
Lawrence Berkeley National Laboratory
Recent Work

Title
Simple Random Sampling from Relational Databases

Permalink
https://escholarship.org/uc/item/9704f3dr

Authors
Olken, Frank
Rotem, D.

Publication Date
1986-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9704f3dr
https://escholarship.org
http://www.cdlib.org/

uc -3.:{
LBL-20707 ("" I
Condensed ·

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Computing Division

To be presented at the 12th International
Conference on Very Large Databases,
Kyoto, Japan, August 25-28, 1986

SH1PLE RANDOM SAMPLING FROM RELATIONAL DATABASES

F. Olken and.D. Rotem

June 1986

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

&;
r
I
~J
C)

-1
I" 0
--J

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would n,ot
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-20707
condensed

Simple Random Sampling from Relational Databases

Frank Olken and Doron Rotem.

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California Q47·20

June, 1Q86

, ..
• j

Simple Random Sampling
from Relational Databases*

Frank Olken
Doron Rotem t

Computer Science Research Dept.
Lawrence Berkeley Laboratory

Berkeley, CA 94720

Abstract

Sampling is a fundamental operation for the audit­
ing and statistical analysis of large databases. It is
not well supported in existing relational database
management systems. We discuss how to obtain
samples from the results of relational queries with­
out first performing the query. Specifically, we ex­
amine simple random sampling from selections, pro­
jections, joins, unions, and intersections. We dis­
cuss data structures and algorithms for sampling,
and their performance. We show that samples of
relational queries can often be computed for a small
fraction of the effort of computing the entire rela­
tional query, i.e., in time proportional to sample size,
rather than time proportional to the size of the full
result of the relational query.

1 Introduction

This paper is concerned with the question of how
to efficiently extract random samples of relational

•Issued as tech report LBL-20707(condensed). The full pa­
per issued as tech report LBL-20707. This work was sup­
ported by the Director, 0 fRee of Energy Research, 0 fRee of
Basic Research Sciences, Division of Engineering, Mathe­
matical and Geosciences of the U.S. Department of Energy
under Contract DE-AC03-76SF00098.

ton leave from Univ. of Waterloo, Canada. Partially sup­
ported by Canadian NSERC Grant A3055.

1

queries from a relational data management system.
Our goal is to obtain the samples without first com­
puting the entire query result which is to be sam­
pled. The full paper, [OR86], begins the discussion
of this topic by treating simple random sampling of
hashed, grid, and B+ -tree files. Here we treat only
sampling the results of individual relational opera­
tors: selection, projection, intersection, union, dif­
ference, and join.

1.1 Why sample?

Random sampling is used on those occasions when
processing the entire dataset is not necessary and is
considered too expensive in terms of reponse time or
resource usage. The savings generated by sampling
may be due to reductions in the cost (in reponse time
or resources, CPU and 1/0 time) in retrieving the
data from the DBMS. Retrieval costs are significant
when dealing with large administrative or scientific
databases.

In addition savings may result from reductions
in the cost of subsequent "post processing" of the
sample. Such "post processing" of the sample may
involve expensive statistical computations, or fur­
ther physical examination of the real world entities
described by the sample. Examples of the latter
include physical inspection and/or testing of com­
ponents for quality control, physical audits of finan­
cial records and medical examinations of sampled
patients for epidemiological studies. References are
given in the full paper [OR86].

Clearly for sampling to be useful, the applica­
tion must not require the complete answer to the
query. Thus random sampling is typically used to
support statistical analysis of a dataset, either to es­
timate parameters of interest or for hypothesis test­
ing. See [Coc77] for a classic treatment of the sta-

tistical methodology. Applications include scientific
investigations such as high energy particle physics
experiments, quality control, and policy analyses.
For example, one might sample a join of welfare re­
cipient records with tax returns or social security
records in order to estimate welfare fraud rates.

1.2 Why put sampling in DBMS?

Given that one wants to perform sampling, is it
worthwhile to put the sampling operator into the
DBMS?

We believe that one should put sampling opera­
tors into the DBMS for reasons of efficiency. By em­
bedding the sampling within the query evaluation,
we can reduce the amount of data which must be
retrieved in order to answer sampling querie~, and
can exploit indices created by the DBMS.

Sampling can be used in the DBMS to provide
cheap estimates of the answers of aggregate queries,
[Mor80]. Sampling may also be used to estimate
database parameters used by the query optimizer to
choose query evaluation plans, [Wil84].

1.3 Organization of Paper

The condensed paper is organized into six sec­
tions. In Section 2 we explain some of the different
types of sampling. In Section 3 we discuss the var­
ious efficiency metrics used to eva-uate competing
algorithms. In Section 4 we review basic sampling
techniques from a single flat file which we use in this
paper. In Section 5 we discuss sampling from indi­
vidual relational operators. Finally, in Section 6 we
state our conclusions.

In the full paper, [OR86], we also discuss the use of
auxiliary "indices" to improve random access sam­
pling of hash files, grid files, and B+ -tree files.

2 Types of Sampling

There are a variety of types of sampling which
may be performed. The various types of sampling
can be classified according to:

1. the manner in which the sample size is deter­
mined,

2. whether the sample is drawn with or without
replacement,

3. whether access pattern is random or sequential,

4. whether or not the size of the population from
which the sample is drawn is known,

2

5. whether or not each record has a uniform inclu­
sion probability.

The sample inclusion probabilities for individual
records may be uniform (an unweighted or simple
random sample {SRS }) or they may be weighted ac­
cording to some attribute of the record.

In this paper we will deal primarily with fixed size
simple random samples. In the Section 4.1 we show
how to convert between simple random samples with
and without replacement. We include a short discus­
sion of weighted sampling of an existing file, because
it is used to implement simple random sampling of
some relational operators. We deal with sampling
from both known and unknown population sizes.

3 Efficiency Measures

We shall assume that the database resides on disk
and thus measure efficiency in terms of disk blocks
read.

Converting the number of records read into the
number of disk blocks read is fairly well understood
if the data is uniformly distributed (see [Yao77]).
Christodoulakis [Chr84] has analyzed the case where
the data is not uniformly distributed. For the sake
of brevity and clarity we will typically assume that
the fraction of records sampled from a relation is
sufficiently small that each record sampled results in
a disk read. Hence we will approximate the number
of disk blocks read by the the number of records
read. Obviously this is a gross simplification, but it
can easily be corrected.

4 Basic Techniques

In this· section we develop basic techniques for
sampling from single files which either already exist
or are being generated in their entirety. In this sec­
tion we discuss conversion between simple random
samples with and without replacement, weighted
random sampling, and previous work on sampling
from flat files.

In the full paper, [OR86], we develop techniques
for sampling from some types of files which are com­
mon in DBMSs: such as files with variable num­
bers of records per block, hashed or grid files, and
B+ -tree files.

4.1 Converting Samples

In this section we discuss how one converts be­
tween simple random samples with replacement and
those without replacement.

••

..

j

•f (.

Definition 1 Samples without replacement are those
in which each element of the sampled population ap­
pears at most once.

For simple random sampling, a sample without
replacement can be obtained from a sample with
replacement by simply removing the duplicates. Of
course, the sample size may thereby be reduced, so
that additional elements of the population may have
to be sampled.

The most efficient way to detect duplicates is usu­
ally to construct a hash table of the sample elements.
This can be done in O(s) time and space. Dupli­
cate detection can be performed incrementally as
the sample is collected, so that the sampling may
be continued until the target sample size is reached.
See [EN82J.

When simple random sampling sequentially from ·
a file (or the output of a query) it may· be simpler
to sample without replacement. Suppose, however,
that one wants a sample with replacement. Such a
SRSWR is needed when sampling from joins, as will
be seen later. The SRSWOR sample can be con­
verted to SRSWR by synthetically generating the
duplicates. Essentially we generate a simple random
sample with replacement from an index set of inte­
gers and then we construct a random mapping be­
tween the original sample without replacement and
our sample from the index set. It is easy to see
that this will produce a simple random sample with
replacement (SRSWR). It requires random access
only to the SRSWOR, which will usually fit in main
memory, unlike the original population. Assuming
that we use a hash table to check for duplicates, the
conversion can be done in O(s) time and space. For
details see the full paper.

4.2 Weighted Random Sampling

We will show later that, in order to obtain simple
random samples of some types of files or relational
queries, it is often necessary to compute weighted
random samples. Hence we include a brief treat­
ment of how to calculate a weighted random sam­
ple from an exisiting file with fixed blocking. Two
methods of weighted sampling, acceptance/rejection
sampling and partial sum trees, are compared below.

4.2.1 Acceptance/Rejection Sampling

The basic tactic used in this paper is accep­
tance/rejection sampling. A brief explanation of
this classic sampling technique is included here for
those in the database community who may be unfa­
miliar with it.

3

Suppose that we wish to draw a weighted random
sample of size 1 from a file of N records, denoted r;.
with inclusion probability for record r; proportional
to the weight w;. The maximum of the wi is denoted
Wma:z•

We can do this by generating a uniformly dis­
tributed random integer, j, between 1 and N, and
then accepting the sampled record r; with probabil­
ity Pi:

(1)

The acceptance test is performed by generating an­
other uniform random variate, ui, between 0 and 1
and accepting ri if ui < Pi· If r; is rejected, we
repeat the process until some j is accepted.

The reason for dividing Wi by Wm= is to assure
that we have a proper probability (i.e., Pi ~ 1). If
we do not know Wma:z we can use instead a bound
n such that Vj, n > wi•· The number of iterations
required to accept a record r i is geometrically dis­
tributed with a mean of (E[piJ)-1 • Hence using n
in lieu of Wma:z results in a less efficient algorithm.

Acceptance/rejection sampling is well suited to
sampling with ad hoc weights or when the weights
are being frequently updated. Other methods, such
as the partial sum tree method discussed below, re­
quire preprocessing the entire table of weights.

4.2.2 Partial Sum Trees

Wong and Easton [WE80J proposed to use binary
partial sum trees to expedite weighted sampling.

As above, consider the file of N records, in which
each record ri has inclusion probability wi in a sam­
ple of size 1. Binary partial sum trees are sim­
ply binary trees with N leaves, each containing one
record ri and its weight wi. Each internal node con­
tains the sum of the weights of all the data nodes
(i.e., leaves) in its subtree. Each record, r;, can be

thought to span an interval [E{-1 wi, E{ wi), of
length w;.

A sample of size 1 is obtained by generating a
uniform random numbe:;, u, which ranges between
0 toW, where W = E 1 wi. The partial sum tree
is then traversed from root to leaf to identify the
record which spans the location u.

The height of the tree is O(log N), where N is
the number of.records. Hence the time to obtain a
sample of size s is O(s log N). The tree can also be
updated in time O(log N) should the record weights
be modified, or if sampling without replacement is
desired.

Partial sum trees can be constructed in the fonn
of B-trees, in order to minimize disk accesses by in-

:i.''

creasing the tree fanout (and hence the radix of the
log). Alternatively, a partial sum tree may be em­
bedded into a B-tree index on some domain.

Partial sum tree sampling may well outperform
acceptance/rejection sampling. Essentially, it is an­
other index, specially suited to sampling. However,
it is practical only when the weights are known be­
forehand. Like any other index, it increases the cost
of updates.

However, we believe that updates will greatly out­
number sampling queries in most applications. For
this reason, and for the sake of brevity, we will dis­
cuss only acceptance/rejection methods in this pa­
per.

4.3 A Review of Sampling from Files

In Table 1 we list the major results on sampling
from a single flat file (with fixed blocking), with ci­
tations to the relevant algorithms. We employ some
of these techniques in our work on query sampling.
Also see. [Dev86].

5 Sampling from Relational
Operators

In this section we show how to sample the output
of individual relational operators such as selection,
projection, intersection, uuion, difference, and join.
These sampling techniques form the basic building
blocks for sampling from more complex composite
queries. The techniques entail a synthesis of the ba­
sic file sampling techniques and algorithms for im­
plementing relational operators. We discuss only
simple random sampling.

In order to facilitate the exposition, we treat the
simpler relational operators first, leaving the most
interesting results concerning joins for last.

Our cost measure is the number of disk pages
read, denoted as D. Usually we will be interested in
the expected number of disk pages read, E(D).

5.1 Notation

The sampling operator will be denoted as t/J. Sam­
pling method and size will be denoted by sub­
scripts. Except as noted simple random sampling
without replacement (SRSWOR) is the default sam­
pling method, e.g., tPIOo(R) or tPSRSWOR,soo(S).

More complex sampling schemes will be described
via the iteration operators:
WR(s,< expr >),and WOR(s,< expr >),which in­
dicate that < expr > (a sampling expression) is to

4

be repeatedly evaluated until a sample of size s ob­
tained (with or without replacement respectively).

Definition 2 Two sampling schemes, A(R) and
B(R) of relation R are said to be equivalent, de­
noted by A <=> B, if, for every possible instance r of
relation R they generate the same size samples, and
the inclusion probability for each element of the pop­
ulation is the same in both schemes. Note that the
samples are not necessarily identical.

Definition 3 MIX(a,< expr1 >,< expr2 >)denotes
a random mixture of two sampling schemes. It in­
dicates that we sample according to < expr1 > with
probability a, and with probability 1 - a we sample
according to < expr2 >.

MIX is used to implement sampling from unions.

Definition 4 ACCEPT(a, < expr >)indicates that
we accept the sample element generated according to
< expr > with probability a.

ACCEPT is used to implement sampling from
projections and joins.

5.2 Selection

We denote the selection of records satisfying pred­
icate pred from relation R by Upred(R) The number
of records in relation R is n. The fraction of records
of relation A which satisfies predicate pred is Ppred·
Hence nppred is the number of records in relation R
which satisfy the selection predicate.

Selection is unique in that it correctly commutes
with the sampling operator, i.e., selecting from a
simple random sample generates a simple random
sample of a selection.

Theorem 1

Proof: For records which do not satisfy the pred­
icate, the inclusion probability is obviously zero on
both sides.

In the sampling scheme on the lefthand side the
inclusion probability, p, for any record r which sat­
isfies the selection predicate is:

(2)

i.e., all such records have equal inclusion probabili­
ties.

On the righthand side,· we repeatedly sample one
record from R, evaluate the selection predicate, and
then retain it if it satisfies the selection predicate

t'i

Type of sampling Citation Expected Disk Accesses

Simple Random Sampling with replace- 0(8)
ment
Simple Random Sampling with replace- -[OR86] 0(8(bm..,fbaug))
ment with variable blocking

Simple Random Sampling without re- [EN82] 0(8)
placement

Weighted Random Sampling [WE80J 0(8logn)

Sequential Random Sampling, known pop- [FMR62] O(n/bavg)
ulation size

[Vit84j 0(8)
Sequential Random Sampling, unknown [Vit85] O(n/bavg)
population size

[Vit85J 0(8(1 + log(n/8))

Table 1: Basic Sampling Techniques from a single file

Note: s = sample size, n = population size, bmaz = maximum number of records in a block,
bavg = average number of records in a block. Assume each sample taken from a distinct disk page,
i.e., 8 < (n/bavg) For Vitter's algorithms assume random disk I/0.

and is not a duplicate. This continues until we have
a sample size 8.

Since the selection operator does not alter the in­
clusion probabilities of those records which satisfy
the selection predicate, they remain equi-probable.
From the definition of the WOR iterator, we are
assured that the sample size is 8 distinct records. 0

Techniques for sampling from selections may be
classifed according as to whether they use an in­
dex, or scan the entire relation. The first class ca.Ii
be further classified according to whether the index
contains rank information, which permits random
access to the j'th ranked record. We shall assume
that the index is a single attribute record-level index
constructed as a n+ -tree as discussed in the full pa­
per, [OR86j. Except as noted, we assume that the
predicate can be fully resolved by the index. Based
on this classification schema, we have the following
algorithms:

• KSKIPI: sample sequentially via random access
SKIPs in Index,

• RAI: Random Access sample via Index until de­
sired sample size is obtained,

• SCAN!: sample sequentially via Index SCAN­
ning every relevant index page,

• RA: Random Access sample directly until de­
sired sample size is obtained,

5

• SCAN: sample sequentially· SCANning every
page of relation,

In order to generate random accesses via the in­
dex, we must assume that the index includes rank
information aa discussed in Section 5.3.

The first method, sequential sampling via random
access skips (KSKIPI) can be expedited [Vit84J if
the population size (number of tuples which qualify
on the predicate) is known, i.e., computable from
the rank. information in the index. In this case the
expected number of disk accesses is given by:

E(DKsKrn) ~ (8(1 + log1 (np;(""))) (3)

Here f is the average fan-out of each node in the
n+ -tree index. The log term is due to average
height in the tree we must backtrack for each skip.
We assume one additional access for each element of
the sample to actually retrieve the sampled record.

Again assuming rank information in the index,
the second method, random probes of the subtree
of the index selected by the predicate (RAI), has an
expected cost of:

E(DRAI) s::$ (8(1 + log1 (npfed))). (4)

Clearly, KSKIPI is always more efficient than RAI
for simple predicates. However, there may be occa­
sions in which multi-attribute predicates are speci­
fied for which only a single index is available. This

precludes the use of KSKIPI, because we don't know
the size or the identity of the population satisfying
the multi-attribute predicate. However, we can con­
tinue to use RAI on one index, and evaluate the
multi-attribute predicate on each record sampled.

The third method, sequentially sampling via the
index consists of finding the pages of the index which
point to records which satisfy the predicate, and
then sequentially scanning and sampling each such
index page, assuming that successive index pages
are chained. The sequential sampling would be done
with a reservoir method such as [Vit85J, which does
not require a known population size. This method
would be used when the index does not contain the
rank information needed for RAI" or KSKIPI. It has
an expected cost of:

(n) nppred
E(DscANr) ll::f log/ f + -f- +" .(5)

The fourth method, direct random access sam­
pling (RA,), does not require any index. For a re­
lation with a fixed blocking factor the number disk
accesses required to obtain s distinct records is a
negative hypergeometric distribution whose mean is
approximately given by:

(6)

assuming that s < nppred· The advantage of this
method is that it dot:J not require an index. If Ppred.

is close to 1 this method avoids superfiuous accesses
to the index. If Ppred. is very small the SCAN method
is to be preferred.

The fifth method, SCAN, consists of simply scan­
ning the entire relation to perform the selection,
with a pipelined sequential sampling of the result.
The number of page accesses is simply the size of
the relation:

E(DscAN) = n/bR (7)

Here b R is the blocking factor for relation R.

5.3 Projection

For simplicity we only consider projection on a
single domain. Similar results hold for projection on
multiple domains. Simlarly, for expository purpose
we treat only sampling with replacement. As shown
earlier extensions to sampling without replacement
are straightforward. We denote the projection of
relation R onto domain A as 1rA.(R).

Let A be an attribute defined on the domain
a1, a2, ... ,am. The set R.eli includes all the tuples
in R with value a, on the attribute A.

6

Definition 5 The minimum frequency of the at­
tribute A in relation R, denoted as IR.almin 1 is the
minimum cardinality in relation R of any projection
domain value eli.

Theorem 2 If A is not a key of R then

Proof: A counterexample is given in the full paper
[OR86J.

Projection does not generally commute with sam­
pling because the projection operator removes dupli­
cates. Hence, interchanging projection and sampling
will produce uneven inclusion probabilities. 0

However, if the attribute A is a key of the relation
R, then there will be no duplicate values of A in
R, hence projection and sampling can be exchanged
with impunity.

Theorem 3

tPSRSWR,.(1rA.(R)) <=>

1rA(W R(s, ACCEPT(i(~;~")t, tPSRSWR,l(R))))

Proof: On the righthand side we sample with re­
placement from relation R first. Hence, each value
1Ji in the projection domain A would have an inclu­
sion probability of I(R.eli)I/IRI. Since we want uni­
form inclusion probabilities on the projected domain
values, we employ acceptance/rejection sampling to
correct the inclusion probabilities. The acceptance
probability for a tuple with value eli in the projection
domain A is given as:

I(R.a)lmin
Pi= I(R.eli)l (8)

Hence,for each iteration the inclusion probability for
each distinct eli is:

I(R.a)lmin
p= IRI (9)

We repeat this un.til we have s distinct records in
our sample. 0

Hence the expected cost is:

E(D) ll::f
8

i(R.a)iavg
I(R.a)lmin

(10)

assuming s < 11rA(R)I, where I(R.a)lavg IRI/m
is the average cardinality of attribute A over all at­
tribute values eli present in the relation. Here we
have assumed that relation R is hashed on the pro­
jection domain so that records may be retrieved in
a single access.

...
"'

• I I

In order for the above algorithm to work we must
be able to readily determine the cardinality (num­
ber of duplicates) of each projected tuple. This re­
quires that the relation to be projected must be ei­
ther sorted, indexed or hashed on the projection do­
main. Also we must either know I(R.a) lmin or re­
place it with a lower bound of 1, at the expense of
reduced efficiency.

The case in which the relation to be projected is
not "indexed" is discussed in the full paper, [OR86].

5.4 Intersection

We denote the intersection of two distinct rela­
tions R and T as R n T.

While it is possible to distribute sampling over in­
tersection and still preserve uniform inclusion prob­
abilities, the resulting computation is so inefficient
that it is rarely worthwhile.

Theorem 4

,P.(R n T) # WOR(s, ,P1(R) n T)
WOR(s,Rn,Pt(T))

(11}

{1S}

Proof: Consider the first case. From the lefthand
side we have the inclusion proability for tuples in
RnT is s/IRnTI, zero otherwise. For the righthand
side we have the inclusion probability for all tuples
in the intersection of R and T is sfiR n Tl, zero
otherwise. In each case we have a simple random
sample. 0

We thus have our choice of which relation to sam­
ple from and which relation to do the intersection
with. Typically, if only relation R has an index,
then we would sample from T and then intersect
with R using its index, since the alternative would
require scanning all of T in order to perform the
intersection.

If both R and T have indices we must consider the
relative costs of the two options based on the size
of the relations, the type of index {hash, B+ -tree,
primary or secondary), and the blocking factors for
each relation.

If neither R nor T have indices, then we would
sample from the larger relation, so that the intersec­
tion scan can be performed on the smaller relation.

Definition 6 Define the intersection selectivities
PR, PT as:

Pn = IR n TI/IRI, PT = IR n TI/ITI (13)

Then the cost in disk accesses of sampling from
Rand then checking for inclusion in T, assuming T

7

has a B+ -tree index is:

E(Dn) 1=:$ ~(1 + log
171

(!:ITI)) {14)
PR TI

where IT I is the the average fan-out of the B+- tree
index to relation T. Again we assume that s <
IR n Tl, i.e., we neglect the extra cost of sampling
without replacement.

An analogous formula for E(DT) can be written if
we sample from relation T and check the intersection
in relation R. The choice of which file to sample
from can be made by comparing· the valqes of the
two cost formulas.

5.5 Difference

We denote the difference of two relations R and
T as R-T.

Theorem 5

For all k: t/l~c(R- T) f!, t/l~c(R)- t/l~c(T)

Proof: Interchanging sampling a.il.d difference fails
because elements in RnT but not in t/l~c(T) may be
erroneously included in t/l~c(R) - t/l~c(T). 0

Theorem 6

,P.(R- T) # WOR(s,,P 1(R)- T)

i.e.1 sampling from the difference of two relations
is equivalent to sampling from the first relation and
then taking the difference.

Proof: Clearly the sampling scheme on the right­
hand size will produce a sample without replacement
of the desired size. It remains to be shown that the
sample is from R-T and that each element in R- T
has an equal inclusion probability. Since ,Pl(R) E R
it follows that f/11(R) - T E (R- T). Since t/11(R)
has uniform inclusion probabilities over all elements
of R and set differencing with T does not alter the
inclusion probabilities of records in R - T, it fol­
lows that the righthand side sampling scheme has
uniform inclusion probabilities for records in R- T.
0

Thus sampling from relation differences is very
similar to sampling from relation intersections. We
sample from R and then check that the tuple is not
in T. Hence ·the expected cost assuming T has a
B+ -tree index is approximately:

s ITI
E(D) 1=:$ (

1
) (1 + log/71 (-

1
))

-pR TI
(15)

Again we assume that s < IR- Tl, i.e., we neglect
the extra cost of sampling without replacement.

),,..;.,

5.6 Union

We denote the union of two distinct relations R
and T as RuT.

Theorem '1

For any 81, 82 : t/1, (RuT) .P, t/ls 1 (R) u t/ls, (T)
(16)

Proof: Interchanging sampling and union fails be­
cause all elements on lefthand side have identical in­
clusion probabilities of s/IRUTI, whereas the right­
hand side inclusion probabilities for elements in the
. . 81 82 8182
mtersectlon R n T are IRI + ITI - IRIITI whereas

the inclusion probability for elements in R - T is
81/IRI and the inclusion probability for elements
in T - R is 82/ITI. Hence elements in R n T do
not have same inclusion probability as elements in
(RuT)- (RnT). 0

The correct treatment of sampling from unions
requires that we sample elements of intersection only
once. Observe that:

R u T = R u (T - R) (17)

Theorem 8

t/I(R u T) <=>

IRI
WOR(s, MIX(IRI + ITI, tPt(R), (t/lt{T)- R))

Recall that MIX(a, < e:z:pr1 >, < e:z:pr2 >) indi­
cates that we sample according to < e:z:pr1 > with
probability a, and with probability 1 - a we sample
according to < e:z:pr2 >.

Proof: Omitted. 0
Then to generate the a single sample of R U T

we repeat t.he following algorithm until a sample is
accepted:

begin
i := RAND(1, IRI + ITI);
Ifi:::; IRI

then get record i from R.
else

endif
end

begin

end

i := i -IRI;
Get record j from T.
Check if record j is in R.
H so, discard record j,
otherwise retain it.

8

Assuming B+ -tree indices, and s « IR U Tl, we
have the expected number of iterations of the above
algorithm to obtain a single sample is:

E(l) = (IRI + ITI)
R (IRuTI)

(18)

For each iteration, we sample T (at a cost of one
disk access), and the check the B+ -tree index to
R. Thus each iteration has a cost of:

5.7 Join

Given two relations R and T, let the relation W
be the result of their equijoin, i.e., W = R 1><1 T.

R.:z=T.:z
In this section we describe algorithms for sampling
from W. For reasons of efficiency we wish to avoid
computing the full join. For simplicity of exposition
we discuss only sampling with replacement in this
section. As shown earlier, conversion to sampling
without replacement is straightforward.

Sampling from W can be done in different ways
depending on the initial structure of the relations R
and 8. Some important factors in determining the
sampling method are:

1. Is the join attribute a key in one or more of the
joined relations?

2. Are the relations R or T indexed or hashed on
the join attribute ?

3. Is the join selectivity factor large?

In this section we will cover some of the basic meth­
ods and evaluate them with respect to their effi­
ciency. First a few notations and definitions.

We denote the semi-join of relation R with rela­
tion S over domains A of R and domain B of S as
R I>< 8. Let X be an attribute defined on the do-

A=B
main :z:11 :z:2, ... , Xm. The set R.:z:, includes all the
tuples in R with value Xi on the attribute X. The
join selectivity factor p(R 1><1 T) of relations R

R.:z=T.:z
and T over the attribute X is defined as

where m is the number of distinct values of the join
domain. When the context is clear we will simply
denote this by p.

(j

,.

5.7'.1 Join without keys

First, we will deal with the case that the join at­
tribute X is not a key in any of the relations R or
T. We assume that relation T is "indexed" on the
join attribute X, and that the modal frequency of
the attribute X in relation T, as defined below, is
also known.

Definition 1 The modal frequency of the attribute
X in relation T, denoted as IT.zlma:u is the max­
imum cardinality in relation T of any :join domain
tJalue x,, i.e.,

(21)

Theorem 9 The following acceptance/refection al­
gorithm will generate a simple random sample of size
s.

tPSRSWR,.(R t><l T) <:>
R.z=T.z

W R(s, ACCEPT(~~~·~:~"', ,Pt(,P1(R) R.~T.z T)))

where IT.z, I denotes the cardinality in relation T
of :join domain tJalue Xi resulting from the sample
tP1 (R).

Proof: Clearly the righthand side sampling
scheme will produce a sample of the requisite size
from R 1><1 T. What we must show is that it

R.z=T.z
will have uniform inclusion probabilities.

Each iteration of the above algorithm begins by
sampling a tuple from R. Each tuple in R has
inclusion probability IRI-1. The sampled tuple,
,Pt(R), is then joined with T and a random sam­
ple of the result taken, denoted ,P1 (,P 1 (R 1><1 T)).

R.z=T.z
Clearly each member of (,P1(R) t><l T) has the

R.z=T.z
inclusion probability (IT.z,)l)- 1 as defined above.
This single sample is then accepted with probability
1J:Z:y::~. . Hence inclusion probability of any member
of R 1><1 T is given for a single iteration by the

R.z=T.z
product:

p = (22)

= (23)

i.e., we have uniform inclusion probabilities for each
iteration. By induction, this is true for the full al­
gorithm. 0

In practice we use the equivalent following algo­
rithm:
Algorithm- RAJOINR

9

comment This version of the algorithm
samples R first;
For :j := 1 to s do
set accept to false
While accept= false

begin

end
End while
Endfor

Choose a random record r from R.
Assume r[X] = x,.
Find the cardinality of T.x,.
Accept r into the sample
with probability

IT.zl•
p=

IT.xlmaz
In case record r is accepted,
choose randomly a tuple t
of T.z, and join r with it
Store the result r 1><1 t

R.z=T.z
in the sample file.
set accept to true.

Note that we do not actually construct the full
,P1 (R) 1><1 T, since we only need a sample of size

R.z=T.z
1 from it.

The efficiency of this method is established in the
following lemma.

Lemma 1 The expected number of times that the
while loop in RAJOINR will be performed until a
sample is accepted, E(lR), is:

E(l) = IT.xlmaz
R PITI

(24)

Proof: The proof is given in the full paper,
[OR86]. o

Hence the total efficiency (disk accesses) of the
algorithm is:

s:::~ sE(lR)(1 + log12', (/ITI))
TI

+s (25)

1'::1 siT.zlm= (1 + log (ITI))
PIT! 12', !Tr

+s (26)

where fTr is the average fan-out for the B+ -tree
index for T. Here the log factor is the time to search
the B+ -tree index of T for each sample. The last s
term in each equation represents the cost of finally
retrieving the sampled records from T.

If there is an index on R then an analogous algo­
rithm RAJ 0 I NT can be constructed by simply ex­
changing the roles of Rand Tin the above algorithm

and cost analysis. If both R and T are indexed, ei­
ther algorithm could be used. If the join selectivity,
p, is very small, neither algorithm is recommended.
Instead, it may be preferable to compute the full
join and then sample sequentially the output of the
join using [Vit85J as it is generated.

5.'1.2 Join with key

Suppose that the join domain X is a key of re­
lation T and that relation T is indexed on X. In
this case, the acceptance/rejection sampling is un­
ecessary, if we first sample from relation R. See the
full paper [OR86j for details and proof.

6 Conclusions

In this paper we have begun to explore how to in­
tegrate random sampling into relational data man­
agement systems.

The contributions of this paper include: sampling
techniques for relational operators, asymptotic ap­
proximate estimates of the cost (in disk accesses) of
the various sampling algorithms, a concise notation
for describing sampling algorithms.

Acceptance/rejection sampling comprises the ba­
sic technique by which we compensate for the effects
of relational operators on inclusion probabilities.
Assun.ing that suitable indices or access methods
are available, integrating sampling into the query
evaluation offers potentially major savings in query
processing time.

Acknowledgements

Th_e authors would like to thank Arie Shoshani,
and Harry Wong for their encouragement and com­
ments. Sakti Ghosh, Setrag Khoshafian, Ronnie
Hibshoosh and Dan Willard also provided encour­
agement. Eugene Wong provided useful comments
on an early oral version of the paper. Neal Rowe's
pessimistic assessment of the feasibility of database
sampling was a spur to the writing of this paper.
Jack Morgenstein first introduced us to the idea.

References

[Chr84j Stavros Christodoulakis. Implications
of certain assumptions database perfor­
mance evaluation. ACM Transactions
on Database Systems, 9(2):163-186, June
1984.

10

[Coc77j William G. Cochran. Sampling Tech­
niques. Wiley, 1977.

[Dev86] Luc Devroye. Non-uniform Random Vari­
ate Generation. Springer-Verlag, 1986.

[EN82j Jarmo Ernvall and Olli Nevalainen. An
algorithm for-unbiased random sampling.
The Computer Journal, 25(1), 1982.

[FMR62j C.T. Fan, M.E. Muller, and I. Rezucha.
Develoment of sampling plans by using
sequential (item by item) selection tech­
niques and digital computers. Journal
of the American Statistical Association,
57:387-402, June 1962.

[Mor80J Jacob Morgenstein. Computer Based
Management Information Systems Em­
bodying An.swer Accuracy as a User Pa­
rameter. PhD thesis, Univ. of California,
Berkeley, December 1980.

[OR86J Frank Olken and Doron Rotem. Sim­
ple Random Sampling from Relational
Databases. Technical Report LBL-20707,
Lawrence Berkeley Lab, February 1986.

[Vit84] Jeffrey Scott Vitter. Faster methods of
random sampling. Communications of the
ACM, 27(7):703-718, July 1984.

[Vit85J Jeffrey Scott Vitter. Random sampling
with a reservoir. ACM 7ransactions
on Mathematical Software, 11(1):37-57,
March 1985.

[WE80J C.K. Wong and M.C. Easton. An efficient
method for weighted sampling without re­
placement. SIAM Journal on Computing,
9(1):111-113, February 1980.

[Wil84J Dan Willard. Sampling algorithms for
differential batch retrieval problems (ex­
tended abstract). In Proceedings ICALP-
84, Springer-Verlag, 1984.

[Yao77] S. Bing Yao. Approximating the num­
ber of accesses in database organizations.
Communications of the ACM, 20(4):260-
261, April 1977.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not nece'ssarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Departme11t of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

,.
·,'.t'

'-.~

." ,., ,..,.

0

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~..,..__, ~

...,

L

