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from Relational Databases* 

Frank Olken 
Doron Rotem t 

Computer Science Research Dept. 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 

Abstract 

Sampling is a fundamental operation for the audit­
ing and statistical analysis of large databases. It is 
not well supported in existing relational database 
management systems. We discuss how to obtain 
samples from the results of relational queries with­
out first performing the query. Specifically, we ex­
amine simple random sampling from selections, pro­
jections, joins, unions, and intersections. We dis­
cuss data structures and algorithms for sampling, 
and their performance. We show that samples of 
relational queries can often be computed for a small 
fraction of the effort of computing the entire rela­
tional query, i.e., in time proportional to sample size, 
rather than time proportional to the size of the full 
result of the relational query. 

1 Introduction 

This paper is concerned with the question of how 
to efficiently extract random samples of relational 

•Issued as tech report LBL-20707(condensed). The full pa­
per issued as tech report LBL-20707. This work was sup­
ported by the Director, 0 fRee of Energy Research, 0 fRee of 
Basic Research Sciences, Division of Engineering, Mathe­
matical and Geosciences of the U.S. Department of Energy 
under Contract DE-AC03-76SF00098. 

ton leave from Univ. of Waterloo, Canada. Partially sup­
ported by Canadian NSERC Grant A3055. 
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queries from a relational data management system. 
Our goal is to obtain the samples without first com­
puting the entire query result which is to be sam­
pled. The full paper, [OR86], begins the discussion 
of this topic by treating simple random sampling of 
hashed, grid, and B+ -tree files. Here we treat only 
sampling the results of individual relational opera­
tors: selection, projection, intersection, union, dif­
ference, and join. 

1.1 Why sample? 

Random sampling is used on those occasions when 
processing the entire dataset is not necessary and is 
considered too expensive in terms of reponse time or 
resource usage. The savings generated by sampling 
may be due to reductions in the cost (in reponse time 
or resources, CPU and 1/0 time) in retrieving the 
data from the DBMS. Retrieval costs are significant 
when dealing with large administrative or scientific 
databases. 

In addition savings may result from reductions 
in the cost of subsequent "post processing" of the 
sample. Such "post processing" of the sample may 
involve expensive statistical computations, or fur­
ther physical examination of the real world entities 
described by the sample. Examples of the latter 
include physical inspection and/or testing of com­
ponents for quality control, physical audits of finan­
cial records and medical examinations of sampled 
patients for epidemiological studies. References are 
given in the full paper [OR86]. 

Clearly for sampling to be useful, the applica­
tion must not require the complete answer to the 
query. Thus random sampling is typically used to 
support statistical analysis of a dataset, either to es­
timate parameters of interest or for hypothesis test­
ing. See [Coc77] for a classic treatment of the sta-



tistical methodology. Applications include scientific 
investigations such as high energy particle physics 
experiments, quality control, and policy analyses. 
For example, one might sample a join of welfare re­
cipient records with tax returns or social security 
records in order to estimate welfare fraud rates. 

1.2 Why put sampling in DBMS? 

Given that one wants to perform sampling, is it 
worthwhile to put the sampling operator into the 
DBMS? 

We believe that one should put sampling opera­
tors into the DBMS for reasons of efficiency. By em­
bedding the sampling within the query evaluation, 
we can reduce the amount of data which must be 
retrieved in order to answer sampling querie~, and 
can exploit indices created by the DBMS. 

Sampling can be used in the DBMS to provide 
cheap estimates of the answers of aggregate queries, 
[Mor80]. Sampling may also be used to estimate 
database parameters used by the query optimizer to 
choose query evaluation plans, [Wil84]. 

1.3 Organization of Paper 

The condensed paper is organized into six sec­
tions. In Section 2 we explain some of the different 
types of sampling. In Section 3 we discuss the var­
ious efficiency metrics used to eva-uate competing 
algorithms. In Section 4 we review basic sampling 
techniques from a single flat file which we use in this 
paper. In Section 5 we discuss sampling from indi­
vidual relational operators. Finally, in Section 6 we 
state our conclusions. 

In the full paper, [OR86], we also discuss the use of 
auxiliary "indices" to improve random access sam­
pling of hash files, grid files, and B+ -tree files. 

2 Types of Sampling 

There are a variety of types of sampling which 
may be performed. The various types of sampling 
can be classified according to: 

1. the manner in which the sample size is deter­
mined, 

2. whether the sample is drawn with or without 
replacement, 

3. whether access pattern is random or sequential, 

4. whether or not the size of the population from 
which the sample is drawn is known, 
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5. whether or not each record has a uniform inclu­
sion probability. 

The sample inclusion probabilities for individual 
records may be uniform (an unweighted or simple 
random sample {SRS }) or they may be weighted ac­
cording to some attribute of the record. 

In this paper we will deal primarily with fixed size 
simple random samples. In the Section 4.1 we show 
how to convert between simple random samples with 
and without replacement. We include a short discus­
sion of weighted sampling of an existing file, because 
it is used to implement simple random sampling of 
some relational operators. We deal with sampling 
from both known and unknown population sizes. 

3 Efficiency Measures 

We shall assume that the database resides on disk 
and thus measure efficiency in terms of disk blocks 
read. 

Converting the number of records read into the 
number of disk blocks read is fairly well understood 
if the data is uniformly distributed (see [Yao77]). 
Christodoulakis [Chr84] has analyzed the case where 
the data is not uniformly distributed. For the sake 
of brevity and clarity we will typically assume that 
the fraction of records sampled from a relation is 
sufficiently small that each record sampled results in 
a disk read. Hence we will approximate the number 
of disk blocks read by the the number of records 
read. Obviously this is a gross simplification, but it 
can easily be corrected. 

4 Basic Techniques 

In this· section we develop basic techniques for 
sampling from single files which either already exist 
or are being generated in their entirety. In this sec­
tion we discuss conversion between simple random 
samples with and without replacement, weighted 
random sampling, and previous work on sampling 
from flat files. 

In the full paper, [OR86], we develop techniques 
for sampling from some types of files which are com­
mon in DBMSs: such as files with variable num­
bers of records per block, hashed or grid files, and 
B+ -tree files. 

4.1 Converting Samples 

In this section we discuss how one converts be­
tween simple random samples with replacement and 
those without replacement. 

•• 
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Definition 1 Samples without replacement are those 
in which each element of the sampled population ap­
pears at most once. 

For simple random sampling, a sample without 
replacement can be obtained from a sample with 
replacement by simply removing the duplicates. Of 
course, the sample size may thereby be reduced, so 
that additional elements of the population may have 
to be sampled. 

The most efficient way to detect duplicates is usu­
ally to construct a hash table of the sample elements. 
This can be done in O(s) time and space. Dupli­
cate detection can be performed incrementally as 
the sample is collected, so that the sampling may 
be continued until the target sample size is reached. 
See [EN82J. 

When simple random sampling sequentially from · 
a file (or the output of a query) it may· be simpler 
to sample without replacement. Suppose, however, 
that one wants a sample with replacement. Such a 
SRSWR is needed when sampling from joins, as will 
be seen later. The SRSWOR sample can be con­
verted to SRSWR by synthetically generating the 
duplicates. Essentially we generate a simple random 
sample with replacement from an index set of inte­
gers and then we construct a random mapping be­
tween the original sample without replacement and 
our sample from the index set. It is easy to see 
that this will produce a simple random sample with 
replacement (SRSWR). It requires random access 
only to the SRSWOR, which will usually fit in main 
memory, unlike the original population. Assuming 
that we use a hash table to check for duplicates, the 
conversion can be done in O(s) time and space. For 
details see the full paper. 

4.2 Weighted Random Sampling 

We will show later that, in order to obtain simple 
random samples of some types of files or relational 
queries, it is often necessary to compute weighted 
random samples. Hence we include a brief treat­
ment of how to calculate a weighted random sam­
ple from an exisiting file with fixed blocking. Two 
methods of weighted sampling, acceptance/rejection 
sampling and partial sum trees, are compared below. 

4.2.1 Acceptance/Rejection Sampling 

The basic tactic used in this paper is accep­
tance/rejection sampling. A brief explanation of 
this classic sampling technique is included here for 
those in the database community who may be unfa­
miliar with it. 
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Suppose that we wish to draw a weighted random 
sample of size 1 from a file of N records, denoted r;. 
with inclusion probability for record r; proportional 
to the weight w;. The maximum of the wi is denoted 
Wma:z• 

We can do this by generating a uniformly dis­
tributed random integer, j, between 1 and N, and 
then accepting the sampled record r; with probabil­
ity Pi: 

(1) 

The acceptance test is performed by generating an­
other uniform random variate, ui, between 0 and 1 
and accepting ri if ui < Pi· If r; is rejected, we 
repeat the process until some j is accepted. 

The reason for dividing Wi by Wm= is to assure 
that we have a proper probability (i.e., Pi ~ 1). If 
we do not know Wma:z we can use instead a bound 
n such that Vj, n > wi•· The number of iterations 
required to accept a record r i is geometrically dis­
tributed with a mean of (E[piJ)-1 • Hence using n 
in lieu of Wma:z results in a less efficient algorithm. 

Acceptance/rejection sampling is well suited to 
sampling with ad hoc weights or when the weights 
are being frequently updated. Other methods, such 
as the partial sum tree method discussed below, re­
quire preprocessing the entire table of weights. 

4.2.2 Partial Sum Trees 

Wong and Easton [WE80J proposed to use binary 
partial sum trees to expedite weighted sampling. 

As above, consider the file of N records, in which 
each record ri has inclusion probability wi in a sam­
ple of size 1. Binary partial sum trees are sim­
ply binary trees with N leaves, each containing one 
record ri and its weight wi. Each internal node con­
tains the sum of the weights of all the data nodes 
(i.e., leaves) in its subtree. Each record, r;, can be 

thought to span an interval [E{-1 wi, E{ wi), of 
length w;. 

A sample of size 1 is obtained by generating a 
uniform random numbe:;, u, which ranges between 
0 toW, where W = E 1 wi. The partial sum tree 
is then traversed from root to leaf to identify the 
record which spans the location u. 

The height of the tree is O(log N), where N is 
the number of.records. Hence the time to obtain a 
sample of size s is O(s log N). The tree can also be 
updated in time O(log N) should the record weights 
be modified, or if sampling without replacement is 
desired. 

Partial sum trees can be constructed in the fonn 
of B-trees, in order to minimize disk accesses by in-

:i.'' 



creasing the tree fanout (and hence the radix of the 
log). Alternatively, a partial sum tree may be em­
bedded into a B-tree index on some domain. 

Partial sum tree sampling may well outperform 
acceptance/rejection sampling. Essentially, it is an­
other index, specially suited to sampling. However, 
it is practical only when the weights are known be­
forehand. Like any other index, it increases the cost 
of updates. 

However, we believe that updates will greatly out­
number sampling queries in most applications. For 
this reason, and for the sake of brevity, we will dis­
cuss only acceptance/rejection methods in this pa­
per. 

4.3 A Review of Sampling from Files 

In Table 1 we list the major results on sampling 
from a single flat file (with fixed blocking), with ci­
tations to the relevant algorithms. We employ some 
of these techniques in our work on query sampling. 
Also see. [Dev86]. 

5 Sampling from Relational 
Operators 

In this section we show how to sample the output 
of individual relational operators such as selection, 
projection, intersection, uuion, difference, and join. 
These sampling techniques form the basic building 
blocks for sampling from more complex composite 
queries. The techniques entail a synthesis of the ba­
sic file sampling techniques and algorithms for im­
plementing relational operators. We discuss only 
simple random sampling. 

In order to facilitate the exposition, we treat the 
simpler relational operators first, leaving the most 
interesting results concerning joins for last. 

Our cost measure is the number of disk pages 
read, denoted as D. Usually we will be interested in 
the expected number of disk pages read, E(D). 

5.1 Notation 

The sampling operator will be denoted as t/J. Sam­
pling method and size will be denoted by sub­
scripts. Except as noted simple random sampling 
without replacement (SRSWOR) is the default sam­
pling method, e.g., tPIOo(R) or tPSRSWOR,soo(S). 

More complex sampling schemes will be described 
via the iteration operators: 
WR(s,< expr >),and WOR(s,< expr >),which in­
dicate that < expr > (a sampling expression) is to 

4 

be repeatedly evaluated until a sample of size s ob­
tained (with or without replacement respectively). 

Definition 2 Two sampling schemes, A(R) and 
B(R) of relation R are said to be equivalent, de­
noted by A <=> B, if, for every possible instance r of 
relation R they generate the same size samples, and 
the inclusion probability for each element of the pop­
ulation is the same in both schemes. Note that the 
samples are not necessarily identical. 

Definition 3 MIX(a,< expr1 >,< expr2 >)denotes 
a random mixture of two sampling schemes. It in­
dicates that we sample according to < expr1 > with 
probability a, and with probability 1 - a we sample 
according to < expr2 >. 

MIX is used to implement sampling from unions. 

Definition 4 ACCEPT(a, < expr >)indicates that 
we accept the sample element generated according to 
< expr > with probability a. 

ACCEPT is used to implement sampling from 
projections and joins. 

5.2 Selection 

We denote the selection of records satisfying pred­
icate pred from relation R by Upred(R) The number 
of records in relation R is n. The fraction of records 
of relation A which satisfies predicate pred is Ppred· 
Hence nppred is the number of records in relation R 
which satisfy the selection predicate. 

Selection is unique in that it correctly commutes 
with the sampling operator, i.e., selecting from a 
simple random sample generates a simple random 
sample of a selection. 

Theorem 1 

Proof: For records which do not satisfy the pred­
icate, the inclusion probability is obviously zero on 
both sides. 

In the sampling scheme on the lefthand side the 
inclusion probability, p, for any record r which sat­
isfies the selection predicate is: 

(2) 

i.e., all such records have equal inclusion probabili­
ties. 

On the righthand side,· we repeatedly sample one 
record from R, evaluate the selection predicate, and 
then retain it if it satisfies the selection predicate 
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Type of sampling Citation Expected Disk Accesses 

Simple Random Sampling with replace- 0(8) 
ment 
Simple Random Sampling with replace- -[OR86] 0(8(bm..,fbaug)) 
ment with variable blocking 

Simple Random Sampling without re- [EN82] 0(8) 
placement 

Weighted Random Sampling [WE80J 0(8logn) 

Sequential Random Sampling, known pop- [FMR62] O(n/bavg) 
ulation size 

[Vit84j 0(8) 
Sequential Random Sampling, unknown [Vit85] O(n/bavg) 
population size 

[Vit85J 0(8(1 + log(n/8)) 

Table 1: Basic Sampling Techniques from a single file 

Note: s = sample size, n = population size, bmaz = maximum number of records in a block, 
bavg = average number of records in a block. Assume each sample taken from a distinct disk page, 
i.e., 8 < (n/bavg) For Vitter's algorithms assume random disk I/0. 

and is not a duplicate. This continues until we have 
a sample size 8. 

Since the selection operator does not alter the in­
clusion probabilities of those records which satisfy 
the selection predicate, they remain equi-probable. 
From the definition of the WOR iterator, we are 
assured that the sample size is 8 distinct records. 0 

Techniques for sampling from selections may be 
classifed according as to whether they use an in­
dex, or scan the entire relation. The first class ca.Ii 
be further classified according to whether the index 
contains rank information, which permits random 
access to the j'th ranked record. We shall assume 
that the index is a single attribute record-level index 
constructed as a n+ -tree as discussed in the full pa­
per, [OR86j. Except as noted, we assume that the 
predicate can be fully resolved by the index. Based 
on this classification schema, we have the following 
algorithms: 

• KSKIPI: sample sequentially via random access 
SKIPs in Index, 

• RAI: Random Access sample via Index until de­
sired sample size is obtained, 

• SCAN!: sample sequentially via Index SCAN­
ning every relevant index page, 

• RA: Random Access sample directly until de­
sired sample size is obtained, 
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• SCAN: sample sequentially· SCANning every 
page of relation, 

In order to generate random accesses via the in­
dex, we must assume that the index includes rank 
information aa discussed in Section 5.3. 

The first method, sequential sampling via random 
access skips (KSKIPI) can be expedited [Vit84J if 
the population size (number of tuples which qualify 
on the predicate) is known, i.e., computable from 
the rank. information in the index. In this case the 
expected number of disk accesses is given by: 

E(DKsKrn) ~ (8(1 + log1 (np;(""))) (3) 

Here f is the average fan-out of each node in the 
n+ -tree index. The log term is due to average 
height in the tree we must backtrack for each skip. 
We assume one additional access for each element of 
the sample to actually retrieve the sampled record. 

Again assuming rank information in the index, 
the second method, random probes of the subtree 
of the index selected by the predicate (RAI), has an 
expected cost of: 

E(DRAI) s::$ (8(1 + log1 (npfed))). (4) 

Clearly, KSKIPI is always more efficient than RAI 
for simple predicates. However, there may be occa­
sions in which multi-attribute predicates are speci­
fied for which only a single index is available. This 



precludes the use of KSKIPI, because we don't know 
the size or the identity of the population satisfying 
the multi-attribute predicate. However, we can con­
tinue to use RAI on one index, and evaluate the 
multi-attribute predicate on each record sampled. 

The third method, sequentially sampling via the 
index consists of finding the pages of the index which 
point to records which satisfy the predicate, and 
then sequentially scanning and sampling each such 
index page, assuming that successive index pages 
are chained. The sequential sampling would be done 
with a reservoir method such as [Vit85J, which does 
not require a known population size. This method 
would be used when the index does not contain the 
rank information needed for RAI" or KSKIPI. It has 
an expected cost of: 

(n) nppred 
E(DscANr) ll::f log/ f + -f- +" .(5) 

The fourth method, direct random access sam­
pling (RA,), does not require any index. For a re­
lation with a fixed blocking factor the number disk 
accesses required to obtain s distinct records is a 
negative hypergeometric distribution whose mean is 
approximately given by: 

(6) 

assuming that s < nppred· The advantage of this 
method is that it dot:J not require an index. If Ppred. 

is close to 1 this method avoids superfiuous accesses 
to the index. If Ppred. is very small the SCAN method 
is to be preferred. 

The fifth method, SCAN, consists of simply scan­
ning the entire relation to perform the selection, 
with a pipelined sequential sampling of the result. 
The number of page accesses is simply the size of 
the relation: 

E(DscAN) = n/bR (7) 

Here b R is the blocking factor for relation R. 

5.3 Projection 

For simplicity we only consider projection on a 
single domain. Similar results hold for projection on 
multiple domains. Simlarly, for expository purpose 
we treat only sampling with replacement. As shown 
earlier extensions to sampling without replacement 
are straightforward. We denote the projection of 
relation R onto domain A as 1rA.(R). 

Let A be an attribute defined on the domain 
a1, a2, ... ,am. The set R.eli includes all the tuples 
in R with value a, on the attribute A. 
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Definition 5 The minimum frequency of the at­
tribute A in relation R, denoted as IR.almin 1 is the 
minimum cardinality in relation R of any projection 
domain value eli. 

Theorem 2 If A is not a key of R then 

Proof: A counterexample is given in the full paper 
[OR86J. 

Projection does not generally commute with sam­
pling because the projection operator removes dupli­
cates. Hence, interchanging projection and sampling 
will produce uneven inclusion probabilities. 0 

However, if the attribute A is a key of the relation 
R, then there will be no duplicate values of A in 
R, hence projection and sampling can be exchanged 
with impunity. 

Theorem 3 

tPSRSWR,.(1rA.(R)) <=> 

1rA(W R(s, ACCEPT( i(~;~")t, tPSRSWR,l(R)))) 

Proof: On the righthand side we sample with re­
placement from relation R first. Hence, each value 
1Ji in the projection domain A would have an inclu­
sion probability of I(R.eli)I/IRI. Since we want uni­
form inclusion probabilities on the projected domain 
values, we employ acceptance/rejection sampling to 
correct the inclusion probabilities. The acceptance 
probability for a tuple with value eli in the projection 
domain A is given as: 

I(R.a)lmin 
Pi= I(R.eli)l (8) 

Hence,for each iteration the inclusion probability for 
each distinct eli is: 

I(R.a)lmin 
p= IRI (9) 

We repeat this un.til we have s distinct records in 
our sample. 0 

Hence the expected cost is: 

E(D) ll::f 
8 

i(R.a)iavg 
I(R.a)lmin 

(10) 

assuming s < 11rA(R)I, where I(R.a)lavg IRI/m 
is the average cardinality of attribute A over all at­
tribute values eli present in the relation. Here we 
have assumed that relation R is hashed on the pro­
jection domain so that records may be retrieved in 
a single access. 

... 
"' 
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In order for the above algorithm to work we must 
be able to readily determine the cardinality (num­
ber of duplicates) of each projected tuple. This re­
quires that the relation to be projected must be ei­
ther sorted, indexed or hashed on the projection do­
main. Also we must either know I(R.a) lmin or re­
place it with a lower bound of 1, at the expense of 
reduced efficiency. 

The case in which the relation to be projected is 
not "indexed" is discussed in the full paper, [OR86]. 

5.4 Intersection 

We denote the intersection of two distinct rela­
tions R and T as R n T. 

While it is possible to distribute sampling over in­
tersection and still preserve uniform inclusion prob­
abilities, the resulting computation is so inefficient 
that it is rarely worthwhile. 

Theorem 4 

,P.(R n T) # WOR(s, ,P1(R) n T) 
# WOR(s,Rn,Pt(T)) 

(11} 

{1S} 

Proof: Consider the first case. From the lefthand 
side we have the inclusion proability for tuples in 
RnT is s/IRnTI, zero otherwise. For the righthand 
side we have the inclusion probability for all tuples 
in the intersection of R and T is sfiR n Tl, zero 
otherwise. In each case we have a simple random 
sample. 0 

We thus have our choice of which relation to sam­
ple from and which relation to do the intersection 
with. Typically, if only relation R has an index, 
then we would sample from T and then intersect 
with R using its index, since the alternative would 
require scanning all of T in order to perform the 
intersection. 

If both R and T have indices we must consider the 
relative costs of the two options based on the size 
of the relations, the type of index {hash, B+ -tree, 
primary or secondary), and the blocking factors for 
each relation. 

If neither R nor T have indices, then we would 
sample from the larger relation, so that the intersec­
tion scan can be performed on the smaller relation. 

Definition 6 Define the intersection selectivities 
PR, PT as: 

Pn = IR n TI/IRI, PT = IR n TI/ITI (13) 

Then the cost in disk accesses of sampling from 
Rand then checking for inclusion in T, assuming T 
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has a B+ -tree index is: 

E(Dn) 1=:$ ~(1 + log
171 

(!:ITI)) {14) 
PR TI 

where IT I is the the average fan-out of the B+- tree 
index to relation T. Again we assume that s < 
IR n Tl, i.e., we neglect the extra cost of sampling 
without replacement. 

An analogous formula for E( DT) can be written if 
we sample from relation T and check the intersection 
in relation R. The choice of which file to sample 
from can be made by comparing· the valqes of the 
two cost formulas. 

5.5 Difference 

We denote the difference of two relations R and 
T as R-T. 

Theorem 5 

For all k: t/l~c(R- T) f!, t/l~c(R)- t/l~c(T) 

Proof: Interchanging sampling a.il.d difference fails 
because elements in RnT but not in t/l~c(T) may be 
erroneously included in t/l~c(R) - t/l~c(T). 0 

Theorem 6 

,P.(R- T) # WOR(s,,P 1(R)- T) 

i.e.1 sampling from the difference of two relations 
is equivalent to sampling from the first relation and 
then taking the difference. 

Proof: Clearly the sampling scheme on the right­
hand size will produce a sample without replacement 
of the desired size. It remains to be shown that the 
sample is from R-T and that each element in R- T 
has an equal inclusion probability. Since ,Pl(R) E R 
it follows that f/11(R) - T E (R- T). Since t/11(R) 
has uniform inclusion probabilities over all elements 
of R and set differencing with T does not alter the 
inclusion probabilities of records in R - T, it fol­
lows that the righthand side sampling scheme has 
uniform inclusion probabilities for records in R- T. 
0 

Thus sampling from relation differences is very 
similar to sampling from relation intersections. We 
sample from R and then check that the tuple is not 
in T. Hence ·the expected cost assuming T has a 
B+ -tree index is approximately: 

s ITI 
E(D) 1=:$ (

1 
) (1 + log/71 ( -

1 
)) 

-pR TI 
(15) 

Again we assume that s < IR- Tl, i.e., we neglect 
the extra cost of sampling without replacement. 

),,..;., 



5.6 Union 

We denote the union of two distinct relations R 
and T as RuT. 

Theorem '1 

For any 81, 82 : t/1, (RuT) .P, t/ls 1 (R) u t/ls, (T) 
(16) 

Proof: Interchanging sampling and union fails be­
cause all elements on lefthand side have identical in­
clusion probabilities of s/IRUTI, whereas the right­
hand side inclusion probabilities for elements in the 
. . 81 82 8182 
mtersectlon R n T are IRI + ITI - IRIITI whereas 

the inclusion probability for elements in R - T is 
81/IRI and the inclusion probability for elements 
in T - R is 82/ITI. Hence elements in R n T do 
not have same inclusion probability as elements in 
(RuT)- (RnT). 0 

The correct treatment of sampling from unions 
requires that we sample elements of intersection only 
once. Observe that: 

R u T = R u (T - R) (17) 

Theorem 8 

t/I(R u T) <=> 

IRI 
WOR(s, MIX( IRI + ITI, tPt(R), (t/lt{T)- R)) 

Recall that MIX( a, < e:z:pr1 >, < e:z:pr2 >) indi­
cates that we sample according to < e:z:pr1 > with 
probability a, and with probability 1 - a we sample 
according to < e:z:pr2 >. 

Proof: Omitted. 0 
Then to generate the a single sample of R U T 

we repeat t.he following algorithm until a sample is 
accepted: 

begin 
i := RAND(1, IRI + ITI); 
Ifi:::; IRI 

then get record i from R. 
else 

endif 
end 

begin 

end 

i := i -IRI; 
Get record j from T. 
Check if record j is in R. 
H so, discard record j, 
otherwise retain it. 

8 

Assuming B+ -tree indices, and s « IR U Tl, we 
have the expected number of iterations of the above 
algorithm to obtain a single sample is: 

E(l ) = (IRI + ITI) 
R (IRuTI) 

(18) 

For each iteration, we sample T (at a cost of one 
disk access), and the check the B+ -tree index to 
R. Thus each iteration has a cost of: 

5.7 Join 

Given two relations R and T, let the relation W 
be the result of their equijoin, i.e., W = R 1><1 T. 

R.:z=T.:z 
In this section we describe algorithms for sampling 
from W. For reasons of efficiency we wish to avoid 
computing the full join. For simplicity of exposition 
we discuss only sampling with replacement in this 
section. As shown earlier, conversion to sampling 
without replacement is straightforward. 

Sampling from W can be done in different ways 
depending on the initial structure of the relations R 
and 8. Some important factors in determining the 
sampling method are: 

1. Is the join attribute a key in one or more of the 
joined relations? 

2. Are the relations R or T indexed or hashed on 
the join attribute ? 

3. Is the join selectivity factor large? 

In this section we will cover some of the basic meth­
ods and evaluate them with respect to their effi­
ciency. First a few notations and definitions. 

We denote the semi-join of relation R with rela­
tion S over domains A of R and domain B of S as 
R I>< 8. Let X be an attribute defined on the do-

A=B 
main :z:11 :z:2, ... , Xm. The set R.:z:, includes all the 
tuples in R with value Xi on the attribute X. The 
join selectivity factor p(R 1><1 T) of relations R 

R.:z=T.:z 
and T over the attribute X is defined as 

where m is the number of distinct values of the join 
domain. When the context is clear we will simply 
denote this by p. 
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5.7'.1 Join without keys 

First, we will deal with the case that the join at­
tribute X is not a key in any of the relations R or 
T. We assume that relation T is "indexed" on the 
join attribute X, and that the modal frequency of 
the attribute X in relation T, as defined below, is 
also known. 

Definition 1 The modal frequency of the attribute 
X in relation T, denoted as IT.zlma:u is the max­
imum cardinality in relation T of any :join domain 
tJalue x,, i.e., 

(21) 

Theorem 9 The following acceptance/refection al­
gorithm will generate a simple random sample of size 
s. 

tPSRSWR,.(R t><l T) <:> 
R.z=T.z 

W R(s, ACCEPT(~~~·~:~"', ,Pt(,P1(R) R.~T.z T))) 

where IT.z, I denotes the cardinality in relation T 
of :join domain tJalue Xi resulting from the sample 
tP1 (R). 

Proof: Clearly the righthand side sampling 
scheme will produce a sample of the requisite size 
from R 1><1 T. What we must show is that it 

R.z=T.z 
will have uniform inclusion probabilities. 

Each iteration of the above algorithm begins by 
sampling a tuple from R. Each tuple in R has 
inclusion probability IRI-1. The sampled tuple, 
,Pt(R), is then joined with T and a random sam­
ple of the result taken, denoted ,P1 (,P 1 (R 1><1 T)). 

R.z=T.z 
Clearly each member of (,P1(R) t><l T) has the 

R.z=T.z 
inclusion probability (IT.z,)l)- 1 as defined above. 
This single sample is then accepted with probability 
1J:Z:y::~. . Hence inclusion probability of any member 
of R 1><1 T is given for a single iteration by the 

R.z=T.z 
product: 

p = (22) 

= (23) 

i.e., we have uniform inclusion probabilities for each 
iteration. By induction, this is true for the full al­
gorithm. 0 

In practice we use the equivalent following algo­
rithm: 
Algorithm- RAJOINR 

9 

comment This version of the algorithm 
samples R first; 
For :j := 1 to s do 
set accept to false 
While accept= false 

begin 

end 
End while 
Endfor 

Choose a random record r from R. 
Assume r[X] = x,. 
Find the cardinality of T.x,. 
Accept r into the sample 
with probability 

IT.zl• 
p= 

IT.xlmaz 
In case record r is accepted, 
choose randomly a tuple t 
of T.z, and join r with it 
Store the result r 1><1 t 

R.z=T.z 
in the sample file. 
set accept to true. 

Note that we do not actually construct the full 
,P1 (R) 1><1 T, since we only need a sample of size 

R.z=T.z 
1 from it. 

The efficiency of this method is established in the 
following lemma. 

Lemma 1 The expected number of times that the 
while loop in RAJOINR will be performed until a 
sample is accepted, E(lR), is: 

E(l ) = IT.xlmaz 
R PITI 

(24) 

Proof: The proof is given in the full paper, 
[OR86]. o 

Hence the total efficiency (disk accesses) of the 
algorithm is: 

s:::~ sE(lR)(1 + log12', ( /ITI)) 
TI 

+s (25) 

1'::1 siT.zlm= (1 + log ( ITI )) 
PIT! 12', !Tr 

+s (26) 

where fTr is the average fan-out for the B+ -tree 
index for T. Here the log factor is the time to search 
the B+ -tree index of T for each sample. The last s 
term in each equation represents the cost of finally 
retrieving the sampled records from T. 

If there is an index on R then an analogous algo­
rithm RAJ 0 I NT can be constructed by simply ex­
changing the roles of Rand Tin the above algorithm 



and cost analysis. If both R and T are indexed, ei­
ther algorithm could be used. If the join selectivity, 
p, is very small, neither algorithm is recommended. 
Instead, it may be preferable to compute the full 
join and then sample sequentially the output of the 
join using [Vit85J as it is generated. 

5.'1.2 Join with key 

Suppose that the join domain X is a key of re­
lation T and that relation T is indexed on X. In 
this case, the acceptance/rejection sampling is un­
ecessary, if we first sample from relation R. See the 
full paper [OR86j for details and proof. 

6 Conclusions 

In this paper we have begun to explore how to in­
tegrate random sampling into relational data man­
agement systems. 

The contributions of this paper include: sampling 
techniques for relational operators, asymptotic ap­
proximate estimates of the cost (in disk accesses) of 
the various sampling algorithms, a concise notation 
for describing sampling algorithms. 

Acceptance/rejection sampling comprises the ba­
sic technique by which we compensate for the effects 
of relational operators on inclusion probabilities. 
Assun.ing that suitable indices or access methods 
are available, integrating sampling into the query 
evaluation offers potentially major savings in query 
processing time. 
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