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Abstract

The bases of developmental dyslexia were explored using
connectionist models. The behavioral literature suggests
that there are two dyslexic subtypes: “phonological™
dyslexia involves impairments in phonological knowledge
whereas in “surface " dyslexia phonological knowledge is
apparently intact and the deficit may instead reflect a more
general developmental delay. We examined possible
computational bases for these impairments within
connectionist models of the mapping from spelling to
sound. Phonological dyslexia was simulated by reducing
the capacity of the models to represent this type of
information. The surface pattern was simulated by reducing
the number of hidden units. Performance of the models
captured the major behavioral phenomena that distinguish
the two subtypes. Phonological impairment has a greater
impact on generalization (reading nonwords such as
NUST); the hidden unit limitation has a greater impact on
learning exception words such as PINT. More severe
impairments produce mixed cases in which both nonwords
and exceptions are impaired. Thus, the simulations capture
the effects of different types and degrees of impairment
within a major component of the reading system.

1. Introduction

One of the attractions of the connectionist or parallel
distributed processing approach is that it can be used to
develop unified accounts of normal and disordered behavior.
Effects of brain injury or developmental anomaly can be
simulated by “damaging” components of a neural network
model of normal performance. A prominent example of this
approach is provided by research on reading and dyslexia.
Becoming a skilled reader involves mastering the
correspondences between spelling and pronunciation.
Sejnowski and Rosenberg (1987) developed a neural network
model of this process, and Seidenberg and McClelland
(1989, hereafter SM89) used a similar model to account for
detailed aspects of behavior. Dyslexia--failures to acquire
age-appropriate reading skills despite normal intelligence and
adequate opportunity 1o learn--is often associated with
impairments mapping from spelling to sound (Castles &
Coltheart, 1993). Our goal was to see if the behavioral
impairments associated with dyslexia could be explained in
terms of damage to a model of skilled reading.

There is an emerging consensus that there are two
prominent subtypes of developmental dyslexia (Castles &
Coltheart, 1993; Murphy & Pollatsek, 1994; Manis et al.,
1996). The reading impairment observed in phonological
dyslexia is apparently secondary 1o impaired processing of

spoken language. Such children perform poorly on spoken
language tasks such as counting the number of syllables in a
word or deciding if two words rhyme (see Farmer & Klein,
1995, for review). In reading they are markedly impaired in
their ability to use their knowledge of spelling-sound
correspondences to pronounce novel letter strings (nonwords
such as NUST). These children do not resemble younger
children who are learning to read normally. The second
subtype has been termed developmental surface dyslexia
(Castles & Coltheart, 1993). Such children are also impaired
in reading but their phonological processing capacities
appear to be intact. They have particular difficulty learning
to read words with irregular spelling-sound correspondences,
such as GIVE and PINT. These children's performance
closely resembles that of much younger normal readers;
hence they exhibit a developmental delay.

There are two theoretical accounts of these phenomena,
tied to models of normal word recognition. In the dual-route
model (Coltheart et al., 1993), there are separate "lexical"
and "nonlexical" mechanisms for pronouncing letter strings.
The "lexical" mechanism involves knowledge associated
with specific words; it provides the only way of
pronouncing irregular words such as PINT and cannot be
used to pronounce novel strings such as NUST. Surface
dyslexia is thought to involve an impairment in acquiring
this mechanism. The "nonlexical” mechanism consists of
rules governing correspondences between graphemes and
phonemes; it can be used to pronounce novel letter strings
but not irregular words. Phonological dyslexia is thought to
involve an impairment in acquiring the pronunciation rules.
Note that Pinker's (1991) theory of the past tense is also a
dual-route model, with a rule component distinct from a
word-specific component.

A number of behavioral phenomena related to normal
performance and effects of brain injury on reading present
difficulties for the dual-route theory (Seidenberg, 1995; Plaut
et al., 1996). Several aspects of developmental dyslexia
present further challenges for this approach. The idea that
phonological dyslexia involves an impairment in acquiring
grapheme-phoneme correspondence rules misses the fact that
these children have broader phonological impairments that
are manifested in tasks other than reading. The idea that an
impairment in the lexical mechanism underlies the surface
pattern fails to explain the fact that such children tend to
exhibit a broad developmental delay that affects all aspects of
reading (Manis et al., 1996), not just exception words.
Finally, it is an embarrassment for the dual-route theory that
selective impairments in the two processing subsystems are
rarely if ever observed. Most dyslexics are impaired in
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reading both exception words and nonwords; the dual-route
theory can only explain this by assuming that both routes
happen 10 be impaired in most cases, but there is no
independent evidence that this is so (Manis et al., 1996).

An alternative to the dual-route account is provided by
connectionist models in which there is a single,
homogeneous mechanism for mapping between spellings
and pronunciations. Such models provide a good account of
a broad range of phenomena concerned skilled performance
and breakdown following brain injury (SM89; Plaut et al.,
1996). The different patterns of developmental dyslexia
might be explained within such models in terms of different
rypes of damage to a single underlying mechanism, rather
than damage to different pronunciation mechanisms. For
example, Manis et al. (1996) suggest that the phonological
subtype could result from impairments in phonological
representation in an SM89 style model. Such degraded
representations would make it harder to acquire spelling-
sound correspondences and also interfere with performance
on other tasks involving phonological information.
Similarly, the surface form could derive from a limitation on
the capacity of the network to encode information--for
example, limiting the number of hidden units. This would
affect the leaming of exception words (see SM89 for details)
but a severe enough impairment would affect regular words
and generalization as well.

The purpose of the present research was to assess the
adequacy of the connectionist account by seeing if we could
account for major aspects of the distinct dyslexic subtypes.
We implemented a version of an SM89-style model of the
mapping from spelling to sound and then ran versions with
either phonological or capacity limitations. The models were
assessed in terms of their capacities to learn words with
regular and irregular pronunciations and to pronounce novel
items.

2. Model Architecture

The phonological representation used in the simulations
consisted of 6 slots, each slot corresponding to a phoneme
in a monosyllabic word, and consisting in turn of 11
phonetic features: sonorant, consonantal, voiced, nasal,
degree, labial, palatal, pharyngeal, lower_lip, tongue and
radical. These features could take on a continuum of values
ranging from between -1 and +1. The slot arrangement was
vowel centered, and could encode syllables of CCVVCC
format. A word could have at most two consonants before
the vowel, and two after. Normal vowels were encoded as a
single vowel phoneme and a second empty slot; diphthongs
were encoded as pairs of vowel slots. The orthographic
representations consisted of 8 slots, representing letter
positions. Letters were encoded using a localist
representation, with 26 units per position, and were also
vowel centered. Up to 3 consonants could be represented
before the initial, centered vowel, and up to 4 letters
(consonants or vowels) after the vowel.

The 66 phonological units were fully connected to one
another with initially random weights ranging from -0.001
to 0.001. An additional set of 20 cleanup units were added,
with initially random weights going from each of the
phonological units to each cleanup unit, and back from the
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cleanup units to the phonological units (see Figure 1).
These units are analogous to the cleanup units used in
semantic atractor neiworks (e.g., Plaut & Shallice, 1993).
The direct connections between featural units within a
phoneme were able 10 encode intraphonemic constraints;
those between slots encoded constraints related to the
sequence of phonemes. The cleanup units allowed higher
order dependencies among features to be represented.

Phonological
Cleanup Units

[eleYelele)e)

(Bocooooooo

Phonological Output Units

Figure 1: The Phonological Component

The schematic architecture of the "normal” reading model
is shown in Figure 2. Orthographic units projected onto a
set of 100 hidden units, which in turn projected onto the
phonological units of the phonological component. The task
of the reading model was to map orthographic
representations of words onto the correct phonological units.

We then modified this architecture to examine the effects
of phonological impairments on reading acquisition. Two
conditions were used which imposed different limitations on
the extent to which phonological information could be
encoded. The first model was identical to the normal
unimpaired model except that the weights in the
phonological network were subject to weight decay (see
Hinton, 1989). The effect of this decay is to apply pressure
to the network to avoid large values on the weights. The
network can still encode higher order relationships between
the units, but the strength of these encodings is curtailed. A
weight decay constant of 0.00005 was used.

In the second, more severely impaired simulation the
cleanup units were deleted from the phonological attractor
network. By removing the cleanup units, we disabled the
network’s ability to encode higher order relationships among
the phonological units. This impaired phonological
component had only direct connections between the
phonological units, and hence was limited in the complexity
of computations it could perform (see Minsky & Papert,
1969). Both of these simulations had 100 hidden units, the
same number as the normal model.

In each condition we first trained the phonological
component on a set of phonological word forms. The
weights that resulted from this pretraining were used when
each phonological component was incorporated in a model
that leammed to pronounce written words. The goal was to
determine how reductions in the capacity to represent
phonological information would affect performance on the
spelling-sound mapping task.

To assess the effect of reducing the computational
resources available to the reading task while preserving
phonological knowledge an additional pair of simulations
were run. They were identical in architecture to the normal
model, except that one models had only 35 hidden units, and



a second one had only 20. These models had the same
phonological representation as used in the normal condition.

'“MﬂOOOOO@
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Orthographic Units

Figure 2: The reading model, with phonological output
network in place

3. Training The Models

Phonological Pretraining

The phonological component was trained on a corpus of
3123 monosyllabic words using backpropagation through
time (Rumelhart, Hinton & Williams, 1986). The weights
from each phonological unit to itself were set to 0.75 and
frozen. This gave the phonological units a tendency to hold
onto their current value, but decay slowly to zero. Other
weights were initially randomized. Each word was given a
probability of presentation according to its estimated
frequency of occurrence using a sample of 30 million words
from the Wall Street Journal. The probability for each word
was set to the logarithm of that word’s frequency in the WSJ
divided by the logarithm of the frequency of the most
frequent word (““the”). Training proceeded as follows. A word
was probabilistically chosen from the training set. For tick
0, the phonological units were set to the values
corresponding to its phonological form. The network was
allowed to run for 5 ticks, with all units unclamped for the
last 4 ticks. The output of the network during ticks 2
through 4 was compared to the original phonological form
of the word. Error was injected into the network based on the
difference between output values and the targets, and the
weights were adjusted so as to reduce this error. Then
another word was chosen randomly and the process repeated.
The overall effect of this training regime is to force the
weights to encode statistical relationships between the
phonological units. Training was halted after 1 million
training trials. At the conclusion of training, the baseline
network's mean sum squared error was 0.05, the network
with weight decay on the phonological weights ended with a
mean error of 1.8, and the network with no cleanup
connections ended with a mean error of 0.8. These error
scores are the average summed error over 66 output units, so
the average deviance from unit output to target for the 3
simulations was, respectively, 0.001, 0.027 and 0.012.

To further assess the quality of the phonological
representations, a simple pattern completion task was
deviced. In this task, for each of the words in the training
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set with an initial consonant cluster, the features of the
second consonant slot was left unspecified while the
remainder of the word form was clamped to that word’s
phonological form. The network was then run for 6 ticks,
and the value which the unspecified phoneme was drawn into
was assessed. The word was scored correct if the segment
that was produced (evaluated by the nearest neighbor
criterion, described in section 4) was a legal segment for
English in that environment. For instance, for the word
/M//u/, if the net output /b/r/u/ that would also be scored as
acceptable, The normal network was able to insert a legal
phoneme into the slot 75% of the time. The decay network
could only produce a legal phoneme 46% of the time, and
the network without cleanup units could only produce a
legal output 10% of the time.

This test is not meant to be a full test of the networks'
phonological competency, but rather a gross measure of the
quality of the phonological attractor basins that the different
conditions represent. The network with weight decay is
impaired relative o the normal network due to the downward
pressure on the magnitude of the weights during training.
The network without cleanup units is even more impaired,
because this task, like the XOR task, relies on the
conjunctive use of other features in the word’s environment,
and not simply direct relationships between features.

Training on Reading Task

The pretrained phonological components were then used in
models that were trained on the reading task. In both the
normal model and the reduced resource models the standard
phonological component training method was used. The
phonologically impaired conditions utilized representations
trained with weight decay or cleanup unit deletion, as
described above. In each case, weights were initialized to the
final values from the relevant pretraining phase. The
remaining weights in the network (orthographic to hidden;
hidden to phonological) were initialized to small random
values. The model was then trained on the same corpus of
3123 words, again using log frequency to determine
probabilities of being selected for training. For each word
chosen, the orthographic units were clamped with the
appropriate values for ticks 0-6. At tick 6, the phonological
output was compared with the phonological target, error was
injected into the network, and the weights were updated.

Four replications were run for each condition (normal, the
2 reduced resource conditions, and the two phonologically
impaired conditions). For each simulation run, a different
random number seed was used, resulting in different
distributions of initial random weights, and a different
ordering of the presentation of words.

4. Results

Two scoring methods were used. In the nearest-neighbor
method, the phonological output of each 11 units within a
phoneme slot is compared to the representations for each of
the phonemes that exist in the training set. The phoneme
that is closest in euclidean distance to the output is the one
that is taken to be the output. A second, more stringent
threshold method was also used, and unless otherwise noted



will be the one reported below. For this measure, each
feature of a phoneme had to be within a specified distance of
the target for the phoneme to be counted as correct. A
threshold value of 0.5 was used, covering 25% of the units'
activation range of -1 to 1. In both cases, a word was scored
as correct only if all of its phonemes were correct. To
evaluate the networks' performance on words, we used a set
of frequency 93 regular items such as BACK, and 92
exceptions, such as COMB, taken from the “surface list”
developed by Patterson & Hodges (1992).! For nonwords we
constructed a set of 367 items (e.g., GOMB, SOAD, FALJE)
taken from items used by McCann & Besner (1987),
Glushko (1979) and Seidenberg et al. (1994). Regular words
follow the putative spelling-sound correspondence rules of
the language, and exceptions violate them. Nonwords assess
the ability to generalize to untrained forms.

All models were evaluated after running for 8.5 million
words. In almost all cases, leaming had ceased long before
this point (see Figures 3-6). Asymptotically, the normal
models got an average of 98% of the training set correct
when scored with the nearest-neighbor method and 83% of
the nonwords2. Using the threshold method, the average
results were 97% and 75%, respectively. Nonword
performance is somewhat lower than levels reported for
people, particularly with the threshold method. This measure
is quite conservative, however; for example, some small
deviations from target values that are scored as incorrect
would not be perceivable in humans. Also, we have made no
attempt to improve nonword performance using various
techniques known to facilitate generalization (e.g., pruning,
noise). Plaut et al. (1996) discuss other factors that affact
nonword generalization.

Phonological Impairments

Figures 3 and 4 show the developmental curves for the
impaired phonological knowledge conditions compared with
the normal condition. All plots show the average of four
simulation runs. With mild levels of phonological
impairment (i.e., weight decay, Figure 3), there are
decrements on both the rate of acquisition and asymptotic
performance on nonwords. but very little effect on regulars
and exceptions (see Figure 7 for a summary of the
asymplotic conditions). With the nocleanup net (Figure 4),
the exceptions also begin to show a decrement in rate of
acquisition relative to the normal network. Acquisition of
the capacity to generalize is also being slowed, though less
than in the decay condition. Mild phonological impairment
has little effect on the rate of acquisition for regular and
exception items. With the more extreme impairment, there
is slower acquisition of exceptions in addition to poor
performance on nonwords throughout development.

These simulations capture the basic characteristic of
phonological dyslexia, that nonword generalization is
impaired more than performance on vocabulary words. In the

1 Some items from their list were excluded because they
cannot be represented in our scheme.

2A full listing of the items, with network outputs, is
available on a web page at hitp://maestro.usc.edu:8080/
mwharm/cogsci96.html
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relatively pure cases of phonological dyslexia, subjects’
performance on regular and exception words is close (o
normal, while nonword generalization is poor (Castles &
Coltheart, 1993). This result is produced by the decay
condition. Many other phonological dyslexics exhibit a
“mixed” pattern in which performance on exception words
begins to be affected as well. This outcome was observed in
the nocleanup condition.

The Reduced Resource Conditions

Figures 5 and 6 summarize the time course of training in
the reduced resource conditions relative to the normal
baseline model. At the end of training, the reduction to 35
HUs had almost no effect on regular words or on nonword
generalization (see Figure 7). However, for exceptions, the
35 HU case shows a drop from 91% to 83% correct in
asymptotic performance, relative to the normal network.
Decreasing the number of HUs slows leaming for all types
of items (Figures 4 and 5), but the effect is biggest for the
exceptions. With only 20 hidden units, there is a bigger
effect on exceptions, and the developmental curves for
nonwords and regulars begins to be affected as well.

These simulations capture basic characteristics of the
surface dyslexia pattern. In relatively pure cases, reading of
regular words and nonwords is intact, but exception words
are impaired. With more severe deficits, the regulars and
nonwords start to be affected, with exceptions most
vulnerable.

5. Discussion

The simulations show that deficits associated with two
major patterns of developmental dyslexia can be produced by
different types of impairments to a model of normal
performance. The phonological pattern derives from
impairments in the capacity to represent this type of
information. This account can explain why phonological
dyslexics are also impaired on spoken language tasks such as
rhyme detection. The phonological representations in
question are not specific to reading; they are also used in the
perception of spoken language. This pattern of correlated
reading and spoken language deficits is more difficult to
explain within the dual-route model, which attributes
phonological dyslexia to an impairment in learning
grapheme-phoneme correspondence rules. Why this should
also affect spoken language tasks is not clear.

We have derived the surface pattern from a resource
limitation, which slows learning across the board. The
model retains the capacity to encode the simple and
consistent spelling-sound correspondences and eventually
masters them with sufficient training; however, ils capacity
to encode irregular words is limited. This represents an
alternative to the standard dual-route account, which holds
that the surface pattern results from damage to a “lexical”
processing mechanism that encodes the pronunciations of all
words. This approach has difficulty accounting for the
prevalence of the mixed pattern, in which performance is
impaired on both words and nonwords. Thus, on our view
the surface pattern represents a kind of general developmental
delay that has broad effects on acquisition but especially on
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learning exceptions. Although we have derived the surface
pattern by manipulating the number of hidden units, other
types of anomalies could be expected to produce similar
effects. For example, a visual-perceptual impairment that
had the effect of degrading the input orthographic patterns
would also cause broad learning delays with the largest
impact on the words with unusual spellings or
pronunciations.

Why do the different types of anomalies have different
effects on network behavior? Degrading the phonological
capacity of the network by eliminating the cleanup units and
interconnections between featural units forces the network to
memorize the training set, yielding poor generalization.
With the additional units, the network can encode aspects of
the structure of phonological space independently of how
this information relates to orthography. An analogous
condition exists with the weight decay simulation: the
phonological network is prevented from fully developing
high quality representations. The normal network, having
developed rich attractors in the phonological component, can
be more sloppy in its conversion from orthography to
phonology, which discourages overfitting of the training set.
In effect, it is less likely to become a whole-word reader
because it has the phonological safety net in place. Because
the hidden units have a higher demand placed on them in the
face of phonological impairment, exception words are
secondarily impaired: the network has effectively fewer
hidden units to learn exception items, because it needs to
recruit more to produce an accurate phonological output. In
contrast, the reduced resource simulations do not have the
capacity to memorize the training set, and focuses instead on
the redundant correspondences that characterize the “regular”
or “rule-governed” words. At asymptote performance on
regulars and nonwords is relatively spared, with an
impairment on the exception words. With more severe
restrictions on computational resources, the net’s capacity to
encode even the relatively simple and consistent spelling to
sound correspondences would be impaired.

In conclusion, these simulations provide further insight
into the nature and causes of the two dissociable forms of
developmental dyslexia, while demonstrating the validity of
a model of word recognition that employs a single
pronunciation mechanism rather than the two “routes” of the
dual-route model. There is strong independent evidence
concerning the existence of phonological processing
impairments in children who exhibit the behavioral profile
termed phonological dyslexia (see Farmer & Klein, 1995),
and therefore our simulation of this deficit pattern by
degrading the phonological component has considerable face
validity. The surface pattern is less common and there is no
independent evidence whether it arises from a resource
limitation, a visual processing deficit, or some other cause.
The kinds of computational impairments that could give rise
to that behavioral pattern can be seen in the present work,
motivating further investigations of their bases in human
development.
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Figure 3: Normal network compared to phonological weight
decay network. “Pure pattern” in which only nonwords are
affected.
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Figure 4: Normal network compared to network without
phonological cleanup units. “Mixed” pattern in which
exceptions are also affected.
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Figure 5: Normal network compared with 35 hidden unit
network. Capacity to learn exceptions is impaired.
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Figure 6: Normal network compared to 20 hidden unit
network. Learning of regular correspondences starts o be
impaired as well as exceptions.
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Figure 7: Asymptotic performance for crucial conditions
illustrating double dissociation between exception learning
and generalization.
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