ordinal potential game if and only if the parameter γ̃

representing the payoff from the (GN
P )⊥ component of G is bounded as follows

min{−|α1| − γ,−|α2|+ γ} < γ̃ < max{|α1| − γ, |α2|+ γ} (2.5)

Proof. G is an ordinal potential game if and only if, according to the theorem by Voorneveld,

G has no weak improvement cycle. A cycle exists if and only if one of the sets of inequalities

in Table 2.11 is satisfied. The first and second sets of inequalities mean, respectively, that,

α1 + γ + γ̃ ≥ 0

or,

α1 − γ − γ̃ ≥ 0

−α1 + γ + γ̃ ≥ 0 −α1 − γ − γ̃ ≥ 0

α2 − γ + γ̃ ≥ 0 α2 + γ − γ̃ ≥ 0

−α2 − γ + γ̃ ≥ 0 −α2 + γ − γ̃ ≥ 0

Table 2.11: Cycle-Inducing Inequalities

5page 51 of https://pure.uvt.nl/ws/files/320704/voorneveld.pdf
6Cycles brought about by unilateral deviations, including cases where the unilateral difference between

payoffs is zero.
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γ̃ ≥ max{|α1| − γ, |α2|+ γ} (2.6)

γ̃ ≤ min{−|α1| − γ,−|α2|+ γ}. (2.7)

The complement of these regions is exactly the inequalities demanded in the theorem. Hence,

G is an ordinal potential game if and only if γ̃ is outside of the regions in (2.6) and (2.7), or,

if and only if

min{−|α1| − γ,−|α2|+ γ} < γ̃ < max{|α1| − γ, |α2|+ γ}.

The class of ordinal potential games provides an important relaxation to the strict require-

ment of exact potential games. In an exact potential game, the shared γ parameter must be

equal for both agents. In a perhaps overly strict way, this is capturing the idea of “common

interest” between the agents. It is reasonable that this parameter need not be equal for the

agents to still have a “common interest.” This possibility is captured in ordinal potential

games.

2.3.8 Discussion

In this section we explored the structure of 2× 2 potential games. We saw that for a game

to be an exact potential game its payoff structure cannot contain a matching pennies sub-

structure, however small. Well behaved matching pennies components still preserve many

aspects of exact potential games, which extends the space of allowed games to the class of

ordinal potential games. Because potential games depend only on the Nash structure of a

game, we did not include the externality component in our analysis. After extending these

results to 2×2×2 games, and then to 2×. . .×2 games, we discuss the externality structure of
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potential games. In the end of the chapter we identify a special relationship between potential

games and identical play games, a relationship that depends on an alignment between the

Nash and behavioral components. Let us now proceed to study 2× 2× 2 potential games.

2.4 2× 2× 2 Potential Structure

2.4.1 Emergent Structures in the Utility Functions

The basis developed in the previous section naturally extends to situations with more agents.

We skip the steps in the development of this since the process follows the same procedure

as before, and because we prove theorems about this for n agents later in the chapter.

After computations we arrive at the following Nash components of the agents’ payoff func-

tions in a 2× 2× 2 game,

πN1 = α1t1 + γ12t1t2 + γ13t1t3 + δ123t1t2t3

πN2 = α2t2 + γ21t1t2 + γ23t2t3 + δ231t1t2t3

πN3 = α3t3 + γ31t1t3 + γ32t2t3 + δ312t1t2t3.

This immediately reveals some emergent structures in the Nash component of the agents’

utility functions. Like before, for i, j ∈ N, i 6= j, we have γij parameters influencing the

coordination structure of G. This interaction is occuring between all pairs of agents, since

each pair i, j ∈ N has a γij parameter. The same is true in the 2 agent case, of course, where

the number of pairs is 1.

This structure in normal-form, with all γij added for i, j ∈ N , i 6= j, is displayed in Table

2.12. What is clear from both the utility functions and normal-form representation of the
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γ structure is that the γij parameter for agents i and j has no dependence on agent k, for

i, j, k ∈ N , i 6= j, i 6= k, j 6= k. Because of this we see that this is purely a coordination or

anti-coordination force, depending on the sign, between agent i and j.

This structure is incredibly intuitive. For example, if agent 1 has a positive pressure to

conform with agent 2, but wants to anti-coordinate with agent 3, the ideal profile for agent

1 is of the form (t, t,−t). In any other profile, agent 1 must weigh the benefit of conforming

with agent 2 against the cost of conforming with agent 3, or the cost of not conforming

with agent 2 against the benefit of not conforming with agent 3. This opens up modeling in

game theory to not only allow for more intricate assumptions, but to provide a mathematical

framework in which to keep track of and analyze the consequences of assumptions!

+1 −1

+1 γ12 + γ13 γ21 + γ23 γ31 + γ32 −γ12 + γ13 −γ21 − γ23 γ31 − γ32

−1 −γ12 − γ13 −γ21 + γ23 −γ31 + γ32 γ12 − γ13 γ21 − γ23 −γ31 − γ32

+1

+1 −1

+1 γ12 − γ13 γ21 − γ23 −γ31 − γ32 −γ12 − γ13 −γ21 + γ23 −γ31 + γ32

−1 −γ12 + γ13 −γ21 − γ23 γ31 − γ32 γ12 + γ13 γ21 + γ23 γ31 + γ32

−1

Table 2.12: Emergent Structure in 2× 2× 2 Games: γ

Another emergent structure in a 2× 2× 2 game is the one composed of the δijk parameters,

for i, j, k ∈ N, i 6= j, i 6= k, j 6= k. For clarity, we describe how the δ indices should be

interpreted. Given δijk for i, j, k ∈ N, i 6= j, i 6= k, j 6= k, we have that i denotes the player

whose utility function includes this δ parameter, whereas j and k represent other agents in
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N . The order of the other agents does not matter, i.e., δ123 = δ132, and both simply mean

that this is agent 1’s δ parameter in relation to agents 2 and 3. In other words, the order of

the first index matters but the other two are permutable. As a convention, in this thesis, we

use δ123, δ231, and δ312, for agents 1, 2, and 3, respectively.

The question is to interpret the δ-structure. For clarity, this structure is given in normal-

form in Table 2.13. To begin our analysis, notice that if all δ parameters are positive, this

component has Nash equilibria at the profiles (+1,+1,+1), (+1,−1,−1), (−1,+1,−1), and

(−1,−1,+1). On the other hand, if they are all negative, we have equilibria at (−1,−1,−1),

(−1,+1,+1), (+1,−1,+1), and (+1,+1,−1). Furthermore, we notice that if there is any

difference between the signs of δ123, δ231, and δ312, then there are weak-improvement cycles.

We can already tell that the restriction of potential games will prevent this.

+1 −1

+1 δ123 δ231 δ312 −δ123 −δ231 −δ312

−1 −δ123 −δ231 −δ312 δ123 δ231 δ312

+1 +1 −1

+1 −δ123 −δ231 −δ312 δ123 δ231 δ312

−1 δ123 δ231 δ312 −δ123 −δ231 −δ312

−1

Table 2.13: Emergent Structure in 2× 2× 2 Games: δ

It is common in the literature to interpret 2-strategy games as binary option games. For

example, one may choose to vote yes or vote no, or one may wear their seatbelt or not wear

their seatbelt. This component, when all parameters are of the same sign, is showing a pure

Nash equilibrium structure where it is good for either all agents or only a single agent to

choose a strategy. Alternatively, it could be good for either no agents or exactly two agents
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to choose a strategy. This exact pure Nash equilibrium structure is behind the legislator

game, which we analyze after developing the potential structure of 2× 2× 2 games. Let us

proceed in doing this.

2.4.2 Potential Structure

Following the same procedure as in the previous section, we arrive at the below potential

function for a 2× 2× 2 game,

P (t1, t2, t3) = α1t1 + α2t2 + α3t3 + γ′12t1t2 + γ′13t1t3 + γ′23t2t3 + δt1t2t3. (2.8)

Similar to the 2× 2 case, we have collapsed each pair of corresponding γ components, e.g.,

γ12 and γ21, turning 6 initial γ parameters into 3. We also collapsed the 3 δ parameters

into 1. More precisely, we have γ12 = γ21 = γ′12, γ13 = γ31 = γ′13, γ23 = γ32 = γ′23, and

δ123 = δ231 = δ312 = δ. This reduces the original 12 dimensional Nash structure to 7

dimensions, namely, α1, α2, α3, γ
′
12, γ

′
13, γ

′
23, and δ.

As before, we want to find the class of games orthogonal to the class of 2× 2× 2 potential

games. This entails finding a 5-dimensional subspace of GN that is orthogonal to GN
P .

Each of the collapsed γ pairs produces a corresponding matching pennies game, giving three

orthogonal matching pennies components. What is left to find are two vectors orthogonal

to the collapsed δ component. We skip the details of this, as it is standard linear algebra

involving cross products and dot products. The resulting two vectors together describe a

3-agent matching pennies game. In other words, there are three vectors describing 2 × 2

matching pennies games between all pairs of agents, and two vectors that together describe

a 2× 2× 2 generalized matching pennies game between all three agents. However, because

of the non-intuitive nature of these vectors, we offer an alternative basis for the orthogonal
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class of games, which we will later generalize to n agents.

To develop this basis, we establish a standard with which we can write basis vectors and

avoid writing too many normal-form 2 × 2 × 2 game matrices. Consider an arbitrary Nash

component of a 2 × 2 × 2 game in normal-form as shown in Table 2.14. This game can be

represented with the vector (a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4).

+1 −1

+1 a1 b1 c1 a2 −b1 c3

−1 −a1 b2 c2 −a2 −b2 c4

+1

+1 −1

+1 a3 b3 −c1 a4 −b3 −c3

−1 −a3 b4 −c2 −a4 −b4 −c4

−1

Table 2.14: Arbitrary 2× 2× 2 Nash Component

A potential game can then be written as

α1(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) + α2(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)+

α3(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1) + γ′12(1,−1, 1,−1, 1,−1,−1, 1, 0, 0, 0, 0)+

γ′13(1, 1,−1,−1, 0, 0, 0, 0, 1,−1,−1, 1) + γ′23(0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1)+

δ(1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1)

For a fixed strategy of any given agent, we can define a matching pennies game between the

two remaining agents. In a 2 × 2 × 2 game, this gives rise to 6 different matching pennies

games. The vectors describing each of these matching pennies games are linearly dependent,

and one can be eliminated. We write below 5 matching pennies games, omitting the one

between agent 2 and 3 with agent 1’s strategy fixed at −1.

One can verify that the below vectors are linearly independent to the potential structure

33



basis vectors above, and to each other.

m1 = (1,−1, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0)

m2 = (0, 0, 1,−1, 0, 0,−1, 1, 0, 0, 0, 0)

m3 = (1, 0,−1, 0, 0, 0, 0, 0,−1, 1, 0, 0)

m4 = (0, 1, 0,−1, 0, 0, 0, 0, 0, 0,−1, 1)

m5 = (0, 0, 0, 0, 1, 0,−1, 0,−1, 0, 1, 0)

In the 2 × 2 case, we had matching pennies as the subspace orthogonal to the space of

potential games. There this class of games was spanned by a single vector. Here we have 5

vectors that together span the space of generalized matching pennies, where each payoff is

zero-sum. It makes sense that the games orthogonal to common interest games imply that

one agent gains at the cost of the other(s).

We can state a theorem that verifies that this basis spans the generalized class of matching

pennies game, which is done in the next section for n agents.

As in the 2× 2 case, we can transcend the classical cycle arguments used to determine when

games are not exact potential games. Here we simply need the presence of any combination

of these matching pennies components. We state this as a theorem, before analyzing the

Nash equilibrium structures in 2× 2× 2 symmetric potential games.

Theorem 2.14. A 2×2×2 game G is an exact potential game if and only if the coefficients

in front of mi are zero for i = 1, 2, 3, 4, 5.

Proof. The proof is immediate from the fact that each mi for i = 1, 2, 3, 4, 5 is orthogonal to

GP .
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2.4.3 Symmetric 2× 2× 2 Games

For simplicity, in this section we consider the symmetric case of α1 = α2 = α3 = α, and

γ′12 = γ′13 = γ′23 = γ. This reduces the dimensionality of 2 × 2 × 2 potential games from 7

to 3, affording us a more manageable exposition. The symmetric 2× 2× 2 game is given in

normal-form in Table 2.15.

+1 −1 +1 −1

+1 α + 2γ + δ α− δ α− δ α− 2γ + δ

−1 −α− 2γ − δ − α + δ − α + δ −α + 2γ + δ

+1 −1

Table 2.15: Symmetric 2× 2× 2 Game

Since this is a Nash component, we know that in order for a strategy profile to be a pure

strategy Nash equilibrium, we need all payoffs to be positive. Hence, of concern are the

regions between the planes α + 2γ + δ = 0, α− δ = 0, and −α + 2γ − δ = 0. These regions

are given in Figure 2.1, where, without loss of generality, we take α > 0. Here the horizontal

line is δ = α, the line with positive slope is δ = −α+ 2γ, and the line with negative slope is

δ = −α− 2γ.

These regions generate payoff matrices of the forms shown in Tables 2.16 - 2.22.

+1 −1 +1 −1

+1 +,+,+ −,−,− −,−,− −,+,+

−1 −,−,− +,+,− +,−,+ +,+,+

+1 −1

Table 2.16: Region 1; |α + δ| < 2γ & δ > α
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Figure 2.1: γδ-plane with α > 0

+1 −1 +1 −1

+1 +,+,+ −,−,− −,−,− +,+,+

−1 −,−,− +,+,+ +,+,+ −,−,−

+1 −1

Table 2.17: Region 2; α + δ > 2|γ| & δ > α

+1 −1 +1 −1

+1 −,−,− −,+,− −,−,+ +,+,+

−1 +,−,− +,+,+ +,+,+ −,−,−

+1 −1

Table 2.18: Region 3; |α + δ| < −2γ & δ > α

Just as we did for the 2 × 2 case, we can define the classes of 2 × 2 × 2 potential games

(restricted to symmetric games). In regions 1 and 6 we have pure coordination, where there

are exactly two pure Nash equilibria, at (+1,+1,+1) and (−1,−1,−1). In regions 3 and 4
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+1 −1 +1 −1

+1 −,−,− +,+,+ +,+,+ +,−,−

−1 +,+,+ −,−,+ −,+,− −,−,−

+1 −1

Table 2.19: Region 4; |α + δ| < −2γ & δ < α

+1 −1 +1 −1

+1 +,+,+ +,−,+ +,+,− −,−,+

−1 −,+,+ −,−,+ −,+,− −,−,−

+1 −1

Table 2.20: Region 5; α + δ > 2|γ| & δ < α

+1 −1 +1 −1

+1 +,+,+ +,−,+ +,+,− −,−,−

−1 −,+,+ −,−,− −,−,− +,+,+

+1 −1

Table 2.21: Region 6; |α + δ| < 2γ & δ < α

+1 −1 +1 −1

+1 −,−,− +,+,+ +,+,+ −,−,−

−1 +,+,+ −,−,− −,−,− +,+,+

+1 −1

Table 2.22: Region 7; α + δ < −2|γ|
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we have strict anti-coordination, where there are exactly three pure Nash equilibria, either

at (+1,+1,−1) and its permutations in region 4, or at (+1,−1,−1) and its permutations

in region 3. Regions 2 and 7 have exactly four pure Nash equilibria, reflecting the sign of δ.

When δ > 0, in region 2, these pure Nash equilibria are (+1,+1,+1) and all permutations

of (+1,−1,−1), and when δ < 0, in region 7, they are (−1,−1,−1) and all permutations of

(+1,+1,−1). We call this class δ-dominant potential games. Lastly, in region 5 we have a

unique pure strategy Nash equilibrium reflected by the sign of α. Like in the 2× 2 case, we

call these independent potential games.

2.4.4 An Application: The Legislator Game

The legislator game involves three legislators who can either vote for a pay raise, strategy

A, or not vote, strategy B. In order for the vote to go through, a majority of the legislators

need to vote for the raise. None of the legislators want to vote in order to save face with

their voting population. At the same time, the legislators want the pay raise. This game

is commonly built with the value b to denote the benefit from the raise, and the value c to

denote the cost from voting, where b > c. The game in normal-form is displayed in Table

2.23.

A B A B

A b− c b− c b− c b− c b b− c A b− c b− c b − c 0 0

B b b− c b− c 0 0 − c B 0 − c 0 0 0 0

A B

Table 2.23: The Legislator Game

To get a better view into the game, let us take b = 2 and c = 1, producing the normal-form

game in Table 2.24.
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A B A B

A 1 1 1 1 2 1 A 1 1 2 −1 0 0

B 2 1 1 0 0 −1 B 0 −1 0 0 0 0

A B

Table 2.24: Legislator Game with b = 2 and c = 1

This game has four Nash equilibria– nobody votes, and majority (but not all) vote. This

makes sense because none of the legislators want to unilaterally deviate from the strategy

profile where none are voting (they do not want to be the only one to vote), and if they are

already in a profile where the majority is voting for the pay raise, it is in their unilateral

interest to stay there. Let us use the decomposition here to see where the payoffs are coming

from.

A B A B

A −1 −1 −1 1 1 1 A 1 1 1 −1 −1 −1

B 1 1 1 −1 −1 −1 B −1 −1 −1 1 1 1

A B

Table 2.25: Nash Component of Legislator Game

A B A B

A 2 2 2 0 2 0 A 0 0 2 −2 0 0

B 2 0 0 0 0 −2 B 0 −2 0 −2 −2 −2

A B

Table 2.26: Behavioral Component of Legislator Game

As the construction of these games now proves, there are no personal preference components,
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αi for i = 1, 2, 3, and no coordinative pressure components γij between pairs of agents i and j.

But let us take a closer look using the coordinate system. We see that this reflects precisely

the pure Nash equilibrium structure obtained in Region 7, which is given by δ < −α and

α + δ < −2|γ|. Hence, the example is simply a special case where δ = −1 and α = γ = 0.

The pure Nash structure of the legislator game shows that it is almost a coordination game.

However, instead of (+1,+1,+1) being a pure Nash equilibrium, it is split into the equilibria

at (+1,+1,−1) and its permutations. One interpretation of this is that it is a coordination

game with a threshold. It is fine for all agents to play −1 and coordinate on (−1,−1,−1),

however, it is too much to have them all play +1; it is better that only two of them play +1.

The Nash structure of the legislator game only provides half of the picture. The other half

comes from the behavioral component. Analyzing the behavioral component in Table 2.26

shows that the idea of thresholds is present. That is, only when two others vote does a

legislator receive a positive externality. The behavioral term only kicks in to effect when two

other agents choose a specific strategy. We show the behavioral structure in more detail for

2× 2× 2 games in the end of this chapter.

We are now ready to generalize the results to n-agent potential games.

2.5 2× . . .× 2 Potential Structure

Here we describe how the payoff structure observed in 2× 2 and 2× 2× 2 games blossoms

to that in 2× . . .× 2 games.

In the 2× 2 Nash structure, the structure revealed individual preference parameters for the

two agents, α1 and α2, and the coordination parameters between the two agents, γ12 and

γ21. Going to 2 × 2 × 2 uncovered individual preference parameters for all three agents,

α1, α2, and α3, coordination parameters between all ordered pairs of agents, γ12, γ13, γ21,

40



γ23, γ31 and γ32, and an emergent parameter for each agent that is dependent on the three

agents, δ123, δ231, and δ312. In the case of 2 × . . . × 2 games, all agents have individual

preference parameters, all pairs of agents have a coordination parameter, all 3-tuples have

the δ parameter, and so on, until the parameter that is dependent on all agents.

To see this, let us first define our game. Let G = 〈N , S,Π〉 be a game whereN = {1, 2, · · · , n}

is the set of agents, S = {S1, S2, · · · , Sn} is the set containing all agents’ strategy sets,

Si = {+1,−1} is the strategy set for each agent i, and Π = {π1, π2, · · · , πn} is the set of

payoff functions for all agents i. In other words, G is an n-agent 2× · · · × 2 game.

Define ξji1...ij to be agent i1’s Nash parameter that is dependent on the strategies of the j

agents i1, . . . ij. For example, in the 2× 2× 2 case, ξ11 = α1, ξ
2
12 = γ12 and ξ3123 = δ123.

In the n-agent case, there are n total individual preferences ξ1i . For a fixed i, there is

a total of n − 1 pairs (i, j) with first entry i and j 6= i. This gives n − 1 coordination

components γij for agent i, and a total of n(n − 1) coordination parameters for all agents.

For the 3-tuples (i, j, k), assuming the order does not matter except for the first entry, which

designates the agent whose payoff structure includes the parameter, gives
(
n−1
2

)
parameters

for each agent i, and, for all agents, a total of n
(
n−1
2

)
. Continuing in this fashion there

will eventually be a single, or
(
n−1
n−1

)
, parameter ξi,j1,...,jn−1 for each agent that includes their

interaction with all remaining agents. In total there are n
(
n−1
n−1

)
such terms. Hence there are∑n−1

m=0 n
(
n−1
m

)
= n2n−1 Nash parameters.

Count the externality parameters as follows. Agent i will receive an externality from all

other individual agents, from each pair of agents, and so on. Hence, for each agent, there

are n− 1 +
(
n−1
2

)
+ . . .+

(
n−1
n−1

)
= 2n−1 − 1 externality parameters. Since this is so for every

agent, the total count for the game is n(2n−1 − 1).7

The kernel, a constant value for each agent, will contribute an additional n parameters.

7The externality structure is explained in more detail at the end of this chapter.
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Summing these gives n2n−1 + n + n(2n−1 − 1) = n2n, which is precisely the dimensionality

of a 2× . . .× 2 game.

Without loss of generality, and because it simplifies the indices of the summations, we show

only agent 1’s Nash, behavioral, and kernel components of the utility function.

πN1 (t1, . . . , tn) = ξ11t1 +
∑

unordered
pairs (1,j)

ξ21jt1tj +
∑

unordered
3−tuples (1,j,k)

ξ31jkt1tjtk + . . .

. . . +
∑

unordered
(n−1)−tuples
(1,...,in−1)

ξn−11...in−1
t1 . . . tin−1 + ξn12...nt1 . . . tn

πB1 (t1, . . . , tn) =
n∑
i 6=1

ζ11iti +
∑

unordered
pairs (i,j)
i,j 6=1

ζ21ijtitj +
∑

unordered
3−tuples (i,j,k)

i,j,k 6=1

ζ31ijktitjtk + . . .

. . . +
∑

unordered
(n−2)−tuples
(i1,...,in−1)

none of which=1

ζn−2i1...in−2
ti1 . . . tin−1 + ζn−112...n−1t2 . . . tn

πK1 (t1, . . . , tn) = κ1

Where here the parameters ξji1...ij denote the Nash parameters dependent on the strategies

of the j agents i1, . . . ij, as described earlier in the section. Similarly ζji1...ij denotes the

externality parameter with same interpretation of indices as ξji1...ij .

2.5.1 2× . . .× 2 Potential Games

Following what was observed in the 2× 2 and 2× 2× 2 case, we collapse all the shared Nash

components. In the 2× 2× 2 game this meant taking ξ2ij = ξ2ji, or γij = γji, for all unordered
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pairs of agents (i, j), and ξ3ijk = ξ3jki = ξ3kij, or δijk = δjki = δkij, for the three agents i, j, and

k.

Since the ξ1i have been left alone for each i ∈ N , there are n of these parameters. Then,

because we are collapsing ξ2ij and ξ2ij this is equivalent to saying that the order of the sub-

scripts now does not matter. Hence, calculating this value before gave n
(
n−1
1

)
, and now it is(

n
2

)
. In this manner, all Nash parameters in the 2× . . .× 2 potential game can be calculated

to be
∑n

m=1

(
n
m

)
= 2n − 1, where before it was n

∑n−1
m=0

(
n−1
m

)
= n2n−1 Nash parameters.

Consequently, the subspace of the Nash space that is orthogonal to potential games has

dimensionality n2n−1− (2n− 1) = 2n−1(n− 2) + 1. This is the generalized matching pennies

subspace.

In a similar fashion as for the 2 × 2 and 2 × 2 × 2 potential games, the potential function

can be written in the form,

P (t1, . . . , tn) =
n∑
i=1

ξ1i ti +
∑

unordered
pairs (i,j)

ξ2ijtitj +
∑

unordered
3−tuples (i,j,k)

ξ3ijktitjtk + . . .

. . . +
∑

unordered
(n−1)−tuples
(i1,...,in−1)

ξn−1i1...in−1
ti1 . . . tin−1 + ξn12...nt1 . . . tn (2.9)

The structure given by each m-tuple parameter is easier to analyze than it first may seem.

This is because they are given by the product of the strategies ti for every i in the m-tuple,

and each ti can be either +1 or −1. When this is a pair, we only have titj for i, j in the

pair. This will be positive when exactly both ti and tj are positive or both are negative,

and it will be negative otherwise. This gives the coordination structure between the pair of

agents. Now, for any m-tuple we have the product ti1 . . . tim . For even m this will be positive

exactly when there are an even number of agents playing +1 and an even number of agents

playing −1. For odd m this will be positive exactly when there are an even number (or zero)

43



of agents playing −1. Each structure, in absence of the other ones, has pure strategy Nash

equilibria in the cases where all agents involved in the structure play +1 or an even number

play −1. Multiplying these structures by −1 switches this around.

For example, take n = 5. Then for the each agent i the ξ1i parameter will contribute its value

to all agent i’s payoffs where agent i plays +1, and will contribute the negative of its value

to all profiles where agent i plays −1. This is clear since ξ1i is affected by only ti. For each

pair of agents (i, j), the ξ2ij parameter will contribute its value to the payoff of i precisely

when i and j both play +1 or both play −1, and its negative when i and j play different

strategies. For each 3-tuple of agents, ξ3ijk will contribute its value to the payoffs of agent i

in all cases where i, j, and k, play (+1,+1,+1) and all permutations of (+1,−1,−1), and

its negative value in all other strategy combinations. For each 4-tuple of agents, the ξ4ijkl

parameter will contribute to agent i’s payoff when the four agents play (+1,+1,+1,+1) and

all permutations of (+1,+1,−1,−1), and will contribute its negative in all other strategy

combinations of the four agents. Finally, for the 5-tuple consisting of all agents, the ξ5ijklm

parameter will contribute to agent i’s payoff when the five agents play (+1,+1,+1,+1,+1)

and all permutations of (+1,+1,+1,−1,−1) and (+1,−1,−1,−1,−1), and will contribute

its negative value in all other strategy choices.

An important feature of the components and the payoffs they contribute to the overall payoff

structure of the game is captured in the below theorem.

Theorem 2.15. A ξm component cannot be created from a linear combination of the ξk

components for k < m.

Proof. This is immediate from the orthogonality of the terms.

An important implication of this theorem is more easily seen considering the 2× 2× 2 case.

Here the shared δ component cannot be built from a linear combination of α1, α2, α3, γ12, γ13,
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and γ23. In other words, modeling a 2× 2× 2 game as an aggregate of smaller 2× 2 games

cannot capture the complete structure of 2× 2× 2 games. This idea is behind the following

corollary to Theorem 2.15.

Corollary 2.15.1. In terms of Nash structure, an n-agent 2 × . . . × 2 potential game can

be represented as the sum of all smaller m-agent interactions if and only if ξk = 0 for all

k > m.

Proof. Let G be an n-agent 2 × . . . × 2 potential game that can be represented as the sum

of all smaller m-agent interactions. Then ξk = 0 for all k > m because otherwise the sum of

all smaller m-agent interactions would not be able to produce the effect of ξk on the payoff

structure of G. For the other direction, let G be an n-agent 2× . . .× 2 potential game with

ξk = 0 for all k > m. Then, because there are no terms dependent on more than m agents,

G can be represented as a sum of all smaller m-agent interactions.

The above corollary concerns modeling and reducibility. Often times, research questions in

game theory involve a large number of agents, but because of the complexity of in modeling

these games, simplifying assumptions about the nature of the micro-interactions are made.

For instance in [18], [19], and [12], an n-agent game on a network is modeled by defining

each agent’s payoff as the sum of their 2 × 2 interactions with their neighbors. Corollary

2.15.1 tells us that this is only an accurate representation if the situation being modeled has

no important higher order interactions of 3 or more agents.

2.5.2 Generalized Matching Pennies

In this section, sketches for constructing a basis is offered for the subspace of the Nash

space that is orthogonal to the potential space, the n-agent generalized matching pennies
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space of games. In the previous section the dimensionality of this space was calculated to

be 2n−1(n− 2) + 1.

A 2× . . .×2 game can be thought of as an n-dimensional cube where each vertex corresponds

to a strategy profile. Each agent can move along the edges of the cube in their dimension

by switching strategies. In the 2-agent case this is simply a square and agent 1 can move

along the x-axis, and agent 2 along the y-axis, where each vertex is one of the strategy

profiles (+1,+1), (+1,−1), (−1,+1), and (−1,−1). Here there is only one matching pennies

component, the matching pennies game on the unique face of the square.

In the 2× 2× 2 case, the generalized matching pennies component is 5-dimensional, and the

basis for this was defined using a matching pennies game in 5 of the faces of the cube (a

matching pennies game for the remaining face can be constructed using a linear combination

of the other components).

For 2 × . . . × 2 games this will follow a similar pattern. For agent 1, define a matching

pennies game with all other agents, on every relevant face. For example, with agent 1 and

2 there will be a matching pennies game when the strategies of the remaining agents are

fixed across all 2n−2 possibilities. Doing this for every pair of agents including agent 1 gives

a total of (n − 1)2n−2 matching pennies vectors. With agent 2, follow a similar process.

For agents k = 3 up to n − 1, construct a matching pennies vector on all faces of the

cube where agent 2 and k are playing with fixed strategies for the remaining agents. For

agent n we only include one such vector. In total this contributes (n − 3)2n−2 + 1. Then,

(n− 1)2n−2 + (n− 3)2n−2 + 1 = 2n−1(n− 2) + 1, which is the dimensionality of the subspace.

The results regarding the class of games orthogonal to potential games can be extended.

Firstly, any 2× . . .×2 game can be written as the sum of a potential game plus a generalized

matching pennies game. Consequently, any game whose dot product with the vectors of

this class is not zero is not an exact potential game because its payoff structure is built
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from vectors from this space. With this, instead of classifying such games using the cyclic

conditions often seen in the literature, we can interpret them as containing any one of the

plethora of conditions that are constructible using the basis described.

Now that the structure of 2-strategy potential games for any number of agents has been

exposed, let us open the first door to extending these results to any number of strategies. In

this thesis we develop the structure only for 3× 3 potential games.

2.6 3× 3 Potential Structure

In the 2× 2 case things are nice because the agents can pick between strategies +1 and −1,

which allowed for a very natural construction of utility functions. In the three agent case,

although it is not as simple, results can be derived.

The Nash, Behavioral, and Kernel structures of a 3× 3 game are given in Tables 2.27, 2.28,

and 2.29, respectively.

A B C

A η111 η211 η112 η221 η113 η231

B η121 η212 η122 η222 η123 η232

C η131 η213 η132 η223 η133 η233

Table 2.27: 3× 3 Nash Structure

Where for the Nash component we must have ηik3 = −ηik1 − ηik2 for each agent i = 1, 2 and

for k = 1, 2, 3 [8]. For the behavioral component we must have βi3 = −βi1 − βi2 for each

agent i = 1, 2 [8].
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A B C

A β11 β21 β12 β21 β13 β21

B β11 β22 β12 β22 β13 β22

C β11 β23 β12 β23 β13 β23

Table 2.28: 3× 3 Behavioral Structure

A B C

A κ1 κ2 κ1 κ2 κ1 κ2

B κ1 κ2 κ1 κ2 κ1 κ2

C κ1 κ2 κ1 κ2 κ1 κ2

Table 2.29: 3× 3 Kernel

2.6.1 A Change of Basis

The Nash Component

We reference Table 2.27. Because ηik3 = −ηik1− ηik2 for each agent i = 1, 2 and for k = 1, 2, 3,

there are six independent parameters per agent in the Nash component of a 3 × 3 game.

Thus, in total, the Nash component of a 3 × 3 game is 12-dimensional. We can represent

these 12 independent parameters with a canonical 12-dimensional basis, where the first 6

dimensions are reserved for agent 1, and the last 6 for agent 2. These are shown below, first

for agent 1.

e11 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), e12 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

e13 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), e14 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

e15 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), e16 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
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For agent 2,

e21 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), e22 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

e23 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), e24 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

e25 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), e26 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

The Nash component in Table 2.27 can then be written as η111e11 + η112e12 + η113e13 + η121e14 +

η122e15 + η123e16 for agent 1, and η211e21 + η212e22 + η213e23 + η221e24 + η222e25 + η223e26 for agent 2.

Following a similar procedure as in the 2×2 case, we look for vectors representing individual

preferences, and vectors representing social pressures (like the pressure to conform in the

2× 2 case). For simplicity and without loss of generality we only consider agent 1’s vectors

and omit the last 6 zeros. We propose the basis below,

e∗11 = (1, 1, 1, 0, 0, 0)

e∗12 = (0, 0, 0, 1, 1, 1)

e∗13 = (2, 0, 0,−1, 0, 0)

e∗14 = (0,−1, 0, 0, 2, 0)

e∗15 = (0, 0,−1, 0, 0,−1)

e∗16 = (0,−1, 1, 1, 0,−1)

The vectors e∗11 and e∗12 span the space of all rankings over strategies A, B, and C, where

the sum is equal to zero, and where this ranking is invariant over the other agent’s strategy.

Hence we immediately associate these vectors with the individual preference components we

have discussed at length in the previous sections.

This invariance is not present in vectors e∗13, e
∗
14, e

∗
15, and e∗16, but together, these vectors have
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the essence of coordination. The first three, e∗13, e
∗
14, and e∗15, are in the perspective of pure

coordination. If these are positive, then there are pressures to coordinate on (A,A), (B,B),

and (C,C). If these are negative, then there are pressures to anti-coordinate. Without the

remaining vector we are not able to distribute the anti-coordinative weight. For example, it

might be better to play C when the other agent plays A, than to play B.

We represent this basis as matrices to make the definition of the agents’ utility functions

simpler. We have e∗i = Ai for i = 1, 2, 3, 4, 5, 6. Here the superscript of the matrix is not

an exponent but simply indexes the different basis matrices. The subscript will be saved to

designate specific row-column entries. More precisely, Akij means the entry in the ith row and

jth column of Ak. If a matrix is invariant over its columns, then Aki represents the entry in

the ith row of Ak.

1 1 1

0 0 0

A1 = −1 −1 −1

0 0 0

1 1 1

A2 = −1 −1 −1

2 0 0

−1 0 0

A3 = −1 0 0

0 −1 0

0 2 0

A4 = 0 −1 0

0 0 −1

0 0 −1

A5 = 0 0 2

0 −1 1

1 0 −1

A6 = −1 1 0

Now we let us rename the strategies A, B, and C, to the numbers 1, 2, and 3, respectively.

Hence we can write the Nash component of agent 1’s utility function as, where t1, t2 = 1, 2, 3,

πN1 (t1, t2) = α11A
1
t1

+ α12A
2
t1

+ γ11A
3
t1t2

+ γ12A
4
t1t2

+ γ13A
5
t1t2

+ γ14A
6
t1t2

(2.10)

This is nice because agent 2’s utility function has the same underlying matrices, but with t1
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and t2 swapped. This gives,

πN2 (t1, t2) = α21A
1
t2

+ α22A
2
t2

+ γ21A
3
t2t1

+ γ22A
4
t2t1

+ γ23A
5
t2t1

+ γ24A
6
t2t1

(2.11)

The Behavioral and Kernel Components

Consider the behavioral component given in Table 2.28. One notices that the behavioral

values have the same underlying structure as the individual preferences, except with the

agents switched. For example, an agent can receive one of three individual preference values

from choosing a strategy, and at the same time, impose one of three externality values on the

other agent, both with dimensionality 2. Mathematically, this means that we can use the

same underlying matrices A1 and A2 for both the individual preferences and the externalities.

This gives

πB1 (t1, t2) = β11A
1
t2

+ β12A
2
t2

(2.12)

πB2 (t1, t2) = β21A
1
t1

+ β22A
2
t1

(2.13)

The kernel component is trivial as it is invariant over any strategy profile. In other words,

πK1 (t1, t2) = κ1 (2.14)

πK2 (t1, t2) = κ2 (2.15)

We now state a theorem.

Theorem 2.16. A 3× 3 game G can be represented by the utility functions for agents 1 and
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2 shown below,

π1(t1, t2) = α11A
1
t1

+ α12A
2
t1

+ γ11A
3
t1t2

+ γ12A
4
t1t2

+ γ13A
5
t1t2

+ γ14A
6
t1t2

+ β11A
1
t2

+ β12A
2
t2

+ κ1 (2.16)

π2(t1, t2) = α21A
1
t2

+ α22A
2
t2

+ γ21A
3
t2t1

+ γ22A
4
t2t1

+ γ23A
5
t2t1

+ γ24A
6
t2t1

+ β21A
1
t1

+ β22A
2
t1

+ κ2 (2.17)

Proof. This follows from the nine simple, but tedious, computations over all combinations

of values t1, t2 = 1, 2, 3.

2.6.2 Potential Game Requirements

For G to be a potential game we need the existence of a potential function that reflects all

possible unilateral deviations. Begin by defining the potential function P (t1, t2) = π1(t1, t2)+

π2(t1, t2).

This means for player 1 we need

π1(1, 1)− π1(2, 1) = P (1, 1)− P (2, 1)

π1(1, 1)− π1(3, 1) = P (1, 1)− P (3, 1)

π1(1, 2)− π1(2, 2) = P (1, 2)− P (2, 2)

π1(1, 2)− π1(3, 2) = P (1, 2)− P (3, 2)

π1(1, 3)− π1(2, 3) = P (1, 3)− P (2, 3)

π1(1, 3)− π1(3, 3) = P (1, 3)− P (3, 3)
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We also need this for player 2.

π2(1, 1)− π2(1, 2) = P (1, 1)− P (1, 2)

π2(1, 1)− π2(1, 3) = P (1, 1)− P (1, 3)

π2(2, 1)− π2(2, 2) = P (2, 1)− P (2, 2)

π2(2, 1)− π2(2, 3) = P (2, 1)− P (2, 3)

π2(3, 1)− π2(3, 2) = P (3, 1)− P (3, 2)

π2(3, 1)− π2(3, 3) = P (3, 1)− P (3, 3)

After going through these calculations, we see that in order for G to be a 3×3 potential game

with the basis offered in this section, we need γ1i = γ2i for i = 1, 2, 3, 4, which we relabel as

γi. In addition, like in the 2-strategy case, the potential function must exclude the behav-

ioral terms. We summarize these results in the following two theorems and accompanying

corollary.

Theorem 2.17. A 3 × 3 game G with utility functions given in (2.16) and (2.17) is a

potential game if and only if γ1i = γ2i for i = 1, 2, 3, 4.

Proof. This follows from taking P (t1, t2) = π1(t1, t2) + π2(t1, t2) and checking all possible

unilateral deviations in P with the respective agent’s payoff function. From here, it is

immediate that γ1i = γ2i for i = 1, 2, 3, 4 is needed. The entire process, though tedious, is

straightforward.

Theorem 2.18. If G is a 3 × 3 potential game, then any potential function for G can be

written as

P (t1, t2) = α11A
1
t1

+α12A
2
t1

+α21A
1
t2

+α22A
2
t2

+γ1A
3
t1t2

+γ2A
4
t1t2

+γ3A
5
t1t2

+γ4A
6
t1t2

+c (2.18)

where c ∈ R is an arbitrary constant.
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Proof. Similar to the proof of Theorem 2.17, this amounts to checking that the differences

in all unilateral deviations agree between P and the respective πi.

Corollary 2.18.1. The potential function of a 3× 3 potential game G depends only on the

Nash component of G.

Proof. This follows immediately from the form of P (t1, t2) given in Theorem 2.18.

2.6.3 The 3× 3 Orthogonal Subspace

We re-emphasize that the requirement on the Nash parameters that G be a potential game

are that γ1i = γ2i for i = 1, 2, 3, 4. This means combining the four vectors whose coefficients

are γ1i and γ2i into single vectors with coefficients γi for i = 1, 2, 3, 4. To find the orthogonal

vectors then, just as we did in the 2×2 case, we can define four vectors where the coefficient

γ1i = −γ2i. It is a straightforward computation to verify that these are indeed orthogonal.

What this amounts to is defining the vectors n1 = e∗13 + e∗23, n2 = e∗14 + e∗24, n3 = e∗15 + e∗25

and n4 = e∗16 + e∗26. Similarly we define ñ1 = e∗13 − e∗23, ñ2 = e∗14 − e∗24, ñ3 = e∗15 − e∗25 and

ñ4 = e∗16 − e∗26.

e∗11 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), e∗12 = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

e∗13 = (2, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0), e∗14 = (0,−1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)

e∗15 = (0, 0,−1, 0, 0,−1, 0, 0, 0, 0, 0, 0), e∗16 = (0,−1, 1, 1, 0,−1, 0, 0, 0, 0, 0, 0)

e∗21 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0), e∗22 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)

e∗23 = (0, 0, 0, 0, 0, 0, 2, 0, 0,−1, 0, 0), e∗24 = (0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 2, 0)

e∗25 = (0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1), e∗26 = (0, 0, 0, 0, 0, 0, 0,−1, 1, 1, 0,−1)
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For clarity, we represent these vectors in normal-form below.

2, 2 0,−1 0,−1

−1, 0 0, 0 0, 0

n1 = −1, 0 0, 0 0, 0

0, 0 −1, 0 0, 0

0,−1 2, 2 0,−1

n2 = 0, 0 −1, 0 0, 0

0, 0 0, 0 −1, 0

0, 0 0, 0 −1, 0

n3 = 0,−1 0,−1 2, 2

0, 0 −1,−1 1, 1

1, 1 0, 0 −1,−1

n4 = −1,−1 1, 1 0, 0

2,−2 0, 1 0, 1

−1, 0 0, 0 0, 0

ñ1 = −1, 0 0, 0 0, 0

0, 0 −1, 0 0, 0

0, 1 2,−2 0, 1

ñ2 = 0, 0 −1, 0 0, 0

0, 0 0, 0 −1, 0

0, 0 0, 0 −1, 0

ñ3 = 0, 1 0, 1 2,−2

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

ñ4 = −1, 1 1,−1 0, 0

It is clear that the vector ñ4 = is a rock-paper-scissors game. Extending what was done

in the 2 × 2 case, we see that the rock-paper-scissors game is a one-dimensional subclass

in the generalized 3 × 3 matching pennies games, which comprises the subspace of games

orthogonal to potential games.

2.7 Externalities

The purpose of this section is to establish a basis for the behavioral component of games.

Since potential games place no requirements on the behavioral component, the work done in
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this section applies to games in general. We use the terms behavioral component, externality

component, and externality structure interchangeably.

2.7.1 2× 2 Externality Structure

The 2×2 behavioral component is given in normal-form in Table 2.30. We offer no alternative

basis for the 2× 2 behavioral component since the intuition already offered is one we would

like to adopt. This intuition is that the choice of each agent i has, as a consequence, β¬i

when they play +1 and −β¬i when they play −1, where ¬i represents the agent who is not

agent i.

+1 −1

+1 β1 β2 −β1 β2

−1 β1 −β2 −β1 −β2

Table 2.30: 2× 2 Externality Structure

2.7.2 2× 2× 2 Externality Structure

The 2 × 2 × 2 behavioral component is given in normal-form in Table 2.31, where βi4 =

−βi1 − βi2 − βi3. It is immediate that dimGB = 9.

In the section where we developed the potential structure of 2× 2× 2 games, we discussed

only the Nash component of the agents’ payoff functions. We now extend these functions

to include the externality terms. We propose the following behavioral component of the

payoff functions, which can be verified to form an orthogonal spanning set of the behavioral
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component.

πB1 (t1, t2, t3) = β12t2 + β13t3 + β123t2t3

πB2 (t1, t2, t3) = β21t1 + β23t3 + β231t1t3

πB3 (t1, t2, t3) = β31t1 + β32t2 + β312t1t2

+1 −1

+1 β11 β21 β31 β12 β21 β33

−1 β11 β22 β32 β12 β22 β34

+1

+1 −1

+1 β13 β23 β31 β14 β23 β33

−1 β13 β24 β32 β14 β24 β34

−1

Table 2.31: 2× 2× 2 Externality Structure

For each agent the externality structure is 3-dimensional. We propose a more intuitive basis.

Right now, for each agent, the basis is (1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1). We propose the

basis (1,−1, 1,−1), (1, 1,−1,−1), (1,−1,−1, 1). It is easy to verify that these vectors are

orthogonal to each other and to the Nash and kernel terms.

In agent 1’s perspective, the first vector isolates the externalities brought about by agent 2,

the second vector are the externalities brought about by agent 3, and the last vector gives

the externalities dependent on both agent 2 and agent 3. More specifically, this externality

reflects the effects of agents 2 and 3 coordinating. For example, if both play +1 or both

play −1, the result is the same. If both play different strategies, however, the result is the
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negative of when both agents coordinate.

In other words, this basis offers a way of understanding the externalities as the sum of the

individual and combined actions of the other agents.

2.7.3 2× . . .× 2 Externality Structure

The externality structure extends to a higher number of agents in precisely the same way

the Nash structure extended. Each agent will receive n − 1 individual externalities from

the other agents. Then every pair of agents has a coordination externality, this gives
(
n−1
2

)
externalities for each agent. This continues until we have the externality coming from the

combined strategies of the remaining n− 1 agents.

Without loss of generality, we write the behavioral component of the payoff function for

agent 1 to simplify the indices of the summations,

πB1 (t1, . . . , tn) =
n∑
i=2

β1iti +
∑

ordered
pairs (i,j)
i,j 6=1,i<j

β1ijtitj + . . .+ β12...nt2 . . . tn (2.19)

We make note that this, in many ways, mirrors the Nash structure. The Nash structure of

the game, for each agent i, involves agent i’s individual decision and all higher-order decisions

with additional agents. The behavioral structure of the game, for each agent i, involves the

individual decision of all other agents, in addition to all high-order decisions between these

remaining agents.

2.7.4 3× 3 Externality Structure

This was discussed in the 3× 3 section, like the 2× 2 case, we explore no additional bases.
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2.8 Identical Play

The class of identical play games is a curious class of games where in each strategy profile,

all agents receive the same payoffs. With the payoff functions developed in this chapter, a

simple way to think about this is the fact that these payoff functions have to be equal. In

the 2× 2 case this is simply π1(t1, t2) = π2(t1, t2). The only way for this to be the case is for

the coefficients in front of each t1, t2, t1t2, 1 to be the same. The results of this are stated in

the below theorem.

Theorem 2.19. A 2 × 2 game is an identical play game if and only if α1 = β2, α2 = β1,

γ12 = γ21, and κ1 = κ2.

Proof. This is immediate from setting π1(t1, t2) = π2(t1, t2).

The implication of Theorem 2.19 is that what an agent receives individually in terms of their

α must be equal to the externality they produce. For example, if agent 1 receives α1 from

playing strategy +1, then agent 2 will receive the externality α1 from this decision, too. In

other words, what an agent receives must be equal to what they give. We now state an

immediate corollary relating potential games and identical play games.

Corollary 2.19.1. The space of 2 × 2 identical play games is a subspace of the space of

potential games.

Proof. From Theorem 2.19 it is immediate that identical play games are potential games

because γ12 = γ21. Furthermore, identical play games place restrictions on the externality

terms, which potential games do not. Because of this, it follows that potential games include

identical play games.

In other words, a potential game (with equal kernel values for all agents) can be transformed

into an identical play game from an appropriate choice of the externality terms. Let us
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see how this extends to 3 agents. In this case we will need π1(t1, t2, t3) = π2(t1, t2, t3) =

π3(t1, t2, t3). We state the results of this in the following theorem.

Theorem 2.20. A 2× 2× 2 game is an identical play game if and only if α1 = β21 = β31,

α2 = β12 = β32, α3 = β13 = β23, γ12 = γ21 = β312, γ13 = γ31 = β231, γ23 = γ32 = β123 and

κ1 = κ2 = κ3.

Proof. This is immediate after setting π1(t1, t2, t3) = π2(t1, t2, t3) = π3(t1, t2, t3).

Our interpretation of the 2× 2 case immediately carries over, but here we must also include

the coordination components. Now, in addition to the requirement that the externality

imposed on others having to equal the amount gained individually, the amount gained from

coordinating with another agent must produce the same externality to the agent originally

excluded from the coordination. In agent 1’s point of view this is captured succinctly by the

equality γ23 = γ32 = β123. Here, what agent 2 receives from coordinating with agent 3, γ23,

must equal what agent 3 receives from coordinating with agent 2, γ32, which must also equal

what agent 1 receives from the coordination of agents 2 and 3, β123.

We now state the extension of Corollary 2.19.1 to the case of 3 agents.

Corollary 2.20.1. The space of 2× 2× 2 identical play games is a subspace of the space of

potential games.

Proof. The proof amounts to the same verifications involved in the proof of Corollary 2.19.1.

The pattern naturally extends to the case of n agents. Here we must have that for each

agent i their individual preference αi equals the externality produced from this decision to

all agents, that is αi = βji for all i and j 6= i. For the higher terms, the pattern is the

same. For example each γij = γji but is also equal to βkij for all i 6= j, i 6= k, j 6= k. The
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implications of this are fascinating, as the consequences of each action– individual decisions,

coordination decisions, and higher-order decisions– must be the same for all agents.

2.9 Common Interest

We have mentioned that potential games are often referred to as common interest games.

We have shown that potential games depend only on the Nash structure of the game. Hence,

it should follow that “common interest” depends only on the Nash structure of the game.

When taking the payoff functions for a general game and imposing the requirements of a

potential game, we collapsed the parameters of all agents involved in a particular component.

In the 2×2×2 case, for example, we had γ12 = γ21, γ13 = γ31, γ23 = γ32, and δ123 = δ231 = δ312.

Because of this we associate the idea of “common interest” to these parameters becoming

“common” parameters.

However, is this good enough?

In the 2 × 2 case, a potential game with all components equal to zero except α1 and α2

is still a potential game. Here it is arguable that although the game is a potential game,

there is no common interest. Even if the two agents have the same individual preference,

we cannot say this preference is common interest in the sense where obtaining this result

is dependent on both of their actions. If the only parameters of the game are α1 and α2,

agent 1 and 2 can receive the payoff for playing their preference independent of what the

other agent does. For this reason, we do not consider α1 and α2 as belonging to the common

interest structure of the game. If the individual preferences happen to be aligned, a more

appropriate terminology may be coincidental interest.

This suggests that the shared parameters of the game need to be positive in order for there
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to be common interest in the Nash component. In addition, it is worth considering the payoff

structure orthogonal to the Nash component, the externality structure.

As we pointed out, as it stands, the definition of common interest must rely only on the Nash

component of the game. Nevertheless, the externality structure plays an important role, and

we saw that when the Nash component and the externality structure align in a special way,

this gives rise to identical play games. Should the externalities be included in the notion of

common interest? A quick answer is no, which agrees with the current literature because

the notion of potential games and hence common interest ignores the behavioral component.
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Chapter 3

Innovation Diffusion on Networks

3.1 Introduction

Innovation diffusion on networks is often modeled as a 2 × 2 symmetric coordination game

played with neighbors on a network [18] [19] [12]. Recall that a coordination game is where

the players have incentive to play the same or corresponding strategies, i.e., to coordinate.

In the case of two strategies, this yields a game with two pure strategy Nash equilibria.

An important question arises concerning equilibrium refinement– which equilibrium gets

played? A common approach to this involves the notion of risk-dominance. Intuitively, a

pure strategy Nash equilibrium is risk-dominant if it is less risky. In other words, if the agents

playing the coordination game are unsure of each other’s strategies, it is expected that they

will play the risk-dominant equilibrium since, in the face of uncertainty, this equilibrium is

“safe.” In more technical terms, the risk-dominant Nash equilibrium has a larger basin of

attraction.

Furthermore, the risk-dominant pure strategy Nash equilibrium describes the long-run be-

havior of several dynamics like log-linear learning [4]. Because coordination games are also
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potential games, a potential function exists, and, as it turns out, the global maximum of

the potential function is the risk-dominant equilibrium of the game (a fact that is proved in

the first theorem of the chapter). Examples exist where the potential maximizing strategy

profile, hence the probable outcome of many dynamics, differs from the strategy profile that

maximizes social welfare, according to whichever measure. Specifically, Young [18] shows an

example of this using the utilitarian measure of social welfare, which sums all payoffs in a

given strategy profile.

Young uses the potential function together with the notion of close-knittedness, a graph-

theoretic property, to characterize when subsets of agents will increase the potential function

through their collective deviation [18] [19]. Roughly, a set of agents is close-knit if no subset

has too many of their interactions with outsiders. This is a useful characteristic, as it is

used to find bounds on the time it takes for the innovation to diffuse. In [19], Young uses

a 1-dimensional parametrization of coordinate games in such a way that the same strategy

profile globally maximizes both potential and welfare.

Newton and Sercombe point out that a collective deviation that increases the payoff of all

deviating agents may actually decrease potential [12]. This has the flavor as the example

originally pointed out in Young [18]. To handle this, Newton et. al., give an alternative,

2-dimensional model to Young’s [19] in such a way that their underlying coordination game

has the same potential function as [19]. This additional parameter, they show, is not picked

up by the potential function. With it, they develop a series of results analogous to those by

Young [19], but instead of potential-maximizing deviating subsets, they characterize those

subsets whose deviation increases the payoff of all members of the subset. Here, the graph-

theoretic notion of cohesion is used, which measures how often individuals within a group

interact with outsiders.

Our work from chapter 2 echoes strongly here. For instance, it was shown in 2 that the

potential function does not take into account the behavioral component of the game. The
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social welfare function, on the other hand, picks up the behavioral component that the

potential function misses. Thanks to the decomposition we already know that this will be

the reason for any disagreement.

In this chapter, we provide a full description of when there is agreement and disagreement

between the potential function and the welfare function. We begin by analyzing symmetric

2 × 2 games, as used by Young in [18] and [19], and Newton et. al., in [12]. Note that the

coordinate system for potential games from chapter 2 reduces to 3 dimensions (4 with the

kernel) under the assumption of symmetry, going beyond the 1-dimensional game in [19]

and 2-dimensional game in [12]. All of this is summarized in Figures 3.2 and 3.3. Then, we

follow a similar analysis for broken α and β symmetries, allowing each agent i a different

individual preference αi and a different externality term βi. This, in turn, gives a more

general 5-dimensional model (7 with the kernel). To conclude the chapter, we study the

symmetric game on networks before putting the notions of close-knittedness and cohesion

into the language of the coordinate system.

3.2 Disagreement in Potential Games

In this section we use the coordinate system developed in chapter 2 to examine potential

disagreement between the potential function and the social welfare function of a potential

game. We focus on symmetric 2 × 2 potential games to gain intuition. We provide a brief

discussion of the coordinates1 and then partition this coordinate space into regions that

give rise to the different flavors of agreement and disagreement. After an exposition of the

symmetric 2 × 2 case, we summarize the regions in Figures 3.2 and 3.3. Then, we break

both the individual preference symmetry and the externality symmetry– both acceptable

asymmetries in potential games. From here we proceed to extend the results to networks.

1A more complete discussion can be found in chapter 2.
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3.2.1 Symmetric 2× 2 Potential Games

First note that all 2 × 2 symmetric games are potential games. This is simply because, by

default, γ12 = γ21, a necessary and sufficient condition for a game to be a potential game

(Thm. 2.8). In a symmetric 2× 2 game, ignoring the kernel, the coordinate system reduces

to three dimensions. Namely, both agents have the same individual preference, α, along with

the usual same coordinative pressure, γ, and the same externality value β. As explained in

chapter 2, the exclusion of the kernel means that all components are centered around zero.

The game split into the components generated by these coordinates is given in Table 3.1.

+1 −1

+1 α α α −α

−1 −α α −α −α

Individual Preference

,

+1 −1

+1 γ γ −γ −γ

−1 −γ −γ γ γ

Coordinative Pressure

,

+1 −1

+1 β β −β β

−1 β −β −β −β

Externalities

Table 3.1: Symmetric Potential Game

In chapter 2 we painted a detailed picture of the role each of these coordinates play in the

payoff structure of the game. These features are highlighted here briefly. The individual

preference component, α, gives agent i the payoff αti independent of what the other agent

plays. In other words, for any particular agent, the utility from the individual preference

component is dependent only on the action of the same agent.

The externality coordinate, β, like α, is dependent on only one agent’s choice of strategy.
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Unlike α, this agent is not the one receiving the payoff– hence the name externality. In

other words, an agent does not have direct control over this component of their utility– it

is invariant over their own action and instead entirely dependent on the action of who they

are playing with.

Lastly, the coordinative pressure coordinate γ is dependent on the choice of both agents,

and contributes to the payoff structure pressures to conform or not conform, depending on

its sign. Indeed, when positive, γ enhances the coordinative profiles, and, when negative,

detracts from them. This value is invariant over what is coordinated on. This payoff simply

comes from the value inherent to conforming no matter what is actually being coordinated

on.

What we would like to do now is explore the tension of individualistic and cooperative forces

in the game. For the individualistic forces, we focus on unilateral deviations and make use

of the potential function. The potential function is useful here because its local maxima are

pure strategy Nash equilibria, and its global maximum has been shown to describe the long-

run behavior of the noisy best response dynamic and log-linear learning [12]. The reason for

this is that these dynamics oftentimes serve as equilibrium refinements tools that return the

risk-dominant equilibrium, which globally maximizes the potential function. This is stated

as a theorem for 2× 2 potential games below.

Theorem 3.1. Let G be a 2 × 2 potential game. Then the potential function of G is glob-

ally maximized at the strategy profile (t′, t′′) if and only if (t′, t′′) is the risk-dominant Nash

equilibrium of G.

Proof. There are two cases to consider. In the first case, there is a unique pure strategy Nash

equilibrium. This case is trivial, since by default this unique equilibrium is risk-dominant

and is the unique, hence global, maximum of the potential function. The second case involves

two pure strategy Nash equilibria. Here we borrow a result from Harsanyi and Selten, stating
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that one of two pure strategy Nash equilibria is risk-dominant if and only if the product of

the deviation loss for each agent from this equilibrium is greater than the same product for

the other equilibrium.

Suppose, then, that G is a 2 × 2 potential game with pure strategy Nash equilibria (t′, t′′)

and (−t′,−t′′). Furthermore, suppose that the potential function is globally maximized at

(t′, t′′). This requires either P (t′, t′′) > P (−t′,−t′′) > P (t′,−t′′) > P (−t′, t′′), or P (t′, t′′) >

P (−t′,−t′′) > P (−t′, t′′) > P (t′,−t′′), because P (−t′,−t′′) is a local maximum of the po-

tential function. Using the potential function offered in chapter 2, this is true if and only

if α1t
′ + α2t

′′ > 0, and either γt′t′′ > α1t
′ > α2t

′′ or γt′t′′ > α2t
′′ > α1t

′, which is true by

default since the game has two Nash equilibria.2

Now, using the result of Harsanyi and Selten, the profile (t′, t′′) is the risk-dominant Nash

equilibrium of the game if and only if (−2α1t
′−2γt′t′′)(−2α2t

′−2γt′t′′) > (2α1t
′−2γt′t′′)(2α2t

′

− 2γt′t′′), which simplifies to γt′t′′(α1t
′+α2t

′′) > 0. When γ > 0, the game is a coordination

game so the product t′t′′ = 1. Hence, (α1t
′ + α2t

′′) > 0. When γ < 0, the game is

an anti-coordination game, so the product t′t′′ = −1. Hence γt′t′′ > 0, which implies

(α1t
′ + α2t

′′) > 0.

The importance of this theorem is that we can use, as a measure of the outcome of the

individualistic forces, the global maximum of the potential function.

On the other hand, the utilitarian social welfare function– which sums the payoffs in every

strategy profile– is a measure of what a successfully cooperative group would obtain. Hence-

forth in this thesis we will refer to the utilitarian social welfare function as simply the social

welfare function. The results in this chapter are coupled to the social welfare function but

similar work can be done for alternative measures.

2These games fall into the dependent class of potential games, which was shown must have |γ| > |α1|, |α2|.
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To explore this tension between individualistic and social forces, then, we analyze the re-

gions in the parameter space that lead to agreement and disagreement between the global

maximum of the potential function and the social welfare function. The potential function,

P (t1, t2), can be written as in (3.1) below using Theorem 2.7 of chapter 2. We re-emphasize

that the potential function does not include the pure externality β.

P (t1, t2) = α(t1 + t2) + γt1t2 (3.1)

The social welfare function is defined to be the sum of all payoffs in each strategy profile. In

other words, w(t1, t2) = π1(t1, t2) + π2(t1, t2). We can then write,

w(t1, t2) = (α + β)(t1 + t2) + 2γt1t2. (3.2)

Before we begin, notice there is a connection between the potential function and the social

welfare function.

Remark 3.1. If α = β then w(t1, t2) = 2P (t1, t2).

In terms of the orderings induced by the different regions, when α = β, w and P become

indistinguishable.3 That is, the two functions have the same orderings in the same regions.

Immediately we can tell that any disagreement between the two functions must come from β

influencing the welfare function and shifting its regions while leaving those of the potential

function invariant.

This allows us to use Remark 3.1 to take a short-cut. By uncovering the regions that give rise

to the possible orderings of the social welfare function, the results for the potential function

will follow by simply taking α = β. This causes no issues since the potential function is

3This is because for any two strategy profiles (t′1, t
′
2) and (t∗1, t

∗
2), when α = β, w(t′1, t

′
2) > w(t∗1, t2∗) ⇒

P (t′1, t
′
2) > P (t∗1, t2∗).
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independent of β. Before proceeding, we describe some useful symmetries that simplify the

analysis.

Let us define two maps. Define F (α, γ, β) = (−α, γ,−β), which reflects the individual

preferences and the externalities, and define G(α, γ, β) = (−α,−γ,−β), which reflects all

three parameters, α, γ, and β. It is immediate that both functions have order 2, i.e.,

F 2(α, γ, β) = (α, γ, β) and G2(α, γ, β) = (α, γ, β), where the superscript 2 is an exponent.

In [8], a map of the structure of all 2× 2 games is provided, and here we translate this map

to the coordinate system restricted to the subspace of potential games. This captures the

pure strategy Nash equilibrium structure of all possible symmetric 2× 2 games. Divide the

αγ-plane into 8 regions with the lines α = 0, γ = 0, γ = α, and γ = −α. The first two

lines are to provide insight into the effects on the game of changing the signs of α and γ.

The other two lines, in the order that they are written, make the payoffs zero at (+1,−1)

and (−1,+1), when γ = α, or at (+1,+1) and (−1,−1), when γ = −α. These regions are

plotted in Figure 3.1, where the α-axis is horizontal, and the γ-axis is vertical.

Figure 3.1: αγ-plane

The regions are the following: (1) α > γ > 0, (2) γ > α > 0, (3) γ > −α > 0, (4)
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−α > γ > 0, (5) −α > −γ > 0, (6) −γ > −α > 0, (7) −γ > α > 0, and (8) α > −γ > 0.

The effect of F on a Nash component is that the strategies get renamed, namely, +1 7→ −1

and −1 7→ +1. Applying G to a game multiplies the Nash component by −1. Alternatively,

F switches both rows and columns for both agents, and G switches rows for agent 1 and

columns for agent 2. Let us demonstrate this. Suppose that a fixed choice of (α, γ) produces

the normal-form Nash component in Table 3.2.

+1 −1

+1 a a b −a

−1 −a b −b −b

Table 3.2: Arbitrary Nash Component of a Game G in Normal-Form

It is easily verified that the effects of F and G on the normal-form representation of G are

as described in Table 3.3.

+1 −1

+1 −b −b −a b

−1 b −a a a

+1 −1

+1 −a −a −b a

−1 a −b b b

Table 3.3: F (G), and G(G)

Repeated application of the functions F and G in the 8 regions creates two unique cycles.

This gives 1 ↔F 4 ↔G 8 ↔F 5 ↔G 1 and 2 ↔F 3 ↔G 7 ↔F 6 ↔G 2. This means that if

region 1 is understood, an application of F , or, equivalently, switching the strategies, extends

this understanding to region 4. Then, whatever conclusions are obtained, an application of

G, or, equivalently, multiplying all payoffs by −1, extends the understanding to region 8.

Continuing with this, regions 1, 4, 8, and 5 are understood. Similarly with 2, 3, 7, and 6.

Hence, we need only understand region 1, where α > γ > 0, and region 2, where γ > α > 0.
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In region 1 there is a unique pure Nash equilibrium at (+1,+1), and in region 2 there are

two pure Nash equilibria, at (+1,+1), and (−1,−1). Applying F and G uncovers the Nash

equilibrium structure for symmetric games in each region. The result of this is stated as a

theorem, but first we prove in a lemma that F and G preserve the number of pure strategy

Nash equilibria.

Lemma 3.1.1. F and G preserve the number of pure strategy Nash equilibria.

Proof. Because F has the effect of relabeling the strategy names, it is immediate that F

preserves the number of pure strategy Nash equilibria. Now, notice that a game with one

pure strategy Nash equilibria must have exactly one strategy profile with all negative entries

in the Nash component of the game. Because G has the effect of multiplying all payoffs by

−1, this unique all-negative strategy profile will become the unique Nash equilibrium of the

game. When there are two pure strategy Nash equilibria, the remaining strategy profiles

must have all negative entries. Because of this, G will simply swap the pure strategy Nash

equilibria with the strategy profiles with all-negative entries. This completes the proof.

Theorem 3.2. In regions 1, 4, 8, and 5, the unique pure strategy Nash equilibrium is

(sgn(α), sgn(α)). In regions 2, 3, 7, and 6, there are two pure strategy Nash equilibria,

(+1,+1) and (−1,−1) when γ > 0 (regions 2 and 3), and (+1,−1) and (−1,+1) when

γ < 0 (regions 6 and 7).

Proof. In region 1 we have that α > γ > 0. Hence the only strategy profile with all positive

entries is (+1,+1), and this is the unique pure strategy equilibrium of the game. Successive

application of F and G will preserve the Nash equilibrium structure, implying that regions 4,

8, and 5 have a unique pure strategy Nash equilibrium. Region 2 is given by γ > α > 0. Here

there are two pure strategy Nash equilibria, at (+1,+1) and (−1,−1). Similar to before,

successive application of F and G will preserve the Nash equilibrium structure. Because

of this, regions 3, 7, and 6 also have two pure strategy Nash equilibria. In regions 2 and
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3, because γ > 0, it is a simple computation to check that the equilibria are (+1,+1) and

(−1,−1). Similarly, in regions 7 and 6, because γ < 0, the equilibria are (+1,−1) and

(−1,+1).

This theorem details the relationships between α and γ that give rise to all possible pure

strategy Nash equilibrium structures in symmetric 2× 2 potential games. This is important

because of our goal of understanding the results of individualistic forces in a potential game,

which we capture with the game’s pure strategy Nash equilibrium structure.

Although 8 regions were defined in Figure 3.1, there are only four possible distributions of

pure strategy Nash equilibria. More specifically, regions 1 and 8 both have the unique pure

strategy Nash equilibrium (+1,+1), and regions 4 and 5 have it at (−1,−1). On the other

hand, regions 2 and 3 both have pure strategy Nash equilibria at (+1,+1) and (−1,−1),

while regions 6 and 7 have them at (+1,−1) and (−1,+1). This is showing that in regions

1 and 8, and 4 and 5, the mapping γ 7→ −γ does not change the Nash equilibrium structure.

For regions 2 and 3, and 6 and 7, the mapping α 7→ −α does not change the structure.

Now that the Nash equilibrium structure of symmetric 2 × 2 games is understood, let us

move on to the potential function and the social welfare function. We begin by stating a

theorem describing the effects of F and G on these functions.

Theorem 3.3. Let G be a symmetric (hence potential) game whose Nash and externality

components are constructed with (α, γ, β), and where κ = 0. Denote by F (G) the game

obtained by applying F to (α, γ, β), and by G(G) the game obtained by applying G to (α, γ, β).

Denote the social welfare function of G by wG, and the following two by wF (G) and wG(G),

respectively. Furthermore, denote the potential function of G by PG, and the following two

by PF (G) and PG(G), respectively. Then

wG(t1, t2) = wF (G)(−t1,−t2) = −wG(G)(t1, t2), (3.3)
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and

PG(t1, t2) = PF (G)(−t1,−t2) = −PG(G)(t1, t2). (3.4)

Proof. This is a straightforward, though tedious, verification.

Using Theorem 3.3, all possible strict orderings are covered by considering just the re-

gions that induce w(+1,+1) > w(+1,−1) > w(−1,−1) and w(+1,+1) > w(−1,−1) >

w(+1,−1), and then applying F and G to find the remaining regions.

The reason the strategy profile (−1,+1) is omitted is that, because of the assumption of

symmetry, both w(+1,−1) = w(−1,+1) and P (+1,−1) = P (−1,+1). This is stated as a

remark.

Remark 3.2. w(+1,−1) = w(−1,+1) and P (+1,−1) = P (−1,+1)

Hence, in this section, considering only the symmetric case, we refer to both (+1,−1) and

(−1,+1) when we mention (+1,−1).

The below theorem describes the regions that induce all possible strict orderings of the

welfare function.

Theorem 3.4. (i) The region where w(+1,+1) > w(+1,−1) > w(−1,−1) is given by

α + β > 2|γ|.

(ii) The region where w(+1,+1) > w(−1,−1) > w(+1,−1) is given by 2γ > α + β > 0.

(iii) The region where w(−1,−1) > w(+1,+1) > w(+1,−1) is given by 0 > α + β > −2γ.

(iv) The region where w(−1,−1) > w(+1,−1) > w(+1,+1) is given by α + β < −2|γ|.

(v) The region where w(+1,−1) > w(−1,−1) > w(+1,+1) is given by 0 > α + β > 2γ.

(vi) The region where w(+1,−1) > w(+1,+1) > w(−1,−1) is given by −2γ > α + β > 0.
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Proof. This involves checking the regions for w(+1,+1) > w(+1,−1) > w(−1,−1) and

w(+1,+1) > w(−1,−1) > w(+1,−1), and then applying F and G to find the remaining

regions, which is basic algebra.

The importance of the above theorem is its detailing of the regions that induce different

orderings of the welfare function. This is valuable because of our goal of understanding the

results of cooperative forces in a potential game, in contrast to individual forces. These

regions are defined by the quantity (α + β)’s position in relation to ±2γ and 0. What does

this mean? This question is answered in the following corollaries.

Corollary 3.4.1. When α+β > 0 it is impossible for w(−1,−1) > w(+1,+1). Alternatively,

when α + β < 0 it is impossible for w(+1,+1) > w(−1,−1).

Proof. This is an immediate consequence of Theorem 3.4

In regions (i), (ii), and (vi), α + β > 0. This means that α + β is supporting the profile

(+1,+1), and in all of these cases, the social welfare at (+1,+1) is superior to that at

(−1,−1). In region (vi), although α+β > 0, it is bounded above by −2γ. This implies that

γ < 0, meaning there are pressures to not conform, and, this pressure is greater than the

benefit of α + β. Hence, in (vi), although (+1,+1) is superior to (−1,−1), the profile that

maximizes the welfare function is (+1,−1). In regions (iii), (iv), and (v), α + β < 0, which

means that, no matter what, (−1,−1) will be superior to (+1,+1). Like before, in region

(v), although α + β < 0, it is bounded below by 2γ, and here it is (+1,−1) that maximizes

the welfare function.

Note that regions (v) and (vi) are the only regions where (+1,−1) is the global maximum of

the social welfare function. In these regions γ < 0. Consequently, in the symmetric case it

is impossible to have (+1,−1) maximize social welfare if the pressure to conform is positive.

A corollary is stated in this regard.
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Corollary 3.4.2. If the social welfare function is globally maximized at (+1,−1) then γ < 0.

Proof. This is an immediate consequence of regions (v) and (vi) in Theorem 3.4.

To transfer these results to the potential function, set α = β. These results are summarized

in the below theorem.

Theorem 3.5. The region where P (+1,+1) > P (+1,−1) > P (−1,−1) is given by α > |γ|

(regions 1 and 8).

The region where P (+1,+1) > P (−1,−1) > P (+1,−1) is given by γ > α > 0 (region 2).

The region where P (−1,−1) > P (+1,+1) > P (+1,−1) is given by 0 > α > −γ (region 3).

The region where P (−1,−1) > P (+1,−1) > P (+1,+1) is given by −|γ| > α (regions 4 and

5).

The region where P (+1,−1) > P (−1,−1) > P (+1,+1) is given by 0 > α > γ (region 6).

The region where P (+1,−1) > P (+1,+1) > P (−1,−1) is given by −γ > α > 0 (region 7).

Proof. This is an immediate consequence of Remark 3.1 together with Theorem 3.4.

Theorem above translates the results of Theorem , which details the structure of pure Nash

equilibria in a potential game, into statements about the potential function.

The corollaries stated above for the welfare function naturally extend to the potential func-

tion. What follows are additional corollaries doing precisely this.

Corollary 3.5.1. When α > 0 it is impossible for P (−1,−1) > P (+1,+1). Alternatively,

when α < 0 it is impossible for P (+1,+1) > P (−1,−1).

Proof. This is an immediate consequence of Theorem 3.2.1.

Corollary 3.5.2. If the potential function is globally maximized at (+1,−1) then γ < 0.
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Proof. This is an immediate consequence of regions 6 and 7 in Theorem 3.2.1.

Looking into Theorem 3.2.1, notice that the pairs of regions 1 and 8, and 4 and 5, have the

same effect on the ordering of the potential function. This is because the potential function

does not have a boundary at γ = 0. Another way to see this is that since the potential

function is maximized at the pure strategy Nash equilibrium, its value there, at (+1,+1) or

(−1,−1), must be greater than it’s value at (+1,−1) and (−1,+1). Then, the agents have a

unilateral incentive to deviate to (+1,−1) and (−1,+1) from (−1,−1) when the equilibrium

is (+1,+1), and from (+1,+1) when the equilibrium is (−1,−1). Otherwise, these would

be also be, in their respective cases, a pure strategy Nash equilibrium.

Games in regions 2 and 3, and 6 and 7, have two pure strategy Nash equilibria, (+1,+1) and

(−1,−1) for 2 and 3, and (+1,−1) and (−1,+1) for 6 and 7. In region 2, (+1,+1) is the

superior Nash equilibrium, as it is supported by the agents’ individual preferences. Hence, the

incentive to deviate from (+1,−1) or (−1,+1) to (+1,+1) is greater than that to (−1,−1).

For region 3 things are essentially the same, with the sign of the individual preferences

flipped, making the equilibrium (−1,−1) superior. Similarly, in region 6, although the pure

strategy Nash equilibria are at (+1,−1) and (−1,+1), the individual preferences point in

the direction of strategy −1, so the incentive to deviate from (+1,+1) is greater than the

incentive to deviate from (−1,−1). This is exactly what’s reflected in the ordering of the

potential function. For region 7, the incentive to deviate from (−1,−1) is greater than that

from (+1,+1).

Let us formalize the above arguments and connect the regions of the potential function with

the Nash equilibrium structure of 2× 2 symmetric games.

Theorem 3.6. For a symmetric 2× 2 game G the following four statements are equivalent.

1. tα > |γ|
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2. P (t, t) is the unique maximum of the potential function.

3. (t, t) is the unique Nash equilibrium of G.

Proof. (1) is true if and only if the only strategy profile with all positive entries in the Nash

component is (t, t). Hence, (t, t) is the unique Nash equilibrium of G. Hence, (1) ⇐⇒ (3).

Now, suppose (t, t) is the unique pure Nash equilibrium of G. This is true if and only if (t, t)

is a local maximum of the potential function. If there were additional local maxima, (t, t)

would not be the unique pure Nash equilibrium. Hence, (t, t) is the global maximum of P .

Hence, (3) ⇐⇒ (2), and this completes the proof.

In other words, (+1,+1) is the unique equilibrium when α is positive and is greater than the

pressure to conform or not conform. On the other hand, (−1,−1) is the unique equilibrium

when α is negative and is greater in magnitude than the pressure to conform or not conform.

Theorem 3.7. For a symmetric 2× 2 game G the following three statements are equivalent.

1. P (+1,+1) and P (−1,−1) are local maxima of the potential function

2. |α| < γ.

3. (+1,+1) and (−1,−1) are the only pure Nash equilibria of G.

Moreover, if α 6= 0, then (sgn(α), sgn(α)) is the risk-dominant Nash equilibrium.

Proof. (1) is true if and only if P (+1,+1) > P (+1,−1) and P (−1,−1) > P (1,−1) if and

only if α > −γ and α < γ if and only if |α| < γ. Hence, (1) ⇐⇒ (2). Furthermore, this

is true if and only if the entries in (+1,−1) and (−1,+1) of the Nash component are all

negative. Hence (1) ⇐⇒ (2) ⇐⇒ (3).
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Now suppose α 6= 0. It is easy to verify that P (sgnα, sgnα) > P (− sgnα,− sgnα). Hence

the strategy profile (sgnα, sgnα) is the global maximum of the potential function, which

means it is the risk-dominant Nash equilibrium of G.

Here the magnitude of the individual preference is bounded by the pressure to conform,

which is positive. This makes both (+1,+1) and (−1,−1) pure strategy Nash equilibria of

the game. The individual preference, then, being positive or negative, can support either of

these equilibrium; (+1,+1) when positive, and (−1,−1) when negative.

The below theorem considers the last case, where (+1,−1) and (−1,+1) are the pure Nash

equilibria of the game.

Theorem 3.8. For a symmetric 2× 2 game G the following three statements are equivalent.

1. P (+1,−1) and P (−1,+1) globally maximize the potential function.

2. γ < 0 and |α| < −γ.

3. (+1,−1) and (−1,+1) are the only pure Nash equilibria of G.

Proof. This proof follows the same process as the proof for Theorem 3.7.

This theorem is similar to Theorem 3.7 where the magnitude of the individual preference is

less than the magnitude of the pressure to conform, but here γ < 0. The effect of this is

that the pure strategy Nash equilibria are (+1,−1) and (−1,+1), rather than (+1,+1) and

(−1,−1).

We are now ready to describe the regions of agreement and disagreement. To begin, let

us define the regions of coordinative agreement, coordinative tension, unilateral tension, and

anti-coordinative agreement.
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The region of coordinative agreement is where both the maximum of the potential func-

tion and the social welfare function agree on either (+1,+1) or (−1,−1). The region of

coordinative tension contains the games where there is tension between the two coordina-

tive equilibria, that is, P (t1, t2) is maximized at (+1,+1) while w(t1, t2) is maximized at

(−1,−1), or vice-versa. On the other hand, the class of unilateral tension is when the func-

tions maximize neighboring strategy profiles, like (+1,+1) and (+1,−1). Lastly, the class of

anti-coordination agreement is when both P (t1, t2) and w(t1, t2) are maximized at (+1,−1)

and (−1,+1).

The following theorem relates the regions defined above with the parameters α, γ, and β.

Theorem 3.9. For t ∈ {−1, 1}, the region of coordinative agreement is given by both

tα > tmax(0,−γ)

t(α + β) > tmax(0,−2γ)

Moreover, if tα > |γ| then this game has a unique pure strategy Nash equilibrium at (t, t).

Otherwise the game has two pure strategy Nash equilibria, at (t, t) and (−t,−t).

The region of coordinative tension is given by both

tα > tmax(0,−γ)

t(α + β) < tmax(0,−2γ)

The region of unilateral tension is given by γ < 0 and either both

tα > −γ

|α + β| < −2γ,
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or both

|α| < −γ

t(α + β) > −2γ.

The region of anti-coordinative agreement is given by γ < 0 and both

|α| < −γ

|α + β| < −2γ

Where the first inequality in these regions describes the global maximum of the potential

function, and the second describes the global maximum of the social welfare function.

Proof. The proof of this theorem amounts to combining the regions givens in Theorems

3.4 and 3.2.1 to give rise to the desired behaviors of P and w as dictated by the defined

regions.

As mentioned earlier, the disagreements come precisely when the β values shift the regions

of the welfare function while leaving the regions of the potential function invariant. Because

all regions in Theorem 3.9 are defined for arbitrary t ∈ {+1,−1} let us take t = +1 for

simplicity in our discussion of these results. In this case, let us, in addition, take α = β.

Here, the potential function and the welfare function agree, and the region defined by α, β,

and γ must be either the region of coordinative agreement or the region of anti-coordinative

agreement. An extensive discussion of the regions is given, and the results are summarized

in Figure 3.2 for γ ≥ 0, and in Figure 3.3 for γ < 0.

Starting with the region of coordinative agreement, it must be that α > max(0,−γ) and

(α + β) > max(0,−2γ). Again, since we are taking α = β, these inequalities are exactly

81



the same. Increasing β will only increase the quantity α + β and hence, never change the

regions. However, decreasing β enough will flip the sign of the second inequality, meaning

that the welfare function will be maximized elsewhere.

When γ > 0 the only other possibility is for the welfare function to be maximized at the

diametrically opposite strategy profile (−1,−1). Here notice that once we decrease β enough

so that β < −α, the welfare function is maximized at (−1,−1) while the potential function

is maximized at (+1,+1). In other words, there is coordinative tension. What is the story

here? When β < −α, the externality is not only opposite to the individual preference, its

magnitude is also greater, i.e., |β| > |α|. In such a situation, agents who follow only their

unilateral incentives, a process we are modeling with the potential function, will play a Nash

equilibrium with lower welfare than the strategy profile diametrically opposite to it.

On the other hand, when γ < 0, there are several possibilities. Starting with α = β, we

must either have coordinative agreement or anti-coordinative agreement. From the region

of coordinative agreement, decreasing β after an initial threshold will give rise to unilateral

tension, where P is maximized at (+1,+1) but w at (+1,−1). Decreasing β further will

cross the second threshold and give rise to coordinative tension, where P is maximized at

(+1,+1) but w at (−1,−1).

This discussion is hinting at a bifurcation that happens when γ goes from γ ≥ 0 to γ < 0.

The reason for this bifurcation is that it is impossible for the potential and social welfare

functions to be maximized at (+1,−1) and (−1,+1) when γ ≥ 0. When γ < 0, however,

this regions become possible. This is made evident in Figures 3.2 and 3.3.

We now have a good understanding of what selfish behavior can lead to, and when this

does and doesn’t agree with the utilitarian measure of social welfare for 2 × 2 games. The

literature has tentatively recognized but has not characterized where there are differences in

these measures, which we are motivating through the example given in [18] and the following
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Figure 3.2: αβ-plane with γ ≥ 0

Figure 3.3: αβ-plane with γ < 0

work in [19] and [12]. In the theorems of this section we explicitly stated where the precise

regions in the parameter space that give rise to these disagreements and their boundaries.

All of this is culminated in Figures 3.2 and 3.3.

We will now break the α symmetry, before breaking the β symmetry, to understand the

regions of agreement and disagreement for general potential games.
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3.3 Breaking α Symmetry

Breaking the α symmetry opens up the modeling to more realistic situations without breaking

free from exact potential games. For instance, it is entirely reasonable that two agents have

different preferences. How do these differences change the perspective developed so far into

potential games?

A game in normal-form with broken α symmetry is given in Table 3.4.

+1 −1

+1 α1 + γ + β α2 + γ + β α1 − γ − β −α2 − γ + β

−1 −α1 − γ + β α2 − γ − β −α1 + γ − β −α2 + γ − β

Table 3.4: 2× 2 Broken α Symmetry

We begin with just the Nash component because this is the only pertinent information when

calculating the potential function.

When γ = 0, the Nash component consists of only α1 and α2. The unique pure strategy

Nash equilibrium is (sgnα1, sgnα2). Increasing γ in either direction, positive or negative,

has no effect until |γ| surpasses min(|α1|, |α2|). At this point, the unique Nash equilibrium

becomes the profile where the agent with the larger magnitude individual preference plays

this preference, and the other agent follows (γ > 0) or plays the opposite of this preference

(γ < 0). Once |γ| surpasses both |α1| and |α2|, the game becomes either a coordination

game (γ > 0) or an anti-coordination game (γ < 0).

This echoes the three classes of potential games defined in chapter 2, independent, quasi-

independent, and dependent potential games. The first case described, where the magnitude

of γ is negligible compared to the magnitude of αi, i = 1, 2, is an independent potential

game. The second case, where |γ| is between the magnitudes of α1 and α2, describes a quasi-
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independent potential game. Finally, the last case, where the magnitude of γ is supreme,

belongs to the class of dependent potential games.

Let us make all of this precise.

There are 52 regions that emerge based on α1 and α2’s relationship with themselves, and with

γ and −γ. Both can be greater than max(γ,−γ), in between max(γ,−γ) and min(γ,−γ), or

less than min(γ,−γ). Furthermore, they can be greater than or less than each other. 24 of

the regions occur when γ > 0 and the other 24 when γ < 0. The regions in the α1α2-plane

are plotted for arbitrary γ in Figure 3.4. When γ = 0 there are 4 additional regions, namely

the quadrants of the α1α2-plane.

Figure 3.4: 24 regions for arbitrary γ

Suppose without loss of generality that the plot in Figure 3.4 is for γ > 0. Then, for γ < 0,

re-label the regions by 1′, 2′, . . . , 24′ in the resulting plot. In the following four paragraphs

by writing any number i ∈ {1, . . . , 24} we mean both i and i′ because we use |γ|.

The class of independent potential games resides in regions 1, 2, 5, 6, 19, 20, 23, 24, where

|αi| > |γ| for i = 1, 2. In regions 1, 2, 19, and 20, the Nash equilibrium structure is
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qualitatively the same as in the symmetric case where |α| > |γ|. In regions 5, 6, 23, and 24,

α1 and α2 have different signs. Relabeling the strategies for one of the agents transforms

games in these regions to those in regions 1, 2, 19, and 20. In all of these regions there is a

unique Nash equilibrium given by (sgnα1, sgnα2).

The class of quasi-independent potential games consists of regions 3, 4, 7, 12, 13, 18, 21,

and 22. In regions 3, 12, 18, and 21, we have that sgnα1 = sgnα2. In these regions, when

γ > 0, both α1 and α2 support (+1,+1) when positive (regions 3 and 12), and (−1,−1) when

negative (regions 18 and 21). When γ < 0, the agent with the larger magnitude preference

plays this preference while the other agent plays the opposite, which is also opposite to their

own preference. In regions 12 and 18 the larger preference is α1, and in 3 and 21 it is α2. In

the remaining regions, 4, 7, 13, and 22, sgnα1 6= sgnα2. In these regions, when γ > 0, the

agent with the larger preference gets to play this preference, while the other agent, having

the opposite preference with magnitude dominated by |γ|, follows and conforms to the larger

preference. When γ < 0, both agents play their preference.

Although the class of independent and quasi-independent potential games have a unique pure

strategy Nash equilibrium, their Nash structures are qualitatively different. For the class

of independent games, the strategy profile diametrically opposite to the Nash equilibrium

consists of all negative payoffs. For the class of quasi-independent games, the diametrically

opposite profile from the Nash equilibrium has a negative payoff for the agent with the larger

preference, and a positive payoff for the agent with the smaller preference. The all-negative

strategy profile is the one given by the unilateral deviation from the Nash equilibrium by

the agent with the larger preference.

The class of dependent potential games is comprised of regions 8, 9, 10, 11, 14, 15, 16, and

17. In these regions, there are two pure strategy Nash equilibria. It is a coordination game

when γ > 0 and an anti-coordination game when γ < 0. Because sgnα1 = sgnα2 in regions

10, 11, 16, and 17, these regions support a Nash equilibrium when γ > 0. On the other hand,
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when γ < 0, regions 10, 11, 16, and 17, although the agents have the same preference, the

Nash equilibria are the anti-coordination profiles where only one agent plays their preference.

In the remaining regions, 8, 9, 14, and 15, sgnα1 6= sgnα2. Here, the agents can each play

their preference when γ < 0. In other words, the strategy profile where the agents both play

their preference is the risk-dominant Nash equilibrium. When γ > 0, only one of the agents

plays their preference, and this situation represents the Bach and Stravinsky game.4

Because of the symmetries in taking γ > 0 and γ < 0 it turns out that most of these

situations do not provide very different qualitative pictures of the Nash equilibrium structure.

When alphas are different signs, the emergent situations are basically the same as in the

symmetric case if we change the sign of gamma. The only new thing here is the class of

quasi-independent games, which are unobtainable under the assumption of symmetry.

Lastly, we must consider the regions when γ = 0. In all of these cases, the regions give

rise to independent potential games, where the unique pure strategy Nash equilibrium is

(sgnα1, sgnα2).

To capture all of this, we follow a similar progression as in the previous section. Suppose

that a fixed choice of (α1, α2, γ) produces the normal-form game in Table 3.5.

+1 −1

+1 a b c −b

−1 −a d −c −d

Table 3.5: Arbitrary Nash Component GN in Normal-Form

We define three maps. Define F (α1, α2, γ) = (α2, α1, γ). This function swaps α1 and α2.

Define G(α1, α2, γ) = (−α1, α2, γ). This function changes the sign of the first individual

preference α1. Define H(α1, α2, γ) = (α1, α2,−γ). This function changes the sign of γ. The

4In the literature this game is most often called Battle of the Sexes. However, in an effort to disassociate
this game from gender, we use the name Bach and Stravinsky.
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effects of these functions on the normal-form representation of pure Nash component GN are

given in Table 3.6.

+1 −1

+1 b a d −a

−1 −b c −d −c

,

+1 −1

+1 −c b −a −b

−1 c d a −d

,

+1 −1

+1 c d a −d

−1 −c b −a −b

Table 3.6: F (G), G(G), and H(G)

In other words, F switches agent 1 with agent 2, G swaps row player’s payoffs and multiplies

them by −1, and H swaps the strategies names and multiplies all payoffs by −1.

Now, we have 1↔F 2↔G 5↔F 24↔G 19↔F 20↔G 23↔F 6↔G 1

3↔F 12↔G 7↔F 22↔G 21↔F 18↔G 13↔F 4↔G 3

8↔F 15↔G 16↔F 17↔G 14↔F 9↔G 10↔F 11↔G 8

Then we also have i↔H i′ for every 1 ≤ i ≤ 24.

This means that if we understand region 1, we can simply swap agents to understand region

2. Then, whatever conclusions are obtained, switching strategies of agent 2, and all positives

to negatives and all negatives to positive, extends the conclusions to region 5. Continuing

with this, regions 1, 2, 5, 24, 19, 20, 23, and 6 are understood. Similarly with regions 3, 12,

7, 22, 21, 18, 13, and 4, and with regions 8, 15, 16, 17, 14, 9, 10, and 11. To understand the

results when γ < 0, can take any already established result, switch both agents strategies,

and flip all positives to negatives and all negatives to positives. This matches exactly our

discussion earlier in the section.

Let us now prove that F , G, and H do not qualitatively change the Nash equilibrium

structure of a game.

88



Theorem 3.10. F , G, and H do not qualitatively change the Nash equilibrium structure of

a game.

Proof. Refer to the Nash component in Table 3.5 and the effects of F , G, and H, as shown in

Table 3.6. Because F has the effect of switching agent 1 and agent 2, it is immediate that F

preserves the qualitative Nash equilibrium structure. Similarly, because G has the effect of

swapping row agent’s payoffs, G cannot change the qualitative Nash equilibrium structure of

a game. Lastly, H does two things: swap the strategy names and multiply all payoffs by −1.

Swapping the strategy names will produce no qualitative differences in the Nash equilibrium

structure of the game. Multiplying all payoffs by −1 will turn all all-positive payoff profiles

into all-negative, and vice-versa, and it will turn all profiles with a positive and a negative

payoff into a profile with a negative and positive payoff, and vice-versa. Hence, H will not

change the qualitative Nash equilibrium structure of the game.

The discussion in this section is summarized in the below theorems. In the proofs we analyze

only one region, and because of Theorem 3.10, F , G, and H, are used to extend the results

to the remaining regions.

Theorem 3.11. Independent potential games have a unique pure strategy Nash equilib-

rium, which is by default both risk-dominant and payoff-dominant, at the strategy profile

(sgnα1, sgnα2).

Proof. As a representative of independent potential games, consider a game G in region 1

where α1 > α2 > γ. Because of this inequality, the only payoff profile with all positive

entries in the Nash component is (+1,+1), or (sgnα1, sgnα2). Hence, this is the unique

pure strategy Nash equilibrium of G. Successive applications of the functions F , G, and

H, transfers these results to the remaining regions of independent potential games, and this

completes the proof. The risk and payoff-dominance of the Nash equilibrium is immediate

due its uniqueness.
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Theorem 3.12. Let G be a quasi-independent potential game. Without loss of generality

assume |α1| > |α2|. Then G has a unique pure strategy Nash equilibrium at (sgnα1, sgnα1)

when γ > 0, and a unique pure strategy Nash equilibrium at (sgnα1, sgnα2) when γ < 0.

These Nash equilibria are, by default, both risk-dominant and payoff-dominant.

Proof. Consider a game G in region 3, a representative of quasi-independent potential games.

Here α2 > γ > α1 and because of this, the strategy profile (sgnα2, sgnα2) is the only payoff

profile with all positive entires. Hence, it is the unique pure strategy Nash equilibrium of

G. Successive applications of F , G, and H, translates these results to the remaining regions

of quasi-independent potential games, completing the proof. Like in the previous proof, the

risk and payoff-dominance of the Nash equilibrium is immediate due its uniqueness.

Theorem 3.13. Let G be a dependent potential game. Without loss of generality assume

|α1| > |α2|. Then G has pure strategy Nash equilibria at (+1,+1) and (−1,−1) when γ > 0.

Furthermore, the Nash equilibrium (sgnα1, sgnα1) is risk-dominant. When γ < 0 the pure

strategy Nash equilibria of G are (+1,−1) and (−1,+1). Furthermore, the Nash equilibrium

(sgnα1, sgnα2) is risk-dominant.

Proof. Take region 8 as a representative of dependent potential games. In region 8, γ >

−α1 > −α2 > 0. This relationship between α1, α2, and γ, defines two pure strategy Nash

equilibria at (+1,+1) and (−1,−1). To show that (−1,−1) is risk-dominant amounts to

verifying that (−α1+γ)(−α2+γ) > (α1+γ)(α2+γ), recalling a result by Harsanyi and Selten

[6]. The inequality simplifies to (α1 + α2)γ < 0. The truth of this inequality is evident in

region 8 due to γ > 0 and α1, α2 < 0. Hence, the strategy profile (−1,−1) is risk-dominant.

Successive applications of F , G, and H, extend these results to the remaining regions of

dependent potential games, completing the proof.

Because the potential function is globally maximized at the risk-dominant Nash equilibrium
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of the game, the Nash structure is fully described. What is left to do is study the welfare

function with broken β symmetry.

3.4 Breaking β Symmetry

For a game with broken α and β symmetry, the payoff functions becomes

π1(t1, t2) = α1t1 + γt1t2 + β1t2

π2(t1, t2) = α2t2 + γt1t2 + β2t1

Then,

w(t1, t2) = π1(t1, t2) + π2(t1, t2) = (α1 + β2)t1 + (α2 + β1)t2 + 2γt1t2. (3.5)

The below theorem details when the welfare function is maximized at all possible strategy

profiles of a 2× 2 game G.

Theorem 3.14. The social welfare function given in (3.5) is maximized at (+1,+1) if and

only if α1 + β2 + α2 + β1 > 0 and βi + α¬i > −2γ, where i = 1, 2 and ¬i denotes the

agent who is not i. The welfare function is maximized at (+1,−1) if and only if α2 + β1 <

−2γ, α1 + β2 > 2γ, and α1 + β2 > α2 + β1. The welfare function is maximized at (−1,+1)

if and only if α1 + β2 < −2γ, α2 + β1 > 2γ, and α2 + β1 > α1 + β2. Finally, the welfare

function is maximized at (−1,−1) if and only if α1 + β2 + α2 + β1 < 0 and βi + α¬i < 2γ,

for i = 1, 2.

Proof. This amounts to checking and simplifying the inequalities generated by requiring that

each strategy profile is greater than the others.
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To interpret the theorem, first notice that the quantities α1+β2 and α2+β1 are the guaranteed

payoff consequences of agent 1 and 2’s decisions, respectively. In other words, in any strategy

profile where agent 1 is playing +1, for example, the values α1 and β2 are present and hence

picked up by social welfare function. To be precise, let us define the quantities c1 = α1 + β2

and c2 = α2 + β1 to be agent 1 and 2’s guaranteed payoff contributions when they play +1.

We can now rewrite the conditions in Theorem 3.14 using c1 and c2. Namely, w is maximized

at (+1,+1) if and only if c1 + c2 > 0 and ci > −2γ for i = 1, 2, it is maximized at (+1,−1)

if and only if c2 < −2γ, c1 > 2γ, and c1 > c2. Moreover, w is maximized at (−1,+1) if and

only if c1 < −2γ, c2 > 2γ, and c2 > c1. Lastly, w is maximized at (−1,−1) if and only if

c1 + c2 < 0 and ci < 2γ for i = 1, 2. In the symmetric case, c1 = c2 = α + β.

The sum of the guaranteed contribution determines the ordering of (+1,+1) and (−1,−1).

When positive, w(+1,+1) > w(−1,−1) and when negative, the opposite. Each guaran-

teed contribution’s relationship to −2γ determines the ordering of (+1,+1) and the anti-

coordination profiles (+1,−1) and (−1,+1). For (−1,−1) and the anti-coordination profiles,

it is the guaranteed contributions’ relationship with 2γ that determines their ordering. In

both of these cases, when the guaranteed contributions each exceed −2γ and 2γ, in their

respective cases, then the welfare function favors the associated coordination profile. Fi-

nally, the guaranteed contributions relationship between each other determine the ordering

of (+1,−1) and (−1,+1). When agent 1’s contribution is greater than agent 2’s, it is

(+1,−1) that is superior, and vice-versa.

Now, with Theorems 3.11, 3.12, 3.13, and 3.14, it is a matter of mixing-and-matching to

determine the regions of coordinative agreement, coordinative tension, unilateral tension,

and anti-coordinative agreement. To keep the exposition manageable, consider only the

cases of coordinative agreement and coordinative tension in coordination games.

For the game to be a coordination game, it is necessary that γ > |α1|, |α2|. The risk

dominant Nash equilibrium, according to Theorem 3.13, is given by the sign of the αi such
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that |αi| > |α¬i| where ¬i denotes the agent who is not i. Without loss of generality, assume

that |α1| > |α2|. If α1 > 0, then the risk-dominant Nash equilibrium is (+1,+1), and if

α1 < 0, the risk-dominant Nash equilibrium is (−1,−1). Consider just α1 > 0. In this case,

it is necessary that α1 + β2 + α2 + β1 > 0 and βi + α¬i > −2γ for coordinative agreement,

and α1 + β2 + α2 + β1 < 0 and βi + α¬i < 2γ for coordinative tension, where i = 1, 2.

To summarize, (+1,+1) is the risk-dominant equilibrium in the coordination game because

γ > α1 > |α2|. The welfare function agrees with this profile if and only if the sum of

guaranteed contributions is greater than zero, and each guaranteed contribution is greater

than −2γ. On the other hand, if the sum of guaranteed contributions is negative, and each

guaranteed contribution is less than 2γ, then the game has coordinative tension.

3.5 Potential and Welfare on Networks

The complexity of potential games on networks, because of the emergent structures identified

in chapter 2 and the large number of individual preferences and externalities, makes a full

understanding of network potential games for large networks a big challenge. In chapter

4, some analysis is offered for 3-agent networks. General analysis of asymmetric potential

games with emergent structures is beyond the scope of this thesis, and is saved for future

work. A useful, though restrictive, way around this is to sum symmetric 2×2 games between

all pairs of neighbors. This is done in [18] [19] [12], and as a starting point, this thesis follows

the same path. An effect of this is that all higher order emergent structures are ignored.

Hence, an entire n-agent game on a network can be described by the three parameters α, γ,

and β, and network structure.

We borrow most of the network notation used by Newton et al. Suppose Γ = (V,E) is a

simple finite connected graph with set of vertices, or players, V , and set of edges E. The
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elements of E are the ordered pairs (i, j) where i and j are players in V and the existence

of (i, j) ∈ E means that agent i is connected to agent j in Γ. Moreover, assume that i < j

for every (i, j) ∈ E, so that if (i, j) ∈ E, then (j, i) /∈ E. This causes the model to lose

no generality and instead makes writing summations simpler. When (i, j) ∈ E, i and j are

said to be neighbors, and the degree of an agent i is the sum of i’s neighbors. For a subset

S ⊆ V , the sum of degrees in S is denoted by d(S). For two subsets S, T ⊆ V , the sum of

edges from S to T is denoted by d(S, T ). Continuing in the fashion of Newton et al., instead

of referring to the degree of i by d({i}) and the number of neighbors of i in S by d({i}, S),

we use d(i) and d(i, S) respectively.

Each agent i plays the game G with all of their neighbors, where G is shown decomposed

into the coordinate system in Table 3.7.

+1 −1

+1 α α α −α

−1 −α α −α −α

Individual Preference

,

+1 −1

+1 γ γ −γ −γ

−1 −γ −γ γ γ

Coordinative Pressure

,

+1 −1

+1 β β −β β

−1 β −β −β −β

Externalities

Table 3.7: Coordinate System

Without loss of generality, write the payoff function for agent 1 understanding that the choice

of agent 1 is arbitrary and that this form of the payoff function holds for any agent i ∈ V .

The payoff function for agent 1 is

π1(t1, . . . , tn) = α1t1 + γ
∑

(1,j)∈E

titj +
∑

(1,j)∈E

βijtj (3.6)

Notice that the agent only receives α once. The γ term is summed across all neighbors.
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The potential function for this game is given by

P (t1, . . . , tn) = α
∑
i∈V

ti + γ
∑

(i,j)∈E

titj (3.7)

Let us verify that this is indeed a potential function for G. The payoff for agent 1 playing +1

is given by π1(+1, . . . , tn) = α+γ
∑

(1,j)∈E tj+β
∑

(1,j)∈E tj, while their payoff for playing the

strategy −1 is given by π1(−1, . . . , tn) = −α − γ
∑

(1,j)∈E tj + β
∑

(1,j)∈E tj. The difference

is then,

π1(+1, . . . , tn)− π1(−1, . . . , tn) = 2α + 2γ
∑

(1,j)∈E

tj

The potential function, when agent 1 plays +1, takes the value P (+1, . . . , tn) = α +

α
∑

i∈V,i 6=1 ti + γ
∑

(1,j)∈E tj + γ
∑

(i,j)∈E,i 6=1 titj, and when they play −1 the potential func-

tion has the value P (−1, . . . , tn) = −α+α
∑

i∈V,i 6=1 ti−γ
∑

(1,j)∈E tj +γ
∑

(i,j)∈E,i 6=1 titj. The

difference is then,

P (+1, . . . , tn)− P (−1, . . . , tn) = 2α + 2γ
∑

(1,j)∈E

tj

Hence π1(+1, . . . , tn)− π1(−1, . . . , tn) = P (+1, . . . , tn)− P (−1, . . . , tn). Because the choice

of agent 1 was arbitrary this holds for all agents, and the potential function in (3.7) is a

potential function for G.

The social welfare function for this game, as throughout this chapter, calculates the sum

of payoffs in any strategy profile. Given a state of the game, all agents receive either α or

−α depending on their strategy being +1 or −1. These payoffs are earned by each agent

independent of the network structure or the strategy played by the others. Hence, in the

global social welfare function we must have α
∑

i∈V . In the given state of the game, in any
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of the sub-2 × 2 interactions, the two agents are either each receiving γ or each receiving

−γ. Hence, in the welfare function, these can be taken into account with 2γ
∑

(i,j)∈E titj.

Finally, we must figure out how the β terms can be counted by the welfare function. Take

an edge (i, j) ∈ E. In this sub-2× 2 interaction, agent i is receiving the externality βtj, and

the agent j is receiving the externality βti. In this interaction, then, these components can

be added to give β(ti + tj). Since this is happening with every edge, the global social welfare

function must include β
∑

(i,j)∈E(ti + tj).

Therefore, the social welfare function of this game is

w(t1, . . . , tn) = α
∑
i∈V

ti + 2γ
∑

(i,j)∈E

titj + β
∑

(i,j)∈E

(ti + tj) (3.8)

The states in this game can be categorized as “all +1,” “all −1,” or a mix of +1’s and −1’s.

In the state “all +1,” which we denote by + 1, ti = +1 for every i ∈ V . Similarly, the state

“all −1,” denoted by −1, means that ti = −1 for every i ∈ V . The state with both +1’s and

−1’s there is at least one agent playing +1 and at least one agent playing −1, the specific

number of each is denoted by n+1 and n−1, respectively. We refer to this state as (+1,−1).

This gives:

P (+1) = nα + |E|γ

w(+1) = nα + 2|E|γ + 2|E|β

P (−1) = −nα + |E|γ

w(−1) = −nα + 2|E|γ − 2|E|β
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On the other hand,

P (+1,−1) = (nt
+1 − nt

−1)α + (|Et
+1,+1|+ |Et

−1,−1| − |Et
+1,−1|)γ

w(+1,−1) = (nt
+1 − nt

−1)α + 2(|Et
+1,+1|+ |Et

−1,−1| − |Et
+1,−1|)γ

+ 2(|E+1,+1| − |E−1,−1|)β

Where Et
t′,t′′ ⊆ E denotes the subset of the edge set E containing all edges such that the

first agent is playing t′ and the second t′′ in the strategy profile t. In the calculations of

this section it is assumed that t stands for strategy profiles of the type (+1,−1), where we

write t as the superscript instead of (+1,−1) to reduce clutter. This superscript also shows

up in n+1 and n−1 since these depend on the number of agents playing each strategy, hence

strategy profile. Notice that |Et
+1,−1| = |Et

−1,+1|.

After calculations, the following regions in the parameter space are found that give rise to

inequalities in the potential and welfare functions.

P (+1) > P (−1) ⇐⇒ α > 0 (3.9)

P (+1) > P (+1,−1) ⇐⇒ nt
−1α + |Et

+1,−1|γ > 0 (3.10)

P (−1) > P (+1,−1) ⇐⇒ −nt
+1α + |Et

+1,−1|γ > 0 (3.11)

w(+1) > w(−1) ⇐⇒ nα + 2|E|β > 0 (3.12)

w(+1) > w(+1,−1) ⇐⇒ nt
−1α + 2|Et

+1,−1|γ + (|Et
+1,−1|+ 2|Et

−1,−1|)β > 0 (3.13)

w(−1) > w(+1,−1) ⇐⇒ −nt
+1α + 2|Et

+1,−1|γ − (2|Et
+1,+1|+ |Et

+1,−1|)β > 0 (3.14)

These inequalities look very similar to the ones in Section 3.2.1, where 2 × 2 games were

analyzed. One can verify that these inequalities reduce to the 2× 2 case.

For a more manageable exposition, we only identify the cases of coordinative agreement
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and disagreement for coordination games. The assumption that the underlying game is a

coordination game translates to |γ| > α. Then, if α > 0, it is immediate that (3.9) and

(3.10) are satisfied, and that +1 globally maximizes the potential function.

There is coordinative agreement when the welfare function is also globally maximized at +1.

This happens precisely when nα+2|E|β > 0 and nt
−1α+2|Et

+1,−1|γ+(|Et
+1,−1|+2|Et

−1,−1|)β >

0. On the other hand, there is coordinative tension then the welfare function is globally

maximized at −1. The requirements here are that nα+2|E|β < 0 and −nt
+1α+2|Et

+1,−1|γ−

(2|Et
+1,+1|+|Et

+1,−1|)β > 0. The intricate relationship of these regions for the welfare function

with the set of edges will be left unexplored.

3.5.1 Young’s Example

In The Diffusion of Innovations in Social Networks [18], Young defines a game where the

payoffs are separated into individual and social components. The individual component

involves what he defines to be the agents’ idiosyncratic preferences for strategies A and B.

This preference gives the agents a payoff for choosing A or B that is independent of the other

agents’ strategies. The social component of the payoff is said to be the network externalities

that are generated in the strategy profiles of the game, represented using a 2 × 2 game

matrix. In other words, this payoff for each agent is dependent on all agents’ strategies.

These externalities, says Young, may arise from a variety of factors including demonstration

effects, increasing returns, or the desire to conform. The agents play on a network, and

their utility comes from their idiosyncratic payoff plus the sum of the result of their 2 × 2

game with their neighbors. Each agent receives their idiosyncratic payoff once, while the

externality payoff is cumulative over the agent’s neighbors. Let us make this precise.

Borrowing the graph theoretic network notation used by Young, suppose Γ = (V,E,W ) is

a simple finite connected weighted directed graph with set of vertices, or players, V , set of
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edges, E, and set of weights W . The elements of E are ordered pairs (i, j) where i and j are

players in V and the existence of (i, j) ∈ E means that agent i is influenced by agent j. Each

edge (i, j) ∈ E has a weight wij ∈ W that represents the strength of agent j’s influence over

agent i. To reduce complexity, Young assumes that wij = wji for all i, j such that (i, j) ∈ E,

i.e., the influence is symmetric for all pairs of connected agents.

Each agent can play one of two strategies, A or B, which we refer to as +1 and −1 to

maintain the convention established in this dissertation. The individual component of agent

i’s payoff is the utility of agent i’s idiosyncratic preferences for +1 and −1, denoted by vi(ti),

for each i ∈ V . It is clear from the domain of vi that the idiosyncratic preference for each

i is independent of tj for all j ∈ V, j 6= i. Young defines the social component of agent i’s

payoff to be
∑
wiju(ti, tj) for all j such that (i, j) ∈ E. Here u(ti, tj) represents the utility

agent i gains from the 2 × 2 network externality game played with j. Again, in this 2 × 2

game, the payoffs are an aggregate of network externalities like increasing returns and the

desire to conform. The total payoff for agent i is then written as

Ui(t) =
∑

(i,j)∈E

wiju(ti, tj) + vi(ti) (3.15)

In the same paper [18], Young gives an example of a game where the strategy profile that

globally maximizes the potential function is not the same as the profile that globally maxi-

mizes social welfare. The story is of two competing technologies, one of which is easy to use

while the other offers better networking capabilities. Young assumes that the payoffs have

an individual and a social component, hinting at the structure of potential games detailed.

The first technology’s payoff is assumed to have a high individual component but low social

component. The payoff for the latter technology, on the other hand, is assumed to have no

individual component but a high social component. These strategies are denoted by +1 and

−1, respectively. Young specifies these payoffs to be as in Table 3.8.
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+1 −1

+1 1 1 0 0 v(+1) = 8

−1 0 0 4 4 v(−1) = 0

Table 3.8: Young’s Example of Disagreement

We remind the reader that this utility quantifies the agents’ idiosyncratic preference for

strategies +1 and −1. The network externalities of the game are given in the game matrix

of Table 3.8. Using n+1(t) to denote the number of agents in state t that play strategy +1,

Young writes the potential function P (t) and the social welfare function w(t) as

P (t) = w+1,+1(t) + 4w−1,−1(t) + 8n+1(t) (3.16)

w(t) = 2w+1,+1(t) + 8w−1,−1(t) + 8n+1(t) (3.17)

Young states in [18] that it is clear that the state where all agents play −1 maximizes

social welfare, and the state where all agents play +1 maximizes the potential function.

Denote these states by +1 and −1, respectively. To demonstrate, take the total sum of edge

weights in the social network to be nw. Then, in +1, w+1,+1(+1) = nw, w−1,−1(+1) = 0,

and n+1(+1) = n, where n is the total number of agents. Then, P (+1) = nw + 8n and

w(+1) = 2nw + 8n. On the other hand, in −1, w+1,+1(−1) = 0, w−1,−1(−1) = nw, and

n+1(−1) = 0. Here, P (-1) = 4nw and w(-1) = 8nw.

In +1, Young claims potential is maximized but not welfare, while in −1, welfare is max-

imized but not potential. This means it must be the case that nw + 8n > 4nw and

8nw > 2nw + 8n. These inequalities reduce to n > 3
8
nw and nw > 4

3
n. Putting these

together then gives 8
3
n > nw >

4
3
n, an implicit assumption in Young’s example.

This example is used by Young to demonstrate a situation in which the dynamic used in his
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model leads, with high probability, to a state where most agents do not adopt the favorable

technology. The example, however, is ad-hoc and it is not shown precisely why these payoffs

give rise to disagreement between the potential function and the social welfare function.

Moreover, decomposing the game in Table 3.8 into the coordinate system reveals there is

some additional α information in the part of the game that is supposed to represent purely

the social component of the payoff. In light of this and the implicit assumption highlighted in

the previous paragraph, it is clear that there is some obscurity in this example. The essence

of it, however, is undeniably the tension between the potential function and the social welfare

function brought about by the behavioral component that we have explored in this chapter.

Focusing on the underlying 2×2 game, we know that Young’s example is simply of a potential

game that lives in the region of coordinative tension. Putting this 2 × 2 game on networks

simply means that the game parameters (α, γ, and β) are scaled by network parameters and

variables (such as number of edges and degrees).

3.6 Autonomy

3.6.1 Potential Autonomy

In [19] Young discusses the dynamics of social innovation. The core of the model is a

coordination game played on networks, where one equilibrium represents the status quo and

the other, the better equilibrium, represents an innovation that increases the welfare of those

who adopt it. Young parametrizes with α the benefit of the innovation over the status quo.

This produces the game matrix shown in Table 3.9, where the strategy −1 denotes the status

quo, and +1 denotes and the innovation. In this paper, the same strategy profile maximizes

both the welfare function and the potential function. Referring to Table 3.9, when α > 0

this strategy profile is (+1,+1).
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+1 -1

+1 1 + α 1 + α 0 0

-1 0 0 1 1

Table 3.9: Young’s Social Innovation Game

In this model, Young uses the potential function to characterize the network properties

under which a subset of agents has the collective incentive to deviate to the innovation.

This collective incentive is interpreted to be collective deviations that increase the potential

function. Subsets of agents whose collective deviation increases the potential function are

said to be potential autonomous. Young relates potential autonomous subsets to the graph-

theoretic notion of close-knittedness, which measures how well integrated each subset of the

group is with the rest of the group. Formally, CK(S) = minS′⊆S d(S, S ′)/d(S ′). Here d(S ′, S)

is the number of edges between S ′ and S, and d(S ′) is the sum of degrees in S ′.

We state one of Young’s main theorems without proof and refer the reader to [18].

Theorem 3.15. A subset of agents S is potential autonomous if and only if

CK(S) >
1

2 + α
. (3.18)

3.6.2 Agency Autonomy

Newton et al. explore the same situation as Young but change his model to include a

parameter β∗ that is not picked up by the potential function. In addition, Newton et al.

use the parameter α but in a different way from Young. We show that β∗, as used in this

model, is a parameter coming solely from the game’s behavioral component5– to which the

potential function is blind– and this is why, following from discussions in chapter 2, it is not

5It is also present in the kernel but we pay not attention to it, as described in chapter 2.
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picked up by the potential function. Note that we use β∗ to disambiguate between the β

from the coordinate system.

The game used by Newton et al. is given in Table 3.10.

+1 -1

+1 1 + β∗ 1 + β∗ 0 β∗ − α

-1 β∗ − α 0 1 1

Table 3.10: Newton et al. ’s Model

Decomposing this game shows us how the β∗ parameter is only present in the behavioral

component6. This is shown in Tables 3.11 and 3.12.

+1 -1

+1
1 + α

2

1 + α

2
−1

2
−1 + α

2

-1 −1 + α

2
−1

2

1

2

1

2

Nash Component

Table 3.11: Nash Component of Newton et al. ’s Model

+1 -1

+1
2β∗ − α

4

2β∗ − α
4

−2β∗ − α
4

2β∗ − α
4

-1
2β∗ − α

4
−2β∗ − α

4
−2β∗ − α

4
−2β∗ − α

4

Behavioral Component

Table 3.12: Behavioral Component of Newton et al. ’s Model

From this, we already know that β∗ will not be picked up by the potential function since it

is not found in the Nash component of the game. Newton et. al., show that the game they

6We mention one more that it is also present in the kernel.
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use, in Table 3.10, has the same potential function as the game used by Young, in Table 3.9.

Because of this, the same characterization of potential autonomy holds. That is, a subset S

of agents is potential autonomous if and only if CK(S) = 1/(1 + α).

Newton et. al.’s focus is on characterizing network properties wherein deviating subsets of

agents all receive a higher payoff from the deviation. Such a subset is defined to be agency

autonomous. It is shown that agency autonomous sets are related to the graph-theoretic

notion of cohesion. Cohesion and close-knittedness are similar. Close-knittedness measures

how well integrated each subset of the group is with the rest of the group. Cohesion, on

the other hand, measures how well integrated each agent is to the rest of the group. In

other words, a cohesive group is understood to be one where no agent has too many of their

interactions with outsiders. Formally, Co(S) = mini∈S d(i, S)/d(i). The main theorem is the

following, which we state without proof.

Theorem 3.16. A subset S of agents is agency autonomous if and only if

Co(S) >
1

1 + β∗
. (3.19)

3.6.3 An Alternative Parametrization

Newton et al. introduce the parameters α and β but gives no intuitive justification for the

role it is supposed to play in the game. It is simply used as part of a two dimensional

parametrization of all symmetric 2 × 2 coordination games up to affine transformations.

In addition, it has the same potential function as the 1-dimensional game originally used

by Young, a convenient property. We offer a more intuitive parametrization based on the

coordinate system developed in this thesis. To keep things symmetric, we take α1 = α2

and call it α. Furthermore, we use β to denote the positive externality generated by agents

playing +1. We hope that our use of α and β is not confused with Newton et al.’s.
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This new parametrization allows us to express the game as in Table 3.13.

+1 -1

+1 γ + α + β γ + α + β −γ + α− β −γ − α + β

-1 −γ − α + β −γ + α− β γ − α− β γ − α− β

Table 3.13: Parametrization of 2× 2 Coordination Games

If it is wished to further reduce the dimensionality of this parametrization there are several

options; among them, one can set γ to a constant value, or one can aggregate, in a meaningful

way, the Nash parameters α and γ.

Newton et al. juxtapose Young’s concept of potential autonomous with agency autonomy,

a concept they introduce. Young defines a set of agents to be potential autonomous if the

potential function increases from their collective deviation. Newton et al. define a set of

agents to be agency autonomous if the payoff of every player in the set is increased under

a collective deviation. The collective deviation of interest, since +1 is interpreted to be the

innovation and −1 the status quo, is from (−1,−1) to (+1,+1).

Using the parametrization offered in Table 3.13, we calculate the difference in payoff from

a collective deviation from (−1,−1) to (+1,+1) in a 2-agent case. This deviation gives

the agents the payoff difference of (γ + α + β)− (γ − α− β) = 2α + 2β. This difference is

positive when α + β > 0. On a network, this will simply be scaled by the appropriate values

of the degrees and edge sets.

With the new parametrization, where the parameters are given meaning, we see that in

order for the collective deviation to yield a positive increase in payoff, the agent needs that

the sum of their individual preference for the innovation plus the externality received from

others playing the innovation to be positive. This allows many interesting situations.

Perhaps the agents prefer the status quo, in which case α < 0, but the collective deviation
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will still be profitable as long as the externality outweighs the cost of playing something the

agent does not inherently prefer. On the other hand, perhaps their individual preference for

the innovation outweighs a negative externality coming from others adopting it.

Ideally, the agent both prefers and receives a positive externality from the adoption of the

innovation. This is the case in Newton et al.’s model, and they go to lengths to argue this

with their introduction of β∗. We would like to point out that, with our parametrization

coming from the decomposition, this is immediate and clear.

Finally, we add that the way in which both Young and Newton et al. extend the 2× 2 game

to networks is by defining the agents’ payoff to be the sum of all 2×2 interactions with their

neighbors. Hence, for example, an agent playing +1 with n agents playing +1 and m agents

playing −1 will receive a payoff of (γ+α+β)n+(−γ+α−β)m. Similarly, an agent playing

−1 with the same neighbors receives a payoff of (−γ − α + β)n+ (γ − α− β)m.7

Now, suppose all agents in Γ are playing strategy −1. What does it mean, then, for a set

of agents to be agency autonomous, as defined by Newton et al., using the parametrization

offered in Table 3.13?

Consider a subset S ⊆ V . For any agent i ∈ S, their payoff at the beginning is simply

(γ−α−β)d(i, V ), which can be expressed as (γ−α−β)(d(i, S) +d(i, V \S)). If every agent

i ∈ S deviates from strategy −1 to strategy +1, the payoff for every agent i ∈ S becomes

(γ + α + β)d(i, S) + (−γ + α− β)d(i, V \S). This gives a positive difference when

(γ + α + β)d(i, S) + (−γ + α− β)d(i, V \S) > (γ − α− β)(d(i, S) + d(i, V \S))

7This breaks away from our original interpretation of potential games on networks, where the α term is
received by each agent only once. Here, the α term is summed in every 2× 2 interaction. The consequences
of this are minor, and will be made precise in future work.
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Which reduces to,

(α + β)d(i, S) + (−γ + α)d(i, V \S) > 0

Here we cleverly add and subtract (−γ + α)d(i, S) to the left hand side of the inequality,

giving, and further simplifying into,

(α + β)d(i, S) + (−γ + α)d(i, V \S) + (−γ + α)d(i, S)− (−γ + α)d(i, S) > 0

(α + β + γ − α)d(i, S) + (−γ + α)(d(i, V \S) + d(i, S)) > 0

(β + γ)d(i, S) + (−γ + α)(d(i, V \S) + d(i, S)) > 0

(β + γ)d(i, S) + (−γ + α)d(i) > 0

Rearranging and dividing by (β + γ) gives

d(i, S)

d(i)
>
−α + γ

β + γ
. (3.20)

We make a note that the externality for the innovation is assumed to be positive (β > 0),

and that the common interest coordinative pressure is also assumed to be positive (γ > 0).

Because of this, β+γ > 0 and we can divide without worrying about changing the inequality.

For alternative cases, the appropriate modifications can be easily made.

Using their parametrization, Newton et al. find that a set of agents S ⊆ V is agency

autonomous if and only if Co(S) > 1
1+β∗

. Taking the minimum over the inequality (5.1) we,

with our parametrization, can replace their inequality with Co(S) > −α+γ
β+γ

. In other words,

we replace Theorem 3.16 with Theorem 3.17 below.
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Theorem 3.17. A subset S is agency autonomous if and only if

Co(S) >
−α + γ

β + γ
= 1− α + β

β + γ
. (3.21)

Going over similar calculations for the potential function and the notion of potential auton-

omy allows us to rewrite Theorem 3.15 with Theorem 3.18 below.

Theorem 3.18. A subset S is potential autonomous if and only if

Co(S) >
−α + γ

2γ
=

1

2
− α

2γ
. (3.22)

Here we are immediately afforded a more intuitive understanding of this network property.

We have the parameters for individual preference α, coordinative pressure γ, and externalities

β. Because this is a coordination game with Nash equilibria at strategy profiles (+1,+1)

and (−1,−1), we have that γ > |α|. This means that the fraction is always positive. Hence,

some level of cohesion is always necessary. We also see that with increasing β, less cohesion

is necessary. There are only some examples of the possible analysis using the decomposition

as the parametrization of coordination games.

On the other hand we see that the requirement for potential autonomy is independent of β,

something we continue to stress. There, the close-knittedness is shown to be dependent only

on α and γ. The greater the α term, the agents individual preference, the less restrictive the

notion of close-knittedness needs to be.

It makes sense that if the agents are acting unilaterally, asking the question “what should

I do?”, that the result is dependent largely on the agents’ individual preference α. On the

other hand, if the agents are able to make decisions together, asking questions of the sort

“what should we do?”, then the result is dependent on all factors of the game– the individual

preference α, the pressure to conform γ, and the externality β.
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3.7 Conclusion

We summarize the main conclusions from this chapter in the list below.

• The potential function does not pick the behavioral component of the game.

• The behavioral component of the game is the culprit behind possible tension between

the risk-dominant Nash equilibrium and social welfare.

• Newton et. al. indirectly probed into the structure of the behavioral component and

showed its invariance to potential autonomy.

• As we have seen throughout this chapter, a large amount of what happens in the game

is determined by the behavioral component. The potential function, Nash equilibria,

and many learning dynamics ignore the behavioral terms.

• This subtlety was first identified in [8]. In this chapter we applied it to clarify the

literature on the diffusion of innovation.

We put Young and Newton’s model on the coordinate system for symmetric games. It is

entirely reasonable however, that the agents have different preferences over the two strategies,

and that each agent may cause a particular externality from using each strategy. Breaking

the α and β symmetry in this model is important and is saved for future work. Breaking

the γ symmetry makes way for more realism, too. For example, a certain pair of agents

want to conform, say i and j, so that γij > 0, but another pair, say i and k, do not, so that

γik < 0. Moreover, allowing higher order Nash and behavioral terms in the network model

allows for more realistic situations. Furthermore, allowing higher order Nash and behavioral

terms in the network model allows for more realistic situations. This would give the model

the flavor of the legislator game, discussed in chapter 2, where the Nash equilibria are not
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pure coordination profiles, but rather, there are thresholds where a certain number n1 of

agents playing +1 and n2 playing −1 is better than all agents playing +1.
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Chapter 4

Collaboration on Networks

4.1 Introduction

We remind the reader of the motivation behind this thesis– the pursuit of a model of group

creativity and collaboration. The first step in this was a set of collective improvisation ex-

periments set up primarily as a source for intuition. To build a model, because of their

association with common interest and coordination, we focused on potential games and ex-

posed their structure using algebraic tools in chapter 2. In chapter 3, we used the coordinate

system developed in chapter 2 to offer a general framework for current research in the dif-

fusion of innovation. Now, in this chapter, we discuss the experiments briefly, and then go

over several models we contribute.

Models of scientific collaboration and network epistemology are a recent and fruitful area

of study [21] [22] [20]. To capture scientific collaboration, these models focus on a pursuit

of an underlying “truth” by the scientific agents on the network. The flow of information

represents the communication of results and theories. Typically, the networks analyzed come

from the work of Bala and Goyal [1]. They include the complete network, the wheel network,
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and the star network. These will be the networks of focus in this chapter.

In our model, we view the agents as engaging in a creative process, where there is no “right”

answer and hence no “truth.” Instead, we assume the agents have to, collectively, solve many

problems faced by a collaborative group– including, among others, coordination and division

of labor– which we model using appropriate Nash equilibrium structures. In solving these

problems, the group is able to move forward in the production of their creative work.

To begin the chapter, we describe the collective improvisation experiments. We save formal

and detailed analysis of the experiments for a later paper where appropriate tools, that are

under development, can be used. Then, using the structure of potential games developed in

chapter 2, we offer a simple model of an improvising trio of musicians on the full network, the

wheel network, and the star network. After this, we offer a model to explain the importance

of a conductor in coordinating an orchestra, which fits into the theme of the chapter because

of its focus on networks and coordination (and music!). Finally, we offer an alternative

point of view into the structure of games– where the payoffs are interpreted as information

generated and transmitted.

4.2 Collective Improvisation Experiments

The collective improvisation experiments were conducted during the summer of 2015 with

four graduate students from UC Irvine’s program in Integrated Composition, Improvisa-

tion, and Technology. The four musicians, at the time of the experiments, had experience

improvising together for two years. There were two guitarists, a saxophonist, and a violinist.

The four participating musicians were isolated in separate spaces that were acoustically

treated in order to prevent sound from traveling between the spaces. Each musician was

given a pair of headphones through which they could hear themselves and whomever else
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we allowed them to hear. All musical output was first run through a studio system where

it was controlled to which headphones the different audio streams went. The networks of

information flow were enforced through this mechanism.

In order to prevent the music from purposely becoming too abstract,1 we asked the improvis-

ers to play in such a way that a general audience would appreciate the music produced, but

to also not restrict themselves to basic music ideas.2 They knew that the listening would be

controlled, but they were not informed of the details of the networks underlying each session

during the experiments. After all sessions had been recorded, the musicians were shown the

networks. In addition, they were aware that all musicians were participating in all of the

pieces. In other words, the musicians knew that if they could not hear someone, it did not

mean that this person was not participating in the piece.

We make an important note that a preliminary model was not established before the ex-

periments, and precise predictions were not formulated. This is because of the fleeting

opportunity to run the experiments.3 The collective improvisation experiments were set up,

then, mostly to gain intuition on how collective phenomena pertaining to collaboration and

creativity manifested under the constraints of the experiment.

We would like to acknowledge, however, the rich source of intuition these experiments proved

to be in the development of the model, and look forward to continuing this work both ex-

perimentally and theoretically. This initial round of experiments and all consequent analysis

has shown us, for example, how to better run such experiments in the future. In addition, a

complete and thorough musical analysis has not yet been performed on the music generated

from the experiment. Techniques are being developed for this purpose.

There are plans to create an interactive website where visitors can hear the pieces generated

1In the style of Ornette Coleman’s Free Jazz: A Collective Improvisation.
2The music produced was still far from “pop” music.
3The experiments were ran in a single day, over roughly 9 hours including set-up and tear-down. Success-

fully finding a time despite busy schedules and having willing musicians around was not taken for granted.
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in each network, with the ability to mute certain parts. This is to allow the listener to

examine the music being created by two agents who are not directly connected to each other

on the network.4

This dissertation is only scratching the surface of the information structure and dynamics

in collective improvisations.

4.2.1 The Nine Sessions

A total of nine improvisational sessions, each around 7 to 10 minutes in length, were recorded

with varying underlying networks of information flow. We refer to the first guitar player with

g1, the saxophonist with s, the violinist with v, and the second guitarist with g2.

Session 1 represents the scientific control experiment, where all musicians can hear each

other. This is a typical collective free improvisation. All other sessions involved changing

the underlying network of information flow, the independent variable of the experiment. The

motivation behind each session is briefly discussed, but this dissertation focuses on Sessions

1, 3, 4, 6, and 8. Session 1 manifests the complete network and, as previously mentioned, is

the standard situation in collective improvisation. Sessions 3 and 8 have the wheel network

as their underlying listening structure, and sessions 4 and 6 have listening conforming to the

star network. The complete, wheel, and star networks are commonly used in modeling the

dynamics of information flow [21] [22] [20], and their use originates from work by Bala and

Goyal [1].

The empty network was excluded from the experiments in an effort to save time because

the result, we assumed, would have been complete chaos with any ephemeral coordination

having emerged solely by chance.

4Stay tuned!
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Session 1

g1s

v g2

Figure 4.1: Session 1

Session 1, as described earlier, was the scientific control experiment. In this session everybody

could hear everybody. The result of this session was unexpected5 but simultaneously as

expected.

Session 2

g1

s

v g2

Figure 4.2: Session 2

In session 2, v, g2, and s were in a wheel network where v, in addition, was able to hear g1.

On the other hand, g1 could hear no one. The motivation here was to observe v’s behavior,

who was simultaneously receiving two possibly uncorrelated streams of information. One

stream came from g1, who received no feedback whatsoever, and another stream came from

s, to whom v indirectly sent information.

Although v integrated information received from g1 and sent it to g2, by the time this came

back to v through s, because of g1 receiving no feedback, it is hard to say that it matched

the music’s evolutionary trajectory manifested through g1. There are additional phenomena

5Thus is the nature of improvisation.
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observed, especially in terms of the wheel sub-network in this session. However, a discussion

of these observations is reserved to the wheel network sessions, Sessions 3 and 8.

Session 3

g1s

v g2

Figure 4.3: Session 3

Session 3 was a wheel network. Here g1 received information from s, who received infor-

mation from v, who received information from g2, who finally received information from g1.

During the beginning of this session it is clear that the musicians experienced confusion.

Usually there is immediate feedback in an improvisation as the musicians put forth their

musical ideas. This immediate feedback adds to the processes involved that eventually lead

to global levels of coordination in improvisation. In this network, however, because there

is no bidirectional information flow, and hence no direct feedback, this essential component

of musical coordination in improvisation was absent. Instead, in this session, musical ideas

expressed by a musician only sometimes made their way back, and when they did, it was

always with delay.

Regardless, after some time, the musicians seemed to integrate the odd nature of informa-

tion flow in this session, and successfully reached a certain degree of coordination. The

coordination observed by the end of this piece is different from the one observed in Session

1, the complete network. This reflects the multidimensionality of musical information, and

how some of the information gets lost when there is not full communication between all

participating improvisers– preventing full coordination.

116



Session 4

g1

s

g2 v

Figure 4.4: Session 4

In session 4 the agents were playing on a star network. In this network the central node s was

connected to everyone. They sent information to all other agents and received information

from all of them. The other agents g1, v, and g2 all received information from s and sent

information back. The role imposed on s by the topology of this network is one of great

responsibility in communicating and integrating all incoming streams of information. Agent

s was observed to play softly throughout the piece, integrating information received from all

other players.

The behavior of s in this session is different from the behavior of the central agent in

Session 6, the other star network. This hints at many possible strategies for attaining global

coordination. The strategy observed here involved playing an appropriate “average” of all

information received. This strategy proved to be mostly successful during the session, but,

as expected, only some level of coordination was reached among all musicians. Here, even

less of the multidimensionality of musical information was able to be shared globally since

there was a sole agent responsible for transmitting the information to all musicians.

Session 5

In session 5, the outside nodes of a star network were connected in a wheel. This network

is referred to as “star-wheel”. In this particular case, the central node g1 heard everybody

and sent information back to everybody. The other agents not only sent information to
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s

g1

g2 v

Figure 4.5: Session 5

and received information from g1 but s also received information from g2, who received

information from v, who received information from s. It was difficult to tell this session

apart from Session 1, the complete graph. It is clear that more sophisticated tools for

analysis are needed for better discernment and conclusions.

Session 6

g1

g2

s v

Figure 4.6: Session 6

Session six was another star network, where the central agent was g2. The observed behavior

of g2 is very different from the behavior of s in the star network of Session 4. While s played

softly and integrated the incoming information, in some sense “averaging” all musical ideas,

agent g2 seemed to disregard the incoming information and instead focused on reinforcing

their own musical idea. This strategy makes sense. Due to the chaotic nature of the musical

ideas put forth by the disconnected agents, a worthwhile attempt at coordination stems

from continuously maintaining the same idea. This can go wrong, of course, if another

participating agent does the same. In this session this strategy was observed to be mostly

successful, and similar conclusions are made as in Session 4.

Sessions 4 and 6 together show the existence of at least two distinct strategies for reaching
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coordination. Roughly, one is to get on everybody’s level and find a meaningful “center” or

“average,” and the other is to get everyone on your level. There is great difficulty in parsing

the source of these distinct strategies employed by the agents in the center of the star. An

agent may employ one of these strategies because of their musical personality, or it may be

a direct response to who played first. If, for example, the improvisation is slow to start, and

the center node is the one who begins putting forth musical ideas, then “getting everyone on

your level” is a reasonable strategy to pursue. However, if the center node does not put forth

the first musical idea, then to handle the incoming streams of musical ideas, a reasonable

strategy is to “average” these ideas. In session 4, the center agent was not the first to start,

and that in session 6 the center agent was the first to start. This supports our hypothesis.

Session 7

g1s

v g2

Figure 4.7: Session 7

The network underlying session 7 is almost complete. A wheel network was modified by

connecting each pair of disconnected agents bidirectionally. In this particular case, since s

and g2 are disconnected in the wheel, they were connected bidirectionally. Similarly, v and

g1 were connected bidirectionally. Like Session 5, it was hard to tell this session apart from

the complete network underlying Session 1. Because of this, no conclusions are made and

further analysis is reserved for a later time.
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g2s

v g1

Figure 4.8: Session 8

Session 8

Session 8 is a permutation of Session 3. It is another wheel network where instead g2 hears

g1, who hears v, who hears s, who finally hears g2. In these sessions most comments made

about Session 3 hold, although there seems to be less initial confusion and the speed with

which global levels of coordination are reached is faster than in Session 3. The factors leading

to this are numerous and without more sophisticated tools for analysis a proper discussion

is withheld. Some hypotheses include the distribution of the agents on the network, the

experience gained improvising on networks in the previous seven sessions, and the musicians

being significantly more tired.6

Session 9

s

g2

v g1

Figure 4.9: Session 9

Session 9 is another star-wheel network, like in Session 5. No additional comments are made.

6At this point, about 7 or 8 hours had passed since the experiments began.
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4.2.2 Discussion

To reiterate, there is a lot to be extracted from these experiments and that this dissertation

barely scratches the surface of the complexity found in improvisation. In the next section

a simple model is developed to explore the multi-layered coordination present in improvisa-

tion. More specifically, in this model the agents have to coordinate not only rhythmically,

but also melodically and harmonically. Later in the chapter, other possibilities faced by a

collaborative group beyond coordination are investigated.

4.2.3 Next Experimental Steps

Software is (slowly) being developed to remotely connect musicians so that future experi-

ments can be ran without a physical studio space or studio equipment. Instead, the musicians

can play from their home using MIDI instruments7. Another convenience afforded by the

MIDI interface is that it bypasses the main issue in remote musical collaboration– lag. When

sending audio signals across the internet, due to their large size, there is unavoidable lag that

would surely interfere with the creative process. Since MIDI is a sequence of numbers (rep-

resenting note, velocity, echo, pedal, bend, etc.), the latency is minimal. Moreover, the

software will include mechanisms to check for appropriate latency. The MIDI nature of the

data generated using this software also produces more manageable data than audio signals

from analog recordings. The first of which is numerical, and the latter type of data are wave

files.

7This makes it especially easier since, for example, a computer keyboard can be used as a MIDI instru-
ment.
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4.2.4 Analytic Tools

Mathematics has proved a fruitful tool for exploring the rich structures and patterns in

music. For example, there is a geometrical catalog of rhythms [16], mathematics describing

distance between rhythms [15], and geometrical structures of chords [17]. However, nothing

has been found that immediately aids our analysis of the improvisation experiments. It is

clear that further work needs to be done to develop techniques specific to analyzing past and

future experiments in a way that allows the developed models and theory to be validated,

and their predictions to be tested.

4.3 Model: A Trio on Networks

A simple model of an improvising trio is offered using the coordinate system developed in

chapter 2. This model is referred to as the trio game. The trio is composed of three agents,

a saxophonist, a bassist, and a drummer. The saxophonist can play only the melody, the

bassist the harmony, and the drummer the rhythm. The saxophonist and bassist still play

in rhythm.

There are two melody lines, AM and BM , and two harmony lines AH and BH . Melody AM

sounds good with harmony AH , and melody BM sounds good with harmony BH . Further-

more, there are two rhythms, C and D, and the three agents must coordinate on either

rhythm. All melody and harmony lines can be adjusted to fit in with any particular rhythm.

That is, as long as there is coordination in the melody and harmony, both rhythms C and

D are acceptable.

The saxophonist must choose a melody line, AM or BM , and a rhythm, C or D. The bassist

must choose a harmony line, AH or BH , and a rhythm, C or D. The drummer chooses only

C or D. To maintain the convention established in this dissertation, refer to AM , AH , and
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C, with +1, and to BM , BH , and D with −1. Effort is made in what follows to prevent any

confusion to stem from this notation.

The improvisation is modeled with two games that happen at once– the melody and harmony

game between the saxophonist and bassist, and the rhythm game between all three musicians.

Refer to the saxophonist as agent s, the bassist as agent b, and the drummer as agent d.

Assuming common interest and hence the structure of potential games, the payoff functions

for the rhythm game are

πRs (rs, rb, rd) = αsrs + γsbrsrb + γsdrsrd + δrsrbrd + βsbrb + βsdrd + βsbdrbrd

πRb (rs, rb, rd) = αbrb + γsbrsrb + γbdrbrd + δrsrbrd + βbsrs + βbdrd + βbdsrsrd

πRd (rs, rb, rd) = αdrd + γsdrsrd + γbdrbrd + δrsrbrd + βdsrs + βdbrb + βdsbrsrb

The payoff functions for the melody and harmony game are

πMH
s (ts, tb) = α′sts + γ′sbtstb + β′sbtb

πMH
b (ts, tb) = α′btb + γ′sbtstb + β′bsts

πMH
d (ts, tb) = β′dsts + β′dbtb + β′dsbtstb

In the melody and harmony game, agent d’s payoff is composed entirely of externality terms

coming from agent s and b’s individual efforts, β′ds and β′db, and their combined effort, β′dsb.

The drummer cannot play any melody or harmony strategies, but still hears the strategies

played by the sax player and the bass player.

Since the agents are playing both games at the same time, we define their total payoffs to
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be

πs((rs, rb, rd), (ts, tb)) = πRs (rs, rb, rd) + πMH
s (ts, tb)

πb((rs, rb, rd), (ts, tb)) = πRb (rs, rb, rd) + πMH
b (ts, tb)

πd((rs, rb, rd), (ts, tb)) = πRd (rs, rb, rd) + πMH
d (ts, tb)

A strategy profile for the trio game ((rs, rb, rd), (ts, tb)) contains the ordered triplet (rs, rb, rd)

which details the rhythm strategy of agents s, b, and d, and the ordered pair (ts, tb) which

contains the melody strategy of agent s, and the harmony strategy of agent b.

Our interest in when the agents are able to coordinate on both games motivates the following

theorem.

Theorem 4.1. The trio game on the full network is a coordination game with pure strategy

Nash equilibria ((+1,+1,+1), (+1,+1)), ((+1,+1,+1), (−1,−1)), ((−1,−1,−1), (+1,+1)),

((−1,−1,−1), (−1,−1)), and no others, if and only if |αi + δ| < γij + γik for each agent i

and agents j 6= i and k 6= i and |α′i| < γ′sb for i = s, b.

Proof. First, for the rhythm game, |αi+δ| < γij +γik if and only if the Nash payoffs for each

agent in (+1,+1,+1) and (−1,−1,−1) are positive. Hence, when these are pure strategy

Nash equilibria. Because all other strategy profiles in a 2 × 2 × 2 game are a unilateral

deviation away from (+1,+1,+1) or (−1,−1,−1), there cannot be additional pure Nash

equilibria. Similarly, for the melody and harmony game, |α′i| < γ′sb if and only if the Nash

payoffs for each agent in (+1,+1) and (−1,−1) are positive. It is obvious that when this

is the case, (+1,−1) and (−1,+1) cannot be pure Nash equilibria. Therefore, the trio

game is a coordination game with pure strategy Nash equilibria ((+1,+1,+1), (+1,+1)),

((+1,+1,+1), (−1,−1)), ((−1,−1,−1), (+1,+1)), ((−1,−1,−1), (−1,−1)), and no others,

if and only if |αi + δ| < γij + γik for each agent i and agents j 6= i and k 6= i and |α′i| < γ′sb
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for i = s, b.

The pure strategy Nash equilibria described in the above theorem are those where there is

coordination both in the rhythm game and in the melody and harmony game. In most im-

provisations we expect this to be the case; the agents are able to coordinate both melodically

and harmonically, and rhythmically. The conditions that guarantee this should be familiar

after chapters 2 and 3. When the agents’ individual preferences are bounded by the sum of

coordinative pressures, they are led by the pressure to coordinate rather than their individual

preference. It is precisely in these cases that there is coordination in the trio game.

The heterogeneity of the agents in the model means that for agent i it need not be the case

that γij = γik, where j and k are the remaining agents. In the case where γij > γik, most of

the pressure to conform comes from agent j. This opens the model to interesting possibilities

when the underlying network of listening is tampered with. For example, although the sum

γij + γik may be sufficient to push agent i to coordinate, the individual γij and γik may fall

short of doing so. Or, it may be that γij alone is sufficient to ensure coordination, but γik is

inadequate. In such a scenario, it is clear that a network where agent i hears only agent j

will produce different music from a network where agent i hears only agent k.

Let us now analyze the trio game on the wheel and star networks. We assume that δ = 0 to

simplify the analysis.8

4.3.1 Wheel Network

There are two possibilities for the wheel network. One of which is where agent s hears agent

b, who hears agent d, who then hears agent s, and the other is where agent s hears agent

d, who hears agent b, who then hears agent s. Without any loss of generality, consider only

8Later in the chapter we study the effects of δ 6= 0, although through a slightly different perspective.
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the first case, shown below in Figure 4.10. All results for the other case are the same and

carry over by swapping agent s and b’s labels.

s

bd

Figure 4.10: Wheel Network

The payoff functions become

πRs (rs, rb, rd) = αsrs + γsbrsrb + βsbrb

πRb (rs, rb, rd) = αbrb + γbdrbrd + βbdrd

πRd (rs, rb, rd) = αdrd + γsdrsrd + βdsrs

πMH
s (ts, tb) = α′sts + γ′sbtstb + β′sbtb

πMH
b (ts, tb) = α′btb

πMH
d (ts, tb) = β′dsts

Because agent s only hears agent b, their payoff functions for the rhythm and the melody and

harmony games are adjusted to remove all terms that are dependent on agent d’s strategy.

This has no effect on the melody and harmony game since this game is played exclusively

with agent b, but in the rhythm game it removes the γsdtstd and βsdtd terms. Agent b, who

only hears agent d, undergoes a similar transformation of their payoff function. The rhythm

and the melody and harmony games lose all terms that are dependent on agent s’s strategy.

In the melody and harmony game, this results in agent b facing what is essentially a single-

agent decision problem. Here it is obvious that if αb > 0, agent b will play +1, and if αb < 0,

then agent b will play −1. The pattern continues for agent d, where all terms dependent on
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agent b are deleted from their payoff function of each game.

On the full network, we proved that |αi + δ| < γij + γik for each agent i and agents j 6= i

and k 6= i, makes the rhythm game is a coordination game. Taking δ = 0 simplifies this to

|αi| < γij + γik. On the wheel network, all agents lose one of the γ terms, resulting in the

possibility that, even if the parameters give rise to a coordination game on the full network,

their individual preference is larger in magnitude than the remaining γ. The possibilities

resulting from this are described in the below Theorem 4.2.

Theorem 4.2. Suppose agents i, j, and k are on a wheel network such that i hears j, who

hears k, who hears i. A strategy profile for the rhythm game is written in the order i, j, k,

i.e., (σi, σj, σk).

1. If |αi| < γij, |αj| < γjk, and |αk| < γki, then the rhythm game has pure strategy Nash

equilibria (+1,+1,+1) and (−1,−1,−1).

2. If |αi| > γij, |αj| < γjk, and |αk| < γki, then the rhythm game has the unique pure

strategy Nash equilibrium (sgnαi, sgnαi, sgnαi).

3. If |αi| > γij, |αj| > γjk, and |αk| < γki, then the rhythm game has unique pure strategy

Nash equilibrium (sgnαi, sgnαj, sgnαi).

4. If |αi| > γij, |αj| > γjk, and |αk| > γki, then the rhythm game has unique pure strategy

Nash equilibrium (sgnαi, sgnαj, sgnαk).

Proof. For case 1, suppose |αi| < γij, |αj| < γjk, and |αk| < γki. Then each agent’s Nash

payoff is positive if and only if they play the same strategy as the agent from whom they

receive information. In other words, all agents have a positive Nash payoff in the strategy

profiles (+1,+1,+1) and (−1,−1,−1). Hence (+1,+1,+1) and (−1,−1,−1) are pure strat-

egy Nash equilibria. No other profile can be a pure strategy Nash equilibrium because all
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other possibilities are a single unilateral deviation from (+1,+1,+1) or (−1,−1,−1), and

hence must have a negative Nash payoff for the deviating agent.

For case 2, suppose |αi| > γij, |αj| < γjk, and |αk| < γki. Because |αi| > γij, agent i will

play the strategy sgnαi. Agent i will never play − sgnαi so all Nash equilibria must have

agent i playing sgnαi. Agent k, who hears i, has |αk| < γki, so they will have a positive

Nash payoff just in case they play same thing as agent i, namely sgnαi. Similarly, agent j,

who hears k, will also play sgnαi. Hence, (sgnαi, sgnαi, sgnαi) is the unique pure strategy

Nash equilibrium.

For case 3, suppose |αi| > γij, |αj| > γjk, and |αk| < γki. Then, agent i will play sgnαi

and agent j will play sgnαj independent of what the agent they hear plays. The remaining

agent k, who hears i, has |αk| < γki. Hence their payoff will be positive in the strategy

profile where agent i plays sgnαi. It follows that the unique pure strategy Nash equilibrium

is (sgnαi, sgnαj, sgnαi).

For case 4, suppose that |αi| > γij, |αj| > γjk, and |αk| > γki. Because each agent’s individual

preference is larger in magnitude than the pressure to conform, they receive a positive Nash

payoff if and only if they play their preference. It follows immediately that the unique pure

strategy Nash equilibrium is (sgnαi, sgnαj, sgnαk).

The above theorem describes the possible effects of the wheel network on the trio game. The

goal of coordination is guaranteed in cases 1 and 2, but the last two cases yield coordination

only by chance.

Case 1 preserves the coordination structure from the full network. Each agent’s individual

preference is bounded by the pressure to conform with the incoming agent’s information.

Because of this, each agent has positive Nash payoff whenever they coordinate with the

neighbor from whom they receive information. It is possible then for all agents to coordinate
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on (+1,+1,+1) or (−1,−1,−1).

In case 2, only two of the agents, j and k, have their individual preferences bounded by the

pressure to conform. The remaining agent i only receives a positive Nash payoff when they

play their preference. Because the other agents are both playing coordination games with

the incoming information, they will coordinate with agent i’s preference.

In case 3, only one agent, agent k, has their individual preference bounded by the pressure to

conform. Agent k will coordinate on the individual preference played by the agent they are

listening to, agent i. The remaining agent j, because their individual preference supersedes

their pressure to conform with k, will play their preference. Here there will be coordination

if and only if sgnαi = sgnαj. Otherwise, both agents i and k will play sgnαi and agent j

will play sgnαj = − sgnαi.

Lastly, in case 4, all agents have individual preference stronger than the pressures to conform.

Because of this, they will each play their preference. The only chance for coordination in

this case is if all agents happen to have the same preference.

In cases 1 and 2 there is guaranteed coordination. In cases 3 and 4 this coordination happens

only by chance, if the appropriate preferences align. To apply this to the context of an im-

provisation, the relationships of αs with γsb, αb with γbd, and αs with γsd must be considered.

The first relationship involves the sax player’s individual preference of a rhythm with their

pressure to conform rhythmically with the bassist. The second relationship is between the

bassist’s individual preference and their pressure to conform with the drummer. Finally, the

third relationship is that of the drummer’s preference with their pressure to conform with

the sax player.

To illustrate Theorem 4.2, suppose that the pressure of the sax player to conform with

the bassist is not very strong, so that |αs| > γsb.
9 On the other hand, suppose that the

9Realistically, this is usually not the case. The bass is a very rhythmic instrument and it is expected
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bassist has a strong pressure to conform with the drummer, and that the same is true of

the drummer with the sax player, so that |αb| < γbd and |αd| < γsd. According to Theorem

4.2, (sgnαs, sgnαs, sgnαs) is the unique pure strategy Nash equilibrium of the game. In

other words, the agents coordinate uniquely on the sax player’s preference. This happens

roughly because of the sax player’s low dependence on the bass player, and hence pursuit

of their individual preference for the rhythm. The drummer conforms to the sax player’s

rhythm, and the bassist conforms to the drummer’s rhythm, in turn conforming with the

saxophonist.

Note that Theorem 4.2 made no assumptions about the nature of the game on the full

network. The results hold even if the improvisation on the full network is not a coordination

game.

What happens to the melody and harmony game on the wheel network? The answer to this

question is given in the below Theorem 4.3.

Theorem 4.3. Suppose agents i, j, and d are on a wheel network such that i hears j, who

hears d, who hears i. A strategy profile for the melody and harmony game is written in the

order i, j, i.e., (σi, σj).

1. If |α′i| < γ′sb, then the melody and harmony game has pure strategy Nash equilibrium

(sgnα′j, sgnα′j).

2. If |α′i| > γ′sb, then the melody and harmony game has pure strategy Nash equilibrium

(sgnα′i, sgnα′j).

Proof. Agent j only receives information from agent d, who does not participate in the

harmony and melody game. Because of this, j’s payoff function does not include any terms

that in most cases the bassist conveys enough rhythmic information to the saxophonist to ensure rhythmic
coordination.
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dependent on agent i, and we can write πMH
j (ts, tb) = α′jtj. It is immediate that agent j’s

Nash payoff is positive if and only if agent j plays sgnα′j. Agent i, on the other hand, who

hears j, has utility function πMH
i (ts, tb) = α′iti + γ′sbtitj + β′ijtj. If |α′i| < γ′sb, then the Nash

payoff of agent i is positive if and only if (ts, tb) is (+1,+1) or (−1,−1). In this case, the only

strategy profile with positive Nash payoffs for both agents is (sgnα′j, sgnα′j). Alternatively,

if |α′i| > γ′sb, then agent i’s Nash payoff is positive if and only if agent i plays sgnα′i. The only

strategy profile where the payoff of both agents is positive is (sgnα′i, sgnα′j). This completes

the proof.

Theorem 4.3 shows that there are two possibilities for the Nash structure of the harmony and

melody game on the wheel network. When agent i, who hears agent j, for i, j = s, b, i 6= j,

has individual preference greater than the pressure to conform with j, the unique pure

strategy Nash equilibrium involves agent i and j each playing their individual preferences.

Agent j does this regardless of the relation of their individual preference with the pressure to

conform with agent i because agent j is, in their perspective, playing alone. The only chance

of coordination here is if sgnα′i = sgnα′j. The other possibility is when agent i’s individual

preference is bounded by the pressure to conform. In this case, agent j, not hearing i, plays

their preference sgnα′j. Agent i, being pulled by the pressure to coordinate, has positive Nash

payoffs in the strategy profiles (+1,+1) and (−1,−1). The only strategy profile with positive

Nash payoffs for both agents, and hence a pure strategy Nash equilibrium, is (sgnα′j, sgnα′j).

The intuition here is immediate. Since agent j receives no feedback from agent i, and because

agent d cannot convey melodic and harmonic information, agent j is playing the melody and

harmony game alone. Because of this, they will simply play their preference. Agent j

only receives the rhythmic information coming from the drummer, so there are pressures to

conform rhythmically, but freedom to follow their melodic and harmonic preference. Agent i,

on the other hand, hears agent j’s preference and conforms to it just in case |α′i| < γ′sb. Agent

j will never respond if agent i plays the alternative strategy in the melody and harmony game
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because this will never reach agent j.10

Theorems 4.2 and 4.3 allow for an interesting possibility. On the wheel network in Figure

4.10, if |αs| > γsb, |αb| < γbd, and |αd| < γsd in the rhythm game, then the agents will

coordinate on agent s’s preference. At the same time, if |α′s| < γ′sb, then agents s and b will

coordinate on agent b’s preference in the melody and harmony game. With this relationship

between the coordinates, the unique pure strategy Nash equilibrium of the trio game is

((sgnαs, sgnαs, sgnαs), (sgnα′b, sgnα′b)).

A somewhat bizarre possibility is where |αs| > γsb, |αb| > γbd, and |αd| < γsd in the rhythm

game, and |α′s| < γ′sb in the melody and harmony game. Here, the unique pure strategy Nash

equilibrium of the trio game is ((sgnαs, sgnαb, sgnαs), (sgnα′b, sgnα′b)). If sgnαs 6= sgnαb,

then agents s and d are playing one rhythm, while agent b is playing another. At the same

time, agents s and b are coordinating in the melody and harmony game. In other words,

agents s and b agree on the melody and harmony, but disagree on the rhythm.

4.3.2 Star Network

There are three possibilities for the star network. One of which has agent s at the center,

another has agent b at the center, and lastly, we can have agent d at the center. The cases

where agent s or b are in the center are similar because both agents are involved in both the

rhythm game and the melody and harmony game. Without loss of generality, consider the

case where agent s is in the center, and the case where agent d is in the center. Both are

displayed below in Figure 4.11. Furthermore, for a more concise exposition, assume the trio

game on the full network is a coordination game.

10Assume there is some dynamic in which an agent can bring about change. For example, perhaps the
agents have been playing rhythm +1 for far too long, and agent s wants shift the music to the rhythm −1.
In this dynamic, according to some mechanism, the agents hearing this change would respond and follow the
change or resist it. In a dynamic like this, on the wheel network, if agent s, who hears agent b, attempted to
change what is played in the melody and harmony game, their lead would not propagate to agent b because
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sb d

(a) s in Center

ds b

(b) d in Center

Figure 4.11: Star Network

In the first case, where agent s is in the center of the star, the payoff functions become

πRs (rs, rb, rd) = αsrs + γsbrsrb + γsdrsrd + βsbrb + βsdrd

πRb (rs, rb, rd) = αbrb + γsbrsrb + βbsrs

πRd (rs, rb, rd) = αdrd + γsdrsrd + βdsrs

πMH
s (ts, tb) = α′sts + γ′sbtstb + β′sbtb

πMH
b (ts, tb) = α′btb + γ′sbtstb + β′bsts

πMH
d (ts, tb) = β′dsts

In the second case, with agent d in the center of the star, the payoff functions are

πRs (rs, rb, rd) = αsrs + γsdrsrd + βsdrd

πRb (rs, rb, rd) = αbrb + γbdrbrd + βbdrd

πRd (rs, rb, rd) = αdrd + γsdrsrd + γbdrbrd + βdsrs + βdbrb + βdsbrsrb

πMH
s (ts, tb) = α′sts

πMH
b (ts, tb) = α′btb

πMH
d (ts, tb) = β′dsts + β′dbtb

it would have to get past agent d who cannot convey melodic and harmonic information.
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A striking difference between the two cases concerns the melody and harmony game. In the

first case, an agent that plays both games is in the center. Coordination in the melody and

harmony game transfers from the full network since both agents involved in the game are

connected to each other bidirectionally. In the second case, where the drummer is in the

middle, coordination in the melody and harmony game happens just in case the saxophonist

and the drummer have the same preference. This is captured succinctly in the following

theorem.

Theorem 4.4. Suppose the melody and harmony game is a coordination game on the full

network. Agents s and b will coordinate on the melody and harmony game on the star network

if and only if agent d is not in the center vertex or sgnα′s = sgnα′b.

Proof. We prove the equivalent expression that agents s and b do not coordinate on the

melody and harmony game on the star network if and only if agent d is in the center and

sgnα′s 6= sgnα′b.

Suppose agent d is in the center and sgnα′s 6= sgnα′b. This is true if and only if agent s’s

Nash payoff for the melody and harmony game is α′sts, and agent b’s is α′btb. This means

agent s will play sgnα′s and agent b will play sgnα′b. Because these are not equal, agents s

and b will not coordinate. This completes the proof.

Theorem 4.4 is both deep and obvious. The drummer being at the center, who cannot convey

information about the melody and harmony, can only help coordinate the rhythm between

agents s and b. The melody and harmony parts played by agents s and b will only align if

the agents happen to have the same preferences. Note that this is a highly idealized model

with only 2 strategies for the melody and harmony game. In a more realistic situation, there

are several options for the melody and harmony and the alignment of the agents’ preferences

is unlikely. Hence, we expect that in general, if the drummer is in the center of the star,

coordination of harmony and melody does not occur.
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The below theorem details the effect of the star network on the rhythm game that is a

coordination game on the full network.

Theorem 4.5. Suppose the rhythm game is a coordination game on the full network. Suppose

agents i, j, and k are on a star network such that i and j hear each other, and j and k hear

each other, but i and k are disconnected. A strategy profile is written in order i, j, k, i.e.,

(σi, σj, σk).

1. If |αi| < γij and |αk| < γki, then the game has exactly two pure strategy Nash equilibria,

namely (+1,+1,+1) and (−1,−1,−1).

2. If |αi| > γij and |αk| < γki, then the game has the unique pure strategy Nash equilibrium

(sgnαi, sgnαi, sgnαi).

3. If |αi| > γij and |αk| > γki, then if sgnαi = sgnαk, then the game has unique pure

strategy Nash equilibrium (sgnαi, sgnαi, sgnαi). Otherwise, the game has unique pure

strategy Nash equilibrium (sgnαi, sgnαi, sgnαk) if and only if sgnαi ·αj +γij−γjk > 0,

or it has unique pure strategy Nash equilibrium (sgnαi, sgnαk, sgnαk) if and only if

sgnαk · αj − γij + γjk > 0.

Proof. Before beginning, note that agent j’s Nash payoff of the rhythm game is identical to

that in the full network. Consequently, |αj| < γij + γjk.

Case 1 follows almost immediately. Because all agents have individual preference bounded

by their total pressures to conform, they have positive Nash payoff in the strategy profiles

(+1,+1,+1) and (−1,−1,−1). Hence, these profiles are pure strategy Nash equilibria.

Now, suppose |αi| > γij and |αk| < γki. The first inequality implies that agent i will play

sgnαi independent of what agent j plays, because i’s preference is larger than the pressure

to conform. Hence, any pure strategy Nash equilibrium must have agent i playing sgnαi.
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Agents j and k both have individual preferences smaller than total pressures to conform, so

they will have positive Nash payoffs in (+1,+1,+1) and (−1,−1,−1). Then, because the

Nash equilibrium must have agent i playing sgnαi, the only possibility for the equilibrium

is (sgnαi, sgnαi, sgnαi). This proves case 2.

For case 3, agents i and k each have individual preference greater than pressure to conform, so

agent i will play sgnαi and agent k will play sgnαk, and any pure strategy Nash equilibrium

must have agent i and k playing their preferences. If they are equal, then it is immediate

that the unique pure strategy Nash equilibrium is (sgnαi, sgnαi, sgnαi). If they are not

equal, then agent j, who is playing a coordination game with agents i and k, is being pulled

in two directions at once. Agent j will play sgnαi if and only if sgnαi · αj + γij − γjk > 0.

On the other hand, agent j will play sgnαk = −1 if and only if sgnαk · αj − γij + γjk > 0.

This completes the proof.

A consequence of Theorem 4.5 is that, perhaps counter-intuitively, the center agent has

little power in enforcing their preference. This power, instead, is coming from the agents

at the extremes, which is made evident in cases 2 and 3 of the theorem. Case 3 displays

an interesting situation where the center agent is forced to mediate between two disagreeing

agents. The center agent can only coordinate with one of their neighbors. Here, the sum of

the center agent’s preference and the cost-benefit of conforming with one agent but not the

other is what sways the decision.

Furthermore, Theorems 4.4 and 4.5 together give us the tools to understand the many

possibilities of the trio game on the star network. For example, we may have the drummer

at the center, preventing melodic and harmonic coordination when sgnα′s 6= sgnα′b. At the

same time, assuming the drummer has a high pressure to conform with both the sax player

and the bassist so that the rhythm game matches case 1 of Theorem 4.5, guarantees the

agents will coordinate rhythmically.
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4.3.3 Discussion

This simple model of an improvising trio alludes heavily to the notion of information transfer.

In Section 4.5, we offer a general model of collaboration where instead of payoffs, the agents

generate information. This thesis is providing only the initial stepping stones to this kind of

research, and we provide few answers. However, we give suggestions as to how to interpret an

agent’s limited information transfer (like the drummer) in this alternative framework. Future

development of the model will take into account possible ambiguity in how the information

is transferred by some of the agents. For example, a sax player that hears a drummer and

synchronizes with them rhythmically, may not be communicating adequately, or enough of

this rhythmic information to other agents.

In addition, note that no assumptions were made about the externalities in this model.

The model introduced in Section 4.5 incorporates the externalities in the perspective of

information transfer rather than payoffs. We save all discussion of externalities to this

section.

Finally, we assumed throughout this section that both the melody and harmony game and

the rhythm game are coordination games on the full network. In reality, although it is

speculated that this is required for an improvising group to produce “good” music, this

may not always be the case. Work that is currently being developed, but that is presently

beyond the scope of this thesis, details when, because of possible miscoordination on the full

network, a limited listening network is better for the musicians.

As an additional study into the possibilities offered by the coordinate system, the following

section offers a model of an orchestra, and makes an argument for the importance of the

conductor in coordinating the musicians’ interpretation of a written piece of music.
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4.4 Model: An Orchestra and the Conductor

Research into orchestras as it pertains to the theme of this thesis has not, to the best of the

author’s knowledge, been addressed by academics. But there are useful entries in resources

like The Concise Oxford Dictionary of Music [9], wherein the entry for “conducting” includes

“a conductor is not merely responsible for the technical excellence of the performance but

also for projecting his personal attitude to the composer’s intentions,” and ”the art (or

method) of controlling an orchestra [. . .] involving the beating of time, ensuring of correct

entries, and the ‘shaping’ of individual phrasing.”

The allusion to the conductor’s role in coordination is immediate. As stated in the two quotes

in the previous paragraph, among other coordinative responsibilities, the conductor helps

the performing musicians coordinate their individual interpretations of the piece. To further

motivate this, a brief discussion is provided below on some reasons why the coordination of

interpretations is important, as commonly agreed upon by musicians and orchestra members.

A piece of written music contains several pieces of information to help the musician play the

song. Some of these, like the key, are firm and objective. Other pieces of information, like the

dynamics, are more subjective, and depend largely on each individual’s interpretation.11 This

ambiguous side of music notation is widely recognized by musicians. An orchestra provides

an interesting problem wherein there is a large number of musicians, each of whom have

their own interpretation of the piece. Coordinating all interpretations to create a coherent

piece of music is not trivial. It is no surprise that orchestras have a person dedicated to

coordinating the interpretation of the piece– the conductor.

In terms of networks, without a conductor, an orchestra can be thought of as a complete

weighted network. All musicians hear all other musicians, but those nearby are naturally

11More specifically, the dynamics consist of Italian words describing how loud or soft certain parts of the
music should be played. Some examples are pianissimo, meaning “very soft,” forte, meaning “loud,” and
crescendo, meaning “getting louder.”
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louder, and hence their link has a stronger weight. The conductor is in a position where

all musicians are heard well, and where all musicians can see the conductor. Using the

tools developed in this thesis, we offer an explanation for an orchestra’s dependence on the

conductor.

An orchestra is modeled as a 5-agent coordination game, comprised of four musicians and

one conductor. Each musician has a preference for one of two interpretations of the piece,

the first interpretation is represented by strategy +1, and the second by strategy −1. For

simplicity, the model is limited to order two terms of the coordinate system, i.e., only α’s and

γ’s. To analyze the model, we make the additional simplifying assumption that the agents

are on a line and can only hear their neighbors. This is a simplification of the assumption

that agents are in a fully connected network with weights dependent on location. This

network is shown in Figure 4.12.

1 2 3 4

Figure 4.12: Orchestra without a Conductor

Assuming common interest, the agents’ payoff functions can be written as

π1(t1, t2, t3, t4) = α1t1 + γ12t1t2 + β12t2

π2(t1, t2, t3, t4) = α2t2 + γ12t1t2 + γ23t2t3 + β21t1 + β23t3

π3(t1, t2, t3, t4) = α3t3 + γ23t2t3 + γ34t3t4 + β32t2 + β34t4

π4(t1, t2, t3, t4) = α4t4 + γ34t3t4 + β43t3

The assumption that this is a coordination game between for each agent and their neighbors

means that the following inequalities must be true

• |α1| < γ12
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• |α2| < γ12 + γ23

• |α3| < γ23 + γ34

• |α4| < γ34

Although each local game, that of each agent with their neighbors, is a coordination game,

is the global game a coordination game? It turns out that this depends on the distribution

of preferences. Which sets of preferences give rise to a global coordination game and which

do not?

There are 24 = 16 possible distributions of preferences. In two of these, all agents have the

same preference of +1 in one case and −1 in the other. In eight of the distributions, three of

the agents, a majority, have the same preference. The remaining six possibilities are those

in which two agents prefer +1 and two prefer −1. An initial intuition might be that the

first ten described cases pose no issues in coordination; that is, they give rise to a global

coordination game, and that the remaining six cases may have pure strategy Nash equilibria

beyond the pure coordinative profiles (+1,+1,+1,+1) and (−1,−1,−1,−1). As it turns

out, this is not the case.

To detail the Nash equilibrium structure of the orchestra game without the conductor, two

theorems are proved below.

Theorem 4.6. The orchestra game with four agents on a line network, as in Figure 4.12,

is a global coordination game unless

1. α2 + γ12 − γ23 > 0 and −α3 − γ23 + γ34 > 0, in which case the game has the additional

Nash equilibrium (+1,+1,−1,−1).

2. −α2 + γ12 − γ23 > 0 and α3 − γ23 + γ34 > 0, in which case the game has the additional

Nash equilibrium (−1,−1,+1,+1).
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Proof. We remind the reader that every agent is playing a coordination game with their

neighbor(s). Because of this, the strategy profiles (+1,+1,+1,+1) and (−1,−1,−1,−1)

have positive Nash payoffs for every agent. Consequently, any profile that is a unilateral

deviation away from either (+1,+1,+1,+1) and (−1,−1,−1,−1) must have a negative Nash

payoff for at least one agent and cannot be a Nash equilibrium. The only remaining strategy

profiles that could be pure strategy Nash equilibria are those in which exactly two agents

play +1 and the remaining two play −1. In all cases, the agents at the extremes, agents 1

and 4, have positive Nash payoffs just in case they coordinate with their neighbor, agents 2

and 3, respectively. Two candidate profiles remain, (+1,+1,−1,−1) and (−1,−1,+1,+1).

It is left to analyze the conditions in which the Nash payoffs of agents 2 and 3 are positive in

these profiles. In strategy profile (+1,+1,−1,−1), agent 2’s Nash payoff is α2+γ12−γ23, and

agent 3’s is −α3− γ23 + γ34. In (−1,−1,+1,+1) they are −α2 + γ12− γ23 and α3− γ23 + γ34.

This completes the proof.

Theorem 4.6 illuminates the importance of agents 2 and 3, the agents in the middle of the line

network. Suppose, as a first point of analysis, that α2 = α3 = 0. Then the theorem shows

that if agent 2’s pressure to conform with agent 1 is greater than the pressure to conform

with agent 3, and agent 3’s pressure with agent 4 is greater than the pressure with agent 2,

the game will have the additional equilibria (+1,+1,−1,−1) and (−1,−1,+1,+1). When

α2 6= 0 and α3 6= 0, then the previous sentence must be slightly modified to accommodate

these preferences. Namely, if agent 2’s individual preference together with their pressure

to conform with agent 1 is larger than their pressure to conform with 3, it is possible to

have a Nash equilibrium where the agents don’t globally coordinate. In addition, when the

analogous statement for agent 3 is true (replacing agent 1 in agent 2’s statement with agent

4), the game can result in mis-coordination.

In the case where γ12 = γ23 = γ34 Theorem 4.6 reduces to the following corollary.

Corollary 4.6.1. The orchestra game with four agents on a line network, as in Figure
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4.12, with γ12 = γ23 = γ34 is a global coordination game unless agents 2 and 3 have opposing

individual preferences. In this case the game has the additional pure strategy Nash equilibrium

(sgnα2, sgnα2, sgnα3, sgnα3)

Proof. The assumption that γ12 = γ23 = γ34 simplifies the condition for the game to have

the additional Nash equilibrium (+1,+1,−1,−1) to be α2 > 0 and α3 < 0. Similarly,

the condition for the game to have (−1,−1,+1,+1) as an additional equilibrium becomes

α2 < 0 and α3 > 0. Each of these are true if and only if sgnα2 6= sgnα3. The result follows

immediately from this.

The above corollary shows that in the case where the pressures to conform are identical

across all agents, the determining factor in the Nash structure of the orchestra game is the

relationship between sgnα2 and sgnα3. When these are the same, the global game is a

coordination game. When they are not, in addition to the equilibria (+1,+1,+1,+1) and

(−1,−1,−1,−1), the game has the equilibrium where agents 1 and 2 coordinate on agent

2’s individual preference, and agents 3 and 4 coordinate on agent 3’s individual preference.

This model is idealized in many ways. An entire orchestra (which often times has over 100

members) is modeled with only four agents. Furthermore, the complexities of the listening

network are simplified to a line where each agent only hears their immediate neighbor(s). In

addition, there are many leaders in an orchestra, like the first chair musicians, an important

feature we are ignoring. Nevertheless, we believe the model captures how, in many cases,

a global coordination game with heavy weight on local interactions has pure strategy Nash

equilibria that are not coordinative strategy profiles. For an orchestra this could mean an

incongruous performance, which is to be avoided.
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4.4.1 The Conductor

The role, and even need, of the conductor is not entirely agreed upon in the orchestral world.

Some say the conductor is not necessary at all, others say they are important during rehearsal

attributing this to prepping the orchestra for coordination during performance, and others

say the conductor is crucial in both the rehearsal and the performance.

We proceed in our simple model by considering the effect of a conductor only during the

performance. We model the integration of a conductor as a new vertex that sends information

to all members of the orchestra, but that does not receive information back. In reality

this is certainly not the case; the conductor is not blindly conducting and responds to the

performance in real-time. We ignore this additional complexity, assuming that the conductor

has a fixed interpretation of the piece they will enforce on the orchestra. Any information

the conductor receives, we assume, would be used solely to guide them in enforcing this fixed

interpretation. The new network is displayed in Figure 4.13.

1 2 3 4

C

Figure 4.13: Orchestra with a Conductor
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The payoff functions are now

π1(t1, t2, t3, t4, tC) = α1t1 + γ12t1t2 + β12t2 + γ1Ct1tC + β1CtC

π2(t1, t2, t3, t4, tC) = α2t2 + γ12t1t2 + γ23t2t3 + β21t1 + β23t3 + γ2Ct2tC + β2CtC

π3(t1, t2, t3, t4, tC) = α3t3 + γ23t2t3 + γ34t3t4 + β32t2 + β34t4 + γ3Ct3tC + β3CtC

π4(t1, t2, t3, t4, tC) = α4t4 + γ34t3t4 + β43t3 + γ4Ct4tC + β4CtC

π4(tC) = αCtC

Each member of the orchestra now has a pressure to conform with the conductor, and an

externality term from the conductor’s decision. Because the conductor receives no incoming

edges, they are simply facing a single-agent decision problem between two options. If αM > 0,

then the conductor has a preference for +1 and will undoubtedly play this. On the other

hand, if αM < 0, then the conductor will play −1. We assume, without loss of generality, that

αM > 0, and that the conductor plays +1. This allows us to simplify the payoff functions to

π1(t1, t2, t3, t4,+1) = α1t1 + γ12t1t2 + β12t2 + γ1Ct1 + β1C

π2(t1, t2, t3, t4,+1) = α2t2 + γ12t1t2 + γ23t2t3 + β21t1 + β23t3 + γ2Ct2 + β2C

π3(t1, t2, t3, t4,+1) = α3t3 + γ23t2t3 + γ34t3t4 + β32t2 + β34t4 + γ3Ct3 + β3C

π4(t1, t2, t3, t4,+1) = α4t4 + γ34t3t4 + β43t3 + γ4Ct4 + β4C

π4(+1) = αC
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Or, collecting like terms,

π1(t1, t2, t3, t4,+1) = (α1 + γ1C)t1 + γ12t1t2 + β12t2 + β1C

π2(t1, t2, t3, t4,+1) = (α2 + γ2C)t2 + γ12t1t2 + γ23t2t3 + β21t1 + β23t3 + β2C

π3(t1, t2, t3, t4,+1) = (α3 + γ3C)t3 + γ23t2t3 + γ34t3t4 + β32t2 + β34t4 + β3C

π4(t1, t2, t3, t4,+1) = (α4 + γ4C)t4 + γ34t3t4 + β43t3 + β4C

π4(+1) = αC

In chapter 2 we defined three classes of potential games for 2×2 games, namely independent,

quasi-independent, and dependent potential games.12 Each of these classes is defined by the

relationship of αi and αj, for i 6= j, the individual preference parameters of the two agents i

and j, with γ, the coordinative pressure. The class of independent potential games are those

where the magnitude of both individual preferences is greater than |γ|. Quasi-independent

potential games have |γ| sandwiched between the magnitudes of the two preferences. Both of

these classes have a unique pure strategy Nash equilibrium. Lastly, in the class of dependent

potential games it is |γ| that dominates the magnitudes of the individual preferences. These

games have two pure strategy Nash equilibria.

Without the conductor, the orchestra game has the flavor of a 2 × 2 dependent potential

game. This is because the magnitudes of all individual preferences are bounded by the

corresponding γ. Integrating the conductor allows us to break free from dependent potential

games. It is immediate from the payoff functions that the γiC term has direct influence on

each αi for i = 1, 2, 3, 4. When it is positive, it promotes a preference of +1 for the four

musicians. If it is large enough, it will cause at least one agent i’s ti coefficient, which is

αi + γiC , to exceed the bound given by the pressure to conform. When this happens, the

game changes flavor to that of quasi-independent potential games. If the γiC for agents

12For an exposition see chapter 2.

145



i = 1, 2, 3, 4 is large enough for all agents, then the game becomes like the independent 2× 2

potential games.

How strong does γiC , for i = 1, 2, 3, 4, have to be for the game to have the single Nash

equilibrium where all agents play the conductor’s preference? We answer this question in

the following theorem.

Theorem 4.7. A sufficient condition for the orchestra game with a conductor to have the

unique pure strategy Nash equilibrium (sgnαC , sgnαC , sgnαC , sgnαC , sgnαC) is γ2C > −α2+

γ12 + γ23 and γ3C > −α3 + γ23 + γ34.

Proof. Without loss of generality, let αC be such that sgnαC = +1. Now, note that if γiC ,

for i = 2, 3, is strong enough to make +1 a strictly dominant strategy for agents 2 and 3, then

the agents at the extreme will follow their lead in playing +1, even if γjC , for j = 1, 4, is not

strong enough to make +1 a strictly dominant strategy for agents 1 and 4. This is because

of local coordinative nature assumed in the model. Agents 2 and 3, from their perspective,

are each playing a 3-agent coordination game. It is sufficient to show the conditions in which

γ2C makes agent 2’s Nash payoff in (−1,+1,−1,±1) positive. Agent 4’s strategy in this

case is written ±1 because agent 2’s payoffs are invariant to agent 4’s strategy, since they

are disconnected on the network. If γ2C makes this Nash payoff positive, then it necessarily

makes the payoffs in (+1,+1,−1,±1) and (−1,+1,+1,±1) positive, which is easily verified

using agent 2’s payoff function and the assumptions on γ12 and γ23. Because the game

is a local coordination game, agent 2’s Nash payoff in (+1,+1,+1,±1) is automatically

positive. Hence, values of γ2C that make agent 2’s payoff in (−1,+1,−1,±1) positive,

make the strategy +1 strictly dominant for agent 2. Similarly for agent 3 and the strategy

profile (±1,−1,+1,−1). This is the case precisely when γ2C > −α2 + γ12 + γ23 and γ3C >

−α3 + γ23 + γ34.

Admittedly, the statement of Theorem 4.7 does not cover all possibilities in which the con-
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ductor is able to successfully influence the orchestra to coordinate on their interpretation +1.

The intention is to offer an initial characterization of such conditions, which already indicates

great potential in furthering this research. The condition described by Theorem 4.7 informs

of the importance of the conductor’s influence on the middle agents 2 and 3, the next most

influential agents. For both agents 2 and 3, individually, the conductor’s influence must be

larger than their preference for interpretation −1 together with the pressure to conform with

both neighbors, who, in the strategy profile of concern, are playing −1. Work in progress

focuses on an exhaustive understanding of the conditions that guarantee coordination on the

conductor’s interpretation.

As an example, take γ12 = γ23 = γ34 = 2, α1 = α2 = 1, and α3 = α4 = −1. Further-

more, take γ1C = γ2C = γ3C = γ4C , which we denote by γC . Without the conductor, this

orchestra game has the pure strategy Nash equilibria (+1,+1,+1,+1), (−1,−1,−1,−1),

and (+1,+1,−1,−1), according to Corollary 4.6.1. Including a conductor such that γC > 5

makes (+1,+1,+1,+1,+1) the unique pure strategy Nash equilibrium of the game, where

all agents coordinate on the conductor’s interpretation.

4.5 Model: Collaboration

In this section we expand on the idea of interpreting payoffs as information. To make the

distinction precise, define a collaboration as below, almost identically to a game.

Definition 4.8. A collaboration C consists of a set of agents N = {1, . . . , n} where each

agent i ∈ N has a set of ki strategies Si = {σi1, . . . , σiki} and contribution function ψi : S →

R, where S =
∏

i∈N Si. We write this as 〈N ,S,Ψ〉 where Ψ = {ψ1, . . . , ψn}.

The definition above differs from the definition of a game only in the interpretation of ψi as

contribution functions instead of payoff functions. Because of this similarity, in this section,
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we use the terms collaboration and game interchangeably. The contribution function of each

agent maps the given strategy profile to a quantity of information generated in that profile.

For example, a discussion can be modeled using the strategies speak, which we denote with

+1, and listen, which we denote by −1. A naive approach in modeling a 2-agent discussion

is to choose quantities of information generated and received in each profile, for example in

Table 4.1.

+1 −1

+1 1 1 4 4

−1 3 3 0 0

Table 4.1: 2× 2 Discussion Model

We re-emphasize that the quantities in each cell of the normal-form collaboration are not

payoffs, but information received. It immediately follows that if both agents are listening,

strategy profile (−1,−1), then no information is generated. On the other hand, when agent

1 is speaking and agent 2 listening, profile (+1,−1), more information is generated for both

agents than when agent 2 is doing the talking, profile (−1,+1). In addition, the profile

where both speak, (+1,+1), generates some information, but less than when only one agent

is speaking. The intuition here is that only some of the information gets through when the

agents are trying to speak over each other. Although the quantities represent information,

we assume the amount of information is directly proportional to the payoff associated with

the information; more information is worth more. The agents, like in standard game theory,

want to maximize the information produced.

We can do better than this.13 Because the coordinate system developed in chapter 2 does not

depend on the interpretation that the numerical quantities received are payoffs, the structure

can be borrowed and the interpretation of payoffs swapped to that of information. Hence,

13The naive model is already alluding to an intuitive identical play structure to collaborations, which we
will derive in the next section.
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the contribution functions in a 2× 2 game are

ψ1(t1, t2) = α1t1 + γ12t1t2 + β12t2 (4.1)

ψ2(t1, t2) = α2t2 + γ21t1t2 + β21t2. (4.2)

When agent 1 plays +1 they generate α1 information for themselves, β21 information for

agent 2, and γ12t2 information with agent 2, depending on t2. The coordinate γ12 represents

the information agent 1 is able to contribute from interacting with agent 2. The quantity

γ12 represents the collaborative information generated by agent 1 from their feedback, or

collaboration, with agent 2. Depending on the structure of the game, when this collab-

oration is fruitful, γ12 supports the collaboration (be it in the form of a coordination or

anti-coordination game). On the other hand, when the collaboration is problematic, γ12

takes away from the total information contributed. The quantities α2, γ21, and β21 are

interpreted in the same way, but with agents 1 and 2 swapped.

It is not necessarily the case that γ12 = γ21. For example, perhaps agent 1 is inspired by

agent 2 and is able to generate more information from their collaboration. At the same time,

perhaps agent 2 is in some way debilitated from their interaction with agent 1, and generates

less information from the collaboration. This would be reflected by γ12 > 0 and γ21 < 0.

We are inspired to modify the payoff functions (4.1) and (4.2). Because agent 1 and 2 are

collaborating and communicating, the collaborative information agent 1 generates working

with agent 2, γ12, must reach agent 2, at least to some degree, in a way that is distinct from

β21. This is because it depends on both t1 and t2 whereas β21 depends only on t1. This

information is denoted by β212, where the first index, 2, represents agent 2, who receives

the information, and the following 12 represents that the information comes from agent 1

working with agent 2. Similarly, the information agent 2 generates with agent 1, γ21, must

reach agent 1 to some extent, which is denoted by β121. Because this information depends
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on the actions of both agents, it is a coefficient of t1t2. The contribution functions are now

ψ1(t1, t2) = α1t1 + γ12t1t2 + β12t2 + β121t1t2 (4.3)

ψ2(t1, t2) = α2t2 + γ21t1t2 + β21t2 + β212t1t2 (4.4)

Collecting like terms,

ψ1(t1, t2) = α1t1 + (γ12 + β121)t1t2 + β12t2 (4.5)

ψ2(t1, t2) = α2t2 + (γ21 + β212)t1t2 + β21t1 (4.6)

The externality terms are assumed to be functions of their corresponding Nash components.

When agent 1 plays +1, they generate α1 information for themselves, and β21 information

for agent 2, where β21 is a function of α1. Similarly, β12 is a function of α2, β121 is function

of γ21, and β212 is a function of γ12.

4.5.1 Perfect Communication

Suppose that, in a highly idealized situation, the agents are able to perfectly communicate

all information generated. When agent 1, for example, plays +1, they generate α1 for

themselves, and β21 for agent 2. If this information is perfectly communicated, then α1 = β21.

Similarly, α2 = β12, γ12 = β212, and γ21 = β121. The contribution functions can be rewritten

as

ψ1(t1, t2) = α1t1 + (γ12 + γ21)t1t2 + α2t2 (4.7)

ψ2(t1, t2) = α2t2 + (γ21 + γ12)t1t2 + α1t1 (4.8)
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Because the shared coefficients, i.e., those in front of t1t2, are the same for both agents, the

collaboration is in the form of an exact potential game and hence has a potential function.

Furthermore, it is clear that ψ1(t1, t2) = ψ2(t1, t2) and that, in the language of game theory,

this is an identical play game. This is stated as a theorem.

Theorem 4.9. A collaboration with perfect communication has the form of an identical play

game.

Proof. The proof is immediate since equations (4.7) and (4.8) are equal.

Furthermore, because the collaboration is identical play, as we saw in chapter 2, the social

welfare function and potential function of the game align. Hence, the strategy profile that

globally maximizes the potential function also globally maximizes the social welfare function.

The global maximum of the potential function, the risk-dominant Nash equilibrium, is the

strategy profile that maximizes the information generated by the agents individually. With

perfect communication and identical play, this information is perfectly communicated and

hence the strategy profile maximizes all information obtained, not only individually but

collectively. This is captured in the theorem below.

Theorem 4.10. The risk-dominant equilibrium of an identical play collaboration produces

the maximum global information.

Proof. Consider the risk-dominant equilibrium of an identical play collaboration. This strat-

egy profile globally maximizes the potential function. Because of identical play, it also

maximizes the social welfare function. Since the social welfare function computes the sum of

payoffs in the strategy profiles of a game, it immediately follows that the risk-dominant Nash

equilibrium produces the highest collective payoff. Changing the interpretation of payoffs to

information completes the proof.
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An important implication of this theorem is that if the agents in the collaboration with

perfect communication are choosing their strategies “safely” in the face of uncertainty of

what the other will choose, they will play the risk-dominant equilibrium which maximizes

the total information produced. This raises the important question of what, on the other

hand, certainty of one another’s actions will allow the agents to produce. This question,

unfortunately, is saved for future work.

The next section extends the collaboration model to the case of 3 agents and 2 strategies.

After this, we show the effect of networks on 2 × 2 collaborations before concluding the

chapter with an analysis of 2 × 2 × 2 collaborations on the three networks of interest– the

star, wheel, and full networks.

4.6 2× 2× 2 Collaboration

The contribution functions in a 2× 2× 2 collaboration are

ψ1(t1, t2, t3) = α1t1+(γ12 + β121)t1t2 + (γ13 + β131)t1t3

+ (δ123 + β1231 + β1312)t1t2t3 + β12t2 + β13t3 + (β123 + β132)t2t3

ψ2(t1, t2, t3) = α2t2+(γ21 + β212)t1t2 + (γ23 + β232)t2t3

+ (δ231 + β2123 + β2312)t1t2t3 + β21t1 + β23t3 + (β213 + β231)t1t3

ψ3(t1, t2, t3) = α3t3+(γ31 + β313)t1t3 + (γ32 + β323)t2t3

+ (δ312 + β3231 + β3123)t1t2t3 + β31t1 + β32t2 + (β312 + β321)t1t2
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Each αi is the information agent i is able to produce independent of the other agents. For

a pair of agents i and j, the parameter γij is the information agent i produces with agent

j. The parameter δijk, whose structure was detailed in chapter 2, represents the information

agent i produces with both agents j and k in a way that is dependent on all their actions.

The αi depends only on agent i’s action, the γij depends on both agent i and j’s actions,

and the δijk depends on the actions of all agents i, j, and k.

An interpretation of an externality of the type βij and βiji in 2×2 collaborations has already

been given. This interpretation carries over to 2×2×2 collaborations. The first, βij, denotes

the information agent i receives from agent j dependent only on tj, and is a function of αj.

The second, βiji, denotes the information agent i receives from agent j’s collaboration with

i, which is a function of γji.

Emergent externality parameters in 2 × 2 × 2 collaborations are βijk and βijki. The first,

βijk, is the information agent i receives from agent j’s interaction with agent k, which is a

function of γjk. For example, agent 2’s collaboration with agent 3 produces γ23 for agent

2, β123 for agent 1, and β323 for agent 3, all of which are coefficients of t2t3. Agent 1 has

no direct influence over this information that is dependent only on agent 2 and 3’s actions.

Lastly, βijki is the information agent i receives from agent j’s interaction with both agents i

and k. For example, agent 1, together with agents 2 and 3, generates δ123, from which agent

2 then receives β2123 of this information, and agent 3 receives β3123.

As before, let us examine the effects of perfect communication. This assumption results in

α1 = β21 = β31, α2 = β12 = β32, α3 = β13 = β23,

γ12 = β212 = β312, γ13 = β313 = β213, γ21 = β121 = β321
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γ23 = β323 = β123, γ31 = β131 = β231, γ32 = β232 = β132

δ123 = β2123 = β3123, δ231 = β1231 = β3231, δ312 = β1312 = β2312

Because this makes all contribution functions equal, we write ψ1 = ψ2 = ψ3 without the

indices as ψ, as below,

ψ(t1, t2, t3) = α1t1 + α2t2+α3t3 + (γ12 + γ21)t1t2+

(γ13 + γ31)t1t3 + (γ23 + γ32)t2t3 + (δ123 + δ231 + δ312)t1t2t3

The possible Nash structures in the 2 × 2 × 2 case are numerous. In this thesis we focus

on a few situations that contain meaningful interpretations for our study of collaboration.

These are pure coordination, division of labor, leadership, and the legislator game. Pure

coordination is a situation of consensus. In a project, for example, the agents must decide on

one, and only one, methodology. In an improvisation, the agents must agree on a particular

style, key, or rhythm. On the other hand, in a collaboration it may be important for the

agents to distribute themselves according to roles. In a scientific problem, one agent may be

responsible for experimental work, and another on the theory. In an improvisation, the agents

may adopt different harmonic and melodic roles. Our notion of division of labor captures

these situations. Leadership is interpreted to mean those situations in which exactly one

agent can lead. In a group project this could manifest as a group discussion where only one

agent can speak at a time, while the others listen. In an improvisation, only one agent can

solo while the others are responsible for holding the groove. This interpretation of leadership

makes it a special case of division of labor.

Pure coordination involves all agents playing the same thing. Division of labor involves

situations where the agents don’t all play the same thing. Because we are considering three
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agents and two strategies, it is clear that it is impossible for all three agents to play different

things. All of this is to say that division of labor, in many ways, is a generalization of

anti-coordination but not pure anti-coordination, for which 3 strategies are needed. The last

situation considered is the legislator game, which is between pure coordination and anti-

coordination. In the below paragraph we review the legislator game briefly, and refer the

reader to chapter 2 for more details.

In the legislator game, it is good for all agents to play a particular option, but not for all to

play its alternative. Instead, it is good for exactly two of the agents to play the alternative.

None of the legislators want to be the only one to vote for a raise, making not voting a

good option for all. When exactly two of the legislators vote, the benefit occurs, so those

who are voting would not deviate, and the one already not voting would also not deviate.

In a collaboration this can be interpreted as a situation where there are limited resources.

For example, in an improvisation, it is possible that two of the musicians engage in a “call

and response” where the musicians involved riff off of each other’s musical ideas, leaving the

third musician to hold the groove.14 In this case the pure strategy Nash equilibria involve

profiles where exactly two musicians are engaged in call and response and the other holds

the groove, in addition to the profile where all three musicians are maintaining the groove.

For pure coordination, we want to understand the region in the parameter space where the

only two pure Nash equilibria are (+1,+1,+1) and (−1,−1,−1). For division of labor, in

the 2 × 2 × 2 collaboration, there are five cases. Here, essentially, we are curious about

anti-coordination structures in 2× 2× 2 collaborations. The following five sets of pure Nash

14There could very well be a call and response situation engaging more than two musicians, but for the
purpose of this example, consider a case where only two can engage in the call and response.
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equilibria are possible,

{(+1,−1,−1), (−1,+1,−1), (−1,−1,+1)}

{(+1,−1,+1), (−1,+1,−1)}

{(−1,+1,+1), (+1,−1,−1)}

{(+1,+1,−1), (−1,−1,+1)}

{(+1,+1,−1), (+1,−1,+1), (−1,+1,+1)}.

Finally, the legislator situation is one where it is either good for all to coordinate on a

strategy, say +1, so that (+1,+1,+1) is a Nash equilibrium, but it is also good for exactly

two of them to coordinate on its alternative, −1, so that (+1,−1,−1), (−1,+1,−1), and

(−1,−1,+1) are Nash equilibria. Alternatively, the game could have equilibria (−1,−1,−1),

(−1,+1,+1), (+1,−1,+1), and (+1,+1,−1).

The regions in the parameter space that give rise to pure coordination, division of labor,

and the legislator game are described in Theorems 4.11 - 4.14 below, where in all cases take

γ12 = γ12 + γ21, γ
13 = γ13 + γ31, γ

23 = γ23 + γ32, and δ = δ123 + δ231 + δ312 to simplify the

exposition.

Theorem 4.11. A 2×2×2 collaboration with perfect communication has the form of a pure

coordination game if and only if |αi + δ| < γij + γik for each distinct i, j, k ∈ {1, 2, 3}.

Proof. Suppose |αi + δ| < γij + γik for each distinct i, j, k ∈ {1, 2, 3}. This is true if and

only if the Nash entries in the strategy profiles (+1,+1,+1) and (−1,−1,−1) are positive

for each agent. Hence these profiles are pure strategy Nash equilibria. Because all other

strategy profiles are a unilateral deviation from (+1,+1,+1) and (−1,−1,−1), at least one

Nash entry is negative. Therefore, no other strategy profile can be a pure strategy Nash

equilibrium.
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Theorem 4.11 details when the collaboration has the form of a coordination game, and should

seem familiar by this point in the thesis. The 2× 2× 2 collaboration with perfect communi-

cation is a pure coordination game when each agent i’s total collaborative information with

the other agents j and k, γij+γik, dominates the other parameters, the individual preference

αi and δ. In this case, each agent has the incentive to generate information collaboratively

rather than individually.

Theorem 4.12. A 2 × 2 × 2 collaboration with perfect communication has the form of a

division of labor game with pure strategy Nash equilibria at the strategy profiles (+1,−1,−1),

(−1,+1,−1), and (−1,−1,+1) if and only if, for each i, j, k ∈ {1, 2, 3}, i 6= j, i 6= k, j 6= k,

|αi + δ| < −(γij + γik) and − αi + δ > |γij − γik|

Alternatively, the collaboration has exactly three pure strategy Nash equilibria at (+1,+1,−1),

(+1,−1,+1), and (−1,−1,+1) if and only if, for each i, j, k ∈ {1, 2, 3}, i 6= j, i 6= k, j 6= k,

|αi + δ| < −(γij + γik) and − αi + δ < −|γij − γik|

Proof. The inequality |αi + δ| < −(γij + γik) for each i, j, k ∈ {1, 2, 3}, i 6= j, i 6= k, j 6= k is

true if and only if all agents have negative Nash entries in the strategy profiles (+1,+1,+1)

and (−1,−1,−1). An additional consequence is that each agent has a positive Nash entry

in the strategy profile in which they are a unilateral deviation away from (+1,+1,+1) and

(−1,−1,−1). In these remaining profiles there are exactly two agents coordinating. In

one case, they are coordinating on +1, and in the other, on −1. It is easily verified that

−αi + δ > |γij − γik| if and only if, in these remaining profiles, the agents have incentive to

coordinate on +1, and when −αi + δ < −|γij − γik| if and only if the agents have incentive

to coordinate on −1. This completes the proof.

Theorem 4.12 above details when the collaboration has the form of an anti-coordination
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variant game with exactly 3 pure strategy Nash equilibria. In both cases, |αi + δ| < −(γij +

γik) for each i, j, k ∈ {1, 2, 3}, i 6= j, i 6= k, j 6= k. This, of course, entails γij + γik < 0,

which means that the sum of collaborative information generated by agent i with each of the

remaining agents has to be negative. This prevents profiles (+1,+1,+1) and (−1,−1,−1)

from being equilibria, and gives a positive Nash entry to the agent who is a unilateral

deviation away from pure coordination.

The second inequality in each case of Theorem 4.12 concern cases where for each agent i,

the remaining agents j and k are mis-coordinating, and i must choose to coordinate with

the agent playing +1 or with the agent playing −1. When this supports coordinating with

the agent playing +1, the pure strategy Nash equilibria are (+1,+1,−1), (+1,−1,+1), and

(−1,−1,+1), and −αi+δ < −|γij−γik|. On the other hand, when −αi+δ > |γij−γik|, there

is pressure to conform with the agent playing −1 in the profiles outside of pure coordination.

Here, the pure strategy Nash equilibria are (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1).

Theorem 4.13. A 2 × 2 × 2 collaboration with perfect communication has the form of a

division of labor game with two pure strategy Nash equilibria given by the strategy profiles

where agents i and j coordinate with each other, and both anti-coordinate with agent k, if

and only if |αi − δ| < γij − γik, |αj − δ| < γij − γjk, and |αk − δ| < −γik − γjk, where the

order of the superscripts of γ does not matter.

Proof. First, notice that if the game has exactly two pure strategy Nash equilibria, as de-

scribed in the statement of the theorem, with two agents coordinating with each other and

mis-coordinating with the remaining agent, then there cannot be any more pure strategy

Nash equilibria. The reason for this is similar to why, in the case of full coordination, as

in Theorem 4.11, if (+1,+1,+1) and (−1,−1,−1) are pure strategy Nash equilibria, there

cannot be any others. All strategy profiles besides the Nash equilibria are a unilateral devi-

ation away from the Nash equilibria, and hence must have a negative Nash entry. Therefore,

all that needs to be shown is that the strategy profiles claimed by the theorem to be pure
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strategy Nash equilibria are, in fact, Nash equilibria. This amounts to verifying that all Nash

entries in these profiles are positive. For the profiles where agents i and j coordinate with

each other, and both anti-coordinate with agent k, this is so if and only if |αi−δ| < γij−γik,

|αj − δ| < γij − γjk, and |αk − δ| < −γik − γjk.

The above theorem describes when there are exactly two pure strategy Nash equilibria in a

collaboration in the form of a division of labor game. There are three such sets of pure strat-

egy Nash equilibria, namely {(+1,−1,+1), (−1,+1,−1)}, {(−1,+1,+1), (+1,−1,−1)}, and

{(+1,+1,−1), (−1,−1,+1)}. In all of these cases, the same two agents are coordinating in

both pure strategy Nash equilibria, and both are mis-coordinating with the remaining agent.

According to Theorem 4.13, the agent who is mis-coordinating has their individual preference

together with −δ less than, in magnitude, the sum of the negative collaborative information

generated. For the other two agents, the same is true except the sum of the collaborative

information includes the negative information generated with the mis-coordinating agent

and the positive information generated with the agent with whom there is coordination.

Theorem 4.14. A 2×2×2 collaboration with perfect communication is a legislator game with

pure strategy Nash equilibria at the strategy profiles (+1,+1,+1), (+1,−1,−1), (−1,+1,−1),

and (−1,−1,+1) if and only if

αi + δ > |γij + γik| and − αi + δ > |γij − γik|

Alternatively, the collaboration has only the four pure strategy Nash equilibria (−1,−1,−1),

(−1,+1,+1), (+1,−1,+1), and (+1,+1,−1) if and only if

αi + δ < −|γij + γik| and − αi + δ < −|γij − γik|

Proof. It is a straightforward, though tedious computation to verify that the first inequality

in case 1 is true if and only if (+1,+1,+1) is a pure strategy Nash equilibrium, and that the
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first inequality in case 2 is true if and only if (−1,−1,−1) is a pure strategy Nash equilibrium.

Similarly, the second inequality is true in each case if and only if the corresponding division

of labor strategy profiles are pure strategy Nash equilibria.

The conditions in Theorem 4.14 above are almost the same as those in Theorem 4.12. The

difference is that αi + δ > |γij + γik| in the first case, and αi + δ < −|γij + γik| in the second

case, where in Theorem 4.12 these inequalities are, respectively, |αi + δ| < −(γij + γik) and

|αi + δ| < −(γij + γik). This difference amounts to changing the signs of the Nash payoffs

in the respective full coordination profile, (+1,+1,+1) is the first case and (−1,−1,−1) in

the second case, from negative to positive.

We have the twelve parameters α1, α2, α3, γ12, γ21, γ13, γ31, γ23, γ32, δ123, δ231, and δ312. A full

analysis of the intricate relationships between these parameters, their effects on the collab-

oration, and their results on networks is beyond the scope of this thesis, and are reserved

for future work. Going forward, make the simplifying assumption that α1 = α2 = α3,

γ12 = γ21 = γ13 = γ31 = γ23 = γ32, and δ123 = δ231 = δ312. These are referred to as α,
γ

2
, and

δ

3
, respectively. We use

γ

2
because we want the sum of γ12 + γ21, and of all other γ pairs, to

be written simply as γ rather than 2γ. Similarly,
δ

3
is used.

In chapter 3 we gave a thorough analysis of asymmetric 2×2 potential games, a 3-dimensional

space of games consisting of parameters α1, α2, and γ. In the 2× 2× 2 case, our assumption

of symmetry simplifies the space to 3-dimensions as well, namely the coordinates α,
γ

2
, and

δ

3
. Note that although both cases have dimension 3, they are not equal representations.

This is because the 2× 2× 2 case includes δ, which is an emergent parameter that, because

of its orthogonality with all α and γ terms, cannot be expressed as a linear combination of

the α and γ terms. Had the two 3-dimensional spaces been equal would have implied that

our simplifying assumption of symmetry in the 3-agent case would be reducible to smaller

2× 2 interactions, and hence would ignore anything specific and emergent that may happen
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for 3 agents. For example, it would not be possible to represent collaborations in the form

of the legislator game.

The previous theorems are restated below, where the interpretations are omitted since they

are almost identical, except with the assumption of symmetry, to those for Theorems 4.11 -

4.14. The proof of every theorem below amounts to setting α1 = α2 = α3, γ12 = γ21 = γ13 =

γ31 = γ23 = γ32, and δ123 = δ231 = δ312, in the corresponding Theorem 4.11 - 4.14. Because

of this, the proofs are omitted.

Theorem 4.15. A symmetric 2 × 2 × 2 collaboration with perfect communication has the

form of a pure coordination game if and only if 2γ > |α + δ|.

Theorem 4.16. A symmetric 2×2×2 collaboration with perfect communication has the form

of a division of labor with pure strategy Nash equilibria at the strategy profiles (+1,−1,−1),

(−1,+1,−1), and (−1,−1,+1) if and only if |α + δ| < −2γ and −α + δ > 0. Alterna-

tively, the collaboration has pure strategy Nash equilibria at (+1,+1,−1), (+1,−1,+1), and

(−1,−1,+1) if and only if |α + δ| < −2γ and −α + δ < 0.

Theorem 4.17. A symmetric 2 × 2 × 2 collaboration with perfect communication cannot

have the form of a division of labor game with two pure strategy Nash equilibria where two

agents coordinate with each other and both anti-coordinate with the third.

Theorem 4.18. A symmetric 2×2×2 collaboration with perfect communication has the form

of a legislator game with pure strategy Nash equilibria at the strategy profiles (+1,+1,+1),

(+1,−1,−1), (−1,+1,−1), and (−1,−1,+1) if and only if α + δ > |2γ| and −α + δ > 0.

All theorems above, except Theorem 4.17, are natural simplifications of Theorems 4.11 - 4.14.

The impossibility of a division of labor with two pure strategy Nash equilibria is a direct

consequence of symmetry. Under symmetry, all agents are assumed to be identical. Because

of this, if (+1,+1,−1) is a pure strategy Nash equilibrium, the strategy profiles (+1,−1,+1)
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and (−1,+1,+1) must be equilibria, too. Hence it is impossible, with symmetry, to have

the only two pure strategy Nash equilibria be (+1,+1,−1) and (−1,−1,+1).

The following section elaborates on the effects of networks on 2×2 and 2×2×2 collaborations,

through slightly different perspectives in each case. For 2 × 2 collaborations a preliminary

analysis is provided for the case of symmetry, where the notion of the audience is introduced

and the discussion pertains to the optimization of information received by the audience. For

2× 2× 2 collaborations, symmetry is also assumed, and the networks of concern are the full,

star, and wheel networks. There the results do not include an audience, and the analysis is

focused on the effects of networks on various 2× 2× 2 Nash equilibrium structures.

4.7 Collaboration on Networks

4.7.1 2× 2

Up to isomorphism, there are three directed networks on two vertices. The complete network,

the one-way network, and the empty network. The complete network is the standard case

of a 2 × 2 collaboration. On the one-way network, one agent receives information from the

other, who receives nothing in return. The empty network is the trivial case where there is

no interaction between the agents.

We remind the reader of the contribution functions with perfect communication on the full

network, written below. On the complete network, with perfect information, both agents

receive all of the information that is generated.

ψK2
1 (t1, t2) = α1t1 + (γ12 + γ21)t1t2 + α2t2 (4.9)

ψK2
2 (t1, t2) = α2t2 + (γ12 + γ21)t1t2 + α1t1 (4.10)
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Now, suppose that agent 1 receives information from agent 2, but that agent 2 does not

receive information from agent 1. This gives rise to a one-way network, and the contribution

functions here are

ψ1(t1, t2) = α1t1 + γ12t1t2 + β12t2 (4.11)

ψ2(t1, t2) = α2t2 (4.12)

The effect of this network on agent 2’s contribution function is immediate. Since agent 2

does not interact with and does not receive information from agent 1, the terms γ21, β212,

and β21 are not included in agent 2’s contribution function. Agent 1’s contribution function

is almost the same as in the full network, except for the missing externality term, β121. This

is because agent 2 is not generating any information from their interaction with agent 1, so

this information cannot reach agent 1.

Assuming perfect communication the contribution functions become

ψ1(t1, t2) = α1t1 + γ12t1t2 + α2t2 (4.13)

ψ2(t1, t2) = α2t2 (4.14)

Lastly, on the empty network the contribution functions are

ψ1(t1, t2) = α1t1 (4.15)

ψ2(t1, t2) = α2t2 (4.16)

This case is trivial; no interdependent terms are included because the agents are not in-

teracting. Moreover, the effects of perfect communication are nonexistent since there is no

interaction between the agents and hence no possibility for communication.
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As a starting point of analysis for 2 × 2 collaborations on networks, we use the simplifying

assumption of symmetry, where α1 = α2, which is denoted by α, and γ12 = γ21, denoted by

γ
2
. With this, the sum γ12 + γ21 in each agent’s contribution function simplifies to γ.

The question we will now answer concerns which networks maximize the information pro-

duced in the collaboration. On a full network, the information is produced from a bidi-

rectional interaction, as is the case in a standard collaboration. On the one-way network,

the interaction is asymmetric– only one agent interacts with the information received. This

reflects situations where one agent writes a book or a paper, for example, and the other

agent uses this to produce additional information. In terms of music, this is an instance

of “overdubbing.”15 Lastly, the empty network means there is no interaction between the

agents. This could be two scientists pursuing a problem alone, or two musicians creating

solo-work.

To proceed it is important to define an external receiver of the information. To do this, define

a third agent in the collaboration, the audience, who receives the information produced.

This agent has no strategies, and instead receives only the externalities produced in the

collaboration. In a scientific collaboration the audience can be interpreted to be those in the

scientific community who read the books and papers produced by agents 1 and 2. In the

production of music, the audience can be an actual audience in a live performance, or those

who listen to the recorded music.

The audience has contribution function ψA(t1, t2) = βA1t1 + βA2t2 + (βA12 + βA21)t1t2, where

βA1 is a function of α1, the information produced by agent 1, βA2 is a function of α2, the

information produced by agent 2, and βA12 and βA21 are, respectively, the information agent

1 produces with agent 2, and the information agent 2 produces with agent 1.

The assumption of perfect communication between the information generated in the collabo-

15Overdubbing is described briefly in the introduction, chapter 1
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ration and the audience, although idealized, is not unrealistic. In the case of scientific work,

for example, the audience is assumed be comprised of those literate in the jargon, methods,

and pertinent questions involved in the collaboration. This way, whatever information is

generated by those collaborating is “perfectly” communicated to the audience. Similarly, in

the case of music, the audience is assumed to be those who understand and appreciate the

musical ideas created and expressed.

Assuming perfect communication between all agents, including the audience, yields identical

contribution functions for the three agents on the full network. For the audience, perfect

communication implies βA1 = α1, βA2 = α2, βA12 = γ12, and βA21 = γ21. The contribution

functions are ψi(t1, t2) = αt1 + αt2 + γt1t2 for i = 1, 2, A.

On the wheel network where agent 1 interacts with the information generated by agent 2, the

audience receives the information agent 1 produces individually and from their interaction

with agent 2’s information, and the information generated by agent 2. Here, the collaboration

functions are

ψ1(t1, t2) = αt1 + αt2 +
γ

2
t1t2 (4.17)

ψ2(t1, t2) = αt2 (4.18)

ψA(t1, t2) = αt1 + αt2 +
γ

2
t1t2 (4.19)

Finally, on the empty network, the audience receives two independent quantities of infor-

mation. This represents, for example, two scientists working independently and generating
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distinct results. The contribution functions in this case are

ψ1(t1, t2) = αt1 (4.20)

ψ2(t1, t2) = αt2 (4.21)

ψA(t1, t2) = αt1 + αt2 (4.22)

Let us pause here to note that in this thesis the possibility of mutual information is ignored.

For example, if the interpretation is of two scientists who are working on a problem, then the

result of the empty network is that the scientists work on the problem without interacting,

and the audience receives the information generated by each scientist alone. It is possible

that, despite no interaction, the scientists generate some of the same information, in which

case the total information generated would be less than the sum of the individual quantities.

For simplicity, this possibility is ignored in what follows.

The question of which networks maximize the information produced in the collaboration can

be answered by looking at the contribution functions of the audience. Which regions in the

parameter space together with which networks maximize the information received by the

audience? Going forward, refer to the audience’s function on the full network as ψFA , on the

one-way network as ψOWA , and on the empty network as ψEA .

There are four important cases to consider in terms of pure strategy Nash equilibrium struc-

tures in the symmetric case. Namely, these are

1. |α| > γ > 0

2. |α| > −γ > 0

3. γ > |α| > 0

4. −γ > |α| > 0
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The networks that maximize the information received by the audience in each of the four

cases above are described in the following theorem.

Theorem 4.19. The full network maximizes the information received by the audience in

cases 1, 3, and 4. For case 2, the empty network is optimal if and only if 2|α| > −γ, and

the full network is optimal if and only if 2|α| < −γ.

Proof. For case 1, because the magnitude of α is greater than the value of the positive γ,

the strategy profile (sgnα, sgnα) is a unique pure strategy Nash equilibrium. The fact that

γ > 0 means that the agents both generate and communicate positive information when

they coordinate. Without loss of generality, suppose α > 0 so that the unique pure strategy

Nash equilibrium is (+1,+1). Then we have ψCA(+1,+1) = 2α+ γ, ψOWA (+1,+1) = 2α+ γ
2
,

and ψEA(+1,+1) = 2α. Since γ > 0, it is immediate that ψCA(+1,+1) > ψOWA (+1,+1)

and ψCA(+1,+1) > ψEA(+1,+1). Hence, collaborations in the region of the parameter space

described by case 1 are optimized on the full network.

Case 2 is similar to case 1 in the sense that the strategy profile (sgnα, sgnα) is a unique

pure strategy Nash equilibrium. The difference is that in this case γ < 0. Consequently, the

agents play their preference but generate less information than they would have on their own.

In this case, the information produced is optimized on the empty network. This is because,

due to γ < 0, the audience’s contribution function on the full and one-way networks have

information taken away from what the individuals produce on their own. To demonstrate,

suppose, without loss of generality, that α > 0. The audience’s contribution functions are

ψCA(+1,+1) = 2α + γ, ψOWA (+1,+1) = 2α + γ
2
, and ψEA(+1,+1) = 2α. Since γ < 0, the

maximum must be ψEA(+1,+1). Consequently, collaborations with parameters described by

case 2 are optimized on the empty network.

The pure strategy Nash equilibrium structure in case 3 is that of a coordination game with

pure equilibria (+1,+1) and (−1,−1). Here, the sign of α determines which equilibrium
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is risk-dominant; (+1,+1) when α > 0, and (−1,−1) when α < 0. Using risk-dominance

as an equilibrium refinement tool entails that the agents play the profile (sgnα, sgnα). In

this profile the α’s and γ all contribute positive information. The same procedure as for the

proof for case 1 can be used here, resulting in the full network being optimal.

Lastly, in case 4, the pure strategy Nash equilibria are (+1,−1) and (−1,+1). Suppose,

without loss of generality, that α > 0.Now, note that these equilibria do not survive the

empty network. On the empty network the contribution functions lose all interdependent

terms, like γ. Hence, on the empty network the agents both play sgnα = +1. The audience’s

contribution function in this case is ψEA(+1,+1) = 2α. On the one-way network, the agent

receiving no information plays sgnα = +1. Although −γ > |α|, it may be the case that

|α| > −γ
2
. When this is so, the other agent also plays sgnα = +1, so that the unique pure

strategy Nash equilibrium is (+1,+1) and ψOWA (+1,+1) = 2α + γ
2
. On the other hand, if

−γ
2
> |α|, then, while the disconnected agent plays sgnα = +1, the other agent has pressures

to mis-coordinate, hence they play − sgnα = −1. Here, supposing, without loss of generality,

that the disconnected agent is agent 2, gives contribution function ψOWA (−1,+1) = −γ
2
.

Finally, on the full network, the contribution function has the same value in both pure

strategy Nash equilibria of the game, (+1,−1) and (−1,+1). This value is ψFA(+1,−1) = −γ.

To summarize, the possible values of the audience’s contribution function in case 4, with

the assumption that α > 0, are ψEA(+1,+1) = 2α, ψOWA (+1,+1) = 2α + γ
2

when |α| > −γ
2

and ψOWA (−1,+1) = −γ
2

when |α| < −γ
2
, and ψFA(+1,−1) = −γ. From this it immediately

follows that the empty network is optimal if and only if 2|α| > −γ, and that the full network

is optimal if and only if 2|α| < −γ.

One immediate consequence of Theorem 4.19 is that, in all cases but case 2, when 2|α| > −γ,

the full network maximizes production. When 2|α| > −γ in case 2, the empty network is

optimal because the agents are both inclined to play their preference, which is the same
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due to symmetry, and, when collaborating, playing the same preference generates negative

information because of γ < 0. Case 1 and 3 both involve the agents playing the same

preference, which is supported by γ > 0, thereby making the collaboration fruitful. Case

4 is interesting because the agents must mis-coordinate, but in doing so cannot both play

the same preference. Because mis-coordinating produces enough information to override this

fact, it is better for the agents to collaborate and mis-coordinate, than to produce only α on

the empty network.

Another consequence is that, with the assumption of symmetry, the one-way network does

not maximize the information produced in any of the cases. This makes sense because

the one-way network implies asymmetry, which cannot happen when symmetry is assumed

between the parameters.

An exhaustive analysis of the complete parameter space, without the assumption of symme-

try, will better illuminate the intricacies involved, and demonstrate those situations wherein

the one-way network optimizes the information produced. Alas, this analysis is in progress

and is omitted from the thesis. The intention of this section is to introduce the notion of the

audience as the receiver of information and to initiate this line of research. Additional future

work involves extending the notion of the audience to the case of 3 agents, and synthesizing

it with the results offered in the next subsection, where the effects of networks are studied

on some of the Nash equilibrium structures possible in a 2× 2× 2 collaboration.

4.7.2 2× 2× 2

Up to isomorphism, there are 16 directed networks on 3 vertices. Focus is given only to

the complete network, the wheel network, and the star network. The complete network is a

standard 2 × 2 × 2 collaboration, which was discussed earlier in the chapter. Consider the

wheel and star networks in Figure 4.14 below.
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1

23

(a) Wheel

13 2

(b) Star

Figure 4.14: Wheel and Star Networks

The wheel network in Figure 4.14 has contribution functions

ψ1(t1, t2, t3) = α1t1 + γ12t1t2 + β12t2 + β123t2t3

ψ2(t1, t2, t3) = α2t2 + γ23t2t3 + β23t3 + β231t1t3

ψ3(t1, t2, t3) = α3t3 + γ31t1t3 + β31t1 + β312t1t2

Agent 1 produces information α1 independently of agent 2 and information γ12 with agent 2’s

incoming stream of information. The externality terms received by agent 1 are β12 and β123.

The first term, β12 is the information agent 2 produces independently of the other agents.

The second term, β123 is the information agent 2 produces with agent 3. Although agent 1

is not connected to agent 3, because they receive the information that agent 2 produces, any

information that agent 2 produces for their interaction with agent 3 gets passed to agent 1.

The contribution functions of agents 2 and 3 are similar, with the proper indices replaced.

Under perfect communication these become

ψ1(t1, t2, t3) = α1t1 + γ12t1t2 + α2t2 + γ23t2t3

ψ2(t1, t2, t3) = α2t2 + γ23t2t3 + α3t3 + γ31t1t3

ψ3(t1, t2, t3) = α3t3 + γ31t1t3 + α1t1 + γ12t1t2
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The star network in Figure 4.14 has contribution functions

ψ1(t1, t2, t3) = α1t1 + (γ12 + β121)t1t2 + (γ13 + β131)t1t3 + δ123t1t2t3 + β12t2 + β13t3

ψ2(t1, t2, t3) = α2t2 + (γ21 + β212)t1t2 + β2123t1t2t3 + β21t1 + β213t1t3

ψ3(t1, t2, t3) = α3t3 + (γ31 + β313)t1t3 + β3123t1t2t3 + β31t1 + β312t1t2

The agent in the center, agent 1, has almost the same contribution function as in the fully

connected network. What is missing are the β123, β132, β1231, and β1312 terms. Because

agents 2 and 3 are not connected, they do not produce information with each other, hence

β123 and β132 are missing. In addition, because they are not connected, they do not produce

information with the entirety of the group, which explains the missing β1231 and β1312 terms

in agent 1’s contribution function.

The contribution functions for agents 2 and 3 are almost as they would be if these agents

were engaged in a 2 × 2 collaboration with agent 1, with the additional traces of the three

agent reality that is communicated through agent 1. Both agents 2 and 3 receive information

that agent 1 produces with the other agent; agent 2 receives β213, the information agent 1

generates with agent 3, and agent 3 receives β312, the information that agent 1 generates

with agent 2. In addition, both agents receive information that is dependent on all of their

strategies, namely β2123 for agent 2, and β3123 for agent 3. Although agents 2 and 3 are not

connected to the whole group, agent 1 is, and so the information agent 1 generates from this

holistic interaction gets relayed to agents 2 and 3.
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Under perfect communication these become

ψ1(t1, t2, t3) = α1t1 + (γ12 + γ21)t1t2 + (γ13 + γ31)t1t3 + δ123t1t2t3 + α2t2 + α3t3

ψ2(t1, t2, t3) = α2t2 + (γ21 + γ12)t1t2 + δ123t1t2t3 + α1t1 + γ13t1t3

ψ3(t1, t2, t3) = α3t3 + (γ31 + γ13)t1t3 + δ123t1t2t3 + α1t1 + γ12t1t2

Assuming symmetry gives, for the wheel network,

ψ1(t1, t2, t3) = αt1 +
γ

2
t1t2 + αt2 +

γ

2
t2t3 (4.23)

ψ2(t1, t2, t3) = αt2 +
γ

2
t2t3 + αt3 +

γ

2
t1t3 (4.24)

ψ3(t1, t2, t3) = αt3 +
γ

2
t1t3 + αt1 +

γ

2
t1t2 (4.25)

For the star network,

ψ1(t1, t2, t3) = αt1 + γt1t2 + γt1t3 +
δ

3
t1t2t3 + αt2 + αt3 (4.26)

ψ2(t1, t2, t3) = αt2 + γt1t2 +
δ

3
t1t2t3 + αt1 +

γ

2
t1t3 (4.27)

ψ3(t1, t2, t3) = αt3 + γt1t3 +
δ

3
t1t2t3 + αt1 +

γ

2
t1t2 (4.28)

The Nash terms of the contribution function for agent i are those that come with ti. This

is because the Nash terms must produce changes when agent i deviates unilaterally. In

the contribution functions of the star network given above, although agents 2 and 3 are

disconnected from each other, from agent 1’s transmission of δt1t2t3, this 3-agent interaction

is included in the Nash terms of agents 2 and 3’s contribution functions. An immediate

and important implication of this is that the influence of δ reaches all agents in the star

network, hinting that interactions dependent on all three agents are possible on the star

network. For the wheel network, this is not so. Since no agent is interacting with all agents,
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the information δ
3

is never generated and hence never transmitted.

Let us make all of this precise by investigating the situations of interest– coordination,

division of labor, and the legislator game– on the wheel and star networks. These results

are summarized in Theorems 4.20, 4.21, and 4.22 below. For most proofs, without loss of

generality, the contribution functions are written in terms of the wheel and star network in

Figure 4.14. A short discussion is provided for each theorem, but major points are reserved

for after the theorems, where the results can be visualized in Figures 4.15, 4.16, and 4.17.

Theorem 4.20. A 2× 2× 2 symmetric identical play collaboration has the form of a pure

coordination game

• on the full network if and only if |α + δ| < 2γ

• on the wheel network if and only if |α| < γ
2

• on the star network if and only if |α + δ
3
| < γ

Proof. The proof for the full network follows by taking α1 = α2 = α3, γ12 = γ21 = γ13 =

γ31 = γ23 = γ32, and δ123 = δ231 = δ312 in Theorem 4.11.

For the wheel network, consider agent i’s contribution function as in (4.23) - (4.25), namely

ψi(t1, t2, t3) = αti + γ
2
titj + αtj + γ

j
tjtj where agent i receives information from agent j, and

j from k. The Nash component of i’s contribution function is ψNi (t1, t2, t3) = αti + γ
2
titj

because these are the only terms that are affected by agent i’s unilateral deviations. The

Nash function is positive in (+1,+1,+1) and (−1,−1,−1), and hence Nash equilibria, if and

only if γ
2
> |αi|. Since i is arbitrary, this holds for i = 1, 2, 3. All other strategy profiles are

a unilateral deviation away from (+1,+1,+1) or (−1,−1,−1) and must have at least one

negative Nash term. Consequently, it cannot be an equilibrium. Therefore, (+1,+1,+1) and

(−1,−1,−1) are the only pure strategy Nash equilibria if and only if γ
2
> |αi| for i = 1, 2, 3.
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For the star network, similar computations to the above give, for the center agent |α+ δ
3
| < 2γ,

and for the agents at the extremes |α+ δ
3
| < γ. The second inequality implies the first, making

the first inequality redundant. Hence, the collaboration on the star network has the form of

a coordination game if and only if |α + δ
3
| < γ.

Theorem 4.20 shows that there are regions in the parameter space that give rise to a global

coordination game in all three networks of interest.

Theorem 4.21. A 2×2×2 symmetric identical play collaboration has the form of a division

of labor game with pure strategy Nash equilibria (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1)

• on the full network if and only if |α + δ| < −2γ and −α + δ > 0

• impossible on the wheel network

• on the star network if and only if |α + δ
3
| < −γ and −α + δ

3
> |γ|

Alternatively, it has pure Nash equilibria (+1,+1,−1), (+1,−1,+1), and (−1,+1,+1)

• on the full network if and only if |α + δ| < −2γ and −α + δ < 0

• impossible on the wheel network

• on the star network if and only if |α + δ
3
| < −γ and α− δ

3
> |γ|

Proof. The proof for the full network follows by taking α1 = α2 = α3, γ12 = γ21 = γ13 =

γ31 = γ23 = γ32, and δ123 = δ231 = δ312 in Theorem 4.12.

For the wheel network, agent 1’s Nash terms in the profiles (+1,+1,−1) and (−1,+1,+1) of

case 1 are ψN1 (+1,+1,−1) = α+ γ
2

and ψN1 (−1,+1,+1) = −α− γ
2
. Because it is impossible

for both of these to be positive, it is impossible to have the desired equilibria in the wheel

network. A similar demonstration is easily constructed for case 2 of the theorem.
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On the star network, both cases of the theorem require that the strategy profiles (+1,+1,+1)

and (−1,−1,−1) have negative Nash terms for all agents. For the center agent this is true

if and only if |α+ δ
3
| < −2γ, and for the agents at the extremes if and only if |α+ δ

3
| < −γ.

Because the second inequality implies the first, both conditions being true can expressed just

with |α+ δ
3
| < −γ. Then, so far, all other profiles where exactly two agents are coordinating

have one positive Nash term– the agent who is mis-coordinating.

The first case of the theorem is where the two agents coordinate on −1, and the second

case is where they coordinate on +1. No matter what, there will be mis-coordination with

exactly one agent. For the first case, the center agent chooses to coordinate on −1 if and

only if −α + δ
3
> 0 and the agents at the extremes do the same if and only if −α + γ + δ

3

and −α − γ + δ
3
, which together imply −α + δ

3
> |γ|. When the inequality is true for the

agents at the extremes, it is automatically true for the center agent. Hence, for case 1 of

the theorem, |α + δ
3
| < −γ and −α + δ

3
> |γ| if and only if the game has the pure strategy

Nash equilibria (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1). Case 2 follows from similar

computations.

Theorem 4.21 shows that it is impossible to have the division of labor game on the wheel

network. Intuitively, this makes sense; the Nash structure of the division of labor game

is dependent on δ, the emergent Nash parameter in 2 × 2 × 2 games. Because no agent

in the wheel network is playing with two other agents, this parameter cannot be in any

agent’s contribution function. The same reasoning holds for Theorem 4.22 below, and the

impossibility of this Nash structure on the wheel network. On the star network, the proof of

Theorem 4.21 reveals that the inequalities required for the agents at the extremes are stronger

than those for the center agent, for whom the Nash terms are indistinguishable from those

of the full network. A consequence of this is that there are regions in the parameter space

where the center agent is bound to the structure of division of labor, but the agents at the

extreme are not.
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Theorem 4.22. A 2× 2× 2 symmetric identical play collaboration has the form of a legis-

lator game with pure strategy Nash equilibria (+1,+1,+1), (+1,−1,−1), (−1,+1,−1), and

(−1,−1,+1)

• on the full network if and only if α + δ > 2|γ| and −α + δ > 0

• impossible on the wheel network

• on the star network if and only if α + δ
3
> 2|γ| and −α + δ

3
> |γ|

Alternatively, it has pure Nash equilibria (−1,−1,−1), (+1,+1,−1), (+1,−1,+1), and

(−1,+1,+1)

• on the full network if and only if α + δ < −2|γ| and α− δ > 0

• impossible on the wheel network

• on the star network if and only if α + δ
3
< −2|γ| and α− δ

3
> |γ|

Proof. The proof for the full network follows by taking α1 = α2 = α3, γ12 = γ21 = γ13 =

γ31 = γ23 = γ32, and δ123 = δ231 = δ312 in Theorem 4.14.

The proof of the impossibility of the legislator structure on the wheel network is the same

as the proof for the wheel network in Theorem 4.21.

For the star network, we can borrow the second half of the star network’s proof for Theorem

4.21, concluding with the inequality −α+ δ
3
> |γ| for case 1 of the theorem. This inequality

is true if and only if strategy profiles (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1) are pure

strategy Nash equilibria. For the legislator structure described by case 1, the additional

equilibrium (+1,+1,+1) is needed. The Nash terms in this profile are positive for all agents

if and only if α + δ
3
> −2γ and α + δ

3
> −γ. Although the Nash terms being negative in
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the profile (−1,−1,−1) follows from −α + δ
3
> |γ|, looking closer reveals that α + δ

3
> 2γ

and α + δ
3
> γ. Hence, δ

3
> 2|γ| and α + δ

3
> |γ|. It is clear that the first inequality implies

the second. Therefore, the collaboration on the star network has the form of the legislator

game in case 1 of the theorem if and only if −α+ δ
3
> |γ| and δ

3
> 2|γ|. The proof of case 2

follows the same demonstrations.

The major difference between the division of labor in Theorem 4.21 and the legislator struc-

ture in Theorem 4.22, is that one of the full coordination profiles is also an equilibrium in

the legislator structure. This changes the inequality |α + δ
3
| < −γ of case 1 of Theorem

4.21 to the inequality α + δ
3
> 2|γ| of case 1 of Theorem 4.22. An immediate insight from

this is that the relationship between α and δ
3

has to change drastically, but stay within the

confines of −α+ δ
3
> |γ| (the common inequality in both theorems), for the collaboration to

transition from having the form of a division of labor game to the form of a legislator game.

To better visualize the results of Theorems 4.20, 4.21, and 4.22, let us, without loss of

generality, take α = 1 so the regions can be plotted on the γδ-plane. Write σ as the

permutation operator, where σ applied to a strategy profile represents the set containing all

permutations of the profile. For example,

σ((+1,−1,−1)) = {(+1,−1,−1), (−1,+1,−1), (−1,−1,+1)}.

As stated in the theorems, the division of labor and legislator equilibria do not survive the

wheel network. The plots also show that there are regions that induce full coordination on

each particular network but not the others. In addition, there are regions that induce full

coordination on the full network and star but not the wheel. Similarly, there are regions that

induce coordination on the wheel network and the star, but not the full network. Finally,

there are regions that induce coordination on all three networks.
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Figure 4.15: Full Coordination

(a) σ((+1,−1,−1)) (b) σ((+1,+1,−1))

Figure 4.16: Division of Labor

(a) (+1,+1,+1), σ((+1,−1,−1)) (b) (−1,−1,−1), σ((+1,+1,−1))

Figure 4.17: Legislator
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For division of labor, when α > 0 (because we are taking α = 1), only the full network is

able to produce the desired Nash structure of (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1).

The alternative however, where the pure Nash equilibria are (+1,+1,−1), (+1,−1,+1), and

(−1,+1,+1), exists for the full network and star network. There are cases where the Nash

structure appears in both networks, and other cases where it only appears in one but not

the other.

For the legislator game, every region with a legislator Nash structure in the star network

also induces a legislator structure in the full network. In other words, the region for the star

network is a subset of the region for the full network. On the other hand, there are regions

that give rise to a legislator structure in the full network but not the star network.

Significant work remains to fully analyze the collaborations and group creativity on networks,

like in the collective improvisation experiments. The goal of the collaboration model is

to open the first door in a new interpretation of using the structure of game theory to

discuss information flow on networks of collaboration using the coordinate system developed

in chapter 2, and how this information is communicated through the various networks of

information flow. The takeaway from the results in this section is that certain parameter

distributions that induce desired results in a complete network do not necessarily carry over

to networks in which information flow is tampered with.

4.8 Information Flow and the Trio Model

In Section 4.3 the externality terms were not analyzed,and the interpretation of information

rather than payoffs in a game was motivated. In Section 4.5 this notion of information

generation and transmission was expanded through the coordinates of the collaboration.

An important feature of the trio game in Section 4.3 is the existence of the drummer, an agent
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who cannot transmit melodic and harmonic information. In the collaboration model, this

can be reflected in the information the drummer generates alone and with the other agents.

Remember that we are denoting the saxophone player as agent s, the bassist as agent b,

and the drummer as agent d. Then, βsd and βbd, the information agents s and b receive

from agent d, respectively, cannot contain melodic and harmonic information. Furthermore,

βsdb and βbds, the information agent i receives from agent d’s interaction with agent j, for

i, j = s, b and i 6= j, also cannot contain melodic and harmonic information. This presents

interesting implications and possibilities for the model, but regrettably a proper analysis of

these details are beyond the scope of this thesis, and this analysis is saved for future work.

We hope it is apparent that there is a rich world of research waiting to be explored in the

collaboration model.
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