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Abstract

A measurement of the total pp cross section at the LHC at 
√

s = 7 TeV is presented. In a special run with 
high-β� beam optics, an integrated luminosity of 80 µb−1 was accumulated in order to measure the differ-
ential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement 
is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in 
the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | → 0, the total cross section, σtot(pp → X), 
is measured via the optical theorem to be:

σtot(pp → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb,

where the first error is statistical, the second accounts for all experimental systematic uncertainties and the 
last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross 
section at small |t | is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV−2.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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1. Introduction

The total hadronic cross section is a fundamental parameter of strong interactions, setting the 
scale of the size of the interaction region at a given energy. A calculation of the total hadronic 
cross section from first principles, based upon quantum chromodynamics (QCD), is currently not 
possible. Large distances are involved in the collision process and thus perturbation theory is not 
applicable. Even though the total cross section cannot be directly calculated, it can be estimated 
or bounded by a number of fundamental relations in high-energy scattering theory which are 
model independent. The Froissart–Martin bound [1,2], which states that the total cross section 
cannot grow asymptotically faster than ln2 s, 

√
s being the centre-of-mass energy, is based upon 

principles of axiomatic field theory. The optical theorem, which relates the imaginary part of the 
forward elastic-scattering amplitude to the total cross section, is a general theorem in quantum 
scattering theory. Dispersion relations, which connect the real part of the elastic-scattering am-
plitude to an integral of the total cross section over energy, are based upon the analyticity and 
crossing symmetry of the scattering amplitude. All of these relations lead to testable constraints 
on the total cross section.

The rise of the pp cross section with energy was first observed at the ISR [3,4]. The fact 
that the hadronic cross section continues to rise has been confirmed in every new energy regime 
made accessible by a new pp or pp̄ collider (Spp̄S, Tevatron and LHC) [5–11]. However, the 
“asymptotic” energy dependence is yet to be determined. A still open question is whether the 
cross section indeed rises proportionally to ln2 s in order to saturate the Froissart–Martin bound 
or whether the rise has e.g. a ln s dependence.

Traditionally, the total cross section at hadron colliders has been measured via elastic scatter-
ing using the optical theorem. This paper presents a measurement by the ATLAS experiment [12]
at the LHC in pp collisions at 

√
s = 7 TeV using this approach. The optical theorem states:

σtot ∝ Im
[
fel(t → 0)

]
(1)

where fel(t → 0) is the elastic-scattering amplitude extrapolated to the forward direction, i.e. at 
|t | → 0, t being the four-momentum transfer. Thus, a measurement of elastic scattering in the 
very forward direction gives information on the total cross section. An independent measurement 
of the luminosity is required. In this analysis, the luminosity is determined from LHC beam 
parameters using van der Meer scans [13]. Once the luminosity is known, the elastic cross section 
can be normalized. An extrapolation of the differential cross section to |t | → 0 gives the total 
cross section through the formula:

σ 2
tot = 16π(h̄c)2

1 + ρ2

dσel

dt

∣∣∣∣
t→0

, (2)

where ρ represents a small correction arising from the ratio of the real to imaginary part of the 
elastic-scattering amplitude in the forward direction and is taken from theory. In order to min-
imize the model dependence in the extrapolation to |t | → 0, the elastic cross section has to be 
measured down to as small |t | values as possible. Here, a fit in the range 0.01 GeV2 < −t <

0.1 GeV2 is used to extract the total cross section, while the differential cross section is mea-
sured in the range 0.0025 GeV2 < −t < 0.38 GeV2. The determination of the total cross section 
also implies a measurement of the nuclear slope parameter B , which describes the exponential 
t -dependence of the nuclear amplitude at small t -values. In a simple geometrical model of elas-
tic scattering, B is related to the size of the proton and thus its energy dependence is strongly 
correlated with that of the total cross section.
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The measurements of the total cross section and elastic scattering reported here are used to 
determine the inelastic cross section, as the difference between these two quantities. This mea-
surement of the inelastic cross section is compared with a previous measurement by the ATLAS 
experiment using a complementary method based upon data from a minimum-bias trigger [14]. 
The ratio of the elastic to total cross section is also derived. In the black-disc limit, the limit in 
which the proton is completely opaque, this quantity goes at asymptotic energies to 0.5 and thus 
the measurement is directly sensitive to the hadron opacity. The quantities measured and reported 
here have also been measured at the LHC by the TOTEM experiment [15,16].

This paper is organized as follows. The experimental setup including a brief description of 
the ALFA sub-detector is given in Section 2, followed by a short description of the measurement 
method in Section 3. Section 4 summarizes theoretical predictions and Monte Carlo simulations. 
The data taking and trigger conditions are outlined in Section 5, followed by a description of the 
track reconstruction and alignment procedures in Section 6. The data analysis consisting of event 
selection, background determination and reconstruction efficiency is explained in Section 7. Sec-
tion 8 describes the acceptance and unfolding corrections. The determination of the beam optics 
is summarized in Section 9 and of the luminosity in Section 10. Results for the differential elastic 
cross section are reported in Section 11 and the extraction of the total cross section in Section 12. 
The results are discussed in Section 13 with a summary in Section 14.

2. Experimental setup

ATLAS is a multi-purpose detector designed to study elementary processes in proton–proton 
interactions at the TeV energy scale. It consists of an inner tracking system, calorimeters and a 
muon spectrometer surrounding the interaction point of the colliding beams. The tracking system 
covers the pseudorapidity range |η| < 2.5 and the calorimetric measurements range to |η| = 4.9.1

To improve the coverage in the forward direction three smaller detectors with specialized tasks 
are installed at large distance from the interaction point. The most forward detector, ALFA, is 
sensitive to particles in the range |η| > 8.5, while the two others have acceptance windows at 
|η| ≈ 5.8 (LUCID) and |η| ≈ 8.2 (ZDC). A detailed description of the ATLAS detector can be 
found in Ref. [12].

The ALFA detector (Absolute Luminosity For ATLAS) is designed to measure small-angle 
proton scattering. Two tracking stations are placed on each side of the central ATLAS detector 
at distances of 238 m and 241 m from the interaction point. The tracking detectors are housed 
in so-called Roman Pots (RPs) which can be moved close to the circulating proton beams. Com-
bined with special beam optics, as introduced in Section 3, this allows the detection of protons at 
scattering angles down to 10 µrad.

Each station carries an upper and lower RP connected by flexible bellows to the primary 
LHC vacuum. The RPs are made of stainless steel with thin windows of 0.2 mm and 0.5 mm 
thickness at the bottom and front sides to reduce the interactions of traversing protons. Elastically 
scattered protons are detected in the main detectors (MDs) while dedicated overlap detectors 
(ODs) measure the distance between upper and lower MDs. The arrangement of the upper and 
lower MDs and ODs with respect to the beam is illustrated in Fig. 1.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the 
detector and the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring 
and the y-axis points upwards. The pseudorapidity η is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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Fig. 1. A schematic view of a pair of ALFA tracking detectors in the upper and lower RPs. Although not shown, the ODs 
on either side of each MD are mechanically attached to them. The orientation of the scintillating fibres is indicated by 
dashed lines. The plain objects visible in front of the lower MD and ODs are the trigger counters. For upper MD and the 
lower ODs they are hidden at the opposite side of the fibre structures.

Each MD consists of 2 times 10 layers of 64 square scintillating fibres with 0.5 mm side length 
glued on titanium plates. The fibres on the front and back sides of each titanium plate are orthog-
onally arranged at angles of ±45◦ with respect to the y-axis. The projections perpendicular to the 
fibre axes define the u and v coordinates which are used in the track reconstruction described in 
Section 6.1. To minimize optical cross-talk, each fibre is coated with a thin aluminium film. The 
individual fibre layers are staggered by multiples of 1/10 of the fibre size to improve the position 
resolution. The theoretical resolution of 14.4 µm per u or v coordinate is degraded due to imper-
fect staggering, cross-talk, noise and inefficient fibre channels. To reduce the impact of imperfect 
staggering on the detector resolution, all fibre positions were measured by microscope. In a test 
beam [17,18] with 120 GeV hadrons, the position resolution was measured to be between 30 µm 
and 35 µm. The efficiency to detect a traversing proton in a single fibre layer is typically 93%, 
with layer-to-layer variations of about 1%. The overlap detectors consist of three layers of 30 
scintillating fibres per layer measuring the vertical coordinate of traversing beam-halo particles 
or shower fragments.2 Two independent ODs are attached at each side of both MDs, as sketched 
in Fig. 1. The alignment of the ODs with respect to the coordinate system of the MDs was per-
formed by test-beam measurements using a silicon pixel telescope. A staggering by 1/3 of the 
fibre size results in a single-track resolution of about 50 µm. The signals from both types of 
tracking detectors are amplified by 64-channel multi-anode photomultipliers (MAPMTs). The 
scintillating fibres are directly coupled to the MAPMT photocathode. Altogether, 23 MAPMTs 
are used to read out each MD and its two adjacent ODs.

Both tracking detectors are completed by trigger counters which consist of 3 mm thick scin-
tillator plates covering the active areas of MDs and ODs. Each MD is equipped with two trigger 
counters and their signals are used in coincidence to reduce noise contributions. The ODs are 

2 Halo particles originate from beam particles which left the bunch structure of the beam but still circulate in the beam 
pipe.
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Fig. 2. A sketch of the experimental set-up, not to scale, showing the positions of the ALFA Roman Pot stations in the 
outgoing LHC beams, and the quadrupole (Q1–Q6) and dipole (D1–D2) magnets situated between the interaction point 
and ALFA. The ALFA detectors are numbered A1–A8, and are combined into inner stations A7R1 and A7L1, which 
are closer to the interaction point, and outer stations B7R1 and B7L1. The arrows indicate in the top panel the beam 
directions and in the bottom panel the scattered proton directions.

covered by single trigger counters and each signal is recorded. Clear-fibre bundles are used to 
guide all scintillation signals from the trigger counters to single-channel photomultipliers.

Before data taking, precision motors move the RPs vertically in 5 µm steps towards the beam. 
The position measurement is realized by inductive displacement sensors (LVDT) calibrated by a 
laser survey in the LHC tunnel. The internal precision of these sensors is 10 µm. In addition, the 
motor steps are used to cross-check the LVDT values.

The compact front-end electronics is assembled in a three-layer structure attached to the back 
side of each MAPMT. The three layers comprise a high-voltage divider board, a passive board 
for signal routing and an active board for signal amplification, discrimination and buffering using 
the MAROC chip [19,20]. The buffers of all 23 MAPMT readout chips of a complete detector are 
serially transmitted by five kapton cables to the mother-board. All digital signals are transmitted 
via a fibre optical link to the central ATLAS data acquisition system. The analogue trigger signals 
are sent by fast air-core cables to the central trigger processor.

The station and detector naming scheme is depicted in Fig. 2. The stations A7R1 and B7R1 
are positioned at z = −237.4 m and z = −241.5 m respectively in the outgoing beam 1 (C side), 
while the stations A7L1 and B7L1 are situated symmetrically in the outgoing beam 2 (A side). 
The detectors A1–A8 are inserted in increasing order in stations B7L1, A7L1, A7R1 and B7R1 
with even-numbered detectors in the lower RPs. Two spectrometer arms for elastic-scattering 
event topologies are defined by the following detector series: arm 1 comprising detectors A1, 
A3, A6, A8, and arm 2 comprising detectors A2, A4, A5, A7. The sequence of quadrupoles 
between the interaction point and ALFA is also shown in Fig. 2. Among them, the inner triplet 
Q1–Q3 is most important for the high-β� beam optics necessary for this measurement.

3. Measurement method

The data were recorded with special beam optics characterized by a β� of 90 m [21,22] at the 
interaction point resulting in a small divergence and providing parallel-to-point focusing in the 
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vertical plane.3 In parallel-to-point beam optics the betatron oscillation has a phase advance Ψ of 
90◦ between the interaction point and the RPs, such that all particles scattered at the same angle 
are focused at the same position at the detector, independent of their production vertex position. 
This focusing is only achieved in the vertical plane.

The beam optics parameters are needed for the reconstruction of the scattering angle θ� at 
the interaction point. The four-momentum transfer t is calculated from θ�; in elastic scattering at 
high energies this is given by:

−t = (
θ� × p

)2
, (3)

where p is the nominal beam momentum of the LHC of 3.5 TeV and θ� is measured from the 
proton trajectories in ALFA. A formalism based on transport matrices allows positions and angles 
of particles at two different points of the magnetic lattice to be related.

The trajectory (w(z), θw(z)), where w ∈ {x, y} is the transverse position with respect to the 
nominal orbit at a distance z from the interaction point and θw is the angle between w and z, is 
given by the transport matrix M and the coordinates at the interaction point (w�, θ�

w):(
w(z)

θw(z)

)
= M

(
w�

θ�
w

)
=

(
M11 M12

M21 M22

)(
w�

θ�
w

)
, (4)

where the elements of the transport matrix can be calculated from the optical function β and 
its derivative with respect to z and Ψ . The transport matrix M must be calculated separately 
in x and y and depends on the longitudinal position z; the corresponding indices have been 
dropped for clarity. While the focusing properties of the beam optics in the vertical plane enable 
a reconstruction of the scattering angle using only M12 with good precision, the phase advance 
in the horizontal plane is close to 180◦ and different reconstruction methods are investigated.

The ALFA detector was designed to use the “subtraction” method, exploiting the fact that for 
elastic scattering the particles are back-to-back, that the scattering angle at the A- and C-sides are 
the same in magnitude and opposite in sign, and that the protons originate from the same vertex. 
The beam optics was optimized to maximize the lever arm M12 in the vertical plane in order to 
access the smallest possible scattering angle. The positions measured with ALFA at the A- and 
C-side of ATLAS are roughly of the same size but opposite sign and in the subtraction method 
the scattering angle is calculated according to:

θ�
w = wA − wC

M12,A + M12,C
. (5)

This is the nominal method in both planes and yields the best t -resolution. An alternative method 
for the reconstruction of the horizontal scattering angle is to use the “local angle” θw measured 
by the two detectors on the same side:

θ�
w = θw,A − θw,C

M22,A + M22,C
. (6)

Another method performs a “local subtraction” of measurements at the inner station at 237 m 
and the outer station at 241 m, separately at the A- and C-side, before combining the two sides:

3 The β-function determines the variation of the beam envelope around the ring and depends on the focusing properties 
of the magnetic lattice.
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θ�
w,S = M241

11,S × w237,S − M237
11,S × w241,S

M241
11,S × M237

12,S − M237
11,S × M241

12,S

, S = A, C. (7)

Finally, the “lattice” method uses both the measured positions and the local angle to reconstruct 
the scattering angle by the inversion of the transport matrix(

w�

θ�
w

)
= M−1

(
w

θw

)
, (8)

and from the second row of the inverted matrix the scattering angle is determined

θ�
w = M−1

12 × w + M−1
22 × θw. (9)

All methods using the local angle suffer from a poor resolution due to a moderate angular res-
olution of about 10 µrad. Nevertheless, these alternative methods are used to cross-check the 
subtraction method and determine beam optics parameters.

For all methods t is calculated from the scattering angles as follows:

−t = ((
θ�
x

)2 + (
θ�
y

)2)
p2, (10)

where θ�
y is always reconstructed with the subtraction method, because of the parallel-to-point 

focusing in the vertical plane, while all four methods are used for θ�
x . Results on σtot using the 

four methods are discussed in Section 12.

4. Theoretical prediction and Monte Carlo simulation

Elastic scattering is related to the total cross section through the optical theorem (Eq. (1)) and 
the differential elastic cross section is obtained from the scattering amplitudes of the contributing 
diagrams:

dσ

dt
= 1

16π

∣∣fN(t) + fC(t)eiαφ(t)
∣∣2

. (11)

Here, fN is the purely strongly interacting amplitude, fC is the Coulomb amplitude and a phase 
φ is induced by long-range Coulomb interactions [23,24]. The individual amplitudes are given 
by

fC(t) = −8παh̄c
G2(t)

|t | , (12)

fN(t) = (ρ + i)
σtot

h̄c
e−B|t |/2, (13)

where G is the electric form factor of the proton, B the nuclear slope and ρ = Re(fel)/ Im(fel). 
The expression for the nuclear amplitude fN is an approximation valid at small |t | only. This 
analysis uses the calculation of the Coulomb phase from Ref. [24] with a conventional dipole 
parameterization of the proton electric form factor from Ref. [25]. The theoretical form of the 
t -dependence of the cross section is obtained from the evaluation of the square of the complex 
amplitudes:

dσ

dt
= 4πα2(h̄c)2

|t |2 × G4(t) − σtot × αG2(t)

|t |
[
sin

(
αφ(t)

) + ρ cos
(
αφ(t)

)] × exp
−B|t |

2

+ σ 2
tot

1 + ρ2

2
× exp

(−B|t |), (14)

16π(h̄c)
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where the first term corresponds to the Coulomb interaction, the second to the Coulomb–nuclear 
interference and the last to the hadronic interaction. This parameterization is used to fit the dif-
ferential elastic cross section to extract σtot and B . The inclusion of the Coulomb interaction in 
the fit of the total cross section increases the value of σtot by about 0.6 mb, compared with a fit 
with the nuclear term only.

The value of ρ is extracted from global fits performed by the COMPETE Collaboration 
to lower-energy elastic-scattering data comprising results from a variety of initial states [26,
27]. Systematic uncertainties originating from the choice of model are important and are ad-
dressed e.g. in Ref. [28]. Additionally, the inclusion of different data sets in the fit influences 
the value of ρ, as described in Refs. [29,30]. In this paper the value from Ref. [26] is used 
with a conservative estimate of the systematic uncertainty to account for the model dependence: 
ρ = 0.140 ± 0.008. The theoretical prediction given by Eq. (14) also depends on the Coulomb 
phase φ and the form factor G. Uncertainties in the Coulomb phase are estimated by replac-
ing the simple parameterization from Ref. [24] with alternative calculations from Refs. [25] and 
[31], which both predict a different t -dependence of the phase. Changing this has only a minor 
fractional impact of order 0.01 mb on the cross-section prediction.

The uncertainty on the electric form factor is derived from a comparison of the simple dipole 
parameterization used in this analysis to more sophisticated forms [32], which describe high-
precision low-energy elastic electron–proton data better [33]. Replacing the dipole by other forms 
also has a negligible impact of order 0.01 mb on the total cross-section determination.

Alternative parameterizations of the nuclear amplitude which deviate from the simple expo-
nential t -dependence are discussed in Section 12.3.

4.1. Monte Carlo simulation

Monte Carlo simulated events are used to calculate acceptance and unfolding corrections. 
The generation of elastic-scattering events is performed with PYTHIA8 [34,35] version 8.165, 
in which the t -spectrum is generated according to Eq. (14). The divergence of the incoming 
beams and the vertex spread are set in the simulation according to the measurements described 
in Section 5. After event generation, the elastically scattered protons are transported from the 
interaction point to the RPs, either by means of the transport matrix Eq. (4) or by the polymorphic 
tracking code module for the symplectic thick-lens tracking implemented in the MadX [36] beam 
optics calculation package.

A fast parameterization of the detector response is used for the detector simulation with the 
detector resolution tuned to the measured resolution. The resolution is measured by extrapolating 
tracks reconstructed in the inner stations to the outer stations using beam optics matrix-element 
ratios and comparing predicted positions with measured positions. It is thus a convolution of the 
resolutions in the inner and outer stations. The fast simulation is tuned to reproduce this con-
volved resolution. A full GEANT4 [37,38] simulation is used to set the resolution scale between 
detectors at the inner and outer stations, which cannot be determined from the data. The reso-
lution of the detectors at the outer stations is slightly worse than for the detectors at the inner 
stations as multiple scattering and shower fragments from the latter degrade the performance of 
the former.

Systematic uncertainties from the resolution difference between the detectors at the inner and 
outer stations are assessed by fixing the resolution of the detectors at the inner stations either to 
the value from GEANT4 or to the measurement from the test beam [17,18] and matching the 
resolution at the outer stations to reproduce the measured convolved resolution. The resolution 
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depends slightly on the vertical track position on the detector surface; a further systematic un-
certainty is assessed by replacing the constant resolution by a linear parameterization. The total 
systematic uncertainty on the resolution of about ±10% is dominated by the difference between 
the value from the test-beam measurement and from GEANT4 simulation.

5. Data taking

The data were recorded in a dedicated low-luminosity run using beam optics with a β� of 
90 m; details of the beam optics settings can be found in Refs. [21,22]. The duration of this 
run was four hours. For elastic-scattering events, the main pair of colliding bunches was used, 
which contained around 7 × 1010 protons per bunch. Several pairs of pilot bunches with lower 
intensity and unpaired bunches were used for the studies of systematic uncertainties. The rates 
of the head-on collisions were maximized using measurements from online luminosity monitors. 
The run used for data analysis was preceded by a run with identical beam optics to align the RPs.

5.1. Beam-based alignment

Very precise positioning of the RPs is mandatory to achieve the desired precision on the 
position measurement of 20–30 µm in both the horizontal and vertical dimensions. The first step 
is a beam-based alignment procedure to determine the position of the RPs with respect to the 
proton beams. One at a time, the eight pots are moved into the beam, ultimately by steps of 10 µm 
only, until the LHC beam-loss monitors give a signal well above threshold. The beam-based 
alignment procedure was performed in a dedicated fill with identical beam settings just before 
the data-taking run. The vertical positions of the beam envelopes were determined at each station 
by scraping the beam with the upper and lower RPs in turn.

From the positions of the upper and the lower RP windows with respect to the beam edges, 
the centre of the beam as well as the distance between the upper and lower pots were computed. 
For the two stations on side C the centres were off zero by typically 0.5–0.6 mm; for side A both 
were off by about −0.2 mm. On each side, the distances between the upper and the lower pots 
were measured to be 8.7 mm for the station nearer to the interaction point and 7.8 mm for the far 
one. This difference corresponds to the change in the nominal vertical beam widths (σy) between 
the two stations.

The data were collected with the pots at 6.5 × σy from the beam centre, the closest possible 
distance with reasonable background rates. With a value of the nominal vertical beam spread, σy , 
of 897 µm (856 µm) for the inner (outer) stations, the 6.5 × σy positions correspond to a typical 
distance of 5.83 mm (5.56 mm) from the beam line in the LHC reference frame.

5.2. Beam characteristics: stability and emittance

Beam position monitors, regularly distributed along the beam line between the interaction 
point and the RPs, were used to survey the horizontal and vertical positions of the beams. The 
variations in position throughout the duration of the data taking were of the order of 10 µm in 
both directions, which is equal to the precision of the measurement itself.

The vertical and horizontal beam emittances εy and εx , expressed in µm, are used in the 
simulation to track a scattered proton going from the interaction point to the RPs and therefore 
to determine the acceptance. These were measured at regular intervals during the fill using a 
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Fig. 3. Hit pattern of a proton trajectory in the ten fibre layers comprising the u coordinate. The superposition of fibre hits 
attributed to a track is shown in the histogram. The position of maximum overlap is used to determine the track position.

wire-scan method [39] and monitored bunch-by-bunch throughout the run using two beam syn-
chrotron radiation monitor systems; the latter were calibrated to the wire-scan measurements at 
the start of the run. The emittances varied smoothly from 2.2 µm to 3.0 µm (3.2 µm to 4.2 µm) 
for beam 1 (beam 2) in the horizontal plane and from 1.9 µm to 2.2 µm (2.0 µm to 2.2 µm) for 
beam 1 (beam 2) in the vertical plane. The systematic uncertainty on the emittance is about 10%. 
A luminosity-weighted average emittance is used in the simulation, resulting in an angular beam 
divergence of about 3 µrad.

5.3. Trigger conditions

To trigger on elastic-scattering events, two main triggers were used. The triggers required a 
coincidence of the main detector trigger scintillators between either of the two upper (lower) 
detectors on side A and either of the two lower (upper) detectors on side C. The elastic-scattering 
rate was typically 50 Hz in each arm. The trigger efficiency for elastic-scattering events was 
determined from a data stream in which all events with a hit in any one of the ALFA trigger 
counters were recorded. In the geometrical acceptance of the detectors, the efficiency of the 
trigger used to record elastic-scattering events is 99.96 ± 0.01%.

6. Track reconstruction and alignment

6.1. Track reconstruction

The reconstruction of elastic-scattering events is based on local tracks of the proton trajectory 
in the RP stations. A well-reconstructed elastic-scattering event consists of local tracks in all four 
RP stations.

The local tracks in the MDs are reconstructed from the hit pattern of protons traversing the 
scintillating fibre layers. In each MD, 20 layers of scintillating fibres are arranged perpendicular 
to the beam direction. The hit pattern of elastically scattered protons is characterized by a straight 
trajectory, almost parallel to the beam direction. In elastic events the average multiplicity per 
detector is about 23 hits, where typically 18–19 are attributed to the proton trajectory while the 
remaining 4–5 hits are due to beam-related background, cross-talk and electronic noise.

The reconstruction assumes that the protons pass through the fibre detector perpendicularly. 
A small angle below 1 mrad with respect to the beam direction has no sizeable impact. The 
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first step of the reconstruction is to determine the u and v coordinates from the two sets of ten 
layers which have the same orientation. The best estimate of the track position is given by the 
overlap region of the fiducial areas of all hit fibres. As illustrated in Fig. 3, the staggering of the 
fibres narrows the overlap region and thereby improves the resolution. The centre of the overlap 
region gives the u or v coordinate, while the width determines the resolution. Pairs of u and v
coordinates are transformed to spatial positions in the beam coordinate system.

To exclude events with hadronic showers and layers with a high noise level, fibre layers with 
more than ten hits are not used in track reconstruction. At least three layers out of the possible 
ten are required to have a hit multiplicity between one and three. Finally, the u and v coordinates 
accepted for spatial positions must be formed from at least three overlapping hit fibres.

If more than one particle passes through the detector in a single event, the orthogonal fibre 
geometry does not allow a unique formation of tracks. In elastic-scattering events, multiple tracks 
can originate from associated halo or shower particles as well as the overlap of two events. The 
first type of multiple tracks happens mostly at one side of the spectrometer arms and can be 
removed by track-matching with the opposite side. In the case of elastic pile-up, where multiple 
tracks are reconstructed in both arms, only the candidate with the best track-matching is accepted. 
The fraction of genuine pile-up is about 0.1% and is corrected by a global factor as described 
in Section 7.1.

The reconstruction of tracks in the ODs is based on the same method as described here for the 
MDs, but with reduced precision since only three fibre layers are available.

6.2. Alignment

The precise positions of the tracking detectors with respect to the circulating beams are crucial 
inputs for the reconstruction of the proton kinematics. For physics analysis, the detector positions 
are directly determined from the elastic-scattering data.

The alignment procedure is based on the distribution of track positions in the RP stations in 
the full elastic-scattering event sample. This distribution forms a narrow ellipse with its major 
axis in the vertical (y) direction, with an aperture gap between the upper and lower detectors. 
The measured distances between upper and lower MDs and the rotation symmetry of scattering 
angles are used as additional constraints.

Three parameters are necessary to align each MD: the horizontal and vertical positions and 
the rotation angle around the beam axis. A possible detector rotation around the horizontal or 
vertical axes can be of the order of a few mrad, as deduced from survey measurements and the 
alignment corrections for rotations around the beam axis. Such tiny deviations from the nominal 
angles result in small offsets which are effectively absorbed in the three alignment parameters.

The horizontal detector positions and the rotation angles are determined from a fit of a straight 
line to a profile histogram of the narrow track patterns in the upper and lower MDs. The uncer-
tainties are 1–2 µm for the horizontal coordinate and 0.5 mrad for the angles.

For the vertical detector positioning, the essential input is the distance between the upper and 
lower MDs. Halo particles which pass the upper and lower ODs at the same time are used for 
this purpose. Combining the two y-coordinates allows this distance to be determined. Many halo 
events are used to improve the precision of the distance value by averaging over large samples. 
The associated systematic uncertainty in the distance value is derived from variations of the 
requirements on hit and track multiplicities in the ODs. The measured distances between the 
upper and lower MDs for the nominal position at 6.5 ×σy and related errors are shown in Table 1. 
The main contributions to the uncertainty on the distance are due to uncertainties in the fibre 
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Table 1
The distance between the upper and lower MDs and related vertical detector positions. The coordinates ymeas refer to 
the individual alignment per station while the coordinates yref are derived by extrapolation using beam optics from the 
detector positions in the reference station A7L1. The quoted errors include statistical and systematic contributions.

Detector Station Distance [mm] ymeas [mm] yref [mm]

A1 B7L1 11.962 ± 0.081 5.981 ± 0.093 5.934 ± 0.076
A2 11.962 ± 0.081 −5.981 ± 0.093 −5.942 ± 0.076
A3 A7L1 12.428 ± 0.022 6.255 ± 0.079 6.255 ± 0.078
A4 12.428 ± 0.022 −6.173 ± 0.079 −6.173 ± 0.080
A5 A7R1 12.383 ± 0.018 6.080 ± 0.078 6.036 ± 0.088
A6 12.383 ± 0.018 −6.304 ± 0.078 −6.273 ± 0.087
A7 B7R1 11.810 ± 0.031 5.765 ± 0.077 5.820 ± 0.083
A8 11.810 ± 0.031 −6.045 ± 0.077 −6.120 ± 0.084

positions and the relative alignment of the ODs with respect to the MDs, both typically 10 µm. 
The most precise distance values, with uncertainties of about 20 µm, are achieved for the two 
inner stations A7L1 and A7R1. The values for the outer stations are degraded by shower particles 
from interactions in the inner stations. The large error on the distance in station B7L1 is due to a 
detector which was not calibrated in a test beam.

The absolute vertical detector positions with respect to the beam are determined using the 
criterion of equal track densities in the upper and lower MDs at identical distances from the 
beam. The reconstruction efficiency in each spectrometer arm, as documented in Section 7.3, is 
taken into account. A sliding window technique is applied to find the positions with equal track 
densities. The resulting values ymeas are summarized in Table 1. The typical position error is 
about 80 µm, dominated by the uncertainties on the reconstruction efficiency.

For the physics analysis, all vertical detector positions are derived from the detector posi-
tions in a single reference station by means of the beam optics. The measured lever arm ratios 
MX

12/M
A7L1
12 , with X labelling any other station, are used for the extrapolation from the reference 

station to the other stations. As a reference the detector positions ymeas of the inner station A7L1 
with a small distance error were chosen. The resulting detector positions yref are also given in 
Table 1. Selecting the other inner station A7R1 as a reference indicates that the systematic un-
certainty due to the choice of station is about 20 µm, which is well covered by the total position 
error.

7. Data analysis

7.1. Event selection

All data used in this analysis were recorded in a single run and only events resulting from 
collisions of the bunch pair with about 7 × 1010 protons per bunch were selected; events from 
pilot bunches were discarded. Furthermore, only periods of the data taking where the dead-time 
fraction was below 5% are used. This requirement eliminates a few minutes of the run. The 
average dead-time fraction was 0.3% for the selected data.

Events are required to pass the trigger conditions for elastic-scattering events, and have a 
reconstructed track in all four detectors of the arm which fired the trigger. Events with additional 
tracks in detectors of the other arm arise from the overlap of halo protons with elastic-scattering 
protons and are retained. In the case of an overlap of halo and elastic-scattering protons in the 
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Fig. 4. The correlation of the y coordinate measured at the A- and C-side for the inner stations. Elastic-scattering can-
didates after data quality, trigger and bunch selection but before acceptance and background rejection cuts are shown. 
Identified elastic events are required to lie between the red lines. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

same detectors, which happens typically only on one side, a matching procedure between the 
detectors on each side is applied to identify the elastic-scattering track.

Further geometrical cuts on the left-right acollinearity are applied, exploiting the back-to-back 
topology of elastic-scattering events. The position difference between the left and the right sides 
is required to be within 3.5σ of its resolution determined from simulation, as shown in Fig. 4
for the vertical coordinate. An efficient cut against non-elastic background is obtained from the 
correlation of the local angle between two stations and the position in the horizontal plane, as 
shown in Fig. 5, where elastic-scattering events appear inside a narrow ellipse with positive slope, 
whereas beam-halo background is concentrated in a broad ellipse with negative slope or in an 
uncorrelated band.

Finally, fiducial cuts to ensure a good containment inside the detection area are applied to 
the vertical coordinate. It is required to be at least 60 µm from the edge of the detector nearer 
the beam, where the full detection efficiency is reached. At large vertical distance, the vertical 
coordinate must be at least 1 mm away from the shadow of the beam screen, a protection element 
of the quadrupoles, in order to minimize the impact from showers generated in the beam screen.

The numbers of events in the two arms after each selection criterion are given in Table 2. 
At the end of the selection procedure 805 428 events survive all cuts. A small asymmetry is ob-
served between the two arms, which arises from the detectors being at different vertical distances, 
asymmetric beam-screen positions and background distributions. A small number of elastic pile-
up events corresponding to a 0.1% fraction is observed, where two elastic events from the same 
bunch crossing are reconstructed in two different arms. Elastic pile-up events can also occur with 
two protons in the same detectors; in this case only one event is counted as described in Sec-
tion 6.1. A correction is applied for the pile-up events appearing in the same arms, by scaling the 
pile-up events in different arms by a factor of two.

7.2. Background determination

A small fraction of the background is expected to be inside the area defined by the ellip-
tical contour used to reject background shown in Fig. 5. The background events peak at small 
values of x and y and thus constitute an irreducible background at small |t |. The background pre-
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Fig. 5. The correlation between the horizontal coordinate, x, and the local horizontal angle, θx , on the A-side. Elastic-
scattering candidates after data quality, trigger and bunch selection but before acceptance and background rejection cuts 
are shown. Identified elastic events are required to lie inside the red ellipse.

Table 2
Numbers of events after each stage of the selection. The fractions of events surviving the event-selection criterion with 
respect to the total number of reconstructed events are shown for each criterion. The last row gives the number of observed 
pile-up events.

Selection criterion Numbers of events

Raw number of events 6 620 953
Bunch group selection 1 898 901
Data quality selection 1 822 128
Trigger selection 1 106 855

Arm 1 fraction Arm 2 fraction
Reconstructed tracks 459 229 428 213
Cut on x left vs right 445 262 97.0% 418 142 97.6%
Cut on y left vs right 439 887 95.8% 414 421 96.8%
Cut on x vs θx 434 073 94.5% 410 558 95.9%
Beam-screen cut 419 890 91.4% 393 320 91.9%
Edge cut 415 965 90.6% 389 463 91.0%

Total selected 805 428
Elastic pile-up 1060

dominantly originates from accidental coincidences of beam-halo particles, but single diffractive 
protons in coincidence with a halo proton at the opposite side may also contribute.

While elastic-scattering events are selected in the “golden” topology with two tracks in oppo-
site vertical detector positions on the left and right side, events in the “anti-golden” topology with 
two tracks in both upper or both lower detectors at the left and right side are pure background 
from accidental coincidences. After applying the event selection cuts, these events yield an esti-
mate of background in the elastic sample with the golden topology. Furthermore, the anti-golden 
events can be used to calculate the form of the t -spectrum for background events by flipping the 
sign of the vertical coordinate on either side. As shown in Fig. 6, the background t -spectrum 
peaks strongly at small t and falls off steeply, distinguishably different from the distribution 
obtained for elastic events.
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Fig. 6. The counting rate dN/dt , before corrections, as a function of t in arm 1 compared to the background spectrum 
determined using anti-golden events. The form of the distribution is modified by acceptance effects (see Fig. 9).

Table 3
Number of background events in each arm estimated with the anti-golden method 
and systematic uncertainties from the difference from the vertex method. The 
arm ++ comprises all four upper detectors, the arm −− all four lower detectors.

Arm ++ Arm −−
Numbers of background events 3329 1497
Statistical error ±58 ±39
Systematic error ±1100 ±1200

Alternatively, the amount of background per arm is determined from the distribution of the 
horizontal vertex position at the interaction point, reconstructed using the beam optics transport 
Eq. (4). For elastic scattering, the vertex position peaks at small values of x, whereas for back-
ground the shape is much broader since halo background does not originate from the interaction 
point. Hence the fraction of background events can be determined from a fit to the measured 
distribution using templates.

The anti-golden method is used to estimate the background. Systematic uncertainties in the 
normalization are taken from the difference between the anti-golden method and the vertex 
method, while the background shape uncertainty is obtained from variations of the flipping pro-
cedure used to transform the anti-golden events into elastic-like events. The expected numbers of 
background events are given in Table 3 together with their uncertainties. The total uncertainty on 
the background is dominated by the systematic uncertainty of 50–80%. Given the overall small 
background contamination of about 0.5%, the large systematic uncertainty has only a small im-
pact on the total cross-section determination.

7.3. Event reconstruction efficiency

Elastic-scattering events inside the acceptance region are expected to have a proton track 
in each of the four detectors of the corresponding spectrometer arm. However, in the case of 
interactions of the protons or halo particles with the stations or detectors, which result in too 
large fibre hit multiplicities, the track reconstruction described in Section 6.1 may fail. The rate 
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of elastic-scattering events has to be corrected for losses due to such partly reconstructed events. 
This correction is defined as the event reconstruction efficiency.

A method based on a tag-and-probe approach is used to estimate the efficiency. Events are 
grouped into several reconstruction cases, for which different selection criteria and corrections 
are applied, to determine if an event is from elastically scattered protons, but was not fully re-
constructed because of inefficiencies.

The reconstruction efficiency of elastic-scattering events is defined as εrec = Nreco/(Nreco +
Nfail), where Nreco is the number of fully reconstructed elastic-scattering events, which have at 
least one reconstructed track in each of the four detectors of an spectrometer arm, and Nfail is 
the number of not fully reconstructed elastic-scattering events which have reconstructed tracks 
in fewer than four detectors. It does not include the efficiency of other selection cuts, which 
is discussed in Section 8, and is separate from any acceptance effects. Events of both classes 
need to have an elastic-scattering trigger signal and need to be inside the acceptance region, 
i.e. they have to fulfill the event selection criteria for elastic-scattering events. The efficiency is 
determined separately for the two spectrometer arms. Based on the number of detectors with at 
least one reconstructed track the events are grouped into six reconstruction cases 4/4, 3/4, 2/4, 
(1 + 1)/4, 1/4 and 0/4. Here the digit in front of the slash indicates the number of detectors with 
at least one reconstructed track. In the 2/4 case both detectors with tracks are on one side of the 
interaction point and in the (1 + 1)/4 case they are on different sides. With this definition one 
can write

εrec = Nreco

Nreco + Nfail
= N4/4

N4/4 + N3/4 + N2/4 + N(1+1)/4 + N1/4 + N0/4
, (15)

where Nk/4 is the number of events with k detectors with at least one reconstructed track in a 
spectrometer arm. The event counts Nk/4 need to be corrected for background, which is described 
in the following.

Elastic-scattering events are selected for the various cases based on the event selection criteria 
described in Section 7.1. The proton with reconstructed tracks on one side of the interaction 
point is used as a tag and the one on the other side as a probe. Both tag and probe have to pass 
the event selection to be counted as an elastic-scattering event and to be classified as one of 
the reconstruction cases. Depending on the case, only a sub-set of the event selection criteria 
can be used, because just a limited number of detectors with reconstructed tracks is available. 
For example it is not possible to check for left-right acollinearity of 2/4 events, because tracks 
are only reconstructed on one side of the interaction point. To disentangle the efficiency from 
acceptance, the total fibre hit multiplicity (sum of all fibre hits in the 20 layers of a detector; 
maximum is 1280 hits) in all detectors without any reconstructed track has to have a minimum 
value of six. In this way, events where tracks could not be reconstructed due to too few fibre 
hits are excluded from the efficiency calculation and only handled by the acceptance, which is 
discussed in Section 8.

With events from the 3/4 case it is possible to apply most of the event selection criteria 
and reconstruct t well with the subtraction method. The position distribution of reconstructed 
tracks in 3/4 events agrees very well with that from 4/4 events, as shown in Fig. 7 for the 
vertical coordinate. Because of this good agreement and the ability to reconstruct t , a partial 
event reconstruction efficiency ε̂rec(t) = N4/4(t)/[N4/4(t) + N3/4(t)] as a function of t can be 
constructed, as shown in Fig. 8. Linear fits, applied to the partial efficiencies of each spectrometer 
arm, yield small residual slopes consistent with zero within uncertainties. This confirms that 
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Fig. 7. Distribution of the vertical track position at the detector surface for detector A3 of the 2/4 case (•) where no track 
was reconstructed in A6 and A8, the 3/4 case (◦) where no track was reconstructed in A8 and of the 4/4 case (�). The 
distributions are normalized to the number of events in the 4/4 case. The bottom panel displays ratios between k/4 and 
4/4 with statistical uncertainties.

Fig. 8. Partial event reconstruction efficiency ε̂rec as a function of −t for elastic arms 1 (•) and 2 (◦). The solid line is a 
linear fit to arm 1 and the dashed one to arm 2.

the efficiency εrec in Eq. (15) is independent of t , as is expected from the uniform material 
distribution in the detector volume.

Two complications arise when counting 2/4 events. First, the vertical position distributions 
of the two detectors with reconstructed tracks do not agree with that from 4/4 events. As shown 
in Fig. 7 for A3, peaks appear at both edges of the distribution. These peaks are caused by 
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events where protons hit the beam screen or thin RP window on one side of the interaction 
point and tracks are therefore only reconstructed on the other side. Since these events would be 
excluded by acceptance cuts, they are removed from the efficiency calculation. This is achieved 
by extrapolating the vertical position distribution from the central region without the peaks to the 
full region using the shape of the distribution from 4/4 events.

The second complication arises from single-diffraction background, which has a similar event 
topology to the 2/4 events. This background is reduced by elastic-scattering trigger conditions, 
but an irreducible component remains. Therefore, the fraction of elastic-scattering events is deter-
mined with a fit, which uses two templates to fit the horizontal position distributions. Templates 
for elastic-scattering events and a combination of single diffraction and other backgrounds are 
both determined from data. For the elastic-scattering template, events are selected as described 
in Section 7.1. Events for the background template are selected based on various trigger sig-
nals that enhance the background and reduce the elastic-scattering contribution. The fit yields an 
elastic-scattering fraction in the range of rel = 0.88 to 0.96, depending on the detector.

Because about 95% of Nfail consists of 3/4 and 2/4 events, the other cases play only a mi-
nor role. For cases (1 + 1)/4 and 1/4 an additional event selection criterion on the horizontal 
position distribution is applied to enhance the contribution from elastic scattering and suppress 
background. Edge peaks are present in the y-position distributions of 1/4 events, and the ex-
trapolation procedure, described above, is also applied. In the 0/4 case no track is reconstructed 
in any detector and the event selection criteria cannot be applied. Therefore, the number of 0/4
events is estimated from the probability to get a 2/4 event, which is determined from the ratio 
of the number of 2/4 to the number of 4/4 events. The contribution to Nfail of this estimated 
number of 0/4 events is only about 1%.

The systematic uncertainties on the reconstruction efficiency are determined by varying the 
event selection criteria. Additional uncertainties arise from the choice of central extrapolation 
region in y for 2/4 and 1/4 events and from the fraction fit. The uncertainties on the fraction fit 
are also determined by selection criteria variation and an additional uncertainty is attributed to 
the choice of background template.

The event reconstruction efficiencies in arm 1 and arm 2 are determined to be εrec,1 =
0.8974 ± 0.0004 (stat.) ± 0.0061 (syst.) and εrec,2 = 0.8800 ± 0.0005 (stat.) ± 0.0092 (syst.) re-
spectively. The efficiency in arm 1 is slightly larger than in arm 2, due to differences in the 
detector configurations. In arm 1 the trigger plates are positioned after the scintillating tracking 
fibres and in arm 2 they are positioned in front of them. This orientation leads to a higher shower 
probability and a lower efficiency in arm 2.

8. Acceptance and unfolding

The acceptance is defined as the ratio of events passing all geometrical and fiducial acceptance 
cuts defined in Section 7.1 to all generated events and is calculated as a function of t . The cal-
culation is carried out with PYTHIA8 as elastic-scattering event generator and MadX for beam 
transport based on the effective optics (see Section 9.2). The acceptance is shown in Fig. 9 for 
each arm.

The shape of the acceptance curve can be understood from the contributions of the vertical and 
horizontal scattering angles to t , −t = ((θ�

x )2 + (θ�
y )2)p2. The smallest accessible value of t is 

obtained at the detector edge and set by the vertical distance of the detector from the beam. Close 
to the edge, the acceptance is small because a fraction of the events is lost due to beam divergence, 
i.e. events being inside the acceptance on one side but outside at the other side. At small |t | up 
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Fig. 9. The acceptance as a function of the true value of t for each arm with total uncertainties shown as error bars. 
The lower panels show relative total and statistical uncertainties.

to −t ∼ 0.07 GeV2 vertical and horizontal scattering angles contribute about equally to a given 
value of t . Larger t -values imply larger vertical scattering angles and larger values of y, and with 
increasing y the fraction of events lost in the gap between the main detectors decreases. The 
maximum acceptance is reached for events occurring at the largest possible values of y within 
the beam-screen cut. Beyond that point the acceptance decreases steadily because the events are 
required to have larger values of x since these t -values are dominated by the horizontal scattering 
angle component. This also explains the difference between the two arms, which is dominated 
by the difference between the respective beam-screen cuts.

The measured t -spectrum is affected by detector resolution and beam smearing effects, in-
cluding angular divergence, vertex smearing and energy smearing. These effects are visible in 
the t -resolution and the purity of the t -spectrum. The purity is defined as the ratio of the number 
of events generated and reconstructed in a particular bin to the total number of events recon-
structed in that bin. The purity is about 60% for the subtraction method, and is about a factor 
of two worse for the local angle method. The limited t -resolution induces migration effects be-
tween bins, which reduces the purity. Fig. 10 shows the t -resolution for different t -reconstruction 
methods.

The resolution for the subtraction method improves from 12% at small |t | to 3% at large |t |
and is about a factor three to four better than the other methods. The t -resolution differences 
arise because of differences in the spatial and angular resolution of the various reconstruction 
methods. The subtraction method is superior to the others because only the spatial resolution 
contributes, whereas the poor angular resolution in the horizontal plane degrades the resolution 
of the other methods.
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Fig. 10. The relative resolution RMS((t − trec)/t), where trec is the reconstructed value of t , for different reconstruction 
methods. The resolution for local subtraction is not shown as it is practically the same as for the lattice method. The dotted 
line shows the resolution without detector resolution, accounting only for beam effects. It is the same for all methods.

The measured t -spectrum in each arm, after background subtraction, is corrected for migration 
effects using an iterative, dynamically stabilized unfolding method [40]. Monte Carlo simulation 
is used to obtain the migration matrix used in the unfolding. The results are cross-checked using 
an unfolding based on the singular value decomposition method [41]. The unfolding procedure 
is applied to the distribution obtained using all selected events, after background subtraction in 
each elastic arm.

A data-driven closure test is used to evaluate any bias in the unfolded data spectrum shape 
due to mis-modelling of the reconstruction-level spectrum shape in the simulation. The simula-
tion is reweighted at particle level such that the reconstructed simulation matches the data. The 
modified reconstruction-level simulation is unfolded using the original migration matrix, and the 
result is compared with the modified particle-level spectrum. The resulting bias is considered 
as a systematic uncertainty. An additional closure test, based on Monte Carlo simulation, was 
performed with independent Monte Carlo samples with a different physics model with different 
nuclear slopes.

Further systematic uncertainties are related to the simulation of the detector resolution and 
beam conditions, as discussed in Section 11. The systematic shifts are smaller than 0.5% in the 
|t |-range below 0.2 GeV2 and increase up to 3% at large |t | for all methods of t -reconstruction.

The unfolding method introduces correlations between bins of the t -spectrum. These correla-
tions are calculated using simulated pseudo-experiments with the same number of events as the 
data. The resulting statistical covariance matrix is included in the fits for the total cross section.

9. Beam optics

The precision of the t -reconstruction depends on knowledge of the elements of the transport 
matrix. From the design of the 90 m beam optics along with the alignment parameters of the 
magnets, the magnet currents and the field calibrations, all transport matrix elements can be 
calculated. This initial set of matrix elements is referred to as “design optics”. Small corrections, 
allowed within the range of the systematic uncertainties, need to be applied to the design optics 
for the measurement of σtot. In particular, corrections are needed in the horizontal plane where the 
phase advance is close to 180◦, because the lever arm M12 = √

β × β� sinΨ is rather sensitive 
to the value of Ψ .
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Constraints on beam optics parameters are derived from the ALFA data, exploiting the fact 
that the reconstructed scattering angle must be the same for different reconstruction methods 
using different transport matrix elements. The beam optics parameters are determined from a 
global fit, using these constraints, with the design optics as a starting value.

9.1. ALFA constraints

The reconstructed tracks from elastic collisions can be used to derive certain constraints on 
the beam optics directly from the data. Two classes of constraints are distinguished:

• Correlations between positions or angles measured either at the A-side and C-side or at inner 
and outer stations of ALFA. These are used to infer the ratio of matrix elements in the beam 
transport matrix. The resulting constraints are independent of any optics input.

• Correlations between the reconstructed scattering angles. These are calculated using differ-
ent methods to derive further constraints on matrix elements as scaling factors. These factors 
indicate the amount of scaling needed for a given matrix element ratio in order to equal-
ize the measurement of the scattering angle. These constraints depend on the given optics 
model. The design beam optics with quadrupole currents measured during the run is used as 
reference to calculate the constraints.

With parallel-to-point focusing the measured position at the RP is to a first approximation related 
to the scattering angle by w = M12,w × θ�

w , w ∈ {x, y}, up to a small contribution from the vertex 
term in M11 in the horizontal plane. The ratio of A-side to the C-side track positions is thus on 
average equal to the ratio of the lever arms MA

12/M
C
12, because the scattering angle at the A-side 

is the same as at the C-side for elastic scattering, up to beam divergence effects. In a similar 
way, the ratio of the M22 matrix elements is obtained from the correlation between the angles 
measured in the two stations on one side. In the vertical plane the ratio of M12 between the 
inner and outer station is also measured, whereas in the horizontal plane the correlation between 
positions cannot be translated into a measurement of the M12 ratio because of the contribution 
from the vertex term in M11, which is different for the inner and outer detectors.

The second class of constraints is derived from the assumption that the reconstructed scat-
tering angle must be the same for different methods for a consistent beam optics model. The 
best example is the comparison of the scattering angle in the horizontal plane reconstructed with 
the subtraction method, Eq. (5), which is based on the position and M12,x , and the local angle 
method, Eq. (6), which is based on the local angle and M22,x . The scaling factor for the matrix 
element ratio M12/M22 is derived from the slope of the difference of the scattering angle between 
the two methods as a function of the scattering angle determined with the subtraction method, as 
shown in Fig. 11. Here the slope of about 5% indicates that the design optics ratio M12,x/M22,x

needs to be increased by 5% in order to obtain from the data, on average, the same scattering 
angle from both methods. As discussed in Section 9.2 such an increase in the ratio is compatible 
with realistic deviations of the quadrupole strengths from nominal. Constraints of this type are 
obtained for inner and outer detectors in both the vertical and horizontal planes independently.

Finally, a constraint on the ratio of the M12 matrix element in the vertical plane to that in 
the horizontal plane is derived from the isotropy of the scattering angle in the transverse plane. 
Here 2D-patterns of the horizontal and vertical scattering angle components reconstructed with 
the subtraction method are analyzed by selecting regions with approximately constant density, 
which appear as sections of a circle in the case of perfect optics. A scaling factor for M12,y/M12,x
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Fig. 11. The difference in reconstructed scattering angle �θ�
x between the subtraction and local angle methods as a 

function of the scattering angle from subtraction method for the inner detectors. In each bin of the scattering angle the 
points show the mean value of �θ�

x and the error bar represents the RMS. The line represents the result of a linear fit. 
Values obtained using the effective optics (see Section 9.2) are also shown for comparison.

Table 4
Summary of the ALFA constraints on beam optics with uncertainties. The first group of constraints are for transport 
matrix element ratios, the second group comprises scaling factors for matrix element ratios with respect to design optics. 
B1 and B2 represent beam 1 and beam 2.

Constraint Value Stat. Syst. Total

M12,x (237 m)B2/B1 1.0063 0.0015 0.0041 0.0044
M12,x (241 m)B2/B1 1.0034 0.0010 0.0041 0.0042
M22,xB2/B1 0.9932 0.0007 0.0041 0.0042
M12,y (237 m)B2/B1 0.9951 0.0001 0.0026 0.0026
M12,y (241 m)B2/B1 0.9972 0.0001 0.0026 0.0026
M12,y237/241B2 1.0491 0.0001 0.0007 0.0008
M12,y237/241B1 1.0481 0.0001 0.0007 0.0008
M22,yB2/B1 0.9830 0.0002 0.0180 0.0180

R(M12,x/M22,x )(237 m) 1.0551 0.0003 0.0022 0.0023
R(M12,x/M22,x )(241 m) 1.0453 0.0002 0.0013 0.0014
R(M12,y/M22,y )(237 m) 1.0045 0.0001 0.0061 0.0061
R(M12,y/M22,y )(241 m) 1.0046 0.0001 0.0065 0.0065
R(M12,y/M12,x )(237 m) 0.9736 0.0052 0.0104 0.0116
R(M12,y/M12,x )(241 m) 0.9886 0.0057 0.0072 0.0092

is inferred from a fit of an ellipse to these patterns, and the ratio of matrix elements is taken from 
the ratio of the major to minor axis of the ellipse. All ALFA constraints on the beam optics are 
summarized in Table 4.

Systematic uncertainties are obtained from several variations of the analysis and dominate the 
precision of the constraints. An important uncertainty is deduced from the difference between the 
constraints for the two arms, i.e. the difference between the upper and lower detectors for which 
the optics must be the same. A variation of the selection cuts is used to probe the possible influ-
ence of background. All constraints are obtained from fits and a variation of the fit range allows 
potential biases related to acceptance effects to be tested. All alignment parameters are varied 
within their systematic uncertainties and the constraint analysis repeated. The observed maxi-
mum change in each constraint is taken as the corresponding systematic uncertainty. The limited 
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Fig. 12. Pulls from the beam optics fit to the ALFA constraints which are given in Table 4.

detector resolution induces in the scaling factors a small bias of about 0.5% even with perfect 
optics. This is estimated with simulation and subtracted. This correction depends on the physics 
model and detector resolution used in the simulation. The simulation was repeated with a varia-
tion of the nuclear slope B = 19.5 ± 1.0 GeV−2 and separately with a variation of the detector 
resolution according to the procedure outlined in Section 4.1. In both cases the maximum change 
of the constraints with the alternative bias corrections is taken as a systematic uncertainty. For 
some of the constraints with a similar type of uncertainty the systematic errors are averaged to 
suppress statistical fluctuations.

9.2. Beam optics fit

The constraints described in the previous section are combined in a fit used to determine the 
beam optics. The free parameters of the fit are the quadrupole strengths in both beams. All ALFA 
constraints are treated as uncorrelated. The effect of the longitudinal quadrupole position is negli-
gible when varied by its uncertainty, though this is considered in the total systematic uncertainties 
(see Section 11.1). In the minimization procedure, the beam optics calculation program MadX is 
used to extract the optics parameters and to calculate the matrix element ratios for a given set of 
magnet strengths.

The ALFA detection system provides precise constraints on the matrix element ratios, but 
cannot probe the deviation of single magnets. Therefore several sets of optics parameters exist 
that minimize the χ2, arising from different combinations of magnet strengths. The chosen con-
figuration, called the effective optics, is one solution among many. This solution is obtained by 
allowing only the inner triplet magnets Q1 and Q3 to vary coherently from their nominal strength. 
Q1 and Q3 were manufactured at a different site from the other quadrupoles, and relative cali-
bration differences are possible. Other alternatives are taken into account in the total systematic 
uncertainties (see Section 11.1).

Fig. 12 shows the pull of the ALFA constraints after the minimization, which resulted in an 
offset of approximately 0.3% for the strength of Q1 and Q3, with a difference of about 10% be-
tween the two beams. The χ2 of the fit includes the systematic uncertainties of the constraints and 
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is of good quality with χ2/Ndof = 13.2/12. No measurement deviates from the fit by more than 
about two standard deviations; the largest deviation is observed for the high-precision constraint 
on M12 in the vertical plane. This solution was cross-checked using the LHC measurements of 
the phase advance. This effective optics is used for the total cross-section measurement.

10. Luminosity determination

In normal running conditions at high luminosity (L > 1033 cm−2 s−1), ATLAS exploits sev-
eral detectors and algorithms to determine the luminosity and evaluate the related systematic 
uncertainty. These include LUCID (luminosity measurement with a Cherenkov integrating detec-
tor), BCM (beam conditions monitor) and the inner detector, for the bunch-by-bunch luminosity 
determination, and the tile and forward calorimeters, for bunch-integrated luminosity measure-
ments. Details of the ATLAS luminosity measurement can be found in Ref. [42], which includes 
a description of all the detectors and algorithms, the calibration procedure, the background eval-
uation and subtraction and the estimation of the systematic uncertainties.

The conditions in the low-luminosity run analyzed here are very different from those in 
high-luminosity runs. The instantaneous luminosity is about six orders of magnitude lower 
(L ∼ 5 × 1027 cm−2 s−1) which makes the calorimeter methods unusable due to the lack of 
sensitivity. An additional method based on vertex counting in the inner detector (ID) was in-
cluded; this method is most effective at low pile-up. Another difference with respect to the normal 
high-luminosity conditions is the background composition: the beam–gas contribution, normally 
negligible, can become competitive with the collision rate in the low-luminosity regime. The 
background due to slowly decaying, collision-induced radiation (often called “afterglow” [42]) 
becomes conversely less important, because of the presence of only a few colliding bunches.

In the 2011 data taking, the BCM was used as the baseline detector for the luminosity determi-
nation. It consists of four independent detectors grouped into two sets of two, vertical (BCMV) 
and horizontal (BCMH), located on each side of the interaction point and made of diamond sen-
sors. For the high-β� run, an inclusive-OR of the two sides was used to define an event with 
activity in the detector. The luminosity is determined with the event-counting method based on 
this definition (BCMV_EventOR, BCMH_EventOR). LUCID is also located on both sides of 
the interaction point and detects charged particles produced in the forward direction by collect-
ing, with photomultipliers, the Cherenkov light produced. It measures luminosity with the same 
definition as used for BCM (LUCID_EventOR), with the addition of an event-counting algo-
rithm, requiring a coincidence between the two sides (LUCID_EventAND), and a hit-counting 
algorithm (LUCID_HitOR), in which the number of photomultipliers providing a signal above 
threshold is counted. A third method for measuring the per-bunch luminosity is provided by the 
inner detector. This method counts the number of primary vertices per event, which is propor-
tional to the luminosity. The vertex selection criteria required a minimum of five good-quality 
tracks with transverse momentum larger than 400 MeV, forming a common vertex [42]. As about 
12% of the high-β� run data were acquired when the high voltage of the ID was lowered for 
detector-protection reasons, the vertex-based algorithm is not available for that part of the run.

The absolute luminosity scale of each algorithm was calibrated [42] by the van der Meer 
(vdM) method in an intermediate luminosity regime (L ∼ 5 × 1030 cm−2 s−1). Table 5 lists the 
integrated luminosity reported by the BCM, LUCID and vertex-based luminosity algorithms 
(VTX5) during the run analyzed here, both for the full sample and for the fraction during which 
the ID was fully operational. As for the standard running conditions, BCMV_EventOR was cho-
sen as the preferred algorithm for the luminosity determination, as its response is stable and 
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Table 5
Integrated luminosity measured using the different algorithms and deviations from the reference value 
(BCMV_EventOR). The results are reported for the full data set and for the subset thereof during which the ATLAS 
ID was fully operational. The uncertainties are statistical only. For LUCID_EventAND, no error is assigned as the 
luminosity is numerically determined from a formula dependent on the measured event rate.

Algorithm Lint [µb−1] Deviation (%) Lint [µb −1] Deviation (%)

Full data set Data with ID on

BCMV_EventOR 78.72 ± 0.13 – 69.48 ± 0.12 –
BCMH_EventOR 78.10 ± 0.13 −0.80 68.94 ± 0.12 −0.78
LUCID_EventOR 77.63 ± 0.04 −1.38 68.55 ± 0.04 −1.34
LUCID_EventAND 77.49 −1.57 68.42 −1.53
LUCID_HitOR 78.71 ± 0.03 −0.01 69.49 ± 0.03 +0.01
VTX5 68.93 ± 0.13 −0.79

Fig. 13. Luminosity measured by the various algorithms (top) and relative deviations from the reference 
BCMV_EventOR algorithm (bottom), as a function of time.

independent of the luminosity scale, from vdM to high luminosity [42] conditions. Table 5 also 
reports the fractional deviation of each measurement from the reference value; the largest such 
difference is 1.6%. In Fig. 13 the luminosity measurements from the various algorithms are 
shown as a function of time (top), together with the percent deviations from the reference algo-
rithm (bottom).

The contributions to the systematic uncertainty affecting the absolute integrated luminosity 
during the high-β� run can be categorized as follows.



ATLAS Collaboration / Nuclear Physics B 889 (2014) 486–548 511
Fig. 14. Counting rate dN/dt as a function of t in arm 1 for different reconstruction methods before corrections. The 
error bars represent the statistical uncertainty only. The local subtraction method is not shown as it is indistinguishable 
from the lattice method.

• The uncertainty on the absolute luminosity scale, as determined by the vdM method, amounts 
to 1.53% [42]. Because it is dominated by beam conditions rather than by instrumental ef-
fects, this “scale uncertainty” is common to all luminosity algorithms.

• The “calibration-transfer” uncertainty, associated with transferring the absolute luminosity 
scale from the intermediate-luminosity regime of the vdM scans to the very low-luminosity 
conditions of elastic-scattering measurements five months later. It is discussed more exten-
sively below.

• The uncertainty related to the subtraction of beam-associated background during the high-β�

run is estimated to be 0.20%, which results from varying the magnitude of the background 
correction for the reference algorithm by 80%.

The calibration-transfer uncertainty reflects the uncertainty in the potential shift in BCM response 
from vdM to high-luminosity conditions (0.25%), the relative long-term stability (0.70%) of the 
BCM during the several months of high-luminosity running that separate the vdM calibration 
period from the high-β� run, and the stability of the LUCID and BCM calibration transfer from 
the high- to the very low-luminosity regime. While the former two are extensively documented 
in Ref. [42], the latter is more difficult to assess. The consistency between independent estimates 
of the integrated luminosity, as quantified in Table 5 by the largest deviation from the reference 
value (1.6%), is therefore conservatively taken as an upper limit on the systematic uncertainty 
associated with the third step (high to very-low luminosity) of this calibration transfer.

The total systematic uncertainty on the integrated luminosity Lint during the high-β� run 
is computed as the sum in quadrature of the scale uncertainty, the overall calibration-transfer 
uncertainty and the background uncertainty; it amounts to 2.3%. The final result for the selected 
running period is:

Lint = 78.7 ± 0.1 (stat.) ± 1.9 (syst.) µb−1.

11. The differential elastic cross section

The raw t -spectrum of elastic-scattering candidates in one detector arm after the event se-
lection is shown in Fig. 14. Different t -reconstruction methods using the effective optics are 
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Fig. 15. The differential elastic cross section measured using the subtraction method. The outer error bars indicate the 
total experimental uncertainty and the inner error bars the statistical uncertainty. The lower panel shows the relative total 
and statistical uncertainties.

compared. Differences between the methods are visible at large |t |, where the resolution effects 
for methods using the local angle are most important. In order to calculate the differential elastic 
cross section, several corrections are applied. The corrections are done individually per detector 
arm and the corrected spectra from the two arms are combined. In a given bin ti the cross section 
is calculated according to the following formula:

dσ

dti
= 1

�ti
× M−1[Ni − Bi]

Ai × εreco × εtrig × εDAQ × Lint
, (16)

where �ti is the bin width, M−1 represents the unfolding procedure applied to the background-
subtracted number of events Ni − Bi , Ai is the acceptance, εreco is the event reconstruction 
efficiency, εtrig is the trigger efficiency, εDAQ is the dead-time correction and Lint is the inte-
grated luminosity used for this analysis.

The binning in t is appropriate for the experimental resolution and statistics. At small t the 
selected bin width is 1.5 times the resolution. At larger |t | the bin width is increased to com-
pensate for the lower number of events from the exponentially falling distribution. The resulting 
differential elastic cross section using the subtraction method is shown in Fig. 15 with statistical 
and systematic uncertainties. The numerical values for all bins are summarized in Table 6.

An overview of the contributions to the total uncertainty is given in Fig. 16. Inside the fit range 
used to extract the total cross section, indicated by vertical lines, the dominant contribution to 
the uncertainty is the t -independent luminosity error. The statistical error is only a small contri-
bution to the total error. The experimental uncertainty comprises various contributions which are 
discussed in the following.

11.1. Systematic uncertainties

The following uncertainties are propagated to the differential elastic cross section:
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Fig. 16. Relative statistical and systematic uncertainties for the differential elastic cross section for different groups of 
uncertainties. Only the t -range relevant to the extraction of the total cross section is shown; the vertical lines indicate the 
fit range.

• The amount of background is varied by the difference between the yields obtained from 
the anti-golden and the vertex methods. The background shape is varied by the inversion of 
the sign of the vertical coordinate y on one side of the anti-golden arm, combined with an 
inversion of the x-coordinate (see Section 7.1).

• The impact of alignment uncertainties is estimated from different sets of the alignment pa-
rameter values (see Section 6.2).

• The uncertainties related to the effective optics are obtained by varying the optics constraints, 
changing the strength of the quadrupoles Q2, Q4, Q5 and Q6 by ±1� and changing only 
Q5 and Q6 by −2�, as suggested by LHC constraints on the phase advance. Additional un-
certainties are determined by varying the quadrupole alignment according to its uncertainty, 
propagating the fit uncertainties for the strength of Q1 and Q3 to the resulting optics and by 
taking the difference between the transfer-matrix-based beam transport used in the optics fit 
and the MadX beam transport (see Section 9).

• The nuclear slope used in the simulation is varied conservatively by ±1 GeV−2 around 
19.5 GeV−2 (see Section 4).

• The detector resolution is varied, replacing the resolution determined from collision data 
with values 3–4 µm smaller, as predicted from the GEANT4 simulation, and 4–5 µm larger, 
as measured using test-beam data. Additionally, a y-dependent resolution is used instead of 
a constant value (see Section 4.1).

• The emittance used to calculate the angular divergence in the simulation is varied by ±10%
(see Section 5.2).

• The event reconstruction efficiency is varied by its uncertainty discussed in Section 7.3.
• For the tracking efficiency the minimum number of fibre layers required to reconstruct a 

track is varied between three and six (see Section 6.1).
• The intrinsic unfolding uncertainty is determined from the data-driven closure test in Sec-

tion 8.
• The impact of a residual beam crossing angle in the horizontal plane of ±10 µrad is taken 

into account. This variation is derived from the precision of the beam position monitors.
• The nominal beam energy used in the t -reconstruction according to Eq. (3) is changed by 

0.65% [43].
• The luminosity uncertainty of 2.3% is propagated to the cross section (see Section 10).



514 ATLAS Collaboration / Nuclear Physics B 889 (2014) 486–548
Table 6
The measured values of the differential elastic cross section with statistical and systematic uncertainties. The central 
t -values in each bin are calculated from simulation, in which a slope parameter of B = 19.5 GeV−2 is used.

Low |t | edge 
[GeV2]

High |t | edge 
[GeV2]

Central |t |
[GeV2]

dσel/dt

[mb/GeV2]
Stat. uncert. 
[mb/GeV2]

Syst. uncert. 
[mb/GeV2]

Total uncert. 
[mb/GeV2]

0.0025 0.0100 0.0062 425.8 2.6 31.3 31.4
0.0100 0.0120 0.0110 382.6 1.9 17.7 17.8
0.0120 0.0145 0.0132 363.2 1.6 12.6 12.7
0.0145 0.0175 0.0160 342.0 1.4 10.6 10.7
0.0175 0.0210 0.0192 320.9 1.2 9.7 9.8
0.0210 0.0245 0.0227 300.3 1.1 8.6 8.6
0.0245 0.0285 0.0265 279.4 1.0 7.8 7.8
0.0285 0.0330 0.0307 256.1 0.9 7.0 7.0
0.0330 0.0375 0.0352 234.3 0.8 6.2 6.2
0.0375 0.0425 0.0400 213.2 0.7 5.5 5.6
0.0425 0.0475 0.0450 193.3 0.6 5.0 5.0
0.0475 0.0530 0.0502 175.1 0.6 4.5 4.5
0.0530 0.0590 0.0559 156.5 0.5 4.1 4.1
0.0590 0.0650 0.0619 139.8 0.5 4.1 4.1
0.0650 0.0710 0.0679 125.5 0.5 4.2 4.3
0.0710 0.0780 0.0744 110.2 0.5 3.9 3.9
0.0780 0.0850 0.0814 95.8 0.4 3.2 3.2
0.0850 0.0920 0.0884 83.9 0.4 2.9 2.9
0.0920 0.1000 0.0959 72.4 0.4 2.6 2.6
0.1000 0.1075 0.1037 62.0 0.4 2.2 2.2
0.1075 0.1150 0.1112 54.1 0.4 2.0 2.0
0.1150 0.1240 0.1194 46.4 0.3 1.8 1.8
0.1240 0.1330 0.1284 39.2 0.3 1.5 1.6
0.1330 0.1420 0.1374 33.0 0.3 1.4 1.4
0.1420 0.1520 0.1468 27.7 0.3 1.2 1.3
0.1520 0.1620 0.1568 22.8 0.2 1.1 1.1
0.1620 0.1720 0.1668 18.88 0.21 0.88 0.91
0.1720 0.1820 0.1768 15.58 0.19 0.83 0.85
0.1820 0.1930 0.1873 12.77 0.17 0.79 0.80
0.1930 0.2030 0.1978 10.45 0.16 0.68 0.70
0.2030 0.2140 0.2083 8.33 0.14 0.61 0.62
0.2140 0.2250 0.2193 6.70 0.13 0.49 0.50
0.2250 0.2360 0.2303 5.60 0.12 0.43 0.45
0.2360 0.2490 0.2422 4.45 0.11 0.39 0.41
0.2490 0.2620 0.2553 3.46 0.10 0.39 0.40
0.2620 0.2770 0.2691 2.53 0.08 0.41 0.41
0.2770 0.3000 0.2877 1.78 0.07 0.41 0.42
0.3000 0.3200 0.3094 1.21 0.07 0.37 0.38
0.3200 0.3500 0.3335 0.75 0.07 0.35 0.35
0.3500 0.3800 0.3636 0.47 0.13 0.34 0.36

The systematic uncertainties related to the sources above are calculated by the offset method. 
In this method, the nominal value of a certain parameter in the analysis chain is varied ac-
cording to the assigned uncertainty. The shift in bin i for systematic uncertainty source k, 
δk(i) = dσk(i)/dt −dσnominal(i)/dt is recorded, keeping track of the sign and thereby accounting 
for correlations across the t -spectrum. In total 24 systematic shifts are considered and numerical 
tables with the shifts can be found in HepData [44]. Systematic shifts are included in the fit used 
to determine the total cross section, as outlined in Section 12. The most important t -dependent 
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Fig. 17. Relative systematic shifts in the differential elastic cross section as a function of t for selected uncertainty sources. 
Shown are the uncertainties related to the beam optics (kQ5Q6 and Qscan), to the modelling of the detector resolution 
in the simulation (MC resolution), to the crossing angle, and to the beam energy. Here kQ5Q6 refers to changing the 
strength of Q5 and Q6 by −2� and Qscan refers to changing the strength of Q2, Q4, Q5, Q6 by ±1�.

shifts are shown in Fig. 17 for the entire range of the t -spectrum; the range used to fit σtot is from 
t = −0.01 GeV2 to t = −0.1 GeV2.

12. The total cross section

The total cross section and the slope parameter B are obtained from a fit of the theoretical 
spectrum (Eq. (14)), including the Coulomb–nuclear interference term, to the measured differ-
ential cross section. The electric form factor G(t), the Coulomb phase φ(t) and the ρ-parameter 
are fixed to the nominal values as discussed in Section 4. Both the statistical and systematic un-
certainties as well as their correlations are taken into account in the fit. The statistical correlations 
are included in the covariance matrix calculated in the unfolding procedure. The correlations of 
systematic uncertainties are taken into account by using a profile minimization procedure [45], 
where nuisance parameters corresponding to all 24 systematic shifts are included, and the χ2 is 
given by:

χ2 =
∑
i,j

[(
D(i) −

(
1 +

2∑
l=1

αl

)
× T (i) −

22∑
k=1

βk × δk(i)

)
× V −1(i, j)

×
(

D(j) −
(

1 +
2∑

l=1

αl

)
× T (j) −

22∑
k=1

βk × δk(j)

)]
+

22∑
k=1

β2
k +

2∑
l=1

α2
l

ε2
l

, (17)

where D(i) is the measured value of the elastic cross section in bin i, T (i) the theoretical predic-
tion and V (i, j) the statistical covariance matrix. For each systematic uncertainty which changes 
the shape of the t -spectrum, a nuisance parameter βk multiplying the corresponding shift δk

is fitted as a free parameter and a penalty term 
∑

k β2
k is added to the χ2. Two scale parame-

ters, αl , are used to describe the rescaling of the normalization of the theoretical prediction due 
to t -independent uncertainties in the luminosity and the reconstruction efficiency. The sum in 
quadrature of these two scale factors divided by their uncertainties results in a second penalty 
term, 

∑
l (α

2
l /ε

2
l ). Some nuisance parameters in the fit comprise a group of parameter varia-

tions. For example, 256 variations of ALFA data constraints by one standard deviation and 256 
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Fig. 18. A fit of the theoretical prediction with σtot and B as free parameters to the differential elastic cross section 
reconstructed with the subtraction method. In the lower panel the points represent the normalized difference between fit 
and data, the yellow area represents the total experimental uncertainty and the hatched area the statistical component. 
The red line indicates the fit range, the fit result is extrapolated in the lower panel outside the fit range. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

quadrupole field variations by ±1� are performed as part of the beam optics uncertainty esti-
mate and are each merged into a single nuisance parameter.

The differential cross section and the fitted theoretical prediction are shown in Fig. 18. The 
fit range is chosen from t = −0.01 GeV2 to t = −0.1 GeV2. The lower t value is chosen to be 
as close as possible to t = 0 to reduce the extrapolation uncertainty while having an acceptance 
above 10%. The choice of the upper limit is motivated by theoretical considerations not to extend 
the fit into the region where deviations from the single exponential function are expected [46]. 
The fit yields:

σtot = 95.35 ± 1.30 mb, B = 19.73 ± 0.24 GeV−2,

where the errors include all statistical and experimental systematic contributions. Systematic 
uncertainties associated with theoretical parameters and the extrapolation |t | → 0 are discussed 
below. The best fit χ2 is found to be 7.4 for 16 degrees of freedom. Important contributions to 
the χ2 are related to the alignment, the beam optics and the nominal beam energy. The results 
obtained for all t -reconstruction methods are compiled in Table 7 for σtot and in Table 8 for B .

12.1. Systematic uncertainties

The fit to the t -spectrum accounts for the statistical errors in data and Monte Carlo simulation 
combined with 24 systematic shifts. The statistical component of the errors given in Table 7 for 
the total cross section and in Table 8 for B is estimated using pseudo-experiments. The main 
contributions to the experimental systematic error for the total cross section are the luminosity, 
nominal beam energy and reconstruction efficiency uncertainties. For B the experimental sys-
tematic uncertainty is dominated by the beam energy uncertainty, whereas other experimental 
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Table 7
The total cross section and uncertainties for four different t -reconstruction methods.

σtot [mb]

Subtraction Local angle Lattice Local subtraction

Total cross section 95.35 95.57 95.03 94.98
Statistical error 0.38 0.38 0.33 0.31
Experimental error 1.25 1.36 1.30 1.30
Extrapolation error 0.37 0.27 0.50 0.33

Total error 1.36 1.44 1.43 1.38

Table 8
The nuclear slope and uncertainties for four different t -reconstruction methods.

B [GeV−2]

Subtraction Local angle Lattice Local subtraction

Nuclear slope 19.73 19.67 19.48 19.48
Statistical error 0.14 0.15 0.14 0.15
Experimental error 0.19 0.26 0.22 0.21
Extrapolation error 0.17 0.17 0.26 0.18

Total error 0.29 0.35 0.37 0.31

errors such as the luminosity uncertainty change only the normalization and have no impact on 
the slope.

Additional uncertainties arise from the extrapolation |t | → 0. These are estimated from a 
variation of the upper end of the fit range from −t = 0.1 GeV2 to −t = 0.15 GeV2. The upper 
end at −t = 0.15 GeV2 is chosen in order to remain in a range where a simple exponential 
is still a reasonable assumption [46]. The upper fit-range edge is also decreased by the same 
number of bins (six) to |t | = 0.059 GeV2 and the symmetrized change is adopted as a systematic 
uncertainty of approximately 0.4 mb for σtot and 0.17 GeV−2 for B . The fit-range dependence 
is the dominant source of uncertainty in the extrapolation. As a stability check, the lower end 
of the fit range is varied, leading to a smaller change of the total cross section, which is not 
included in the systematic error. Other extrapolation errors are determined from: the variation of 
the ρ-parameter by ±0.008, the replacement of the dipole by a double dipole parameterization 
for the electric form factor and the replacement of the Coulomb phase from West and Yennie 
[24] by parameterizations from Refs. [25,31]. All these contributions are small compared to the 
fit-range variation. The total extrapolation uncertainty is about 0.4 mb for σtot and 0.2 GeV−2

for B . The total errors given in Table 7 for all t -reconstruction methods are very similar and 
amount to 1.5% of the cross-section value.

Several stability tests were carried out to substantiate the nominal result and its associated 
uncertainty.

• A fit with only the statistical covariance matrix but ignoring all nuisance parameter contri-
butions was performed. The resulting values are given in Table 9. Because the fit ignores 
systematic errors the χ2 is larger.

• The independent samples in each detector arm were corrected and analyzed independently.
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Table 9
Fitted values of the total cross section and nuclear slope when only statistical errors are included.

Subtraction Local angle Lattice Local subtraction

σtot [mb] 95.31 ± 0.12 94.96 ± 0.12 95.06 ± 0.12 95.03 ± 0.11
B [GeV−2] 19.62 ± 0.05 19.44 ± 0.05 19.50 ± 0.05 19.49 ± 0.05
χ2/Ndof 2.8 1.07 1.2 1.4

• An alternative procedure was performed where all t -dependent corrections and migration 
effects are applied to the theoretical prediction, which is then fit to the measured raw data.

• The data are split into several sub-samples ordered by time to investigate a potential time 
dependence of the results.

None of the checks have shown a significant deviation from the nominal results.

12.2. Total inelastic and elastic cross sections

The total elastic cross section is derived from the nuclear scattering term under the assumption 
that the slope B remains constant over the full t -range. The Coulomb and interference terms are 
not taken into account. With this approximation the differential elastic cross section is reduced 
to the exponential form:

dσel

dt
= dσel

dt

∣∣∣∣
t=0

exp
(−B|t |) with

dσel

dt

∣∣∣∣
t=0

= σ 2
tot

1 + ρ2

16π(h̄c)2
. (18)

The differential cross section at the optical point, |t | → 0, derived from the total cross-section 
fit, is: dσel/dt |t→0 = 474 ± 4 (stat.) ± 13 (syst.) mb/GeV2, where the systematic uncertainty 
includes all experimental and extrapolation uncertainties. Integrating the parameterized form of 
the differential cross section over the full t -range yields the total elastic cross section:

σel = 24.00 ± 0.19 (stat.) ± 0.57 (syst.) mb,

where the correlation between σtot and B , determined from the fit to be approximately 40%, 
is taken into account in the error calculation. The measured integrated elastic cross section in 
the fiducial range from −t = 0.0025 GeV2 to −t = 0.38 GeV2 corresponds to 90% of the total 
elastic cross section:

σ observed
el = 21.66 ± 0.02 (stat.) ± 0.58 (syst.) mb.

The total elastic cross section is used to determine the total inelastic cross section by subtraction 
from the total cross section. The resulting value is:

σinel = 71.34 ± 0.36 (stat.) ± 0.83 (syst.) mb.

A summary of the derived quantities with uncertainties is given in Table 10.

12.3. Model dependence of the nuclear amplitude

Traditionally, the nuclear amplitude at small t is parameterized by a single exponential func-
tion. This is the canonical form of the t -evolution of the nuclear amplitude and was used by 
several previous experiments [8–10] to extract the total cross section. At larger t , approaching 
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Table 10
Measured values of the optical point, extrapolated elastic cross section, inelastic cross section, and observed elastic cross 
section within fiducial cuts.

Optical point [mb/GeV2] σel [mb] σinel [mb] σ observed
el [mb]

Result 474 24.00 71.34 21.66
Statistical error 4 0.19 0.36 0.02
Experimental error 12 0.57 0.72 0.58
Extrapolation error 4 0.03 0.40 –

Total error 13 0.60 0.90 0.58

Table 11
Fit results for the total cross section for different parameterizations of 
the t -dependence described in the text. The errors comprise all experi-
mental uncertainties but no theoretical or extrapolation uncertainties.

σtot [mb] Reference

Nominal 95.35 ± 1.30 Eq. (14)
Ct2 95.49 ± 1.27 Refs. [24,49]
c
√−t 96.03 ± 1.31 Ref. [50]

SVM 94.90 ± 1.23 Ref. [31]
BP 95.49 ± 1.54 Refs. [51,52]
BSW 95.53 ± 1.38 Ref. [53]

the dip around −t = 0.5 GeV2 [47], deviations from the exponential form are expected. In order 
to assess the impact of using a simple exponential for the nuclear amplitude, several alternative 
forms are investigated. One of the simplest extensions providing a t -dependent slope was used by 
previous experiments [48] and discussed in Refs. [24,49], and consists of an additional term Ct2

in the exponential. Another parameterization was recently proposed [50], which considers hadron 
spin non-flip amplitudes contributing to a non-exponential form through an additional term scal-
ing with 

√−t in the exponential. The stochastic vacuum model (SVM) [31], which provides an 
expression for the Coulomb phase, also proposes a parametric form for the differential elastic 
cross section, assuming constant but possibly different slopes for the real and imaginary ampli-
tudes. While the three forms above are to be used in conjunction with the Coulomb amplitude, 
other parameterizations exist with even more model-independent parametric forms, partially ab-
sorbing Coulomb effects in the parameterization with the use of more free parameters. One of 
these forms (BP) was proposed in Ref. [51] and more recently modified [52] for the analysis of 
LHC data, where in total five free parameters are fit. Another model-independent parameteriza-
tion (BSW) with six free parameters, which allow for normalization, offset and slopes separately 
for real and imaginary amplitudes, was suggested in Ref. [53].

Since the deviations from the exponential form are expected to increase at larger t , the upper 
limit of the fit range is increased to −t = 0.3 GeV2 when fitting the alternative forms. Only 
parametric models have been chosen in order to apply the same fit techniques as for the standard 
analysis.

All alternative forms have at least one more free parameter which improves the quality of the 
fits at larger t , where best sensitivity for additional parameters is obtained. The various fit results 
using alternative parameterizations are summarized in Table 11. The profile fit (17) including 
all systematic errors was used to evaluate the total cross sections. The RMS of the values is in 
good agreement with the value of 0.4 mb assigned to the extrapolation uncertainty obtained with 
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Fig. 19. Comparison of total and elastic cross-section measurements presented here with other published measure-
ments [11,29,55–58] and model predictions as function of the centre-of-mass energy.

the simple exponential form as described in Section 12.1. Similar results are obtained for all 
t -reconstruction methods.

13. Discussion

The result for the total hadronic cross section presented here, σtot = 95.35 ± 1.36 mb, can 
be compared to the most precise value measured by TOTEM, in the same LHC fill using a 
luminosity-dependent analysis, σtot = 98.6 ± 2.2 mb [11]. Assuming the uncertainties are uncor-
related, the difference between the ATLAS and TOTEM values corresponds to 1.3σ . The uncer-
tainty on the TOTEM result is dominated by the luminosity uncertainty of ±4%, giving a ±2 mb 
contribution to σtot through the square root dependence of σtot on luminosity. The measure-
ment reported here profits from a smaller luminosity uncertainty of only ±2.3%. In subsequent 
publications [16,54] TOTEM has used the same data to perform a luminosity-independent mea-
surement of the total cross section using a simultaneous determination of elastic and inelastic 
event yields. In addition, TOTEM made a ρ-independent measurement without using the optical 
theorem by summing directly the elastic and inelastic cross sections [16]. The three TOTEM 
results are consistent with one another.

The results presented here are compared in Fig. 19 to the result of TOTEM and are also com-
pared with results of experiments at lower energy [29] and with cosmic ray experiments [55–58]. 
The measured total cross section is furthermore compared to the best fit to the energy evolution of 
the total cross section from the COMPETE Collaboration [26] assuming an energy dependence 
of ln2 s. The elastic measurement is in turn compared to a second order polynomial fit in lns of 
the elastic cross sections. The value of σtot reported here is two standard deviations below the 
COMPETE parameterization. Some other models prefer a somewhat slower increase of the total 
cross section with energy, predicting values below 95 mb, and thus agree slightly better with the 
result reported here [59–61].

The value of the nuclear slope parameter B = 19.73 ± 0.29 GeV−2 reported here is in good 
agreement with the TOTEM measurement of 19.89 ± 0.27 GeV−2 [11]. These large values of 
the B-parameter confirm that elastically scattered protons continue to be confined to a gradually 
narrowing cone as the energy increases as can be seen from Fig. 20. The B-parameter is related to 
the proton radius and as for the total cross section an increase can be expected at higher energies. 
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Fig. 20. Comparison of the measurement of the nuclear slope B presented here with other published measurements at the 
ISR [63–66], at the Spp̄S [67–69], at RHIC [70], at the Tevatron [9,71,72] and with the measurement from TOTEM [11]
at the LHC. The red line shows the calculation from Ref. [62], which contains a linear and quadratic term in ln s.

As outlined in Ref. [62], the evolution of B from ISR to LHC energies is more compatible with 
a quadratic than a linear dependence in ln s.

The elastic cross section is measured to be 24.0 ± 0.6 mb. This is in agreement with the 
TOTEM result of 25.4 ± 1.1 mb within 1.1σ . The ratio of the elastic cross section to the total 
cross section is often taken as a measure of the opacity of the proton. Measurements shed light 
on whether the black disc limit of a ratio of 0.5 is being approached. It is interesting to note 
that although there are some small differences between ATLAS and TOTEM for the total and 
elastic cross sections, the ratio σel/σtot is very similar. The TOTEM value is σel/σtot = 0.257 ±
0.005 [16,54], while the measurement reported here gives σel/σtot = 0.252 ± 0.004. All derived 
measurements depend on σtot and B and are therefore highly correlated.

Finally, various total inelastic cross-section measurements, either using only elastic data as 
in the present analysis and in the corresponding analysis of TOTEM [11], or using elastic and 
inelastic data in the luminosity-independent method [16], are compared in Fig. 21 to direct mea-
surements by TOTEM [54], ALICE [73] and an ATLAS [14] result based upon an analysis of 
minimum bias events. In general, the direct measurements have a larger uncertainty because of 
the model dependence when extrapolating to the unobservable cross section at low diffractive 
masses. A measurement from CMS [74] was not extrapolated to the total inelastic cross section 
and is therefore not included in Fig. 21. The measurement of σinel = 71.34 ± 0.90 mb reported 
here improves considerably the previous measurement of ATLAS: σinel = 69.4 ± 7.3 mb [14].

As mentioned above, the previous ATLAS result for the inelastic cross section has a large 
uncertainty because of the uncertainty in the extrapolation to low diffractive masses outside the 
fiducial region. The fiducial region covers only dissociative processes with the diffractive invari-
ant mass, MX , larger than 15.7 GeV. However, the precision of the measurement in the fiducial 
region is good, with an uncertainty on the fiducial cross section roughly three times smaller than 
on the extrapolated inelastic cross section. Thus by taking the difference of the present measure-
ment of the total inelastic cross section and the previous measurement by ATLAS in the fiducial 
region the size of the cross section for invariant masses below 15.7 GeV can be estimated and 
compared with existing models. The cross section measured by ATLAS corresponding to masses 
above 15.7 GeV is 60.3 ± 2.1 mb [14]. Thus the cross section in which the dissociative sys-
tems have an invariant mass MX less than 15.7 GeV is estimated to be 11.0 ± 2.3 mb. Both 
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Fig. 21. Comparison of the inelastic cross section presented here with the earlier ATLAS measurement [14] and published 
data from ALICE [73] and TOTEM [11,16,54].

PYTHIA and PHOJET [75,76] predict significantly lower contributions to the inelastic cross 
section in this range of invariant masses, approximately 6 mb and 3 mb respectively. The model 
of Ref. [60] gives a better description of the data with values in the range 11–14 mb (see discus-
sion in Ref. [77]).

14. Summary

In this paper a measurement of the elastic pp cross section and the determination of the total 
cross section using the optical theorem at 

√
s = 7 TeV by the ATLAS experiment at the LHC 

with the ALFA sub-detector is presented. The data were recorded in 2011 during a special run 
with high-β� optics, where an integrated luminosity of 80 µb−1 was accumulated. The analysis 
uses data-driven methods to determine relevant beam optics parameters, event reconstruction ef-
ficiency and to tune the simulation. A key element of this analysis is the determination of the 
effective beam optics, which takes into account measurements from ALFA that are sensitive 
to ratios of transport matrix elements and calibration uncertainties of the quadrupoles. A de-
tailed evaluation of the associated systematic uncertainties includes the comparison of different 
t -reconstruction methods that are sensitive to different transport matrix elements. A dedicated 
effort was made to determine the absolute luminosity for this run while taking into account the 
special conditions with a very low number of interactions per bunch crossing. From a fit to the 
differential elastic cross section, using the optical theorem, the total cross section is determined 
to be:

σtot(pp → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb,

where the first error is statistical, the second accounts for all experimental systematic uncertain-
ties and the last is related to uncertainties on the extrapolation to |t | → 0. The experimental 
systematic uncertainty is dominated by the uncertainty on the luminosity and on the nominal 
beam energy. Further experimental uncertainties including those associated with beam optics 
and detector modelling contribute less. Alternative models for the nuclear amplitude parameter-
ization with non-exponential contributions were investigated using an extended fit range and the 
resulting values of the total cross section range from 94.9 mb to 96.0 mb.

In addition the slope of the elastic differential cross section at small t was determined to be:
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B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV−2.

From the fitted parameterization of the elastic cross section the total elastic cross section is ex-
tracted:

σel(pp → pp) = 24.00 ± 0.19 (stat.) ± 0.57 (syst.) mb,

and by subtraction from the total cross section the inelastic cross section is determined to be:

σinel = 71.34 ± 0.36 (stat.) ± 0.83 (syst.) mb,

which is significantly more precise than the previous direct ATLAS measurement.
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