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ABSTRACT OF THE DISSERTATION

On the Fixed-Point Analysis and Architecture Design of FFT

Algorithms

by

Wei-Hsin Chang

Doctor of Philosophy in Electrical Engineering (Electrical Circuits and Systems)

University of California San Diego, 2007

Professor Truong Q. Nguyen, Chair

In this thesis, first we investigate the principle of finding the optimized coefficient

set of integer FFT (IntFFT). IntFFT has been regarded as an approximation of

original FFT computation since it utilizes lifting scheme (LS) and decomposes the

complex multiplication of twiddle factor into three lifting steps. Based on the ob-

servation of the quantization loss model of lifting operations, we can select an opti-

mized coefficient set and achieve better signal-to-quantization-noise ratio (SQNR)

and reduce size of coefficient table. Secondly, we analyze the fixed-point effect

of arithmetic quantization errors for different fast Fourier transform (FFT) algo-

rithms. A general analytic expression is derived to quantitatively compare the

overall quantization loss. An operational optimization procedure is also proposed

to find the optimal memory setting for short-length FFT architecture. Last, a par-

allel very-large-scale integration (VLSI) architecture based on mixed-radix IntFFT

for the upcoming multiband OFDM (MB-OFDM) system is proposed. The peri-

odicity property of lifting coefficients and the concurrent relationship of non-trivial

multiplications are both utilized to reduce the hardware cost of complex multipli-

ers.
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1

Introduction

This chapter gives a brief introduction of discrete Fourier transform (DFT), the

history of its developement, related applications, and the recent works on efficient

FFT algorithms.

1.1 Motivation

DFT-based signal processing plays a significant role in today’s digital signal

processing (DSP) applications. It has been applied in a wide range of fields

such as noise reduction, global motion estimation [1], asymmetrical digital sub-

scriber line (ADSL), digital audio broadcasting (DAB), digital video broadcast-

ing (DVB) [2–5], orthogonal frequency division multiplexing (OFDM) systems.

The rapidly increasing demand of OFDM-based applications for high-speed wire-

less data communication, including wireless LAN [6], and MB-OFDM [7–9], makes

processing speed an important major consideration in FFT architecture design.

Besides, since split-radix FFT and other higher-radix FFT algorithms are proved

to be computationally efficient than conventional Cooley-Tukey algorithm [10] and

are widely used for hardware implementation, as such the study of finite precision

effect of all FFT algorithms is of increasing significance.

1
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1.2 History of FFT

The main research issues of FFT algorithms include three aspects: the efficient

decomposition of DFT to reduce the multiplicative complexity by extracting as

many trivial complex multiplications as possible, the fixed-point effect of FFT

algorithms due to the arithmetic quantization errors, and the high-speed and/or

low-cost VLSI architecture of FFT algorithms.

The original computation of DFT with N -sample input requires N2 complex

multiplications. Cooley and Tukey [10] first introduced the concept of FFT to

demonstrate a significant computational reduction from O(N2) to O(N log N) by

making efficient use of symmetry and periodicity properties of the twiddle factors.

Since the pioneering work of Cooley-Tukey algorithm [10], several algorithms have

been developed to further reduce the computational complexity, including radix-

4 [11], radix-22 [12] and split-radix [13]. In common, these fast algorithms recur-

sively divide the FFT computation into odd- and even-half parts recursively and

then extract as many common twiddle factors as possible. Other works have also

been done for high-radix FFT algorithms such as radix-8 FFT algorithm [14–16].

Generally speaking, the number of required real additions and multiplications is the

general measurement used to compare the efficiency of different FFT algorithms.

The second issue concerns the finite length limitation of digital computers. In

practice, fixed-point arithmetic is used to implement FFT algorithms in hardware

because it is not possible to keep infinite resolution of coefficients and operations.

All coefficients and input signals have to be represented by finite number of bits

in binary format depending on the tradeoff between the hardware cost (memory

usage) and the accuracy of output signals. In general, each multiplication may

introduce an error due to rounding operation or truncation, which is regarded

to arithmetic quantization error. Besides, all the twiddle factors are represented

with limited number of bits and the loss due to the inexact coefficients is called

coefficient quantization error. The theoretical performance evaluation has been

given in previous works. Several existent works have analyzed the effect of fixed-

point arithmetic for radix-2 FFT [17–20]. James [21] derived the fixed-point mean

square error (MSE) analysis of quantization loss for mixed-radix FFT algorithms
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with conventional complex multipliers. Perlow and Denk [22] proposed an error

propagation model to estimate the performance for radix-2 FFT architecture. In-

stead of conventional implementation of complex multiplier, Chandra [23] studied

the same issue for radix-2 decimation-in-time (DIT) FFT in the logarithmetic

numbering system. Park and Cho [24] used a propagation model to address the

error analysis for coordinate rotation digital computer (CORDIC) implementa-

tions. Chang [25] also gave an experimental comparison of FFT computation with

different implementations of complex multiplier.

In the VLSI era, not only the multiplicative complexity but also the hard-

ware cost as well as the processing speed are important considerations. Numerous

researches have been done for FFT architectures in the past decades. As for the

implementation of FFT algorithms, most previous works address two design issues:

the efficiency of complex multipliers and the memory strategy. The design parame-

ters have to be adjusted according to different target applications. Designers focus

on increasing the utilization rate of multipliers in the design of short-length FFT

architecture. In [26], the authors proposed a coefficient reordering scheme with the

commutator architecture to reduce the switching activity. Yeh and Jen [27] pro-

posed a data rescheduling scheme by bit-reverse and bit-inverse indexing to reduce

the number of required multipliers. Han et al. [28] achieve the same purpose by

sharing the subexpressions between multiplicands to improve the utilization rate of

complex multipliers. Conversely the memory access strategy becomes more impor-

tant on designing a long-length FFT architecture. In [29] and [30], the authors in-

crease the memory access efficiency by inserting two caches between the functional

units and the main memory banks. Kuo et al. [31] also utilize the memory-cache

architecture and expand it with the ability of variable-length FFT computations.

The precision of output samples is another important issue for long-length FFT

designs since the size of internal memory increases exponentially with the length of

FFT. Choi et al. [32] proposed the coverage block floating point (CBFP) method

to dynamically normalize the intermediate results after each stages. In [33], the

authors also utilize the idea of CBFP with an on-the-fly normalization module so

as to remove the usage of temporary buffers.
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1.3 Recent Works on Efficient FFT Algorithms

Nowadays, different FFT algorithms and corresponding VLSI architecture de-

signs are proposed to meet the requirement of multimedia applications and wireless

applications. For the multiplicative complexity, a modified split-radix FFT is re-

ported to have the fewest number of floating point operation (FLOP) counts [34].

The modified split-radix approach involves a recursive rescaling of the trigonomet-

ric constants in sub-transforms of the DFT decomposition, while the final FFT

result is still the correct, relying on four mutually recursive stages.

The parallelism of FFT algorithms is also exploited in [35–38] to achieve higher

throughput and lower computation latency. In [37], the author utilized the two-

dimensional mapping of a 1-D DFT to compute long-length FFT in parallel. The

complex multiplier between the two pipeline stages is eliminated to save hardware

cost. A simplified address generation scheme of twiddle factors is also proposed to

reduce the size of the table of twiddle factors. In [38], the authors take advantage

of parallelism by using single instruction, multiple data (SIMD) instruction set.
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Previous Work on FFT

Algorithms

In this chapter, the definition of DFT is described. The applications of DFT

in digital signal processing are also introduced. Several FFT algorithms including

radix-2, radix-4 and split-radix algorithms are reviewed and compared in terms of

their computational efficiency. The previous work of different implementation of

complex multipliers including numerical decomposition, CORDIC operation and

lifting scheme decomposition are also illustrated.

2.1 Definition of DFT

The computation of the DFT involves the multiplication of a twiddle factor

matrix by a complex-valued input vector. Given an input sequence x(n), the N -

point DFT is defined as

X(k) =
N−1∑
n=0

x(n) ·W nk
N , k = 0, 1, ..., N − 1, (2.1)

where n is the time index, k is the frequency index, and the twiddle factor W nk
N is

defined as

W nk
N = exp(

−2jπnk

N
) = cos(

2πnk

N
)− j · sin(

2πnk

N
). (2.2)

5
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Similarly, inverse discrete Fourier transform (IDFT) can be expressed as:

x(n) =
1

N
·

N−1∑
n=0

X(n) ·W−nk
N , k = 0, 1, ..., N − 1. (2.3)

From (2.1) and (2.3), we can observe that N complex multiplications and N − 1

complex additions are performed for one output sample. Therefore, N2 complex

multiplications and N2−N complex additions are necessary to complete the whole

DFT/IDFT computation with N -sample input vectors. The complexity of direct

computation of DFT and IDFT is inefficient since it will increase exponentially

according to N .

2.2 FFT Algorithms

In order to reduce the computational complexity of DFT, we can apply the

periodicity and symmetrical properties of twiddle factors shown in (2.4) and (2.5)

respectively to eliminate the redundant complex multiplications.

W k+N
N = W k

N (2.4)

W
k+N

2
N = −W k

N (2.5)

2.2.1 Radix-2 FFT Algorithm

Divide-and-conquer paradigm refers to partitioning a larger problem set into

several smaller ones and solve each smaller set recursively. The main procedure of

divide-and-conquer paradigm include:

• Step 1: Partition the original problem set into two or more smaller subsets.

• Step 2: Solve the problem subsets by applying the same procedure recur-

sively. A preset terminate condition is necessary to stop the recursion when

the size of problem subsets is smaller enough to be solved directly.
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• Step 3: Obtain the solution of original problem set by assembling the results

of the smaller subsets.

The Cooley-Tukey radix-2 FFT algorithm is also a divide-and-conquer algorithm

which recursively split the DFT computation into odd- and even-half parts. The

original input vector, x(n) is split into two N
2
-length vectors, xe(n), and xo(n), as

defined in (2.6) and (2.7).

xe(n) = x(2n) (2.6)

xo(n) = x(2n + 1), n = 0, 1, ...,
N

2
− 1 (2.7)

Because xe(n) and xo(n) are obtained by decimating the time index of x(n) by

a factor of 2, the resulting algorithm is named DIT FFT algorithm. Otherwise,

instead of the input vector, if the output vector is decimated in frequency index,

the resulting algorithm is called decimation-in-frequency (DIF) FFT.

The radix-2 DIT FFT is derived by rewriting (2.1) as:

X(k) =

N
2
−1∑

m=0

x(2m) ·W 2mk
N +

N
2
−1∑

m=0

x(2m + 1) ·W (2m+1)k
N (2.8)

=

N
2
−1∑

m=0

xe(m) ·W 2mk
N +

N
2
−1∑

m=0

xo(m) ·W (2m+1)k
N , k = 0, 1, ..., N − 1

Because W 2
N = WN

2
, we can rewrite (2.8) as:

X(k) =

N
2
−1∑

m=0

xe(m) ·Wmk
N
2

+ W k
N

N
2
−1∑

m=0

xo(m) ·Wmk
N
2

(2.9)

By periodicity property expressed in (2.4), it is clear that W
(k+N

2
)m

N
2

= W km
N
2

. As

a result, it is only necessary to calculate the summations for k = 0, 1, ..., N
2
− 1.

Hence, each summation in (2.9) can be interpreted as two DFTs of length-N
2
, where

the first summation involves the even-indexed sequence, xe(n) and the second sum-

mation involves the odd-indexed sequence, xo(n). Therefore, the original length-N



8

eX

oX

o
r

Ne XWXkX ⋅+=)(

o
r

Ne XWX
N

kX ⋅−=+ )
2

(r
NW

r
NW

Figure 2.1: The butterfly stage of Cooley-Tukey DIT FFT.

DFT becomes two length-N
2

DFTs. Defining Xe(k) and Xo(k) as:

Xe(k) =

N
2
−1∑

n=0

xe(n) ·W nk
N
2

, (2.10)

Xo(k) =

N
2
−1∑

n=0

xo(n) ·W nk
N
2

, (2.11)

we can rewrite the first half terms of the original DFT as:

X(k) = Xe(k) + W k
N ·Xo(k), k = 0, 1, ...,

N

2
− 1. (2.12)

Similarly, by applying the fact that W
N
2

+k

N = −W k
N , the second half terms are

given as:

X(k +
N

2
) =

N
2
−1∑

k=0

xe(m) ·W (k+N
2

)m + W
k+N

2
N

N
2
−1∑

m=0

xe(m)W
(k+N

2
)m

N
2

=

N
2
−1∑

m=0

xe(m) ·W km
N
2
−W r

N

N
2
−1∑

m=0

xo(m) ·W km
N
2

= Xe(k)−W k
N ·Xo(k), k = 0, 1, ...,

N

2
− 1 (2.13)

The original problem set is solved by combining (2.12) and (2.13), which are com-

monly refered as Cooley-Tukey algorithm in the related literature and shown in

Figure 2.1.

Similarly, the radix-2 DIF FFT algorithm is derived by decimating the output

vector into an even-indexed set and an odd-indexed set. To define the two problem
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subsets, (2.1) is rewritten as:

X(k) =

N
2
−1∑

n=0

x(n)W nk
N +

N−1∑

n=N
2

x(n)W nk
N

=

N
2
−1∑

n=0

x(n)W nk
N +

N
2
−1∑

n=0

x(n +
N

2
)W

(n+N
2

)k

N

=

N
2
−1∑

n=0

[x(n) + x(n +
N

2
)W

r N
2

N ]W nk
N , k = 0, 1, ..., N − 1 (2.14)

For k is even, we can define rewrite (2.14) as:

X(2m) =

N
2
−1∑

n=0

[x(n) + x(n +
N

2
)WmN

N ]W 2mn
N

=

N
2
−1∑

n=0

[x(n) + x(n +
N

2
)]Wmn

N
2

, m = 0, 1, ...,
N

2
(2.15)

Defining Xe(m) = X(2m) and xe(n) = x(n) + x(n + N
2
), we can get the first-half

problem subset as:

Xe(m) =

N
2
−1∑

n=0

xe(n)Wmn
N
2

, k = 0, 1, ...,
N

2
(2.16)

Similarly, for k is odd, the odd-indexed output samples can be expressed as:

X(2m + 1) =

N
2
−1∑

n=0

[x(n) + x(n +
N

2
)W

(2m+1)N
2

N ]W
(2m+1)n
N

=

N
2
−1∑

n=0

[x(n)− x(n +
N

2
)]W n

NWmn
N
2

, m = 0, 1, ...,
N

2
(2.17)

Again, by defining Xo(m) = X(2m) and xe(n) = (x(n) − x(n + N
2
))W n

N , we can

obtain the second-half problem subset as:

Xo(m) =

N
2
−1∑

n=0

xo(n)Wmn
N
2

, k = 0, 1, ...,
N

2
(2.18)

As a result, by computing both Xe(m) and Xo(m), we can also obtain the re-

sult of the original DFT computation. Consider a 16-point FFT as example, the
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Figure 2.2: The signal flow diagram of 16-point radix-2 DIT algorithm.

signal flow diagrams of both radix-2 DIT and DIF FFT algorithms are shown in

Figure 2.2 and Figure 2.3 respectively. As observed, the number of non-trivial

complex multiplications of both schemes is the same, but the sequence of complex

multiplications is in a reversed order.

2.2.2 Radix-4 FFT Algorithm

For DFT of a time series whose length N is power of 4, we can, of course, still

apply radix-2 FFT algorithms. Nevertheless, in order to further reduce the mul-

tiplicative complexity, it is worthwhile to develop radix-4 FFT algorithms instead

of simply using radix-2 FFT algorithms. The main idea of radix-4 DIT FFT is

to divide the original input sequence into four smaller subsequences. By taking

advantage of the identities that W
N
4

N = −j and W 4
N = WN

4
, (2.1) can be rewritten

in terms of four partial summations as:

X(k) =
N−1∑
n=0

x(n)W nk
N , k = 0, 1, ..., N − 1

=

N
4
−1∑

m=0

x(4m)W
k(4m)
N +

N
4
−1∑

m=0

x(4m + 1)W
k(4m+1)
N
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Figure 2.3: The signal flow diagram of 16-point radix-2 DIF algorithm.

+

N
4
−1∑

m=0

x(4m + 2)W
k(4m+2)
N +

N
4
−1∑

m=0

x(4m + 3)W
k(4m+3)
N

=

N
4
−1∑

m=0

x(4m)W
k(4m)
N + W k

N

N
4
−1∑

m=0

x(4m + 1)W
k(4m)
N

+W 2k
N

N
4
−1∑

m=0

x(4m + 2)W
k(4m)
N + W 3k

N

N
4
−1∑

m=0

x(4m + 3)W
k(4m)
N (2.19)

To partition the original problem set, we first decimate the input samples in

time index into four subsequences as expressed from (2.20) to (2.23), where m =

0, 1, ..., N
4
− 1:

x0(m) = x(4m), m = 0, 1, ...,
N

4
− 1 (2.20)

x1(m) = x(4m + 1), m = 0, 1, ...,
N

4
− 1 (2.21)

x2(m) = x(4m + 2), m = 0, 1, ...,
N

4
− 1 (2.22)

x3(m) = x(4m + 3), m = 0, 1, ...,
N

4
− 1 (2.23)

Thus, the four problem subset of length-N
4

DFT can be defined (2.24) to (2.27),
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where k = 0, 1, ..., N
4
− 1:

X0(k) =

N
4
−1∑

m=0

x(4m)W
k(4m)
N =

N
4
−1∑

m=0

x0(m)W km
N
4

(2.24)

X1(k) =

N
4
−1∑

m=0

x(4m + 1)W
k(4m)
N =

N
4
−1∑

m=0

x1(m)W km
N
4

(2.25)

X2(k) =

N
4
−1∑

m=0

x(4m + 2)W
k(4m)
N =

N
4
−1∑

m=0

x2(m)W km
N
4

(2.26)

X3(k) =

N
4
−1∑

m=0

x(4m + 3)W
k(4m)
N =

N
4
−1∑

m=0

x3(m)W km
N
4

(2.27)

Note that X0(k), X1(k), X2(k), and X3(k) have a period of N/4, the original output

X(k) can be expressed in terms of these four subsequences for m = 0, 1, ..., N
4
− 1

as shown below:

X(k) = X0(m) + Wm
N X1(m) + W 2m

N X2(m) + W 3m
N X3(m) (2.28)

X(k +
N

4
) = X0(m) + W

m+N
4

N X1(m) + W
2(m+N

4
)

N X2(m) + W
3(m+N

4
)

N X3(m)

= X0(m)− jWm
N X1(m)−W 2m

N X2(m) + jW 3m
N X3(m) (2.29)

X(k +
N

2
) = X0(m) + W

m+N
2

N X1(m) + W
2(m+N

2
)

N X2(m) + W
3(m+N

2
)

N X3(m)

= X0(m)− jWm
N X1(m) + W 2m

N X2(m)− jW 3m
N X3(m) (2.30)

X(k +
3N

4
) = X0(m) + W

m+ 3N
4

N X1(m) + W
2(m+ 3N

4
)

N X2(m) + W
3(m+ 3N

4
)

N X3(m)

= X0(m) + jWm
N X1(m)−W 2m

N X2(m)− jW 3m
N X3(m) (2.31)

As observed from (2.28) to (2.31), the butterfly (BF) of radix-4 FFT involves four

components and can be expressed in matrix form as shown in (2.33). In order

to further reduce the arithmetic cost of complex additions, we can rewrite (2.33)

by two consecutive radix-2 BF stages as shown in (2.34). In terms of number

of additions, the former needs 12 additions, while only 8 additions are required

for the later. Since the multiplicative complexity of both decompositions remains

unchanged, the later is called radix-22 FFT algorithm to demonstrate the fact that

it actually has the same number of complex multiplication as that of radix-4 FFT

algorithms.
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


X(k)

X(k + N
4
)

X(k + N
2
)

X(k + 3N
4

)




=




1 1 1 1

1 −j −1 j

1 −1 1 −1

1 1 −1 −j







X0(k)

W k
NX1(k)

W 2k
N X2(k)

W 3k
N X3(k)




(2.32)




X(k)

X(k + N
4
)

X(k + N
2
)

X(k + 3N
4

)




=




1 0 1 0

0 1 0 −j

1 0 −1 0

0 1 0 j







1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1







X0(k)

W k
NX1(k)

W 2k
N X2(k)

W 3k
N X3(k)




(2.33)

The radix-4 DIF FFT algorithm can be derived from recursively decimating the

output vector in frequency into four subsequences as expressed from (2.34) to

(2.37), where m = 0, 1, ..., N
4
− 1:

X0(m) = X(4m), m = 0, 1, ...,
N

4
− 1 (2.34)

X1(m) = X(4m + 1), m = 0, 1, ...,
N

4
− 1 (2.35)

X2(m) = X(4m + 2), m = 0, 1, ...,
N

4
− 1 (2.36)

X3(m) = X(4m + 3), m = 0, 1, ...,
N

4
− 1 (2.37)

Therefore, the original DFT computation (2.1) can be represented as:

X(k) =
N−1∑
n=0

x(n)W nk
N , r = 0, 1, ..., N − 1 (2.38)

=

N
4
−1∑

n=0

x(n)W nk
N +

N
2
−1∑

n=N
4

x(n)W nk
N +

3N
4
−1∑

n=N
2

x(n)W nk
N +

N−1∑

n= 3N
4

x(n)W nk
N

=

N
4
−1∑

n=0

x(n)W nk
N +

N
4
−1∑

n=0

x(n +
N

4
)W

(n+N
4

)k

N

+

N
4
−1∑

n=0

x(n +
N

2
)W

(n+N
2

)k

N +

N
4
−1∑

n=0

x(n)W
(n+ 3N

4
)k

N

=

N
4
−1∑

n=0

x(n)W nk
N + W k

4

N
4
−1∑

n=0

x(n +
N

4
)W nk

N
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+W 2k
4

N
4
−1∑

n=0

x(n +
N

2
)W nk

N + W 3k
4

N
4
−1∑

n=0

x(n)W nk
N

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W k

4 + x(n +
N

2
)W 2k

4 + x(n +
3N

4
)W 3k

4 ]W nk
N

Furthermore, can we decimate X(k) into four problem subsets as expressed from

(2.39) to (2.42).

X0(m) = X(4m)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m

4 + x(n +
N

2
)W 2·4m

4 + x(n +
3N

4
)W 3·4m

4 ]W nm
N

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
) + x(n +

N

2
) + x(n +

3N

4
)]W nm

N

=

N
4
−1∑

n=0

x0(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.39)

X1(m) = X(4m + 1)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m+1

4

+x(n +
N

2
)W

2·(4m+1)
4 + x(n +

3N

4
)W

3·(4m+1)
4 ]W

n(4m+1)
N

=

N
4
−1∑

n=0

[x(n)− jx(n +
N

4
)− x(n +

N

2
) + jx(n +

3N

4
)]W n

NWmn
N
4

=

N
4
−1∑

n=0

x1(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.40)

X2(m) = X(4m + 2)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m+2

4

+x(n +
N

2
)W

2·(4m+2)
4 + x(n +

3N

4
)W

3·(4m+2)
4 ]W

n(4m+2)
N

=

N
4
−1∑

n=0

[x(n)− x(n +
N

4
) + x(n +

N

2
)− x(n +

3N

4
)]W 2n

N Wmn
N
4
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=

N
4
−1∑

n=0

x2(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.41)

X3(m) = X(4m + 3)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m+3

4

+x(n +
N

2
)W

2·(4m+3)
4 + x(n +

3N

4
)W

3·(4m+3)
4 ]W

n(4m+3)
N

=

N
4
−1∑

n=0

[x(n) + jx(n +
N

4
)− x(n +

N

2
)− jx(n +

3N

4
)]W 3n

N Wmn
N
4

=

N
4
−1∑

n=0

x3(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.42)

Similarly, to reduce the additive complexity by replacing the radix-4 BF into two

radix-2 BF stages, x0(n), x1(n), x2(n), x3(n) are expressed from (2.43) to (2.46),

where n = 0, 1, ..., N
4
− 1.

x0(n) = (x(n) + x(n +
N

2
)) + (x(n +

N

4
) + x(n +

3N

4
) (2.43)

x1(n) = (x(n)− x(n +
N

2
))− j(x(n +

N

4
)− x(n +

3N

4
) (2.44)

x2(n) = (x(n) + x(n +
N

2
))− (x(n +

N

4
) + x(n +

3N

4
) (2.45)

x3(n) = (x(n)− x(n +
N

2
)) + j(x(n +

N

4
)− x(n +

3N

4
) (2.46)

Take 16-point FFT as an example, the signal flow diagram of DIT and DIF radix-

4 FFT algorithms are illustrated in Figure 2.4 and Figure 2.5 respectively. It

is clear that the non-trivial complex multiplications of radix-4 FFT algorithms

will only appear after every two butterfly stages. As such, it provides better

spatial regularity than radix-2 FFT algorithms, which is beneficial to hardware

implementation.

2.2.3 Split-Radix FFT Algorithm

The split-radix FFT is proposed in late 80s to further reduce the multiplicative

complexity of radix-2 and radix-4 FFT algorithms. In [13], as with the radix-2 FFT
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Figure 2.4: The signal flow diagram of 16-point radix-4 DIT algorithm.
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case, the DFT operation is first split into odd-half and even-half parts. The odd

components are further decomposed into 4k +1 and 4k +3 frequency components.

Repeating this process for the half- and quarter-length DFTs gives the split-radix

FFT algorithm. The split-radix DIT FFT is derived from (2.1) as follows:

X(k) =
N−1∑
n=0

x(n)W nk
N , k = 0, 1, ..., N − 1

=

N
2
−1∑

m=0

x(2m)W
k(2m)
N +

N
4
−1∑

m=0

x(4m + 1)W
k(4m+1)
N +

N
4
−1∑

m=0

x(4m + 3)W
k(4m+3)
N

=

N
2
−1∑

m=0

x(2m)W
k(2m)
N + W k

N

N
4
−1∑

m=0

x(4m + 1)W
k(4m)
N

+W 3k
N

N
4
−1∑

m=0

x(4m + 3)W
k(4m)
N (2.47)

By decimating the input vector in time index into three subsets as expressed

in (2.48) - (2.50), the three problem subsets are defined in (2.51) - (2.53) after

applying the identities WN
2

= W 2
N and WN

4
= W 4

N .

xe(n) = x(2n), m = 0, 1, ...,
N

2
− 1 (2.48)

x1(n) = x(4n + 1), m = 0, 1, ...,
N

4
− 1 (2.49)

x3(n) = x(4n + 3), m = 0, 1, ...,
N

4
− 1 (2.50)

Xe(k) =

N
2
−1∑

m=0

x(2m)W
k(2m)
N
2

=

N
2
−1∑

m=0

xe(m)W km
N
2

(2.51)

X1(k) =

N
4
−1∑

m=0

x(4m + 1)W
k(4m)
N
4

=

N
2
−1∑

m=0

x1(m)W km
N
4

(2.52)

X3(k) =

N
4
−1∑

m=0

x(4m + 3)W
k(4m)
N
4

=

N
2
−1∑

m=0

x3(m)W km
N
4

(2.53)

After these three problem subsets are solved by the split-radix algorithm recur-

sively, the solution to the original problem of size N can be obtained according to

(2.47) for k = 0, 1, ..., N − 1.
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A split-radix DIF FFT algorithm can be derived by recursively partitioning

the original output samples into three problem subsets in frequency index in a

similar fashion. The derivation begins with the definition of DFT expressed in

(2.1). Using the results from radix-2 DIF algorithm and radix-4 DIF algorithm,

we define Xe(k) = X(2k), X1(k) = X(4k + 1), and X3(k) = X(4k + 3) as follows:

Xe(m) = X(2m) =

N
2
−1∑

n=0

(x(m) + x(m +
N

2
))Wmn

N
2

=

N
2
−1∑

n=0

xe(m)Wmn
N
2

, m = 0, 1, ..., ,
N

2
− 1 (2.54)

X1(m) = X(4m + 1)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m+1

4

+x(n +
N

2
)W

2·(4m+1)
4 + x(n +

3N

4
)W

3·(4m+1)
4 ]W

n(4m+1)
N

=

N
4
−1∑

n=0

[x(n)− jx(n +
N

4
)− x(n +

N

2
) + jx(n +

3N

4
)]W n

NWmn
N
4

=

N
4
−1∑

n=0

x1(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.55)

X3(m) = X(4m + 3)

=

N
4
−1∑

n=0

[x(n) + x(n +
N

4
)W 4m+3

4

+x(n +
N

2
)W

2·(4m+3)
4 + x(n +

3N

4
)W

3·(4m+3)
4 ]W

n(4m+3)
N

=

N
4
−1∑

n=0

[x(n) + jx(n +
N

4
)− x(n +

N

2
)− jx(n +

3N

4
)]W 3n

N Wmn
N
4

=

N
4
−1∑

n=0

x3(n)Wmn
N
4

,m = 0, 1, ...,
N

4
− 1 (2.56)

By repeating (2.54), (2.55) and (2.56), we can obtain the solution of original DFT

by assembling the results from these three problem subsets. The signal flow di-

agram of split-radix DIT algorithm is shown in Figure 2.6. Similarly, the signal

flow of split-radix DIF algorithm is also given in Figure 2.7. Apparently, these
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Figure 2.6: The signal flow diagram of 16-point split-radix DIT algorithm.

two schemes have the same multiplicative complexity but the order of complex

multiplications is reversed.

2.2.4 Mixed-Radix FFT Algorithm

A larger FFT can be decomposed into cascaded FFT stages with smaller length.

Assume the N -point FFT is partitioned into α stages and define

Nβ =
N

r1 · r2 · · · rβ

where 1 ≤ β ≤ α− 1, (2.57)

the final stage is derived as [39]:

X(r1r2 · · · rα−1mα + r1r2 · · · rα−2mα−1 + · · ·+ r1m2 + m1)

=
rα−1∑

qα−1=0

xα−1(qα−1, mα−1)W
qα−1mα
rα

. (2.58)

The intermediate β-th stage, xβ(qβ,mβ) is given by the recursive equation as:

xβ(qβ,mβ) = W
qβmβ

Nβ−1
·

rβ−1∑
p=0

xβ−1(Nβp + qβ,mβ−1)W
pmβ
rβ , (2.59)

where 2 ≤ β ≤ α − 1, 0 ≤ mi ≤ ri − 1, 0 ≤ qi ≤ Ni − 1, and 2 ≤ i ≤ α. Each

summation represents a rβ-point FFT computation. Please note the above decom-

position procedure is not unique. There are various equivalent decompositions for
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Figure 2.7: The signal flow diagram of 16-point split-radix DIF algorithm.

the same N -point FFT. As a result, many designs of memory-based FFT architec-

ture will decompose a larger FFT computation into several cascaded smaller FFTs

and utilize a single FFT core to reduce the hardware cost [40].

2.2.5 Comparison of Different FFT Algorithms

The multiplicative complexity comparison among different FFT algorithms is

listed in Table 2.1. In terms of the number of non-trivial multiplications, the

split-radix FFT algorithm outperforms the other two because more ”−j” terms

are extracted. However, the irregularity caused by the L-shaped butterfly makes

it harder to design a pipeline architecture. Moreover, because the non-trivial mul-

tiplications could appear in two successive stages, the required number of multi-

pliers increases. For example, the signal dataflow graphs for a 16-point FFT are

illustrated in Fig. 2.4 and Fig. 2.6 for the radix-4 FFT and the split-radix FFT

respectively. Obviously, for designing a pipeline architecture, the radix-4 FFT only

requires one set of complex multipliers, while the split-radix FFT requires two sets

of complex multipliers. Although some effort has been made [27] to share the

complex multipliers between adjacent BF stages, it inevitably results in additional

overhead of control logic.
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Table 2.1: The number of non-trivial complex multiplications

FFT Size Radix-2 Radix-4 Split-Radix

8 2 2 2

16 10 8 8

32 34 28 26

64 98 76 72

128 258 204 186

256 642 492 456

512 1538 1196 1082

1024 3586 2732 2504

2048 8194 6316 5690

4096 18434 13996 12744
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2.3 Implementation of Complex Multiplier

Considering the actual hardware implementation, the accuracy of FFT mod-

ule is an important design factor of system performance. In practice, fixed-point

arithmetic is used to implement FFT in hardware because it is not possible to

keep infinite resolution of coefficients and operations. All coefficients and input

signals have to be presented with finite number of bits in binary format depending

on the tradeoff between the hardware cost (memory usage) and the accuracy of

output signals. Regardless of which FFT algorithm is adopted, the complex multi-

plier can be realized by different approaches. Besides the direct implementation of

the complex multiplier, the numerical decomposition [41], CORDIC algorithm and

IntFFT [42] are also utilized for the design of FFT architecture and have differ-

ent advantages. For example, the numerical decomposition consists of only three

multiplications and three additions with one additional coefficient look-up table.

CORDIC algorithm rewrites the conventional complex multiplication with a series

of angle rotations. It is particularly useful when no multiplier unit is available.

During the past decade, lifting factorization has been developed as a useful tool

for the construction of wavelets [43]. In [42], the idea of lifting scheme is further

applied to compute the non-trivial complex multiplication where the original oper-

ation is expressed as three lifting steps. In this section, different implementations

of complex multiplier are introduced respectively.

2.3.1 Numerical Decomposition

Let t = c + js be a complex number with magnitude one (i.e. |t| = 1) and x =

xr + jxi. The direct implementation of complex multiplications requires four real

multiplications and 2 additions. The numerical decomposition expressed in (2.60)

and (2.61) rewrites the original complex multiplication with three multiplications,

three additions and three constants [41]. In brief, one multiplication is replaced

by one addition. However, two additional coefficient tables are required since both

c + s and c− s are assumed to be pre-calculated.

cxr − sxi = xr(c− s) + s(xr − xi) (2.60)
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cxi + sxr = xi(c + s) + s(xr − xi). (2.61)

2.3.2 CORDIC-Based Complex Multiplier

The CORDIC algorithm is a simple and efficient algorithm to calculate hy-

perbolic and trigonometric functions. As shown in Figure 2.8, the basic idea of

CORDIC algorithm is to complete the angle rotation in the polar plane with a

series of smaller incremental rotations. Therefore the desired rotation angle, Θ, is

decomposed into pre-defined elementary angles as:

Θ =
Nc−1∑
n=0

µnan + ε, (2.62)

where Nc is the number of total elementary angles, µi ∈ {1,−1} is used to indicate

the direction of angle rotations, ai is the ith elementary angle, and ε is the difference

between the real angle and the approximated angle. It has been extended and

utilized for FFT implementations to perform complex multiplications with only

additions and shifts. By calculating the product of all cosine values in advance,

each iteration only involves one addition and one subtraction. In other words, the

complex multiplication is represented as

y = [xr xi]
Nc∏
n

[
cos an sin an

− sin an cos an

]

= (
Nc∏
n

cos an)

︸ ︷︷ ︸
pre−calculated

[xr xi]
Nc∏
n

[
1 tan an

− tan an 1

]
.

(2.63)

From the viewpoint of hardware design, the advantage of CORDIC is that only

additions and shifts are required. It is very suitable for processor-based designs

where multiplier unit is not available. It also leads to smaller hardware cost for

the ASIC designs because no general multiplier is adopted. Additionally, when

implemented in soft or dedicated hardware the algorithm is suitable for pipelining.

However, it inevitably degrades the output accuracy since it is an approximation

of the original complex multiplications.
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Figure 2.8: The operation of CORDIC algorithm.

2.3.3 LS-Based Complex Multiplier

IntFFT [42] is an integer-to-integer mapping transform in which the wavelet

transform concept of lifting scheme is applied to FFT algorithms. Originally, the

lifting scheme was developed as a useful tool for constructing biorthogonal wavelets

and perfect reconstruction (PR) filter banks [43]. Since it only involves integer

operations, lossless transform is possible. The main idea of IntFFT is to utilize

the lifting scheme in the conventional FFT by decomposing the original complex

multiplications into three lifting steps [42]. All the original twiddle factors in the

FFT computation are presented in lifting coefficient format. Let t = c + js be a

complex number with magnitude one (i.e. |t| = 1) and x = xr + jxi. Then the

original complex multiplication can be represented in matrix form as [42]:

tx = (cxr − sxi) + j(cxi + sxr)

=
[
1 j

] [
c −s

s c

][
xr

xi

]
=

[
1 j

]
R

[
xr

xi

]
(2.64)
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Figure 2.9: Representation of twiddle factors as three lifting steps.
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Figure 2.10: Four equivalent decompositions of lifting scheme.

Furthermore, the R matrix shown in Eq. (2.64) can be decomposed into three

lifting steps [43].

R =

[
c −s

s c

]
=

[
1 c−1

s

0 1

][
1 0

s 1

][
1 c−1

s

0 1

]
(2.65)

In this equation, s and c represent sin θ and cos θ respectively, where θ is the

angle of twiddle factors as defined in Eq. (2.2). As a result, the original complex

multiplications of multiplying twiddle factors can be represented in lifting scheme

form as shown in Fig. 2.9. Recall that no matter what operation is performed in

the lifting steps, we can reconstruct the original input without any distortion if

the same operation is performed again in the corresponding inverse lifting steps.
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Table 2.2: Four equivalent decompositions of lifting scheme.

Type (a) Type (b) Type (c) Type (d)

P Pa = c−s
s

Pb = c+1
s

Pc = s−1
c

Pd = s+1
c

Q Qa = s Qb = −s Qc = c Qd = −c

In other words, IntFFT is able to produce lossless output. As shown in Fig. 2.9,

the sign change inverse (SCI) property is also illustrated. It leads to an easy

implementation of the inverse transform by replacing additions in the lifting paths

with subtractions. Notice when the angle of the twiddle factors, θi, goes smaller,

the value of pi[n] in the above decomposition will become infinitely large. Different

decompositions of lifting scheme are derived to avoid this problem. Four alternative

types of lifting decompositions are illustrated in Figre 2.10 [42] and summarized

in Table 2.2. Because these four possible different types of lifting decompositions

can be used interchangeably, it is of interests to analyze the performance of each

lifting decompositions. The MSE analysis of different implementations of complex

multipliers is derived in Chapter 3 to give a quantitative comparison.

2.4 Applications of FFT

In this section, some common FFT applications are introduced to demonstrate

the importance of FFT algorithms.

2.4.1 Fast Convolution

The FFT algorithms provides a convenient way to perform fast convolutions

without computing the convolution sum. Assuming two length-N complex input

x(n) and y(n) sequences, the fast convolution of x(n) and y(n) can be calculated

using the following procedure:

• Step 1: Complete length-N FFT computation of x(n) and y(n), named X(k)

and Y (k) respectively.
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• Step 2: Multiply the FFT results to form the product: Z(k) = X(k)Y (k).

• Step 3: Complete length-N IFFT of Z(k).

The direct computation of convolution needs N2 complex multiplications. For

example, given two sequences with 16 samples, the direct convolution requires 256

complex multiplications while the FFT-based fast convolution only requires 46

complex multiplications as listed in Table 2.1.

2.4.2 OFDM Systems

OFDM is a digital multi-carrier modulation scheme, which uses a large num-

ber of orthogonal sub-carriers. Each sub-carrier is modulated with a conventional

modulation scheme at a low symbol rate, maintaining data rates similar to con-

ventional single-carrier modulation schemes in the same bandwidth. In practice,

OFDM signals are generated using the FFT algorithm. The main advantage of

OFDM over single-carrier schemes is its ability to cope with severe channel condi-

tions. The sub-carrier frequencies are chosen so that the sub-carriers are orthogonal

to each other, meaning that cross-talk between the sub-channels is eliminated and

inter-carrier guard bands are not required.

One key principle of OFDM is that since low symbol rate modulation schemes

suffer less from intersymbol interference caused by multipath, it is advantageous

to transmit a number of low-rate streams in parallel instead of a single high-

rate stream. Since the duration of each symbol is long, it is feasible to insert

a guard interval between the OFDM symbols, thus eliminating the intersymbol

interference. The cyclic prefix, which is transmitted during the guard interval,

consists of the end of the OFDM symbol copied into the guard interval, and the

guard interval is transmitted followed by the OFDM symbol. The reason that the

guard interval consists of a copy of the end of the OFDM symbol is so that the

receiver will integrate over an integer number of sinusoid cycles for each of the

multipaths when it performs OFDM demodulation with the FFT. Besides, since

the effects of frequency-selective channel conditions can be considered as flat over

an OFDM sub-channel if the sub-channel is sufficiently narrow-banded, it makes
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Figure 2.11: A simplified block diagram of OFDM systems.

equalization much simpler at the receiver in OFDM in comparison to conventional

single-carrier modulation. A conceptual diagram of OFDM systems is illustrated

in Figure 2.11.
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Integer FFT with Optimized

Coefficient Set

In this chapter, the noise model of arithmetic rounding errors is first intro-

duced. In order to improve the overall SQNR performance of FFT computation,

the principle of finding the optimized coefficient set of IntFFT is proposed. IntFFT

has been regarded as an approximation of original FFT since it utilizes LS and

decomposes the complex multiplication of twiddle factor into three lifting steps.

Based on the observation of the quantization loss model of lifting operations, we

can select an optimized coefficient set and achieve better SQNR. A mixed-radix

128-point FFT is used to compare the SQNR performance between IntFFT and

other FFT implementations.

3.1 Noise Model of Quantization Loss

There are two fundamental numbering systems for representing numbers in

a digital system: fixed point and floating point. The dynamic range of floating

point numbering system is much higher than that of fixed point numbering system.

However, there is always a tradeoff between these two systems because the cost of

floating point operations is higher than the cost of the other.

In binary representation of a real number, x, with B + 1 bits, there are com-

monly three formats: sign magnitude, one’s complement and two’s complement,

29
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in which two’s complement is the most popular one. The only difference between

these three representations is how the negative numbers are represented. In the

two’s complement format, a real number is represented as:

x = Xm(−b0 +
B∑

i=1

bi2
−i). (3.1)

Note that with B + 1 bits, the smallest distinguishable difference between two

quantized numbers, the resolution of selected numbering system, is:

∆ = Xm2−B, (3.2)

and all quantized numbers lie on the range −Xm ≤ x ≤ Xm.

In performing arithmetic operations in digital computers with fixed-point num-

bers, it is necessary to quantize numbers by either truncation or rounding due to

the finite resources of internal memory storage. For example, multiplying two 16-

bit numbers yields a product with up to 32-bit precision. In general, the product

will be quantized back to 16 bits. Both truncation and rounding will introduce a

quantization error. The additive noise model of quantization loss is widely adopted

to measure the effect of the fixed length operations in DSP systems [11, 17]. The

quantized product can be expressed as the sum of unquantized product and an

uniformly-distributed additive quantization noise. Consider the multiplication of

quantized numbers x̂ and â, the product y itself will be quantized to a (B + 1)-bit

number, ŷ = QB[y]. The quantized product term can be expressed as the unquan-

tized product with an additive quantization noise source, e, as depicted in Fig.

3.1. For the rounding noise with two’s complement numbers, assuming that e is an

uniformly distributed random variable whose probability density function (pdf) is

shown in (3.3), its variance can be easily calculated as σ2 = ∆2

12
, where ∆ = 2−B,

p(e) =

{
1
∆

, −∆
2

< e ≤ ∆
2

0, otherwise
(3.3)

On the other hand, the pdf of truncation error is always negative and falls in the

range expressed in (3.4).

p(e) =

{
1
∆

, −∆ < e ≤ 0

0, otherwise
(3.4)
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Figure 3.1: Additive noise model of quantization loss.

3.2 MSE of Various Complex Multipliers

For a conventional complex multiplier, assume that x = xr + jxi represents the

input sample, and that t = c+ js represents the complex twiddle factor. Then the

quantized output is represented as follows:

Q(D) = [Q(cxr)−Q(sxi)] + j[Q(cxi) + Q(sxr)]. (3.5)

Consequently, the overall quantization loss and the variance of quantization loss

are expressed as

Q(D)−D =(e1 − e2) + j(e3 + e4)

EC [|Q(D)−D|2] = E[(e1 − e2)
2 + (e3 + e4)

2]

= E[e2
1] + E[e2

2] + E[e2
3] + E[e2

4]

= 4σ2

where e1 = Q(cxr)−cxr, e2 = Q(sxi)−sxi, e3 = Q(cxi)−cxi, and e4 = Q(sxr)−sxr

are all real-valued random variables.

The numerical decomposition with quantization loss is depicted in Fig. 3.2.

Three independent real-valued uniform random variables are introduced to model

the quantization loss. Without loss of generality, we assume there is no loss from

the pre-calculated coefficients, c + s and c − s, Therefore, the MSE of numerical

decomposition is expressed as:

EN [|Q(Y )− Y |2] = E[|(e0 + e1) + j(e2 + e1)|2]
= E[e2

0] + 2E[e2
1] + E[e2

2] = 4σ2 (3.6)
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Figure 3.3: The equivalent quantization loss model of LS-based complex multiplier.
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For the LS-based complex multipliers depicted in Fig. 3.3, the lifting coefficients

are generated from corresponding twiddle factors by p[n] and q[n] where both p[n]

and q[n] are real-valued discrete functions and can be expressed as:

p[n] =
cos(θ)− 1

sin(θ)
(3.7)

q[n] = sin(θ) (3.8)

where θ = −2πn
N

, and n is the index of the twiddle factors. Again, we assume all

random variables are all statistically independent and uniformly distributed. The

variance of the quantization loss, fL[n], is derived in (3.11).

D = [(1 + p[n]q[n])xr + p[n](2 + p[n]q[n])xi]

+j[(1 + p[n]q[n])xi + q[n]xr] (3.9)

Q(D) = [(1 + p[n]q[n])xr + p[n](2 + p[n]q[n])xi + (1 + p[n]q[n])e1 + p[n]e2 + e3]

+j[(1 + p[n]q[n])xi + q[n]xr + q[n]e1 + e2] (3.10)

ELS[|Q(D)−D|2] = E[[(1 + p[n]q[n])e1 + p[n]e2 + e3]
2 + (q[n]e1 + e2)

2]

= [(
cos(ωn)− 1

sin(ωn)
)2 + 3] · σ2 = fL[n]σ2 (3.11)

3.3 Periodicity Property of Lifting Coefficients

Since lifting coefficients are the functions of sinusoids, we use the periodicity

property of sinusoids to present lifting coefficients with a smaller set. For example,

if N
8

< n < N
4
, Pd[n] and Qd[n] can be represented by Pa[n] and Qa[n] as follows:

Pd[
N

4
− n] =

sin(−2π
N

(N
4
− n)) + 1

cos(−2π
N

(N
4
− n))

= Pa[n] (3.12)

Qd[
N

4
− n] = − cos(−2π

N
(
N

4
− n)) = Qa[n], (3.13)

Similarly, if N
2
≤ ni ≤ 5N

8
, Pb[n] and Qb[n] can be represented by Pa[n] and Qa[n]

as follows:

Pb[
N

2
+ ni] =

cos(−2π
N

(N
2

+ ni)) + 1

sin(−2π
N

(N
4

+ ni))
=
− cos θi + 1

− sin θi

= Pa[ni] (3.14)

Qb[
N

2
+ ni] = −(− sin θi) = Qa[ni] (3.15)
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Figure 3.4: The optimized coefficient set of IntFFT.

Therefore, the polar plane can be partitioned into 8 sub-regions. Fig. 3.4 shows

the mapping diagram of each decomposition in different sub-regions, where −a and

ã indicate sign reverse and index reverse respectively. All the other decompositions

can be represented by Type (a). For instance, the non-trivial twiddle factors used

in the first multiplier stage of 128-point radix-4 DIF FFT is mapped into Type (a)

as shown in table 3.1. Combining the idea of coefficient selection from previous

section, the criteria of choosing lifting coefficient must fulfill two conditions:

1) The dynamic range of selected coefficients should be smaller to keep lower

MSE.

2) The selected coefficient set must be able to cover all other sub-regions.

Although the selection of coefficient set is not unique, it is convenient to choose the

first sixteen pairs of Pa and Qa as the optimized coefficient set. The theoretical

MSE performance comparison of different schemes is shown in Fig. 3.5. It is

obvious that the LS-based complex multiplier with optimized coefficient set has

the smallest MSE compared to the other methods.
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Table 3.1: The mapping of non-trivial multiplications into the optimized set.

Original Index Original Type Mapped Index Mapped Type

1 (a) 1 (a)

2 (a) 2 (a)

3 (a) 3 (a)

4 (a) 4 (a)

17 (d) 15 (a)

18 (d) 14 (a)

19 (d) 13 (a)

20 (d) 12 (a)

49 (b) 15 (a)

50 (b) 14 (a)

97 (c) 1 (a)

98 (c) 2 (a)

· · · · · · · · · · · ·
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Figure 3.5: MSE comparison chart of different complex multiplier implementations.

3.4 Performance Evaluation of Optimized Coef-

ficient Set

The theoretical performance evaluation of each FFT implementation has been

given in previous works. James [21] derived the fixed-point MSE analysis of quan-

tization loss for mixed-radix FFT algorithms with conventional complex multi-

pliers. Perlow and Denk [22] proposed an error propagation model to estimate

the performance of finite wordlength FFT architecture. Park and Cho [24] also

used a propagation model to derive the error analysis for CORDIC implementa-

tions. The comparison of a vector rotation example has been addressed in Table

V of [44], which shows that the direct implementation outperforms CORDIC algo-

rithm. In this section, all four kinds of FFT implementations are simulated with

fixed-point operations. A mixed-radix 128-point IFFT/FFT with different decom-

position schemes is implemented to quantitively compare their SQNR performance.

FxpFFT, NumFFT and CORFFT stand for direct implementation, numerical de-

composition and CORDIC algorithm respectively. The experiment setup is as

follows. First, fixed-point IFFT is performed with random quadrature phase shift
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Figure 3.6: SQNR comparisons of IFFT output with QPSK signal input, Nc = 12.

keying (QPSK) signals. 1,000 trials are made for each IFFT. The wordlength of

coefficients and the number of iterations used in the CORDIC algorithm is set to

12 and 14. The wordlength of internal variables is swept from 8 bits to 18 bits. As

shown in Fig. 3.6 and Figure 3.7, SQNR of IntIFFT with optimized coefficient set

has better SQNR performance than others.
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Fixed-Point Analysis of FFT

Algorithms

The effect of finite wordlength in digital systems has been studied during the

past decades. Weistein [45] classified the quantization loss into four categories in-

cluding quantization of coefficients, error due to A/D conversion, roundoff noise

due to arithmetic rounding operations, and the constraint on signal level to main-

tain the dynamic range and prevent overflow. Oppenheim [17] analyzed the effect

of finite precision for digital filtering and radix-2 DIT FFT but did not consider the

fact that some twiddle factors are trivial and do not contribute any noise. Thong

and Liu [18] also investigated the same phenomenon for both DIT and DIF radix-2

FFT with neglection of the quantization of coefficient because it is shown the er-

ror due to the quantization of coefficient is less significant than that of arithmetic

rounding operations [45]. However, since split-radix FFT and other higher-radix

FFT algorithms are proved to be computationally efficient than radix-2 [13] and

are widely used for hardware implementation [27, 46], as such the study of finite

precision effect of all FFT algorithms is of increasing significance.

4.1 Matrix Representation of FFT Algorithms

In this section, we derive the equivalent matrix form of both DIF and DIT

FFT algorithms. Although the alternative DIT and DIF FFT algorithms have the

39
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same multiplicative complexity, the sequence of butterfly stages and twiddle factor

stages is reversed. In other words, the signal flow of two alternative representations

is actually the mutual mirroring of each other.

4.1.1 Propagation Model of DIF FFT Algorithms

For a N -point DIF FFT computation as shown in Fig. 4.1, define α = log2 N ,

we can rewrite DIF FFT in the matrix representation as follows:

XF =
α−1∏
i=0

wFi
Bα,α−ix. (4.1)

where each matrix is explained as follows:

1) x is the N-by-1 input vector.

2) XF is the N-by-1 transformed output vector.

3) Bα,α−i is the N-by-N equivalent butterfly matrix at the ith stage of 2α-point

DIF FFT.

4) wFi
is the N-by-N equivalent twiddle factor matrix at the ith stage, where

wFi
is a diagonal matrix whose elements are the twiddle factors of the ith

stage.

Take an 8-point DIF FFT as example, the corresponding Bα,α−i matrices are de-

fined below. The wFi
matrices of the radix-2 DIF FFT algorithms are also listed.

Please note the variation of wFi
as the radix of FFT algorithms changes.

B3,3 =




1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1



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= I1 ⊗B3,3 (4.2)

B3,2 =




1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 −1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 0 −1

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 0 −1




= I2 ⊗B2,2 (4.3)

B3,1 =




1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 −1




= I4 ⊗B1,1 (4.4)

B1,1 =

[
1 1

1 −1

]
= H2 (4.5)

wF0 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 W 1
8 0 0

0 0 0 0 0 0 W 2
8 0

0 0 0 0 0 0 0 W 3
8




(4.6)
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Figure 4.1: Propagation model of quantization loss for DIF FFT.

wF1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 W 2
8 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 W 2
8




(4.7)

where H2 is the 2-by-2 Walsh matrix, ⊗ denotes Kronecker product and Ip is the

p-by-p identity martrix. From (4.2) to (4.5), the Bα,i matrices can be generalized

as:

Bi,i = H2 ⊗ I2i−1 , (4.8)

Bα,i = I2α−i ⊗Bi,i, α ≥ i. (4.9)

Define ei (0 ≤ i ≤ α) as the corresponding N-by-1 additive noise vector of

wFi
. Its elements, ei(j) (0 ≤ j ≤ N − 1), are uncorrelated complex uniform
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random variables with zero mean and variance equal to σ2
c , if a non-trivial complex

multiplication is presented at wFi,j
. An example for the second stage of 8-point

DIF split-radix FFT is shown in (4.10).

e1 =
[

0 0 0 0 0 e1(5) 0 e1(7)
]t

(4.10)

Let xi be the intermediate result after i stage, x̃i is the corresponding erroneous

version with quantization loss due to non-trivial complex multiplications and ∆xi

is the difference between the original output and the erroneous output. Therefore,

all xi and ∆xi can be expressed as (4.11) - (4.16):

x̃0 = wF0B3,3x + e0 (4.11)

x̃1 = wF1B3,2x̃0 + e1

= wF1B3,2(wF0B3,3x + e0) + e1 (4.12)

x̃2 = wF2B3,1x̃1 + e2

= wF2B3,1[wF1B3,2(wF0B3,3x + e0) + e1]

+e2 (4.13)

∆x0 = e0 (4.14)

∆x1 = wF1B3,2e0 + e1 (4.15)

∆x2 = wF2B3,1wF1B3,2e0 + wF2B3,1e1 + e2 (4.16)

Based on the observation of the recursive representation shown from (4.14) - (4.16),

we can find the general expression of the overall quantization loss, ∆XF , as:

∆XF = ∆xα =
α∑

i=0

(
α−1∏
j=i

wFj
Bα,α−j)ei (4.17)

4.1.2 Propagation Model of DIT FFT Algorithms

Similarly, as shown in Fig. 4.2, we can define ∆XT as the overall output error

of DIT FFT algorithms:

∆XT =
α∑

i=0

Bα,α(
α−1∏
j=i

wTj
Bα,j)(

0∏

k=i

wTk
)ei (4.18)
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Figure 4.2: Propagation model of quantization loss for DIT FFT.

where wTi
is the equivalent twiddle factor matrix at the ith stage of DIT FFT

algorithms. Here we define nTi
as the number of non-trivial twiddle factors at the

ith stage. Also note that the signal flow of DIT algorithms is the reverse signal

flow of DIF algorithms, we can also present the relationship between of wFi
and

wTi
in (4.19).

wFi
= wTα−i−1

, 0 ≤ i ≤ α− 1 (4.19)

4.2 Noise Power Calculation

The subjective is to calculate the total noise power of the quantization loss.

Therefore, we present the following lemmas which will be useful in later derivation.

Lemma 1: The matrix product of Bα,i and its own Hermitian matrix equals to

2I2α . Proof:

Bα,iB
H
α,i = (I2α−i ⊗Bi,i)(I2α−i ⊗Bi,i)

H
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= (I2α−i ⊗Bi,i)(I
H
2α−i ⊗BH

i,i)

= I2α−i ⊗ (Bi,iB
H
i,i)

= I2α−i ⊗ (H2 ⊗ I2i−1)(HH
2 ⊗ IH

2i−1)

= I2α−i ⊗ (H2H
H
2 )⊗ (I2i−1IH

2i−1)

= 2(I2α−i ⊗ I2 ⊗ I2i−1) = 2I2α (4.20)

Lemma 2: wFi
wH

Fi
= wH

Fi
wFi

= I Proof:

wFi
wH

Fi
= diag(wFi,j

w∗
Fi,j

) = I2α (4.21)

0 ≤ i ≤ α− 1, 0 ≤ j ≤ 2α − 1

The total power of quantization noise of DIF FFT algorithms, Pnf , is calculated

by tr[E[∆XF ∆XH
F ]] as shown in (4.22). nFi

is defined as the number of non-trivial

complex multiplications at the ith stage of DIF FFT algorithms.

Pnf = tr[E[∆XF ∆XH
F ]]

= tr[E[
α−1∑
i=0

α−1∏
j=i+1

wFj
Bα,α−jei

α−1∑
m=0

eH
m

α−1∏
n=m+1

BH
α,α−nw

H
Fn

]]

= tr[E[
α−1∑
i=0

(
α−1∏

j=i+1

wFj
Bα,α−j)eie

H
i (

α−1∏
j=i+1

BH
α,α−jw

H
Fj

)]]

= E[
α−1∑
i=0

tr[(
α−1∏

j=i+1

wFj
Bα,α−j)eie

H
i (

α−1∏
j=i+1

BH
α,α−jw

H
Fj

)]]

= E[
α−1∑
i=0

tr[(eie
H
i )(

α−1∏
j=i+1

BH
α,α−jw

H
Fj

)(
α−1∏

j=i+1

wFj
Bα,α−j)]

= E[
α−1∑
i=0

tr[(eie
H
i )(

α−1∏
j=i+1

BH
α,α−jw

H
Fj

wFj
Bα,α−j)]]

= E[
α−1∑
i=0

2α−i−1tr[eie
H
i ]] =

α−1∑
i=0

2α−i−1nFi
σ2

c (4.22)

Again, we can calculate the overall noise power of DIT FFT algorithms as expressed
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in (4.23).

Pnt = tr[E[∆XT ∆XH
T ]]

= tr[E[Bα,α

α−1∑
i=0

(
α−1∏

j=i+1

wTj
Bα,j)ei

α−1∑
m=0

eH
m(

α−1∏
n=m+1

BH
α,nw

H
Tn

)BH
α,α]]

= tr[E[Bα,α

α−1∑
i=0

(
α−1∏

j=i+1

wTj
Bα,j)eie

H
i (

α−1∏
j=i+1

BH
α,nw

H
Tj

)BH
α,α]]

= E[tr[
α−1∑
i=0

(
α−1∏

j=i+1

wTj
Bα,j)eie

H
i (

α−1∏
j=i+1

BH
α,nwH

Tj
)BH

α,αBα,α]]

= E[2 ·
α−1∑
i=0

tr[(eie
H
i )(

α−1∏
j=i+1

BH
α,nwH

Tj
)(

α−1∏
j=i+1

wTj
Bα,j)]

= E[2 ·
α−1∑
i=0

tr[(eie
H
i )(

α−1∏
j=i+1

BH
α,α−jw

H
Tj

wTj
Bα,α−j)]]

= E[
α−1∑
i=0

2α−itr[eie
H
i ]] =

α−1∑
i=0

2α−inTi
σ2

c (4.23)

From (4.22) and (4.23), we observe that the BF matrices, Bα,i, acts as an internal

amplifier which doubles the noise power after every stage. Therefore, if most

of non-trivial twiddle factors are located in the later stages of FFT operation,

the overall power of quantization loss will be smaller. In other words, generally

speaking DIT FFT algorithms will be better than DIF algorithms since the twiddle

factors of the former are mostly concentrated in the later stages, which agrees with

the conclusion of [22]. Besides we can also compare the overall quantization noise

power of different FFT algorithms by finding the number of non-trivial twiddle

factors, nFi
or nTi

, at each stage. In order to make a quantitative comparison,

without loss of generality, we assume all the quantization noises are mutually

independent uniform random variables with variance σ2
c , then the overall noise

power of each FFT algorithms with alternative decimation schemes is listed in

Table 4.1 and Table 4.2. Again, if the length of FFT operations is not power of 4,

we use a cascaded radix-2 stage in the last stage for radix-4 DIF algorithms and a

leading radix-2 stage for radix-4 DIT algorithms.
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Table 4.1: Comparison of Overall Noise Power for DIF FFT (unit: σ2
c )

FFT Size Radix-2 Radix-4 Split-Radix

8 8 4 4

16 64 32 28

32 352 176 148

64 1664 832 684

128 7296 3648 2964

256 30720 15360 12396

512 126464 63232 50836

1024 514048 257024 206188

Table 4.2: Comparison of Overall Noise Power for DIT FFT (unit: σ2
c )

FFT Size Radix-2 Radix-4 Split-Radix

8 4 8 8

16 28 32 40

32 140 208 200

64 620 688 840

128 2604 3696 3528

256 10688 11760 14280

512 43180 60656 57800

1024 173740 191216 231880
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4.3 Bit Allocation Optimization

According to (4.22) and (4.23), we can improve the SQNR performance by

minimizing the quantization loss arised in the early stages of FFT operations if

the wordlength of internal memory cells is not fixed for all stages. As for the

implementation of FFT algorithms, most previous works address two design is-

sues: the efficiency of complex multipliers and the memory strategy. The design

parameters have to be adjusted according to different target applications. Design-

ers focus on increasing the utilization rate of multipliers in the design of short-

length FFT architecture. Conversely the memory access strategy becomes more

important on designing a long-length FFT architecture. First we discuss the case

of short-length FFT implementation. When considering the hardware design of

short-length FFT architectures, delay feedback (DF) memory allocation is mostly

used due to its higher utilization rate compared to that of the delay commuta-

tor (DC) scheme [12, 27]. The main idea of DF scheme is to store the first half

of input samples in the DF memory cells and wait until the second half of input

samples arrive. Although the total count of memory cells is the same for both

types of FFT algorithms as expressed in (4.24) and (4.25), the number of memory

cells of DIT algorithms will be doubled after every butterfly stage while that of

the DIF algorithms will be half after each stage as shown in Fig. 4.3.

DIF : MF =
α−1∑
i=0

2α−i−1 = 2α − 1 (4.24)

DIT : MT =
α−1∑
i=0

2i = 2α − 1 (4.25)

Given the same input signals, we can try to minimize the quantization loss

caused by internal arithmetic rounding operations to improve the overall SQNR

performance by adjusting the wordlength of intermediate results. Largrange mul-

tiplier is a commonly adopted mathematical tool to find the local extreme of a

multi-variable function subject to one or many constraint functions. Extra dummy

variables, λi (0 ≤ i ≤ k − 1), are introduced to convert the original problem set

with n variables and k constraint functions to a dual problem set with n + k vari-

ables and no constraint function. Recall that the variance of complex multipliers,
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Figure 4.3: The block diagram of DF memory scheme for DIF FFT.

σ2
c can be represented by the MSE of real multiplications, σ2. Without loss of

generality, σ2
c , σ2 and internal bit length, bc can be related in (4.26) for different

implementations of complex multipliers, where 3 ≤ β ≤ 4 [25].

σ2
c = βσ2 = β

2−2bc

12
(4.26)

For the DIT FFT implementations with DF memory scheme, the total number of

memory cell, BT , is expressed as:

BT = 2 ·
α−1∑
i=0

2i(bi + bx), (4.27)

where bx represents the effective wordlength of input samples and can be regarded

as the minimal wordlength for internal memory storage. Besides, bi is number of

extra bits used in the ith stage of FFT computation.

To apply the Largrange multiplier optimization, the objective function is shown

in (4.23) and the constraint function is the overall bit bidget expressed in (4.27).

Therefore, the bit allocation can be represented as an optimization problem for-

mulated in (4.28).

Pnt(bi, λT ) =
α−1∑
i=0

2α−inTi
β

2−2(bi+bx)

12

+ λT (2 ·
α−1∑
i=0

2i(bi + bx)−BT ) (4.28)

By taking partial derivative on (4.28) with respect to bi, we can calculate bi in
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terms of λT as expressed in (4.30).

∂Pnt

∂bi

= 2α−inTi
β

2−2(bi+bx)

12
ln 2(−2) + 2i+1λT ≡ 0 (4.29)

bi =
1

2
(α− 2i− 1 + log2 nTi

β
ln 2

6
− log2 λT )− bx (4.30)

Also, by taking partial derivative on (4.28) with respect to λT , it yields:

∂Pnt

∂λT

= 2 ·
α−1∑
i=0

2i(bi + bx)−BT ≡ 0 (4.31)

Plug (4.30) into (4.31), we can calculate λT in (4.32) and (4.33). Then we plug

(4.33) into (4.30) to find the expression of bi as formulated in (4.34).

∂Pnt

∂λT

= 2 ·
α−1∑
i=0

2i(bi + bx)−BT

= (α− 1 + log2 β
ln 2

6
− log2 λT )(2α − 1) +

α−1∑
i=0

2i log2 nTi

−(α− 2)2α+1 − 4−BT (4.32)

log2 λT =
1

2α − 1
[
α−1∑
i=0

2i log2 nTi
− (α− 2)2α+1 − 4−BT ]

+(α− 1 + log2 β
ln 2

6
) (4.33)

bi =
1

2(2α − 1)
((α− 2)2α+1 + 4 + BT −

α−1∑
i=0

2i log2 nTi
)− bx

︸ ︷︷ ︸
constants

+
1

2
(log2 nTi

− 2i)
︸ ︷︷ ︸

variables

(4.34)

Similarly, for the DIF FFT implementations with DF memory scheme, the total

number of bits used for memory cells, BF , is expressed as:

BF = 2 ·
α−1∑
i=0

2α−i−1(bi + bx) (4.35)

In order to find the optimal bit allocation, we need to solve the Langrage equation

expressed in (4.36), where the objective function is calculated in (4.22) and the
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constraint function is the number of overall bit budget as shown in (4.35).

Pnf (bi, λF ) =
α−1∑
i=0

2α−i−1nFi
β

2−2(bi+bx)

12

+ λF (2 ·
α−1∑
i=0

2α−i−1bi −BF ) (4.36)

First of all, by taking partial derivative on (4.36) with respect to bi, we can

express bi in term of λF as:

∂Pnf

∂bi

= 2α−i−1nFi
β

2−2(bi+bx)

12
ln 2(−2) + 2α−iλF ≡ 0 (4.37)

bi =
1

2
(log2 nFi

β
ln 2

6
− 1− log2 λF )− bx (4.38)

Secondly, we can take the partial derivative on (4.36) with respect to λF as:

∂Pnf

∂λF

= 2 ·
α−1∑
i=0

2α−i−1(bi + bx)−BF ≡ 0 (4.39)

Plug (4.38) into (4.39), we can calculate λF in (4.37) and (4.41). Therefore, by

inserting (4.41) into (4.38), we can find the expression of bi for DIF FFT algorithms

as formulated in (4.42).

∂Pnf

∂λF

=
α−1∑
i=0

2α−i−1(bi + bx)−BF

= (log2 β
ln 2

6
− 1− log2 λF )(2α − 1) +

α−1∑
i=0

2α−i−1 log2 nFi

−BF (4.40)

log2 λF = (log2 β
ln 2

6
)− 1 +

1

(2α − 1)
(
α−1∑
i=0

2α−i−1 log2 nFi
−BF ) (4.41)

bi =
1

2
[log2 nFi︸ ︷︷ ︸
variables

+
1

2α − 1
(BF −

α−1∑
i=0

2α−i−1 log2 nFi
)]− bx

︸ ︷︷ ︸
constants

(4.42)
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Figure 4.4: Fixed-point simulation with QPSK signals.

4.4 Quantitative Comparison Results

4.4.1 Fixed-Point Simulation of Different FFT Algorithms

In order to verify the expressions derived in the previous section, a fixed-point

simulation environment is implemented as shown in Fig. 4.4. First, floating point

inverse fast Fourier transform (IFFT) is performed with random QPSK signals.

The wordlength of twiddle factors coefficients is also set to 10 bits. The internal

wordlength of fixed-point FFT is swept from 8 bits to 18 bits. Both 512-point and

1024-point FFTs are simulated. As seen from Fig. 4.5, the SQNR value of all 1024-

point simulations is lower than that of 512-point simulations because the internal

arithmetic rounding errors will accumulate as the length of FFT increases. Based

on observation of Fig. 4.6, radix-2 DIT algorithms have the best accuracy of all.

For both radix-2 and radix-4 FFT algorithms, the DIT versions have better SQNR

performance than the DIF versions, which agrees with the general rules described

in the previous section. However, if split-radix FFT algorithm is adopted, the DIF

version will outperform its own DIT version , which is as expected from Table 4.1

and Table 4.2. It is also clear to see from Fig. 4.6 that all decompositions except

radix-2 DIF FFT show comparative performance.

4.4.2 Bit Allocation of Short-Length FFT Architecture

In order to compare the accuracy of fixed-point FFTs with different inter-

nal wordlength configurations, three different settings of internal wordlength are

specified. The simulation flow is described as follows. First of all, a 128-point

floating-point IFFT is performed with QPSK signals. The transformed output of

IFFT computation is fed into an 8-bit quantized then passed to fixed-point DIT
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Table 4.3: Wordlength setting of each intermediate memory stages.

Wordlength (bits)

1st 2nd 3rd 4th 5th 6th 7th

Case (Inc) 8 9 10 11 12 13 14

Case (Same) 11 11 11 11 11 11 11

Case (Opt) 14 15 15 15 12 12 9

Table 4.4: Comparison of Different Memory Scheme, 128-pt DIT SR-FFT

SQNR (dB) Change(%) Bit Count Change(%)

Case (Inc) 73.1031 0.00% 3316 0.00%

Case (Same) 73.4597 0.49% 2794 -15.74%

Case (Opt) 73.4853 0.52% 2752 -17.01%

split-radix FFT to calculate the SQNR performance. The number of the first row,

Case (Inc), listed in Table 4.3 shows the results from increasing 1 bit after every BF

stage. The second row, Case (Same), shows that all intermediate results are stored

in 11-bit memory cells. The third row shows the memory scheme recommended

from the optimization equation derived in last section. 1000 trials are made. As

observed from Table 4.4, blindly increasing the internal wordlength by 1 bit will

use most memory usage and lead to worst performance compared to the other two

configurations. For the comparison between the second case and the third case, it

is obvious that the optimized wordlength setting will yield comparative simulation

results with fewer bit counts.

Similarly, the simulation is also made for 256-pt DIF FFT. The internal wordlength

is set as shown in Table 4.5. An 8-bit quantizer is used to limit the dynamic range

of transformed IFFT output. The simulation results are shown in Table 4.6.
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Table 4.5: Wordlength of each intermediate memory stages.

Wordlength (bits)

1st 2nd 3rd 4th 5th 6th 7th 8th

Case (Inc) 8 9 10 11 12 13 14 15

Case (Same) 11 11 11 11 11 11 11 11

Case (Opt) 8 11 11 11 11 11 11 11

Table 4.6: Comparison of different memory schemes, 256-pt DIF split-radix FFT.

SQNR (dB) Change(%) Bits Change(%)

Case (Inc) 65.9116 0.00% 4574 0.00%

Case (Same) 66.4539 0.82% 5610 22.65%

Case (Opt) 66.4539 0.82% 4842 5.86%

4.4.3 Simulation with the Presence of Noisy Channel

The main bottleneck of DF-based architecture is the number of concurrent

memory access increases as the length of FFT increases. This leads to the require-

ment of multiple separated memory blocks and duplicate BF modules. Therefore,

for the design of long-length FFT architecture, both the accuracy of transformed

output and the feasible memory access scheme become important issues. Several

previous researches have addressed these two design obstacles. Choi et al. [32]

proposed CBFP method to dynamically normalize the intermediate results after

each stages. In [33], the authors also utilize the idea of CBFP with an on-the-fly

normalization module so as to remove the usage of temporary buffers. In [29]

and [30], the authors increased the efficiency of memory access by inserting two

caches and reported that the memory blocks are the largest blocks for long-length

FFT architecture. Generally speaking, the designs of long-length FFT architec-

ture will use centralised memory blocks to save hardware cost. As a result, we

can not freely adjust the wordlength of intermediate memory storages at every
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Figure 4.7: The block diagram of 2048-point fixed-point FFT simulation.

stage. Recall from (4.22) and (4.23), we can reduce the overall noise power by

assigning more bits in the early stage of FFT computation. Therefore, in order

to achieve better accuracy, a 2048-point split-radix DIF FFT architecture with

improved FFT processor is simulated. As shown in Fig. 4.7, the wordlength of

main memory block is 12 bits and that of FFT core and internal cache is set to

16 bits. Scaling operations are performed after every butterfly stage to maintain

the dynamic range. A simulation environment with frequency selective channel is

built to observe the effect of bit error rate (BER) with improved FFT processor.

The channel is modeled as a finite length FIR filter as a quasi-static model. It

has 3 consecutive paths which are located at integer chip position. Their relative

power profile is [0 0 0] dB, which is power normalized so that the overall average

channel impulse response energy is equal to 1. The noise at the receiver is assumed

to be additive white complex Gaussian noise. The signal-to-noise ratio (SNR) is

defined as ratio of the average signal tone power to the noise power at a frequency

bin. In order to estimate the average BER, at least 1000 channel realizations are

simulated for each SNR point The receiver is assumed to have perfect knowledge

of the channel state information. The signal flow is shown in Fig. 4.8. The channel

SNR is swept from 0 dB to 40 dB. As we can see from Fig. 4.9, the long-length

FFT computation with improved FFT processor can achieve better BER under

high-SNR conditions.
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Parallel Integer FFT Architecture

Design for MB-OFDM

In this chapter, a parallel VLSI architecture based on mixed-radix IntFFT for

the upcoming MB-OFDM [7–9] system is proposed. The periodicity property of

lifting coefficients proposed in Chapter 3 and the concurrent relationship of non-

trivial multiplications are both utilized to reduce the hardware cost of complex

multipliers. The proposed mixed-radix FFT architecture is based on Eq. (2.58)

and Eq. (2.59) to arrange the complex multiplications. The I/O behavior of the

proposed architecture is in a parallel fashion with four concurrent samples. The

proposed design uses DF memory strategy to keep the intermediate results. Four

data paths are required for each sub-modules. The periodicity of lifting coefficients,

the multiple constant multiplier (MCM) technique and multiplication reordering

are utilized to reduce the complexity of multipliers and to increase the hardware

utilization.

5.1 System Requirement of MB-OFDM System

The rapidly increasing demand of OFDM-based applications, including wireless

LAN [6] and MB-OFDM systems [7–9] makes processing speed a major consider-

ation in FFT architecture design. As such the study of high-performance VLSI

FFT architecture is of increasing importance.

58
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The structure of the MB-OFDM system is similar to that of a conventional

wireless LAN physical layer. The main difference is that the carrier frequency

is varied with the time-frequency code. The MB-OFDM system is designed for

low-complexity solutions by limiting the transmitted signals with only QPSK con-

stellation to reduce the usage of internal memory in the digital baseband process-

ing. The system adopts an OFDM scheme with 128 sub-carriers [9], which leads

to the requirement of a 128-pt FFT/IFFT architecture. The bandwidth of the

transmitted signals is 528Mhz and the symbol length is 312.5ns for all data rates.

A guard interval (9.5 ns) is appended and a prefix interval (60.6 ns) is inserted for

each OFDM symbol. In other words, the desirable FFT/IFFT architecture has to

complete one OFDM symbol within the information interval (242.2 ns).

5.2 Previous Work on FFT Architecture

Numerous researches have been done for FFT architectures in the past decades.

As for the implementation of FFT algorithms, most previous works address two

design issues: the efficiency of complex multipliers and the memory strategy. The

design parameters have to be adjusted according to different target applications.

Designers focus on increasing the utilization rate of multipliers in the design of

short-length FFT architecture. In [26], the authors proposed a coefficient reorder-

ing scheme with the commutator architecture to reduce the switching activity. Yeh

and Jen [27] proposed a data rescheduling scheme by bit-reverse and bit-inverse

indexing to reduce the number of required multipliers. Han et al. [28] achieve the

same purpose by sharing the subexpressions between multiplicands to improve the

utilization rate of complex multipliers. Conversely the memory access strategy

becomes more important on designing a long-length FFT architecture. In [29]

and [30], the authors increase the memory access efficiency by inserting two caches

between the functional units and the main memory banks. Kuo et al. [31] also

utilize the memory-cache architecture and expand it with the ability of variable-

length FFT computations. Because the proposed architecture is targeted at the

MB-OFDM system, the main design challenge is how to reduce the complexity of
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Figure 5.1: Delay commutator buffering strategy.

multipliers.

5.3 Memory Access Strategy

Take a N-point radix-2 DIF algorithm as example, the computation cannot

start until both x(n) and x(n + N
2
) are available. For sequential input, the two

samples will be separated by N
2

cycles if only one sample is input per clock cycle. As

a result, the first half input samples have to be stored in internal memory storages

until the second half samples arrive. There are mainly two different approaches:

DC [47] as shown in Figure 5.1 and DF as shown in Figure 5.2 [12]. The main

idea of DC memory scheme is to balance the odd- and even-frequency part of

FFT computation by inserting internal buffers. During the first N
2

cycles, the first

half samples are stored in ”N
2

first-in-first-out (FIFO) I”. At the next N
2

cycles,

the butterfly receives x(n) from ”N
2

FIFO I” and x(n + N
2
) from input ports.

Meanwhile, the butterfly send one output into ”N
2

FIFO II” and the other one

output into complex multipliers. During the N cycles,data are stored into the ”N
2

FIFO I” in the first N
2

cycles and then are read from the FIFO in the second N
2

cycles. Hence, the utilization rate of each FIFO is only 50%.

For the DF memory scheme, in the first half cycles, the BFi core will simply

store the input samples into the feedback memory. After the first N/2 cycles, the

BFi core retrieves the x(n) samples from the feedback memory, performs corre-

sponding operations with the sample x(n + N/2) and then feeds the output into

the next BFi+1 core. The necessary number of memory cells for the kth stage is N
2k .

Therefore, by mathematical induction, the total required memory is N − 1 cells.

In the proposed architecture, a multiple delay feedback (MDF) scheme as illus-
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Figure 5.3: Multiple delay feedback buffering strategy.

trated in Figure 5.3 to process four input samples in every cycle. The basic idea of

MDF is similar to that of DF so that the overall number of internal memory cells

remains the same. However, multiple BF modules are required to deal with mul-

tiple input samples concurrently. In order to reduce the hardware cost of complex

multiplers, the concurrency of input data is analyzed in the next section.

5.4 Concurrency Analysis of Complex Multipli-

cations

According to Eq. (2.59), the radix-4 FFT shows better spatial regularity since

only trivial multiplications are used for the first quarter input samples. The con-

current lifting coefficient groups used in the first and the second multiplier stage

are shown in Table 5.1 and Table 5.2 respectively, where Ui indicate the ith pair

of the universal coefficient set. Two constant multipliers are necessary in the first
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Table 5.1: Scheduling of the constant multipliers in the first multiplier stage.

Time Slot 0 1

1st MUL 0 0

2nd MUL 0 U16

3rd MUL 0 0

4th MUL −i −U16

Table 5.2: Scheduling of the constant multipliers in the second multiplier stage.

Time Slot 0/1 2 3 4 5 6 7

1st MUL 0 0 0 0 U16 U12 U4

2nd MUL 0 U8 −U8 U4 U12 U8 U8

3rd MUL 0 U16 −U16 U8 U8 −U4 U12

4th MUL 0 U8 −U8 U12 U4 −U16 0

multiplier stage. For the second multiplier stage, only 3 constant multipliers and

one MCM are required after rescheduling the order of complex multiplications as

listed in Table 5.3.

Since simultaneously only four twiddle factors are used due to the parallel input

fashion, certain coefficients may never appear in the same cycle. By applying the

selective criteria of optimal coefficient set described in Chapter 3, totally sixteen

possible combinations of coefficient groups may appear in the third stage. Observed

from the concurrency analysis of concurrent multiplicands shown in Fig. 5.4, six

mutual exclusive subsets of the universal set for the third stage are found as:

{1, 6, 13}, {2, 12, 16}, {3, 7, 8}, {4, 9, 14}, {5, 10, 15}, and {11}. This observation

leads to hardware saving by applying the MCM technique [41,48]. As illustrated in

Fig. 5.5 and Fig. 5.6, the lifting coefficients are first represented in the canonical

signed digit (CSD) format [49, 50] to reduce the number of additions. The digits

of the same group with the dark grey background form a saving group; same as
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Table 5.3: Reordering of the complex multiplications in the second multiplier stage.

Time Slot 0/1 2 3 4 5 6 7

1st MUL 0 0 0 U12 U12 U12 U12

2nd MUL 0 U8 −U8 U8 U8 U8 U8

3rd MUL 0 U8 −U8 U4 −U4 −U4 U4

4th MUL 0 U16 −U16 0 −U16 −U16 0

the digits with light grey background. For example, by defining partial products,

p0 = (101)CSD and p1 = (101)CSD, each coefficients in the second subset of P

coefficients can be rewritten as Eq. (5.1)-(5.3) with the partial products. Similarly,

by defining partial product q0 = (101)CSD and q1 = (1001)CSD, the second subset

of Q coefficients can also be represented as Eq. (5.4)-(5.6) to share the common

adders. For 12-bit lifting coefficients, the total number of adders is reduced from

131 to 78, which is a 40.4% saving. Routing network and multiplexers are necessary

to arrange the input samples along with corresponding MCMs. An additional 4-bit

control signal is also required to indicate the desired coefficient combination. The

hardware diagram of MCM is shown in Fig. 5.7. In brief, no general multiplier is

used to perform the lifting operations in the proposed design. Totally five MCMs

and eight constant multipliers (two for the first stage, five for the second stage and

the other one for the third stage) are necessary.

UP2 = (000010100101) = p1 ¿ 5 + p0 (5.1)

UP12 = (001010010101) = p0 ¿ 7− p0 ¿ 2 + 1 (5.2)

UP16 = (010101010000) = p1 ¿ 8 + p0 ¿ 4 (5.3)

UQ2 = (00010100101) = q0 ¿ 6 + q1 (5.4)

UQ12 = (010010010000) = q1 ¿ 6 + 10000 (5.5)

UQ16 = (101010101000) = q0 ¿ 9− q0 ¿ 5− 1000 (5.6)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 X X X X X

2 X X X X X X

3 X X X X X

4 X X X X X X X X

5 X X X X X X

6 X X X X X X X X

7 X X X X X

8 X X X X X X X X X X X X

9 X X X X X X

10 X X X X X X X X X

11 X X X X X X X

12 X X X X X X X X X

13 X X X X X X X X X

14 X X X X X X

15 X X X X X

16 X X X

Figure 5.4: Concurrency analysis of the 3rd stage multiplier.

1 0 0 0 0 0 1 0 -1 0 0 1 0

6 0 0 0 1 0 1 0 -1 0 0 0 0

13 0 0 1 0 1 0 1 0 0 1 0 1

2 0 0 0 0 1 0 -1 0 0 1 0 1

12 0 0 1 0 1 0 0 -1 0 -1 0 1

16 0 1 0 -1 0 1 0 1 0 0 0 0

3 0 0 0 0 1 0 1 0 -1 0 0 -1

7 0 0 1 0 -1 0 -1 0 0 1 0 -1

8 0 0 1 0 -1 0 1 0 -1 0 0 -1

4 0 0 0 1 0 -1 0 0 1 0 1 0

9 0 0 1 0 0 -1 0 1 0 -1 0 0

14 0 1 0 -1 0 0 -1 0 0 -1 0 1

5 0 0 0 1 0 0 0 0 0 -1 0 1

10 0 0 1 0 0 0 0 0 0 0 0 1

15 0 1 0 -1 0 0 -1 0 0 -1 0 1

11 0 0 1 0 0 1 0 0 -1 0 0 -1

Pi Coefficient in CSD Format

1st Subset

2nd Subset

3rd Subset

4th Subset

5th Subset

6th Subset

Figure 5.5: MCM representation of P [n] of the first radix-4 FFT stage.
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1 0 0 0 0 -1 0 1 0 0 -1 0 0

6 0 0 -1 0 0 -1 0 -1 0 -1 0 1

13 0 -1 0 -1 0 1 0 0 0 -1 0 0

2 0 0 0 -1 0 1 0 0 -1 0 0 -1

12 0 -1 0 0 -1 0 0 1 0 0 0 0

16 -1 0 1 0 1 0 -1 0 -1 0 0 0

3 0 0 0 -1 0 -1 0 1 0 1 0 -1

7 0 -1 0 1 0 1 0 1 0 0 0 0

8 0 -1 0 1 0 0 0 -1 0 0 0 0

4 0 0 -1 0 1 0 0 -1 0 0 0 0

9 0 -1 0 0 1 0 0 1 0 1 0 0

14 0 -1 0 -1 0 0 0 -1 0 -1 0 1

5 0 0 -1 0 0 0 0 1 0 0 -1 0

10 0 -1 0 0 0 1 0 0 0 -1 0 -1

15 -1 0 1 0 1 0 1 0 0 0 0 1

11 0 -1 0 0 0 0 -1 0 0 1 0 -1

Qi Coefficient in CSD Format

1st Subset

2nd Subset

3rd Subset

4th Subset

5th Subset

6th Subset

Figure 5.6: MCM representation of Q[n] of the first radix-4 FFT stage.

MUX

MCM1 (1,6,13)

MCM2 (2,6,12)

MCM3 (3,7,8)

MCM4 (4,9,14)

MCM5 (5,10,15)

Constant MUL (11)

MUX

Control Signal (4-bits)

Figure 5.7: The hardware block diagram of proposed MCM.
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Table 5.4: Control signal of different decompositions.

Control Signal (C) 00 01 10 11

Decomposition Type Type (a) Type (b) Type (c) Type (c)

Table 5.5: Intermediate variables of each LS-MAC stage.

Variable Description

R0 xr + ρ⊕ (Pxi) + ρUip + ρ

I0 ρ⊕ xi

R1 R0

I1 I0 + s⊕ (R0Uiq) + s + c[1]

5.5 The Digital Arithmetic of Lifting Operations

In general, the lifting operations can be regards as a cascaded two-port network,

where one multiplication and one addition are involved in each stage. In order

to accommodate four alternative decompositions and preserve the SCI property, a

specialized multiply-and-add accumulator (MAC) for lifting operations is proposed.

Assume two input xr and xi as shown in Fig. 5.8, a two bit control signal, C, listed

in Table 5.4 is used to indicate the current decomposition type and s represents

forward operation (s = 0) or inverse operation (s = 1). The addition is combined

as the last stage of the Wallace tree of the multipliers. Besides, in order to save

the additional adder used in the sign inverse of two’s complement numbers, the

increment adder is also merged into later operations. As the result, if we define

ρ = s ⊕ c[1], the temporary variable after each MAC stage can be characterized

in Table 5.5, where Uip and Uiq are the P and Q coefficients of the ith pair of the

universal coefficient set. Therefore, by merging the addition and increment into

multiplication, each lifting operations can be performed by one constant MAC.

Similarly for the output of Type (b) and Type (d), the increment of sign inverse

is propagated to next BF stage as an additional carry-in input.
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Figure 5.8: The general LS architecture with specialized MAC.

5.6 Hardware Resource Comparison

The proposed architecture utilized MDF scheme to store temporary results.

Four samples are input at every cycle. The initial pipeline delay is 32 cycles. It

takes 32 cycles to complete one 128-point FFT/IFFT operation. The hardware

resource comparison to previous designs is highlighted in Table 5.6. As we can see,

the MDF-based architecture uses less memory usage than multiple delay commu-

tator (MDC) designs as presented in [47] and [51]. Compare to [44], the proposed

design has higher efficiency of complex multipliers because no general multiplier is

required.

5.7 System-Level BER Performance

A Simulink-based UWB physical layer model [54] depicted in Fig. 5.9 is used

to verify the performance of IntFFT. Both IntFFT and FxpFFT are simulated.

The transmission rate of the simulation platform is targeted at 200Mb/s, which is

the highest mandatory rate of MB-OFDM standard. The result of floating point

FFT is also illustrated as the upper bound of system performance. In order to

reduce the usage of internal memory and maintain lower performance degradation,

the simulation is performed with different wordlength. As seen in Fig. 5.10, the

minimal acceptable wordlength of proposed architecture is 12 bits, which agrees
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Table 5.6: Hardware resource comparison of the 128-pt parallel FFT architectures.

R2MDC [47] Garcia [51] Zhang [52] Lin [53] Proposed

Registers 190 190 544 124 124

Complex 6 10 3 2 + 4x0.62 5 MCMs +

Multipliers 6 CMs

Complex Adders 14 34 48 48 48

FFT Radix-2 Split-Radix Radix-22 Radix-8 Radix-22

Algorithm Radix-2 Radix-2 Radix-2

Input Parallel Parallel Parallel Parallel Parallel

Fashion (2 ports) (6 ports) (4 ports) (4 ports) (4 ports)

Output Parallel Parallel Parallel Parallel Parallel

Fashion (2 ports) (6 ports) (4 ports) (4 ports) (4 ports)

Multiplier General General CORDIC General LS

Memory MDC MDC Loopback MDF MDF

with the conclusions from [55]. The system-level performance comparison made

between IntFFT and FxpFFT is shown in Fig. 5.11. As listed in Table 5.7, IntFFT

could achieve better BER performance compared to FxpFFT in most cases.
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Figure 5.9: Simulink-based simulation platform of UWB physical layer.
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Figure 5.10: BER comparison with different internal wordlength.
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Figure 5.11: BER comparison between IntFFT and FxpFFT.

Table 5.7: BER improvement ratio of Integer FFT.

Channel SNR FxpFFT IntFFT Improvement (%)

4 3.4953× 10−1 3.4965× 10−1 −0.0347

6 1.2601× 10−1 1.2600× 10−1 0.0045

8 2.0316× 10−2 2.0306× 10−2 0.0486

10 1.9714× 10−3 1.9501× 10−3 1.0789

12 1.3103× 10−4 1.4120× 10−4 −7.7599

14 9.0694× 10−6 8.1381× 10−6 10.2688

16 5.0003× 10−7 4.6253× 10−7 7.5000
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Pipeline Integer FFT

Architecture Design for 802.11a

In this chapter, a pipeline VLSI architecture based on radix-22 IntFFT is pro-

posed to demonstrate its efficiency. The IntFFT algorithm guarantees the PR

property of transformed samples. For a 64-points radix-22 FFT architecture, the

proposed architecture uses 2 sets of complex multipliers (6 real multipliers) and has

6 pipeline stages. The whole design is synthesized and simulated with a 0.18µm

TSMC 1P6M standard cell library and its reported equivalent gate count usage is

only 17,963 gates. Each module of the proposed architecture is introduced in the

following section.

6.1 Butterfly Core

Two signals are used to control the BF core as shown in Figure 6.1: BFi BP and

BFi CTRL. The former is a one bit control signal and is asserted to 1 during the

first half of the DF operations, which means that there is no actual operation and

the input sample will be fed into the DF memory bank directly. The BFi CTRL

control signal for each BF module is a 2-bit variable. Assuming that I1 and I2 are

the input samples to the BF core, I1r and I2r respectively denote the real parts,

and I1i and I2i stand for the imagine part. In Table 6.1, the functionality of four

different BFi CTRL modes is listed. Mode ”00” and ”11” are used when ±j is
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Figure 6.1: Illustration of BF core.

Table 6.1: List of BFi CTRL operation modes.

Mode Function Description

00 I1 + I2 Or = I1r + I2r; Oi = I1i + I2r

11 I1 − I2 Or = I1r+ ∼ I2r + 1; Oi = I1i+ ∼ I2i + 1

01 I1 + jI2 Or = I1r+ ∼ I2i + 1; Oi = I1i + I2r

10 I1 − jI2 Or = I1r + I2r; Oi = I1i+ ∼ I2r + 1

not present. The remaining two modes, ”01” and ”10”, are issued when a ±j

term occurs. In order to save the adders used in two’s complement conversion, the

additional +1 addition is merged into latter adders as a carry-in input as is shown

in Figure 6.1. Because the critical path of the FFT architecture is determined

by the multipliers, this method saves on hardware cost and does not degrade the

overall performance.
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Figure 6.2: Architecture view of coefficient passing scheme.

6.2 Coefficient Passing Scheme

Observing from the lifting decomposition of the IntFFT algorithm in Figure

2.9, it is seen that the first and third lifting coefficients are identical. This property

makes it possible to share lookup table (LUT) values for the lifting coefficients.

A coefficient passing scheme is proposed here to achieve this idea. The LUTs of

coefficients are no longer constructed with individual lifting blocks but instead

with the global CTRL module. The coefficients are generated corresponding to

the current status of lifting stages and passed with the input samples to cascaded

lifting stages. For example, using the first set of lifting multipliers between BF1

and BF2, CTRL module will only pass P0 and Q0 to the LS0 module. Within

the LS0 module, two register cells are required for temporary storage of lifting

coefficients. In the next cycle, P0 and Q0 will be passed to the cascaded stages

along with the corresponding input data. Concurrently, the CTRL module will

send new values of P1 and Q1 to LS0 for computation of the next cycle. Note that

in the third lifting stage, only the Pi coefficient is necessary, therefore there is only

one set of register cells required for the LS1 module. In summary, three additional

register sets are used to save one 32-to-1 MUX and one Pi coefficient LUT. The

architectural view of the proposed design and its timing behavior diagram are

shown in Figure 6.2 and Figure 6.3 respectively.
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Figure 6.3: Timing behavior of coefficient passing scheme.

Figure 6.4: Example of balanced BF operations.

6.3 Memory Strategy

As mentioned in Chapter 5, the memory strategy of the BF stage is an impor-

tant issue for FFT architecture design. There are mainly two different approaches:

DC [47] and DF [12] introduced in previous chapter respectively. In our archi-

tecture, the latter is adopted and the projection view of the overall architecture

design is depicted in Figure 6.5.
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Figure 6.5: Projection view of DF memory scheme.

6.4 SQNR Comparison

In order to verify the accuracy of the IntFFT against the conventional FxpFFT,

both algorithms are implemented in Matlab for comparison. The system test flow

is as follows. First, a function library of binary operators is constructed as the

fundamental components. Second, the Matlab version IntFFT is implemented

to verify that the PR property is preserved and that the output agrees with the

Verilog version design. Third, the FxpFFT is implemented and the SQNRs of the

transformed outputs of both algorithms are calculated. 10, 000 independent trials

were run to obtain the average SQNR, as plotted in Figure 6.6. Based on the

simulation results, when the wordlength for the lifting coefficients and the twiddle

factors is set to 12 bits, both the IntFFT and the FxpFFT yield sufficient SQNR

performance when the internal wordlength is 12 bits.

6.5 BER Comparison in 802.11a Wireless LAN

Systems

An OFDM-based wireless LAN system as shown in Figure 6.7 is constructed

in Simulink for system level simulation. A multipath frequency-selective fading

channel is used to evaluate the BER versus different channel SNR values. The

wordlength of the coefficients is set to 12 bits. Various modulation schemes includ-
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Figure 6.6: The SQNR comparison between IntFFT and FxpFFT, Nc = 12.

ing QPSK (1/2), 16-quadrature amplitude modulation (QAM) (1/2) and 64-QAM

(1/2) are simulated. From Figure 6.8, it is seen that IntFFT performs as well as

conventional FxpFFT even if the noisy channel is present.

6.6 Design Statistics

The proposed design is implemented in Verilog HDL and simulated by Verilog-

XL. After the RTL level, it is synthesized by Buildgates and the AP&R flow is

implemented by SOC Encounter with a TSMC 0.18-µm 1P6M process standard cell

library. After the AP&R process, the generated standard delay format (SDF) file is

back annotated to the Verilog-XL simulator in order to verify if the proposed design

is correct. Then, the power consumption analysis is performed by VoltageStorm.

In the design, the larger delay feedback memory blocks are implemented with pre-

generated memory hard macros. The input sequence uses 12-bit for both real and

imaginary parts. The maximum system clock is specified at 200-Mhz during the

synthesis stage. The final design is a pad limited design. The core size is 500µm

x 500µm, with a core utilization of 80%. The whole chip size is 975µm x 977µm,
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Figure 6.7: Schematic of 802.11a Simulink simulation platform for IntFFT.
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Table 6.2: Comparisons of different FFT architecture

Design Architecture Gate Critical Power

Count Path Consumption

[27] Split-Radix 38,168 6.09 ns 507.85 mW

(100Mhz, 3.3V)

Proposed Radix-22 17,963 5.00ns 83.56 mW

(200Mhz, 1.8V)

with 39 data pins, 8 power pins and 1 filler pin. The reported equivalent gate count

is 17, 983 gates. The estimated core power consumption is 83.56-mW. The gate

count usage for each of the major components is listed in Table 6.3. The layout

view is shown in Figure 6.9.

6.7 Hardware Resource Comparisons

The hardware resource comparisons of several classical FFT architecture de-

signs are highlighted in Table 6.4. From this comparison of different architectures,

we can conclude that:

1) All the DF-based designs require smaller memory size than DC-based designs

[47].

2) In Comparing radix-22 based designs [12] to radix-2 design [56], the former

uses fewer number of complex multipliers and can access the memory banks

more efficiently.

3) Comparing the radix-22 based design to the split-radix based design, the

hardware cost of both is the same in terms of the number of adders and

required memory size, while the multiplicative complexity of the latter is

less.
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Table 6.3: Area usage of each building blocks

Category CTRL BF Core MUL LS Feedback

Memory

Area 8.68% 25.67% 28.63% 36.31%

Table 6.4: Hardware resource usage comparisons

Architecture Complex Multipliers Complex Adders Multiplicative

R2MDC [47] 2(log4 N − 1) 4log4N Radix-2

R2SDF [56] 2(log4 N − 1) 4log4N Radix-2

R4SDF [57] log4 N − 1 8log4N Radix-4

R22SDF [12] log4 N − 1 4log4N Radix-4

SRSDF [27] log4 N − 1 4log4N Split-Radix

Proposed1 log4 N − 1 4log4N Radix-4

4) The proposed design requires less memory usage than previous radix-22 based

design [12].
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Figure 6.9: Layout view of proposed FFT architecture design.
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Conclusion and Future Work

To conclude, we summarize the work on fixed-point analysis of FFT algorithms

and the architecture design of IntFFT for two wireless communication standards.

7.1 Conclusion

In this thesis, the IntFFT with optimized coefficient set is proposed and quan-

titively compared to other popular FFT implementations. The advantage of using

the selected coefficient set are twofold: First, it utilizes the periodicity of lifting

coefficients so as to reduce the size of coefficient read-only memory (ROM) since

only N
8

coefficients are enough to represent all twiddle factors for length-N FFT

computation. Besides, it also leads to better accuracy because the MSE with the

optimized coefficient set is lower. Based on the quantitive simulation results of

Figure 3.6 and Figure 3.7, IntFFT with optimized coefficient set has better SQNR

performance compared to other implementations.

Secondly, a comprehensive study is presented for the effect of fixed-point arith-

metic in FFT operations. We have derived a general analytic expressions for the

noise power of overall arithmetic rounding errors for all FFT algorithms. The

theoretical derivations show the significance of the location of the non-trivial com-

plex multiplications. Because the quantization noise power will be amplified after

each butterfly stage, the less introduced noise power in the early stage will lead to

better performance. Compared to previous works, a general propagation model is

81
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proposed to quickly estimate the arithmetic quantization errors of different FFT

algorithms. From the simulation results most FFT algorithms yield similar per-

formance except radix-2 DIF FFT. An operational optimization procedure is also

proposed to reduce the hardware cost without sacrificing SQNR performance for

short-length FFT architecture. From the simulation results, the FFT modules

with higher accuracy will lead to better BER with the presence of noisy channel.

Lastly, a pipeline architecture for 802.11a wireless LAN and a parallel archite-

cure for MB-OFDM are proposed. The proposed architectures focus on improving

the efficiency of complex multipliers for non-trivial twiddle factors. The former

utilizes the PR property to reduce the memory usage and yields comparative BER

performance. By coefficient reordering and finding the concurrent relationship

of non-trivial multiplications, the common terms of different constant multipliers

within the same mutual exclusive set are shared to reduce the hardware cost used

for complex multipliers in the proposed parallel architecture. Furthermore, a spe-

cialized LS-MAC architecture is also proposed for different LS decomposition types

and can perform both forward and inverse lifting operations with a simple control

logic.

7.2 Future Work

Many problems still have not been solved completely. Below, we outline some

works and research directions that can be continued in the future.

7.2.1 Variable-length FFT Architecture Design

With the latest development of broadband wireless communication [58–60],

the long-length FFT with ability to deal with variable-length input vectors is

getting important. Most of the existent long-length FFT architectures target at a

particular length and utilize the regularity to reduce the multiplicative complexity

[33,61,62]. However, with the new consideration of variable-length requirement, a

feasible architecture should meet the throughput requirement without sacrificing

design generality. Thus, a dynamic cache-based FFT processor to handle variable-
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length input vectors is increasingly desired.

7.2.2 Fixed-point Analysis of FFT Algorithms with BFP

Operations

In the long-length FFT architecture, block floating point (BFP) arithmetic

is used to dynamically adjust the exponent of intermediate results to increase

the dynamic range and improve the overall SQNR performance. Further research

could be done to study the effect of fixed-point arithmetic for long-length FFT

computation as both scaling operation and BFP arithmetic are used.
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