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SUMMARY

To develop a map of cell-cell communication medi-
ated by extracellular RNA (exRNA), the NIH Extracel-
lular RNA Communication Consortium created the
exRNA Atlas resource (https://exrna-atlas.org). The
Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA
qPCR profiles from 19 studies and a suite of analysis
and visualization tools. To analyze variation between
profiles, we apply computational deconvolution. The
analysis leads to a model with six exRNA cargo types
(CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable
in multiple biofluids (serum, plasma, CSF, saliva,
urine). Five of the cargo types associate with known
vesicular and non-vesicular (lipoprotein and ribonu-
cleoprotein) exRNA carriers. To validate utility of this
model, we re-analyze an exercise response study
by deconvolution to identify physiologically relevant
responsepathways thatwerenotdetectedpreviously.
To enable wide application of this model, as part of
theexRNAAtlas resource,weprovide tools for decon-
volution and analysis of user-provided case-control
studies.
INTRODUCTION

The Extracellular RNA Communication Consortium (ERCC)

(Ainsztein et al., 2015) aims to realize the potential of extracellular
RNA (exRNA) as disease indicators and therapeutic molecules

and to define the fundamental principles of their biogenesis, dis-

tribution, uptake, and function. In the context of this overall effort,

the ERCC has developed the Extracellular RNA Atlas, a refer-

ence catalog of exRNAs present in human biofluids. The current

version of the Atlas provides access to 5,309 exRNA-seq and ex-

RNA qPCR sample profiles, primarily from cerebrospinal fluid

(CSF), saliva, serum, plasma, and urine, collected across 19

different studies. A suite of web-accessible tools enables users

to analyze exRNA-seq profiles from the Atlas, process and

analyze their own exRNA-seq data, and contribute their data

and analysis results to the Atlas, thus creating a virtuous cycle

of knowledge creation.

One major obstacle encountered early on in the project was

the large unexplained variability in exRNA profiles both within

and across exRNA profiling studies. This variability diminishes

the power of individual exRNA profiling studies and the utility

of the Atlas as a source of exRNA reference profiles for detecting

disease-associated perturbations. In an attempt to minimize

experimental variability, all exRNA-seq profiles were quality-

controlled and uniformly processed using the exceRpt pipeline

(Rozowsky et al., 2019). However, the uniform processing

through exceRpt failed to explain a large amount of residual

sample-to-sample and between-study variability. We reasoned

that much of the residual variability may be due to the combined

effect of (1) known differences in the exRNA cargo profiles of ve-

sicular (Lässer et al., 2017) and non-vesicular (Allen et al., 2018)

exRNA carriers, and (2) technical or biological variation in carrier

proportions between individual samples and across studies. To

explore this hypothesis, we began with the results of previous

studies that profiled different physically isolated carriers of
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extracellular RNA, including high-density vesicles (HDVs) and

low-density vesicles (LDVs) in the supernatant of the HMC-1

mast cell line (Lässer et al., 2017) and high-density lipoprotein

(HDL) particles. We adapted a computational deconvolution

method (Onuchic et al., 2016) to uncover the contributions of

these known carrier-specific cargo types to each sample in the

Atlas, as well as estimate new cargo types that are yet to be

physically isolated and profiled. Computational deconvolution

explained a large fraction of sample-to-sample and between-

study variability in the exRNA Atlas profiles and suggested a

model consisting of six cargo types, each detectable across

studies and in at least two human biofluids. Additional separation

experiments suggest association of the cargo types with specific

vesicular and non-vesicular (RNP and lipoprotein) exRNA car-

riers. We show that these findings and Atlas resources facilitate

interpretation of exRNA profiling studies by providing estimates

of cargo type proportions in each sample and by tracing exRNA

differences between cases and controls to specific cargo types

and their associated carriers.

RESULTS

exRNA Atlas Resource
The exRNA Atlas resource is the data repository of the ERCC

and integrates tools, web services, and pathway knowledge
464 Cell 177, 463–477, April 4, 2019
relevant for collaborative extracellular RNA research. The

Atlas software is a free open source Genboree application sup-

ported by the document-oriented Genboree KnowledgeBase

(GenboreeKB) back-end. Version 4P1 of the Atlas (https://

exrna-atlas.org/exatv4p1) contains 2,270 exRNA-seq and

3,039 qPCR profiles from 19 different studies that cover 23

health conditions. Samples come predominantly from five bio-

fluids (CSF, plasma, saliva, serum, urine) and have been

collected primarily from total cell-free biofluid RNA using a vari-

ety of RNA isolation kits (Figure 1A) and processed using various

sequencing library preparation kits (Table S1). The exRNA Atlas

metadata follow the definitions established by the Metadata

Working Group (MWG) of the ERCC utilizing Gene Ontology

(GO) (Ashburner et al., 2000) to classify exRNA carriers (e.g.,

extracellular exosome [GO:0070062], extracellular vesicles

[GO:1903561], and HDL-containing protein-lipid-RNA complex

[GO:1990685]), relationships relevant to exRNA source, and

new terms used to annotate samples (Cheung et al., 2016).

Recently, the extracellular vesicle community published up-

dated guidelines on the minimal information required for studies

of extracellular vesicles (MISEV) (Théry et al., 2018); the ERCC

will continue to update the exRNA Atlas resource accordingly,

as MISEV guidelines evolve. A summary of exRNA Atlas sam-

ples, including biofluid type, methods of RNA isolation, percent

passed quality control (QC), and readsmapped per RNA biotype

https://exrna-atlas.org/exatv4p1
https://exrna-atlas.org/exatv4p1
mailto:amilosav@bcm.edu
https://doi.org/10.1016/j.cell.2019.02.018


Figure 1. exRNA Atlas Resource

(A) Faceted charts for selecting exRNA profiles from the Atlas. The size of each slice (representing a profile count) has been log-transformed to aid usability. RNA

source categories follow the protocols established by the ERCC.

(B) Bar charts describing the contents of the Atlas.
is available on the Atlas landing page (Figure 1B). The exRNA

Atlas is dynamically populated using the extensive metadata

collected and stored for exRNA profiling samples. Comprehen-

sive metadata describing the sample, sample donor, protocols

used to collect and prepare the sample for exRNA profiling ex-

periments, and results of analytical methods are modeled using

GenboreeKB. Many metadata fields employ ontologies such as

the National Cancer Institute Thesaurus (NCIT) (Musen, 2013),

SNOMED CT (Donnelly, 2006; Stearns et al., 2001), and Human

Disease Ontology (DOID) (Kibbe et al., 2015) and are validated

using the BioPortal API (Whetzel et al., 2011). An overview of

the metadata standards developed by the ERCC with different

metadata entities stored in the Atlas is available in Figure S1.
In addition to the graphical user interface (GUI) on the Atlas web-

site, Atlas (meta)data are exposed via a dedicated JSON-LD

Application Programming Interface (API) with full documenta-

tion available in standard OpenAPI format (https://exrna-atlas.

docs.stoplight.io/). The Atlas resource is also indexed on Goo-

gle Dataset Search and FAIRsharing.org (McQuilton et al.,

2016). Additional details on navigating Atlas (meta)data can be

found in STAR Methods.

Submitted RNA-Seq Profiles Are Uniformly Processed
Data flow into the exRNA Atlas is mediated by a data submission

and processing pipeline (Figure 2A). The pipeline was designed

to accept data from exRNA profiling experiments using RNA
Cell 177, 463–477, April 4, 2019 465
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Figure 2. Overview of exRNA Atlas Data Submission Process and exRNA Atlas Tools

(A) Workflow for submitting exRNA profiling data to the Atlas. Submissions consist of three different file types: data files (optional for qPCR), metadata files, and a

manifest file. All files are processed through an FTP-based data submission pipeline, with exRNA-seq data being uniformly processed through exceRpt. After

validation, processing, and deployment, all data and metadata are made available through the Atlas website.

(legend continued on next page)
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sequencing (RNA-seq) and qPCR. Detailed instructions guide

users through the (meta)data preparation and submission pro-

cess, thereby encouraging community contribution to the Atlas.

Additional details on the data submission process are provided

in STAR Methods. To minimize variability and facilitate integra-

tive analyses across studies, all exRNA-seq data in the Atlas

are uniformly processed using the extra-cellular RNA processing

toolkit (exceRpt), an exRNA-seq processing pipeline created by

members of the ERCC (Rozowsky et al., 2019). For Version 4P1

of the Atlas, a total of 23.43 billion reads from 2,270 RNA-seq

sample profiles were processed through exceRpt. Reads from

exRNA sequencing experiments are sequentially aligned to the

host genome and transcriptome as well as to various exogenous

genomes. Output from exceRpt includes abundance estimates

for the various RNA libraries and detailed mapping information

for each read mapped for each library, as well as a variety of

metrics such as read-length distribution and summaries of reads

mapped to each library. A set of quality measures agreed upon

by members of the ERCC (Rozowsky et al., 2019) are generated

for each profile, and the small number of profiles not passing QC

thresholds are denoted. After all sample files are processed

and deployed, data and metadata become available through

the exRNA Atlas website.

exRNA Atlas Resource Includes Analysis and
Visualization Tools
The exRNA Atlas’ suite of available tools allows users to

analyze existing exRNA-seq profiles in the Atlas, process their

own exRNA-seq data, analyze their data in the context of the

Atlas, and (at or before the time of publication) contribute their

own data to the Atlas to empower future exRNA research. Pair-

wise differential expression analysis may be performed using

DESeq2 (Love et al., 2014) (Figure 2B). Custom pathway

queries for differentially expressed microRNAs (miRNAs) can

be performed in the context of the Extracellular RNA section

of WikiPathways (Slenter et al., 2018) via the Pathway Finder

tool to provide a ranked list of targeted pathways (Figure 2C).

Atlas studies may be visualized as precomputed principal

component analysis (PCA) (Abdi and Williams, 2010) and

t-distributed stochastic neighbor embedding (t-SNE) dimen-

sionality reduction plots (van der Maaten and Hinton, 2008)

(Figure 2D). Summary plots and tables may be generated for

any set of exRNA-seq profiles (up to 900 at a time) from the

Atlas. Users can visualize miRNA read expression for a given

dataset via BioGPS (Wu et al., 2016), a gene annotation portal
(B) DESeq2 analysis interface. The integrated DESeq2 tool allows users

differential expression analysis. Users can launch their own analyses via

Results page.

(C) Pathway Enrichment via Pathway Finder on WikiPathways. Users can selec

perform downstream pathway analyses via the Pathway Finder tool on WikiPathw

their targets.

(D) PCA/t-distributed stochastic neighbor embedding (t-SNE) tool interface. Th

precomputed PCA/t-SNE analyses on Atlas datasets. All analyses are available

(E) BioGPS interface. Users can visualize individual miRNA read count expression

via the Datasets page.

(F)Workflow for submitting data to aGenboree group for personal analysis. Subm

on the Genboree Workbench. After processing is completed, results can be sha

See also Figure S1.
that contains interactive gene expression bar charts for Atlas

exRNA-seq datasets (Figure 2E). Information on the expression

of specificmiRNA species across human biofluids is accessible

via WikiData. Computational deconvolution results presented

in this paper (described below) are available via the Atlas Public

Analysis Results page. Finally, users can also analyze their own

exRNA-seq data using the Genboree Workbench (Figure 2F), a

web-based software platform which hosts several exRNA-seq-

based bioinformatics tools (Amin et al., 2015). The Workbench

allows users to upload and store their own exRNA-seq profiling

data, process that data through the exceRpt pipeline, and

share results privately with collaborators prior to sharing them

publicly through the Atlas.

Computational Deconvolution Explains Most Variation
across exRNA Atlas RNA-Seq Profiles
Atlas miRNA expression profiles cluster primarily by study,

despite uniform processing through the exceRpt pipeline (Fig-

ure S2), suggesting large technical and possibly biological vari-

ability across studies. We reasoned that one potential source

of variation may be variable representation of a multiplicity of

exRNA carriers, each having a characteristic cargo profile.

Supporting this contention, previous studies revealed highly

distinct non-coding RNA (ncRNA) profiles for different extracel-

lular RNA carriers in both human and mouse, including HDV

and LDV extracellular vesicles isolated from the supernatant of

the HMC-1 humanmast cell line (Lässer et al., 2017) and lipopro-

tein profiles isolated from mice (Allen et al., 2018). We therefore

hypothesized (1) that biologically meaningful invariant exRNA

profile signatures exist across studies and possibly across bio-

fluids, and (2) the invariant signatures may be overshadowed

by the technical or biological variability in their relative propor-

tions in individual samples and across studies and biofluids.

To test the hypothesis, we adapted a computational deconvo-

lution method that we previously developed for highly hetero-

geneous human tumors (Onuchic et al., 2016). Based on the

exRNA-seq profiles of whole biofluid or any of its fractions, the

deconvolution algorithm estimates (1) the number of distinct

constituent cargo profiles that are present—with possibly a small

degree of sample-to-sample variation—in many samples, (2) the

cargo profiles themselves, defined by the relative abundance of

ncRNA species of any biotype (e.g., miRNA and large intergenic

noncoding RNA [lincRNA]); and (3) the percent contribution of

each cargo profile to the bulk profile of any given sample (Fig-

ure 3). One key requirement for deconvolution is the presence
to discover differentially expressed miRNAs in Atlas data via pairwise

the results grid or view precomputed analyses via the Public Analysis

t miRNAs on the Atlas via their DESeq2 results or the Atlas census page and

ays. The Pathway Finder tool lists pathways that contain selected miRNAs and

e integrated Dimensionality Reduction Plotting Tool allows users to visualize

via the Public Analysis Results page. See also Figure S2.

via BioGPS for Atlas RNA-seq datasets. All Atlas BioGPS studies are available

issions consist of exRNA-seq data files (FASTQ) and are processed via exceRpt

red privately with collaborators.
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Figure 3. XDec Deconvolution Method

The exRNA expression profiles (transcript 1 to

transcriptm) of complex biofluid samples (S1 to Sn)

are used as the input. The deconvolution algorithm

estimates the number (k) of constituent cargo

profiles, the exRNA expression within the profiles

(columns P1 to Pk) and the proportions (rows

Q1 to Qk) of the k cargo profiles in each sample

(S1 to Sn) through an iterative algorithm for con-

strained matrix factorization using quadratic pro-

gramming. The algorithm involves two steps, the

first involving transformed transcript abundance

values over an informative set of ncRNAs and the

second step involving non-transformed abun-

dance values over all ncRNAs (STAR Methods).

See also Figure S3 and STAR Methods.
of a sufficient number of ncRNA species that are informative for

deconvolution. Two key criteria for a ncRNA species to be infor-

mative are (1) sufficient RNA-seq read coverage to ensure accu-

rate quantitation, and (2) significant differences in the abundance

between constituent exRNA cargo profiles. To generate a list of

such ncRNAs, we compared RNA-seq profiles from previously

characterized vesicular (HDV and LDV) (Lässer et al., 2017) and

non-vesicular HDL (Atlas Dataset: EXR-KVICK1oIp40e-AN) car-

riers and identified 81 informative ncRNAs that show consistent

quantitative differences between the carriers (Figure S3A; STAR

Methods).

Deconvolution was applied to ncRNA profiles of bulk samples

of 21 RNA-seq analysis datasets, totaling 2,138 samples (Table

S1). Although exceRpt maps reads to both endogenous and

exogenous ncRNA biotypes, we limited the exRNA Atlas bio-

sample profiles to seven major endogenous RNA biotypes:

miRNA, Piwi-interacting RNA (piRNA), tRNA, Y RNA, lincRNA,

small nucleolar RNA (snoRNA), and small nuclear RNA (snRNA).

Each of the 21 datasets represented a single disease state for a

single biofluid and included at least 40 sample profiles. The data-

sets covered 5 biofluids (CSF, saliva, serum, plasma, and urine)

and 9 disease states: healthy, gastric cancer, carcinoma (colon,

prostate, pancreatic), Parkinson’s disease, Alzheimer’s disease,

subarachnoid hemorrhage, intraventricular brain hemorrhage,

myocardial infarction, and nephrotic syndrome (Table S1). For

input to the deconvolution algorithm, reads per million mapped

reads (RPM) values were transformed using quantile normaliza-

tion. To eliminate overfitting of outliers and equalize measure-

ments, the valuesweremapped to the [0,1] range using a negative

exponential function (STAR Methods). The algorithm estimated

the number of cargo profiles (k) independently for each of the

21 datasets using a stability criterion (STAR Methods). This re-

sulted in k = 3 or 4 cargo profiles being estimated for eachdataset,

resulting in a total of 68 cargo profiles for the 21 datasets (Table

S1), with an additional 7 profiles (for a total of 75) coming from

physically isolated HDV, LDV, and HDL carriers.

We sought to quantify the level of variance explained by de-

convolution. Specifically, we measured variance by multiple

regression, approximating observed exRNA profiles by linear

combinations of estimated profiles (k = 3 or 4 profiles estimated

per dataset). In all datasets, between 50% and 90% of variance

over the core set of informative ncRNAs was explained by de-
468 Cell 177, 463–477, April 4, 2019
convolution (Figure S3B, black point). The explained variance

over the informative set was compared to the explained variance

of 100 randomly selected ncRNA sets that matched in size

and biotype (Figure S3B, boxplot). For 20 out of 21 datasets,

the explained variance for the core set was significantly higher

than for the randomly selected ncRNAs (Figure S3B; STAR

Methods). However, for some studies, the variance of randomly

selected ncRNAs was highly explainable, suggesting that many

ncRNAs differ in abundance between cargo profiles. This led us

to examine if read coverage is a significant determinant as to

whether a ncRNA set is informative (Figure S3C). That indeed

turned out to be the case, as indicated by the significant positive

correlation (p = 0.013) between explained variance and themean

transformed read coverage of each study (Figure S3D).

Clustering of Study-Specific Deconvoluted Cargo
Profiles Reveals Six Major Cargo Types
Next, we asked if the cargo profiles deconvoluted from one data-

set show similarity to the profiles from other datasets. Such

similarities may be expected to occur, for example, if a vesicular

or non-vesicular carrier with a distinct exRNA cargo is present

across different studies and biofluids. To check for the presence

of such invariant profiles, we measured the pairwise correlations

between the 75 profiles (68 cargo profiles, plus 2 HDV, 2 LDV,

and 3 HDL profiles) and performed hierarchical clustering. The

profiles clustered into six groups that we refer to as cargo types

(CTs) denoted CT1, CT2, CT3A, CT3B, CT3C, andCT4 (Figure 4).

Remarkably, all CTs were detected in at least two distinct bio-

fluids. We note that, in some instances, a given CT was not de-

tected in a particular biofluid; this may occur because of an

actual absence of the CT in the specific biofluid or because of

the incompleteness of the exRNA Atlas due to biases of specific

RNA isolation kits utilized (discussed below). Finally, the number

of samples available in some studies may have precluded detec-

tion of all cargo types represented. Therefore, further dataset

integration using different RNA isolation kits and experimental

designs may yield a more complete map of all cargo types

across human biofluids.

Additionally, we combined the samples (n = 2,138) from the 21

datasets and applied deconvolution, anticipating this may yield a

higher resolution map of cargo type heterogeneity. Indeed, while

the deconvolution of individual datasets yielded only 3–4 cargo



profiles per dataset, the deconvolution of the combined set

yielded 11 profiles (Figure 4), indicating deep CT heterogeneity.

Moreover, each of the 11 profiles correlated with exactly one of

the 6 CTs, suggesting that future accumulation of exRNA profiling

data and their integrative analysis may uncover new subtypes of

the six top-level CTs.

Carriers of Distinct Cargo Types Separate into Distinct
Density Fractions
We assessed any differences in the density of carriers corre-

sponding to the six CTs. Toward this goal we performed cush-

ioned-density gradient ultracentrifugation (C-DGUC) of serum

and plasma using OptiPrep density gradient from human donors

(n = 5 male, n = 5 female). Four RNA samples, corresponding to

three pools of OptiPrep fractions 1–3 (1.028–1.038 g/mL), 4–7

(1.046–1.079 g/mL), and 9–12 (1.106–1.259 g/mL), plus whole

biofluid (serum and plasma), were extracted from each of the

10 donors for a total of 80 RNA samples. Two samples were

then discarded due to low read count, yielding a total of 78

RNA-seq profiles (STAR Methods). The samples were prepared

using the miRNeasy micro kit and NEBNext Multiplex small RNA

Library preparation kit. This library preparation only allowed for

capture of RNA fragments and not full-length versions of larger

RNAs (e.g., lincRNA and Y RNA). Similar to the protocol identi-

fying LDV and HDV, fraction 8 was excluded to avoid potential

overlap between the high-density and low-density fractions of in-

terest identified by sucrose gradient (Lässer et al., 2017).

Because the three OptiPrep fraction pools were selected

based on the current knowledge about densities of known ex-

RNA carriers, we hypothesized each fraction would be enriched

for particular carriers and their cargo. To explore this hypothe-

sis, we deconvoluted the 78 RNA-seq profiles, anticipating that

the deconvoluted profiles would correspond to distinct cargo

types. That indeed turned out to be the case based on the cor-

relation pattern to the 75 profiles (Figure S4A), with a caveat

that deconvoluted profile P1 (Figure S4A) turned out to corre-

spond to CT4 with an additional component of CT1 and CT2.

We note that this type of ‘‘limited resolution’’ is likely encoun-

tered in the deconvolution of some other exRNA Atlas datasets,

as suggested by the absence of certain cargo types from some

studies and biofluids and by the off-diagonal correlations in the

heatmap (Figure 4).

Assuming there is a difference in the density of carriers of CT4,

CT1, and CT2, the ‘‘resolution’’ problem may be overcome by

increasing the number of profiles in the dataset (as evidenced

by the high-resolution deconvolution of the complete exRNA

Atlas discussed in the previous section). Another option,

uniquely available in this dataset compared to Atlas datasets,

was to identify a new set of informative ncRNAs (different from

the original set of 81) by identifying ncRNA species that differ

in abundance in the three density fractions. A new set of 80

ncRNAs selected based on that criterion and applied to the 78

serum and plasma samples yielded four deconvoluted profiles

which correlated (correlation over the original set of 81 informa-

tive ncRNAs) with the four major cargo types (CT1–CT4) (Figures

4 and S5A). We observe significant correlation scores per profile

across the 6 CTs (CT4 (fraction 1–3): p < 2.2e�16, CT1 (fraction

4–7): p = 1e�11, CT2 (fraction 9–12): p = 2.7e�12, CT3A–CT3C
(whole biofluid): p = 2e�15) (Figure S5B; STARMethods). Impor-

tantly, each profile was predicted to be in high proportion across

one of the three density fractions and one corresponding to the

whole biofluid (Figure S5C).

To better understand the informativeness of the new set of

ncRNAs relative to the original set, we compared their biotype

compositions. The majority of ncRNAs in the new set were

lincRNAs, more than twice the number in the original set, with

only a few miRNAs (Figure S4B). Moreover, none of the ncRNAs

overlapped between the two sets. This divergent pattern may

be explained by the different coverage of biotypes in the new

dataset compared to Atlas datasets obtained using the same

NEBNext small RNA library preparation kit (Figure S4C). The

OptiPrep fractionation process may account for differences in

RNA subtype abundances. Moreover, the read coverage of

the new ncRNA set was negligible in the Atlas datasets (Fig-

ure S4D), highlighting the role of read coverage (that depends

on sequencing library preparation) in determining informative-

ness of ncRNAs for deconvolution. This issue also indicates

that deconvolution of the HDV, LDV, and HDL profiles would

not resolve the constituent cargo types due to very low

coverage of the new set of 80 informative ncRNAs (Figure S4D).

Strikingly, despite using a completely new ncRNA set for de-

convolution, and despite using density separation as the guid-

ing principle, we obtained a one-to-one correspondence with

the deconvoluted cargo types (Figure 4).

Cargo Types Associate with Known exRNA Carriers
We next sought to obtain information about the biological source

of CTs using an additional array of methods for physical and

immunological separation and characterization. Specifically,

we correlated the 75 exRNA cargo profiles (columns in Figure 4)

with RNA-seq profiles from (rows in the bottom half of Figure 4):

(1) high density vesicles (HDVs) and low density vesicles (LDVs)

from the HMC-1 human mast cell line (Lässer et al., 2017); (2)

HDL particles isolated from plasma using immunoprecipitation

(EXR-KVICK1oIp40e-AN); (3) purified lipoprotein particle (LPP)

carriers (HDL, VLDL, LDL, chylomicron) isolated from plasma

using sequential density ultracentrifugation (SD-UC) and fast-

protein liquid chromatography (FPLC) (Li et al., 2018b); (4)

AGO2-positive carriers obtained by immunoprecipitation from

plasma (GSE124269); (5) pellets from plasma obtained by an

ultracentrifugation (UC) protocol commonly used for isolating

extracellular vesicles from cell supernatants (UC-plasma) (EXR-

SADAS1EXER1-AN); (6) pellets from prostate cancer patients’

serum obtained by a UC protocol (UC-serum) (Smith et al.,

2018); and (7) extracellular vesicles isolated from prostate can-

cer patients’ serum obtained utilizing nanoscale deterministic

lateral displacement (nanoDLD) (Smith et al., 2018; Wunsch

et al., 2016). Because we observed high heterogeneity within

CTs (Figure 4), instead of using an average, we used the highest

correlation to a member of a CT as an indication of CT member-

ship. Below, we summarize these results and additional valida-

tion assays for each of the six CTs.

CT1 Associates with LD Vesicles

CT1 is detected in plasma, serum, CSF, and urine and correlates

with OptiPrep fractions 4–7 (Figures 4 and S5A), corresponding to

the density of extracellular vesicles. Serum and plasma fractions
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4–7 are CD9 (25 kDa)- and flotillin (49 kDa)-positive by western

blot (Figures S5E and S5F, respectively). Mass spectrometry of

fractions 4–7 followed by pathway enrichment analysis (Fig-

ure S5H) revealed protein enrichments consistent with extracel-

lular vesicles: in the biological process category, we detected

exocytosis and secretion pathways, and in the cellular compo-

nent category, we detected membrane-bounded vesicles, extra-

cellular exosomes, and organelle lumen-parts. Consistent with an

extracellular vesicle carrier, the CT1 cluster includes the LDV pro-

files (Figure 4). Additionally, extracellular vesicles isolated from

serum by UC show the highest correlation with CT1 (Figures 4

and S6A). Deconvolution of these UC-serum samples resulted

in the detection of a profile with high correlation with CT1 (Fig-

ure S6B) with the samples being primarily composed of that

profile (Figure S6C). However, deconvolution identifies potential

contamination of other RNA cargo types (CT3B and CT4) consis-

tent with the detection of impurities by UC (Figure S6D) (Lobb

et al., 2015).

CT2 Associates with Lipoproteins

CT2 is detected in plasma and saliva and correlates with

OptiPrep fractions 9–12 (Figures 4 and S5A), consistent with

the density of HDL. Western blotting showed that serum and

plasma fractions 9–12 are positive for the HDL protein marker

APOA1 (Figure S5G). Mass spectrometry of fractions 9–12 fol-

lowed by pathway enrichment analysis revealed protein enrich-

ments consistent with lipoproteins: in the biological process

category, we detected enrichments in lipoproteinmetabolic pro-

cess and lipid metabolic process pathways, and in the cellular

component category, we detected enrichment of spherical-

HDL particle pathways (Figure S5H). Consistent with a lipopro-

tein carrier, CT2 includes the HDL profiles used to identify infor-

mative RNAs (Figure 4). Additionally, CT2 members show high

correlation with profiles of an independent panel of lipoprotein

carriers (HDL, LDL, VLDL, chylomicron) isolated using SD-UC

and FPLC (Li et al., 2018b) (Figure 4). Previous reports have indi-

cated differences in RNA cargo across lipoprotein subtypes in

both human and mouse (Allen et al., 2018; Vickers et al.,

2011); although deconvolution does not address this fine

level of resolution, it does suggest that when considered in the

broader context of non-lipoprotein cargo types, cargos of

different lipoprotein carriers isolated from human plasma show

high similarity (Figure S7A, LPP).

CT3A and CT3B Associate with AGO2-Positive

Ribonucleoprotein, while CT3C Does Not

CT3A is detected in plasma and CSF, CT3B is detected in all bio-

fluids except saliva, and CT3C is detected in all biofluids except

urine (Figure 4). A significant fraction of these cargo types may

escape pelleting due to high iodixanol levels and may therefore

be overshadowed by other components within specific OptiPrep

fractions. Members of CT3B show high correlation with the ex-
Figure 4. Deconvolution, Correlation, and Clustering of exRNA Atlas D

Top self-heatmap represents the correlation scores of the 68 estimated cargo profi

deconvolution of 21 individual analysis datasets in the exRNA Atlas. The top dend

clusters named Cargo Types: CT1, CT2, CT3A, CT3B, CT3C, and CT4. The ta

detected. The rows in the bottom of the figure show correlations of specific profil

*Fractions are deconvoluted profiles corresponding to that given fraction. Additi

See also Figures S4–S7, Table S1, and STAR Methods.
RNA profiles of AGO2 immunoprecipitate while CT3A members

show a moderate correlation indicating possible relation (Fig-

ure 4). CT3C does not show the same association, suggesting

that CT3C may be contained by an AGO2-negative carrier or

an AGO2-containing carrier where AGO2 is not accessible for

immunoprecipitation. Additionally, plasma UC pellet correlates

with CT3B (Figures 4 and S6A), indicating the presence of RNP

particles in the pellet. In contrast, serum UC pellet does not

correlate, consistent with experimental evidence that exRNAs

trafficked by protein complexes in serum are destroyed or ab-

sorbed during the coagulation process (Max et al., 2018).

CT4 Associates with Vesicular Carriers of Variable

Density

CT4was shown to be themost distinct cargo type and is detected

in all five biofluids; however, CT4 could not be definitively associ-

ated with a carrier of specific density (Figures 4 and 6SA). Para-

doxically, CT4 correlates with OptiPrep fractions 1–3 (lowest

density) from serum and plasma, while also correlating with

much higher density fractions (HDVs) from the HMC-1 superna-

tant (Figure 4). One possible explanation for this paradox is that

the previously recognized atypical content of exosomes derived

from the HMC-1 cell line (Vukman et al., 2017) may account for

their unusually high density compared to exosomal density in

human body fluids. Consistent with vesicles being indeed present

in the low-density fraction, mass spectrometry of fractions 1–3

followed by pathway enrichment analysis revealed protein enrich-

ments consistent with vesicles: in the biological process cate-

gory, we detected enrichment for vesicle-mediated transport,

and in the cellular component category, we detected enrichment

for cytoplasmic membrane-bounded vesicles and endocytic

vesicles (Figure S5H). Additionally, we observed high correlation

between vesicles (60 to 150 nm particles) purified using size

exclusion nanoDLD technology from serum and CT4 (Figures 4

and S6A) (Smith et al., 2018; Wunsch et al., 2016). Deconvolution

of these samples revealed a profile highly correlated with CT4

(Figure S6B) with the samples composed primarily of that profile

(Figure S6C). Deconvolution also indicates that the nanoDLD

vesicles are purified consistently and show negligible contamina-

tion from other cargo types based on per-sample CT proportions

(Figure S6D).

Cargo Types Show Distinct RNA Biotype Composition
Wenext quantified relative abundance of ncRNA biotypes for the

six CTs by calculating the sum of all estimated reads per million

(RPM) for each biotype across all members of each cargo type.

Biotype proportions for CT1, CT2, and CT4 were similar to the

proportions obtained from previous profiling studies of likely cor-

responding carriers (Figure S7A). CT3B-AGO2 has the largest

proportion of miRNAs, consistent with AGO2 protein complexes

being carriers of miRNA. The CT3B subtype also shows much
atasets

les, 2 HDV profiles, 2 LDV profiles, and 3HDL profiles (75 total profiles) from the

rogram represents the hierarchical clustering of the 75 profiles into 6 top-level

ble under Cargo Type names shows the biofluids where the cargo types are

es (as indicated by the labels on the left) with the 75 profiles and Cargo Types.

onal details provided in Figure S5.

Cell 177, 463–477, April 4, 2019 471



Figure 5. Census Analysis of Abundant

miRNAs

(A) Venn diagram representing the overlap be-

tween highly abundant miRNAs expressed at >10

mean RPMs in at least 50% samples for that bio-

fluid within the Atlas. Black circle indicates the 44

miRNAs abundantly expressed within all 5 bio-

fluids. Gray circle indicates the 50 miRNAs ex-

pressed within all biofluids except urine.

(B) Heatmap representing the RNA expression

(log10) level of the 94 highly abundant miRNAs

across the predicted CT1–CT4. Color bar indicates

if the miRNA was present in all 5 biofluid (black 44)

or across 4 biofluids excluding urine (gray 50).
higher abundance of Y RNAs than other cargo types, consistent

with previously observed abundance of Y RNAs in whole bio-

fluids (Chakrabortty et al., 2015; Dhahbi et al., 2013; Yeri et al.,

2017). These results should be considered in the context of large

sample-to-sample variability in biotype proportions observed

across Atlas studies (Figure S7B) and in the context of differ-

ences in library preparation protocols (Figure S5D).

Integration of exRNA Profiling Data Allows for a Census
of Abundant miRNA
While the physiological role of miRNAs in human biofluids is still

poorly understood, we reasoned that the miRNAs that are highly

abundant in relevant biofluids may also be physiologically rele-

vant. To identify such miRNAs for each biofluid, we developed

a census of miRNAs present at >10 RPM (mean) in at least

50% of samples for that biofluid within the Atlas. A total of 44

miRNAs (Figure 5A, black), were expressed across all five bio-

fluids and an additional 50 miRNAs (Figure 5A, gray) were ex-

pressed across four biofluids, but not urine. Complementing

these results, a tool is available on the Atlas landing page to

calculate a census of miRNAs and other ncRNAs based on

user-selected thresholds using Atlas data. We also examined

distribution of these 94 miRNAs across cargo types, which are

represented at variable levels across the six CTs (Figure 5B).

Widely Used RNA Isolation Methods Show Cargo-
Type Bias
The diversity of RNA isolation kits used in different studies is

one potentially large source of variability. To assess potential

kit biases for specific RNA content, an ERCC working group

performed a multi-site study that evaluated 10 widely used

RNA isolation methods used to extract RNA from a shared

pool of human plasma and serum samples. The results of this

analysis, as well as the original data, are available in the compan-

ion paper (Srinivasan et al., 2019).

As part of this collaborative effort, we assessed kit biases to-

ward preferentially detecting specific CTs. For this purpose, we

deconvoluted exRNA-seq profiles of RNA extracts obtained by

applying different kits to identical plasma and serum samples

(STAR Methods). The deconvolution algorithm estimated cargo
472 Cell 177, 463–477, April 4, 2019
profiles (k = 4) in the combined RNA-seq

dataset using a stability criterion (STAR

Methods). Correlation of the four profiles
(across the 81 informative ncRNAs) to the six CTs classified

two of them as belonging to CT1 and CT4, and the other two

(referred as CT3B.1 and CT3B.2) as belonging to CT3B. Hierar-

chical clustering of the predicted per-sample proportions (Fig-

ure 6A, top heatmap) shows several sample clusters with similar

composition based on carrier proportions. Clustering suggests

several isolationmethods are biased toward certain cargo types.

However, per-sample proportion clustering does not reflect bio-

fluid type. Additionally, certain sample clusters show similar gene

expression profiles across observed groups of differentially ex-

pressed miRNAs (groups 1–4) (Srinivasan et al., 2019). These

groups of miRNAs seem to be preferentially isolated by specific

RNA isolation methods (Figure 6A, center heatmap). Particularly,

samples with a relatively high proportion of CT1 have elevated

levels of group2miRNAs. Theestimatedprofile ofCT1 (Figure6A,

left heatmap) indicates a similar expression pattern across the

four miRNA groups. Furthermore, samples with a relatively high

proportion of CT3B.1 have elevated levels of group 1 miRNAs;

the CT3B.1 estimated profile shows similar miRNA expression.

Overall, the RNA isolation methods showed a diversity of pref-

erences for specific CTs (Figure 6B). CT1 was captured in rela-

tive low abundance by all kits with ME and Millipore producing

near zero amounts. CT4 was captured at highest relative abun-

dance by all kits and was particularly enriched by ME, Millipore,

and MiRCury kits. CT3B.1 was captured by all kits in small rela-

tive abundance and was highly enriched by miRNeasy. CT3B.2

was captured by all kits and was the overall second most abun-

dant cargo type after CT4 (Figure 6B). We note that the deconvo-

lution algorithm estimates only proportions of carrier RNA, not

their absolute amounts, and a lower proportion of a specific CT

does not imply lower absolute amounts of RNA.

Deconvolution of Plasma exRNA Profiles Detects
Physiologically Relevant Pathway Signals
We next explored the potential of the deconvolution method to

improve interpretation of case-control exRNA profiling studies.

We reasoned that, by reducing variance, the method may

help reveal biological signals that would otherwise be over-

shadowed by the variance. Moreover, by assigning any ncRNA

differences between cases and controls to specific cargo



Figure 6. Deconvolution Estimates Cargo-

Type Composition among RNA Isolation

Methods

(A) Top heatmap shows hierarchical clustering of

per-sample proportions of CTs predicted through

computational deconvolution of plasma and

serum biofluid samples. The biofluid and RNA

isolation methods are color-coded above the

heatmap. Center heatmap shows hierarchical

clustering results of sample gene expression

profiles (clustering of miRNAs was performed;

samples are ordered based on dendrogram of per-

sample proportions). groups 1–4, indicated to the

right of the heatmap, are sets of miRNAs that are

preferentially isolated by specific RNA isolation

methods. Left heatmap shows expression profiles

of the four CTs estimated through deconvolution

across miRNA groups 1–4.

(B) Box-plot of per-sample proportions of four CTs

estimated through computational deconvolution

for all ten RNA isolation methods.
types, the method may provide deeper insights into the

biology of any detected differences. Deconvolution of Atlas

studies revealed that the proportions of CTs varied from sam-

ple to sample. In most case-control studies, however, there

were no systematic differences in proportions between cases

and controls (Figures S7C–S7F). One exception was the exer-

cise challenge study (Shah et al., 2017), which compared pre-

and post-exercise (Bruce treadmill test protocol) exRNA

profiles of human plasma. For this dataset, deconvolution re-

vealed pre- versus post-exercise differences in cargo type

proportions and in ncRNA abundances within the cargo types.

Because both types of differences could be demonstrated

within this single study, we chose it as an example to compre-

hensively illustrate the power of deconvolution to detect rele-

vant biological signals.

Deconvolution of the exercise study dataset revealed three

cargo profiles (P1–P3) that were assigned to CT2, CT3B, and

CT4 cargo types based on correlation across the 81 informative
ncRNAs (Figure 7A). A significant (p =

0.001) increase in CT4 proportion was

observed in the pre-exercise versus

post-exercise group (Figure 7B). We

note that because deconvolution esti-

mates relative proportions of each

component, an increase in one profile

(CT4) is coupled to a reduction in the

other components (CT2, CT3B); while

change in CT4 abundance appears to

be most prominent, simultaneous abso-

lute changes in two or more components

cannot be ruled out.

To detect miRNA differences pre- and

post-exercise, we deconvoluted the pre-

and post-exercise groups of profiles

separately. A t test detected 53 differen-

tially expressed miRNAs across the

three CTs (Figure 7C), 17 (CT3B: 1,
CT4: 16) of which were previously detected without deconvolu-

tion (Figure 7C, yellow circle). We identified pathways enriched

for the differentially expressed miRNAs within each cargo type

(Figure 7D). Strikingly, the four most significant pathways

affected by the differentially expressed miRNAs within CT4

were those relating to striated muscle contraction and cell

motility (Figure 7D, pink). CT2 showed miRNA changes consis-

tent with an energy metabolism challenge (Figure 7D, yellow).

Intriguingly, CT2 is associated with lipoprotein carriers, raising

the question about the role for HDL and lipoproteins as con-

veyors of exRNA-mediated homeostatic responses to physical

activity. In contrast to these findings, previously published anal-

ysis of the same dataset without deconvolution did not reveal

any exRNA carriers or pathways that were specifically related

to physical activity (Shah et al., 2017). Taken together, these re-

sults illustrate the potential of the deconvolution method to

improve the detection and interpretation of potentially physio-

logically relevant exRNA perturbations.
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Figure 7. Deconvolution of Exercise Case Study

(A) Heatmap representing the correlation between the 3 cargo profiles modeled for Atlas Dataset: EXR-SADAS1EXER1-AN and the cargo profiles estimated from

individual Atlas datasets that form the 6 CTs.

(B) Difference in abundance of each cargo profile between baseline samples and post-exercise samples (*p = 0.001). See also Figure S7.

(C) Number of differentially expressedmiRNAswithin each cargo profile. DESeq2 was used to identify differentially expressedmiRNAs in the exceRpt-processed

exercise dataset samples (yellow circle, Shah et al. [2017]). For methodological details see STAR Methods.

(D) mirnaPath was used to identify pathway enrichment for miRNAs differentially expressed for each cargo profile. Yellow highlighted boxes indicate pathways

related to energy metabolism. Pink highlighted boxes indicate pathways related to muscle contraction and cell motility. For methodological details, see STAR

Methods.
DISCUSSION

Deconvolutional meta-analysis of datasets within the Atlas re-

veals six major exRNA cargo types. Remarkably, the cargo

types are detectable across diverse human biofluids. Five of

the cargo types correspond to previously isolated and profiled

vesicular and non-vesicular exRNA carriers. Taken together,

these results constitute a milestone toward the construction

of a map of extracellular RNA communication in humans.

Our results also indicate that the heterogeneity of exRNA car-

riers and cargo types exceeds the capabilities of current

experimental methods to reproducibly isolate and study

defined carrier subpopulations and their cargo. While this

problem clearly calls for the development of new carrier isola-

tion methods, we have now demonstrated the power of

computational deconvolution to complement and enhance

such methods and tools.

While our findings suggest associations of cargo types with

distinct carriers, other interpretations may not be definitively

excluded. For example, RNA cargo may correspond to different

mechanisms by which exRNA carriers are loaded and not fixed
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based on the carriers themselves. Moreover, the cargo types

and loading mechanisms may vary by cell type. While future

research will be required to address these possibilities, we antic-

ipate that the cargo types inferred from the Atlas will provide a

starting reference map that will inform and be refined by future

studies.

Our study did not address directly the significant sequence-

specific bias that appears to originate during library preparation

and that may lead to up to four orders of magnitude differences

in the depth of sampling of the same small RNA species by

different library preparation protocols (Fuchs et al., 2015; Giral-

dez et al., 2018; Hafner et al., 2011; Hansen et al., 2010; Jayap-

rakash et al., 2011). These protocol-specific biases at least in

part explain the fact that not all of the selected 81 ncRNAs

are equally informative for deconvolution across all studies.

The biases may also explain the large variation in relative

amounts of ncRNA biotypes that we observe across different

studies such as the striking contrast between the high abun-

dance of lincRNAs in RNA-seq profiles obtained using most

recent library preparation methods (Figure S5D) compared to

their low abundance in the current version of the exRNA Atlas



(Figure S7A). Overall, however, our results suggest that the pat-

terns required for deconvolution were not overshadowed by

these biases, making cross-study comparison possible despite

the differences between RNA isolation and library preparation

protocols.

To enable wide application of deconvolution, the current Atlas

pipeline combines the exceRpt pipeline with a deconvolution

step. A number of options are available to potential users to

use this combined pipeline: (1) direct Atlas submission, (2) web

tool via the Genboree Workbench as a self-service for pre-pub-

lication analysis, and (3) private installation of the exceRpt

pipeline and the deconvolution software. Up-to-date informa-

tion about these resources is available at https://exrna-atlas.

org/exat/tools/deconvolution.

In summary, our results provide the first outline toward amapof

extracellular RNA communication in humans. We demonstrate

the power of sharing exRNA data and tools through the exRNA

Atlas resource to enhance interpretation of exRNA profiling data

from individual studies as well as across studies. By catalyzing

the virtual cycle of data sharing and knowledge creation, the

Atlas resource is lowering the barriers toward the discovery of

biological principles of extracellular RNA communication and

their eventual translation into actionable biomarkers and exRNA

therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-CD9 Abcam Cat# ab92726; RRID: AB_10561589

Rabbit monoclonal anti-Flotillin-1 Cell Signaling

Technology

Cat# 18634; RRID: AB_2773040

Mouse monoclonal apoA-I Antibody (B-10) Santa Cruz

Biotechnology

Cat# sc-376818; RRID: AB_2797313

Mouse monoclonal IgGk BP-HRP Santa Cruz

Biotechnology

Cat# sc-516102; RRID: AB_2687626

Goat polyclonal IgG (H+L) Thermo Fisher

Scientific

Cat# A10547; RRID: AB_2534046

Critical Commercial Assays

miRNeasy Kit QIAGEN 217084

RNA Clean & Concentrator Zymo Research SKU R1013/4

OptiPrep Sigma-Aldrich SKU D1556

NanoDLD chips Smith et al., 2018 N/A

Deposited Data

Analyzed RNA-seq data for exRNA Atlas study: ‘‘Profiles of

Extracellular RNA in Cerebrospinal Fluid and Plasma from

Subarachnoid Hemorrhage Patients’’

This paper GEO: GSE121868

Raw and analyzed RNA-seq data for exRNA Atlas study: ‘‘Identifying

novel

small RNA biomarkers unique to patients with gastric cancer’’

This paper dbGaP: phs001767.v1.p1; GEO: GSE121870

Analyzed RNA-seq data for exRNA Atlas study: ‘‘ULMC Plasma and

serum exRNA from healthy donors at University of Michigan’’

This paper GEO: GSE121869

RawRNA-seq data for exRNA Atlas study: ‘‘Plasma extracellular RNA

profiles in healthy and cancer patients’’

Yuan et al., 2016 GEO: GSE71008

Raw and analyzed RNA-seq data for exRNA Atlas study: ‘‘Identifying

urinary RNA as non-invasive biomarkers for progression of chronic

kidney disease’’

This paper GEO: GSE121978

Analyzed RNA-seq data for exRNA Atlas study: ‘‘small RNA

Sequencing of CSF Samples from Patients with IVH’’

This paper GEO: GSE121867

Analyzed RNA-seq data for exRNA Atlas study: ‘‘Small RNA-seq

during acute maximal exercise reveal RNAs involved in vascular

inflammation and cardiometabolic health’’

This paper GEO: GSE121874

Analyzed RNA-seq data for exRNA Atlas study: ‘‘Identifying novel

small RNA biomarkers for electrical andmechanical remodeling post-

MI (myocardial infarction)’’

This paper GEO: GSE121875

Raw and analyzed RNA-seq data for exRNA Atlas study: ‘‘High-

Density Lipoproteins - small RNA Signatures in Systemic

Erythematosus Lupus.’’

This paper GEO: GSE121865

Raw RNA-seq data for exRNA Atlas study: ‘‘Total Extracellular Small

RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects.’’

Yeri et al., 2017 dbGaP: phs001258.v1.p1

Raw RNA-seq data for exRNA Atlas study: ‘‘Profiles of Extracellular

miRNA in Cerebrospinal Fluid and Serum from Patients with

Alzheimer’s and Parkinson’s Diseases Correlate with Disease Status

and Features of Pathology’’

Burgos et al., 2014 dbGaP: phs000727.v1.p1

Raw RNA-seq data for isolated low-density (LD) and high-density

(HD) exRNA profiles

Lässer et al., 2017 BioProject: PRJNA343960

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw and analyzed RNA-seq data for isolated lipoprotein particle

(LPP) exRNA profiles

This paper GEO: GSE124131

Raw and analyzed RNA-seq data for serum ultracentrifugation (UC)

and nanoDLD exRNA profiles

This paper GEO: GSE123736

Analyzed RNA-seq data for AGO2 exRNA profiles This paper GEO: GSE124269

Analyzed RNA-seq data for OptiPrep exRNA profiles This paper GEO: GSE123864

Analyzed RNA-seq data for RNA isolation exRNA profiles This paper GEO: GSE123865

Software and Algorithms

Extracellular RNA Atlas Subramanian et al., 2015 https://exrna-atlas.org

exceRpt Rozowsky et al., 2019 https://github.gersteinlab.org/exceRpt/

DESeq2 Love et al., 2014 10.18129/B9.bioc.DESeq2

t-SNE van der Maaten and

Hinton, 2008

https://github.com/jdonaldson/rtsne/

PCA Abdi and Williams, 2010 R package: stats

Expression Deconvolution (XDec) This paper https://github.com/BRL-BCM/XDec

Epigenomic Deconvolution (EDec) Onuchic et al., 2016 https://github.com/BRL-BCM/EDec

mirnaPath Cogswell et al., 2008 10.18129/B9.bioc.miRNApath

Pathway Finder Slenter et al., 2018 https://www.wikipathways.org/index.

php/WikiPathways

BioGPS Wu et al., 2016 http://biogps.org/

Genboree Workbench Amin et al., 2015 http://genboree.org/site/

STRING Szklarczyk et al., 2015 https://string-db.org

Other

FAIRsharing.org identifier for exRNA Atlas McQuilton et al., 2016 FAIRsharing: biodbcore-001137
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aleksan-

dar Milosavljevic (amilosav@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

exRNA Atlas Sample Datasets
We utilized the following datasets from the exRNA Atlas (https://exrna-atlas.org): Accession ID: EXR-KJENS1WBaSro-AN (n = 523,

GEO: GSE121868), EXR-KJENS1RID1-AN (n = 428, dbGaP: phs001258.v1.p1), EXR-KJENS1sPlvS2-AN (n = 345, dbGaP:

phs000727.v1.p1), EXR-DWONG1qf3tcS-AN (n = 198, dbGaP: phs001767.v1.p1; GEO: GSE121870), EXR-MTEWA1cHYLo6-AN

(n = 197, GEO: GSE121869), EXR-TPATE1OqELFf-AN (n = 192, GEO: GSE71008), EXR-MBITZ12SHVIr-AN (n = 80, GEO:

GSE121978), EXR-KJENS12WGutU-AN (n = 70, GEO: GSE121867), EXR-SADAS1EXER1-AN (n = 62, GEO: GSE121874), EXR-

SADAS1UJ0CzW-AN (n = 43, GEO: GSE121875), and EXR-KVICK1oIp40e-AN (n = 6, GEO: GSE121865). Note that GEO contains

only processed data for EXR-KJENS1WBaSro-AN, EXR-DWONG1qf3tcS-AN, EXR-MTEWA1cHYLo6-AN, EXR-KJENS12WGutU-

AN, EXR-SADAS1UJ0CzW-AN, and EXR-SADAS1UJ0CzW-AN - raw data for these datasets are either currently being processed

for dbGaP or are undergoing IRB evaluation.

High-Density and Low-Density exRNA Profiles
We utilized the High-Density (SRX2191757, SRX2191758) and Low-Density samples (SRX2191759, SRX2191760) from Lässer et al.

(2017). Raw data was downloaded from SRA (BioProjectID: PRJNA343960) and reprocessed with exceRpt.

HDL exRNA Profiles
We utilized the HDL (Healthy Control) small RNA-seq samples deposited into the exRNA Atlas by Kasey Vickers from Vanderbilt

University School of Medicine (EXR-KVICK1oIp40e-AN, GEO: GSE121865). Samples were collected from plasma and RNA was

isolated utilizing the miRNeasy (QIAGEN) kit.
Cell 177, 463–477.e1–e7, April 4, 2019 e2

mailto:amilosav@bcm.edu
https://exrna-atlas.org
https://exrna-atlas.org
https://github.gersteinlab.org/exceRpt/
https://github.com/jdonaldson/rtsne/
https://github.com/BRL-BCM/XDec
https://github.com/BRL-BCM/EDec
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
http://biogps.org/
http://genboree.org/site/
https://string-db.org


Lipoprotein Particles exRNA Profiles
RNA-seq profiles of purified lipoprotein (LPP) carriers (HDL, VLDL, LDL, Chylomicron) were isolated from plasma using SD-UC and

FPLC (Li et al., 2018b). Associated data (n = 4) can be found on GEO: GSE124131.

AGO2 exRNA Profiles
We utilized AGO2 small RNA-Seq profiles isolated using anti-AGO2 immunoprecipitation from plasma from healthy human controls.

Associated processed data (n = 3) can be found on GEO: GSE124269. Related raw data is currently undergoing IRB evaluation and

will be released on dbGaP once evaluation is complete.

Plasma Ultracentrifugation exRNA Profiles
We utilized the extracellular vesicles (Healthy Control) small RNA-seq samples deposited into the exRNA Atlas by Saumya Das

(EXR-SADAS1EXER1-AN, GEO: GSE121874). Samples were collected from plasma and RNA was isolated utilizing the MiRVana

Paris (Ambion) kit.

HUMAN SUBJECTS

OptiPrep
For the OptiPrep samples, 250 mL whole blood was collected from five adult female and five adult male consenting donors super-

vised by Dr. Louise C. Laurent at the University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive

Sciences and Sanford Consortium for Regenerative Medicine. These samples were utilized to generate the serum and plasma

OptiPrep fractions and whole biofluid. Associated processed data (n = 78) can be found on GEO: GSE123864. Related raw data

is currently undergoing IRB evaluation and will be released on dbGaP once evaluation is complete.

Serum UC/nanoDLD
Whole blood samples (2 to 5 ml) were collected by the team of Dr. Ashutosh Tewari at the Icahn School of Medicine at Mount Sinai,

New York, Department of Urology by venipuncture from 9 consenting adult male Prostate Cancer patients under Institute Review

Board approved protocols (GCO # 06-0996, 14-0318, and surgical consent) in purple capped tubes. After blood collection, serum

was isolated using BD Vacutainer blood collection tubes, serum separation tubes (Fisher Scientific, Cat # 368016) and kept

at �80�C until further steps were taken for exosome isolation. Serum was rapidly thawed prior to EV isolation with both nanoDLD

and UC. Associated data (n = 14) can be found on GEO: GSE123736.

RNA Isolation Kits Study
Associated processed data (n = 182) can be found onGEO: GSE123865. Related raw data is currently undergoing IRB evaluation and

will be released on dbGaP once evaluation is complete.

METHOD DETAILS

Data Submission to Atlas
Each submitting lab is assigned a dedicated area on the FTP server where submissions can be uploaded. Users upload three types of

files: a data archive, a metadata archive, and amanifest file. For RNA-seq data, the data archive contains all sample sequencing files

as well as an optional oligo spike-in file. For qPCR data, the data archive contains raw target value files. The metadata archive

contains a selection of different tab-delimited files, each describing metadata associated with some entity. Different metadata

entities include: Submissions, Studies, Runs, Biosamples, Experiments, Donors, Analyses, and qPCR Targets. All submitted

metadata are validated against the relevant models stored in GenboreeKB. Most entities are required for submission, but Analyses

entities are automatically generated by the data submission pipeline. The qPCR Targets entity is only required if the user is submitting

qPCR data. The manifest file provides important supplementary information for the submission—for instance, for RNA-seq data

submissions, it connects each sample data file with its respective biosample metadata.

Upon detecting a complete set of new submission files in one of the assigned areas, a monitor validates the submission content

on a step-by-step basis to ensure correctness and integrity of the content and either (a) notifies the submitter via email about any

detected problems, together with detailed instructions on how to fix them, or (b) arranges to run the processing pipeline on a batch

execution cluster. The pipeline is a multi-phase, multi-job workflow with several parallel execution phases. The monitor creates a job

plan for the pipeline workflow, pre-determining any job-dependencies. The job plans employ the more typical moderate resource

level, so as not to waste computational resources and to increase the degree of parallelism. However, jobs within parallel phases

do occasionally, if rarely, fail due to insufficient resources, such as RAM. The pipeline will automatically re-run such jobs with

more resources; furthermore, it will update the job-dependencies in the plan initially created by the monitor. The parallel execution

phase includes running the exceRpt pipeline on each sample or mapping to all exogenous genomes. Upon successful completion of

the pipeline, the raw data and processed results are moved to dedicated storage areas, and accompanying metadata for the

processed samples are stored in GenboreeKB. Depending on the restrictions defined by the ERCC Data Sharing and Access Policy
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(https://exrna.org/resources/data/data-access-policy-summary/), relevant files are also made available in the public Genboree FTP

server for download through the Atlas.

exRNA Atlas data navigation and content accessibility
The exRNA Atlas provides users with the ability to effectively find and navigate sample profiles using a rich set of metadata. The Atlas

site supports four different search methods. First, the faceted charts on the landing page allow users to select profiles based on a

combination of health conditions, biofluid, exRNA source, and/or RNA isolation experimental methods (Figure 1A). Second, two

different biosample partition grids allow users to select cross-sections of Atlas data based on a biofluid versus health condition

as well as a biofluid versus assay type. Third, users can select specific sample profiles via a tree selector that branches based on

anatomical location, biofluid, and health condition. Finally, users can visit the Datasets page to view sample profiles associated

with a particular study of interest. Each dataset is represented as a ‘‘card’’ which links to a metadata-centric view of the associated

sample profiles. Users can access various linkswithin the dataset cards to view associated publications (PubMed) and dataset pages

on external public data repositories such as GEO (Edgar et al., 2002), SRA (Leinonen et al., 2010), and dbGaP (Mailman et al., 2007),

and users can also download exceRpt summary files for exRNA-seq datasets. Summary files include a series of plots, including read

count distributions, heatmaps for fraction of aligned reads for each alignment step of exceRpt, QC results, biotype distributions and

read counts, miRNA abundance distributions, and exogenous genomic taxonomy hierarchical clustering plots. Each exRNA-seq

profile in the Atlas also has an associated ‘‘core results’’ archive. This archive contains read count information on an RNA-species

level for all of the RNA libraries, quality pass/failure status, and NCBI taxonomy trees generated from exogenous ribosomal RNA

and genomic reads. If data associated with a given sample have no data use restrictions, original sequence data (FASTQ) as well

as read alignment files (BAM) from the various alignment steps detailed above are also provided for download. Each qPCR profile

in the Atlas contains a list of target ncRNAs and their Ct values. Users can access the experimental protocol metadata for any given

RNA-seq or qPCR profile to learn more about the specific techniques used to generate that profile.

Physically Isolated OptiPrep Fractions
Serum and Plasma Samples

250 mL whole blood was collected from five adult female and five adult male donors using 19G needles using 60 mL syringes con-

taining either no additive (for serum) or 440 uL 0.5 M K2EDTA pH 8. The blood was then transferred into 50 mL polypropylene tubes

and allowed to sit at room temperature 10-60minutes. The tubes were then spun at 2,000 xg for 20minutes at room temperature. The

clear supernatant was transferred to a fresh tube and centrifuged again at 2000 xg for 10 min at room temperature. The serum or

plasma was then aliquoted into 1.5ml tubes and stored at �80�C.
Fractionation of Plasma & Serum Using Cushioned Density Gradient Ultracentrifugation (C-DGUC)

A volume of 0.8 mL of each serum and plasma sample was individually mixed with 39 mL of PBS, placed into an ultracentrifuge

tube with a nominal capacity of 39 mL, and underlaid with 2 mL 60% iodixanol. The tubes were spun at 100,000 xg for 2 hours

at 4�C. The bottom 3 mL (2 mL iodixanol cushion + 1 mL supernatant was removed, mixed, and underlaid under a step gradient

of iodixanol (5%–10%-20% iodixanol in 0.25 M sucrose, 1 mM EDTA, and 10 mM Tris-HCl, pH 7.4). This was spun at 100,000 xg

for 18 hours at 4�C. Twelve 1 mL fractions were then collected, starting from the top of the gradient as recently described

(Li et al., 2018a). This included OptiPrep fractions 1-3 (1.028 - 1.038 g/mL), 4-7 (1.046 - 1.079 g/mL), and 9-12 (1.106 -

1.259 g/mL). The refractive index was measured using the RBD-6000 Series Refractometer (LAXCO) and the conversion to density

was determined based on standard curve with 10/20/40/60% Iodixanol.

RNA Preparation

RNA from unfractionated serum and plasma samples (500 uL each) was isolated using themiRNeasymicro kit (QIAGEN) and concen-

trated using a Zymo RNA clean and concentrator-5 kit with a final elution volume of 7 uL. From each OptiPrep gradient, we combined

fractions 1-3 (numbered from the top of the gradient) to form the light fraction, fractions 4-7 for the low-density fraction, and 9-12 for

the high-density fraction. RNA was isolated from 500 uL of each of these combined fractions using the miRNeasy micro kit (QIAGEN)

and concentrated using a Zymo RNA clean and concentrator-5 kit with a final elution volume of 7 uL.

Sequencing

4 uL of each RNA sample was dried in a SpeedVacTM. The dried RNA was then resuspended in 1.2 uL of water and used to generate

a small RNA-seq library using the NEBNext Multiplex small RNA Library Prep kit. The library reactions were performed at 1/5 scale

using aMosquito HTS liquid handler. The 80 libraries were combined into 2 pools, which were size-selected using a Pippen Prep with

a cutoff of 117-180 bp. Each size-selected pool was run on one lane of a HiSeq 4000.

Western Blot Analysis

37.5uL of pool and 1uL of serum were resolved on a 10% gel and transferred onto PVDF. The membrane was blocked with 5% non-

fat milk for 1 hour at room temperature. Primary antibodies were diluted in 1%milk and blots were probed overnight at 4�C. The blot

waswashed four times for fiveminuteswith 0.1%PBST and incubated with either anti-mouse IgGHRP (Santa Cruz) or anti-rabbit IgG

HRP (Thermo Fisher) at a dilution of 1:1000 for 1 hour at room temperature. The membrane was washed four times for five minutes

with 0.1% PBST and rinsed with PBS. Blots were incubated with Amersham ECL Prime (GE Life Sciences) and imaged using the

ImageQuant LAS 4000.
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Mass Spectrometry Analysis

Patient serum samples were first immunodepleted of abundant serumproteins using the Human-14Multiple Affinity Removal System

column, according to manufacturer’s instructions (Agilent). Immunodepleted serum samples or fractionated samples were in-solu-

tion digested with trypsin using the filter aided sample preparation (FASP) method (Wi�sniewski et al., 2009). The resultant peptides

were desalted using a Sep-Pak cartridge (Waters) and dried. Formass spectrometry analysis, all peptides were trapped on a trapping

column and separated on a 75 mm x 15 cm, 2 mmAcclaim PepMap reverse phase column (Thermo Scientific) using an UltiMate 3000

RSLCnano HPLC (Thermo Scientific). Peptides were separated at a flow rate of 300 nL/min followed by online analysis by tandem

mass spectrometry using a Thermo Orbitrap Fusion mass spectrometer. Peptides were eluted into the mass spectrometer using

a linear gradient from 96% mobile phase A (0.1% formic acid in water) to 55% mobile phase B (0.1% formic acid in acetonitrile)

over 30 minutes. Parent full-scan mass spectra were collected in the Orbitrap mass analyzer set to acquire data at 120,000

FWHM resolution; ions were then isolated in the quadrupole mass filter, fragmented within the HCD cell (HCD normalized energy

32%, stepped ± 3%), and the product ions analyzed in the ion trap. Proteome Discoverer 2.2 (Thermo) was used to search the

data against human proteins from the UniProt database using SequestHT. The search was limited to tryptic peptides, with maximally

two missed cleavages allowed. Cysteine carbamidomethylation was set as a fixed modification, and methionine oxidation set as a

variable modification. The precursor mass tolerance was 10 ppm, and the fragment mass tolerance was 0.6 Da. The Percolator node

was used to score and rank peptide matches using a 1% false discovery rate.

Ultracentrifugation and nanoDLD Samples
Serum Samples

Whole blood samples (2 to 5 ml) were collected by the team of Dr. Ashutosh Tewari at the Icahn School of Medicine at Mount Sinai,

New York, Department of Urology by venipuncture from 9 consenting adult male Prostate Cancer patients under Institute Review

Board approved protocols (GCO # 06-0996, 14-0318, and surgical consent) in purple capped tubes. After blood collection, serum

was isolated using BD Vacutainer blood collection tubes, serum separation tubes (Fisher Scientific, Cat # 368016) and kept

at �80�C until further steps were taken for EV isolation. Serum was rapidly thawed prior to EV isolation with both nanoDLD and UC.

nanoDLD Isolation of EVs from Serum

NanoDLD chips were fabricated in 200 mm silicon wafers, diced into individual chips, wetted in DI water (Millipore) and primed with

5% bovine serum albumin (BSA) to reduce non-specific adsorption and fouling as described in Smith et al. (2018). Individual chips

were placed in custom-built acrylic flow cells prior to running serum samples. Post filtered (Whatman 0.2 um filters) serum samples

(500 ul) were processed using nanoDLD chips with a gap of G = 150 nm at a flow rate of 4 ml/min for 60 min. Sample fluid enriched in

EV’s of size between 60 nm and 150 nm (as determined by EM andNTA) was removed from the nanoDLD bump outlet. Samples were

stored at 4�C for RNA-seq processing.

UC Isolation of EVs from Serum

Serum samples were centrifuged in 5 mL tubes for 30 min at 2,000 g, 4�C. Supernatant was transferred into 50 mL tubes and tubes

were filled with PBS up to 3/4 levels of total volume, for 45 min of centrifugation at 12,000 g, 4�C. The supernatant was carefully trans-

ferred to UC tubes (Beckman coulter, thick wall polypropylene tube, Cat # 355642), and centrifuged for 2 hours at 110,000 g, 4�C.
Pellets were resuspended in 1 mL PBS and UC tubes were filled up to 3/4 of total capacity. After another round of centrifugation for

2 hours at 110,000, 4�C, pellets were resuspended in 1 mL PBS and stored at �80�C.
RNA Preparation

Total RNA was extracted from EV-enriched nanoDLD and UC processed serum using the Total Exosome RNA and Protein Isolation

Kit (Invitrogen 4478545). RNA quality was assessed by bioanalyzer (Agilent 2100 Bioanalyzer, RNA 6000 Pico Kit, Agilent Technol-

ogies) and stored at�20�C. cDNA Libraries were prepared for small RNAs using the SMARTer smRNA-seqKit for Illumina (Takara Bio

635030). Final library quality was verified with Qbit and bioanalyzer.

Sequencing

Next-generation RNA sequencing was performed using a HiSeq 4000 (Illumina), 100 base pair, single end reads at the New York

Genome Center.

QUANTIFICATION AND STATISTICAL ANALYSIS

exceRpt Sequence Processing
The extra-cellular RNA processing toolkit (exceRpt) was developed for the processing and analysis of RNA-seq data generated to

profile small exRNAs (Rozowsky et al., 2019). The pipeline is highly modular, allowing the user to define the libraries containing small

RNA sequences that are used during RNA-seq read-mapping, and includes an option to provide a library of spike-in sequences to

permit absolute quantitation of small-RNA molecules. The pipeline first performs a series of pre-processing and filtering steps

designed to remove contaminants and prepare the samples for processing by automatic detection and removal of 30 adaptor
sequences, sequences that map to a pre-specified oligo spike-in library, and 45S, 5S, and mitochondrial rRNAs. Next, the remaining

reads are aligned in parallel to the host genome and transcriptome, including mapping to miRNAs, tRNAs, piRNAs, GENCODE

annotations, and circular RNAs. Finally, any remaining reads are aligned to exogenous miRNAs and rRNAs, and then to full genomes

of bacteria, plants, fungi, protists, viruses, and certain vertebrates expected to be present in a human and/or mouse diet (Rozowsky
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et al., 2019). All alignments in exceRpt are performed using the Spliced Transcripts Alignment to a Reference (STAR) software (Dobin

et al., 2013), with the exception of alignment to oligo spike-in libraries, which is performed using Bowtie 2 (Langmead and Salzberg,

2012). After the pipeline finishes processing all submitted samples, a separate post-processing tool (Generate Summary Report) is

run on all successful pipeline outputs. This tool generates useful summary plots and tables that can be used to compare and contrast

different samples.

Deconvolution
The deconvolution of Onuchic et al. (2016) was first adapted to exRNA-seq data and then applied to the exRNA Atlas datasets (n = 21)

listed in Table S1. Where appropriate, the Figure Legends detail the statistical test and paraments used to analyze the data

corresponding to that Figure.

Gene Expression Transformation

For the first stage of the deconvolution algorithm, reads per million mapped reads (RPM) values are transformed using quantile

normalization across each ncRNA independently. Additionally, expression values are fit to a range of [0,1] using negative exponential

modeling: 1� e�ax;a = 1=maxðRNA expressionÞ
This transformation ensured that the values will be in the 0-1 range, similarly to beta methylation values in the original algorithm and

thus usable in the Stage 1 of deconvolution.

Identifying Informative ncRNAs for HD Vesicles, LD Vesicles, and HDL Protein Complexes

We began with our set of references that include samples from each group: HD vesicles, LD vesicles (Lässer et al., 2017) and

HDL protein complexes (Atlas ID: EXR-KVICK1oIp40e-AN). To select informative ncRNAs, we performed t tests comparing the

transformed expression levels over each RNA between each group of references against the rest of the reference profiles. We

selected those RNAs that showed significant differences (p value = 0.000015) in the comparison of each group against the rest of

the reference samples. Due to the greater similarity between HD vesicles and LD vesicles, we performed a specific t test comparing

only the samples in those two groups and included in our final set of probes those that had a significant difference (p value < 0.003).

Because of overlap between the RNA sets in each comparison, the final set contained 81 informative RNAs.

Identifying Informative ncRNAs for OptiPrep Fractions

Informative ncRNAs were identified for a set of independent RNA-seq profiles from OptiPrep fractionated serum/plasma samples.

Based on the OptiPrep fractionation, we pooled fractions 1-3 (1.028 - 1.038 g/mL), 4-7 (1.046 - 1.079 g/mL), and 9-12 (1.106 -

1.259 g/mL). We performed t tests comparing the transformed expression levels over each RNA between each group of fractions

to select informative ncRNAs.We selected those RNAs that showed significant difference (p value = 0.005) in the comparison against

the rest of the reference samples. The final set contained 80 informative ncRNAs.

Stability Criterion

Each Stage 1 deconvolution requires the number of constituent cargo profiles to be provided for the model. In order to select the

appropriate number of profiles, k, we generated 3 datasets using random 80% of the samples. Deconvolution was then performed

with the number of constituent cargo types varying from 3 to 6. We compared the estimated profiles and proportions across the

overlap in samples between each of the 3 subsets. The model that provided the highest correlations was selected. This process

is fully automated in the EDec (Onuchic et al., 2016) R package.

Deconvolution Stage 1 (Estimate Constituent Cargo Profiles of Complex Biofluids)

Deconvolution is modeled after Onuchic et al. (2016). Instead of using methylation beta values for the deconvolution of constituent

cell types within complex tissues, we used 0-1 transformed abundances, as described above.

Deconvolution Stage 2 (Estimate ncRNA Read Abundance of Constituent Cargo Profiles)

Stage 2 deconvolution is performed using the Read Counts or RPM sample profiles from the exRNA Atlas and the per-proportions

estimated in Stage 1. To calculate the abundance of each ncRNA biotype, wemultiply the per-sample proportion of each constituent

cargo profile by the sum of all reads per biotype per constituent cargo profile. Abundances can be normalized to 100% by taking the

ratio of each biotype over the total reads.

Identifying Differential Proportions of CTs between Case/Controls

AWilcoxon Sign Test is used to compare the distribution of per-sample proportions of each constituent cargo profile between sample

cohorts. Significance is indicated when p < 0.05.

Differential Expression of miRNAs between Case/Controls in Exercise Study

Stage 2was run on Baseline and post-Exercise samples separately in order to predict the constituent cargo profiles in read counts for

each cohort separately. Stage 2 outputs the mean expression and standard deviation for each miRNA. Using the mean and standard

deviation, we performed a simple t test on each constituent cargo profile (Baseline versus Exercise) to identify differentially expressed

miRNAs. OnlymiRNAs with amean expression greater than 1 in all samples were tested. FDR correction (Benjamini & Hochberg) was

used to account for multiple testing. miRNAs appear in their respective Venn as significant if FDR < 0.05 and log2(Fold Change) > 1

(Figure 6C, P1(CT2) circle, P2(CT3B) circle, P3(CT4) circle. For the Exercise Study, we also performed DESeq2 analysis to identify

differentially expressed miRNAs between Baseline and post-Exercise cohorts (Figure 6C, Shah et al., circle). This was done in order

to adjust for exceRpt processing compared to the original publication. DESeq2 was run using the read counts for 2 groups: Baseline

(n = 26) and post-Exercise (n = 26). Significant miRNAs were indicated if FDR < 0.05 and log2(Fold Change) > 1.
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Pathway Analysis
miRNApath

We utilized the miRNApath: Pathway Enrichment for miRNA Expression Data (Cogswell et al., 2008) R package available on

Bioconductor to identify miRNA-Gene-Pathway enrichment. miRNA-Gene association tables were downloaded from miRTarBase

(interactions other than weak were filtered out) and provided to miRNApath. Gene-Pathway association tables are provided by

miRNApath. Enrichment was performed on 3 sets of miRNAs (CT2, CT3B, CT4) using the default settings (Composite = TRUE,

Permutations = 0). Pathways are indicated as significant if p value < 0.05. Figure 6D only includes pathways with a significance

greater than 0.01.

Pathway Finder

Pathway Finder is a tool developed by the WikiPathways team and is integrated within the exRNA Atlas for viewing miRNAs in the

context of biological pathways. WikiPathways (Slenter et al., 2018) is an open, collaborative pathway curation platform that publishes

its data in a format readable by both humans andmachines. Pathway Finder takes a user-specified list of miRNAs as input, combines

that with pre-processed miRNA-to-gene mapping data, and produces as output a list of pathways that contain one or more miRNAs

from the user-specified list and their gene targets. The results are displayed in a table format, with one pathway per row. Selecting a

pathway from the table brings up an interactive diagram view of the result from WikiPathways with each miRNA and/or gene target

highlighted. Recent upgrades to the tool have improved performance and usability.

STRING

Utilizing STRING, a database of protein-protein interaction networks, we calculated the enrichment of our predicted protein networks

within each fraction using the whole biofluid as background knowledge (Szklarczyk et al., 2015).

DATA AND SOFTWARE AVAILABILITY

All exRNA Atlas data are publicly available at https://exrna-atlas.org. Atlas dataset accessions include: EXR-KJENS1WBaSro-AN

(n = 523, GEO: GSE121868), EXR-KJENS1RID1-AN (n = 428, dbGaP: phs001258.v1.p1), EXR-KJENS1sPlvS2-AN (n = 345, dbGaP:

phs000727.v1.p1), EXR-DWONG1qf3tcS-AN (n = 198, dbGaP: phs001767.v1.p1; GEO: GSE121870), EXR-MTEWA1cHYLo6-AN

(n = 197, GEO: GSE121869), EXR-TPATE1OqELFf-AN (n = 192, GEO: GSE71008), EXR-MBITZ12SHVIr-AN (n = 80, GEO:

GSE121978), EXR-KJENS12WGutU-AN (n = 70, GEO: GSE121867), EXR-SADAS1EXER1-AN (n = 62, GEO: GSE121874), EXR-

SADAS1UJ0CzW-AN (n = 43, GEO: GSE121875), and EXR-KVICK1oIp40e-AN (n = 6, GEO: GSE121865). Note that GEO contains

only processed data for EXR-KJENS1WBaSro-AN, EXR-DWONG1qf3tcS-AN, EXR-MTEWA1cHYLo6-AN, EXR-KJENS12WGutU-

AN, EXR-SADAS1UJ0CzW-AN, and EXR-SADAS1UJ0CzW-AN - raw data for these datasets are either currently being processed

for dbGaP or are undergoing IRB evaluation. The deconvolution algorithm can be found online: https://github.com/BRL-BCM/

XDec. The deconvolution results for the 21 datasets used in this paper’s deconvolution analysis are available via the Public Analysis

Results page. The Genboree source code is distributed under a GNU Affero GPL v3.0 license and is available at https://github.com/

BRL-BCM.
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Supplemental Figures

Figure S1. Overview of Metadata Stored in exRNA Atlas, Related to Figure 2

Infographic describing the key metadata entities modeled and stored in the exRNA Atlas. Relationships between different types of metadata are represented via

connective lines. For instance, a given biosample may have zero, one, or many qPCR targets, depending on whether that biosample has been profiled using

qPCR or RNA-seq (or both). In addition, donors may contribute multiple biosamples, and biosamples may come from multiple donors (via pooling).



Figure S2. exRNA Atlas Shows Large Amounts of Variability, Related to Figure 2

tSNE plot of exRNA Atlas samples show large amounts of variability across different studies.



Figure S3. Selected Informative ncRNA Set Explains Greater Variance Than Random Sets, Related to Figure 3

(A) Heatmap representing the gene expression (normalized) pattern of 81 informative ncRNAs that are differentially expressed between the LD vesicles, HD

vesicles, and HDL exRNA profiles (STAR Methods).

(B)We calculated the amount of explained variance when the deconvolution was utilized the 81 informative ncRNA set (Black Dot) that are differentially expressed

between the HD, LD, and HDL exRNA profiles (Figure S3). Additionally, we generated 100 sets of random ncRNAs that contained the same number of RNAs per

biotype as the informative set and measured the explained variance (Boxplot). p values were calculated using a one-sample t test.

(C) Boxplot represents the distribution of average expression of the 81 informative ncRNAs for each of the 21 analysis datasets.

(D) Each point indicates the correlation between the average expression of all 81 informative ncRNAs across all samples within each analysis dataset to the

calculated explained variance when deconvolution is performed using the 81 informative ncRNA set.



Figure S4. Comparison of Informative ncRNA Used for Deconvolution, Related to Figure 4

(A) Deconvolution was applied to 78 small RNA-seq profiles of the OptiPrep fractions and whole serum and plasma profiles using the original 81 informative

ncRNAs. The algorithm estimated three cargo profiles. Heatmap correlation scores indicate that P1 is a mixture of CT1, CT2 and CT4. P2 and P3 correlate to a

single cargo type CT3B and CT4, respectively.

(B) RNA count and biotype distribution of ncRNAs for the original set of 81 informative ncRNAs and the new ‘‘OptiPrep’’ set of 80 informative ncRNAs.

(C) Relative abundance of each ncRNA biotype for all datasets utilizing the NEBNext small RNA library preparation kit.

(D) Mean expression ([0-1] range transformation RPM) of the original set of 81 informative ncRNAs and the new ‘‘OptiPrep’’ set of 80 informative ncRNAs across

the LDV, HDV, HDL samples, all exRNA Atlas samples, and the 78 OptiPrep fractions and whole biofluid samples.



Figure S5. Deconvolution of Independent Fractionation Profiles, Related to Figure 4

(A) Deconvolution was applied to 78 small RNA-seq profiles of the OptiPrep fractions and whole serum and plasma profiles. The algorithm estimated four cargo

profiles. Heatmap of correlation scores indicates that each of the four constituent profiles correlate to a given CT or the super group CT3.

(B) Boxplot of correlation scores between each estimated cargo profiles versus the 6 Cts. Based on the correlation score distributions, each cargo profile has

significantly higher correlations to one CT (CT1, CT2, CT4) or group (CT3A-C) (ANOVA).

(C) Heatmap indicates the proportion of each predicted cargo profile (columns) within each sample (rows). Each cargo profile is named based on which fraction

pool contains the highest proportions of that cargo profile.

(legend continued on next page)



(D) Estimated fraction of ncRNA contributed from each biotype to each deconvoluted profile based on the sum of all estimated Reads Per Million (RPM) for each

ncRNA gene within each RNA biotype. Relative abundance was calculated by dividing by the sum of all reads for those 7 RNA biotypes.

(E) western blot analysis of anti-CD9 protein marker for serum and plasma: HEK293 (control), male and female: whole biofluid, fractions 1-3, fraction 4-7, fraction

9-12. Expected size for CD9 is 25 kDA.

(F) western blot analysis of anti-Flotillin protein marker for serum and plasma: HEK293 (control), male and female: whole biofluid, fractions 1-3, fraction 4-7,

fraction 9-12. Expected size for Flotillin is 49 kDA.

(G) western blot analysis of anti-ApoA1 protein marker for serum and plasma: HEK293 (control), for male and female: whole biofluid, fractions 1-3, fraction 4-7,

fraction 9-12. Expected size for ApoA1 is 28 kDA.

(H) Mass Spectrometry was performed on each of the OptiPrep pooled fractions (Fraction 1-3, Fraction 4-7 and Fraction 9-12) across all 5 males and 5 females.

Protein counts were summed for each fraction. Pathway enrichment proteins detected by STRING results indicate both Biological Process enrichment and

Cellular Component enrichment.



Figure S6. Deconvolution of Extracellular Vesicles and Isolated NanoDLD Extracellular Vesicles, Related to Figure 4
(A) Heatmap represents the correlation scores between the 75 cargo profiles and the profiles of ten extracellular vesicle profiles isolated from healthy plasma

samples deposited in the Atlas. Serum-Ultracentrifugation heatmaps represent the correlation scores between the 75 predicted cargo profiles and the profiles

(n = 5) of extracellular vesicle profiles isolated from prostate cancer serum samples. Serum nanoDLD heatmap represent the correlation scores between the

75 cargo profiles and the profiles (n = 9) of extracellular vesicle profiles isolated from prostate cancer serum samples using nano-DLD technology. All correlations

are estimated across the 81 informative ncRNAs.

(B) Deconvolution was applied to 24 small RNA-seq profiles of UC-Plasma (n = 10), UC-Serum (n = 5) and nanoDLD extracellular vesicle (n = 9) exRNA profiles.

The algorithm estimated three cargo profiles. Heatmap of correlation scores indicates that each of the three profiles correlate to a given CT.

(C) Heatmap indicates the proportion of each predicted cargo profile (columns) within each sample (rows).

(D) Box-plot indicating the per-sample proportions of each of the predicted cargo profiles specifically for the UC-Serum and nanoDLD samples.



Figure S7. Abundance of ncRNA Biotypes to Each Cargo Type and Per-Sample Proportions of Constituent Cargo Profiles within Case-

Control Studies, Related to Figures 4 and 7

(A) Bar chart of the median relative abundances across all deconvoluted members clustered within each CT for each of the predicted CT1-4. Additionally, we

included the profiles of physically isolated exRNA profiles (HD vesicles, LD vesicles, LPP, AGO2). We estimated the fraction of ncRNA species in each cargo type

by summing the reads of each ncRNA biotype and dividing by the sum of all estimated ncRNA Reads (displayed as Reads Per Million (RPM)).

(B) Boxplot indicating the distribution of abundance of reads per ncRNA biotype per sample. Median values were used to estimate the relative abundance in (A).

(C) Per-sample proportions of Wong Saliva samples show no differential abundance between healthy and samples from gastric patients. Wilcoxon Sign Test was

used to determine if proportion distribution was significantly different.

(D) Per-sample proportions of Patel Wong samples show no differential abundance between healthy and samples from gastric patients. Wilcoxon Sign Test was

used to determine if proportion distribution was significantly different.

(E) Per-sample proportions of Jensen Serum samples show no differential abundance between healthy and samples from gastric patients. Wilcoxon Sign Test

was used to determine if proportion distribution was significantly different.

(F) Per-sample proportions of Jensen CSF samples show no differential abundance between healthy and samples from gastric patients. Wilcoxon Sign Test was

used to determine if proportion distribution was significantly different.
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