
UC Davis
UC Davis Previously Published Works

Title
ByzID: Byzantine Fault Tolerance from Intrusion Detection

Permalink
https://escholarship.org/uc/item/96x6b72h

Authors
Duan, Sisi
Levitt, Karl
Meling, Hein
et al.

Publication Date
2014-10-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96x6b72h
https://escholarship.org/uc/item/96x6b72h#author
https://escholarship.org
http://www.cdlib.org/

ByzID: Byzantine Fault Tolerance from Intrusion Detection

Sisi Duan
UC Davis

sduan@ucdavis.edu

Karl Levitt
UC Davis

levitt@ucdavis.edu

Hein Meling
University of Stavanger, Norway

hein.meling@uis.no

Sean Peisert
UC Davis and LBNL
speisert@ucdavis.edu

Haibin Zhang
UC Davis

hbzhang@ucdavis.edu

Abstract—Building robust network services that can with-
stand a wide range of failure types is a fundamental problem
in distributed systems. The most general approach, called
Byzantine fault tolerance, can mask arbitrary failures. Yet it
is often considered too costly to deploy in practice, and many
solutions are not resilient to performance attacks. To address
this concern we leverage two key technologies already widely
deployed in cloud computing infrastructures: replicated state
machines and intrusion detection systems.

First, we have designed a general framework for construct-
ing Byzantine failure detectors based on an intrusion detection
system. Based on such a failure detector, we have designed
and built a practical Byzantine fault-tolerant protocol, which
has costs comparable to crash-resilient protocols like Paxos.
More importantly, our protocol is particularly robust against
several key attacks such as flooding attacks, timing attacks,
and fairness attacks, that are typically not handled well by
Byzantine fault masking procedures.

I. INTRODUCTION

The availability and integrity of critical network services are
often protected using two key technologies: a replicated state
machine (RSM) and an intrusion detection system (IDS).

An RSM is used to increase the availability of a service
through consistent replication of state and masking different
types of failures. RSMs can be made to mask arbitrary
failures, including compromises such as those introduced
by malware. Such RSMs are referred to as Byzantine fault-
tolerant (BFT). Despite significant progress in making BFT
practical [6, 21], it has not been widely adopted, mainly
because of the complexity of the techniques involved and
high overheads. In addition, BFT is not a panacea, since
there are a variety of attacks, such as various performance
attacks that BFT does not handle well [2, 9]. Also, if too
many servers are compromised then masking is not possible.

An IDS is a tool for (near) real-time monitoring of host
and network devices to detect events that could indicate an
ongoing attack. There are three types of intrusion detection:
(a) Anomaly-based intrusion detection [15] looks for a sta-
tistical deviation from a known “safe” set of data. Most spam
filters use anomaly detection. (b) Misuse-based intrusion
detection [33] looks for a pre-defined set of signatures of
known “bad” things. Most host and network-based intrusion
detection systems and virus scanners are misuse detectors.
(c) Specification-based intrusion detection systems [26] are
the opposite of misuse detectors. They look for a pre-defined

set of signatures of known “good” things.
In practice, BFT and IDSs are almost always used inde-

pendently of each other. Additionally, the most commonly
used fault-tolerance techniques typically only handle crash
failures. For instance, Google uses Paxos-based RSMs in
many core infrastructure services [5, 12]. As a result, only a
handful of additional techniques are typically used to cope
with other failures than crashes. However, those techniques
are either ad hoc or are unable to handle attacks and arbitrary
failures (e.g., software bugs). For attacks that are hard to
mask (e.g., too many corrupted servers, simultaneous intru-
sions, and various performance attacks), IDSs are usually
used. However, IDSs themselves suffer from deficiencies
that limit their utility, including false positives that overly
burden a human administrator who has to process intrusion
alerts, and false negatives for when an ongoing attack is not
detected. Also, IDSs themselves are not resilient to crashes.

In this paper, we propose a unified approach that leverages
intrusion detection to improve RSM resilience, rather than
using each technique independently. We describe the design
and implementation of a BFT protocol—ByzID—in which
we use a lightweight specification-based IDS as a failure
detection component to build a Byzantine-resilient RSM.
ByzID distinguishes itself from previous BFT protocols in
two respects: (1) Its efficiency is comparable to its crash
failure counterpart. (2) It is robust against a wide range
of failures, providing consistent performance even under
various attacks such as flooding, timing, and fairness attacks.
We note that ByzID does not protect against all possible
attacks, only those that the IDS can help with. Underlying
ByzID are several new design ideas:

Byzantine-resilient RSM. ByzID is a primary-based RSM
protocol, adapted for combining with an IDS. In this pro-
tocol, a primary receives client requests and issues ordering
commands to the other replicas (backups). All replicas
process requests and they all reply to the client. In the event
of a replica failure, a new replica runs a reconfiguration pro-
tocol to replace the failed one. The primary reconfiguration
runs in-band, where other replicas wait until reconfiguration
completes. Reconfiguration for other replicas runs out-of-
band, where replicas continue to run the protocol without
waiting for the reconfiguration.

Monitoring instead of Ordering. Our protocol relies on a

trusted specification-based IDS [26], to detect and suppress
primary equivocation, enforce fairness, detect various other
replica failures, and trigger replica reconfiguration. Our IDS
is provided with a specification of our ByzID protocol,
allowing the IDS to monitor the behavior of the replica.
Note that, the way our protocol uses the IDS is so simple
that the IDS could be implemented as a trivially small, timed
state machine that can be embedded in a simple reference
monitor, and can thus easily be built in hardware. However,
for our proof of concept prototype we leverage the Bro IDS
framework [38]. While some existing BFT protocols use
trusted components [7, 24, 32, 40] to decide on the ordering
client requests, our trusted IDS approach simply monitors
and discards messages to enforce ordering.
Independent Trusted Components. In ByzID, each RSM
replica is associated with a separate IDS component. How-
ever, even if an IDS experiences a crash, its replica can
continue to process requests. Hence, both liveness and safety
can be retained as long as the replicas themselves remain
correct. For BFT protocols relying on trusted components,
replicas typically fail together with their trusted components.
Simple Rooted-Tree Structure. When deploying ByzID in a
local area network (LAN), we organize the replicas in a
simple rooted-tree structure, where the primary is the root
and the backups are its direct siblings (leafs). Furthermore,
backups are not connected with one another. With such
a structure and together with the aid of IDSs we can
avoid using cryptography to protect the links between the
primary and the backups. This is because the IDS can
enforce non-equivocation, identify the source and destination
of messages, and prevent message injection. Moreover, a
backup only needs to send or receive messages from the
primary, thus backups need not broadcast. Such a structure
also helps to prevent flooding attacks from faulty replicas.
Our contributions can be summarized as follows:
(1) We have designed and implemented a general and effi-
cient framework for constructing Byzantine failure detectors
from a specification-based IDS.
(2) Relying on such failure detectors, our ByzID protocol
uses only 2f+1 replicas to mask f failures. ByzID uses only
three message delays from a client’s request to receiving a
reply, just one more than non-replicated client/server.
(3) We have conducted a performance evaluation of ByzID
for both local and wide area network environments. For
LANs, ByzID has comparable performance to Paxos [29]
in terms of throughput, latency, and scalability. We also
compare ByzID’s performance with existing BFT protocols.
(4) We prove the correctness of ByzID under Byzantine
failures, and discuss how ByzID withstands a variety of
attacks. We also provide a performance analysis for a
number of BFT protocols experiencing a failure.
(5) Finally, we use ByzID to implement an NFS service,
and show that its performance overhead, with and without

failure, is low, both compared to non-replicated NFS and
other BFT implementations.

II. SYSTEM MODEL

We consider an asynchronous distributed system where
faulty replicas can behave arbitrarily. The system can only
be compromised if an adversary can gain control over
enough “faulty” replicas. Let n denote the total number
of replicas in the system, while f denotes the maximum
number of faulty replicas that the system can tolerate. Let
Π = {p0, p1, · · · , pn−1} be the set of replicas. The replicas
can be in one or more administrative domains, perhaps
geographically separated.

Replicas may be connected in a complete graph or an
incomplete graph network. We assume fair-loss links, where
if a message is sent infinitely often by a correct sender to
a correct recipient, it is received infinitely often. Further-
more, links do not produce spurious messages and do not
repeatedly perform more transmissions than the sender. Note
that one can use fair-loss links to build reliable links, but
only when both the sender and receiver are correct. However,
our protocol needs to build reliable links from fair-loss links
even when the sender is potentially (Byzantine) faulty. We
therefore assume the fair-loss link abstraction. We further
assume that adversaries are unable to inject messages on
the links between the replicas. This is reasonable when all
replicas are monitored by IDSs and they reside in the same
administrative domain. We assume that IDSs are trusted
components, that is, they cannot be compromised, but they
may experience benign failures, such as crashes.

The safety of our system holds in any asynchronous
environment, where messages may be delayed, dropped,
altered, or delivered out of order. Liveness is ensured under
partial synchrony [18]. That is, synchrony holds only after
some unknown global stabilization time, but the bounds on
communication and processing delays may be unknown.

Let 〈X〉i,j denote an authentication certificate for X , sent
from i to j. Such certificates can be implemented using
MACs or signatures. We use MACs for authentication unless
otherwise stated. Let [Z] denote an unauthenticated message
for Z, where no MACs or signatures are appended.

III. BYZANTINE FAILURE DETECTOR FROM
SPECIFICATION-BASED INTRUSION DETECTION

Specification-based intrusion detection is a technique used
to describe the desirable behavior of a system. Therefore,
by definition, any sequence of operations outside of the
specifications is considered to be a violation.

In order to detect such violations, we use an IDS to moni-
tor the behavior of the ByzID replication protocol, executed
by a replica. This is illustrated in Fig. 1(a), where each
replica has an associated IDS component, which monitors
the replica’s incoming and outgoing messages. Thus, the
IDS cannot modify any messages, only detect misbehavior.

Instead, the IDS only captures the network packets of the
protocol and analyze them according to the specification.
Thus, the IDS acts as a distributed oracle and triggers
alerts if the replica does not follow the specifications of
the prescribed ByzID protocol. In case of an alert, the
detected replica should be recovered, or removed through
a reconfiguration procedure. Meanwhile, the messages sent
by the faulty replica should be blocked. This is accomplished
by the IDS inserting a packet filter into the local firewall.

The trusted IDS and the ByzID protocol can be separated
in various ways [7], e.g., as shown in Fig. 1(a) or by using
separate virtual machines. The IDS can also be implemented
in trusted hardware or directly on top of a security micro-
kernel [31]. In our prototype however, the IDS and ByzID
replica simply execute as separate processes under the same
OS, as shown in Fig. 1(b).

Firewall

IDS ByzID
Replica

Internet

(a) The IDS interface at a replica.

ByzID IDS

OS

HW

(b) IDS implementation.

Figure 1. The IDS/ByzID architecture. (Components shown on gray
background are considered to be trusted.)

A. Byzantine Failure Detector Specifications

The primary orders client requests by maintaining a queue,
as shown in Fig. 2. To ensure that the primary orders
messages correctly, we define a set of IDS specifications
for Byzantine failure detectors. Such detectors can be used
together with most existing primary-based BFT protocols.
Below we summarize the specifications for our Byzantine
failure detector.

Consistency. The primary sends consistent messages to
the other replicas.
No Gap. The primary sends totally ordered requests to
the replicas.
Fairness. The primary orders requests in FIFO order.
Timely Action. The primary orders client requests in a
timely manner.

(1) The consistency rule prevents the primary from sending
“inconsistent” order messages to the other replicas without
being detected. The order message is the message sent by the
primary to initialize a round of agreement protocol, such as
the pre-prepare message in PBFT [6]. More specifically, the
primary must send the same order message to the remaining
n−1 replicas. To this end, the IDS can monitor the number
of matching messages with the same sequence number. In
case of inconsistencies, an alert is raised and the inconsistent
messages are blocked.
(2) The no gap rule prevents the primary from introducing
gaps in the message ordering. The sequence number in the

order messages sent by the primary must be incremented by
exactly one. Namely, the primary sends an order message
with sequence number N only after it has sent an order
message for N − 1. In the event that the primary sends out
an “out-of-order” message, an alert is raised by the IDS.
(3) We argue that the conventional fairness definition is
insufficient for many fairness-critical applications, such as
registration systems for popular events, e.g. concerts or
developer conferences with limited capacity. Thus, we define
perfect fairness such that the RSMs must execute the client
requests in FIFO order. As shown in Fig. 2, the IDS mon-
itors client requests received by the primary and the order
messages sent by the primary. With this, the IDS can verify
that the primary follows the correct client ordering observed
by the IDS. This is typically hard to achieve for common
BFT protocols.

+

merge by
 timeclient requests

primary queue

client 0

client 1

client 2

m7
 m3

 m0

 m5
 m1

 m6
 m4

 m2

 m7
 m3

 m0
 m1

 m2
 m4

 m5
 m6

Figure 2. Queue of client requests.

(4) The timely action rule detects crash-stop and a “slow”
primary. The IDS simply starts a timer for the first request in
the queue. If the primary sends a valid order message before
the timer expires, the IDS cancels the timer. Otherwise, the
IDS raises an alert. The timer can be a fixed value or adjusted
adaptively, e.g. based on input from an anomaly-based IDS.

Traditionally, BFT protocols used arbitrarily-chosen time-
outs for detecting faulty actors with excessive latencies. But
those timeouts may not reflect reality. As such, anomaly
detection is another intrusion detection technique that can
help address this issue. Since anomaly detection is typically
based on a statistical deviation from normal behavior, we
use anomaly detection to baseline the latencies between
replicas at the beginning and then look for deviations from
the baseline outside a particular bound. The baseline is
updated over time to take benign changes in system and
network performance into account. This is typically done
by weighting recent baselines less than older baselines so
that an adversary cannot “game” the system as easily.

B. The IDS Algorithm

Our IDS specifications are detailed in Algorithm 1. The IDS
maintains the following values: a queue of client requests Q,
current [ORDER] message M , current sequence number N , a
boolean array C[n] used to ensure that an [ORDER] message
is sent to all replicas, and a timer ∆ for the timely action.

As depicted in Fig. 2, the primary stores the client re-
quests in a the order of receiving them. The IDS also
keeps the same queue of requests and monitors the [ORDER]

messages sent by the primary. As shown in Algorithm 1,
when the IDS observes a new [ORDER] message, it verifies
the correctness of no gap, consistency, and fairness. The no
gap rule is violated, if the sequence number in the [ORDER]
message is different from N + 1. Consistency is violated
if the primary does not send to the other n − 1 replicas.
Fairness is violated, if the request in the [ORDER] message
is not equal to the first request in the IDS’s queue.

Algorithm 1 The IDS Specifications
1: Initialization:
2: n {Number of replicas}
3: Π={p0, p1, · · · , pn−1} {Replica set; p0 is the primary}
4: Q {Queue of client requests}
5: M {Current [ORDER] msg being tracked}
6: N ← 0 {Current sequence number}
7: C ← ∅ {Array: C[i] = 1 if seen [ORDER] msgs to pi}
8: ∆ {Timer; initialized by anomaly-based IDS}
9: on event m = 〈REQUEST, o, T, c〉c,p0

do
10: if (|Q| = 0) then starttimer(∆) {For timely action}
11: Q.add(m) {Add client c’s msg to Q}
12: on event M ′ = [ORDER, N ′,m, v, c]p0,pi do
13: if N ′ = N + 1 ∧ |C| = 0 ∧m = Q.front() then
14: N ← N ′ {New current sequence number}
15: M ←M ′ {New current [ORDER] msg}
16: C[i]← 1 {Have seen [ORDER] msg to pi}
17: else if |C| > 0 ∧ C[i] = 0 ∧M = M ′ then
18: C[i]← 1 {Have seen [ORDER] msg to pi}
19: if |C| = n− 1 then {Seen enough [ORDER] msgs?}
20: C ← ∅ {Reset array}
21: Q.remove() {Remove msg from Q}
22: canceltimer(∆)
23: if (|Q| > 0) then starttimer(∆)
24: else alert {Violation of first three specifications}
25: on event timeout(∆) do alert

To monitor the timely action, the IDS starts a timer in two
cases: a) The queue is empty and the IDS observes a new
client request, as shown in Lines 10; b) The primary has
already sent an [ORDER] message to the other replicas and
the queue is not empty, as shown in Lines 23. Finally, an
alert is also raised if the primary does not send the [ORDER]
message to the other replicas before the timer expires.

IV. THE BYZID PROTOCOL

ByzID has three subprotocols: ordering, checkpointing, and
replica reconfiguration. The ordering protocol is used dur-
ing normal case operation to order client requests. The
checkpoint protocol bounds the growth of message logs
and reduces the cost of reconfiguration. The reconfiguration
protocol reconfigures the replica when its associated IDS
generates an alert.

Following hBFT [17], we distinguish between normal and
fault-free cases as follows: we define the normal case as

the primary being correct, while the other replicas might be
faulty. Note that, the normal case definition is less restrictive
than the fault-free case, where all replicas must be correct.

BFT protocols that rely on trusted components, e.g. [7, 24,
32], can use 2f + 1 replicas to tolerate f failures and use
one less round of communication than PBFT. While these
other protocols use trusted hardware directly to order clients
requests, we achieve the same goal using IDSs that conduct
monitoring and filtering. This feature makes it possible for
the system to achieve safety even if all IDSs are faulty. We
use the Byzantine failure detector for the primary to ensure
that the requests are delivered consistently, in a total order,
and in a timely and fair manner. With the aid of the IDS, it
is possible to reduce communication rounds further for the
normal case. Ideally, we seek a protocol comparable to the
fault-free protocol of Zyzzyva [27] (and minZyzzyva [40]).

To this end, we follow a primary-backup scheme [1, 4],
where in each configuration, one replica is designated as
the primary and the rest are backups. The correct primary
sends order messages to the backups, and all correct replicas
execute the requests and send replies to clients.

However, two technical problems remain. First, since
our protocol lacks the regular commit round, we need the
primary to reliably send messages through fair-loss links
between the potentially faulty primary and the backups.
Second, the Byzantine failure detector does not enforce
authentication between the primary and the backups.

To address the first problem, we require backups to send
[ACK] messages to the primary. And with the aid of the
IDSs, we also provide a mechanism to handle message
retransmissions. For the second problem, we distinguish
between the core ByzID protocol for LANs, and ByzID-
W for wide area networks (WANs). ByzID exploits the
non-equivocation property provided by the IDS, and its
ability to track the source and destination of messages. This
allows ByzID to operate without cryptography on the links
connecting the replicas.

To cope with the possibility of message injections in
WANs, the ByzID-W primary instead uses authenticated
order messages. These must be verified by both the backup
replicas and the IDS. See §IV-B for further details.

A. The ByzID Protocol

client

0

1

2

〈REPLY〉

[ACK][ORDER]

〈REQUEST〉

Figure 3. The ByzID protocol message flow.

The ordering protocol. Fig. 3 and Fig. 4 depict normal
case operation. Below we describe the steps involved in the
ordering protocol.

IDSIDS

IDS

Client

[ORDER]

REPLY
[ACK] 0 0

1 1 2 2 IDSIDS

IDS

Client

0 0

1 1 2 2

[ORDER,N,m1,v, c] [ORDER,N,m2,v,c]

Figure 4. ByzID equipped with IDSs. The primary assigns sequence
number to the request and sends [ORDER] message to the replicas. If the
messages to different replicas are not consistent, the messages are blocked
by the IDS equipped at the primary.

Step 1: Client sends a request to the primary. Client c sends
the primary p0 a request message 〈REQUEST, o, T, c〉c,p0

,
where o is the requested operation, and T is the timestamp.
Step 2: Primary assigns a sequence number and sends an
[ORDER] message to the backups. When the primary receives
a request from the client, it assigns a sequence number N
to the request and sends an [ORDER, N,m, v, c] message to
the backups, where m is the request from the client, v is the
configuration number, and c is the identity of the client.
IDS details (at primary): The IDS verifies the specifications
mentioned in §III. Each time the specifications are violated,
the IDS blocks the corresponding messages and generates
an alert such that the primary will be reconfigured.
Step 3: Replica receives an [ORDER] message, replies with
an [ACK] message to the primary, executes the request, and
sends a 〈REPLY〉 to the client. When replica pi receives
an [ORDER, N,m, v, c] message, it sends the primary an
[ACK, N,D(m), v, c] message with the same N , m, v, and c
as in the [ORDER] message. A backup pi accepts the [ORDER]
message if the request m is valid, its current configuration
is v, and N = N ′ + 1, where N ′ is the sequence number
of its last accepted request. If the replica pi accepts the
[ORDER] message, it executes operation o in m and sends
the client a message 〈REPLY, c, r, T 〉pi,c, where r is the
execution result of operation o and T is the timestamp of
request m. If pi receives an [ORDER] message with sequence
number N > N ′ + 1, it stores the message in its log and
waits for messages with sequence numbers between N and
N ′. It executes the request with N after it executes requests
with sequence numbers between N ′ and N .
IDS details (at backups): The IDS at a backup pi starts a
timer when it observes an [ORDER] message. If pi does not
send an [ACK] message in time, the IDS generates an alert.
Step 4: Primary receives [ACK] messages from all back-
ups and completes the request. Otherwise, it retrans-
mits the [ORDER] message. When the primary receives an
[ACK, N,D(m), v, c] message, it accepts the message if the
fields N , m, v, and c match those in the corresponding
[ORDER] message. If the primary collects [ACK] messages
from all the backups, it completes the request.

Our protocol is also compatible with common optimiza-

tions such as batching and pipelining. For pipelining, the
primary can simply order a new request before the previous
one is completed. However, to prevent the primary from
sending [ORDER] messages too rapidly, we limit the number
of outstanding [ORDER] messages to a threshold τ . The
primary sends an [ORDER] message with sequence number N
only if it completes requests with sequence numbers smaller
than N − τ .

The primary keeps track of the sequence number of the
last completed request, N1, and the sequence number of
its most recently sent [ORDER] message, N2. Obviously, we
have that N2 ≥ N1. When the primary sends an [ORDER]
message for sequence number N1, it starts a timer ∆1. If
the primary does not receive [ACK] messages from all the
backups before the timer expires, it retransmits the [ORDER]
message to the backups from which [ACK] messages are
missing. Otherwise, the primary cancels the timer and starts
a new timer for the next request, if any.

An example is illustrated in Fig. 5, where the primary
sends [ORDER] messages for requests with sequence numbers
from N1 to N2. At t1, the primary sends an [ORDER] message
for N1, and starts a timer ∆1. At t3, it has collected [ACK]
messages from all backups and cancels the timer. Since the
primary has already completed the request with sequence
number N1 + 1 at t2, it just starts a new timer for a request
with N1 + 2 at t3.

2 ACK,N +1�

ORDER,N ORDER,N +1 ORDER,N +2 ORDER,N

canceltimer(� , N)

2 ACK,N starttimer(� , N)

starttimer(� , N +2)

1

1

1

21 3

1

1

1

1

1

1 1 1 2[] [[[

[
[

]]]

]
]

Figure 5. An example for Step 4.

IDS details (at primary): An alert is raised if the primary:
(1) does not retransmit the [ORDER] message in time, or
(2) it “retransmits” an inconsistent [ORDER] message. To
accomplish these detections, the IDS starts a timer corre-
sponding to the primary’s ∆1 timer. If the primary receives
enough [ACK] messages before ∆1 expires, the IDS cancels
the timer. However, if the primary does not receive [ACK]
messages from all backups before ∆1 expires, the IDS starts
another timer, ∆2. If this timer expires, before the IDS
observes a retransmitted [ORDER] message, an alert is raised.
Meanwhile, the IDS keeps track of the sequence number of
the last [ORDER] message sent by the primary, N3. Each
time the primary sends an [ORDER] message with sequence
number smaller than N3, the IDS checks if this retransmitted
[ORDER] message matches an [ORDER] message in its log. If
there is no match, an alert is raised.
Step 5: Client collects f + 1 matching 〈REPLY〉 messages to
complete the request. The client completes a request when
it receives f + 1 matching reply messages.

Checkpointing. ByzID replicas store messages in their logs,
which are truncated by the checkpoint protocol. Each replica
maintains a stable checkpoint that captures both the protocol
state and application level state. In addition, a replica also
keeps some tentative checkpoints. A tentative checkpoint at
a replica is proven stable only if all its previous checkpoints
are stable and it collects certain message(s) in the checkpoint
protocol to prove that the current state is correct.

We now briefly describe the ByzID checkpoint protocol.
Every replica constructs a tentative checkpoint at regular
intervals, e.g., every 128 requests. A backup replica pi sends
a [CHECKPOINT, N, d, i] message to the primary, where N
is the sequence number of last request whose execution is
reflected in the checkpoint and d is the digest of the state.
The primary considers a checkpoint to be stable when it has
collected f matching [CHECKPOINT] messages from differ-
ent backups, and then sends a [STABLECHECKPOINT, N, d]
message to the backups. The primary and f backups prove
that the checkpoint is stable. When a backup receives a
[STABLECHECKPOINT], it considers the checkpoint stable. A
replica can truncate its log by discarding messages with
sequence numbers lower than N .

IDS details: The IDS audits the [CHECKPOINT] messages
from the backups. When it collects f+1 matching messages
from the backups, it starts a timer. If the primary does not
send the corresponding [STABLECHECKPOINT] message to all
the backups before the timer expires, an alert is raised. IDS
can also run a checkpoint protocol to prevent its own log
from growing without bound. However, it delays discarding
its stable checkpoints to help replica reconfiguration, as
detailed in the following.

Replica reconfiguration. Reconfiguration is a technique
for stopping the current RSM and restarting it with a
new set of replicas [30]. We now describe ByzID’s re-
configuration scheme. Recall that when any specifications
of a replica are violated, the IDS generates an alert and
triggers reconfiguration. If the IDS at the primary generates
an alert, all the replicas are notified and stop accepting
messages. The primary reconfiguration procedure operates
in-band where all backups wait until the procedure com-
pletes. The backup reconfiguration procedure operates out-
of-band. Namely, only the primary is notified with a backup
replica IDS alert; the remaining replicas continue to run
the protocol without having to wait for the procedure to
complete. Assume in a configuration v the set of replicas is
Π = {p0, p1, · · · , pn−1}. We assume that after a reconfigu-
ration, pi ∈ Π is replaced by pj 6∈ Π. If pi is the primary, the
configuration number becomes v + 1 after reconfiguration.
Clearly, replica pj is also equipped with an IDS component.

Primary reconfiguration. To initialize primary reconfigura-
tion, a new primary pj sends a [RECONREQUEST] message

to all replicas in Π.1 To respond, each replica pk sends pj a
signed 〈RECONFIGURE, v + 1, N, C,S〉pk

message, where N
is the sequence number of the last stable checkpoint, C is
the last stable checkpoint, and S is a set of valid [ORDER]
messages accepted by pk with sequence numbers greater
than N . When pj collects at least f + 1 matching authenti-
cated 〈RECONFIGURE〉 messages, it updates its state using the
state snapshot in C and sends a [NEWCONFIG, v+1,V,O] to
Π \ pi, where V is a set of f + 1 〈RECONFIGURE〉 messages
and O is a set of [ORDER] messages computed as follows:
first, the primary pj obtains the sequence number min of the
last stable checkpoint in C and the largest sequence number
max of the [ORDER] message that has been accepted by at
least one replica, which is obtained from S.

The primary then creates an [ORDER] message for each
sequence number N between min and max. There are two
cases: (1) If there is at least one request in the S field with
sequence number N , pj uses the [ORDER] message; (2) If
there is no such request in S , pj creates an [ORDER] message
with a NULL request. A backup accepts a [NEWCONFIG]
message if the set of 〈RECONFIGURE〉 messages in V are
valid and O is correct. The correctness of O can be verified
through a similar computation as the one used by the primary
to create O. It then enters configuration v + 1.
Backup reconfiguration. A new backup replica pj sends a
message [RECONREQUEST] to the primary. The primary then
responds a message [RECONFIGURE, v + 1, N, C,S] to pj ,
where N is the sequence number of the primary’s last stable
checkpoint, C is its last stable checkpoint, and S is a set of
valid [ORDER] messages sent by the primary with sequence
number greater than its last stable checkpoint. When pj
receives the [RECONFIGURE] message, it updates its state
by the state snapshot in C, and then processes the [ORDER]
messages in S.
IDS details: The IDS coupled with pj obtains its own state
from the IDS of replica pi.

During primary reconfiguration, the IDS at new primary
pj monitors all the 〈RECONFIGURE〉 messages from all the
replicas in Π and checks if they match its own IDS log. If
the checkpoint is not valid or the [ORDER] messages in S
are not the same as the messages sent by pi, the IDS blocks
the 〈RECONFIGURE〉 message. Clearly it is with the aid of
IDS that primary reconfiguration becomes simpler.

During backup reconfiguration, the IDS at the primary
checks if the primary sends the backup a [RECONFIGURE]
message with the matching C and S as in its IDS log. This
ensures that replicas receive consistent state.

Correctness. We now prove ByzID is both safe and live.
Theorem 1 (Safety). If no more than f replicas are faulty,
non-faulty replicas agree on a total order on client requests.

1Note that pj should also send the message to the current primary,
because it might still be correct.

Proof: We first show that ByzID is safe within a configura-
tion and then show that the ordering and replica reconfigura-
tion protocols together ensure safety across configurations.

Within a configuration. We prove that if a request m commits
at a correct replica pi and a request m′ commits at a correct
replica pj with the same sequence number N within a
configuration, it holds that m equals m′. We distinguish
three cases: (1) either pi or pj is the primary; (2) neither pi
nor pj is the primary, and neither has been reconfigured; (3)
neither pi nor pj is the primary, and at least one of the two
replicas has been reconfigured. We briefly prove the (most
involved) case (3). During a backup reconfiguration, its state
can be recovered by communicating with the primary with
the aid of the IDS. Thereafter, the new reconfigured replica
is indistinguishable from the correct replica without having
been reconfigured. If m with sequence number N commits
at a correct replica pi, it holds that pi receives an [ORDER]
message with m and N from the primary (either due to
the ordering or backup reconfiguration protocols), since we
assume there are no channel injections. Similarly, pj receives
an [ORDER] message with m′ and N from the primary.
Therefore, it must be that m = m′, since otherwise it
violates the consistency specification enforced by the IDS.
The total order thus follows from the fact that that the
requests commit at the replicas in sequence-number order.
Across configurations. We prove that if m with sequence
number N is executed by a correct replica pi in configuration
v and m′ with sequence number N is executed by a correct
replica pj in configuration v′, it holds that m equals m′.
We assume w.l.o.g. that v < v′. Recall that if a backup
is reconfigured, the state of the new replica is consistent
with other backups. Thus, we do not bother differentiating
reconfigured replicas from correct ones and focus on the
case where pi and pj are both backups.

The proof proceeds as follows. If m with sequence
number N is executed by pi in configuration v, the primary
must have sent consistent [ORDER] messages for m to all the
backups. Alternatively, if m′ with N is executed by pj in
configuration v′, the primary in v′ sends consistent [ORDER]
messages for m′ to all the backups. This implies that the
primary in v′ receives 〈RECONFIGURE〉 messages from at
least f + 1 replicas with m′ and N , at least one of which
is correct. Inductively, we can prove that there must exist
an intermediate configuration v1 where the corresponding
primary sent an [ORDER] message with m and N and an
[ORDER] message with m′ and N . Due to the consistency
specification enforced by the IDS, it holds that m equals m′.
The total order of client requests thus follows from the fact
that requests are executed in sequence-number order. �

Theorem 2 (Liveness). If no more than f replicas are faulty
and a non-faulty replica receives a request from a correct
client, the request will eventually be executed by all non-
faulty replicas. Therefore clients eventually receive replies

to their requests.
Proof: We begin by showing that if a correct replica accepts
an [ORDER] message with request m and N , all the correct
replicas eventually accept the same [ORDER] message.

There are two types of timers used for IDSs: (1) the
timers to monitor the timely actions for the replicas’ local
operations, and (2) the timer in the primary IDS to wait for
the [ACK] message. The first type of timers are initialized
and tuned by the anomaly-based IDS. For the [ACK] timer,
the IDS at the primary can double the timeouts when less
than f + 1 replicas send the [ACK] messages on time.
Alternatively, the primary retransmits the [ORDER] message
but starts a timer with the same value. If the retransmission
occurs too frequently, the timer can be doubled.

We now show that if a correct replica pi accepts an
[ORDER] message with request m and N , all the correct
replicas accept the same [ORDER] message. According to the
protocol and the consistency rule, if pi receives an [ORDER]
message with m and N , the primary sends the same [ORDER]
message to all backups. The primary completes the request
when it collects n− 1 matching [ACK] messages. If a faulty
backup does not send the [ACK] message, the IDS raises
an alert and the faulty replica is reconfigured. The [ORDER]
message may be dropped by the fair-loss channel, in which
case the primary will not receive the [ACK] message on
time. The primary retransmits the [ORDER] messages until
the backups receive it. If the primary does not do so, it
will be detected by the IDS and be reconfigured. Then the
new primary will send (and probably need to retransmit) the
[ORDER] messages until the backups receive it. Therefore, all
correct replicas will receive the [ORDER] message eventually.
The “no gap” specification is also vital to achieve liveness.
If the specification is not enforced, then according to our
protocol, backups will have to wait for the [ORDER] messages
with incremental sequence numbers to execute. Since there
are at least f+1 correct replicas, the client always receives a
majority of f matching replies from the replicas, as long as
the correct replicas reach an agreement. If it does not receive
enough replies on time, it simply retransmits the request and
doubles its own timer. �
B. The ByzID-W Protocol
When deploying ByzID in a WAN environment, several
adjustments to the core protocol are needed. First, there
must be a complete graph network between the replicas.
Second, since the IDS cannot be relied upon to prevent
message injection on the WAN links, we use authenticated
links between the replicas. That is, [ORDER] messages are
authenticated using deterministic signatures, allowing the
IDS to efficiently support retransmissions of previously
signed order messages.

V. BYZID IMPLEMENTATION WITH BRO

As a proof of concept, we have implemented our Byzan-
tine failure detector for ByzID using the Bro [38] IDS.

Bro detects intrusions by hooking into the kernel using
libpcap [36], parsing network traffic to extract semantics,
and then executing event analyzers. To support ByzID, we
have adapted Bro as shown in Fig. 6. First, we have built a
new ByzID parser to process messages and generate ByzID-
specific events. These events are then delivered to their
event handler, based on their type. The IDS specifications
for ByzID is implemented as scripts written in the Bro
language. The policy interpreter executes the scripts to
produce real-time notification of analysis results, including
alerts describing violation of BFT protocol specifications.

 ...policies ByzID
specifications

...parsers ByzID
parsers

Network

ByzID Analyzer

Event
Control

Policy Script
Interpreter

Event
Engine

Packet
Stream

Event
Stream

Real-time
notification

Policy
Script

Figure 6. ByzID analyzer based on Bro.

ByzID parser. The network packet parser decodes byte
streams into meaningful data fields. We use binpac [37],
a high-level language for describing protocol parsers to
automatically translate the packets into a C++ representation,
which can be used by both Bro and ByzID. We represent the
syntax of ByzID messages by binpac scripts. During parsing,
the parser first extracts the message tag, sequence number,
and configuration number. The messages unrelated to the
specifications are passed during parsing; other messages are
delivered to their corresponding event handler.
Event handler. Event handlers analyze network events
generated by the ByzID parser. The event handler provides
an interface between the ByzID parser and the policy script
interpreter. Each message type is associated with a separate
event handler, and only messages with the appropriate tags
are delivered to that handler. The events are then passed to
the policy script interpreter to validate that the events do not
violate the specifications.
ByzID specifications. The policy script contains the spec-
ifications of the ByzID protocol. Once event streams are
generated by the event handler, it performs the inter-packet
validation. The policy script interpreter maintains state from
the parsed network packets, from which the incoming pack-
ets are further correlated and analyzed. Messages that violate
the specifications are blocked and an alert is raised.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of ByzID
by comparing it with three well-known BFT protocols—
PBFT [6], Zyzzyva [27], Aliph [21], and an implementation

of the crash fault tolerant protocol—Paxos [29]. All of
the protocol implementations are based on Castro et al.’s
implementation of PBFT. The main conclusion that we can
draw from our evaluation is that ByzID’s performance is
slightly worse that Paxos due to the overheads of the IDS
and cryptographic operations. Considering the similarity in
message flow between ByzID and Paxos, this is unsurpris-
ing. However, ByzID’s performance is generally better than
the other BFT protocols in our comparison.

We do not compare ByzID with other BFT protocols that
depend on trusted hardware, such as A2M [7], TrInc [32],
and MinBFT [40], since we do not have access to the
relevant hardware platforms. However, based on published
performance data for these protocols, they generally do not
offer higher throughput and lower latency than Aliph [24,
40].2 We note that, the IDS component of ByzID could be
implemented efficiently in trusted hardware as well.

We evaluated throughput, latency, and scalability using
the x/y micro-benchmarks by Castro and Liskov [6]. In
these benchmarks, clients send x kB requests and receive
y kB replies. Clients issue requests in a closed-loop, i.e.,
a client issues a new request only after having received the
reply to its previous request. All protocols in our comparison
implement batching of concurrent requests to reduce cryp-
tographic and communication overheads. All experiments
were carried out on Deterlab, utilizing a cluster of up to 56
identical machines. Each machine is equipped with a 3 GHz
Xeon processor and 2 GB of RAM. They run Linux 2.6.12
and are connected through a 100 Mbps switched LAN.
Throughput. We first examined the throughput of both
ByzID and ByzID-W under contention and compared them
with PBFT, Zyzzyva, Aliph, and Paxos. Fig. 7 shows the
throughput for the 0/0 benchmark when f = 1 and
f = 3, as the number of clients varies. Our results show
that ByzID outperforms other BFT protocols in most cases
and is only marginally slower than Paxos. As observed in
Fig. 7(a), ByzID consistently outperforms Zyzzyva, which
achieves better performance than ByzID-W and PBFT. Since
ByzID-W uses signatures, it achieves lower throughput than
Zyzzyva. The reason ByzID-W has better performance than
PBFT is due to the reduction of communication rounds.
Aliph outperforms Zyzzyva and ByzID when the number
of clients is big enough, mainly because it exploits the
pipelined execution of client requests. But as shown in
Fig. 7(b), ByzID consistently outperforms other BFT proto-
cols when f = 3. For both f = 1 and f = 3, ByzID achieves
an average throughput degradation of 5% with respect to
Paxos. This overhead is mainly due to the cryptographic
operations and IDS analysis. Similar results are observed in
other benchmarks.
Latency. We have also compared the latency of the protocols
without contention where a single client issues requests in a

2A2M and TrInc must use signatures due to the impossibility result of [8].

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Number of clients

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

(a) Throughput with f = 1; n = 3 replicas.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Number of clients

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

(b) Throughput with f = 3; n = 7 replicas.

Figure 7. Throughput for the 0/0 benchmark as the number of clients
varies. This and subsequent graphs are best viewed in color.

close-loop. The results for the 0/0, 0/4, 4/0, and 4/4 bench-
marks with f = 1 are depicted in Fig. 8. We observe that
ByzID outperforms other protocols except Paxos. However,
the difference between ByzID and Paxos is less than 0.1 ms.
The reason ByzID generally has low latency is that it only
has three one-way message latencies in the fault-free case.

 0

 0.2

 0.4

 0.6

 0.8

 1

0/0
0/4

4/0
4/4

L
a
te

n
c
y
(m

s
)

Benchmark

PBFT
Zyzzyva

Aliph
ByzID

ByzID-W
Paxos

Figure 8. Latency for the 0/0, 0/4, 4/0, and 4/4 benchmarks.

Scalability. To understand the scalability properties of
ByzID, we increase f for all protocols and compare their
throughput. All experiments are carried out using the 0/0
benchmark. Table I compares the throughput of ByzID with
three other BFT protocols, and Table II shows the through-
put degradation for all four BFT protocols as f increases.
We observe in Table I that the throughput improvement for

Table I
THROUGHPUT IMPROVEMENT OF BYZID OVER OTHER BFT

PROTOCOLS. VALUES IN (RED) REPRESENT NEGATIVE IMPROVEMENT.

Clients Protocol f = 1 f = 2 f = 3 f = 4 f = 5

25 PBFT 42.37% 45.71% 46.80% 49.14% 51.37%

25 Zyzzyva 17.19% 19.49% 25.49% 26.07% 27.72%

25 Aliph 40.42% 47.84% 67.56% 73.46% 76.98%

peak PBFT 27.15% 32.57% 36.59% 41.82% 43.90%

peak Zyzzyva 3.92% 8.43% 9.68% 12.25% 11.08%

peak Aliph (3.48%) (1.24%) 4.57% 7.71% 8.92%

Table II
THROUGHPUT DEGRADATION WHEN f INCREASES.

Clients Protocol f = 2 f = 3 f = 4 f = 5

25 PBFT 3.82% 9.40% 10.20% 15.04%

25 Zyzzyva 3.45% 8.66% 12.50% 16.80%

25 Aliph 6.50% 18.30% 28.00% 35.60%

25 ByzID 1.56% 2.20% 5.93% 9.67%

peak PBFT 4.25% 7.54% 13.88% 17.85%

peak Zyzzyva 4.32% 5.89% 11.07% 13.02%

peak Aliph 4.84% 8.33% 13.93% 17.61%

peak ByzID 1.70% 2.80% 3.94% 7.02%

ByzID over the other BFT protocols consistently increases
as f grows. Table II shows that ByzID’s own throughput has
the lowest degradation rate among all four BFT protocols.
For instance, ByzID’s peak throughput is only reduced by
7.02% as f increases to 5 (i.e., when n=11). These results
clearly show that ByzID has much better scaling properties
than the other BFT protocols.

VII. FAILURES, ATTACKS, AND DEFENSES

The fact that a BFT protocol is live does not mean that the
protocol is efficient. It is therefore important to analyze the
performance and resilience of the protocol in face of replica
failures and malicious attacks. In this section, we discuss
how well ByzID withstands a variety of Byzantine failures,
and also demonstrate some key design principles underlying
our design. We distinguish the replica failures due to system
crashes, software bugs, and hardware failures from those
attacks induced by dedicated adversaries that aim to subvert
the system or deliberately reduce the system performance.
Note that such a distinction is neither strict nor accurate.
However, one can view the two types of evaluation as
different perspectives to analyze the performance of ByzID.

A. Performance During Failures

We study the performance of the different BFT protocols for
f = 1 under high concurrency, and in the presence of one
backup failure.3 To avoid clutter in the plot, PBFT, Zyzzyva,
and ByzID experience a failure at t = 1.5 s, while for Aliph
at t = 2.0 s. In case of failures, we require Aliph to switch

3The situation falls into our generalized definition of a normal case.

between Chain and a backup abstract (e.g., PBFT) since its
Quorum abstract does not work under contention. We set the
configuration parameter k as 2i, i.e., Aliph switches to Chain
after executing k = 2i requests using its backup abstract.4

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

T
h
ro

u
g

h
p
u
t

(K
o
p
s
/s

e
c
)

Time(s)

PBFT

Zyzzyva

ByzID

Aliph

PBFT
Aliph

Zyzzyva
ByzID

Figure 9. Throughput after failure at 1.5 s (2.0 s for Aliph).

As shown in Fig. 9, neither PBFT or ByzID experience
any throughput degradation after a failure injection. This
is mainly due to their broadcast nature. However, the per-
formance of Zyzzyva after a failure is reduced by about
40% because it switches to its slower backup protocol.
Though Aliph has a slightly higher throughput than ByzID
prior to the failure, its throughput reduces sharply upon
failure, dropping below that of the PBFT baseline. Aliph
periodically switches between Chain and PBFT after the
failure, which explains the throughput gaps in Aliph. Since
k increases exponentially for every protocol switch, it stays
in the backup protocol for an increasing period of time.

B. Performance under Active Attacks

Too-Many-Server Compromises. Like other BFT protocols
relying on trusted components, ByzID can mask at most
f failures using 2f + 1 replicas. With passage of time
however, the number of faulty replicas might exceed f . This
can happen if a dedicated attacker is able to compromise
replicas one by one, and only asks them to manifest faulty
behavior when a sufficient number of replicas have been
compromised. If these compromises can go undetected by
the IDSs, ByzID cannot defend against such an attack.
However, ByzID uses a proactive approach to prevent too
many servers from being corrupted simultaneously. For other
attacks, it is clear that our approach provides robustness.

Fairness Attacks. Fairness usually refers to the ability of
every component to take a step infinitely often. This is
inappropriate for time-critical applications such as in real-
time transactional databases. For instance, in a stock system,
a faulty primary might collude with a client to help the latter
gain unjust advantages. Our IDS aided ByzID can achieve
perfect fairness—ensuring that requests are executed in a

4Another option is to set k as a constant [21], but in our experience its
performance during failure is inferior to using k = 2i.

“first come, first served” manner. Aardvark [9] can achieve a
certain level of fairness, but does not achieve perfect fairness
and is not suitable for time-critical applications. In contrast,
ByzID achieves perfect fairness by leveraging IDSs, and has
a significant performance advantage over Aardvark.
Flooding Attacks. We describe a flooding attack as one in
which faulty replicas might continuously send “meaningful
but repeating” or “meaningless” messages to other replicas.
The goal of such attacks is to occupy the computational
resources that are supposed to execute the pre-determined
operations. This type of attacks is particularly harmful, as
verifying the correctness of the cryptographic operations
is relatively expensive. Such attacks can largely impact
the performance of all the traditional BFT protocols. We
take a number of countermeasures to defend against such
attacks. First, we do not adopt the traditional pairwise
channels between every replica pair. Instead, the primary
forms the root of a tree, with backup replicas as leafs
directly connected to the root. In particular, backups do
not communicate with each other to prevent backups from
flooding one another. Second, we use the IDSs to prevent
the primary from flooding messages other than the [ORDER]
messages to backups, and prevent the backups from flooding
messages other than [ACK] messages to the primary. Finally,
we also use IDSs at backups to determine if received
messages are from clients or the primary. A backup IDS
simply filters all the incoming messages from the clients.
Timing Attacks (“Slow” Replica Attacks). We define tim-
ing failures, as the situation when replicas produce correct
results but deliver them outside of a specified time window.
One or more compromised replicas might delay several
operations to degrade the performance of the system. For
example, the primary can deliberately delay the sending of
ordering messages in response to client requests. It is usually
hard to distinguish such faulty replicas from slow replicas.
It is also hard to distinguish if the failures are due to faulty
replicas or channel failures. We use IDSs to monitor such
kind of attacks. In particular, the timers can be setup by
the anomaly-based intrusion detection. IDSs only monitor
the node processing delays, not channel failures. Therefore,
the monitoring can be accurate. Once the timer exceeds the
prescribed value, an IDS will trigger an alert.

C. IDS Crashes

The IDSs themselves are not resilient to crashes. So what if
the IDSs crash? One distinguishing advantage of ByzID is
that it can still achieve safety (and liveness) even if all the
IDSs crash. Indeed, ByzID has the following two properties
that other BFT protocols relying on trusted components do
not have: (1) Even if all IDSs crash, as long as the primary
is correct, safety is never compromised. (2) Even if all IDSs
crash, as long as all the replicas are correct, both safety and
liveness are still achieved. Clearly, ByzID cannot provide
the same resilience against attacks without the IDSs.

VIII. NFS USE CASE

This section describes our evaluation of a BFT-NFS service
implemented using PBFT [6], Zyzzyva [27], and ByzID,
respectively. The BFT-NFS service exports a file system,
which can then be mounted on a client machine. The
replication library and the NFS daemon are called when
the replicas receive client requests. After replicas process
the client requests, replies are sent to the clients. The NFS
daemon is implemented using a fixed-size memory-mapped
file. We use the Bonnie++ benchmark [10] to compare

0 20 40 60 80 100 120 140 time(s)

NFS-std

ByzID

ByzID †
Zyzzyva

Zyzzyva †

PBFT

PBFT †

130.76
136.28
135.29

141.05
157.34

148.02
147.56

Write(char) Write(block) Read(char) Read(block) DirOps

Figure 10. NFS evaluation with the Bonnie++ benchmark. The † symbol
marks experiments with failure.

the three implementations with NFS-std, an unreplicated
NFS V3 implementation, using an I/O intensive workload.
We evaluate the Bonnie++ benchmark with sequential input
(including per-character and block file reading), sequential
output (including per-character and block file writing), and
the following directory operations (DirOps): (1) create files
in numeric order; (2) stat() files in the same order; (3) delete
them in the same order; (4) create files in an order that will
appear random to the file system; (5) stat() random files;
(6) delete the files in random order. We measure the average
latency when a single client runs the benchmark, as shown
in Fig. 10. The bar chart includes both the fault-free case
and the normal case where a backup failure occurs at time
zero. We observe that in both cases, ByzID implementation
outperforms both PBFT and Zyzzyva, and is only marginally
slower than NFS-std.

IX. RELATED WORK

Equivocation refers to the behavior of an adversarial com-
ponent that lies to other components in different ways. It
was shown that the problem (and any consensus problem)
cannot be solved if more than one third of its processes are
faulty. Fitzi and Maurer [20] showed that with the existence
of a “two-cast channel” (i.e., broadcast channel among three
players), Byzantine agreement is achievable if and only if
the number of faulty processes is less than a half. The result
was later extended [11] for general multicast channels.

Beginning with Correia et al. [13], a number of BFT
approaches relying on (small) trusted components to prevent
equivocation and circumvent the one-third bound have been
developed, including A2M [7], TrInc [32], MinBFT and

MinZyzzyva [40], and CheapBFT [24]. All of these require
only 2f + 1 replicas to tolerate f failures, and they have to
rely on signatures [8]. van Renesse, Ho, and Schiper [39]
also proposed Shuttle, that can tolerate f failures among
2f + 1 replicas. The protocol relies on a trusted and
Byzantine-fault resilient server to achieve liveness. ByzID
also falls into the category of using trusted components, but
we deploy an IDS that is not only more powerful but also
simpler. Our approach achieves better efficiency than the
prior BFT protocols (with or without trusted components)
both during failures and in the absence of failures.

Another approach in BFT research has been the study
of how to improve the resilience under active attacks, such
as Aardvark [9] and Prime [2]. The methods they use are
different from ours in that they do not rely on trusted
components. However, since they are both based on PBFT,
ByzID outperforms them in terms of performance, and also
better handles fairness and flooding attacks. BP Fast [35]
relies on 3f+1 non-Byzantine servers, but can protect itself
against denial of service attacks waged by clients. hBFT [17]
moves jobs to the clients while tolerating faulty clients.

Chandra and Toueg [14] introduced the notion of unre-
liable failure detectors, which could be used to solve con-
sensus in the presence of crash failures. In their design, the
failure detector outputs the identity of processes suspected to
have crashed. In contrast to crash failures, Byzantine failures
are not context-free, and thus it is impossible to define a
general failure detector in a Byzantine environment, inde-
pendently of the algorithm. Some previous work [3, 16, 25,
34] has extended the failure detector notion to cover a wider
range of failures, For example, the muteness failure detector
interacts with the algorithm of a remote process to detect
if the remote process has turned mute. Our IDS, together
with the primary, also serves as a Byzantine failure detector
specifically designed for our ByzID protocol. However, these
existing solutions focus on solving the consensus problem,
whereas we provide state machine replication.

PeerReview [22] builds a system that replicas review and
report the failure of other replicas. It ensures that faulty
behavior is detected and no correct node is observed to
be faulty through the use of secure logging and auditing
techniques. Reputation systems such as EigenTrust [23] can
also be used to detect a family of Byzantine faults but they
typically detect only repeated misbehavior.

X. CONCLUSION

We have shown a viable method to establish an efficient
and robust BFT protocol by leveraging specification-based
intrusion detection. Our protocol leverages the key assump-
tion of a trusted reference monitor, but the approach we use
is different from other BFT approaches relying on trusted
components in that we apply a simple IDS monitoring and
filtering technique. The reasons we use intrusion detection
techniques can be summarized as follows: (1) The IDS for

our BFT protocol is very simple in both code size and
applicability—no heavy operations or cryptographic opera-
tions involved, and therefore relatively easy to implement as
a reference monitor. (2) Although IDSs themselves are not
resilient to crashes, we can still achieve a form of safety even
if all IDSs fail. (3) Equipped with IDSs, our BFT protocol is
more robust against a number of important attacks. (4) Our
IDS-aided ByzID protocol is also more efficient than other
BFT protocols. Indeed, our experimental evaluation shows
that ByzID is only marginally slower than Paxos.

XI. ACKNOWLEDGEMENTS

This research is based on work supported in part by the
National Science Foundation under Grants Number CCF-
1018871, CNS-0904380, and CNS-1228828. Sisi Duan and
Haibin Zhang’s work was also supported in part by a
Leiv Eiriksson Mobility Grant from RCN. Hein Meling’s
contributions were supported by the Tidal News project
under grant no. 201406 from RCN. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect those
of any of the employers or sponsors of this work.

REFERENCES

[1] P. Alsberg, and J. Day. A principle for resilient sharing of
distributed resources. ICSE, 1976.

[2] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Prime: Byzan-
tine replication under attack. IEEE Trans. Dep. Sec. Comp.,
8(4):564–577, 2011.

[3] R. Baldoni, J. Helary, and M. Raynal. From crash fault-
tolerance to arbitrary-fault tolerance: towards a modular ap-
proach. DSN, 2000.

[4] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg.
The primary-backup approach. S. Mullender (ed.) Distributed
systems, 2nd ed, 1993.

[5] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. OSDI, 2006.

[6] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
OSDI, 1999.

[7] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: making adversaries stick to their word.
SOSP, 2007.

[8] A. Clement, F. Junqueira, A. Kate, R. Rodrigues. On the
(limited) power of non-equivocation. PODC, 2012.

[9] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. NSDI, 2009.

[10] R. Coker. www.coker.com.au/bonnie++.
[11] J. Considine, M. Fitzi, M. Franklin, L. Levin, U. Maurer, and

D. Metcalf. Byzantine agreement given partial broadcast. J.
Cryptology, 18:191–217, 2005.

[12] J. Corbett et al. Spanner: Google’s globally-distributed
database. OSDI, 2012.

[13] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate
half less one Byzantine nodes in practical distributed systems.
SRDS, 2004.

[14] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. JACM, 43(2):225–267, 1996.

[15] D. E. Denning. An intrusion-detection model. IEEE Trans.
Softw. Eng., 13(2):222–232, 1987.

[16] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper.
Muteness failure detectors: Specification and implementation.
EDCC, 1999.

[17] S. Duan, S. Peisert, and K. Levitt. hBFT: speculative Byzan-
tine fault tolerance with minimum cost. IEEE Trans. Dep. Sec.
Comp., 2014.

[18] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. JACM 35(2):288–323, 1988.

[19] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. JACM 32(2):374–
382, 1985.

[20] M. Fitzi and U. Maurer. From partial consistency to global
broadcast. STOC, 2000.

[21] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The
next 700 BFT protocols. EuroSys, 2010.

[22] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
practical accountability for distributed systems. SOSP, 2007.

[23] S. D. Kanvar, M. T. Schlosser, and H. Garcia-Molina. The
EigenTrust algorithm for reputation management in p2p net-
works. WWW, 2003.

[24] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
S. V. Mohammadi, W. Schröder-Preikschat, and K. Stengel.
CheapBFT: resource-efficient Byzantine fault tolerance. Eu-
roSys, 2012.

[25] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith.
Byzantine Fault Detectors for Solving Consensus. Comput.
J. 46(1):16–35, 2003.

[26] C. Ko, M. Ruschitzka, and K. N. Levitt. Execution moni-
toring of security-critical programs in distributed systems: a
specification-based approach. S&P, 1997.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative Byzantine fault tolerance. SOSP, 2007.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. CACM, 21(7):558–565, 1978.

[29] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[30] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. SIGACT News 41(1):63–73, 2010.

[31] T. E. Levin, C. E. Irvine, and T. D. Nguyen. Least Privilege
in Separation Kernels. SECRYPT, 2006.

[32] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda..
TrInc: Small trusted hardware for large distributed systems.
NSDI, 2009.

[33] T. F. Lunt and R. Jagannathan. A prototype real-time
intrusion-detection expert system. S&P, 1988.

[34] D. Malkhi and M. Reiter. Unreliable intrusion detection in
distributed computations. CSFW, 1997.

[35] H. Meling, K. Marzullo and A. Mei. When You Don’t Trust
Clients: Byzantine Proposer Fast Paxos. ICDCS, 2012.

[36] L. MartinGarcia. http://www.tcpdump.org
[37] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: a

yacc for writing application protocol parsers. IMC, 2006.
[38] V. Paxson. Bro: a system for detecting network intruders in

real-time. Computer Networks, 31(23-24):2435-2463, 1999.
[39] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain

replication. OPODIS, 2012.
[40] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and

P. Verı́ssimo. Efficient Byzantine fault tolerance. IEEE Trans.
Comput., 62(1):16–30, 2013.

