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Abstract
Forward and Inverse Problems in Machine Learning Approaches to Biological Sequence

Design
by

David Henry Brookes
Doctor of Philosophy in Biophysics
University of California, Berkeley

Professor Jennifer Listgarten, Co-chair
Professor David F. Savage, Co-chair

Advances in high-throughput experimental technologies now allow for the probing of the
fitness of up to millions of biological sequences. Parallel developments in machine learning
(ML) techniques set the stage for a new class of ML-based computational approaches to
biological sequence engineering. These approaches can largely be regarded as solving one of
two related problems: forward and inverse problems. In a forward problem, the aim is to
estimate a fitness function from high-throughput experimental data. In an inverse problem,
the aim is to use a predictive model of fitness to design a sequence or library of sequences that
satisfies a particular engineering goal. In this dissertation, we will discuss various aspects of
both of these sets of problems, and propose solutions for certain scenarios.

First, we present a method for solving one instantiation of an inverse problem. This
method, Conditioning by Adaptive Sampling (CbAS ), is designed to optimize models of
protein fitness when those models make biased predictions in regions of sequence space far
from the set of training data. CbAS is an example of a broad class of optimization methods
known as Estimation of Distribution Algorithms (EDAs). We show that many EDAs can
be viewed as a form of Expectation-Maximization (EM), a popular inference algorithm in
probabilistic ML.

Next, we explore the forward problem in more depth. It is an open problem to characterize
how much data is needed for accurate estimation of fitness functions. There is a growing
body of evidence demonstrating that empirical fitness functions display substantial sparsity
when represented in terms of epistatic interactions. Moreover, the theory of Compressed
Sensing provides scaling laws for the number of samples required to exactly recover a sparse
function. Motivated by these results, we study the sparsity of fitness functions sampled from
a generalization of the NK model, a widely-used random field model for fitness functions. In
particular, we present theoretical results that allow us to test the effect of the Generalized
NK (GNK) model’s interpretable parameters—sequence length, alphabet size, and assumed
interactions between sequence positions—on the sparsity of fitness functions sampled from
the model, and use these results to determine the number of measurements required to
exactly recover GNK fitness functions. Further, we show that GNK fitness functions with
parameters set according to protein structural contacts accurately approximate the sparsity
of empirical fitness functions and can be used to approximate the number of experimental
measurements required to effectively estimate a protein fitness function.



2

Finally, we describe an end-to-end modeling approach for designing a library of insertion
sequences to the Adeno-Associated Virus (AAV) capsid with the goal of improving the
ability of the capsid to fold and package the viral genome. AAV is a promising vector for
delivering gene therapies and packaging is a requirement for effective delivery to a target
tissue; a library with improved packaging ability is more likely to infect these tissues in a
downstream experiment. Our approach to library design requires solutions to both forward
and inverse problems. In particular, we first fit a predictive model to a set of high-throughput
experimental data that reports on packaging fitness. We then present a novel method to
design libraries that optimally balance average fitness and sequence diversity, and apply this
method to the design of AAV insertion sequence libraries.

In summary, this dissertation presents a number of ML-based techniques for biological
sequence engineering, as well as theoretical insights that can guide future methodological
developments. This work provides further motivation for the biological community to adopt
machine learning as a tool to be used alongside experiments in order to effectively engineer
sequences.
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Chapter 1

Introduction

Biological sequence engineering broadly refers to the practice of constructing nucleotide or
amino acid sequences that perform a particular function of interest, or improve the function of
a wild type sequence. Targets for sequence engineering include naturally-occurring enzymes
[95], enzymes that catalyze novel reactions [24, 147], fluorescent proteins [42], RNA and
DNA catalysts [170] and aptamers [50], as well as certain viral [102, 97] and bacterial [59]
genomes.

Both experimental and computational approaches to sequence engineering suffer from
low-throughput in the face of combinatorial explosions in the size of sequence space. For
example, the total number of possible amino acid sequences of length 100 (a relatively small
protein) is 20100 ≈ 10130, while biochemical assays in which the fitness of protein variants are
tested individually can only probe at most hundreds of sequences. Similarly, attempts at ab
initio computational screening of sequence fitness, such as energy minimization techniques
[101] or Molecular Dynamics (MD) simulations [100, 58], are too computationally intensive
to apply to more than a handful of variants and have historically suffered from poor accuracy
[173].

Experimental techniques that are capable of screening and selecting sequences in bulk
such as Directed Evolution [38, 12] and SELEX [178] substantially improve on the throughput
of sequence engineering pursuits, with a modern instantiation of these methods claiming to
screen 1014 RNA sequences [83]. One drawback of classical bulk screening methods is that the
fitness of individual sequences is hidden, with typically only a handful of variants individually
characterized after multiple rounds of screening and selection. However, this weakness has
largely been overcome in recent years due to the advent and rapidly diminishing costs of Next
Generation Sequencing (NGS) technology. NGS allows researchers to determine the number
of individual sequence variants that are present in libraries before and after a bulk screen
and selection occurs; the relative change in abundance of a variant between the two libraries
then serves as a proxy to the fitness of that variant. Methods that employ bulk screening
and selection along with NGS have broadly been termed Multiplex Assays of Variant Effects
(MAVEs) [94, 52] and include Deep Mutational Scanning (DMS) [56], Massively Parallel
Reporter Assays (MPRAs) [79], and modified versions of SELEX [156]. These methods have



CHAPTER 1. INTRODUCTION 2

produced data sets containing fitness measurements for up to 107 nucleotide sequences [134,
180] and nearly one million protein variants [137].

Parallel to these advances in data acquisition techniques has been the astonishingly rapid
emergence of Machine Learning (ML) as a nearly-ubiquitous computational tool to model
large data sets in scientific contexts and otherwise. This emergence has largely been due to
the re-introduction of Automatic Differentiation as an efficient method for training Artificial
Neural Network (ANN) models using the backpropagation algorithm [19], and the incorpora-
tion of these tools into robust software packages such as Tensorflow [1]. These developments
enable rapid testing and deployment of ML models and algorithms, which are now regularly
used in pursuits ranging from the processing of data at the Large Hadron Collider [138] to
the creation and detection of fake news articles [196].

Unsurprisingly, ML has been applied to biological sequence engineering in a variety of
ways, including to develop new knowledge-based force fields for MD simulations [194], pre-
dict protein structure directly from amino acid sequence [157], and predict the fitness effects
of single mutations in protein sequences from evolutionary data alone [142]. A particularly
promising application of ML to sequence engineering, and the one that motivates this dis-
sertation, is to model the data generated by MAVEs, and use the resulting models to design
sequences and libraries of sequences. There are a number of goals that motivate this type of
modeling, including to find a single sequence that performs a function more effectively than
any of those observed in the experimental data, or to build a library that can be used as a
starting point for another iteration of bulk screening and selection.

We can broadly classify the potential uses of ML in this context as solving either a
“forward” or an “inverse” problem. In a forward problem, the goal is to use data from
a MAVE, and perhaps auxiliary information, to build a model (a “forward model”) that
can predict the fitness of sequences variants from sequence information alone. In an inverse
problem, the goal is to use a forward predictive model to design sequences or a sequence
library that satisfy a given engineering goal. In this dissertation, we will discuss various
aspects of both of these sets of problems, and propose solutions for certain scenarios. In
particular, in Chapter 2, we present a method for solving one instantiation of an inverse
problem; in Chapter 3, we discuss connections between a useful class of algorithms for solving
inverse problems known as Estimation of Distribution Algorithms (EDAs) and Expectation
Maximization (EM), a popular inference algorithm in probabilistic machine learning; in
Chapter 4, we explore the forward problem in more depth, and present results for calculating
the number of experimental measurements required to estimate simulated fitness functions;
in Chapter 5, we describe an end-to-end modeling approach for designing a library of Adeno-
Associated Virus (AAV) capsid sequences that requires solutions to both the forward and
inverse problems. In the next two sections of this chapter, we will motivate these specific
explorations by describing more general aspects of the forward and inverse problems.
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1.1 Forward problems

The central aim of a forward problem is to use a data set of fitness measurements, and
potentially additional information, to build a model that can predict fitness from sequence.
The “fitness” of a sequence refers to a numerical quantity that describes a property of
sequences that we wish to maximize. The function that maps a space of sequences to fitness
values is known as a fitness function, or fitness landscape. When fitness landscapes were
first introduced by Sewall Wright [188], fitness referred to the ability of an organism to
survive in its environment, and the fitness landscape was used as a tool to explore how
an organism’s genome adapted over the course of evolution. Now fitness may refer to any
property related to any space of sequences; for instance, the brightness of a fluorescent
protein [154], the reactivity of catalytic RNA [134], or the expression level corresponding to
a promoter sequence [180].

One way to pose the forward problem is as estimating a fitness function from a set of
data. There are two major types of data that are used for this purpose: so-called “labeled”
data sets that contain a collection of (s, y) tuples, where s is a sequence and y is a fitness
measurement associated with s, and “unlabeled” data sets that contain only a set of se-
quences that have been deemed fit (e.g., all natural protein sequences that perform a given
function). The common ML terminology is to say that models trained with labeled data are
“supervised” while those trained with unlabeled data are “unsupervised”. The forward prob-
lems approached in this dissertation exclusively use labeled data, though there is a rich area
of research that we do not discuss that explores estimating fitness functions from unlabeled
data [76, 142, 143, 107] and from mixtures of labeled and unlabeled data [22, 77].

Approaches to modeling of labeled fitness data

There exist a wide variety of methods for modeling labeled fitness data that have been
introduced variously in the machine learning, computational biology and biophysics com-
munities. Among these methods, the distinction between ML and non-ML methods is not
exactly clear; for instance, certain biophysical models involve approximately solving for Max-
imum Likelihood parameter estimates with non-convex optimization methods [125], which
is a core feature of many ML methods. Perhaps a better distinction is between “top-down”
approaches, where the aim is to build the most powerful predictive model possible, without
regard for the interpretation of the model, and “bottom-up” approaches, where a model is
constructed based on assumptions about the form of the fitness function (which may be, for
instance, based on biophysical models) and free parameters in the model are fit to the data.

The top-down modeling of fitness functions represents a straightforward application of su-
pervised ML engineering procedures [114]. In a typical application of these methods, one first
determines one or a few modeling metrics one wishes to optimize for (e.g., the mean-squared
error between predicted and experimental fitness values), determines the model architecture
(i.e., the assumed functional form of the fitness function) that optimizes these metrics using
the cross-validation procedure, and then fits parameters of the ultimately chosen model to
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the complete data set. An excellent review of the many examples of this top-down paradigm
in fitness function estimation is given in [193]. The representational power of modern deep
learning model architectures, and the empirical success of these methods in varied disciplines,
suggests that top-down modeling approaches will ultimately prove to produce the most pow-
erful models in terms of predictive performance. However, these techniques provide little, if
any, meaningful biological interpretation, and modeling insights are rarely applicable across
multiple studies. In contrast, bottom-up models generally have interpretable parameters
that allow for biological insight and theoretical explorations.

Bottom-up modeling of fitness data involves two aspects: defining a model for the noise
in the data and determining a suitable parametrized functional form for the fitness function.
In the most common modeling strategy, where parameters are fit with exact or approximate
Maximum Likelihood Estimation, the noise model leads to a loss function for the parameters
that is minimized to find the parameter estimate that best fits the data [114]. Noise models
are specific to each type of experiment, and are often inextricably linked with how one
processes raw experimental data to assign fitness values to sequences. This is particularly true
for MAVEs, where the raw data are sequencing reads that must be converted to scalar fitness
measurements. A number of sound statistical procedures for performing this conversion
in certain MAVEs have been presented that include models for the noise in the resulting
fitness measurements [110, 149, 49]; more generally applicable noise models have also been
considered [13]. Unlike the noise model, the functional form of the fitness function model
does not depend on particular experiment used to acquire data, but rather on assumptions
about how sequence features relate to fitness. These models are generally based on a few
core principles, which we describe next.

Bottom-up models of fitness functions

In order to describe the various assumptions and interpretations of bottom-up models of
fitness functions, for the remainder of this section we will consider fitness functions of binary
sequences where each sequence position is either equal to -1 or 1. The simplest practical
model of fitness for binary sequences of length L is the independent site model, where the
evaluation of the model fitness function, f on a sequence, s = [s1, s2, ..., sL], is given by:

f(s) = β0 + β1s1 + β2s2 + ...+ βLsL (1.1)

where β0 is a constant term, and each βi is a parameter that represents the effect position
i has on the fitness. This model encodes the assumption that sequence positions indepen-
dently contribute to fitness, with no interactions between positions. Despite its simplicity,
this model can be surprisingly effective in modeling certain fitness functions [154, 77] (an-
other example is shown in Chapter 5). However, models that either implicitly or explicitly
encode interactions between sequence positions nearly always outperform the independent
site model. Direct interactions between sequence positions are known as ‘epistatic’ interac-
tions. A fitness function model that contains all possible epistatic interactions between pairs
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of positions is given by

f(s) = β0 +
L∑
i=1

βisi +
L∑
i=1

L∑
j=1

βijsisj (1.2)

where each βij is a parameter that represents effect of the epistatic interaction between po-
sitions i and j on fitness.1 Similarly, ‘higher-order’ epistasis between three or more positions
can be encoded by including polynomial terms of the form βU

∏
i∈U si, where U ⊆ {1, 2, ..., L}

is a set of unique position indices and βU is a parameter representing the effect of interaction
between sequence positions in U on fitness. Although more expressive than the independent
site model, models that contain pairwise and third-order interactions have been shown to
make biased predictions when fit to both simulated and experimental fitness data [127]. This
suggests that either higher-order epistatic interaction terms, or an alternative solution, are
required to effectively model fitness functions.

One alternative solution to including many higher-order epistatic terms is to apply a
monotonic nonlinear function to either the independent site model in Equation (1.1), or
the pairwise interaction model in Equation (1.2). These models reflect the assumption that
certain fitness effects are associated with global trends rather than sequence-specific traits,
and thus are often called ‘global epistasis’ models [126, 94]. An example of a global trend
is ‘diminishing returns’ in fitness functions, where fitness improvements to a sequence tend
to decrease when successive beneficial mutations are made to the sequence, regardless of the
identity of the specific mutations [177]. In certain cases, the nonlinearities associated with
global epistasis are based on biophysical models and do not contain additional parameters
[190, 125]. In the other cases, the nonlinearities are themselves parameterized and fit to
data [126, 175]. These models can often dramatically improve fitness predictions compared
to the underlying models that the nonlinearities are applied to [126], and yet are still highly
interpretable (in contrast to other nonlinear models such as neural networks). Still, there is a
growing body of evidence demonstrating that natural fitness functions contain higher-order
epistatic that cannot be explained by global epistasis [152, 136], and thus a more general
model is required in many scenarios.

A fitness function model that encompasses all others is one that includes all possible
epistatic interactions of all orders. More specifically, any fitness function of binary sequences
of length L can be represented exactly as [5]:

f(s) =
∑
U∈U

βU
∏
i∈U

si (1.3)

where U := P({1, ..., L}) is the power set of position indices in the sequence. This repre-
sentation of a fitness function is known variously as the Walsh [73], Walsh-Hadamard (WH)
[135, 5], or Fourier [183, 168] expansion of the fitness function. From a practical point of

1There are a number of alternative definitions of epistasis that are not captured by Equation (1.2).
However, it has been shown that all definitions of epistasis are related by simple linear transformations [135].
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view, the advantage of this model is that it can not be misspecified, meaning that if the pa-
rameters in Equation (1.3) can be estimated exactly, then there will be no bias in the fitness
predictions from the model. Further, it can be shown that Equation (1.3) is an expansion in
terms of an orthogonal basis, which allows one to apply powerful estimation techniques from
the field of signal processing that carry strong guarantees in terms of the amount of data that
is required to estimate the function with a certain amount of error (this perspective is ex-
plored in depth Chapter 4). The major practical disadvantage of modeling fitness functions
in terms of a WH expansion is that the model contains 2L parameters, whose estimation
quickly becomes infeasible for longer sequences. Despite this, the WH expansion provides a
convenient and intuitive exact representation of fitness functions that can be used to gain a
greater understanding of fitness function estimation, either through empirical or theoretical
explorations.

Our approaches for tackling forward problems in this dissertation draw from many aspects
of those discussed so far in this section. In Chapter 5 we use a mixture of top-down and
bottom-up strategies to model MAVE data relating the sequencs of 7 amino acid insertions
to the AAV capsid to the ability of the resulting capsids to fold properly and package the
viral genome. More specifically, we define a bottom-up model for the noise in the MAVE
data, and use the corresponding loss function to fit a neural network predictive model, the
form of which was chosen based on a top-down approach. We also fit three bottom-up models
to the data, including the independent site and pairwise epistasis models analogous to those
of Equations (1.1) and (1.2), respectively, and show that the neural network outperforms
these models in terms of certain metrics.

Despite the plethora of available methods for estimating fitness functions from labeled
data, many questions about fitness function estimation remain unanswered. In Chapter 4
we attempt to elucidate one such question, namely how many labeled experimental measure-
ments are required to effectively estimate a given fitness function. We do so by exploring the
sparsity of fitness functions represented in the WH expansion, and analogous expansions for
sequences with non-binary alphabets. It has been observed that natural fitness functions can
be quite sparse in the WH representation and further, theoretical results from the sub-field
of signal processing known as Compressed Sensing [34] provide scaling laws for the number
of samples required to exactly recover a sparse function when the function is represented
in terms of an orthogonal basis. These results suggest that by studying the sparsity of fit-
ness functions in more depth we may be able to predict the sample complexity of fitness
function estimation. Although an increasing number of nearly combinatorially-complete em-
pirical fitness functions are available that could allow us to investigate sparsity in particular
example systems, these data necessarily only report on short sequences in limited environ-
ments. To explore sparsity in more generality, we study simulated fitness functions sampled
from “random field” models of fitness [168], which are often used in evolutionary biology to
overcome the lack of empirical fitness functions. We present theoretical results that allow
us to test the effect a particular random field’s interpretable parameters—sequence length,
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alphabet size, and assumed interactions between sequence positions—on the sparsity of the
simulated fitness functions and use these results to determine the number of measurements
required to exactly recover these fitness functions. Further, we show that if the parameters
of the random field are set according to protein structural contacts then the simulated fitness
functions accurately approximate the sparsity of empirical fitness functions and can be used
to approximate the number of experimental measurements required to effectively estimate a
protein fitness function. This work provides new insights on forward problems that should
be useful in guiding future directions.

Regardless of the approach, solutions to forward problems do not themselves accomplish
the goals of sequence engineering. Additional techniques are required to solve inverse prob-
lems, where one aims to construct sequences or a sequence library that satisfy a desired
engineering goal. An overview of these problems, and some available solutions, is given in
the next section.

1.2 Inverse problems

Inverse problems are more challenging to define than forward problems, as they require
one to concretely specify the goal of using computational modeling techniques within a
sequence engineering pipeline. We consider two scenarios that may occur after one has
collected an experimental data set of fitness measurements from a MAVE (for example). In
the first case, one may not want to perform any further high-throughput experiments after
this point, and would like to use the data to identify one or a few novel sequences that are
more fit than those observed in the experiment. In another case, one may wish to perform
further bulk screening and selection steps, and would like to construct a library of sequences
that will be used as the starting point for the next iteration of experiments. We refer to these
two cases as sequence and library design problems, respectively. Sequence and library design
share many conceptual and technical challenges, but also differ in important respects that
impact solutions to the problems. We first describe aspects of the sequence design problem,
which is also the focus of Chapter 2, before moving to library design, which is discussed
further in Chapter 5.

Sequence design

At first glance, the problem of identifying a sequences with high fitness appears to be
a straightforward optimization problem, where one uses the given data to build a forward
model, and then optimizes this model to find the sequence with maximal predicted fitness.
However, an overly naive approach of this type is unlikely to be successful for two major
reasons. First, the combinatorial optimization problem of trying to find the sequence with the
maximal predicted fitness is NP-hard and thus no general solution exists [132]. Additionally,
in many scenarios, the forward model has been trained with data that only reports on the
fitness of a small restricted portion of sequence space (e.g., protein sequences within a few
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mutations of a wild type), and its prediction will be arbitrarily biased far from this region [28].
In order to overcome these challenges, we must use a method that can (i) efficiently search
over vast areas of sequence space to find approximate solutions to the optimization problem,
and (ii) restrict the optimization procedure to search only over regions where the forward
model is expected to be accurate. In Chapter 2, we will propose a method, Conditioning by
Adaptive Sampling (CbAS ) that satisfies these desiderata by combining the representational
power of modern generative models with a novel formulation of an Estimation of Distribution
Algorithm (EDA) that suitably restricts the optimization procedure to regions near the
training data of the forward model [28]. In order to motivate this method, we next discuss
EDAs, their conceptual predecessors Genetic Algorithms, and generative models.

Genetic Algorithms (GAs) are an historically popular class of methods for approximately
solving combinatorial optimization problems [60], and thus could be used to tackle the first
of the above challenges in sequence design. Roughly, GAs are algorithms that iteratively
perturb a set of candidate solutions and select for perturbations with improved function
evaluations. When GAs are applied to the sequence design problem, the candidate solutions
are a set of sequences, the perturbations are mutations to those sequences, and the function
evaluations are fitness predictions from the forward model [164]. GAs can be generalized
by considering the hypothetical limit where an infinite number of candidate solutions are
proposed at each iteration. Then, the set of candidate solutions can be represented as a
probability distribution over the search space. This viewpoint leads to the class of methods
known as Estimation of Distribution Algorithms [113, 99], where one parameterizes a prob-
ability distribution over the search space (the “search model”), samples candidate solutions
from this distribution, and adjusts the distribution parameters to assign higher probability
mass to regions of the search space with fit candidate solutions. EDAs have been effectively
applied to a range of difficult optimization problems in biological contexts [11] and more
generally [67].

EDAs have a general formulation that can be adapted to encode constraints on the
optimization. CbAS presents one possibility for doing so, where the objective function is
modified to encourage the search model to only explore regions of sequence space near the
training data of the forward model (where ‘near’ is measured by the probability mass assigned
to regions of sequence space in a probabilistic model fit to the training data). The general
formulation of EDAs also connects it to a number of other methods, and these connections
can be used to further adapt EDAs to new scenarios. In Chapter 3 we explore one such
connection, and show that many EDAs can be viewed as performing a type of Expectation-
Maximization (EM), which is a popular algorithm for inferring the parameters of latent
variable models in ML.

Another intriguing possibility presented by EDAs is to supplement them with machine
learning techniques by using modern generative models as search models. Generative model-
ing is an area of machine learning research where the aim is to fit parameterized probability
distributions to a set of unlabeled data such that samples from the resulting distribution have
similar characteristics to the training data. Many powerful generative models have been in-
troduced in recent years, most notably Generative Adversarial Networks (GANs) [62] and
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Variational Autoencoders (VAEs) [92, 140]. Generative models necessarily learn complex
patterns in a set of unsupervised data. Therefore, by using a generative model as a search
model, we can hope to learn the patterns that are present in fit candidate solutions, and
generate similar solutions. We explore this possibility by using VAEs as the search model in
CbAS.

Alternative uses of generative models in methods for sequence design have also been
explored in the literature. One such use is within model-based Reinforcement Learning (RL)
algorithms. Model-based RL is a sub-field of RL that attempts to infer optimal control
policies for an artificial agent based on predictions from a model that maps potential actions
by the agent to rewards [111]. EDAs are conceptually similar to many methods in model-
based RL, though differing motivations and language in the two fields often makes direct
comparison difficult. The use of model-based RL for sequence design is explored in [9].
Additionally, in Chapter 2 we compare CbAS to a simple model-based RL baseline.

When generative models are used in both EDAs and RL, the parameters of the model
are altered at every iteration of the optimization. Another set of methods for sequence
design fits a generative model to a data set of initial candidate solutions, and then leaves the
model parameters fixed. In these methods, the generative model must be one that provides a
low-dimensional latent representation of the data (VAEs and GANs are examples of models
with such representations). Then, instead of modifying the parameters of the model to
search over the space of sequences, these methods optimize over the latent space and the
latent representations resulting from the optimization are then converted to sequences that
represent solutions to the design problem. In some instances, the optimization over the
latent space is guided by a predictive model of fitness than maps directly from the latent
representations to fitness [61]; in others every candidate latent representation is converted
to a sequence that is passed through a usual forward model [90]. In Chapter 2 we compare
CbAS to a number of these techniques, as well as other baselines.

Since CbAS was introduced, a number of competing methods for sequence design have
been proposed, including the aforementioned model-based RL method [9], a GA method
[164] and a method with a fixed generative model [104]. The lack of clear consensus on the
appropriate framework for tackling sequence design highlights the difficulty of this problem
and the need for further exploration.

Library design

The problem of designing sequence libraries for use in downstream bulk screening and
selection experiments poses added challenges to those of the sequence design problem. Before
going into details about the library design problem, it is important to concretely define
what we mean by a ‘library’ and various related notions. A library is a physical object;
in particular, a pool of biological molecules, each of which is a physical manifestation of
a sequence. Computational library design requires a library construction technique with
tunable parameters that can be specified by a computational method. Examples include
site-directed recombination, where one specifies parent sequences and the breakpoints in
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those sequences at which to recombine the parents [197]; as well as methods where one
specifies the desired marginal statistics of each nucleotide or amino acid at each position in
the sequence; and methods where one specifies a list of particular sequences that one wishes
to observe in the library. These latter two possibilities are commercially available from, e.g.,
Twist Biosciences.

The library design problem approached in this dissertation involves specifying the param-
eters of a library construction technique based on the predictions of a forward model. Similar
to the sequence design problem, these types of problems involves searching over sequence
space to find sequences with high predicted fitness, and ensuring that this search does not
stray into regions of sequence space where the forward model is not expected to be accu-
rate. The added difficulty in designing libraries is that the resulting library must be diverse,
meaning that it contains sequences that are themselves distant in sequence space. Diversity
in a library ensures that that the downstream selection is allowed to explore a broad area of
sequence space, which makes it more likely to succeed in identifying fit sequences.

The immediate question in designing diverse libraries is how we will modify the optimiza-
tion procedure to propose diverse solutions. One option that has been explored is to train a
generative model in such a way that diversity is encouraged in the generated sequences [104].
Another option is to perform a multi-objective optimization, where one objective encour-
ages the library to include sequences with high predicted fitness, and the other encourages
diversity. This latter option makes clear that diversity and predicted fitness are competing
goals in library design: the library with maximal average predicted fitness contains only
one sequence, while the maximally diverse library contains sequences uniformly spaced over
sequence space and is unlikely to be useful. The most useful library likely lies somewhere
between these two extremes.

In Chapter 5 we propose a library design method that explicitly considers the tradeoff
between predicted fitness and diversity. Briefly, we represent libraries as probability dis-
tributions over sequence space, and find the distribution that optimally balances expected
predicted fitness and entropy, which is a natural measure of diversity for probability distribu-
tions. We then present methods for converting these abstract distributions into parameters
that can be supplied to library construction techniques.
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Chapter 2

A robust adaptive sampling technique
for solving an inverse problem

Note: This chapter is reproduced from David H. Brookes, Hahnbeom Park, and Jennifer
Listgarten. “Conditioning by adaptive sampling for robust design”. In: Proceedings of the
International Conference of Machine Learning. 2019, pp. 773–782. with permission.

2.1 Introduction

In the previous chapter, we discussed a number of different instantiations of inverse prob-
lems. In this chapter, we present a technique to solve perhaps a form of the ‘sequence design’
problem: given a model that predicts the probability that a given sequence satisfies a desired
property, find the sequence(s) that maximize this probability. This problem reflects a goal
where the resulting solutions are meant to perform a certain function, and are not neces-
sarily meant to be used as starting points for future experimental optimization procedures.
The probabilistic formulation of the problem allows it apply to a variety of circumstances.
For example, the desired property may be that a sequence optimizes a particular predicted
measurement of fitness (e.g., that a protein sequence maximizes predicted fluorescent bright-
ness) or that it falls within a certain range of specified values (e.g., that a protein sequence
fluoresces at a certain predicted wavelength).

This problem in its most basic form can be formally stated as follows: given an “oracle”,
P (S|x), a predictive model which specifies the probability that a desired condition, S, is
satisfied by a sequence x, solve for x∗ = argmaxx P (S|x). As stated, this problem could be
solved with any number of combinatorial optimization techniques; for example, the Cross
Entropy Method [150] which performs well in the context of biological sequence design [27].

However, in the framing of the problem just described, there is an implicit assumption
that the regression oracle is well-behaved, in the sense that it is trustworthy not only in
and near the regime of inputs where it was trained, but also beyond. However, it is now
well-known that many state-of-the-art predictive models suffer from pathological behaviour,
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especially in regimes far from the training data [174, 119]. Methods that optimize these pre-
dictive functions directly may be led astray into areas of state space where the predictions
are unreliable and the corresponding suggested sequences are unrealistic (e.g., correspond
to proteins that will not fold). Therefore, we must modulate the optimization with prior
information to avoid this problem. There are two related viewpoints on what this prior
information represents: either as encoding knowledge about the regions where the oracle is
expected to be accurate (e.g., by representing information about the distribution of training
inputs), or as encoding knowledge about what constitutes a ‘realistic’ input (e.g., by repre-
senting proteins known to stably fold). Herein we focus on the former viewpoint, and thus
assume that we have access to the input distribution of our oracle training data. However,
the latter viewpoint is required when such data is not available.

How then should one use such prior knowledge? Formally, for inputs, x and property
of interest y, we should model the joint probability p(x, y) = p(y|x)p(x), and then perform
design (i.e., obtain one or more sequences with the desired properties) by sampling from the
conditional distribution. For example, in the case of maximizing one property oracle, we
should sample from p(x|y ≥ ymax) to obtain our desired designed sequences. More generally,
one conditions on the appropriate desired event p(x|S), where S is the conditioning event).
To achieve this conditioning, we will assume that we have access to a property oracle, p(y|x),
which may be a black box function. We also assume that our prior knowledge has been en-
coded in p(x). The prior density, p(x), can be modelled by training an appropriate generative
model, such as a Variational Auto-Encoder (VAE) [92], Real NVP [46], an HMM [18] or a
Transformer [181, 143], on the chosen set of ‘realistic’ examples.

Outside of the above concerns, another desideratum for a solution approach to this inverse
problem is that the oracle need not be differentiable. In other words, the oracle need only be
a black box that provides an input to output mapping. Such a constraint arises from the fact
that in many scientific domains, excellent predictive models already exist which may not be
readily differentiable. Additionally, we may choose to use wet lab experiments themselves
as the oracle. Consequently, we seek to avoid any solution that relies on differentiating
the oracle; although for completeness, we compare performance to such approaches in our
experiments.

In what follows, we will present a method, which we call Conditioning by Adaptive
Sampling (CbAS ), that solves the aforementioned inverse problem when oracles are black
box that are assumed to be untrustworthy outside of their training domain. In particular,
CbAS is a technique that samples from the conditional distribution discussed above in order
to produce solutions to the problem that are robust to oracle pathologies. This chapter
is organized as follows: we first discuss a number of methods that are closely related to
CbAS, then we describe the CbAS algorithm and finally demonstrate its effectiveness with
two examples: a one-dimensional toy problem and a simulated problem where the goal is to
optimize the fluorescent brightness of the Green Fluorescent Protein (GFP).
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2.2 Related Work

The problem set-up just described has a strong similarity to that of activation-maximization
(AM) with a Generative Adversarial Network (GAN) prior [62, 163, 118], which is typically
used to visualize what a neural network has learned, or to generate new images. Nguyen
et al. [117] use approximate Langevin sampling from the conditional p(x|y = c), where c is
be the event that x is an image of a particular class, such as a penguin. There are two main
differences between our problem setting and that of AM. The first is that AM is conditioning
on a discrete class being achieved, whereas our oracles are typically regression models. The
second is that our design space is discrete, whereas in AM it is real-valued. Aside from the
fact that in any case AM requires a differentiable oracle, these two differences pose signif-
icant challenges. The first difference makes it unclear how to specify the desired event to
condition on, since the event may be that involving an unknown maximum. Moreover, even
if one knew or could approximate this maximum, such an event would be by definition rare
or never-seen, causing the relevant conditional probability to yield vanishing gradients from
the start. Second, the issue of back-propagating through to a discrete input space is inher-
ently difficult, although attempts have been made to use annealed relaxations [81]. In fact,
Killoran et al. [90] adapt the AM-GAN procedure to side-step these two issues for protein
design. Thus in our experiments, we compare to their variation of the AM approach.

Gómez-Bombarelli et al. [61] tackle a chemistry design problem much like our own. Their
approach is to (i) learn a neural-network-supervised variational auto-encoder (VAE) latent
space so as to order the latent space by the property of interest, (ii) build a (Gaussian
Process) GP regression model from the latent space to the supervised property labels, (iii)
perform gradient-based maximisation of the GP over the latent space, (iv) decode the optimal
solution point(s) using the VAE decoder. Effectively they are approximately modelling the
joint probability p(x, z, y) = p(y|z)p(x|z)p(z), for latent representation z, and then finding
the argument, z, that maximizes E[p(y|z)] using gradient descent. Similarly to AM, this
approach does not satisfy our black box oracle desideratum. This approach in turn has a
resemblance to Engel et al. [51], wherein the goal is image generation, and a GAN objective is
placed on top of a VAE in order to learn latent constraints. Because this latter approach was
designed for (real-valued) images and for classification labels, we compare only to Gómez-
Bombarelli et al. [61].

Gupta and Zou [64] offer a solution to our problem, including the ability to use a non-
differentiable oracle. They propose to first train a GAN on the initial set of realistic examples
and then iterate the following procedure: (i) create a sample set by generating samples from
the GAN, (ii) use an oracle regression model to make a point prediction for sample as whether
or not a protein achieved some desired property, (iii) update the sample set by replacing the
oldest n samples with the n samples from step 2 that exceed a user-specified threshold that
remains fixed throughout the algorithm (and where n at each iteration is determined by this
threshold), (iv) retrain the GAN on the updated set of samples from step 3 for one epoch.
The intended goal is that as iterations proceed, the GAN will tend to produce samples which
better maximize the property. They argue that because they only replace n samples at a
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time, the shift in the GAN distribution is slow, enabling them to implicitly stay near the
training data if not run for too long. Their procedure does not arise from any particular
formalism. As such, it is not clear what objective function is being optimized, nor how
to choose an appropriate stopping point to balance progress and staying near the original
realistic examples.

Our approach, CbAS, offers several advantages over these methods. Our approach is
grounded in a coherent statistical framework, with a clear objective, and explicit use of
prior information. It does not require a differentiable oracle, which has the added benefit
of side-stepping the need to back-propagate through to discrete inputs, or of needing to
anneal an approximate representation of the inputs. Our approach is based on parametric
conditional density estimation. As such, it resembles a number of model-based optimization
schemes, such as Evolutionary Distribution Algorithm (EDA) and Information Geometric
Optimization (IGO) approaches [66, 123], both of which have shown to have good practi-
cal performance on a wide range of optimization problems. We additionally make use of
ideas from Cross Entropy Methods (CEM) for estimating rare events, and their optimiza-
tion counterparts [151, 150], which allows us to robustly condition on rare events, such as
maximization events.

2.3 Conditioning by Adaptive Sampling

Preamble

Our problem can be described as follows. We seek to find settings of the L-dimensional
random vector, X (e.g., representative of DNA sequences), that have high probability of
satisfying some property desideratum. For example, we may want to design a protein that
is maximally fluorescent (the maximization problem), or that emits light at a specific wave-
length (the specification problem). We assume that X is discrete, with realizations, x ∈ NL,
because we are particularly interested in problems of sequence design. However, our method
is immediately applicable to x ∈ RL, such as images.

We assume that we are given a scalar property predictor “oracle”, p(y|x), which provides
a distribution over a property random variable, Y (herein, typically a real-valued property),
given a particular input x. From this oracle model we will want to compute the probability
of various events, S, occurring. For maximization design problems, S will be the set of values
y such that y ≥ ymax (where ymax ≡ maxx Ep(y|x)[y]). In specification design problems, S will
be the event that the property takes on a particular value, y = ytarget (strictly speaking, an
infinitesimal range around it). In our development, we will also want to consider sets that
correspond to less stringent criteria, such as S corresponding to the set of all y for which
y ≥ γ, with γ ≤ ymax. From our oracle model, we can calculate the conditional probability
of these sets—that is, the probability that our property desideratum is satisfied for a given
input—as P (S|x) ≡ P (Y ∈ S|x) =

∫
p(y|x)1S(y) dy (where 1S(y) = 1 when y ∈ S and 0

otherwise). For the case of thresholding a property value, this turns into a cumulative
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density evaluation, P (S|x) = p(y ≥ γ|x) = 1− CDF (x, γ).
We additionally assume that we have access to a set of realizations of X drawn from some

underlying data distribution, pd(x), which, as discussed above, either represents the training
distribution of the oracle inputs, or a distribution of ‘realistic’ examples. Along with these
data, we assume we have a class of generative models, p(x|θ), that can be trained with these
samples and can approximate pd well. We denote by θ(0) the parameters of this generative
model after it has been fit to the data, yielding our prior density, p(x|θ(0)).

Our ultimate aim is to condition this prior on our desired property values, S, and sample
from the resulting distribution, thereby generating realizations of x that are likely to have
low error in the predictive model or are realistic (i.e., are drawn from the underlying data
distribution); and have high probability of satisfying our desideratum encoded in S. Toward
this end, we will assume that the desired conditional can be well-approximated with a suf-
ficiently rich generative model, q(x|φ), which need not be of the same parametric form as
the prior. As our algorithm iterates, the parameter, φ, will slowly move toward a value that
best approximates our desired conditional density. Our approach has a similar flavor to that
of variational inference [23], but with a critical difference of needing to handle conditioning
on rare events.

Below we outline our approach in the case of maximization of a single property. Details
of how to readily generalize this to the specification problem and to more than one property,
including a mix of maximization and specification, are in the Supplementary Information of
[28].

Our approach

Our design goal can be formalized as one of estimating the density of our prior model,
conditioned on our set of desired property values, S,

p(x|S,θ(0)) =
P (S|x)p(x|θ(0))

P (S|θ(0))
, (2.1)

where P (S|θ(0)) =
∫
dx P (S|x)p(x|θ(0)). In general, there will be no closed-form solution

to this conditional density; hence we require a technique with which to approximate it,
developed herein. The problem is also harder than it may seem at first because S is in
general a rare event (e.g., the occurrence of large property value we have never seen).

To find the parameters of the search model, q(x|φ), we will minimize the KL divergence
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between the target conditional, Eq. (2.1), and the search model,

φ∗ = argmin
φ

DKL

(
p(x|S,θ(0))||q(x|φ)

)
(2.2)

= argmin
φ
−Ep(x|S,θ(0))[log q(x|φ)]−H0 (2.3)

= argmax
φ

1

P (S|θ(0))
Ep(x|θ(0))[P (S|x) log q(x|φ)] (2.4)

= argmax
φ

Ep(x|θ(0))[P (S|x) log q(x|φ)], (2.5)

where H0 ≡ −Ep(x|S,θ(0))[log p(x|S,θ(0))] is the entropy of the target conditional distribution.

Neither H0 nor P (S|θ(0)) rely on φ and thus drop out of the objective.
The objective in Equation (2.5) may seem readily solvable by drawing samples, xi, from

the prior, p(x|θ(0)), to obtain a Monte Carlo (MC) approximation to the expectation in
Equation (2.5); this results in a simple weighted maximum likelihood problem. However,
for most interesting design problems, the desired set S will be exceedingly rare,1 and conse-
quently P (S|x) will be vanishingly small for most x sampled from the prior. Thus in such
cases, an MC approximation to the expectation in Equation (2.5) will exhibit high variance
and require an arbitrarily large number of samples to calculate accurately. Any gradient-
based approach, such as reparameterization or the log-derivative trick [92, 140], to try to
solve the program in Equation (2.5) directly will suffer from a similar problem. To overcome
this problem of rare events, we draw inspiration from CEM [151, 150, 27] to propose an
iterative, adaptive, importance sampling-based estimation method.

First we introduce an importance sampling distribution, r(x), and rewrite the objective
function in Equation (2.5) as

Ep(x|θ(0))[P (S|x) log q(x|φ)] (2.6)

=Er(x)
[
p(x|θ(0))
r(x)

P (S|x) log q(x|φ)

]
, (2.7)

to mitigate the problem that the expectation of P (S|x) over our prior in Equation (2.5) is
likely to be vanishingly small. Now the question remains of how to find a good proposal
distribution, r(x). Rather than finding a single proposal distribution, we will construct a
series relaxed conditions, S(t), and corresponding importance sampling distributions, r(t)(x),
such that (a) Er(t)(x)[P (S(t)|x)] is non-vanishing, and (b) S(t) ⊃ S(t+1) ⊃ S, for all t. The

first condition implies that we can draw samples, x, from r(t)(x) that have reasonably high
values of P (S(t)|x). The second condition ensures that we slowly move toward our desired
property condition; that is, it ensures that S(t) approaches S as t grows large. (In practice,
we choose to use the less stringent condition S(t) ⊇ S(t+1) ⊇ S, but the stricter condition
can trivially be achieved with a minor change to our algorithm, in which case one should be
careful to ensure that the variance of the expectation argument does not grow too large).

1If not, then the design problem was an easy one for which we did not need specialized methods.
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The only remaining issue is how to construct these sequences of relaxed events and impor-
tance sampling proposal distributions. Next we outline how to do so when the conditioning
event is a maximization of a property.

Consider the first condition, which is that Er(t)(x)[P (S(t)|x)] is non-vanishing. To achieve

this, we could (1) set S(t) to be the relaxed condition that p(y ≥ γ(0)|x) where γ(0) is the
Qth percentile of property values predicted for those samples used to construct the prior,
and (2) set the proposal distribution to the prior, r(t)(x) = p(x|θ(0)). For Q small enough,
Eq(x|φ(t))[P (S(t)|x)] will be non-vanishing by definition and condition (a) will be satisfied.
Thus, by construction, we can now reasonably perform maximization of the objective in
Equation (2.7) instantiated with S(t) because the rare event is no longer rare. In fact, this
is how we set the first tuple of the required sequence, (S(0), r(t)). After that first iteration,
we will then have solved for our approximate conditional, under a relaxed version of our
property desideratum to obtain q(x|φ(0)). Then, at each iteration, we set r(t) = q(x|φ(t−1)),
and γ(t) to the Qth percentile of property values predicted from the samples obtained in the
(t−1)th iteration. By the same arguments made for the initial tuple of the sequence, we will
have achieved condition (a), and condition (b) can trivially be achieved by disallowing γ(t)

from decreasing from the previous iteration (i.e., , set it to the same value as the previous
iteration if necessary).

Altogether now, Equation (2.7) becomes

Eq(x|φ(t))

[
p(x|θ(0))
q(x|φ(t))

P (S(t)|x) log q(x|φ)

]
, (2.8)

which we can approximate using MC with samples drawn from the search model,
x
(t)
i ∼ q(x|φ(t)) for i = 1, ...,M , and where M is the number of samples taken at each

iteration,

φ(t+1) = argmax
φ

M∑
i=1

p(x
(t)
i |θ(0))

q(x
(t)
i |φ(t))

P (S(t)|x(t)
i ) log q(x

(t)
i |φ). (2.9)

At last, we now have a low-variance estimate of our objective (or rather, a relaxed version
of it that will get annealed), which can be viewed as a weighted maximum likelihood with

weights given by
p(x

(t)
i |θ(0))

q(x
(t)
i |φ(t))

P (S(t)|x(t)
i ). Our objective function can now be optimized using

any number of standard techniques for training generative models. (In the Supplementary
Information of [28] we show how to extend our method to models that can only be trained
with variational approximations to the maximum likelihood objective).

It is clear from Equation (2.9) that the variance of the MC estimate not only relies on

P (S(t)|x) being non-vanishing for many of the samples but also that the density ratio, p(x|θ
(0))

q(x|φ(t))

is similarly well-behaved. Fortunately, this is enforced by the weighting scheme itself, which
encourages the density of the search model to remain close to the prior distribution. This
is intuitively satisfying, as it shows that minimizing the KL divergence between the search
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distribution and the target conditional requires balancing the maximization the probability
of S(t) with adherence to the prior distribution.

Extension to intractable latent variable models

Our final objective in Equation (2.9) requires us to reliably evaluate the densities of the
prior and search models for a given input x. This is often not possible, particularly for latent
variable models where the marginalization over the latent space is intractable. Although one
might consider using an Evidence Lower Bound (ELBO) [23] approximation to the required
densities, one can exploit the structure of our objective to exactly derive the needed quantity.
In particular, we can maintain exactness of our objective for prior and search model densities
where one can only calculate the joint densities of the observed and latent variables, namely
p(x, z|θ(0)) and q(x, z|θ(t)), which can be achieved only if both model’s densities are defined
on the same latent variable space, Z.

This extension relies on the fact that an expectation over a marginal distribution is equal
to the same expectation over an augmented joint distribution, for instance
Ep(x)[f(x)] = Ep(x,y)[f(x)]. Starting with Equation (2.6) and using this fact, we arrive at an
equivalent objective function,

Ep(x|θ(0))[P (S(t)|x) log q(x|φ)] (2.10)

=Ep(x,z|θ(0))[P (S(t)|x) log q(x|φ)] (2.11)

=Eq(x,z|φ(t))

[
p(x, z|θ(0))
q(x, z|φ(t))

P (S(t)|x) log q(x|φ)

]
. (2.12)

This objective can then be optimized in a similar manner to the originally presented case,
only now using an MC approximation with joint samples x

(t)
i , z

(t)
i ∼ q(x, z|φ(t)).

Note that in the common case where both models are constructed such that they have the

same density over Z, p(z), then (2.12) can be further simplified using p(x|z,θ(0))p(z)

q(x|z,φ(t))p(z)
= p(x|z,θ(0))

q(x|z,φ(t))
.

Practical Considerations

In practice, we often use the same parametric form for the search model and the prior
density. This allows us to simply initialize the search distribution parameters as φ(1) = θ(0).

Additionally, in practice we cache the search model parameters φ(t) and use these to
initialize the parameters at the next time step in order to reduce the computational cost of
the training procedure at each step.

2.4 Experiments

We perform two main sets of experiments. In the first, we use simple, one-dimensional,
toy examples to demonstrate some of the main points about our approach. In the second
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(a) (b) (c)

Figure 2.1: An illustrative example. (a) Relevant distributions and functions for two
oracles (mean and standard deviation shown in orange). The oracle in the top plot was
given training data corresponding to only half the domain, while the bottom one was given
training data covering the whole domain. The prior conditioned on the property that the
oracle is greater than its maximum is in red. The value of the ground truth at the mode of the
conditional and the maximum of the oracle are shown as red and orange X’s, demonstrating
that the mode of the conditional distribution corresponds to a higher value of the ground
truth than the maximum of the oracle (b) Evolution (‘static animation’) of the estimated
conditional distribution as CbAS iterates; the exact distribution is shown in red in panel a.
(c) KL divergence between the conditional and search distributions shown in (b), showing
that our final approximate conditional is close to the real one.

set of experiments, we ground ourselves in a real protein fluorescence data set, conducting
extensive simulations to compare methods.

An illustrative example

We first wanted to investigate the properties of our approach with a simple, visual ex-
ample to understand how the prior influences the solutions found. In particular we wanted
to see how an oracle could readily become untrustworthy away from the training data, and
how use of the prior might alleviate this. We also wanted to see that even when the oracle is
trustworthy, that our approach still yields sensible results. Finally, we wanted to ensure that
our approach does indeed approximate the desired conditional distribution satisfactorily for
simple cases that we can see. The summary results of this experimentation are shown in
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Figure 2.1.
To run this set of experiments, we first constructed a ground truth property function,

comprising the superposition of two unnormalized Gaussian bumps. The goal was to find an
input, x, that maximizes the ground truth, when only the oracle and a prior are given.

Next we created two different oracles, by giving one access only to data that covered half
of the domain, and the other by giving it data that covered the entire domain (including all
those in the first data set). These training data were ground truth observations corrupted
with zero-mean Gaussian noise with variance of 0.05. Then two oracles were trained, one for
each data set, and of the form, p(y|x) = N (µ(x), σ2) where µ(x) is a two hidden-layer neural
network fit to one of the training sets and σ2 was set to the mean squared error between the
ground truth and µ(x) on a hold-out set.

The resulting oracles, and the underlying ground truth are shown in Figure 2.1a. The
oracle trained with the smaller data set suffers from a serious pathology—it continues to
increase in regions where the ground truth function rapidly decreases to zero. This is exactly
the type of pathology that CbAS aims to overcome by estimating the conditional density of
the prior rather than directly optimizing the objective. The second oracle does not suffer
from as serious a pathology, and serves to show that CbAS can still perform well in the case
that the oracle is rather accurate (i.e., the prior does not overly constrain the search). As
with any Bayesian method with a prior, there may be settings where the prior could lead
one astray, and this example is simply meant to convey some intuition. The next set of
experiments, grounded in a protein design problem, suggest that the prior we constructed,
used within CbAS, works well in practice.

We construct our target set S as being the set of values for which Y is greater than
the maximum of the oracle’s expectation, for x values between minus three and six. In this
simple 1D case, we can evaluate the target conditional density very accurately by calculating
P (S|x)p0(x) for many values of x and using numerical quadrature to estimate the normalizing
constant. The target conditional is shown in red in 2.1a. We can see that in both cases, the
mode of the conditional lies near a local maximum and the conditional assigns little density
to regions where the oracle is highly biased.

Finally, we test the effectiveness of CbAS in estimating the desired conditional densities
(Figure 2.1b,c). We use a search distribution that is the same parametric form as the prior,
that is, a Gaussian distribution and run our method for 50 iterations, with the quantile
update parameter, Q = 1 (meaning that γ(t) will be set to the maximum over the sampled
mean oracle values at iteration t) and M = 100 samples taken at each iteration. Figure 2.1b
shows the search distributions that result from our scheme at each iteration of the algorithm,
overlayed with target conditional distribution. Figure 2.1c) shows the corresponding KL
divergences between the search and target distributions as the method proceeds. We can
see qualitatively and quantitatively (in terms of the KL divergence) that in both cases the
distributions converge to a close approximation of the target distribution.
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Application to protein fluorescence optimization

(a) (b)

Figure 2.2: Design for maximization of protein fluorescence. (a) For sampling-based meth-
ods, namely CbAS, FB-VAE, DbAS, RWR and CEM-PI, shown are the mean values of
the ground truth evaluated at samples coming from different percentiles (50th, 80th, 95th,
and 100th) of oracle predictions over all iterations. The gradient-based methods, GB, GB-
NO and AM-VAE, yield only a single protein at each iteration and converge rapidly; thus
only the ground truth value of the final single protein for each of these methods is used. For
sampling-based methods, an optimal method has darkest bars at the top, followed by pro-
gressively less dark bars, indicating that the method has successfully avoided untrustworthy
regions of the space. Methods that have the darkness out of this order are being led astray
into untrustworthy oracle regions. The height of a bar shows how well the ground truth
fluorescence is maximized, where higher is better. For CbAS, the height is highest, and
the darkness ordering, correct—unsurprisingly, as avoiding oracle pathologies should help
achieve higher ground truth during maximization. This trend of better darkness ordering
yielding high property values holds for all sampling based methods. The sets of three bars
indicate the three different oracles (each bar was averaged over three random runs). (b) For
one representative run in panel a), a trajectory is shown for each method. Each point on a
dashed lines shows the 80th percentile of oracle evaluations of the samples at that iteration.
The corresponding point on a solid line shows the mean ground truth value of those same
samples. The last point on a curve shows what final protein sequence would be used from
each method (i.e., that with the highest oracle value seen, as the ground truth would be
unknown)—high dashed values and low solid ones are methods that have been led astray
into pathological regions of the oracle.

Fluorescent proteins are a workhouse of modern molecular biology. Improving them has a
long history, but also serves as a good test bed for protein optimization. Thus we here focus
on the problem of maximizing protein fluorescence. In particular, we perform a systematic
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comparison of our method, CbAS, to seven other approaches, described below. We anchored
our experiments on a real protein fluorescence data set [154].

Methods considered We compared our approach to other competing methods, includ-
ing, for completeness, those which can only work with differentiable oracles. For models that
originally used a GAN prior, we instead use a VAE prior so as to make the comparisons mean-
ingful.2 We compare our method, CbAS , against the following methods: (i) AM-VAE—the
activation-maximization method of Killoran et al. [90]. This method requires a differentiable
oracle. (ii) FB-VAE—the method of Gupta and Zou [64]. This method does not require
a differentiable oracle. (iii) GB-NO—the approach described by Gómez-Bombarelli et al.
[61]. This method requires a differentiable oracle. (iv) GB—the approach implemented by
Gómez-Bombarelli et al. [61] which has some additional optimization constraints placed on
the latent space that were not reported in the paper but were used in their code. This
method requires a differentiable oracle. (v) DbAS—a method similar to CbAS, but which
assumes an unbiased oracle and hence has no need for or ability to incorporate a prior on
the input design space. This method is an instantiation of the Cross Entropy Method de-
signed to optimize P (S|x) in the context of biological sequence design. (vi) RWR—Reward
Weighted Regression [131], which is similar to DbAS, but without taking into account the
oracle uncertainty. This method does not require a differentiable oracle. (vii) CEM-PI —use
of the Cross Entropy Method to maximize the Probability of Improvement [165], an acqui-
sition function often used in Bayesian Optimization; this approach does not make use of a
prior on the input design space. This method does not require a differentiable oracle.

In these experiments we set the quantile update parameter of CbAS to Q = 1. However,
we show in the Supplementary Information of [28] that results are relatively insensitive to
the setting of Q.

Simulations In order to compare methods it was necessary to first simulate the real data
with a known ground truth because evaluating hold out data from a real data set is not
feasible in our problem setting. To obtain a ground truth model we trained a GP regression
(GPR) model on the protein fluorescence data, with a protein-specific kernel [159], whose
feature space was augmented by adding a bias feature and exponentiating to obtain a second
order polynomial kernel. Our ground truth is the mean of this GPR model, which, notably,
is a different model class than the oracle, as we expect in practice.

Next, for each protein sequence in the original data set we compute its ground truth
fluorescence. Then we take those sequences that lie in the bottom 20th percentile of ground
truth fluorescence, choose 5,000 of them at random, and use these to train our oracles using
maximum likelihood. We wanted to investigate different kinds of oracles with different prop-
erties, with a particular focus on investigating different uncertainty estimates. Specifically,
we considered three types of oracle. The first was a single-layer neural network model with
homoscedastic, Gaussian noise in its predictions. The second was an ensemble of five of these

2As shown in [27], the GAN and VAE appear to yield roughly similar results in this problem setting.
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models, each with heteroscedastic noise, as in Lakshminarayanan et al. [98]. The third was
the same as the second, but with an ensemble of 20 neural networks.

Next we train a standard VAE prior on those same 5,000 samples. This VAE gets used by
CbAS and AM-VAE (as the prior) and in FB-VAE (for initialization). Because GB and
GB-NO require training a supervised VAE, this is done separately, but with the same 5,000
samples, and corresponding ground truth values.

To fairly compare the methods we keep the total number of samples considered during
each run, N , constant. We call this the sequence budget. This sequence budget corresponds
to limiting the total number samples drawn from the generative model in CbAS, DbAS, FB-
VAE, RWR and CEM-PI ; and limiting the number of total gradient step updates performed
in the AM-VAE, GB and GB-NO methods. For the latter class of methods, if the method
converged but had not used up its sequence budget, then the method was re-started with
a new, random initialization and executed until the sequence budget was exhausted, or a
new initialization was needed. For convergence we used the built-in method that comes with
GB and GB-NO, and for AM-VAE, convergence is defined as that the maximum value did
not improve in 100 iterations.

For each of the three oracle models, we ran three randomly initialized runs of each method
with a sequence budget of 10,000. Figure 2.2a shows the results from this experiment,
averaged over the three separate runs. Methods that have no notion of a prior (DbAS,
RWR, CEM-PI ) are clearly led astray, as they only optimize the oracle, finding themselves
in untrustworthy regions of oracle space. This suggests that our simulation settings are in
the regime of the illustrative example shown in Figure 2.1a (top).

2.5 Conclusion

In this Chapter we have (i) introduced a new method that enables one to solve design
problems in discrete space, and with a potentially non-differentiable forward model, (ii) we
introduced a new way to perform approximate, conditional density modelling for rich classes
of models, and importantly, in the presence of rare events, (iii) showed how to leverage the
structure of latent variable models to achieve exact importance sampling in the presence of
models whose density cannot be computed exactly. Additionally, we showed that compared
to other alternative solutions to this problem, even those which require the oracle to be
differential, our approach yields competitive results.

Our method, Conditioning by Adaptive Sampling, is a type of model-based optimization
(MBO), where one constructs a search model and attempts to optimize the expectation of the
target function over the density of the search model. A major class of model-based optimiza-
tion techniques are known as Estimation of Distribution Algorithms, or EDAs. We analyze
EDAs in depth in the next chapter, and in particular connect them to the Expectation-
Maximization algorithm, which is well studied in probabilistic machine learning.

The core assumption underlying CbAS is that the given forward model is biased far from
the training set. This assumption is based on the empirical observation that models trained
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on experimental fitness function data tend to exhibit pathologies far from the regime in which
they were trained. In Chapter 4 we will explore the estimation of fitness functions in more
depth. In particular, we will attempt to determine how many experimental measurements
are required to perfectly estimate fitness functions that exhibit substantial sparsity. This
type of analysis could be used to refine the assumptions underlying a method such as CbAS.

CbAS is designed to solve a particular instantiation of the inverse problem. In Chapter
5 we will describe another inverse problem where one wishes to design an entire library of
sequences that balance a trade-off between diversity and optimizing a given forward model.
We will use our solution to this problem to design a library of Adeno-associated viral capsids
that are more capable of properly folding and packaging the viral genome over a base library.



25

Chapter 3

Estimation of Distribution algorithms
and connections to the
Expectation-Maximization algorithm

Note: This chapter is reproduced from David Brookes, Akosua Busia, Clara Fannjiang,
Kevin Murphy, and Jennifer Listgarten. “A View of Estimation of Distribution Algorithms
through the Lens of Expectation-Maximization”. In: GECCO. 2020, pp. 189–190. with
permission.

3.1 Introduction

In the previous chapter, we introduced a model-based optimization (MBO) method for
solving a particular instantiation of the inverse problem. In that case the search model of
the MBO is used to modulate the assumed error in the given forward model. In Chapter
5 we will present an MBO technique to solve another inverse problem where we wish to
design a library of amino acid sequences that are both balance the competing requirements
of diversity and high average predictions in a given forward model. In this case, the search
model of the MBO will represent the density of amino acid sequences in the library, which
we will enforce to have high entropy (so it represents a diverse set of sequences) while also
optimizing the expected predictions of the forward model. From these two examples, it is
clear that MBOs represent a diverse set of methods that can be tailored to solve different
inverse problems with varying assumptions and goals.

In this chapter, we will explore some fundamental properties of a particular class of MBOs
in more depth, known as Estimation of Distribution Algorithms, or EDAs. In particular,
we will show that EDAs can be written as a form of the famous Expectation-Maximization
algorithm often used in probabilistic machine learning. Because EM sits on a rigorous
statistical foundation and has been thoroughly analyzed, this connection provides a new
coherent framework with which to reason about EDAs.
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EDAs are a widely used class of algorithms designed to solve optimization problems of
the form z∗ = argmaxz∈Z f(z), where f : Z → R is a function over a space of discrete
or continuous inputs, Z. Instead of solving this objective directly, EDAs solve the related
objective

θ∗ = argmax
θ

Ep(z|θ)[f(z)], (3.1)

where p(z|θ) is a probability density over Z, parameterized by D parameters θ ∈ RD. When
p(z|θ) has the capacity to represent point masses on the maxima of f(z), then these two
formulations have the same optimal values. Reasons for using the latter formulation of
Equation 3.1 include convenience for derivative-free optimization [69], enabling of rigorous
analysis of associated optimization algorithms [198], and the leveraging of a probabilistic
formulation to incorporate auxiliary information [28]. In many cases this objective is further
modified by applying a monotonic shaping function, W (·) to f(z) [187, 186, 195], which
alters convergence properties of algorithms to solve it, but does not change the optima.

The general algorithmic template for EDAs is as follows. Beginning with an initial
parameter setting, θ(0), of the parametrized density, p(z|θ), each iteration t ∈ {0, 1, ...T} of
an EDA generally consists of three steps:

1. Draw N samples, {zi}Ni=1, from p(z|θ(t)).

2. Evaluate W (f(zi)) for each zi.

3. Find a θ(t+1) that uses the weighted samples and corresponding function evaluations
to move p(z|θ) towards regions of Z that have large function values.

The last step is generally accomplished by attempting to solve

θ(t+1) = argmaxθ

∑N
i=1W (f(zi)) log p(zi|θ), (3.2)

which can be seen as a weighted maximum likelihood problem with weights W (f(zi)). We
refer to this set of steps as a “core” EDA because it ties together most EDAs.

In the case of Covariance Matrix Adaptation (CMA-ES), a particularly popular EDA
[69], this core algorithm is often modified in a variety of ways to improve performance.
For example, samples from previous iterations may be used, directly or indirectly, in the last
step, resulting in smoothing of the parameter estimates across iterations. Adaptive setting of
parameter-specific step sizes, and “path evolution” heuristics [69, 123, 28] are also common.
These layers on top of the core EDA have generally been derived in a manner specific only
to CMA-ES, and are not readily generalizable to other EDAs. For this reason, we restrict
ourselves to the core EDA algorithm just described. However, as we shall see, our formalism
also allows for a large class of EDA parameter smoothing variations which encompass many,
but not all, variations of CMA-ES.
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EDAs are also distinguished by the choice of parametrized density, p(z|θ), which we
refer to here as the “search model”.1 Many EDAs use exponential family models for the
search model, most commonly the multivariate Gaussian as in CMA-ES. However, Bayesian
networks [121], Boltzmann machines [78, 161], Markov Random Fields [158], Variational
Autoencoder [28], and others [89] have also been used. Unless otherwise specified, our
analysis in the following is quite general and makes no assumptions on the choice of search
model.

In this chapter, we show that a large class of EDAs—including, but not limited to,
variants of CMA-ES—can be written as Monte Carlo (MC) Expectation-Maximization (EM)
[20], and in the limit of infinite samples, as exact EM [44]. Because EM sits on a rigorous
statistical foundation and has been thoroughly analyzed, this connection provides a new
framework with which to reason about EDAs. Within this framework, we also show how
many parameter-smoothed variants of CMA-ES can be written as Monte Carlo maximum a
posteriori -EM (MAP-EM), which suggests a possible avenue to develop similar smoothing
algorithms for EDAs with other search models.

3.2 Related Work

The Information Geometry Optimization (IGO) framework [123] unifies a large class of
approaches—including EDAs such as CEM [150] and CMA-ES [69]—for solving the objective
in Equation (3.1) by discretizing a natural gradient flow. Instantiations of IGO are most
readily seen as tantamount to using the score function estimator (sometimes referred to as
the “log derivative trick”) on Equation (3.1), combined with natural gradient, as in Natural
Evolution Strategies [187, 186]. The IGO framework does not connect to EM; therefore,
IGO provides a complementary viewpoint to that presented herein.

Akimoto et al. [7] show how CMA-ES with rank-µ updates, but without global step size
and evolution paths, can be viewed as a natural evolution strategy. In this context, they
briefly remark on how a simplified CMA-ES can be viewed as performing generalized EM
with a partial-M step using a natural gradient. The technical underpinnings of this result are
restricted specifically to CMA-ES because of the dependence on a Gaussian search model,
and do not readily generalize to the broader EDA setting considered herein.

Staines et al.introduce the notion of variational optimization, by explicitly considering
the fact that the optimum of the objective function in Equation (3.1) is a lower bound on the
optimum of f . They also clearly delineate conditions under which the bound can be satiated,
and the objective function is convex and has derivatives that exist [169]; no connections to
EDAs are made.

1This object is often simply referred to as the ”probability distribution” [89], however; we use ”search
model” to distinguish it from other probability distributions used in our formulations.
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3.3 Background: Free Energy view of EM

Before deriving the connection between EM and EDAs, we first review some needed back-
ground on EM. EM is a well-known method for performing maximum likelihood parameter
estimation in latent variable models that exploits the structure of the joint likelihood between
latent and observed variables [44]. Intuitively, each E-step imputes the latent variables, and
the subsequent M-step then uses these “filled in” data to do standard maximum likelihood
estimation, typically in closed form. EM iterates between these E- and M- steps until conver-
gence. We use the Free Energy interpretation of EM and its accompanying generalizations
[115] in order to reveal the connection between EDAs and EM.

Let x and z be observed and latent variables, respectively. The task of maximum likeli-
hood estimation in a latent variable model is to find φ̂ = argmaxφ L(φ) where

L(φ) = log p(x|φ) = log

∫
p(x, z|φ)dz, (3.3)

for some model density p parameterized by φ. In [115], the authors define a function known
as the free energy, given by

F (q,φ) = Eq(z)[log p(x, z|φ)] +H[q], (3.4)

where q(z) is any probability density over the latent variables, H[q] is the entropy of q, and
the term preceding the entropy is known as the expected complete log-likelihood. The free
energy lower bounds the log-likelihood, L(φ) ≥ F (q,φ), and this bound is satiated only
when q(z) is equal to the true posterior, q(z) = p(z|x,φ). If the true posterior cannot be
calculated exactly, one may approximate it in one of several ways, two of which are described
next.

In the first, the posterior is approximated by restricting it to a parameterized family of
distributions, q(z|ψ), where both the parameters of the likelihood and the variational family
must now be estimated. This is known as variational EM. Unless the true posterior lies in
the parameterized class, which is not typically the case, the bound L(φ) ≥ F (q,φ) cannot
be satiated, leading to a variational gap given by DKL(q(z)||p(z|x,φ)), where DKL denotes
the KL divergence.

In another approximation, one draws samples from the true posterior, zi ∼ p(z|x,φ(t)),
to estimate the expected complete log likelihood. This is known as Monte Carlo EM (MC-
EM), and can be seen as approximating the posterior with a mixture of weighted particles,
q(z) = 1

N

∑
i δzi(z). This also induces a “gap” between the true and approximate poste-

rior (because of the use of finitely many samples), which can be similarly computed as
DKL(q(z)||p(z|x,φ)), and hence we will refer to it also as a variational gap. One major
distinction between variational and MC-EM is that variational EM explicitly attempts to
minimize the variational gap at each iteration through optimization, while MC-EM only
implicitly closes the gap as the number of samples goes to infinity.
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All of EM, MC-EM, and variational EM can be viewed as alternating coordinate descent
on the free energy function [115]. In particular, the alternating updates at iteration t are
given by:

• E-step: q(t+1) ← argmaxq F (q,φ(t)), that is, compute or estimate the posterior over the
hidden variables. It can be shown that this is equivalent to minimizing the variational
gap by solving q(t+1)(z) = argminqDKL(q(z)||p(z|x,φ(t)).

• M-step: φ(t+1) ← argmaxφ F (q(t+1),φ), which is equivalent to maximizing the expected

complete log likelihood with respect to φ, φ(t+1) ← argmaxφ Eq(t+1)(z)[log p(x, z|φ)].
This can also be seen as solving a weighted maximum likelihood problem with data
(xi, zi), and weights given by by the approximate posterior, q(t+1).

When the variational gap can be driven to zero, as in exact EM, this procedure is guaranteed
to never decrease the likelihood in Equation (3.3). Moreover, the convergence properties of
exact EM to both local and global minima have been carefully studied (e.g., [44, 115, 14]).
Rigorous generalizations of EM to partial E- and M-steps also emerge naturally from this
viewpoint [115].

One can also use the free energy viewpoint of EM to optimize a maximum a posteri-
ori (MAP) objective given by LMAP (φ) ≡ log p(x|φ) + log p0(φ), where p0 is some prior
distribution over parameters. This yields a corresponding free energy,

FMAP (q,φ) ≡ Eq(z)[log p(x, z|φ) + log p0(φ)] +H[q], (3.5)

upon which one can perform the same coordinate descent algorithm just described. This
formulation is referred to as MAP-EM. We will draw connections between MAP-EM and
EDAs with smoothed parameter updates such as those commonly used in CMA-ES.

3.4 Formal connection between EM and EDAs

We are now ready to use the EM framework presented in Section 3.3, to show that EDAs
using the update rule in Equation (3.2) can be written as MC-EM, and as exact EM in the
infinite sample limit. We then show that generalizations of Equation (3.2) that allow for
parameter smoothing—such as CMA-ES’s smoothing with the previous estimate and use of
an evolutionary path—can be readily incorporated into the EM-EDA connection by using
the MAP-EM framework. Finally, we highlight a connection between EM and standard
gradient-based optimization.
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Derivation of EDAs as MC-EM

As described in the Introduction to this chapter, EDAs seek to solve the objective defined
in Equation (3.1),

θ̂ := argmax
θ

Ep(z|θ)[f(z)] (3.6)

= argmax
θ

logEp(z|θ)[f(z)] (3.7)

= argmax
θ
LEDA(θ), (3.8)

where f(z) is the black-box function to be optimized, p(z|θ) is what we refer to as the search
model, parameterized by θ, and we define LEDA(θ) ≡ logEp(z|θ)[f(z)]. This expression can
be thought of as an EDA equivalent to the ‘log marginal likelihood’ in EM, only without
any observed data, x.

Some EDAs monotonically transform f(z) with a shaping function, W (·), which may be,
for example, an exponential [131], a quantile-based transformation [123, 150], or a cumulative
density function (CDF) [28]. Although this transformation does not change the optima, it
may alter the optimization dynamics. Often this shaping function is changed at each iteration
in a sample-dependent, adaptive manner (which links these methods to annealed versions of
EM and VI [75, 108]). In such a setting, the connection that we will show between EDAs and
EM holds within each full iteration. For notational simplicity, we drop the W (·) and assume
that f(z) has already been transformed. We additionally assume that the transformation is
such that f(z) ≥ 0 for all z ∈ Z.

To link Equation (3.8) to EM, we introduce a probability density, q(z), which allows us
to derive a lower bound on LEDA using Jensen’s inequality:

LEDA(θ) = logEp(z|θ)[f(z)] (3.9)

= logEq(z)
[
p(z|θ)f(z)

q(z)

]
(3.10)

≥ Eq(z) [log(p(z|θ)f(z))] +H[q] (3.11)

= F (q,θ), (3.12)

where F is the same free energy function appearing in the previous section on EM, ex-
cept that the complete likelihood is replaced with the term f(z)p(z|θ). When f(z)p(z|θ)
is normalizable, then it can be shown that there is an EDA “variational gap” given by
F (q,θ)− LEDA = −DKL(q(z)||p̃(z|θ)) where we define the tilted density,

p̃(z|θ) =
p(z|θ)f(z)∫
Z p(z|θ)f(z)dz

, (3.13)

which is the EDA counterpart to the exact posterior in EM. We can now construct a coor-
dinate ascent algorithm on the free energy defined in Equation (3.12) that mirrors the EM
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algorithm. In particular, this algorithm iterates between E-steps that solve

q(t+1) ← argmin
q

DKL(q(z)||p̃(z|θ(t))),

and M-steps that solve

θ(t+1) ← argmax
θ

Eq(t+1)(z) [log(p(z|θ)f(z))] .

To make the precise connection between practically implemented EDA and EM, we introduce
a particular approximate ‘posterior’ for the E-step that is given by a mixture of weighted
particles:

q(t+1)(z) =

∑N
i=1 f(zi)δzi(z)∑N

i=1 f(zi)
, (3.14)

where {zi}Ni=1 are samples drawn from p(z|θ(t)), as in EDAs. Using this posterior approxi-
mation, the M-step amounts to solving the objective:

θ(t+1) = argmax
θ

Eq(t+1)(z) [log(p(z|θ)f(z))] (3.15)

= argmax
θ

∑N
i=1

∫
Z f(zi)δzi(z) log p(z|θ) dz∑N

i=1 f(zi)
(3.16)

= argmax
θ

N∑
i=1

f(zi) log p(zi|θ), (3.17)

which is exactly the generic EDA update step defined in Equation (3.2).
From this exposition it also becomes clear that EDAs can be thought of as performing a

type of MC-EM that uses Importance Sampling [106] rather than direct sampling from the
posterior. In particular, the EDA sampling procedure uses proposal distribution, p(z|θ(t)),
(sampled in the E-step), and importance weights p(z|θ)f(z)/p(z|θ) = f(z) to estimate the
expected “complete log likelihood”, Eq(t+1)(z) [log(p(z|θ)f(z))], in the M-step.

This is our main result, as it shows that many EDAs can be viewed as an EM algorithm
that uses the particle-based posterior approximation given by Equation (3.14). For any z,
we have
q(t+1)(z)

p→ p̃(z|θ(t)) as n → ∞ by the law of large numbers and Slutsky’s theorem [63]. In
this limit of infinite particles, the approximate posterior matches the tilted distribution—the
EDA equivalent to the “exact posterior”—and our algorithm inherits the same guarantees
as exact EM, such as guaranteed improvement of the objective function at each iteration, as
well as local and global convergence properties [115, 14, 153].

In many cases, EDAs use a member of an exponential family for the search model. Letting
θ denote the expectation parameters, then the search model has the density:

p(z|θ) = h(z) exp
(
η(θ)TT (z)− A(θ)

)
, (3.18)
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where h is the base measure, η(θ) are the natural parameters, T (z) are sufficient statistics
and A(θ) is the log-partition function. Then the update of Equation (3.17) takes the simple
form of a weighted maximum likelihood estimate for the exponential family:

θ(t+1) =

∑N
i=1 f(zi)T (zi)∑N

i=1 f(zi)
. (3.19)

Next we show how exponential family search models can be used to connect parameter-
smoothed EDAs to MAP-EM.

3.5 Smoothed EDAs as MAP-EM

In CMA-ES, the parameter updates are smoothed between iterations in a number of ways
[68]. For example, the covariance estimate is typically smoothed with the previous estimate.
Additionally, it may be further smoothed using a rank one covariance matrix obtained from
the “evolution path” that the algorithm has recently taken.2 Next, we consider these types
of smoothing in detail. However, any smoothing update, or combination thereof, can be
similarly derived by adjusting the form of the prior distribution. A benefit of viewing CMA-
ES updates in this general form is that it becomes more straightforward to determine how
to do similar types of smoothing for EDAs without Gaussian search models.

When smoothing with the previous parameter estimate, the updates can be written as

θ(t+1) = (1− γ)θ(t) + γθ̃(t+1), (3.20)

where θ̃(t+1) is the solution to Equation (3.17) and γ is a hyperparameter that controls the
amount of smoothing. In the case where the search model is a member of an exponential
family, as is defined in Equation (3.18), we will show that the smoothed update of Equation
(3.20) is equivalent to a particular MAP-EM update that uses the tilted density of Equa-
tion (3.13) as the approximate posterior. To see this, consider the conjugate prior to the
exponential family,

p0(θ|λ) = exp
(
λT1 η(θ)− λ2A(θ)−B(λ)

)
, (3.21)

where λ = (λ1, λ2), B(λ) is the log-partition function of the prior, and we have assumed
that the base measure is constant. We now consider the modified EDA objective:

L̂EDA(θ) = logEp(z|θ)[f(z)p0(θ|λ)], (3.22)

which is analogous to the MAP objective defined in Section 3.3. It can be shown that by
replacing Equation (3.9) with this modified objective, performing analogous steps as those in
Equations (3.10)-(3.12) and (3.15)-(3.17)), and using the same definition of the tilted density

2See the two terms in Equation 11 in [68]).
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and approximate posterior as in Equations (3.13) and (3.14), respectively, we arrive at the
update equation:

θ(t+1) = argmax
θ

N∑
i=1

f(zi) log p(zi|θ)p0(θ|λ). (3.23)

If we now let λ2 = 1/γ− 1 and allow λ1 to change every iteration as λ1 = (1/γ− 1)θ(t), it can
then be shown that the solution to this objective is given by:

θ(t+1) =
λ1

1 + λ2
θ(t) +

1

1 + λ2
θ̃(t+1) (3.24)

= (1− γ)θ(t) + γθ̃(t+1), (3.25)

where

θ̃(t+1) =

∑N
i=1 f(zi)T (zi)∑N

i=1 f(zi)

is equivalent to the RHS of Equation (3.19), the solution of original EDA objective. Since
the update in Equation 3.25 is identical to the smoothed update of Equation 3.20, we can
see that smoothing can be viewed as a consequence of performing MAP-EM in the context
of EDAs, with a particular choice of prior parameters.

3.6 Conclusion

Estimation of Distribution algorithms represent a powerful class of methods for solving
model-based optimization objectives. As we have seen in the previous chapter (and will again
see in Chapter 5), such MBO objectives can be tailored to represent various inverse problems
in applying machine learning to biological sequence. Therefore, developing a broader under-
standing of MBO objectives and methods to solve them can empower further development
CbAS -like methods to tackle biological sequence design problems. In this chapter we have
made one such contribution by showing a novel connection between a broad class of EDAs
and EM. Additionally, we have presented an illustrative example of insight from EM that
can be applied to EDAs by way of this connection.

In the next Chapter, we will shift our focus towards the forward problem, and discuss
conditions under which one can perfectly estimate a biological fitness function.
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Chapter 4

On the sparsity of fitness functions
and implications for learning

4.1 Introduction

In the previous two chapters we discussed methods for solving inverse problems given a
suitable predictive model of fitness, and in the next chapter we will present another such
method. For the most part, we have been agnostic to the properties of this predictive model,
as well as the specific nature of the underlying fitness function that the model attempts to
estimate. In other words, we have mostly ignored the details of the forward problem when
attempting to solve the inverse problem. In this chapter, we will turn our focus to the forward
problem, and attempt to understand how certain properties of fitness functions of biological
sequences effect our ability to accurately model such functions. In particular, there is a
growing body of evidence demonstrating that fitness functions display substantial sparsity
when represented in a particular basis; we will use this observation to try to understand the
number of experimental measurements required to model a fitness function.

As discussed in Chapter 1, the forward problem in applying machine learning to sequence
engineering is to build models of fitness functions given experimental fitness measurements.
These measurements generally represent only a tiny fraction of those required to comprehen-
sively characterize a fitness function. Here we will attempt to elucidate an open question in
forward modeling, namely the number of training samples that are required to effectively es-
timate a given fitness function. This knowledge is crucial in the initial design of experiments
as it allows researchers to assess which of a variety of experimental techniques should be
used to probe a particular fitness function such that it can be recovered with a high fidelity,
or similarly, how to restrict the scope of an experimental probe of a fitness function (e.g.,
by mutating fewer positions in a sequence, or allowing positions to only mutate to a certain
number of alternative elements) such that the resulting data allows one to accurately recover
the function under study. We approach this problem by combining tools from evolutionary
biology and modern signal processing, which allows us to investigate the sample complexity
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of fitness function estimation for sequences of any length and alphabet size (e.g., binary,
nucleotide or amino acid alphabets), and test how different assumptions on simple, intuitive
properties of the functions affect these results.

We posit that the question of the sample complexity of fitness function estimation likely
can be better understood by investigating the sparsity of fitness functions, which is defined as
the number of non-zero coefficients in a given expansion of the function1. It has recently been
observed that some natural fitness functions are sparse when represented in terms of epistatic
interactions [152, 191, 15] and that this property can be exploited to improve estimators of
fitness [136, 4, 5]. It is well known in the field of signal processing that the sparsity of a
signal is intimately related to the properties of estimators of that signal, and in particular to
the sample complexity of certain algorithms designed to reconstruct signals from incomplete
measurements. More specifically, results from the sub-discipline of signal processing known
as Compressed Sensing (CS) provide scaling laws for the number of measurements required to
reconstruct a signal in terms of its sparsity [34]. Additionally, there are results that describe
the error induced by running these algorithms for signals that are only approximately sparse
[39, 33].

Compressed Sensing is an appropriate framework for our purposes partly because there
exist natural bases for representing fitness functions. The sparsity of a function depends
crucially on the basis in which that function is represented, and discovering bases in which
certain types of functions are sparse is a crucial task in CS [103]. The most popular basis
for representing fitness functions of binary sequences is the Walsh-Hadamard (WH) basis;
indeed, all of the aforementioned work studying the sparsity of fitness functions uses the
WH basis and it is used in a number of theoretical studies of fitness functions [73, 168, 116].
The WH basis has a number of convenient properties that make it suitable for representing
fitness functions, including that it intuitively encodes a fitness function in terms of epistatic
interactions [135]. The WH basis can only be naturally applied in the case of binary se-
quences; however, herein we will show how to construct bases analogous to the WH basis
that can represent fitness functions of sequences with non-binary alphabets (e.g., nucleotides
or amino acids). This construction is based on the theory of Graph Fourier transforms [141],
and thus we will refer to these as ‘Fourier’ bases [183, 168]. In what follows, we will only
consider the sparsity of fitness functions in the Fourier basis, and thus will simply refer to
this as the ‘sparsity of the fitness function’.

Equipped with these bases, we aim to more comprehensively probe the sparsity of fitness
functions than has been done previously, and use these results to develop general predictions
for the sample complexity of fitness function estimation. It is not immediately clear how one
could generalize previous work to make such predictions in cases where experimental data
is not already available. One possibility could be to analyze more experimental data and
attempt to make generalizable insights from this analysis. There exist an increasing number

1In a quirk of common terminology, a signal is called ‘sparse’ when it contains many zero coefficients,
but the ‘sparsity’ is formally defined as the number of nonzero coefficients. Thus, a ‘sparse’ signal has low
‘sparsity’.
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of combinatorially-complete empirical fitness landscapes [43, 189, 16] and the sparsity of some
of these have been probed to a certain extent [152, 185, 136]. However, these landscapes
necessarily only report on short sequences (up to 4 amino acids, 10 nucleotides, or 13 binary-
encoded positions) in limited environments, and thus may not be representative of fitness
functions more broadly. A traditional approach in evolutionary biology to overcome the lack
of sufficient empirical fitness landscapes is to instead study ‘random field’ models of fitness,
which assign fitness to sequences based on stochastic processes constructed to mimic the
statistical properties of natural fitness functions (see, e.g., [85] for a canonical example of
this paradigm and [2] for more recent work). We will follow a similar line of reasoning and
study the sparsity of random field models of fitness, allowing us to probe properties of a
much broader class of fitness functions than the available empirical landscapes. A note on
terminology: the stochastic process associated with a particular random field model specifies
(often implicitly) a joint probability distribution over the fitness of all sequences; we will refer
to a single sample from this joint distribution as being a fitness function sampled from the
random field model.

In this chapter, we will restrict our attention to a specific random field model, namely a
generalization of the NK model [86], and calculate the sparsity of fitness functions sampled
from this model. The NK model is a particularly useful and well-studied random field model
of fitness that can represent a rich variety of fitness functions using only two parameters:
L, the length of sequences,2 and K, the degree of epistatic interactions between positions in
the sequence. As a consequence, many properties of the NK model have been extensively
studied, with a particular focus on the number and heights of local optima [48, 30], the
correlation between the fitness of sequences as a function of the Hamming distance between
the sequences [168, 32], and the properties of adaptive walks on these landscapes [86, 120].
Importantly, this model and simple extensions are able to capture many of the characteristics
of experimental fitness landscapes, including the properties of local fitness optima [72, 6] and
correlation functions [148, 116]. Additionally, simulated data sampled from NK models have
been used as a benchmark to test machine learning models, and the results from these tests
compare favorably to analogous tests on experimental fitness datasets [57, 109].

In the original NK model defined by Kauffman [86], each position in the sequence inter-
acts with exactly K other positions that are either adjacent to the position or are chosen
uniformly at random; the set of interacting positions is known as a “neighborhood”. In the
generalized NK (GNK) model [30], these neighborhoods can be specified to be any size and
include specific positions. Thus, in the GNK model the choice of neighborhoods is a tunable
‘parameter’ that generalizes the usual K parameter, and together with with the sequence
length, L, and alphabet size, q, fully specifies the model. We will show that we can exactly
calculate the sparsity of fitness functions sampled from the GNK model represented in the
Fourier basis, as a function of L, q, and the choice of neighborhoods. We then use these
results within CS theory to determine the minimum number of samples required to recover

2In the original definition of the model, N is used for the sequence length, but here we reserve N for the
number of observed measurements.
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these fitness functions. To gain intuition for the theory, we will calculate the sparsity results
for a number of ‘standard’ neighborhood schemes, namely the random and adjacent position
schemes used in the original NK model, as well as an oft-used scheme known as the Block
Model that separates a sequence into non-interacting blocks of densely interacting positions
[130, 124].

The choice of neighborhoods can encode certain biological intuitions about interactions
between positions in a sequence. Thus, our results allow one to predict the sample complex-
ity of fitness function estimation under a variety of biologically-relevant assumptions. To test
the practical relevance of these predictions, we will describe a scheme to construct neigh-
borhoods based on contacts in a given atomistic protein structure and compare the Fourier
coefficients of the resulting GNK fitness functions to those of empirical protein fitness func-
tions. In particular, we show that GNK models with neighborhoods constructed based on
protein structure accurately approximate the sparsity of the empirical fitness functions of
the mTagBFP2 fluorescent protein [136] and the protein encoded by the His3 gene in yeast
[137], and are even able to correctly identify many of the important higher-order epistatic
interactions in these fitness functions. We further predict the number of samples required to
recover these structure-based GNK fitness functions, and show that estimators trained with
this number of empirical fitness values are able to estimate the empirical fitness function
with a relatively small amount of error. These results suggest that our theory can be used
as a practical tool to predict the sample complexity of protein fitness function estimation.

The structure of this chapter is as follows: in Section 4.2 we describe the myriad of
work related to ours; in 4.4 we formally define fitness functions and the estimation problem;
in Section 4.5 we review the key concepts in Compressed Sensing that are relevant to our
results; in Section 4.6 we discuss the properties of the Walsh-Hadamard basis and show
how to construct analogous Fourier bases for sequences with larger alphabets; in Section
4.7 we formally define the GNK model and the standard neighborhood schemes; in Section
4.8 we present our main results on the sparsity of fitness functions sampled from the GNK
model; in Section 4.9 we use these results to predict how many measurements are required
to exactly recover fitness functions sampled from the GNK model; in 4.10 we describe a
simple procedure for constructing GNK neighborhoods based on protein structure and apply
our results to make sparsity and sample complexity predictions for the mTagBFP2 and His3
fitness functions; we conclude in 4.11 with a discussion of the broader relevancy of our results
and potential future directions. Proofs for the mathematical results presented in this chapter
are provided in Appendix A.

4.2 Related Work

In [30], the authors define the GNK model for binary sequences and calculate the ‘rank’ of
these models, which is equal to the number of non-zero WH coefficients of fitness functions
sampled from the model, and thus the sparsity of the functions in the WH basis. They
additionally calculate statistics of the WH coefficients for sampled fitness functions. Our
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main theoretical results are extensions of these calculations to the GNK model defined for
sequences with any size alphabet. The proofs of these results (shown in Appendix A) provide
a new spectral graph-theoretic perspective to the results of [30]. It should also be noted that
the goal of [30] is quite different from our own, as they mainly attempt to correlate the rank
of a GNK model with the number of local fitness optima in fitness functions sampled from the
model, whereas we focus on the estimation of these functions. The authors of [120] calculate
the ranks of GNK models that use the ‘standard’ neighborhood construction schemes that
we will discuss here. Our results for these models again extends these calculations to the
case of sequences with larger alphabets.

There is quite a large body of work that studies various properties of the WH coefficients
of fitness functions. A number of papers calculate the WH coefficients of individual empiri-
cal fitness landscapes [189, 191] and characterize the sparsity of these coefficients [136, 15].
Some others have done post-hoc analysis of a number of experimental studies to calculate
the WH coefficients [152]; a particularly notable example is [185], which tests the hypoth-
esis that the influence of a coefficient decays with the degree of epistatic interaction that
it represents in many empirical landscapes. All of this work provides motivation for our
own and suggests that further study of the WH representation of of fitness functions is war-
ranted. Most directly relevant to our work are studies of the WH coefficients of random field
models, and in particular of the NK model. In [116], the authors calculate the ‘amplitude
spectrum’ of a number of random field models, including the NK model. These calculations
are based on the results of Stadler [168], who define the amplitude spectrum and provide a
number of useful tools for studying random field models of fitness. The amplitude spectrum
is, roughly, the expected normalized sum of squared WH coefficients corresponding to each
order of epistatic interactions. Our results (and those in [30]) provide more refined infor-
mation about the coefficients than the amplitude spectrum, in the sense that they describe
the statistics of individual coefficients rather than averaged properties of sets of coefficients.
In [73], the authors use the WH representation to show that the possible functions sampled
from the NK model form an extremely restricted subset of all possible functions of binary
sequences of length L. Similarly to the amplitude spectrum, these results report on global
properties of WH coefficients, while our results provide more local information about in-
dividual coefficients. In [136], the authors construct a combinatorially complete empirical
fitness function for the mTagBFP2 fluorescent protein, calculate the WH coefficients of this
fitness function, recognize the sparsity of these coefficients, and test a Compressed Sensing
algorithm’s ability to recover this fitness function with a small number of samples. Not only
did [136] serve as a major inspiration for this chapter, but we will make use of their data in
Section 4.10.

In addition to the above work, our results rely heavily on the theory of Compressed
Sensing, which we will review in more detail in Section 4.5. Before moving to that discussion,
we will first briefly discuss modern experimental capabilities for probing fitness functions,
and then formally define fitness functions discuss the estimation problem.
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4.3 Experimental capabilities

The central aim of this chapter is to determine the number of experimental observations
that are required to effectively estimate a fitness function. This warrants a discussion about
what is currently possible with modern experimental technologies for probing fitness. High-
throughput technologies for probing fitness generally fall under the umbrella of multiplex
assays of variant effect (MAVEs) [52, 94]. Roughly, a typical MAVE experiment has three
major steps: (i) creating a library of mutated sequences (ii) subjecting that library to an
environment where sequences with high fitness will be amplified (or alternatively, those with
low fitness will be diminished) and (iii) use Next-Generation Sequencing (NGS) technology
to determine the contents of the library resulting from the selection. The data resulting
from this procedure can then be processed to determine a scalar value of the fitness for every
sequence that appeared in the initial library. Examples of experimental methods that fit this
paradigm are Deep Mutational Scanning (DMS) for probing protein fitness [56], Massively
Parallel Reporter Assays for determining the fitness of regulatory sequences [79], and SELEX
experiments that use NGS to find functional aptamer sequences [156].

So how many sequences can these methods probe? The limiting factor is the number
and length of sequence reads that can be processed by NGS. The Illumina NovaSeq 6000
sequencer can process up to 20 billion (2× 1010) reads with at most 150 base pairs reported
in each read. At a sequencing depth of 1000 reads per unique sequence, this could be used
to probe the fitness of up to O(107) unique sequences. This limit has been approached in
experiments probing the fitness of certain short nucleotide sequences; for instance Pitt and
Ferré-D’Amare [134] report the catalytic fitness of ~107 unique 54 nucleotide RNA sequences
and recently Vaishnav et al. [180] measured the effects on expression of over 2× 107 unique
80 bp yeast promoter sequences. The situation for proteins is slightly bleaker, with most
data sets containing 104 to 105 unique amino acid sequences. For instance, Sarkisyan et al.
[154] report the fluorescence of 5 × 104 variants of the Green Fluorescent Protein, Rocklin
et al. [144] tests the stability of 5×104 miniproteins, and Hinkley et al. [74] probe the fitness
of 7 × 104 variants of the HIV protease and reverse transcriptase proteins. However, this
picture is rapidly changing, with larger data sets recently becoming available: Bryant et al.
[29] report the viability of 2 × 105 variants of the Adeno-Associated virus (AAV) capsid,
and the data set of Pokusaeva et al. [137] contains over 8 × 105 unique amino-acid altering
variants of the His3 gene in yeast.

Our aim in this chapter is determine the conditions under which fitness functions can be
recovered with the data resulting from a high-throughput experimental probe of fitness. The
above numbers can serve as a baseline for what constitutes a reasonable sample complexity
for a given problem.
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4.4 Fitness functions and estimation

A fitness function maps a space of sequences to a scalar property of interest. In particular,
let S(L,q) be the set of all length L sequences of an alphabet of size q, where |S(L,q)| = qL

is the size of the sequence space. A fitness function is any function that maps the sequence
space to scalar values, f : S(L,q) → R.

Some care should be taken in deciding appropriate values for L and q for a given situa-
tion. For our purposes, fitness functions are best understood in the context of hypothetical
mutagenesis experiments, where L positions are allowed to mutate, and each position may be
assigned one of q elements from an alphabet. Some of the subtleties in these definitions can
be seen by considering the different possibilities for defining fitness functions of a protein.
Suppose there is some protein made up of M amino acids and we would like to understand
how mutations effect the fitness of this protein. Further suppose we choose L < M positions
that we are particularly interested in (e.g., a set of positions that are part of or close to a
binding pocket). In certain cases, we may only be interested in how the fitness is affected
when each of these positions mutates to one specific other amino acid (for instance, the amino
acid present in that position in a homologous protein, as is the case in [136] and [8]); in this
case, we have a binary alphabet (i.e., q = 2) because there are only two options at each of
the L mutated positions. In other cases, we may be interested in determining the effects of
positions mutating to any other amino acid, in which case q = 20. Wu et al. [189] probe
this latter type of fitness function, testing the fitness of all combinations of the 20 amino
acids in each of 4 positions in protein GB1, for a total of 204 = 160, 000 measurements. In
some other cases, positions are allowed to mutate to a restricted subset of all amino acids
[16], and thus 2 ≤ q < 20, which may represent a the set of amino acids observed in known
homologs [137], or the set of single-site amino acid mutations that have neutral or positive
fitness compared to a wild type in a saturation mutagenesis experiment [29].

Our primary focus in this chapter is the estimation of fitness functions. In order to under-
stand the estimation problem formally, first note that any fitness function can be represented
exactly as f = Φβ, where f = (f(s))s∈S(L,q) is the vector of all qL fitness evaluations, Φ is a
qL×qL orthogonal basis, and β is a vector of qL coefficients. In this formulation, each row of
Φ represents an encoding of a particular sequence in S(L,q). Although any qL×qL orthogonal
basis could be used to represent the fitness function, in what follows we will always use the
Fourier basis for sequences of length L and alphabet size q, which will be defined in Section
4.6, below.

The estimation problem is to recover β from an incomplete set of measurements. In
other words, the aim is to estimate β given a set of sequences and measured fitness val-
ues corresponding to those sequences (i.e., rows of Φ and corresponding elements of f).
More concretely, suppose we observe (possibly) noisy fitness measurements, y, for N se-
quences whose indices are given in a set I ⊂ {1, 2, ..., qL}. Assume a Gaussian noise model,
y = Xβ + η, where η ∼ N (0, σ2I) corresponds to Gaussian measurement noise, σ2 is the
variance of the measurement noise, and X := [ΦT

I1
, ...,ΦT

IN
]T is the N × qL matrix containing

each row of Φ whose index is in I. Our goal in the fitness function estimation problem is
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to recover a good approximation to β given the incomplete set of noisy measurements. In
all but the trivial edge case where N = qL, this is an underdetermined linear system that
requires additional information to be solved. In the next section, we briefly describe some
aspects of the theory of Compressed Sensing, which provides conditions under which these
types of underdetermined linear systems can be solved with certain simple algorithms.

4.5 Compressed Sensing

The field of Compressed Sensing is primarily concerned with studying algorithms that
can solve underdetermined systems such as the fitness function estimation problem, and
determining the conditions under which recovery with a specified amount of error can be
guaranteed. One such algorithm is the LASSO, which is also well-studied in machine learning
as a form of regularized linear regression [70]. Using the fitness function estimation problem
as an example, LASSO solves the following convex optimization program:

min
β̂
‖y −Xβ̂‖22 + ν‖β̂‖1 (4.1)

where ν is a parameter determining the strength of regularization.
The key determinant of the success of algorithms such as LASSO in recovering a par-

ticular signal is how well the coefficients that represent the signal in a given basis can be
approximated by a sparse vector. Specifically, Candes and Plan [33] prove that when the
subset of indices I are sampled uniformly at random from {1, 2, ..., qL}, and the number of
samples satisfies

N ≥ C0 · S log qL (4.2)

then the solution to the program in Equation (4.1), denoted β∗, satisfies with high probability

‖β − β∗‖2 ≤ C1
‖β − βS‖1√

S
+ C2σ (4.3)

where C0, C1, and C2 are constants and βS is the best S-sparse approximation to β, (i.e.,
the vector that contains the S elements of β with the largest magnitude and sets all others
elements to zero), and σ2 is the variance of the measurement noise. Equation (4.3) has a
number of important implications. First, it tells us that if β is itself S-sparse, then, in a
noiseless setting, it can be recovered exactly with O(S logM) measurements. Otherwise, if β
is not exactly sparse but is well approximated by a sparse vector, then it can be approximately
recovered with error on the order of 1√

S
‖β − βS‖1, which is proportional to the sum of the

magnitudes of the qL − S elements of β with the smallest magnitudes.
The above results provide a straightforward path towards predicting the sample com-

plexity of fitness function estimation: if we can calculate the sparsity of fitness functions,
then we can predict the number of samples required for recovery up to a certain amount
of error using Equations (4.2) and (4.3). We will primarily focus on cases where a fitness
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function is exactly sparse in the Fourier basis and we can calculate the sparsity. In this case,
we need only to determine an appropriate value of the constant C0 in order to determine
an N such that exact recovery of the fitness function is guaranteed. Although natural fit-
ness functions are unlikely to be exactly sparse, they may be well approximated by sparse
vectors, and Equation (4.3) tells us that the error of the fitness function estimator will be
controlled in this case. In particular, imagine we predict that a fitness function will require
N measurements to be recovered by assuming that it is exactly S-sparse, but in reality the
fitness function has S large coefficients and many small coefficients. Then the resulting error
from estimating the fitness function N samples will be small (proportional to the sum of the
magnitudes of all of the small coefficients). This justifies our focus on exact sparsity, despite
the fact that natural fitness functions are likely rarely exactly sparse. We will also focus on
recovery in the noiseless setting, where σ = 0 and thus exact recovery can be guaranteed
for sparse functions. Equation (4.3) shows that if a function is exactly S-sparse and (4.2) is
satisfied, then the remaining error is due only to the measurement noise and not any proper-
ties of the function. Since here we are primarily concerned with understanding how assumed
properties of fitness functions affect the sample complexity of estimating those functions, it
is thus most appropriate to consider the noiseless setting and leave the estimation of error
due to measurement noise to future work.

4.6 Fourier bases for fitness functions

The sparsity of a class of signals depends crucially on the basis with which they are
represented. Indeed, determining bases that sparsify particular classes of signals is an im-
portant component of practical CS research as it greatly effects the behavior of recovery
algorithms [34, 103]. Therefore the immediate concern in applying CS to the estimation of
fitness functions is deciding with which basis we should represent fitness functions. The most
popular bases for this purpose is the Walsh-Hadamard (WH) basis, which in matrix form is
a normalized Hadamard matrix [184, 135]. The WH basis has a number of convenient and
intuitive properties that make it suitable for representing fitness functions. Not only have
many natural fitness functions been shown to be sparse in the WH basis, but Poelwijk et al.
[135] showed that the WH basis can be used to unify a number of different definitions of
epistasis.

One of the major advantages of the WH basis is that it can be interpreted as representing
fitness functions in terms of epistatic interactions of increasing orders. To see this, let HL be
the WH basis for binary sequences of length L. Then any fitness function of binary sequences
of length L can be represented by f = HLβ and in this representation, the fitness function
evaluated on an individual sequence, s = [s1, s2, ..., sL] ∈ S(L,2), has the form of an intuitive
multi-linear polynomial:

f(s) =
∑
U∈U

βU
∏
i∈U

si (4.4)
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Figure 4.1: Example Fourier basis construction for q = 3 and L = 3. Consider L =
3 sequences constructed from the alphabet elements {A,B,C}. (a) Alphabet encodings
constructed from the final q − 1 = 2 eigenvectors of the complete graph K(3), where γ :=

1√
3−1 . The encoding vectors a,b and c corresponding to alphabet elements A, B and C,

respectively, are highlighted with unique colors. (b) Fourier basis constructed according
to Equation (4.8) for L = 3. The unnormalized basis with columns shuffled to represent
epistatic interactions is shown in the enlarged matrix, with vertical bars representing column-
wise concatenation. Each row represents a sequence shown on the left hand side of the
matrix. Columns within vertical bars represent the epistatic interaction indicated beneath
the matrix. (c) Fourier coefficients β with elements shuffled so that the sub-vectors, βU ,
represent epistatic interactions, where horizontal bars represent row-wise concatenation.

where U := P({1, ..., L}) is the power set of position indices in the sequence. Each U with
|U | = r is a collection of r unique indices and each term in the polynomial represents an
‘epistatic’ interaction of order r between positions in the sequence Equation (4.4) could also
be written more clearly as:

f(s) = β0 +
L∑
i=1

βisi +
∑
i 6=j

βijsisj +
∑
i 6=j 6=k

βijksisjsk + ...

with the sum continuing up to the Lth order interaction term, and where we define β0 as the
coefficient corresponding to the empty set. It is clear that there are 2L total terms in this
expansion, and

(
L
r

)
epistatic interactions of order r. This construction of a fitness function
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in terms of epistatic interactions carries a strong biological intuition and allows for clear
interpretation of the fitness function’s parameters.

Additionally, the WH basis admits a recursive definition that allows it be constructed
quickly. Specifically, we have the recursion relation:

HL+1 =

[
HL HL

HL −HL

]
(4.5)

where we define H0 := [1]. This can also written without recursion as:

HL =
L⊗
l=1

H1 (4.6)

where ⊗ represents the Kronecker product and H1 =

[
1 1
1 −1

]
can be determined from

Equation (4.5).
The WH basis can only be naturally applied to fitness functions of binary sequences

(where q = 2), which poses a challenge in biological contexts where common alphabets
include the nucleotide (q = 4) and amino acid (q = 20) alphabets. The usual solution to this
problem is to encode elements of a larger alphabet as binary sequences, and use the WH basis
to represent a fitness function of sequences in this encoding. However, this misrepresents the
structure of sequence space for a number of reasons. An easy way to see this is to consider
the size of the sequences space corresponding to a binary encoding. For example the “one-
hot” encoding scheme of amino acids encodes each amino acid as a length 20 bit string;
the number of amino acid sequences of length L is 20L, while the binary encodings of these
sequences are elements of a binary sequence space of size 220L = 1, 048, 576L. This latter
number also corresponds to the number of WH coefficients required to represent the fitness
function in the one-hot encoding, and is much too large to be of any practical use. How
then might we construct a more appropriate basis for representing fitness of sequences of
larger alphabets? Ideally this basis will share analogous convenient properties to those of the
WH basis. Fortunately, the WH basis is a member of a broader class of bases that admits
straightforward extensions to larger alphabets. In particular, the WH basis is the Graph
Fourier basis corresponding to a graph representing the space of sequences. The Graph
Fourier basis corresponding to a given graph is a complete set of orthogonal eigenvectors of
the Graph Laplacian of the graph. Graph Fourier bases have many useful properties and
have been used extensively for processing signals defined on graphs [141].

The WH basis is specifically the Graph Fourier basis corresponding to the Hamming graph
H(L, 2) [166]. The vertices of H(L, 2) represent all unique binary sequences of length L; two
sequences are adjacent in H(L, 2) if they differ in exactly one position (i.e., the Hamming
distance between the two sequences is equal to one). The Hamming graphs H(L, q) are
defined in the same way for sequences with alphabet size q. Thus, we can construct an
analogous Graph Fourier basis to the WH basis to represent sequences with larger alphabets
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by calculating the eigenvectors of the Graph Laplacian of H(L, q). In what follows, we will
only consider functions defined on Hamming graphs and we will thus refer to Graph Fourier
bases corresponding to Hamming graphs simply as ‘Fourier’ bases.

An important property of the Hamming graph H(L, q) is that it can be constructed as
the L-fold Graph Cartesian product of the “complete graph” of size q [166]. The complete
graph of size q, denoted K(q), has q vertices (which represent elements of the alphabet in
our case) and edges between all pairs of vertices. Due to the spectral properties of graph
products, the eigenvectors of the Hamming graph (i.e., the Fourier basis) can be calculated as
a function of the eigenvectors of the complete graph. We have the following result regarding
the eigenvectors of the complete graph.

Proposition 4.1. An orthonormal set of eigenvectors of the Graph Laplacian of the complete
graph K(q) are given by the columns of the following Householder matrix:

Pq := Iq −
2wwT

‖w‖22
(4.7)

where w := 1q − ‖1q‖2e1 and 1q is a vector of length q whose elements are all equal to one.

The complete graph is equal to the Hamming graph H(1, q), and thus Equation (4.7)
constructs the Fourier basis for sequences of length one and alphabet size q. Each row of
Pq corresponds to a sequence of length one; the first columns is constant for all rows while
the remaining q− 1 columns encode the alphabet elements (i.e., the final q− 1 elements of a
row uniquely identify the alphabet element that the row corresponds to). More specifically,
let P̃q be the matrix containing the final q − 1 unnormalized columns of Pq, such that

Pq = 1√
q

[
1q | P̃q

]
, where | denotes column-wise concatenation. Then the ith row of P̃q

encodes the ith element of the alphabet. We will denote each of these encodings as pq(s),
where s is an element of the alphabet (i.e., each pq(s) is a row of P̃q). As an example, 4.1a
shows P3, which encodes the three element alphabet {A,B,C}. The colored rows in this
figure together represent P̃q.

Then, it can be shown that Fourier basis corresponding to the Hamming graph H(L, q),
which can be used to represent fitness functions of sequences of length L and alphabet size
q, is given by the L-fold Kronecker product of the eigenvectors of the complete graph, as
shown in the following proposition.

Proposition 4.2. An orthonormal set of eigenvectors of the Graph Laplacian of the Ham-
ming graph H(L, q) are given by the columns of following the qL × qL matrix:

Φ(L,q) =
L⊗
i=1

Pq (4.8)

where Pq is defined in Equation (4.7).
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We note that these bases are not entirely novel: an equivalent form for nucleotide alpha-
bets is given in [171]. Additionally, if we used a q-point Discrete Fourier Transform matrix
instead of Pq in (4.8) than we would recover the basis used in [167].

There are a number of interesting points to be made about this basis. First, it can
easily be seen that P2 = H1, and thus Φ(L,2) = HL, which confirms that the WH basis is
the Fourier basis for q = 2. Additionally, the Fourier basis for larger alphabets also shares
the intuition of encoding epistatic interactions between positions in a sequence. Any fitness
function of sequences of length L and alphabet size q can be represented as f = Φ(L,q)β and
in this representation, the fitness function evaluated on a specific sequence, s ∈ S(L,q) can
again be written in terms of interactions between positions in the sequence:

f(s) =
∑
U∈U

(βU)T φU(s) (4.9)

where φU(s) := 1√
qL

⊗
i∈U pq(si) is a length (q − 1)|U | vector representing the interaction

between the sequence positions in U , and βU is a length (q− 1)|U | sub-vector of β. In other
words, the Fourier basis constructed with Equation (4.8) represents an rth order epistatic
interaction with a length (q−1)r vector where the elements are all possible products between
elements in the vectors that encode alphabet elements involved in the interactions. Figure
4.1 shows an example construction of the Fourier basis for q = 3 and L = 3 which illuminates
many of these properties.

These Fourier bases provide a powerful and intuitive representation of a fitness function
of sequences of any length and alphabet size. In what follows, we will investigate the sparsity
of fitness functions represented in these bases.

4.7 The Generalized NK (GNK) model

In order to move beyond the available empirical data and study more fitness functions
more generally, we will probe the sparsity of fitness function sampled from random field
models. A random field model specifies a stochastic process over sequence space to assign
fitness to sequences, which implicitly defines a joint probability distribution over the fitness
values of all sequences. Importantly, this also induces a probability distribution for the
Fourier coefficients, β. A wide variety of random field models exist, ranging in intricacy
from the House of Cards (HoC) model [93], where fitness values are assigned i.i.d. to each
sequence, to those modeling complex biophysical processes [190].

We will focus on the Generalized NK (GNK) model, a random field model introduced
by Buzas and Dinitz [30]. The parameters of the GNK model can be tuned to represent a
variety of biologically relevant assumptions, but it is still simple enough that many of its
properties can be calculated exactly. As we will see, the properties that can be calculated
exactly include the mean and variance of the Fourier coefficients, and the sparsity of fitness
functions sampled from the model.
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Figure 4.2: Graphical depictions of neighborhood schemes for L = 9 and K = 3. The
vertical axis represents neighborhoods and the horizontal axis represents positions. A square
in the (i, j)th position in the grid denotes that sequence position j is in the neighborhood
V [i]. (a) Block Neighborhood (b) Adjacent Neighborhood (c) Random Neighborhood.

In order to be defined, the GNK model requires the specification of a ‘neighborhood’ for
each position in a sequence. A neighborhood V [j] ⊂ {1, 2, ..., L} corresponding to position j
contains j and Kj − 1 other position indices, where we define Kj := |V [j]|. These neighbor-
hoods can roughly be thought of as the positions that position j interacts with; we will call
interactions due to positions co-occuring in a neighborhood ‘positional’ interactions, which
is in contrast to epistatic interactions which are defined as interactions that have nonzero
coefficients in the Fourier expansion of a fitness function. In the classical NK model [86],
the neighborhoods are all of the same size (i.e., Kj = K for all j), and are constructed by
one of a few standard schemes, which we will discuss shortly. The GNK model allows for
complete flexibility in the specification of neighborhoods, and thus can apply to a broader
range of biological contexts.

Definition 4.1 (The GNK Model). Given sequence length, L, alphabet size, q ≥ 2, and set
of neighborhoods V := {V [j]}Lj=1, a fitness function sampled from the GNK model assigns a

fitness to every sequence s ∈ S(L,q) with the following two steps:

1. Let s[j] := (sk)k∈V [j] be the subsequence of s corresponding to the indices in the neigh-
borhood V [j]. Assign a ‘subsequence fitness’, fj(s

[j]) to every possible subsequence, s[j],
by drawing a value from the unit normal distribution. In other words, fj(s

[j]) ∼ N (0, 1)
for every s[j] ∈ S(Kj ,q), and for every j = 1, 2, ..., L.
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2. For every s ∈ S(L,q), the subsequence fitness values are summed to produce the total
fitness values f(s) =

∑L
j=1 fj(s

[j]).

We define GNK(L, q,V) as the probability distribution over fitness functions induced by the
the above stochastic steps.

There are a number of simple intuitions that can be helpful in understanding the definition
of the GNK model. If two sequences share a subsequence corresponding to a neighborhood,
then they also share a subsequence fitness value. In this way, sequences that are close in
Hamming distance are more likely to share subsequence fitness values and thus have more
correlated fitness values. If the neighborhoods are large, then nearby sequences will be less
likely to share neighborhood subsequences, and thus fitness values will be less correlated
between nearby sequences compared to a model with smaller neighborhoods. In the limiting
case where Kj = L for every j = 1, 2, ..., L, all fitness values are uncorrelated from one
another. In the other limiting case, where Kj = 1 for all j, fitness values between sequences
are maximally correlated and the landscape is characterized by a single fitness peak (i.e., it
has a single unique local optima which is the global optimum).

In the original definition of the GNK model, the subsequence fitness values may be drawn
from any distribution with finite variance [30]. For simplicity, here we only consider the case
where subsequence fitness values are drawn from the unit normal distribution; however, many
of our results could straightforwardly be extended to the more generalized GNK model.

It is clear that the key choice in defining the GNK model is in how the neighborhoods
are constructed. For a given problem, neighborhoods may be constructed according to some
prior knowledge about the system under consideration. For example, in a later section we
will discuss a scheme that constructs neighborhoods based on contacts in a protein struc-
ture. In order to gain some intuition about how different neighborhood schemes impact
the sparsity of fitness functions, we will analyze three “standard” schemes for constructing
neighborhoods, known as the Block Neighborhood (BN), Adjacent Neighborhood (AN), and
Random Neighborhood (RN) schemes [116, 120]. All three of these schemes have a uni-
form neighborhood size at every position (i.e., Kj = K for all j = 1, 2, .., L and for some
1 ≤ K ≤ L) and thus can be used to compare how different neighborhood structures im-
pact sparsity at fixed values of L, q and K. The AN and RN schemes are what are used to
define the classical NK model of Kauffman and Weinberger [86], and the BN scheme was
introduced shortly thereafter by Perelson and Macken [130] as a simplified model for which
many properties can be calculated exactly [124]. We describe each of these schemes in more
detail below; graphical depictions of each scheme can be seen in Figure 4.2.

Block Neighborhood In the Block Neighborhood scheme, the parameter K must be
specified such that L is a multiple of K. In order to construct the neighborhoods, we split
the positions into L/K blocks of size K. Each block is “fully connected” in the sense that
every neighborhood of a position in the block contains all other positions in the block, but
no positions outside of the block. The GNK model using the BN scheme essentially results



CHAPTER 4. ON THE SPARSITY OF FITNESS FUNCTIONS 49

in L/K independent fitness functions that are summed together, where within each of the
blocks fitness values are uncorrelated. Without loss of generality, we can assume that the
blocks contain adjacent positions, so that the neighborhoods are given by

V [j] =

{
j,K

⌊
j − 1

K

⌋
+ 1, K

⌊
j − 1

K

⌋
+ 2, ..., K

⌊
j − 1

K

⌋
+K

}
(4.10)

where bc is the floor operator.

Adjacent Neighborhood In the Adjacent Neighborhood scheme, each position’s neigh-
borhood contains its K−1 nearest neighbors in terms of position indices. In order to ensure
that all neighborhoods are of the same size, the sequence has periodic boundary conditions,
such that, e.g., position 1 interacts with position L. To understand this, imagine arranging
the positions in a circle, where position i is adjacent to i + 1 in the circle and position L is
adjacent to position 1. Then, in the AN scheme, a position’s neighborhood contains the K−1

2

closest positions to it in both the clockwise and counterclockwise directions if K is an odd
number. If K is an even number, then we will include the K−2

2
counterclockwise positions

and the K
2

clockwise positions in the neighborhood. Formally, letting aj := j − bK−1
2
c − 1

the neighborhood of position j is given by:

V [j] = {j, aj mod L+ 1, (aj + 1) mod L+ 1, ..., (aj +K) mod L+ 1} (4.11)

Random Neighborhood Perhaps the most common neighborhood scheme is the Random
Neighborhood construction, where one specifies an integer K (where 1 ≤ K ≤ L − 1) and
each V [j] contains j and K − 1 other position indices selected uniformly at random from
{1, 2, ..., L}\j.

The RN scheme can be used to study fitness functions in cases where we have no a
priori knowledge about how the positions in the sequence interact with one another. For
instance, SELEX experiments can probe the fitness of vast numbers of aptamer sequences
[156], but it is unclear which positions in an aptamer sequence interact with one another to,
for instance, bind to a target molecule. However, as we will show, it is possible to calculate the
expected sparsity of GNK fitness functions whose neighborhoods are randomly constructed
with the RN scheme, which can then be used to estimate the sample complexity of fitness
function estimation when we know little about how positions in the sequence interact with
one another.

There are many possible modifications to these schemes that may encode different biolog-
ical assumptions and can easily be used within the GNK model. For example, in [116], the
authors define a modified RN scheme where each Kj is a random variable drawn from some
distribution with support on {1, ..., L}.

As we will see, the choice of neighborhood scheme has a considerable effect on the sparsity
of fitness functions sampled from the GNK model, which we will henceforth refer to as ‘GNK
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Figure 4.3: The sparsity of fitness functions sampled from the GNK model. (a) Upper
bound on sparsity of GNK fitness functions with uniform neighborhood sizes for q = 2 and
a range of settings of the L and K parameters (b) Upper bound on the sparsity of GNK
fitness functions with uniform neighborhood sizes for L = 20 and a range of settings of the
alphabet size q and the K parameter (colors as in (a)). Alphabet sizes corresponding to
binary (q = 2), nucleotide (q = 4), and amino acid (q = 20) alphabets are highlighted with
open circles. (c) Sparsity of GNK fitness functions with neighborhoods constructed with
each of the standard schemes for L = 20 and q = 2, and for different settings of the uniform
neighborhood size, K.

fitness functions’. In the next section, we will present a result that allows us to calculate the
sparsity of fitness functions given the sequence length, alphabet size, and a particular set
of neighborhoods. We will use this to result to calculate an upper bound on the sparsity of
GNK fitness functions with any set of uniformly-sized neighborhoods, as well as the expected
sparsity of GNK fitness functions with Random neighborhoods, and the exact sparsity of
GNK fitness functions with Block and Adjacent neighborhoods.

4.8 The sparsity of GNK fitness functions

A somewhat remarkable feature of the GNK model that will allow us to make sparsity
calculations is that the Fourier coefficients of GNK fitness functions are independent random
variables whose mean and variance can be calculated exactly for a given sequence length, L,
alphabet size, q, and neighborhoods, V . Specifically, we have the following theorem (proved
in Appendix A, along with all other results in this section.)

Theorem 4.1. Let f = (f(s))s∈S(L,q) be the complete vector of evaluations of a fitness func-
tion f ∼ GNK(L, q,V). Then the Fourier coefficients of f , β = (Φ(L,q))T f , are distributed
according to β ∼ N (0,λI) (i.e., normally distributed with zero mean and diagonal covari-



CHAPTER 4. ON THE SPARSITY OF FITNESS FUNCTIONS 51

ance). Let βi be an element of βU(i), the sub-vector of β representing the epistatic interaction
U(i). Then the variance of βi is given by

λi =
L∑
j=1

qL−KjI
(
U(i) ⊆ V [j]

)
(4.12)

where I
(
U ⊆ V [j]

)
is an indicator function that is equal to one if U(i) is a subset of or equal

to V [j] and zero otherwise.

Theorem 4.1 provides a number of important insights into the Fourier representation of
GNK fitness functions. First, since β is normally distributed with zero mean and diagonal
covariance matrix, the vector of variances, λ, fully specifies the distribution of β. Addition-
ally, the variances have a fairly intuitive form. Specifically, each coefficient βi corresponds
to epistatic interaction, U(i), and Equation (4.12) tells us that the more neighborhoods that
contain the collection of positions corresponding to the epistatic interaction, the higher the
variance of that coefficient will be. Finally, Equation (4.12) makes it clear that a Fourier
coefficient has zero variance, and thus is deterministically equal to zero, when the epistatic
interaction that it corresponds is not a subset of any neighborhoods. Since each epistatic
interaction U is represented by (q − 1)|U | Fourier coefficients, it is straightforward to calcu-
late the number of zero Fourier coefficients, and thus the sparsity, of GNK fitness functions.
Specifically, we have the following theorem that describes the result of this calculation.

Theorem 4.2. Let S(f) := supp(β) be the sparsity of a fitness function f of sequences
of length L and alphabet size q with Fourier coefficients β, where supp(β) is equal to the
number of nonzero elements of β. Then for any f ∼ GNK(L, q,V),

S(f) =
∑

U∈T (V)

(q − 1)|U | (4.13)

almost surely, where T (V) :=
⋃L
j=1 P(V [j]) is the union of the powersets of the neighbor-

hoods.

Theorem 4.2 makes concrete the connection between neighborhoods and epistatic inter-
actions. The GNK model assigns a non-zero Fourier coefficients to any epistatic interaction
between positions that co-occur in any neighborhood. For example, if positions 3 and 4
in a sequence are both in some neighborhood V [j], then every element of β{3,4} is nonzero
(remember that βU contains the (q − 1)|U | elements of β corresponding to the epistatic in-
teraction U). Additionally, an important insight from Theorem 4.2 is that for a fixed L,
q and V , the sparsity is a deterministic quantity, and the stochasticity of the model only
effects the non-zero coefficients. The only case where the sparsity is stochastic is when the
neighborhoods are random variables, as with the Random Neighborhood scheme discussed
in the previous section.
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It is clear from Theorem 4.2 that the sparsity of GNK fitness functions depends only on
L, q and the neighborhoods V . In order to demonstrate the usefulness of the above results,
and to gain some initial understanding of how the tunable parameters in the GNK model
impact the sparsity of sampled fitness functions, we will apply Theorem 4.2 to the standard
neighborhood schemes described in the previous section. The common feature between these
schemes is that they have uniform neighborhood sizes. The following proposition provides a
useful upper bound on the sparsity of fitness functions sampled from any such GNK model
with uniform neighborhood sizes.

Proposition 4.3. Let VK be a set of neighborhoods where Kj = K for j = 1, 2, ..., L and
1 ≤ K ≤ L. Then, the sparsity of any f ∼ GNK(L, q,VK) is bounded above by:

S(f) ≤ 1 + L(q − 1) + L
K∑
r=2

(
K

r

)
(q − 1)r (4.14)

The result from [30] that this bound is tight for many setting of L and K follows straight-
forwardly.

Proposition 4.3 is most useful when applied to the RN scheme, as this is the only of
the three standard schemes where there is stochasticity in the sparsity. However, it also
serves as a useful baseline because it requires very few assumptions on the interactions in
the fitness function, and bounds the sparsity of the other neighborhood schemes. In Figures
4.3a and 4.3b we plot the bound of Equation (4.14) for a variety of settings of L, q and K.
These figures demonstrate some generally applicable properties of GNK fitness functions.
Most importantly, we see that the sequence length, L, has a much smaller relative impact on
the sparsity compared to the alphabet size q within the biologically-relevant ranges that are
plotted. As we will see, this result carries through to sample complexity predictions, though
to a lesser extent.

We additionally have the following results regarding the sparsity of GNK fitness with
neighborhoods constructed with the Adjacent and Block Neighborhood schemes, and the
expected sparsity resulting from the Random Neighborhood scheme.

Proposition 4.4. Let VBN be neighborhoods constructed with Block Neighborhood scheme
of Equation 4.10 for a given L, q and K. Then, the sparsity of a fitness function f sampled
from GNK(L, q,VBN) is given by:

S(f) =
L

K
(qK − 1) + 1 (4.15)

Proposition 4.5. Let VAN be neighborhoods constructed with the Adjacent Neighborhood
scheme of Equation 4.11 for a given L, q and K. Then, the sparsity of any f ∼ GNK(L, q,VAN)
is given by:

S(f) = L
K∑
r=0

(
K − 1

r − 1

)
(q − 1)r (4.16)
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Proposition 4.6. Let VRN be a set of neighborhoods sampled according to the Random
Neighborhood scheme for a given L, q and K. Then, the expected sparsity of a fitness function
f sampled from GNK(L, q,VRN), with the expectation taken over the possible realizations of
VRN , is given by:

EVRN [S(f)] =
K∑
r=0

(
L

r

)
p(r)(q − 1)r (4.17)

where

p(r) = 1− (1− α(r))r
(

1− α(r)
K − r
L− r

)L−r
(4.18)

and α(r) = (K−1)!
(L−1)!

(K−r)!
(L−r)! .

These results allow us to compare the impact of the neighborhood structures on the
sparsity of sampled fitness functions. Specifically, in Figure 4.3c we plot the upper bound
of Equation (4.14) with the exact or expected sparsity of GNK fitness functions with each
of the standard neighborhood schemes as functions of the neighborhood size, K for a fixed
setting of sequence length and alphabet size. We can see that even at the same setting of
K, different neighborhood schemes result in striking differences in the sparsity of sampled
fitness functions. This is perhaps surprising, as certain properties of fitness functions (for
instance the amplitude spectrum and autocorrelation functions) depend only on K and not
on the specific choice of neighborhoods [116].

Figure 4.3c shows that choice of neighborhoods can have a substantial impact on the
sparsity of GNK fitness functions, and thus also on the sample complexity predictions that
we will make in the following sections. Therefore, one should attempt to accurately capture
the neighborhoods of a given sequence of interest before applying our results. Further on,
we will suggest a method for doing so based on contacts in a protein structure.

4.9 Exact recovery of GNK fitness functions

Theorem 4.2 allows us to calculate the sparsity of any GNK fitness function, given the
model’s tunable parameters. This allows us to straightforwardly apply CS theory to de-
termine the number of samples required to recover these functions exactly. Specifically, we
can use Equation (4.2) to determine an N such that exact recovery is guaranteed for an
S(f)-sparse fitness function f . In order to so, however, we need to determine an appropriate
value for the constant C0.

We determined a reasonable value for C0 via straightforward numerical experiments.
Specifically, we (i) sampled a fitness function from a GNK model, (ii) subsampledN sequence-
fitness pairs uniformly at random from the complete fitness function for a range of settings
of N , (iii) ran LASSO on each of the subsampled data sets and (iv) determined the smallest
N such that the fitness function is exactly recovered by LASSO. Letting N̂ be the minumum



CHAPTER 4. ON THE SPARSITY OF FITNESS FUNCTIONS 54

Figure 4.4: Upper bounds on the minimum number of samples required to exactly recover
GNK fitness functions with uniform neighborhood sizes. (a) Bound as a function of sequence
length, L, for q = 2 and a range of settings of K. (b) Bound as a function of alphabet size,
q, for L = 20 and a range of settings of K.

N for which exact recovery occurs, then

Ĉ0 =
N̂

S(f) log10(q
L)

(4.19)

is the minimum value of C0 that satisfies (4.2), where S(f) is calculated calculated with
Equation (4.13). We ran multiple replicates of this experiment for neighborhoods sampled
according to the RN scheme, for different settings of L, q and K. In all of these experiments,
Ĉ0 was less than 2.5, and we thus use C0 = 2.5 for all further analysis. This value is in
agreement with those often reported in the literature [36, 3]

Equipped with an estimate of C0, we are now able to calculate the minimum number of
samples required to exactly recover a GNK fitness function by using Equation (4.2) along
with the sparsity calculations discussed in the previous section. Specifically,

N = dC0 · S(f) log10(q
L)e (4.20)

is the minimum number of samples that guarantees exact recovery, where de represents the
ceiling operator. Examples of these calculations are shown in Figure 4.4, where we calculated
upper bounds on the minimum number of samples required to recover GNK fitness functions
with uniform neighborhood sizes for a range of settings of L, q, and K. The “bound” portion
of this statement is due to the upper bound on the sparsity given in (4.14), and not to any
aspects of the CS theory. Note that Figures 4.4a and 4.4b result directly from applying
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Equation (4.20) to the sparsity calculations shown in Figures 4.3a and 4.3b, respectively.
We do not show an analog to Figure 4.3c because q and L are held constant in this plot, so
in the analogous sample complexity plot, each curve will simply be multiplied by a constant
factor of C0 log10(q

L), but will remain identical relative to on another. The intuition from
Figure 4.3c follows directly to the sample complexity predictions.

The results in Figure 4.4 concretely show how many samples are required to perfectly
estimate a fitness function under simple assumptions about that function. We only require
that (i) the fitness function is sampled from the GNK model, and (ii) that the maximum
degree of epistatic interaction is equal to K. There are two important insights that can
be derived from Figure 4.4. First, the number of samples required to perfectly estimate
these fitness functions is many orders of magnitude smaller than the total size of sequence
space. Consider, for instance the point in Figure 4.4 where L = 50 and thus the size of
sequence space is 250 ≈ 1015, 10 orders of magnitude greater than the largest plotted sample
complexity. Additionally, it is clear by comparing Figures 4.4a and 4.4b that increasing the
alphabet size within biologically relevant ranges increases the number of samples required
to recover fitness functions at a faster rate than increasing the length of the sequence.

The results in Figure 4.4 can be refined when more specific information about a particular
fitness function is known. In the next section, we will move beyond the assumption of
uniform neighborhood sizes and present a method for constructing neighborhoods based on
interactions in a protein structure. We will apply this scheme to the mTagBFP structure
and show that the sparsity of the resulting GNK fitness functions is a good approximation
to that of the empirical mTagBFP2 fitness function due to Poelwijk et al. [136]. We then
use the sparsity of the GNK model to predict the number of samples required to estimate
the empirical fitness function, and show that the error of a LASSO estimator trained with
this number of samples is indeed quite small.

4.10 Application to protein fitness functions

For a given fitness function of interest, the standard GNK neighborhoods may not suffi-
ciently capture the true interaction structure between the positions in the sequence. However,
one major feature of the GNK model, and our results on GNK fitness functions, is that they
can be used with any given set of neighborhoods. In certain cases we may be able to con-
struct the neighborhoods based on prior knowledge about the specific fitness function of
interest. One such case is protein fitness functions where the 3D protein structure is known.
These types of fitness functions are studied often in protein engineering pursuits, where one
may wish to determine how mutations to a wild-type protein sequence (whose structure is
often known) effect its function [189, 154, 136, 137], or to determine whether novel sequences
will stably fold into a target structure [144]. In both of these cases, the fitness function will
be intimately related to the protein structure, and thus, an appropriate GNK model for
modeling these fitness function should use the information given by the structure.

In order to incorporate structural information, we will construct GNK neighborhoods



CHAPTER 4. ON THE SPARSITY OF FITNESS FUNCTIONS 56

based on ‘contacts’ between amino acids that are inferred from the structure. Following
[146], we say two amino acids are in contact if any pair of atoms in the amino acids are
within 4.5 Angstroms (Å) of each in other in Euclidean distance. There is now a large body
of work demonstrating that structural contacts can be predicted by analyzing the statistical
correlations between positions in evolutionary related sequences [112, 128, 53] and also from
the data resulting from a Deep Mutational Scanning (DMS) experiment [145, 155]. Further,
[10] found that most apparent “long-range” correlations (i.e., correlations that cannot be
explained by structural contacts) that are observed in evolutionary data analyses are actually
due to structural contacts in homologous structures or homo-oligomeric interfaces. In both
of the evolutionary and DMS cases, sequences are selected based on their fitness, either
through natural selection or the experimental procedure of DMS, and this selection results
in correlations that from which structural contacts can be recovered. Thus the success of
these contact prediction algorithms suggests that protein fitness functions encode structural
contacts. Here we make this assumption concrete by constructing neighborhoods based on
structural contacts. In particular, we will use the “Structural Neighborhood” (SN) scheme
for GNK model, defined below.

Structural Neighborhood In the SN scheme, the neighborhood of a position j contains
all positions that are in structural contact with position j in a given 3D structure.

The most interesting aspect of this neighborhood construction scheme is how it encodes
epistatic interactions through Theorem 4.2. In particular, GNK fitness functions with Struc-
tural Neighborhoods contain an rth order epistatic interaction when r− 1 of the amino acids
corresponding to the interaction are in structural contact with a central amino acid. To our
knowledge, this is a novel hypothesis to explain how higher order epistasis arises in protein
fitness functions.

In order to test this hypothesis, we first applied the SN scheme to the crystal structure
of the mTagBFP fluorescent protein (PDB: 3M24 [172]), and compared the resulting GNK
fitness functions to the empirical fitness function of the closely-related mTagBFP2 protein
(for which no structure is available) resulting from the experiments of [136]. The data from
[136] reports the blue fluorescence brightness of all combinations of mutations in 13 positions
in mTagBFP2, where each of these positions is allowed to mutate to only one other amino
acid (i.e., L = 13 and q = 2 in this fitness function, and the data reports the fitness of
all 213 = 8192 possible sequences). A graphical depiction of the Structural Neighborhoods
corresponding to these 13 positions are shown in the first row of Figure 4.5a.

Letting VSN be the set of these Structural neighborhoods, we first used Theorem 4.2 to
calculate that S(f) = 56 for f ∼ GNK(13, 2,VSN). We also used Theorem 4.1 to determine
the identity and distribution of the 56 non-zero Fourier coefficients of the GNK fitness
functions. Next, we solved for the Fourier coefficients of the empirical fitness function. Since
this empirical landscape is combinatorially complete, we can solve for its Fourier coefficients
with Ordinary Least Squares regression, which results in β̂ = (Φ(13,2))Ty. We compared
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the magnitudes of each empirical Fourier coefficient with the expected magnitude of the
corresponding coefficient in the GNK fitness functions. The results of this comparison for
all coefficients corresponding to up to 5th order epistatic are shown in Figure 4.5b. The
GNK model identifies many of the largest higher-order epistatic interactions in the empirical
landscape as being non-zero, suggesting that the SN scheme is able to approximate the
interaction structure of protein fitness functions.

We then tested how well the GNK model approximates the sparsity of the empirical
fitness function. Although none of the empirical Fourier coefficients are exactly zero, these
coefficients display substantial approximate sparsity. In particular, over 95% of the total
variance in the coefficients can be explained by the 25 coefficients with the largest magnitude,
where the total variance is given by ‖β̂‖22. The blue curve in Figure 4.5c shows the Percent
Variance Explained by the empirical Fourier coefficients with the largest magnitudes. We
compared this to the percent variance explained by the largest Fourier coefficients of samples
of the GNK fitness functions; the mean and standard deviation of these calculations for
10,000 sampled GNK fitness functions are shown as a red curve and shaded region in Figure
4.5c. Considering that this plot shows only the first 75 out of the 8,192 total points that
could be included on the horizontal axis, it is clear that the GNK model approximates the
sparsity of the empirical fitness function qualitatively well. Of particular importance is the
point at which all of the nonzero coefficients of the GNK fitness functions are included in
the calculation (i.e., 100% of the variance is explained), which occurs at S(f) = 56, and is
highlighted by a dashed line in Figure 4.5c; at this point, 97.1% of the empirical variance is
explained. This suggests if we use the GNK model with Structural Neighborhoods to predict
the number of sample required to exactly recover the mTagBFP2 fitness function, the error
resulting from applying a CS algorithm on this number of sampled fitness values will be
quite small. We confirmed this by using LASSO to estimate the empirical fitness function.

We repeated these tests for a nearly combinatorial-complete fitness function that is em-
bedded in the data of [137], with results shown in the second row of Figure 4.5. This data
reports on the fitness of variants of the protein encoded by the His3 gene in yeast, and the
sub-function contains fitness measurements for 2030 out of 2048 possible sequences of 11
positions in the sequence that take on one of two amino acids (i.e., this is an L = 11 and
q = 2 fitness function). We constructed Structural Neighborhoods for these positions based
on the I-TASSER [192] predicted structure of this protein reported in [137] and compared
the sparsity of the resulting GNK fitness functions to that of the empirical fitness function,
with similarly promising results as we have reported for the mTagBFP2 fitness function. In
particular, the GNK fitness functions in this case are 76-sparse, and 90.4% of the empiri-
cal variance is explained by the 76 coefficients with the largest magnitudes. Additionally,
LASSO estimates of the empirical function trained with the predicted number of samples
required for recovery have a mean prediction R2 of 0.865.
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4.11 Conclusion

In this chapter, we have described a theory for predicting the number of fitness measure-
ments required to estimate a fitness function under a well-defined set of assumptions. In
particular, we have presented results that allow one to calculate the sparsity in the Fourier
basis of fitness functions sampled from the Generalized NK model given a sequence length,
alphabet size, and set of neighborhoods that encode the assumed interaction structure be-
tween positions in the sequence. We used these results within the theory of Compressed
Sensing to determine the minimum number of sequences sampled uniformly at random from
the space of sequences whose fitness must be measured in order to exactly recover the fitness
function. These results allow us to test the effect of sequence length, alphabet size, and in-
teraction structure on the sample complexity of fitness function estimation. Finally, we have
described a technique for constructing GNK neighborhoods based on a protein structure,
and showed that (i) the resulting GNK model accurately approximates the sparsity of an
empirical fitness function, (ii) LASSO estimates of the empirical fitness function that have
very little error when trained with the number of samples required to exactly recover the
GNK fitness function. This suggests that our results may be able to be used as a practical
tool for designing experiments such that one can expect to recover a fitness function with a
minimal error.

A few comments should be made about the applicability of these results to practical sit-
uations. First, the CS theory applies only when measured sequences are sampled uniformly
from the space of sequences. Although there can be some leeway in this requirement in
practice, the theory, and our results, will only provide lower bounds on the sample complex-
ity of fitness function estimation if the sampling distribution is substantially non-uniform.
The most biologically relevant case where the sampling distribution is nonuniform is when
a wild-type sequence is randomly mutated with error-prone PCR. In this case, the number
of mutations in each mutated sequence is distributed roughly according to the Poisson dis-
tribution [47]. Therefore, the likelihood of observing sequences near the wild-type is much
larger than observing those with many mutations from the wild type. This type of substan-
tial non-uniformity in the sampling distribution means that many more samples from this
distribution may be required to estimate the fitness function than predicted by our theory,
and our predictions should be used with caution in this case.

There are a number of practical scenarios that may reduce the predictive power of our
results. One is when the protein structure used to construct the GNK Structural Neigh-
borhoods fails to describe the structural contacts that occur due to homo-oligomerization
or alternative conformations of the protein, and thus the resulting GNK model will not
include structurally-important epistatic interactions. In certain cases, it may be possible
to resolve this when the homo-oligomeric structure is available, and when the structures of
evolutionary-related proteins display different conformations [10]. In general, care should
be taken to construct Structural Neighborhoods that most accurately represent the contacts
that occur in the protein. Another case where our theory will lose predictive power is when
global non-linearities in the data due to the measurement process or biophysical considera-
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tions [190, 125] induce spurious higher-order epistatic [152]. These global nonlinearities may
cause a fitness function to appear not to be sparse, and sparse recovery algorithms may fail
at estimating such functions from a small number of samples. A number of simple methods
exist for removing such nonlinearities [152, 126, 175], which should be applied before com-
paring the sparsity of an observed fitness function that predicted by our theory or using a
sparse recovery algorithm to estimate such a fitness function.

Although we have used LASSO as a motivating example, there exist sample complexity
guarantees of the form of Equation (4.2) for a number of CS algorithms [33]. Many of these
algorithms (for instance, LASSO) will suffer from time and memory complexity limitations
when applied to Fourier bases for long sequences with large alphabets, and thus practical
recovery algorithms for these cases should be developed. A promising direction is to use
machine learning models such as deep neural networks in conjunction with sparsity-inducing
regularization in the Fourier basis [4]; this combines the observation that fitness functions are
sparse in the Fourier basis with the representational power of neural networks. Although it
may not be possible to provide recovery guarantees for algorithms of this sort, the continued
empirical success of machine learning models justifies further exploration in this space.

In Chapters 2 and 3 we explored aspects of inverse problems in applying machine learn-
ing to biological sequence design, and in this chapter we have discussed various facets of
the corresponding forward problem. In the next chapter, we will describe an end-to-end
computational approach for designing a library of Adeno-associated viral capsids to improve
packaging ability, which requires solving both forward and inverse problems.
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Figure 4.5: Comparison of empirical fitness functions with the GNK fitness with Structural
Neighborhoods. First row : comparison to mTagBFP2 fitness function from ref. [136]. Second
row : comparison to yeast His3 fitness function from ref. [137]. (a) Structural Neighborhoods
derived from crystal structural of mTagBFP (first row) and I-TASSER predicted structure of
protein encoded by His3 gene (second row). (b) Magnitude of empirical Fourier coefficients
(upper plot, in blue) compared to the standard deviations of coefficients in the GNK model
(reverse plot, in red). Dashed lines separate orders of epistatic interactions, with each group
of rth order interactions indicated. (c) Percent of total variance explained by the largest
Fourier coefficients in the empirical fitness functions and in fitness functions sampled from
the GNK model. The dotted line indicates the exact sparsity of the GNK fitness functions,
which is 56 is in the first row and 76 in the second, at which points 97.1% and 90.4%
of the empirical variances are explained, respectively. (d) Error of LASSO estimates of
empirical fitness functions at a range of training set sizes. Each point on the horizontal axis
represents the number of training samples, N , that are used to fit the LASSO estimate of the
fitness function. Each point on the blue curve represents the R2 between the estimated and
empirical fitness functions, averaged over 50 randomly sampled training sets of size N . The
point at the number of samples required to exactly recover the GNK model with Structural
Neighborhoods (N = 548 in the first row, and N = 630 in the second) is highlighted with
a red dot and dashed lines; at this number of samples, the mean prediction R2 is 0.945
in the first row and 0.865 in the second. Insets show paired plots between the estimated
and predicted fitness function for one example training set of size N = 548 (first row) and
N = 630 (second row). Error bars indicate the standard deviation of R2 over training
replicates.
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Chapter 5

Designing a library of AAV capsids to
improve packaging

5.1 Introduction

In the previous chapters we have considered various aspects of forward and inverse prob-
lems in machine learning approaches to biological sequence design independently from one
another. Additionally, we have done so in mostly conceptual and theoretical scenarios. In
this chapter, we will combine forward and inverse modeling tools to build an end-to-end
computational pipeline for (i) processing sequencing data from a high-throughput selection
experiment (ii) building a forward model to predict the fitness of individual variants and
(iii) using this model to design a libraries that optimally balance expected predicted fitness
and diversity. We will apply this pipeline to design a library of insertion sequences to the
Adeno-associated virus (AAV) capsid where the aim is improve the ability of the capsids in
the library to package the viral genome, while still maintaining a diverse library. The design
of a diverse library of sequences represents a distinct inverse problem from that tackled in
Chapter 2, and we will present a new set of techniques based on a Maximum Entropy for-
malism to solve this problem. This work was done in collaboration with the Schaffer Lab at
UC Berkeley, who performed the wet-lab experimental portions of the project.

Modified AAV variants are promising vectors for the delivery of gene therapies. In-
deed, two AAV-based gene therapies for treating rare inherited diseases are currently FDA-
approved [55, 54]. There are two major tasks in developing gene therapies that use AAV
as a delivery vector [97]: (i) a genetic “payload” must be developed that will replace the
gene implicated in a disease and (ii) the AAV capsid must be modified such that it can
effectively deliver the payload to the target tissue. To a certain extent, these problems can
be treated separately, and here we focus on the latter problem of designing capsid sequences.
Developing generalizable methods to engineer AAV capsids that can deliver therapies to a
given tissue promises to greatly enhance the speed with which new gene therapies can be
developed, and the ultimate efficacy of these therapies.
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The challenges in designing AAV capsids to deliver gene therapies are numerous. First,
the majority of the human population have been exposed to one or more variants of AAV,
and have developed an immune response to the virus [25]. If an AAV is to deliver a therapy,
it must be able to evade the neutralizing antibodies produced by the immune system to
prevent infection. Additionally, natural evolution has not resulted in AAVs that infect all
tissues or cell types with equal effectiveness. Modifications to the capsid must be made such
that the virus can efficiently navigate the intercellular spaces of a tissue of interest, and so
that the virus can bind to receptors on the surface of a target cell type and enter those cells
[97].

Directed Evolution [38] has emerged as a powerful tool for discovering AAV variants that
are able to evade neutralizing antibodies and infect target tissue types [17]. A particularly
notable example of this methodology for the purposes of this chapter was carried out by
Dalkara et al. [41], who subjected a diversified library of AAV capsid sequences to multiple
rounds of in-vivo selection with the aim of discovering viral variants that most effectively
infect the outer retina in mice. The diversified capsid sequences library was constructed
with three independent strategies: random mutagenesis around a particular point mutant,
shuffling of extant capsid sequences, and insertion of a random seven amino acid sequence
to the heparin binding domain of the capsid, which is implicated in cell surface binding
and viral entry [88]. Ultimately, Dalkara et al. [41] found that sequences resulting from
the insertion of random 7-mer sequences dominated the pool of sequences after multiple
rounds of selection, suggesting that this diversification strategy is a powerful scheme for
constructing libraries of capsid sequences that can be engineered experimentally to target
specific tissue types. A number of additional studies have demonstrated the effectiveness
of adding these 7-mer insertion sequences to the AAV capsid for infecting target tissues
[105, 176, 45, 31]. In this chapter, we will describe a joint experimental and computational
pipeline for engineering these 7-mer sequences to improve a different, though closely related,
property of the resulting AAV variants; namely, the ability of the capsid to properly fold
and package the viral genome.

A prerequisite for an AAV variant to deliver a gene therapy is that the capsid protein is
able to adopt a stable fold, assemble into the requisite 60-mer capsid structure, and enclose
the viral genome within that structure [122]. We will refer to the capacity of a variant to
perform these three steps as its “packaging” ability, though this has also been referred to
as the “viability” of a variant [122, 29]. Packaging is an inherently probabilistic trait: two
separate capsid molecules with the same sequence may differ in the extent to which they
successfully fold, assemble and package the genome, simply due to thermodynamic fluctu-
ations and other random biophysical effects. If a particular viral variant has an improved
probability of packaging relative to a reference variant, then the viral replication process
will result in more viable viruses that can further replicate and infect cells. A reasonable
expectation is thus that a capsid with improved packaging ability is more likely to be able
to be mutated slightly in order to infect a specific cell type or tissue, as is the overall goal
in developing AAV gene therapies.

Based on this presumption, we set out to design a library of 7-mer insertion sequences with
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improved packaging ability over a baseline library. The ultimate aim is to use this library as
starting point for hypothetical downstream selections like those of Dalkara et al. [41] that seek
to engineer AAV capsids to infect specific tissues and cell types. The hypothesis is that these
downstream selections are more likely to produce viable gene therapy vectors if the initial
library contains more capsid sequences that are able to effectively package. Importantly, in
order to increase the success of these downstream selections our designed library should not
only contain variants with a high probability of packaging, but should also be as diverse as
possible. Encouraging diversity in the library ensures that we do not overly bias towards
effective packagers and then do not include variants that are well suited for infecting specific
tissues and cell types. In order to design this library, we performed three steps: we (i)
experimentally determined the packaging ability of over 5 million unique 7-mer insertion that
were randomly sampled from a baseline library, (ii) built a neural network forward model
to predict a scalar representation of packaging ability derived from the experimental data
and (iii) used this forward model within a novel framework based on a maximum entropy
principle [82, 40] to design a library that optimally balances predicted average packaging
ability with diversity. We applied our pipeline to design insertion sequences to the AAV5
capsid. AAV5 is an AAV serotype that is particularly promising for delivering gene therapies
because there exist relatively low levels of neutralizing antibodies for it in human subjects
and it has been shown to infect a broad range of tissues and cell types [133].

The rest of this chapter is structured as follows: in Section 5.2 we briefly describe the
selection experiment that is the first step in our pipeline; in Section 5.3 we discuss initial
processing and analysis of the sequencing data resulting from the experiment; in Section
5.4 we describe our methods for building forward models to predict the packaging ability of
insertion sequences; in Section 5.5 we describe a maximum entropy technique for designing
sequence libraries that optimally balance high mean predictions in the forward model and
sequence diversity; we conclude in Section 5.6.

5.2 Description of experiments

The baseline insertion sequence library that we sought to improve over was constructed
by experimentally sampling sequences from 7 concatenated copies of the NNK degenerate
codon; this is the same library construction technique as was used to build the library of
insertion sequences in [41]. A degenerate codon specifies the marginal probability of each
nucleotide occurring in each of the three positions in a codon. The NNK codon specifies
the probability distribution where every nucleotide is equally likely in the first two positions
of the codon, and in the final position Adenine and Cytosine have zero probability, while
Thymine and Guanine are each equally probable. This distribution is shown in Table 5.1,
below. The NNK degenerate codon is useful because it induces a distribution over amino
acids where every amino acid has non-zero probability, but the probability of stop codons is
minimized.

Insertion sequences sampled from the NNK(×7) distribution were inserted into a plasmid
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1 2 3

A 0.25 0.25 0
T 0.25 0.25 0.5
C 0.25 0.25 0
G 0.25 0.25 0.5

Table 5.1: Table of nucleotide probabilities specified by the NNK degenerate codon.

containing the AAV5 genome immediately following the genomic locus representing position
587 in the amino acid sequence of the capsid protein. Position 587 is located in the proximity
of the three-fold symmetry axis of the capsid, protruding from the external surface of the
virion and has been implicated in receptor binding that is critical for cell-specific entry of the
virus. Additionally, Ogden et al. [122] showed that the region around position 587 is one of
the few regions of the capsid sequence in which single-site mutations can improve packaging
ability. We will refer to the resulting library of capsid variants as the pre-selection library.
The pre-selection library was then introduced to HEK293T cells and incubated for 72 hours,
during which time the processes of viral replication, capsid folding and assembly, and genome
packaging occur. The conjecture underlying this experiment is that sequences that have a
higher probability of packaging will replicate more effectively during this incubation with the
HEK cells, and thus there will be a higher proportion of these sequences in the post-selection
library, which is constructed by lysing the cells after 72 hours and purifying the resulting
viral particles.

Short segments of the viral genomes containing the insertion sequences in both the pre-
and post- selection libraries were then PCR amplified and sequenced with the Illumina
NovaSeq 6000 platform.

5.3 Data processing and analysis

Our aim was to use the data resulting from the experiment described in the previous
section to train a supervised regression model to predict the packaging ability of insertion
sequences. A supervised model requires a training set of (x, y) pairs, where x represents a
set of features that are input into the model (in our case, some representation of an insertion
sequence) and y represents the numerical quantity that the model is to predict (in our case,
some measure of packaging ability). The sequencing data resulting from the experiment
described in the previous section does not immediately report (x, y) pairs that can be used
to train a supervised model, and further processing was required.

In particular, the raw sequencing data consists of 49,619,716 and 55,135,155 sequencing
reads corresponding to the pre- and post-selection libraries, respectively. Each read contains
(i) a 5 bp unique molecular identifier, (ii) a fixed 21 bp primer sequence, (iii) a 6 bp sequence
representing the pre-insertion linker (two fixed amino acids that connect the insertion se-
quence to the capsid sequence at position 587), (iv) a variable 21 bp sequence containing the
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nucleotide insertion sequence, and (v) a 9 bp representing the post-insertion linker (three
fixed amino acids that connect the insertion sequence to the capsid sequence at position 588).
We filtered the reads, removing those that either contained more than 2 mismatches in the
primer sequences or contained ambiguous nucleotides. After this filtering, the pre and post
libraries contained 46,049,235 and 45,306,265 reads, respectively. The insertion sequences
were then extracted from each read and translated to amino acid sequences. In each library,
we then counted the number of reads containing each unique insertion sequence, resulting in
pre- and post-selection ‘counts’ for 8,552,729 unique sequences. Note that only 218,942 of
these sequences appear in both libraries, and all others occur only in one of the libraries (and
have a count of zero in the other library). This is due to limitations of current sequencing
technology, which does not have the capacity to sequence every unique sequence in a library.

In order to convert this data into a numerical quantity that describes the packaging
ability corresponding to each insertion sequence, we calculated log “enrichment scores” for
each sequence, which is equal to the normalized log ratio of the counts of a sequence in the
post- and pre- selection libraries.1 In particular the log enrichment score for the ith sequence
is given by:

yi = log
npost
i

npre
i

− log
Npost

Npre
, (5.1)

where npost
i and npre

i are the counts corresponding to sequence i in the pre- and post- selection
libraries, respectively, and Npost =

∑
i n

post
i and Npre =

∑
i n

pre
i are the total number of

counts in each library. A pseudocount of 1 was added to each count so that the enrichment
score could still be calculated when the sequence only appeared in one of the libraries, and
thus had a count of zero in the other library. Enrichment scores are often used in the
modeling of sequencing data of the sort produced by our experiment, and many of statistical
properties of these quantities have been studied [16, 149].

Intuitively, a log enrichment score reports on how the population of capsids containing
a unique insertion sequence changed due to the selection in the HEK cells. A positive
enrichment score indicates that the population of an insertion sequence increased, which
suggests that the capsid containing this sequence was able to consistently fold, assemble
and package the viral genome so that it could continue to replicate. A negative enrichment
score, on the other hand, indicates that capsids containing that insertion sequence did not
replicate, which is likely due to a failure in one of the steps involved with packaging. The
log enrichment scores thus provide a numerical description of an insertion sequence’s effect
on packaging, which we can use to train a supervised model.

One concern with using enrichment scores to train a supervised model is that they do
not provide any information about the raw values of the counts used to compute them. For
instance, a log enrichment score log(1000/100) calculated with npost

i = 1000 and npre
i = 100

appears identical to log(10/1) calculated with npost
i = 10 and npre

i = 1; however, intuitively,

1Although not always termed “enrichment scores”, this ratio of sequencing counts is commonly used as
a measure of fitness [110].
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the former score is less likely to have arisen due to noise in the experiment and should be
more heavily considered by the model.

We can overcome this problem by estimating a variance associated with each log enrich-
ment score, which takes into account information about the raw counts associated with an
enrichment score. To understand how this is calculated, we first recognize that the count
associated with a sequence is a random variable. The PCR-amplified libraries contain many
orders of magnitudes more molecules than the Illumina platform is able to sequence, and
thus each read can be considered a Bernoulli sample from a density of sequences. In this
sense, we can model a count as a Binomial random variable, since it represents the number
of times that a Bernoulli sample is observed [110]. The log enrichment score is then the log
ratio of two Binomial random variables; it can be shown with the Delta Method [87] that,
in the limit of infinite samples, the log ratio of two Binomial random variables converges in
distribution to a normal random variable [110]. Further, it has been shown that the mean
of this normal distribution for count data can be approximated by the log enrichment score
of Equation (5.1), and the variance can be approximated by [84, 110]:

σ2
i =

1

npost
i

(
1− npost

i

Npost

)
+

1

npre
i

(
1− npre

i

Npre

)
. (5.2)

We can see that these variances are lower for sequences with more raw counts and lower for
those with fewer counts, which matches our intuition.

In the next section, we will see how we can use the variances associated with enrichment
scores to properly weight data points within a supervised modeling framework. To our
knowledge, this is a novel use of these variances.

5.4 Building forward models to predict enrichment

scores

The result of the processing described in the previous section was a data set of the form
{(xi, yi, σ2

i }Mi=1 where the xi are unique insertion sequences, yi are log enrichment scores
associated with the insertion sequence, σ2

i are the estimated variances of the log enrichment
scores, and M = 8, 555, 729 is the number of unique insertion sequences in the data. We
first randomly split this data into a training set containing 80% of the data and a test set
containing the remaining 20% of the data.

As described in the previous section, we can model the log enrichment scores as nor-
mal random variables with a particular mean and variance. We further assume that the
distribution of an enrichment score given the associated insertion sequence is

yi|xi, σ2
i ∼ N (fθ(xi), σ

2
i ), (5.3)

where fθ is a function with parameters θ that parameterizes the mean of the this distribution,
and represents a predictive model for enrichment scores. We determined suitable settings of
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Figure 5.1: Comparison of forward models for predicting AAV5 enrichment scores. In both
figures, each point along each curve represents the Pearson correlation between the predicted
and true enrichment scores of sequences in a culled subset of the test set. Points along the
horizontal axis represent the fraction of most highly enriched sequences in the test set that
were included in the subset. Points on all curves are calculated at every 0.01 increment of
the horizontal curves. (a) Comparison between all tested models using the weighted loss
function. (b) Comparison between models trained with the weighted and unweighted loss
functions for two representative models.

the parameters θ with Maximum Likelihood Estimation (MLE). The log-likelihood of the
parameters of this model given the training set of M ′ ≤M data points is given by

`
(
θ; {xi, yi, σ2

i }mi=1

)
= −m

2
log 2π − 1

2

m∑
i=1

[
log σ2

i +
1

σ2
i

(yi − fθ(xi))
2

]
. (5.4)

Performing MLE by optimizing this likelihood with respect to the model parameters θ results
in the following optimization objective

θ∗ = argmin
θ

M ′∑
i=1

1

σ2
i

(yi − fθ(xi))
2 . (5.5)

We can see that this is a weighted least-squares loss function, where the weight of each data
point is inverse to its variance estimated by Equation (5.2). This has the effect of giving more
weight to insertion sequences with more raw counts, as desired. We thus call Equation (5.5)
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the “weighted” loss function. To demonstrate the effectiveness of our modeling approach,
we also compare to models with an “unweighted” loss where we set σ2

i = 1 for every i, and
which represents a standard least-squares loss function.

It is not immediately clear what functional form for fθ(x) will model the data most
effectively. Therefore we evaluated 7 different forms of fθ which ranged in complexity from a
simple linear model to a neural network model with over 1 million parameters. In particular,
we tested three linear functions and four feed-forward neural networks (NNs). The three
linear models differed in the set of sequence features that were linearly combined. In the first,
“Independent Site” (IS) representation, the sequences are one-hot encoded and a parameter
is assigned to each position in the one-hot matrix. In the second, “Neighbors” representation,
interactions between neighboring positions in the sequence are also one-hot encoded, and in
the third, “Pairwise” representation, all possible interactions between positions are one-hot
encoded. Let xj be the amino acid (represented as an integer between 1 and 21) at the jth

position in sequence x, for j = 1, 2, ...L where L = 7 is the length of the insertion sequences.
The linear model with IS features can then be formally expressed as

f IS
θ (x) =

L∑
j=1

21∑
m=1

θjmδm(xj) (5.6)

where δm(xj) = 1 if xj = m and zero otherwise, and the parameters θ have been arranged
in an L × 21 matrix such that θjm is a weight corresponding to amino acid m at position
j in the sequence. The linear models with Neighbors and Pairwise features expand on that
with IS features by adding terms representing interactions between positions:

fneighbors
θ (x) = f IS

θ (x) +
L−1∑
j=1

21∑
m,n=1

θjmnδm(xj)δn(xj+1) (5.7)

fpairwise
θ (x) = f IS

θ (x) +
L∑
j=1

L∑
k=j

21∑
m,n=1

θjkmnδm(xj)δn(xk) (5.8)

where the interaction parameters have been arranged into appropriate tensors. For all of
these linear models, Equation (5.5) is a convex objective function, and the optimal ML pa-
rameters can be solved for exactly. In order to stabilize the training of the latter two models,
we used a small amount of L2 regularization, with regularization coefficients 0.001 and 0.0025
chosen by cross-validation for the Neighbors and Pairwise representations, respectively.

All of the neural networks that we trained used the IS sequence encoding as inputs, and
had two densely connected hidden layers with tanh activation functions. The four models
differed in the size of each hidden layer, with 100, 200, 500, and 1000 nodes in the hidden
layers of each respective model. For these neural network forms of fθ, the objective of
Equation (5.5) is non-convex and we use stochastic optimization techniques to solve for
suitable parameters. In particular, we implemented these models in Tensorflow [1] and used
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the built-in implementation of the Adam algorithm [91] to approximately solve Equation
(5.5).

Our aim was to choose one of these models to use within a method to solve the inverse
problem of designing a library. In order to assess and compare the prediction quality of each
model, we calculated the Pearson correlation between the model predictions and observed
enrichment scores for different subsets of sequences in the test set. Our ultimate aim is to
use these models to design a library of sequences that package well (i.e., would be highly
enriched in the post-selection library), so we wanted to assess how well the models performed
for highly enriched sequences. In order to do so, we progressively culled the test set to only
include the sequences with the largest observed enrichment scores. The results of these
calculations for all of the tested models trained with the weighted loss function are shown
in Figure 5.1a.

We can see that neural networks in general perform better than linear models. This
is likely due to the fact that the neural network models are able to represent higher-order
epistatic interactions that are present in this fitness function, while the tested linear models
encode at most second order epistasis. Ultimately we chose the neural network with 100
nodes in each hidden layer, (NN, 100), to use for the next step of designing a library due to
its competitive performance with (NN, 1000) and the fact that it has many fewer parameters
than (NN, 1000). We next trained two of the models, (NN, 100), and the linear model with
pairwise interactions, with the unweighted loss function to compare to the models trained
with the weighted loss in order to test the benefits this formulation. The results of this
comparison are shown in Figure 5.1b, where we can a clear performance benefit of using the
weighted loss function for making predictions on highly enriched sequences.

In the next Section, we will use the NN, 100 model within a maximum entropy framework
in order to design insertion sequences libraries that optimally balance model predictions and
diversity.

5.5 Maximum entropy techniques for designing

optimally balanced libraries

Given the forward model developed in the previous section, the next step in our pipeline
was to design a library of insertion sequences to use as a starting point for a downstream
selection experiment. In order to do so, we developed a general framework for sequence
library design that can be adapted for use with any predictive model of fitness. We will first
describe the general framework before applying it to the problem of designing a library of
AAV5 insertion sequences.

A general framework

Inherent in the problem of library design is a trade-off between optimizing for the pre-
dicted fitness and creating a library with a diverse set of sequences. The library that opti-
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mizes the average fitness contains only the single sequence that is most fit, while the most
diverse library is uniformly distributed across sequence space irrespective of fitness. The
most useful library typically lies somewhere between these two extremes.

Modern library construction techniques allow for different levels of control over the re-
sulting library. For example, one can specify the desired marginal statistics of nucleotides
or amino acids at each position in the sequences in the library; a list of specific sequences
that are to be included in the library; or a set of parent sequences on which to apply random
mutagenesis and/or recombination. Increasingly, the parameters of these library construc-
tion techniques are chosen using predictive models of fitness: see, e.g., [129], [29] and [197]
for computational tools that use predictive models to specify parameters of each of the three
aforementioned library construction techniques, respectively. In some cases, these compu-
tational techniques explicitly encourage diversity in the resulting library [104], or diversity
may be a natural byproduct of the method that is analyzed post-hoc [22]. In this section we
present a set of techniques to optimally balance diversity and predicted fitness for a variety
of library construction techniques. This enables us to rationally choose library construction
parameters, as well as compare different library construction techniques. Notably, our meth-
ods are general in that they can be used with any predictive model of fitness, are broadly
applicable to different library construction mechanisms, and are simple to implement and
extend.

Our approach is based on a maximum entropy formalism, where we represent libraries
as probability distributions and aim to find so-called “maximum entropy distributions” that
optimize the entropy while also satisfying a constraint on the expected fitness, which is
predicted by a user-specified model such as a neural network. Entropy is a measure of
diversity for probability distributions which has been used extensively in ecology to describe
the diversity in populations [179]. By varying the constraint on the expected fitness, the
resulting maximum entropy distributions trace out a Pareto optimal frontier where one
cannot improve the diversity without decreasing the expected fitness, and vice-versa.

This framework builds on previous work in which multiple optimization objectives are
balanced in the design of sequence libraries. Most notably, Parker et al. [129] presents a
method for designing libraries constructed by combinatorial mutagenesis using an unlabeled
set of natural functional sequence variants. This method is designed to optimally balance
a trade-off between so-called “quality” and “novelty” scores; the quality score is a fitness
prediction from a sequence potential (i.e., the energy function of a Potts model) whose
parameters are fit to the unlabeled set of natural sequences, and the novelty score is a
metric that assesses how dissimilar sequences are to any of the natural sequences. Notably,
the novelty score encourages sequences to be different from the given set of natural sequences,
but not necessarily to be different from one another, and thus does not map directly to
our notion of diversity. Verma et al. [182] builds on this work and uses the concept of
a Pareto frontier to optimally balance multiple fitness predictors when designing libraries.
This latter method again optimizes for novelty scores but do not consider diversity as one
of the optimization objectives directly. Our methods improve upon these techniques by
(i) allowing for the use of any predictive model of fitness and (ii) explicitly considering a



CHAPTER 5. DESIGNING A LIBRARY OF AAV CAPSIDS 71

trade-off with entropy, a natural measure of diversity.
We will show how to apply our formalism to two library construction possibilities that

are available through commercial vendors: (i) the “specified” case, where one specifies a
list of sequences that are to comprise the library and (ii) the “degenerate” case, where
one specifies the marginal probabilities of each nucleotide (or amino acid) at each position
in the sequence. We will refer to libraries constructed from the construction techniques
corresponding to possibilities (i) and (ii) as specified and degenerate libraries, respectively.

The maximum entropy formulation

Let X be the space of all sequences may be included in a library (e.g., all amino acid
sequences of length 7). We will consider a sequence library to be an abstract quantity
represented by a probability distribution with support on X . Let P represent all such
libraries and p ∈ P one particular library. The entropy of this library is given by [106]:

H[p] = −
∑
x∈X

p(x) log p(x) (5.9)

Intuitively, the entropy of a library is smaller when probability mass is concentrated on
a small number of sequences, and is larger when the probability mass is spread out among
many sequences (i.e., the library is diverse). Now let f(x) be a predictive model of fitness.
Our aim is to find a diverse library, p(x), where the expected predicted fitness in the library,
Ep(x)[f(x)], is as high as possible. One way to formulate this goal is to say that we want
to find the most diverse library (i.e., the library with the largest entropy) such that the
expected predicted fitness is above some cutoff. Formally, this objective is written:

max
p∈P

H[p]

s.t. Ep(x)[f(x)] ≥ a,
(5.10)

where a is the cutoff on the expected predicted fitness. It is straightforward to show that
the solution to the objective in Equation (5.10) is given by [82]:

pλ(x) =
1

Z(λ)
exp

(
f(x)

λ

)
(5.11)

where λ > 0 is a Lagrange multiplier that is a monotonic function of the cutoff a and
Z(λ) =

∑
x∈X exp (f(x)/λ) is a normalizing constant. Equation (5.11) gives the probability

mass of what is known as a maximum entropy distribution; other examples of maximum en-
tropy distributions include members of the the exponential family of distributions in statistics
[87] and the Boltzmann distribution in statistical mechanics [37]. The setting of the param-
eter λ represents a trade-off between expected predicted fitness and diversity: at a smaller
value of λ, pλ will have high expected predicted fitness, but will be less diverse (i.e., will
have probability mass concentrated on a small number of sequences), and as λ is increased,
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the diversity will increase but the expected predicted fitness will decrease. In particular,
each pλ represents a point on a Pareto optimal frontier that balances diversity and expected
predicted fitness; these distributions can be perturbed to increase either the entropy or the
expected fitness, but not both. The entire Pareto frontier could be traced out by calculating
the expected predicted fitness and entropy of pλ for every possible setting of λ.

Of course, the library represented by pλ is an entirely abstract quantity and cannot be
constructed by any experimental technique. Next, we will describe how use the maximum
entropy distribution of Equation 5.11 to build specified and degenerate libraries.

Specified libraries

Library construction techniques have advanced such that it is now possible to order a
list of thousands of specific oligonucleotide sequences that one wishes to observe in a library
and receive a library containing nearly all of those sequences and few additional variants. It
is conceptually straightforward to build such a list that approximates the maximum entropy
library of Equation 5.11 (though may be practically difficult). In particular, to specify
a list of N sequences, we can draw N samples from pλ(x) with, e.g., a Markov Chain
Monte Carlo (MCMC) sampling algorithm with pλ(x) as its stationary distribution. If we
allow the Markov Chain to equilibrate, then a set of N samples from the chain represent
a particle-based approximation to pλ(x) and thus will approximately respect the Pareto
optimal property of the maximum entropy library.

Degenerate libraries

The main drawback of specified libraries is their cost: currently about $1 per specified
sequence for specified AAV insertion sequence libraries . A cheaper option when less precision
is required is a degenerate library, where one specifies the marginal probabilities of each
nucleotide (or amino acid) at each position. A degenerate library is a generalization of a
degenerate codon library, where one can only specify probabilities according to degenerate
nucleotides like ‘N’ (where Pr(A) = Pr(T) = Pr(C) = Pr(G) = 0.25) or ‘K’ (where
Pr(T) = Pr(G) = 0.5 and Pr(A) = Pr(C) = 0) and for which a number of design algorithms
exist [80, 162]. The probability mass of a distribution representing a degenerate library of
sequences of length L and alphabet size K (i.e., K = 4 for nucleotide libraries and K = 20
for amino acid libraries) is given by:

qφ(x) =
L∏
j=1

K∑
k=1

qφj(x
j = k)δk(x

j) (5.12)

where φ ∈ RL×K is a matrix of distribution parameters, φj is the jth row of φ, δk(x
j) = 1 if

xj = k and zero otherwise, and

qφj(x
j = k) =

eφjk∑K
l=1 e

φjl
. (5.13)
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Of course, for an arbitrary predictive model, the maximum entropy distribution of (5.11)
will generally not have the form of Equation (5.13). In order to apply the maximum entropy
principle to the design of degenerate libraries, we will take a variational approach and find
the degenerate library that is the best approximation to the maximum entropy library, where
the quality of the approximation is measured by a KL divergence. In particular, we solve for
optimal the parameters of the degenerate library by minimizing the KL divergence between
qφ and pλ:

φλ = argmin
φ

DKL[qφ||pλ] (5.14)

= argmax
φ

Eqφ(x)[f(x)] + λH[qφ] (5.15)

= argmax
φ

F (φ) (5.16)

where we define F (φ) := Eqφ(x)[f(x)] + λH[qφ]. Interestingly, despite being derived from
a maximum entropy principle, this objective represents the usual form of a multi-objective
optimization, where λ now controls the balance between the two objectives [182] and the
objectives represent the expected predicted fitness and diversity of the degenerate library,
respectively. By solving this objective for a variety of settings of λ, our solutions will trace
out a Pareto optimal frontier that is distinct from that traced out by the maximum entropy
distributions of Equation 5.11 for the same settings of λ. At each point on the frontier, a
perturbation to the solution cannot simultaneously improve both objectives. Only globally
optimal solutions to the objective lie on the Pareto frontier; however since our objective is
a non-convex function of the library parameters, there is no optimization algorithm that
can guarantee that we reach the global optimum in finite time. However, the Stochastic
Gradient Descent (SGD) algorithm has been shown to consistently find optimal or near-
optimal solutions to a variety of non-convex problems, particularly in machine learning [114].
Here we use a variant of SGD based on the score function estimator [96] to solve our objective,
and trace out a near-optimal frontier. The score function estimator (sometimes called the
‘log derivative trick’) is to used to estimate intractable gradients of the form ∇θEpθ(x)[f(x)],
where pθ(x) is a probability density parametrized by θ, and f(x) is an arbitrary function.
It does so using the equality ∇θEpθ(x)[f(x)] = Epθ(x)[f(x)∇θ log pθ(x)], which enables one to
estimate the RHS using, e.g., a Monte Carlo approximation.

In order to solve the objective in Equation (5.14) we randomly initialize a parameter
matrix, φ(0) with independent normal samples and then update the parameters with

φ(t) = φ(t−1) + α∇φF (φ(t−1)) (5.17)

for t = 1, ..., T , where we define F (φ(t−1)) := Eqφ(x)[f(x)] + λH[qφ] to be the objective
function in Equation (5.14). After T iterations, we assume we have reached a near-optimal
solution (i.e., φ(T ) can be used as an approximation for φλ). As we show in Appendix B,
the components of the gradient of the objective function with respect to the degenerate
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distribution parameters are given by:

∂

∂φjk
F (φ) = Eqφ(x)

[
w(x)

∂

∂φjk
log qφj(x

j)

]
= Eqφ(x)

[
w(x)

(
δk(x

j)− qφj(k)
)]

(5.18)

where we define the weights

w(x) := f(x)− λ(1 + log qφ(x)). (5.19)

The expectation in Equation (5.18) cannot be solved exactly, so we use a Monte Carlo
approximation:

∂

∂φjk
F (φ) ≈ 1

M

M∑
i=1

w(xi)
(
δk(x

j
i )− qφj(k)

)
(5.20)

with xi ∼ qφ(x). In this scheme, the approximate gradients of F (φ) are random vari-
ables, which induces stochasticity in the gradient descent algorithm of Equation (5.13). This
stochasticity helps the algorithm to escape local optima and achieve near-optimal solutions
in a non-convex optimization problem such as that of (5.14).

Application to AAV5 library design

We applied this maximum entropy framework to design libraries of 7-mer insertion se-
quences to the AAV5 capsid using the (NN, 100) predictive model of fitness described in
Section 5.4. We particularly focused on designing degenerate libraries of the 21 nucleotides
corresponding to the 7 amino acid insertion. Figure 5.2 demonstrates the results of 2, 238
degenerate library optimizations for these 21 nucleotides with α = 0.01, T = 2000, and
M = 1000 and a range of settings of λ. Each point in Figure 5.2a represents a library result-
ing from one of these optimizations (i.e., a qφλ). In order to assess the extent to which these
libraries trade-off diversity and predicted fitness we compared two quantities correspond-
ing to each library: the mean predicted enrichment (i.e., fitness) of amino acid sequences
sampled from the library and the expected hamming distance between any two sequences
sampled from the library, which we call the Expected Pairwise Distance (EPD). The EPD is
an easily-calculable measure of diversity whose numerical values carry more intuition than
entropy. As we show in Appendix B, the EPD of a degenerate library can be calculated
exactly as

EPD(φ) = L−
7∑
j=1

21∑
k=1

(q̃φ̃j(k))2 (5.21)

where q̃φ̃ are the amino acid probabilities at 7 positions corresponding to the nucleotide
probabilities for 21 positions (these can be calculated easily by appropriately summing over
the probabilities of codons). We can see qualitatively how EPD correlates with diversity by
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Figure 5.2: Results of maximum entropy degenerate library design for AAV5 insertion
sequences. (a) Trade-off curve between mean predicted enrichment and diversity (as mea-
sured by Expected Pairwise Distance between pairs of sequences sampled from the library).
Each scatter point represents a result of a degenerate library optimization in nucleotide
space. (b)(c)(d) Probability mass of each amino acid at each position for the three libraries
highlighted in (a).

looking at the probabilities of each amino acid at each position for the designed libraries;
three examples are shown in Figures 5.2b, 5.2c, and 5.2d. As we can see, as the EPD
increases, the probability mass is spread out over more sequences.

To assess the extent to which libraries that lie on the Pareto frontier balancing diversity
and expected fitness can be experimentally realized, we ultimately chose to order Libraries
(c) and (d) in Figure 5.2 for further experimental characterization. The results of this
characterization will be presented in a future publication.

Although we chose to use degenerate libraries for future experiments, we also computa-
tionally compared these to specified libraries built using the maximum entropy technique
described above. In particular we used the Metropolis-Hastings algorithm [71] to sample
N = 10, 000 specified sequences from the maximum entropy distribution of Equation 5.11
for 404 different settings of λ. Figure 5.3 compares the fitness-diversity trade-off curves of
these Maximum Entropy specified libraries and the Maximum Entropy degenerate libraries
described above; the points in orange represent the 404 specified libraries while the points
in blue represent the same 2,238 degenerate libraries shown in Figure 5.2a. We can see that
specified library construction allows one to build a library with higher expected predicted
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Figure 5.3: Comparison of maximum entropy degenerate and specified insertion sequence
libraries. Each point represents a library, with Mean Predicted Enrichment and Expected
Pairwise Distance values calculated as in Figure 5.2a.

fitness at the same level of diversity of degenerate libraries. These results suggest that as
specified libraries became cheaper to build, they should be the primary choice of researchers
wishing to perform data-driven design of sequence libraries.

5.6 Conclusion

In this Chapter we have described an end-to-end experimental and computational pipeline
for data-driven design of a library insertion sequences to the AAV capsid, with the aim of
improving the packaging ability of the resulting capsids. In order to do so, we have presented
solutions for solving the forward problem of predicting the enrichment scores of sequences,
and the inverse problem of designing sequence libraries that optimally balance predicted
fitness and diversity.

Our solution to the inverse problem is based on a maximum entropy formalism that
is broadly applicable to a variety of library construction techniques and predictive models
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of fitness. One of the most interesting aspects of this formulation is its connections to the
Estimation of Distribution algorithms described in Chapters 2 and 3. In particular, an EDA-
style objective function appears in both the maximum entropy objective of Equation 5.10
and the variational objective for degenerate libraries of Equation 5.14. In these cases the
“search model” is a probability distribution representing a sequence library. The objective
for degenerate libraries, Equation 5.14, is particularly interesting because it represents an
entropy-regularized EDA, which is closely related to the so-called ‘rank-µ’ updates used in
the EDA algorithm CMA-ES to prevent convergence to a local optima by increasing the
entropy of the search model. Connections such as these may open up a range of possibilities
for future exploration in sequence library design.
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Chapter 6

Concluding remarks

In this dissertation, we have discussed a range of problems related to the application of
machine learning to biological sequence design. Although we have explored a wide breadth
of topics, ranging from a theoretical study of the forward problem in Chapter 4 to an
experimentally-realizable solution to an inverse problem in Chapter 5, these explorations
represent only a small slice of the rapidly growing field that is data-drive sequence engineer-
ing. The field will only continue to grow in the coming years as new experimental technologies
are introduced that can probe the fitness of sequences with both increased throughput and
precision. As this occurs, the field will have to wrestle with a number of technical and
philosophical challenges, some of which were already apparent in this dissertation.

One important challenge for future data-driven sequence design pursuits is determin-
ing the appropriate role of top-down engineering approaches versus bottom-up approaches
based on biological and physical knowledge. In the Introduction we discussed top-down and
bottom-up approaches in the context of building forward models of fitness functions; how-
ever, this classification can also be applied to inverse problems. For instance, a black-box
generative model from which one can sample nucleotide sequences that are expected to have
high fitness is an example of a top-down approach, while a method that incorporates knowl-
edge about, say, GC content into designing those nucleotide sequences is an example of a
bottom-up approach. The tension between the bottom-up and top-down paradigms is appar-
ent in some of the work in this dissertation. In particular, in Chapter 5 we used a bottom-up
approach to develop a loss function for training forward models that resulted in more accu-
rate models than a standard loss function (Figure 5.1b); however, the neural network forward
model with an architecture chosen based on top-down machine learning principles outper-
formed simpler linear models with biological interpretation (Figure 5.1b). This example not
only demonstrates the tension between top-down and bottom-up approaches, but also shows
how the approaches can complement one another, since ultimately the most powerful model
used a top-down architecture with a bottom-up loss function. Future modeling techniques
for sequence design should strive to find a similar balance that allows for both powerful
predictive (or generative) performance and meaningful biological interpretation.

It will additionally be important for the field to embrace the important role that theoret-
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ical explorations can play in guiding future computational, and possibly even experimental,
approaches to sequence design. In machine learning broadly, and in its specific applications
to sequence design, our ability to build powerful models has far outpaced our theoretical
understanding of those models. Machine learning techniques have produced some remark-
able achievements in sequence design; for example, Biswas et al. [22] recently engineered
novel variants of the Green Fluorescent Protein and TEM-1 β-lactamase protein using fit-
ness measurements for fewer than 100 variants, and a number of groups have used models
originally designed for natural language processing to predict structural contacts in proteins
with remarkable accuracy [143, 139, 107]. For the most part, there is not an adequate ex-
planation for these phenomena (although progress has recently been made in understanding
the latter example [21]), which makes it difficult to build further techniques on top of this
work. Although theoretical results in simplified systems may not be as powerful for achieving
particular engineering goals as advanced machine learning methods, they are often able to
make predictions in novel scenarios, and thus can be used to inform future techniques. For
instance, it would be straightforward to use the data of Poelwijk et al. [136] to construct a
top-down forward that predicts the fitness of variants of the mTagBFP2, which cannot be
used to understand any other fitness functions. In contrast, in Chapter 4 we use this data in
conjunction with a robust theory to predict (i) how higher-order epistasis arises in protein
fitness functions in general and (ii) how many fitness measurements are required to learn
protein fitness functions. This type of exploration can be used to inform both future model-
ing approaches, as well as experimental fitness probes, and thus demonstrates the potential
power of complementing advanced black-box engineering approaches with foundational the-
oretical knowledge.

Biological sequence engineering in the near future will be driven primarily by experimental
techniques, with computation playing a supporting role. Thus the most important challenge
for the field of data-driven sequence engineering is to develop symbiotic relationships with
experimental groups that foster improvements to both computational and experimental ap-
proaches. These relationships allow computational researchers to learn about and come to
appreciate the complex biology that underlies experiments, and incorporate this knowledge
into models. Additionally, collaboration allows experimentalists to understand what types
of data are most useful to collect for modeling purposes, and cater their techniques to these
needs. Such a collaboration resulted in the work presented in Chapter 5, where we worked
closely with the experimental group of Professor David V. Schaffer to engineer AAV capsid
sequences. Further, our work on understanding the sample complexity of fitness function
regression in Chapter 4 was motivated by a desire to inform experimentalists on how to
collect data such that it can be used to build a model of a fitness function. We hope the
work presented in this dissertation will provide motivation for the both computational and
experimental researchers to develop fruitful collaborations, which will be the key to achieving
the ultimate goal of generalizable biological sequence engineering.
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[95] Gert Kiss, Nihan Çelebi-Ölçüm, Rocco Moretti, David Baker, and K. N. Houk. “Com-
putational Enzyme Design”. Angew. Chem. Int. Ed. 52.22 (2013), pp. 5700–5725.

[96] Jack P.C. Kleijnen and Reuven Y. Rubinstein. Optimization and sensitivity analysis of
computer simulation models by the score function method. Tech. rep. 3. 1996, pp. 413–
427.

[97] Melissa A. Kotterman and David V. Schaffer. “Engineering adeno-associated viruses
for clinical gene therapy”. Nat. Rev. Genet. 15.7 (2014), pp. 445–451.

[98] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and Scal-
able Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in Neu-
ral Information Processing Systems. 2017, pp. 6402–6413.

[99] Pedro Larraanaga and Jose A. Lozano. Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. USA: Kluwer Academic Publishers, 2001.



BIBLIOGRAPHY 88

[100] Matthew R. Lee, Jerry Tsai, David Baker, and Peter A. Kollman. “Molecular dy-
namics in the endgame of protein structure prediction”. J. Mol. Biol. 313.2 (2001),
pp. 417–430.

[101] Michael Levitt and Shneior Lifson. “Refinement of protein conformations using a
macromolecular energy minimization procedure”. J. Mol. Biol. 46.2 (1969), pp. 269–
279.
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Appendix A

Proofs of sparsity calculations

In this appendix we provide proofs for the theoretical results presented in Chapter 4.

Graph theory preliminaries

Much of the following requires substantial graph-theoretic construction, so we first present
the requisite notation and simple definitions. We will use the notation V (G) and E(G)
to denote the vertex and edge sets of a graph G. The graph is then specified by G =
(V (G), E(G)). The “degree” of a vertex is the number of other vertices that it is adjacent
to. A k-regular graph is a graph in which every vertex has degree equal to k. The Graph
Laplacian of a graph G with vertices V (G) = {gi}ni=1 is given by L(G) := D(G) − A(G)
where D(G) is an n × n diagonal matrix whose ith diagonal element is equal to the degree
of vertex i and A(G) is the n× n adjacency matrix of G with elements given by

Aij(G) =

{
1 if gi is adjacent to gj in G,

0 otherwise.

Graph Laplacians and adjacency matrices are real, symmetric matrices and thus have or-
thonormal sets of eigenvectors. In the case of a k-regular graph, L(G) = kI − A(G), and
thus the Laplacian and adjacency matrices share eigenvectors, and the eigenvalues of the
Laplacian are given by λj(L) = k − λj(A) for j = 1, ..., L where λj(A) are the eigenvalues
of the adjacency matrix.

We will make use of the Cartesian product of graphs, defined below:

Definition A.1 (Cartesian Product of Graphs). The Cartesian product between two graphs
G = (V (G), E(G)) and H = (V (H), E(H)) is defined as G�H = (V (G)×V (H), E(G�H)),
where two vertices (g, h) and (g′, h′) are adjacent in G�H if and only if either

1. g = g′ and h is adjacent to h′ in H, or

2. h = h′ and g is adjacent to g′ in G.



APPENDIX A. PROOFS OF SPARSITY CALCULATIONS 97

A direct consequence of Definition A.1 is that the adjacency matrix of the Cartesian
product can be constructed from the adjacency matrices of its components as [160]:

A(G�H) = A(G)⊗ Im + In ⊗A(H), (A.1)

where m = |V (H)| and n = |V (G)| are the number of vertices in H and G, respectively.
We will additionally make use of the Lexicographic product of graphs [65].

Definition A.2 (Lexicographic Product of Graphs). The Lexicographic product between
two graphs G = (V (G), E(G)) and H = (V (H), E(H)) is defined as G ◦ H = (V (G) ×
V (H), E(G ◦H)), where two vertices (g, h) and (g′, h′) are adjacent in G ◦H if and only if
either

1. g is adjacent to g′ in G, or

2. g = g′ and h is adjacent to h′ in H.

The adjacency matrix of a Lexicographic product of graphs is given by [160]:

A(G ◦H) = A(G)⊗ Jm + In ⊗A(H), (A.2)

where Jm is the m×m matrix with every element equal to one.
The graphs described up until now have been ‘simple’ graphs, where each edge connects

exactly two vertices and vertices are connected by at most one edge. We will also discuss
‘hypergraphs’, where ‘edges’ (dubbed hyperedges) are sets that may contain more than two
vertices. Let H = (V (H), E(H)) be a hypergraph with n vertices, V (H) = {hi}ni=1, and p
hyperedges, E(H) = {ej}pj=1. The incidence matrix of H, denoted F(H) is the n× p matrix
with elements

Fij(H) =

{
1 if gi ∈ ei,
0 otherwise.

The degree of a vertex in a hypergraph is equal to the number of hyperedges that contain
that vertex, and a k-regular hypergraph is one in which all vertices have degree equal to k.
The clique multigraph corresponding to a hypergraph is the multigraph (another extension
of simple graphs where two vertices can have multiple simple edges between them) with the
same vertices as the hypergraph, and as many edges between two vertices as the number of
times those vertices co-occur in a hyperedge of the hypergraph (i.e., if two vertices are both
in two separate hyperedges of the hypergraph, then they will have two edges between them
in the clique multigraph) [35]. The (i, j)th element adjacency matrix of a multigraph is equal
to the number of edges that connect the ith and jth vertices.

Below are two Lemmas regarding the spectrum of Cartesian and lexicographic graph
products that will be useful.
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Lemma A.1. Let G and H be regular graphs with n and m vertices, respectively. Let
A(G) = PΛGPT and A(H) = QΛHQT be eigendecompositions of the adjacency matrices of
G and H. Then the adjacency matrix of the Cartesian product G�H has the eigendecompo-
sition given by:

A(G�H) = RΛ�RT (A.3)

where R = P⊗Q and Λ� = ΛG ⊗ Im + In ⊗ΛH .

Proof. We can use Equation A.1 to prove the proposed Lemma directly:

RΛ�RT = [P⊗Q][ΛG ⊗ Im + In ⊗ΛH ][P⊗Q]T

= [PΛG ⊗Q + P⊗QΛH ][PT ⊗QT ]

= PΛGPT ⊗QQT + PPT ⊗QΛHQT

= A(G)⊗ Im + In ⊗A(H)

= A(G�H)

where in the second and third lines we have used the property of Kronecker products that
(A⊗B)(C⊗D) = (AB⊗CD), in the second line we have also used the fact that the
transpose is distributive over the Kronecker product, (C ⊗D)T = CT ⊗DT , and the final
line is a result of Equation A.1.

Lemma A.2. Let G and H be regular graphs with n and m vertices, respectively. Let
A(G) = PΛGPT and A(H) = QΛHQT be eigendecompositions of the adjacency matrices of
G and H. Then the adjacency matrix of the lexicographic product G ◦ H has the eigende-
composition given by:

A(G ◦H) = RΛ◦R
T (A.4)

where R = P⊗Q and Λ◦ = ΛG ⊗B + In ⊗ΛH and B = me1e
T
1 (i.e., Bij = m if i = j = 1

and zero otherwise).

Proof. The adjacency matrix of any k-regular graph with m vertices has two eigenvalues, k
and 0 with multiplicities 1 and m − 1, respectively. The normalized eigenvector associated
with the eigenvalue k is 1√

m
1m and the normalized eigenvectors associated with the eigenvalue

0 are any set of length-m orthogonormal vectors that are orthogonal to 1m (i.e., vectors that
sum to one). Since H is a regular graph, we then have that

(QTJm)ij =

{√
m if i = 1

0 otherwise

and

(QTJmQ)ij =

{
m if i = j = 1

0 otherwise
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Therefore, (QTJmQ) = B and further QBQT = Jm. Then we can use Equation (A.2) to
show:

RΛ◦R
T = [P⊗Q][ΛG ⊗B + In ⊗ΛH ][P⊗Q]T

= PΛGPT ⊗QBQT + PPT ⊗QΛHQT

= A(G)⊗ Jm + In ⊗A(H)

= A(G ◦H)

Proofs of Propositions 4.1 and 4.2

Proof of Proposition 4.1. The Graph Laplacian of the complete graph K(q) is given by
L(K(q)) = qIq − Jq (i.e., the q × q matrix with q on the diagonal and all other elements
equal to −1). This matrix has two eigenvalues, 0 and q, with multiplicities 1 and q − 1,
respectively. The normalized eigenvector corresponding to the zero eigenvalue is 1√

q
1q. Since

the graph Laplacian is symmetric, the eigenvectors are orthogonal and therefore the remain-
ing eigenvectors are any set of n−1 orthogonal vectors that are orthogonal to 1q (i.e., vectors
that sum to zero) and each other. In order to show that the columns of the Householder
matrix given in Equation (4.7) are orthonormal eigenvectors of the complete graph, we will
prove (i) that the first column of Pq is equal to 1√

q
1q and (ii) that Pq is an orthogonal matrix:

(i) We can more explicitly write the w = [w1, w2, ..., wq] vector as
w = 1q −

√
qe1 = [1−√q, 1, 1, ..., 1]T . Therefore, ‖w‖22 = (1−√q)2 + (q − 1) = 2(q −√

q). Let αi for i = 1, 2, ..q be the elements of the first column of Pq, respectively.
Then,

α1 = 1− 2w1w1

‖w‖22

= 1−
(1−√q)2

q −√q

= 1−
(

1− 1
√
q

)
=

1
√
q
,

and for j = 2, 3, ..., q, we have

αj =
2wjw1

‖w‖22

=
1−√q
q −√q

=
1
√
q
.

Therefore, all elements of the first columns of Pq are equal to 1√
q
.
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(ii) The orthogonality of Pq follows directly from the definition:

(Pq)
TPq =

(
Iq −

2wwT

‖w‖22

)T (
Iq −

2wwT

‖w‖22

)
= Iq −

4wwT

‖w‖22
+

4wwTwwT

‖w‖42
= Iq.

Thus, Pq is an orthogonal matrix whose first column is 1√
q
1q, and further, the columns are

Pq are an orthonormal set of eigenvectors of K(q).

To prove Proposition 4.2, we need a couple of preliminary results. First note that the
Hamming graph H(L, q) is the L-fold Cartesian product of the complete graph K(q). We
have the following result regarding the eigenvectors and eigenvalues of the adjacency matrices
of Cartesian products of regular graphs.

Lemma A.3. Let G and H be regular graphs and let P and Q be matrices whose columns
are eigenvectors of the Graph Laplacians of G and H, respectively. Then the columns of
P⊗Q are eigenvectors of the Graph Laplacian of the Cartesian product G�H.

Proof. For a regular graph, the degree matrix is a constant multiplied by the identity matrix.
Thus, the Graph Laplacian and adjacency matrices differ only by a constant added to the
diagonal (and a constant multiplication of −1), and these two matrices therefore have the
same eigenvectors. The result then follows from Lemma A.1.

Proof of Proposition 4.2. The Hamming graph H(L, q) is defined as the L-fold Cartesian
product of the complete graph K(q) [166]:

H(L, q) = �L
i=1K(q). (A.5)

Thus, by Lemma A.3, the eigenvectors of the Graph Laplacian of H(L, q) are the L-fold
Kronecker product of the eigenvectors of the Graph Laplacian of K(q), as given in Equation
(4.8).

Proofs of Theorems 4.1 and 4.2

In order prove Theorems 4.1 and 4.2, we will first provide an alternative definition of the
GNK model in terms of hypergraphs. To start, we’ll now assign an index to every sequence in

the space of sequences, so S(L,q) = {si}q
L

i=1. As in the main text, s
[j]
i refers to the subsequence

of si corresponding to the indices in the neighborhood V [j].
Each neighborhood in the GNK model induces a hypergraph over sequence space, where

the vertices represent all sequences in S(L,q) and edges contain sequences that share subse-
quences corresponding to the indices in the neighborhood. We formally define this hyper-
graph below.
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Definition A.3 (GNK hypergraph). Let G(V ) = (S(L,q), E(V )) be a ‘GNK hypergraph’
corresponding to a neighborhood V for a GNK model defined for sequences of length L and
alphabet size q. The edge set, E(V ), corresponds to every possible subsequence of length |V |,
and two sequences co-occur in an edge if and only if they share the subsequence corresponding
to the positions in V . Additionally, let F(V ) := F(G(V )) be the incidence matrix of G(V ),
C(V ) be the clique multigraph of G(V ) and A(V ) := A(C(V )) be the adjacency matrix
of C(V ). Finally, when it is appropriate to consider the indexed neighborhoods V [j], then
we will use this indexing for all of the GNK hypergraph quantities. Specifically, define
G[j] := G(V [j]), F[j] := F(V [j]), C [j] := C(V [j]), and A[j] := A(V [j]).

The following Lemma gives an immediate useful result of this definition.

Lemma A.4. Every GNK hypergraph, G(V ), is a 1-regular hypergraph.

Proof. Every sequence (i.e., vertex of G(V )) contains exactly one subsequence corresponding
to the position indices in V . Therefore, each vertex is contained in exactly one edge of
G(V ).

We will use the GNK hypergraphs to provide an alternative definition of the GNK model,
which is shown in the following result. Note that this is equivalent to the matrix definition
of the GNK model of Buzas and Dinitz [30].

Lemma A.5. Define the matrix F as the column-wise concatenation of the incidence ma-
trices F[j] for j = 1, 2, ..., L:

F :=
[
F[1]

∣∣F[2]
∣∣ . . . ∣∣F[L]

]
(A.6)

Additionally, let w ∼ N (0, I) be a length
∑L

j=1 q
Kj normally distributed random vector.

Then, f = Fw contains all fitness evaluations of a fitness function f that is distributed
according to GNK(L, q,V) (i.e., f = (f(s))s∈S(L,q) and f ∼ GNK(L, q,V)).

Proof. In order to prove this, we need to show (i) that the above formulation results in L unit
normally distributed subsequence fitness values being assigned to each sequence, where each
subsequence corresponds to the position indices in a neighborhood V [j] (ii) that sequences
share subsequence fitness values when they share the corresponding subsequence, and (iii)
that the L subsequence fitness values are summed to produce the total fitness value assigned
to each sequence.

A direct result of Definition A is that F [j] has elements given by:

F
[j]
ik =

{
1 if s

[j]
i = s̃k

0 otherwise,
(A.7)

where we define s̃k as the kth possible subsequence of length Kj (i.e., the kth element in
S(Kj ,q)). Since each hyperedge in G[j] represents a subsequence of length Kj, each hyperedge
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contains vertices that represent sequences that share subsequence fitness values in the GNK
model. Therefore, letting w[j] ∼ N (0, I) be a length qKj normally distributed random vector
representing the subsequence fitness values randomly assigned to each subsequence, then

f [j] = F[j]w[j],

where f [j] = [fj(s1), fj(s2), ..., fj(sqL)]T is the vector of subsequence fitness values correspond-
ing to neighborhood j that are assigned to each sequence in S(L,q). Since G[j] is a 1-regular
hypergraph (Lemma A.4), each row of F[j] contains exactly one nonzero element and there-
fore the subsequence fitness values of each sequence are distributed as N (0, 1), as in the
original definition of the GNK model given in the main text. Additionally, the structure
of the incidence matrix shown in Equation (A.7) ensures that two sequences that share a
subsequence corresponding to the position indices in V [j] also share a subsequence fitness
value in f [j], as required by the GNK model.

Now, let w ∼ N (0, I) be the random vector that is the concatenation of the w[j] random
vectors containing subsequence fitness values. Then we have:

f = Fw

=
L∑
j=1

F[j]w[j]

=
L∑
j=1

f [j].

Therefore, the elements of f are simply the sums of the L subsequence fitness values corre-
sponding to each sequence, which is the final step in definition of the GNK model given in
the main text.

The following conclusions regarding the statistics of the Fourier coefficients in the GNK
model are immediate from this definition of the model.

Lemma A.6. The Fourier coefficients, β, of fitness functions distributed according to

GNK(L, q,V) are normally distributed with 〈β〉 = 0 and covariance 〈ββT 〉 =
(
Φ(L,q)

)T
FFTΦ(L,q),

where Φ(L,q) is the Fourier basis defined in Equation (4.8) and F is the column-wise concate-
nation of the incidence matrices of GNK hypergraphs defined in Equation (A.6).

Proof. For ease of notation, let Φ ← Φ(L,q). The proposed Lemma follows immediately
from recognizing that f = Fw = Φβ, and therefore β = ΦTFw. The Fourier coeffi-
cients are thus a linear transformation of a normally distributed random vector, w, and
are therefore normally distributed with mean 〈β〉 = ΦTF〈w〉 = 0 and covariance matrix
〈ββT 〉 = ΦTF〈wwT 〉FTΦ = ΦTFFTΦ.
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Lemma A.6 provides a straightforward path towards proving Theorem 4.1. We now need
to show that (i) Φ diagonalizes FFT (i.e., Φ is a basis of eigenvectors for FFT ) and (ii)
that the eigenvalues of FFT are given by Equation (4.12). The problem can be further
simplified by first noting the following simple result, which follows straightforwardly from
the multiplication of block matrices.

Lemma A.7. FFT =
∑L

j=1 F[j](F[j])T .

This result tells us that if possible, it is sufficient to prove that Φ diagonalizes each
F[j](F[j])T in order to prove that Φ diagonalizes FFT . Then the eigenvalues of FFT will
simply be given by the sum of the eigenvalues of the F[j](F[j])T . We are further assisted by
the following result regarding the outer product of incidence matrices of regular hypergraphs,
due to [35].

Lemma A.8. Let C be the clique multigraph of a k-regular hypergraph H with incidence
matrix F(H). Then F(H)F(H)T = A(C) + kI, where A(C) is the adjacency matrix of C.

Proof. Each element of F(H)F(H)T is the inner product of two rows in F(H). Since each
element in row i of F(H) indicates whether vertex i is in a particular edge, the inner product
of row i and row j (i 6= j) counts the number of edges that contain both vertex i and
vertex j. Of course, this is also the number of edges connecting vertex i and vertex j in
the clique multigraph, and thus the off-diagonal elements of F(H)F(H)T are equal to the
elements of A(C). The diagonal elements of F(H)F(H)T are equal to the total number of
edges containing vertex i, which is L for every vertex.

Lemma A.8 tells us if we can determine the spectrum of the adjacency matrices A[j] of
the clique multigraphs C [j], then it is straightforward to calculate the spectrum of F[j](F[j])T .
In order to begin to calculate the spectrum of A[j] we recognize the following simple fact
regarding these clique multigraphs (remember that G[j] is a 1-regular hypergraph).

Lemma A.9. The clique multigraph of a 1-regular hypergraph is a simple graph.

Proof. Each vertex in a 1-regular hypergraph is in exactly one hyperedge, and thus the clique
multigraph has at most one edge between any two vertices.

We have therefore reduced the problem to determining the spectrum of the simple graphs
C [j]. C [j] contains edges between any two sequences that share a subsequence corresponding
to the indices in the jth neighborhood V [j]. In order to calculate the spectrum of C [j], we
will first show how these clique multigraphs can be constructed recursively. In the next few
Lemmas, we will provide results for graphs associated with a generic neighborhood V , and
then return to considering the indexed neighborhoods V [j] when necessary.
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Lemma A.10. Let V ⊆ {1, 2, ..., L} be a GNK neighborhood. Additionally, let O(q) be the
empty graph of size q (i.e., the graph containing q vertices and no edges) and define the
graphs Bl(V ), via the recursion relation:

Bl+1(V ) =

{
Bl(V )�O(q) if i+ 1 ∈ V
Bl(V ) ◦K(q) otherwise

(A.8)

for i = 1, 2, ..., L− 1, where

B1(V ) =

{
O(q) if 1 ∈ V
K(q) otherwise

(A.9)

Then the vertices of Bl(V ) represent all sequences in S(l,q) and two sequences
si = [si,1, si,2, ..., si,l] ∈ S(l,q) and sj = [sj,1, sj,2, ..., sj,l] ∈ S(l,q) are adjacent in Bl(V ) if and
only if si,k = sj,k for every k ∈ V(l) where we define V(l) := {m ∈ V : m ≤ l} to be the l
smallest elements of V .

Proof. First, both the lexicographic and Cartesian products result in graphs whose vertex
sets are the (set) Cartesian product of the vertex sets of the multiples. Since the vertex sets
of both O(q) and K(q) represent elements of the alphabet of size q, an l-fold graph product
of these graphs will result in each vertex representing a sequence of length l.

We will prove the adjacency property of these product graphs with induction. For ease
of notation, we drop the dependence of Bl(V ) on V and let Bl ← Bl(V ). Assume that two
sequences si = [si,1, si,2, ..., si,l] ∈ S(l,q) and sj = [sj,1, sj,2, ..., sj,l] ∈ S(l,q) are adjacent in Bl if
and only if the adjacency condition, si,k = sj,k for every k ∈ V(l), is satisfied. We will show
that these adjacency conditions remain true for l + 1. There are two cases to consider: (i)
l + 1 ∈ V and (ii) l + 1 /∈ V .

(i) (l + 1 ∈ V ). Let si = [s̃i|si,l+1] ∈ S(l+1,q) and sj = [s̃j|sj,l+1] ∈ S(l+1,q) be sequences of
length l+ 1, where s̃i contains the first l elements of si. Since in this case l+ 1 ∈ V(l+1),
we must prove that si and sj are adjacent in Bl+1 if and only if the adjacency condition
is satisfied for s̃i and s̃j in Bl (which is true by inductive assumption) and si,l+1 = sj,l+1.
By Equation A.8, Bl+1 = Bl�O(q) in this case. Note that the vertices in Bl represent
the s̃i sequences of length l and the vertices in O(q) represent the new elements of the
sequence, si,l+1. According to the definition of the graph Cartesian product (Definition
A.1), si and sj are adjacent in Bl+1 if and only if s̃i and s̃j are adjacent in Bl and
si,l+1 = sj,l+1. Thus, in this case, the adjacency condition remains true for l + 1 under
the inductive assumption.

(ii) (l + 1 /∈ V ). In this case, l + 1 /∈ V(l+1) and therefore we need to prove that si and
sj are adjacent in Bl+1 if and only if s̃i and s̃j are adjacent in Bl or s̃i = s̃j. In this
case, Bl+1 = Bl ◦K(q). Due to the definition of the lexicographic product (Definition
A.2), si and sj are adjacent in Bl+1 if and only if (1) s̃i and s̃j are adjacent in Bl or (2)
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s̃i = s̃j and si,l+1 is adjacent to sj,l+1 in K(q). Since all vertices in K(q) are adjacent to
one another, condition (2) simply results in si and sj being adjacent in Bl+1 if s̃i = s̃j.
Thus, in this case, the required adjacency condition remains true for l + 1 under the
inductive assumption.

The base case of this induction is l = 1. If 1 ∈ V , then V(1) = {1}. Since si,1 6= sj,1 for
all si, sj ∈ S(1,q) with i 6= j (i.e., since each length-one sequence represents an element of the
alphabet, none of these sequences are equal to one another), the graph B1 should contain no
edges; this is indeed the case because B1 = O(q) in the case 1 ∈ V [j] due to Equation (A.9).

Similarly, if i /∈ V [j], then V
[j]
(1) = ∅ and all vertices of B1 should be adjacent to one another;

this is indeed the case because B1 = K(q) when 1 /∈ V [j] due to Equation (A.9).

The simple corollary of Lemma A.10 is that the clique graphs C(V ) are the final results
of the recursion in Equation (A.8).

Lemma A.11. Let C(V ) be the clique multigraph of a GNK hypergraph G(V ) and BL(V )
be the graph defined by Equations (A.8) and (A.9). Then C(V ) = BL(V ).

Proof. The vertex sets of both C(V ) and BL(V ) are given by the space of sequences S(L,q). By
definition, two sequences co-occur in an edge of the hypergraph G(V ) if and only if they share
the subsequence corresponding to the indices in V . Therefore two sequences are adjacent
in the clique multigraph C(V ) if and only if they share the subsequence corresponding to
the indices in V . Additionally, by Lemma A.9, C(V ) is a simple graph. By Lemma A.10,
BL(V ) is a simple graph in which two sequences are adjacent if and only if they share the
subsequence corresponding to the indices in V . Thus, the vertex and edge sets of C(V ) and
BL(V ) are equivalent, and the graphs are equivalent.

This recursive definition of C(V ) will allow us to calculate the spectrum of the adjacency
matrix A(V ) using the spectral properties of graph products presented in Lemmas A.1 and
A.2. In particular, we have the following result regarding the eigenvectors of A(V ).

Lemma A.12. The columns of the Fourier basis Φ(L,q) are a complete set of orthonormal
eigenvectors of the adjacency matrix A(V ) := A(C(V )) of the clique multigraph C(V ).

Proof. Recall from Equation (4.8) in the main text that Φ(L,q) =
⊗L

i=1 Pq, where Pq is a
complete set of orthonormal eigenvectors of the complete graphK(q). Additionally, recognize
that the adjacency matrix of the empty graph, A(O(q)) has every element equal to zero and
therefore any nonzero vector is an eigenvector of A(O(q)); for our purposes we will use Pq

as the eigenvectors of A(O(q)). Let the columns of Θl be orthonormal eigenvectors of the
graph Bl(V ), which is defined in Lemma A.10. Then we have

Θ1 =

{
Pq if 1 ∈ V
Pq otherwise
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where the first and second lines on the RHS are due to Pq being a set of orthonormal
eigenvectors of O(q) and K(q), respectively. We additionally have the recursive relation:

Θl+1 =

{
Θl ⊗Pq if i+ 1 ∈ V [j]

Θl ⊗Pq otherwise

for l = 1, 2, ...L− 1, where the first line on the RHS is due to Lemma A.1 and the second is
due to Lemma A.2. Therefore, ΘL =

⊗L
i=1 Pq = Φ(L,q). The result follows from recognizing

that C(V ) = BL(V ) by Lemma A.11, and therefore ΘL = Φ(L,q) are a set of orthonormal
eigenvectors of A(V ).

We could similarly use Lemmas A.1 and A.2 to calculate the eigenvalues of A(V ); how-
ever, this would not allow us to connect the eigenvalues to epistatic interactions, as is required
to prove Theorem 4.1. We will instead proceed by showing in Lemma A.13 that the columns
of suitably defined matrix are eigenvectors of the adjacency matrix A(V ) with eigenvalues
equal to a summand of Equation (4.12) up to additive constant. Then, in Lemma A.14 we
will show that this matrix is indeed equal to the columns of the Fourier basis corresponding
to the epistatic interaction U .

Lemma A.13. Let U ⊆ 1, 2, ..., L be a set of position indices representing an epistatic
interaction and V ⊆ {1, 2, ..., L} be a GNK neighborhood. Define the matrix Zl(U) with the
recursion relation:

Zl+1(U) =

{
Zl(U)⊗ P̃q if l + 1 ∈ U
Zl(U)⊗ 1q otherwise

(A.10)

for l = 1, 2, ..., L− 1, where

Z1(U) =

{
P̃q if 1 ∈ U
1q otherwise

(A.11)

Then the columns of ZL(U) are eigenvectors of the adjacency matrix A(V ), all associated
with the eigenvalue given by

µ(U, V ) = qL−|V |I(U ⊆ V )− 1. (A.12)

Proof. We will prove this by induction. For ease of notation, we will drop the dependence
of the Zl(U) matrices on U , and let Zl ← Zl(U). Define Al := A(Bl(V )) as the adjacency
of the graph Bl(V ), which is the graph defined by Equations (A.8) and (A.9). Additionally
let V(l) := {m ∈ V : m ≤ l} and U(l) := {m ∈ U : m ≤ l} be the l smallest elements of V and
U , respectively. Our inductive assumption will be that

AlZl = µlZl

where we define µl := ql−|V(l)|I(U(l) ⊆ V(l)) − 1. In other words, we will assume that the
columns of Zl are eigenvectors of Al associated with the eigenvalue µl, and then will show
that Al+1Zl+1 = µl+1Zl+1. There are four cases to consider: (i) l+ 1 ∈ U and l+ 1 ∈ V , (ii)
l + 1 ∈ U and l + 1 /∈ V , (iii) l + 1 /∈ U and l + 1 ∈ V , and (iv) l + 1 /∈ U and l + 1 /∈ V
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(i) (l + 1 ∈ U and l + 1 ∈ V ). In this case, V(l+1) and U(l+1) add the element l + 1 to V(l)
and U(l), respectively. Therefore, if U(l) ⊆ V(l), it will be true that U(l+1) ⊆ V(l+1), and
if U(l) 6⊆ V(l), then U(l+1) 6⊆ V(l+1). Additionally, in this case, |V(l+1)| = |V(l)| + 1, so we
have

µl+1 = ql+1−|V(l+1)|I(U(l+1) ⊆ V(l+1))− 1

= ql−|V(l)|I(U(l) ⊆ V(l))− 1

= µl

Therefore, we must show that µl is the eigenvalue of Al+1 associated with the columns
of Zl+1. In this case, Zl+1 = Zl ⊗ P̃q. Also in this case, Bl+1 = Bl�O(q) (by Equation
A.8), so by Equation (A.1), Al+1 = Al ⊗ Iq. Then we have

Al+1Zl+1 = (Al ⊗ Iq)(Zl ⊗ P̃q)

= AlZl ⊗ P̃q

= µlZl ⊗ P̃q

= µlZl+1,

where the third line results from the inductive assumption. Thus, µl = µl+1 is the
eigenvalue of Al+1 associated with the columns of Zl+1.

(ii) (l + 1 ∈ U and l + 1 /∈ V ). In this case, U(l+1) 6⊆ V(l+1) because the element l + 1 is in
U(l+1) but not V(l+1). Therefore, in this case µl+1 = −1, and we must prove the −1 is

the eigenvalue of Al+1 associated with the columns of Zl+1. In this case, Zl+1 = Zl⊗P̃q.
Also, in this case, Bl+1 = Bl ◦K(q), so by Equation (A.2),

Al+1 = Al ⊗ Jq + I⊗A(K(q))

= Al ⊗ Jq + I⊗ (Jq − Iq).

Then we have,

Al+1Zl+1 = (Al ⊗ Jq + I⊗ (Jq − Iq)) (Zl ⊗ P̃q)

= AlZl ⊗ JqP̃q + Zl ⊗ JqP̃q − Zl ⊗ P̃q

= AlZl ⊗ 0q + Zl ⊗ 0q − Zl ⊗ P̃q

= −Zl ⊗ P̃q

= −Zl+1

where the third line results from recognizing that each column of P̃q sums to zero, so
JqP̃q = 0q, where 0q is the q× q matrix of all zeros. Thus, µl+1 = −1 is the eigenvalue
of Al+1 associated with the columns of Zl+1.
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(iii) (l + 1 /∈ U and l + 1 ∈ V ). In this case, the element l + 1 is in V(l+1) but not U(l+1).
Therefore, if U(l) ⊆ V(l), it will be true that U(l+1) ⊆ V(l+1), and if U(l) 6⊆ V(l), then
U(l+1) 6⊆ V(l+1). Additionally, in this case, |V(l+1)| = |V(l)| + 1, so, as in case (i), we
have µl+1 = µl, and we must prove the µl is the eigenvalue of Al+1 associated with the
columns of Zl+1. In this case, Zl+1 = Zl⊗1q and Al+1 = Al⊗ Iq (as in case (i)). Then,

Al+1Zl+1 = (Al ⊗ Iq)(Zl ⊗ 1q)

= AlZl ⊗ 1q

= µlZl ⊗ 1q

= µlZl+1,

where the third line results from the inductive assumption. Thus, µl = µl+1 is the
eigenvalue of Al+1 associated with the columns of Zl+1.

(iv) (l + 1 /∈ U and l + 1 /∈ V ). In this case, V(l+1) = V(l) and U(l+1) = U(l), so I(U(l+1) ⊂
V(l+1)) = I(U(l) ⊆ V(l)) and |V(l+1)| = |V(l)|. Therefore,

µl+1 = ql+1−|V(l+1)|I(U(l+1) ⊆ V(l+1))− 1

= ql+1−|V(l)|I(U(l) ⊆ V(l))− 1

= q
(
ql−|V(l)|I(U(l) ⊆ V(l))

)
− 1

= q
(
ql−|V(l)|I(U(l) ⊆ V(l))− 1

)
+ q − 1

= qµl + q − 1.

Thus, we must prove that qµl + q − 1 is the eigenvalue of Al+1 associated with the
columns of Zl+1. In this case, Zl+1 = Zl ⊗ 1q (as in case (iii)) and
Al+1 = Al ⊗ Jq + I⊗ (Jq − Iq) (as in case (ii)). Then, we have

Al+1Zl+1 = (Al ⊗ Jq + I⊗ (Jq − Iq)) (Zl ⊗ 1q)

= AlZl ⊗ Jq1q + Zl ⊗ Jq1q − Zl ⊗ 1q

= µlZl ⊗ q1q + Zl ⊗ q1q − Zl ⊗ 1q

= (qµl + q − 1) Zl ⊗ 1q

= (qµl + q − 1) Zl+1,

where the third line results from the inductive assumption and recognizing that Jq1q =
q1q. Thus, µl+1 = (qµl + q − 1) is the eigenvalue of Al+1 associated with the columns
of Zl+1.

We additionally have four analogous base cases for the induction: (i) 1 ∈ U and 1 ∈ V , (ii)
1 ∈ U and 1 /∈ V , (iii) 1 /∈ U and 1 ∈ V , and (iv) 1 /∈ U and 1 /∈ V :

(i) (1 ∈ U and 1 ∈ V ). In this case, U(1) = V(1) = {1}, so I(U(1) ⊆ V(1)) = 1, |V(1)| = 1,
and therefore µ1 = 0. Additionally, A1 = A(O(q)) = 0q, so A1Z1 = µ1Z1 = 0q.
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(ii) (1 ∈ U and 1 /∈ V ). In this case, V(1) = ∅, so U(1) 6⊆ V(1), |V | = 0, and µ1 = −1.

Additionally, Z1 = P̃q and A1 = A(K(q)) = Jq − Iq, so we have A1Z1 = JqP̃q − P̃q =
−P̃q = −Z1.

(iii) (1 /∈ U and 1 ∈ V ). In this case U = ∅ and V = {1}, so U(1) ⊆ V(1), |V | = 1, and
µ1 = 0. Since A1 = A(O(q)) = 0q, then A1Z1 = µ1Z1 = 0.

(iv) (1 /∈ U and 1 /∈ V ). In this case, U(1) = V(1) = ∅, so U(1) ⊆ V(1), |V(1)| = 0 and thus
µ1 = q − 1. Additionally, Z1 = 1q and A1 = A(K(q)) = Jq − Iq, so we have

A1Z1 = Jq1q − 1q

= (q − 1)1q

= (q − 1)Z1.

Thus, µ1 is the eigenvalue of A1 associated with the columns Z1 in each of these base cases.
By this induction, we have proved that µL is the eigenvalue of AL associated with the

columns of ZL. It is clear to see that µL = µ(U, V ). The result then follows from recognizing
that, due to Lemma A.11, BL(V ) = C(V ) and therefore AL = A(V ). Thus, from the
induction, the columns of ZL(U) are eigenvectors A(V ) associated with the eigenvalue µL =
µ(U, V ).

Lemma A.14. Define Φ
(L,q)
U as the matrix of (q − 1)|U | columns of the Fourier basis Φ(L,q)

corresponding to the epistatic interaction U ⊆ {1, 2, ..., L}:

Φ
(L,q)
U :=



| φ(L)
U (s1)

T |

| φ(L)
U (s2)

T |

...

| φ(L)
U (sqL)T |

 (A.13)

where φ
(L)
U (si) := 1√

qL

⊗
j∈U pq(si,j) is the encoding of sequence si in terms of the epistatic

interaction U in the Fourier basis1. Then, 1√
qL

ZL(U) = Φ
(L,q)
U , where ZL(U) is defined by

Equations (A.10) and (A.11).

Proof. Let φ̂
(L)
U (si) :=

√
qLφ

(L)
U (si) for i = 1, 2, ...qL be the unnormalized rows of Φ

(L,q)
U .

These can be defined recursively. In particular, we have

φ̂
(l+1)
U (si) =

{
φ̂

(l)
U (s̃i)⊗ pq(si,l+1) if l + 1 ∈ U
φ̂

(l)
U (s̃i) otherwise

(A.14)

1φ
(L)
U (si) is equal to the φU (si) defined in the main text, but we have added the (L) index.



APPENDIX A. PROOFS OF SPARSITY CALCULATIONS 110

for l = 1, 2, ..., L, where s̃i are the first l positions of si, and

φ̂
(1)
U (si,1) =

{
pq(si,1) if 1 ∈ U
1 otherwise

(A.15)

For a given s̃ ∈ S(l,q), there are q sequences s ∈ S(l+1,q) whose first l positions are s̃. Further,
each of these sequences has a unique element in the final position. Thus, in order to construct
the sub-matrix of Φ

(l+1,q)
U corresponding to a s̃,

| φ̂(l+1)
U ([s̃, 1])T |

| φ̂(l+1)
U ([s̃, 2])T |

...

| φ̂(l+1)
U ([s̃, q])T |

 =

{
φ̂

(l)
U (s̃)⊗ P̃q if l + 1 ∈ U
φ̂

(l)
U (s̃)⊗ 1q otherwise.

(A.16)

Now let, Φ̂
(l,q)
U :=

√
qlΦ

(l,q)
U . Applying Equation (A.16) to each row in Φ̂

(l,q)
U results in:

Φ̂
(l+1,q)
U =

{
Φ̂

(l,q)
U ⊗ P̃q if l + 1 ∈ U

Φ̂
(l,q)
U ⊗ 1q otherwise.

(A.17)

which is equivalent to the recursion in Equation (A.10) that defines Zl(U). Additionally,
repeated application of Equation (A.15) to each element in the alphabet results in the equiv-
alent base case to Equation (A.11). Carrying out the recursion of Equation (A.16) to l = L

then gives ZL(U) = Φ̂
(L,q)
U =

√
qLΦ

(L,q)
U .

We are finally prepared to prove Theorem 4.1.

Proof of Theorem 4.1. In order to prove this theorem, we need to show (i) that the Fourier
coefficients are normally distributed with zero mean and diagonal covariance and (ii) that
the variance of the coefficients corresponding to a particular epistatic interaction are given
by Equation (4.12).

First, Lemma A.6 proves that the Fourier coefficients are normally distributed with zero
mean. Next, Lemma A.12 proves that the Fourier basis Φ(L,q) diagonalizes the adjacency
matrix A[j] of the clique multigraph of the GNK hypergraph G[j]. Recalling that G[j] is a
1-regular hypergraph, then by Lemma A.8, F[j](F[j])T = A[j]+I. Therefore, the Fourier basis
diagonalizes F[j](F[j])T for all j = 1, 2, ..., L, and thus also diagonalizes FFT due to Lemma
A.7. Then, the covariance matrix of the Fourier coefficients, which is shown in Lemma A.6

to be 〈ββT 〉 =
(
Φ(L,q)

)T
FFTΦ(L,q), is diagonal. The eigenvalues of FFT are then equal to

the variances of the Fourier coefficients.
Lemma A.13 shows that the columns of the matrix ZL(U) defined by Equations (A.10)

and (A.11) are eigenvectors of A[j]. Further, Lemma A.14 shows that this matrix is equal to

the columns of the Fourier basis corresponding to the epistatic interaction U , Φ
(L,q)
U . Thus,
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Lemma A.13 shows that the eigenvalue of A[j] associated with the columns Φ
(L,q)
U is given

by:
µ(U, V [j]) = qL−KjI(U ⊆ V [j])− 1.

By Lemma A.8, the eigenvalues of F[j](F[j])T are simply one plus those calculated with
(A.12). Since the Fourier basis diagonalizes all F[j](F[j])T , the eigenvalues of FFT are simply
the sum of those of the F[j](F[j])T . The eigenvalues of FFT associated with the eigenvectors

given by the columns of Φ
(L,q)
U are the variances of the Fourier coefficients corresponding to

the epistatic interaction U . All of this together, we have:

〈βUβTU〉 =
(
Φ

(L,q)
U

)T
FFTΦ

(L,q)
U

=
L∑
j=1

(
Φ

(L,q)
U

)T
F[j](F[j])TΦ

(L,q)
U

=
L∑
j=1

(µ(U, V [j]) + 1)I

=
L∑
j=1

(
qL−KjI(U ⊆ V [j])

)
I,

which is the desired result for the variances of the Fourier coefficients.

Proof of Theorem 4.2. . Theorem 4.1 shows that all the Fourier coefficients associated with
an epistatic interaction U are deterministically zero if U 6⊆ V [j] for j = 1, 2, ..., L, which
can be alternatively stated as U /∈ P(V [j]) for j = 1, 2, ..., L. The epistatic interactions
with non-zero Fourier coefficients are the U ∈ U := P({1, ..., L}) for which there exists a
j ∈ 1, 2, ..., L such that U ∈P(V [j]). Since P(V [j]) ⊆ U , we have

{U ∈ U : U ∈P(V [j])} = P(V [j])

and further,

{U ∈ U : ∃j ∈ {1, 2, ..., L} s.t.U ∈P(V [j])} =
L⋃
j=1

{U ∈ U : U ∈P(V [j])}

=
L⋃
j=1

P(V [j]).

There are (q − 1)|U | Fourier coefficients associated with each U ∈ U , so letting
T (V) :=

⋃L
j=1 P(V [j]), we have

supp(β) ≥
∑

U∈T (V)

(q − 1)|U |
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where the bound results from recognizing that the RHS sums overs all Fourier coefficients
that are deterministically zero, but the coefficients with nonzero variances may still equal
zero. However, recognizing that each β ∈ β with nonzero variance is a normal random
variable that can equal zero with zero probability, we have

supp(β) =
∑

U∈T (V)

(q − 1)|U |

almost surely.

The sparsity of GNK fitness functions with standard
neighborhood schemes

Proof of Proposition 4.3. Let W [j]
r := {W ∈ P(V [j]) : |W | = r} be the number of elements

of the powerset of neighborhood j with cardinality r. Additionally define

n(r) :=

∣∣∣∣∣
L⋃
j=1

W [j]
r

∣∣∣∣∣
= #{W ∈ T (V) : |W | = r}

as the number of elements in the union of powersets with cardinality r. For any set of
neighborhoods, we have n(0) = 1 and n(1) = L. Additionally, for any VK with uniform
neighborhood size K, n(r) = 0 for r > K. Then, for r = 2, 3..., K, we have

n(r) =

∣∣∣∣∣
L⋃
j=1

W [j]
r

∣∣∣∣∣
≤

L∑
j=1

|W [j]
r |

=
L∑
j=1

(
K

r

)
= L

(
K

r

)
where the second line results from the union bound and the third from recognizing that there
are

(
K
r

)
sets of cardinality r in the powerset of a set with K elements. Using this within
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Theorem 4.2 we then have

S(f) =
∑

U∈T (VK)

(q − 1)|U |

=
L∑
r=0

n(r)(q − 1)r

≤ 1 + L(q − 1) + L
K∑
r=0

(
K

r

)
(q − 1)r.

Now we formally present results for the sparsity of GNK models with neighborhoods
constructed using the standard schemes.

Proof of Proposition 4.4. There are L
K

blocks. The blocks are fully connected, so all∑K
r=0

(
K
r

)
(q − 1)r = qK Fourier coefficients corresponding to intra-block epistatic interac-

tions are nonzero. The only epistatic interaction shared by the blocks is the zeroth order
interaction, so each block contributes (qK − 1) unique nonzero Fourier coefficients, and the
total number of nonzero Fourier coefficients is given by Equation (4.15), where the final
addition of one is due to the shared zeroth order interaction.

Proof of Proposition 4.5. Define W [j]
r := {W ∈P(V [j]) : |W | = r} and

nl(r) :=

∣∣∣∣∣
l⋃

j=1

W [j]
r

∣∣∣∣∣
for l = 1, 2, ..., L. For l ≤ L−K + 1, and r = 1, 2, ..., K, we have

nl(r) = l

(
K

r

)
− (l − 1)

(
K − 1

r

)
. (A.18)

This can be shown by induction. In particular, assume Equation (A.18) is correct for l <
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L−K + 1 and then we find:

nl+1(r) =

∣∣∣∣∣
l+1⋃
j=1

W [j]
r

∣∣∣∣∣
=

∣∣∣∣∣
(

l⋃
j=1

W [j]
r

)
∪W [l+1]

r

∣∣∣∣∣
=

∣∣∣∣∣
l⋃

j=1

W [j]
r

∣∣∣∣∣+
∣∣W [l+1]

r

∣∣− ∣∣∣∣∣
(

l⋃
j=1

W [j]
r

)
∩W [l+1]

r

∣∣∣∣∣
= nl(r) +

(
K

r

)
−
(
K − 1

r

)
= (l + 1)

(
K

r

)
− l
(
K − 1

r

)
.

where the fourth line results from recognizing that V [l+1] when l + 1 ≤ L−K + 1 contains
exactly one position that is not in

⋃l
j=1 V

[j]; there are then
(
K−1
r−1

)
sets inW [l+1]

r that contain

this element and are thus unique to W [l+1]
r , which leads to∣∣∣∣∣

(
l⋃

j=1

W [j]
r

)
∩W [l+1]

r

∣∣∣∣∣ =

(
K

r

)
−
(
K − 1

r − 1

)
=

(
K − 1

r

)
.

It is clear that n1(r) =
(
K
r

)
, and thus Equation (A.18) is proved by induction for l ≤ L−K+1.

Equation (A.18) accounts for redundancies inW [j]
r that result from overlapping positions

in the neighborhoods, without considering periodicity. There are additional redundancies
that occur when l > L −K + 1 due to the periodicity of the neighborhoods. In particular,
for l = L−K+2, ..., L, due to periodicity V [l] contains (l+k) mod L−1 additional positions
that are already in

⋃l
j=1 V

[j] (outside of those that are already
⋃l
j=1 V

[j] due to non-periodic

overlap). ThereforeW [l]
r contains

(
(l+k) mod L−1

r

)
additional sets that are already in

⋃l−1
j=1W

[j]
r

due to periodicity. Then we have, for l = L−K + 2, ..., L:

nl(r) = l

(
K

r

)
− (l − 1)

(
K − 1

r

)
−
(

(l + k) mod L− 1

r

)
.
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At l = L, we then have

nL(r) = L

(
K

r

)
− (L− 1)

(
K − 1

r

)
−
(

(L+ k) mod L− 1

r

)
= L

(
K

r

)
− (L− 1)

(
K − 1

r

)
−
(
K − 1

r

)
= L

((
K

r

)
−
(
K − 1

r

))
= L

(
K − 1

r − 1

)
.

The result follows from recognizing that nL(0) = 1, and therefore

S(f) =
∑

U∈T (VAN )

(q − 1)|U |

=
L∑
r=0

nL(r)(q − 1)r

= 1 + +L
K∑
r=1

(
K − 1

r − 1

)
(q − 1)r.

Additionally, we are able to calculate the expected sparsity of GNK fitness functions
with Random Neighborhoods, which is shown in the following result. The proof of this
follows the analogous calculations of Nowak and Krug [120], and we correct a mistake in
their calculations.

Proof of Proposition 4.6. Consider a set W ⊆ {1, 2, ..., L} of cardinality r. Define α(r) as
the the probability that W is a subset of the random neighborhood V [j] given that j ∈ W ,
which is given by

α(r) := Pr(W ⊆ V [j]|j ∈ W )

=

(
L−r
K−r

)(
L−1
K−1

)
=

(L− r)!
(K − r)!

(K − 1)!

(L− 1)!

where
(
L−1
K−1

)
is the total number of ways to construct V [j] and

(
L−r
K−r

)
is the number of ways

to construct V [j] such that every element of W is in V [j]. The probability that W is a subset
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of the random neighborhood V [j] given that j /∈ W is similarly given by:

Pr(W ⊆ V [j]|j /∈ W ) =

(
L−r−1
K−r−1

)(
L−1
K−1

)
=

(L− r − 1)!

(K − r − 1)!

(K − 1)!

(L− 1)!

= α(r)
K − r
L− r

There are r neighborhoods V [j] for which j ∈ W , and L− r neighborhoods for which j /∈ W .
Define p(r) as the probability that W is a subset of at least one, which is then:

p(r) := Pr(∃j : W ⊆ V [j])

= 1− Pr(6 ∃j : W ⊆ V [j])

= 1− Pr(6 ∃j ∈ W : W ⊆ V [j])Pr(6 ∃j /∈ W : W ⊆ V [j])

= 1− (1− α(r))r
(

1− α(r)
K − r
L− r

)L−r
There are

(
L
r

)
sets of cardinality r, and in expectation

(
L
r

)
p(r) will be subsets of at least one

neighborhood, and will therefore represent epistatic interactions or order r corresponding to
(q− 1)r nonzero Fourier coefficients. Equation (4.17) follows from summing over all possible
cardinalities r.
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Appendix B

Further details of maximum entropy
library design techniques

In this appendix, we provide derivations of some of the quantities calculated in Chapter
5.

Maximum entropy degenerate library gradients

Here we derive the gradients used to optimize the library parameters in Section 5.5, the
components of which are shown in Equation 5.18. First, we recognize that the gradient of
the entropy is given by

∇φH[qφ] = −∇φEqφ(x)[log qφ(x)]

= −
∑
x∈X

∇φqφ(x) log qφ(x)

= −
∑
x∈X

(log qφ(x)∇φqφ(x) + qφ(x)∇φ log qφ(x))

= −
∑
x∈X

(log qφ(x)qφ(x)∇φ log qφ(x) + qφ(x)∇φ log qφ(x))

= −
∑
x∈X

qφ(x)(1 + log qφ(x))∇φ log qφ(x)

= −Eqφ(x)[(1 + log qφ(x))∇φ log qφ(x)].

where in the third line we have used the equality ∇φqφ(x) = qφ(x)∇φ log qφ(x).
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We then have

∇φF (φ) = ∇φEqφ(x)[f(x)] + λ∇φH[qφ]

= Eqφ(x)[f(x)∇φ log qφ(x)]− λEqφ(x)[(1 + log qφ(x))∇φ log qφ(x)]

= λEqφ(x)[(f(x)− λ(1 + log qφ(x)))∇φ log qφ(x)]

= Eqφ(x)[w(x)∇φ log qφ(x)], (B.1)

where w(x) := f(x)−λ(1 + log qφ(x)). The individual components of ∇φ log qφ(x) are given
by:

∂

∂φjk
log qφ(x) =

∂

∂φjk
log qφj(x

j)

=
∂

∂φjk
log

eφj,xj∑K
l=1 e

φjl

=
∂

∂φjk
φj,xj −

∂

∂φjk
log

K∑
l=1

eφjl

= δk(x
j)− 1∑K

l=1

∂

∂φjk

K∑
l=1

eφjl

= δk(x
j)− eφjk∑K

l=1 e
φjl
eφjl

= δk(x
j)− qφj(k). (B.2)

Using Equation (B.2) within Equation (B.1) gives the result of Equation (5.18) in the
main text.

Expected Pairwise Distance

Here we derive the Expected Pairwise Distance between pairs of sequences sampled from
a library design. In particular, consider a degenerate library design qφ(x) for sequences of
length L and alphabet size K. The Hamming distance between two sequences, x1 and x2, is
d(x1,x2) = L−

∑L
i=1 δ(x

j
1, x

j
2), where δ(xj1, x

j
2) is equal to one if x1j = xj2, and zero otherwise.
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The expected distance between two sequences sampled from qφ(x) is then:

EPD(φ) = Ex1∼qφ(x),x2∼qφ(x)[d(x1,x2)]

= L− Ex1∼qφ(x),x2∼qφ(x)

[
L∑
i=1

δ(xi1, x
i
2)

]

= L−
L∑
i=1

Exi1∼qφi (xi),xi2∼qφi (xi)
[
δ(xi1, x

i
2)
]

= L−
L∑
i=1

K∑
j=1

K∑
l=1

qφi(j)qφi(l)δ(j, l)

= L−
L∑
i=1

K∑
j=1

qφi(j)
2,

which is the desired result that is used in Equation (5.21).
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