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Spatial and Supply/Demand Agglomeration Economies:

An Evaluation of State- and Industry-Linkages in the U.S. Food System

Jeffrey P. Cohen and Catherine J. Morrison Paul

ABSTRACT

In this paper we postulate, measure, and evaluate the importance of cost-impacts
from spatial and industrial spillovers for analysis of economic performance.  To
accomplish this, we incorporate measures of “activity levels” of related states and
industries in a cost function model, and estimate their associated thick market and
agglomeration effects in terms of shadow values and elasticities.  We focus on the food
processing sector, the proximity of own-industry activity in neighboring states, and the
supply- and demand- side “drivers”, associated with urbanization and localization
economies (represented by the GSP and agricultural intensity in the own and neighboring
states).  We find significant cost-savings benefits to a states’ food processing sector of
being close to other food manufacturing centers (high levels of food processing activity
in neighboring states).  We also find it beneficial to be in a state with high purchasing
power (demand), and to have neighboring states that are agriculture-based (supply).
However, it also seems costly to actually be located in a heavily agricultural or rural
state, possibly due to diseconomies from “thin markets” associated with infrastructure
support and labor markets.

The authors are Assistant Professor of Economics, Barney School of Business,
University of Hartford and Professor, Department of Agricultural and Resource
Economics, University of California, Davis, and member of the Giannini
Foundation.
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Introduction
It seems increasingly clear that, especially in our “new era” of modern production

systems, interconnections between productive entities are substantive and expanding.

These interconnections have various dimensions – in particular spatial and industrial

(thick markets, and supply and demand agglomeration effects).  They also likely have

important productivity implications, that may be driving observed trends toward

urbanization and industrial concentration, and horizontal and vertical consolidation and

integration.  Understanding these productive inter-dependencies, and their potential to

motivate various types of conglomeration, requires modeling and measuring their

existence and impacts.  However, productivity studies are typically based on models that

preclude recognition of connections or externalities among economic entities, and

resulting spillovers affecting economic performance through cost economies.

In this paper we overview and implement a conceptual basis for including various

types of spillovers in cost and productivity analysis, following the development in Paul

(2001).  This treatment allows for temporal, spatial, and industrial linkages, through input

quasi-fixities, geographic proximity, and horizontal and vertical spillovers among own

and supplier/demander economic sectors.  Such spillovers are accommodated in the

analysis through adjustments to the structural model (shadow values from external

effects) and the stochastic structure (temporal and spatial autoregressive structures).

The resulting model allows us to characterize and measure the potential for short

run quasi-fixities to keep costs higher than if long run adjustment were possible, implying

economies of flexibility.  It also permits us to represent and quantify spatial connections

that result in thick market and agglomeration economies associated with concentrations
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of own-industry establishments in neighboring states, and with production levels of

suppliers and demanders in own and neighboring states.

Thick market economies may result from external knowledge spillovers, or

“geographic concentrations of knowledge”, which imply that locating close to like or

related enterprises “enhances the generation of innovation and yields higher rates of

technological advance and economic growth” (Feldman, 1999).  Agglomeration impacts

from demanding and supplying sectors may also take the form of urbanization and

localization economies associated with distance.  For these and other potential forms of

spatial and industrial spillovers, as Feldman puts it, location involves “a geographic unit

over which interaction and communication is facilitated,… and economic activity is

enhanced.”  Either economies or diseconomies may, however, arise from these

externalities due to potentially counteracting economic forces associated with

urbanization and density, and with “ruralization” or “thin markets”, that might generate

benefits for producers in the state, but could also impose costs.

For our empirical representation and measurement of these spillovers we use a

cost function framework including activity measures for spatially and industrially linked

sectors.  We target the U.S. food system and its sectoral layers, with a focus on the food

manufacturing industry.  We base our analysis on panel data for food processing

(manufacturing) output production and input use (capital, non-production and production

labor, and intermediate materials), and agricultural and overall (gross state product, GSP)

production levels, for each of the 48 contiguous states from 1986-96.

Our model recognizes spatial connections within this industry, as well as

externalities from the proximity of the supply of primary agricultural materials, and
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consumers’ demand for food products.  To accommodate these temporal, spatial, and

industrial linkages we allow for capital quasi-fixity, and include measures of neighboring

state’s food processing levels, and own- and (weighted) neighboring-state’s agricultural

and total production levels, as cost function arguments.  We also take into account state

size to recognize the potential for internalizing such benefits in relatively large states.

Although we find little evidence of temporal connections in our largely cross-

sectional dataset (48 states, 3 sectors and 11 years), we find significant cost-saving

benefits from locating in a region that is relatively food-processing intensive

(neighboring states have high levels of food manufacturing activity).  And we find

evidence that it is cost-saving to locate in a high-demand area (urbanization economies),

and close to agricultural markets (with neighboring states having high agricultural

production – localization economies).  By contrast, we find that locating directly in a

state with a high agricultural output level is costly for producers, suggesting that there are

diseconomies associated with rural states, or “thin market” effects possibly resulting from

lower infrastructure levels or limited labor markets.

These measured economies (cost-saving benefits) and diseconomies (increased

costs) associated with spatial and industrial spillovers also imply interactions among

them and with input demands.  When we consider the implied substitutability or

complementarity among external and internal production factors underlying the cost

patterns, we find limited linkages among the external effects.  We also find that observed

cost patterns are primarily driven by materials demand, with capital and particularly labor

demand responses varying more broadly, depending on the external factor affecting the

system.  So input composition as well as costs are impacted by spillovers.
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Representing the Cost Structure and External Spillover Effects

Modeling and measuring the factors affecting economic performance is typically based

on specifying and estimating a production or cost function relationship, since

performance is fundamentally based on the output producible from a given amount of

inputs, or the costs of a given level of output.  The cost function represents optimization

(input demand) behavior in addition to the technological relationships embodied in the

production function, and so becomes a function of the prices of productive (choice or

internal) inputs rather than their levels.  Otherwise it is a function of the same factors that

appear as arguments of the production function.  In particular, if externalities have a

productive impact they will affect the cost relationship, and thus economic performance,

through cost economies or diseconomies.

More specifically, technically efficient production processes can be represented

by a production function of the form Y(X,T), where Y is (aggregate) output, X is a vector

of inputs, and T is a vector of external factors determining the existing technological and

environmental base underlying the production structure.  The least cost way to produce a

given amount of output may in turn be characterized by a cost function of the form

TC(Y), or, more fully, TC(Y,p,K,T) = VC(Y,p,K,T) + ΣkpkKk, where TC is total input

cost, VC is variable input cost, p is a vector of observed prices of the X inputs that are

variable, K is a vector of levels of X inputs that are not immediately adjustable (quasi-

fixed), and pk is the market price of Kk.  Various exogenous or external factors, including

the input fixities (temporal linkages) and spatial and industrial spillovers (thick market or

agglomeration effects) representing inter-dependencies across time, space, and sector,

focused on in Paul (2001), may be components of the K and T vectors.
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The cost function representing the minimization of input costs, TC=ΣbpbXb,

subject to the production function, Y(X,T), can be graphed as the short run cost curve

TC(Y;p,K,T).  Constraints on K adjustment cause a difference between short and long

run cost curves, so K adjustment implies cost savings (economies) from moving to or

toward long run from short run costs.  If the K factors are instead choice variables in the

time frame represented by the data, TC(Y;p,T) characterizes the long run cost curve.

Changes in the (external) components of the T vector also generate cost economies if

they trigger a downward shift of the cost curve (lower unit costs for a given amount of

output), or diseconomies if they involve an upward shift.  And the optimization process

imbedded in the cost function implicitly captures the input demand changes, or the

substitutability among internal and external productive factors, associated with shifts in

the cost curve(s).  Modeling and measuring this full set of cost- and cross-effects

therefore provides a rich basis for analyzing internal and external cost drivers, and cost

and economic performance patterns.

Questions about the productive impact of any recognized cost determinant may be

addressed in terms optimizing responses for the internal (adjustable) factors, or shadow

values for the quasi-fixed or external factors, resulting from changes in the arguments of

the cost function.  For example, the total cost impact of a change in the price of a variable

input is, by Shephard’s lemma, the demanded input level; ∂TC/∂pb=Xb, or εTC,pb =

∂ln TC/∂ln pb=Xbpb/TC=Sb in proportional terms (where Sb is the cost share of the input,

and εTC,pb denotes the total cost elasticity with respect to a change in input price pb).

The shadow values of output or inputs expressed in terms of levels in the TC

function may similarly be computed as first order derivatives.  For example,
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∂TC/∂Y=MC or εTC,Y = ∂ln TC/∂ln Y = MC•Y/TC, where MC (marginal cost) is

essentially the shadow value of Y, and the cost elasticity εTC,Y reflects scale economies.

And the net shadow value of the kth quasi-fixed factor Kk, expressed as ∂TC/∂Kk=Zk+pk

or εTC,Kk = ∂ln TC/∂ln Kk = (Zk+pk)Kk/TC, where Zk=∂VC/∂Kk is the shadow value of Kk,

captures the extent of subequilibrium for Kk.  
1

More to the point for our current application, shadow values and corresponding

elasticities (proportional impacts) may also be computed for the external shift factors

contained in the T vector.  That is, they can be measured as ∂TC/∂Tm=Zm, or εTC,Tm =

∂ln TC/∂ln Tm = ZmTm/TC, if Tm is a quantitative variable, and εTC,Tm = ∂ln TC/∂Tm =

Zm/TC if Tm is a time counter or qualitative variable.

The most common of such measures, representing temporal cost trends for a

given entity (such as firm, industry, or nation), is typically expressed as the elasticity of

TC with respect to a time counter t: εTC,t = ∂ln TC/∂t.  Or if time dummies rather than a

time trend are included in the T vector, the shift associated with a particular time period,

t1, may be measured as εTC,t1 = ∂ln TC/∂t1.  In this case, for comparison purposes, one

time period must provide the basis for analysis – say t0 – so these time derivatives

represent the cost difference compared to t0.

Measuring the cost impacts resulting from changes in the various arguments of

the cost function – or “sourcing” the drivers of cost patterns – may be accomplished

parametrically by empirically estimating the cost function and directly taking these

derivatives.  However, if the only shift factor in T is the time trend t, as is typical for

                                                
1 The shadow values for internal outputs and inputs have optimization implications, since MC=pY and
Zk=pk (where pY is the market price of Y) if the Y and Kk markets are perfectly competitive, and if Y and
Kk are at their profit-maximizing levels.  However, this optimization is not a priori imposed on the model.
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production analysis, the “technical change” measure εTC,t in a sense becomes a residual

measure, even though it is estimated parametrically.2  The impacts of any cost factors not

taken into account as arguments of the estimated function (normally only aggregate

output, and capital, labor, and materials input prices) cannot be identified, and thus are

imbedded in the measures of contributions of the recognized factors – εTC,t as well as

εTC,pb and εTC,Y (and εTC,Kk if potential quasi-fixity is recognized).  In particular, if other

cost determinants or shifters such as fixities, or thick market or agglomeration effects, are

ignored in the computation of these elasticities, the elasticity estimates will erroneously

embody these effects, so their cost impacts cannot be separately identified.

That is, temporal spillovers from input quasi-fixities may generate such

interpretation difficulties if not taken into consideration, because they cause short run

costs to be higher than may be attained in the long run.  If the distinction between short

and long run behavior is relevant (affects observed costs), and this is not accommodated

in the cost function specification, this is likely to result in erroneous cost and substitution

elasticity estimates.  Such temporal linkages might also affect the appropriate stochastic

structure, implying that an autoregressive process (such as AR1) might be empirically

justified for estimation of the cost relationship.

Spatial and industrial externalities or spillovers that cause cost economies

(diseconomies) that could differ over time and location, and have varying output- and

input-specific components, may also convolute standard elasticity measures if not

recognized.  If such impacts are likely to be substantive, measures representing these

                                                
2 That is, rather than explicitly as a residual, as for the Solow residual which is commonly recognized to be
a residual “measure of our ignorance”.
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spillovers should be incorporated as components of the T vector, to facilitate identifying

the associated cost economies and underlying production relationships.

Spatial connections within and across sectors may arise due to information

diffusion, interaction and communication, innovation, intellectual capital, and quality or

ideas embodied in goods that cause geographic and industry inter-dependencies.  For

example, Krugman (1991), and David and Rosenbloom (1990) emphasize that the

generation of innovation, which in turn fuels productivity and growth, may be enhanced

by location.  Zucker and Darby (1998) focus on knowledge embodied in individuals, and

the importance of localized intellectual capital.  And Coe and Helpman (1995) stress the

transmission of ideas through trade, or demand of products embodying ideas or

innovations, which may have a spatial dimension.

Thick-market effects in the food processing industry might well stem from

knowledge spillovers or interdependencies that motivate like firms to conglomerate in a

particular geographic location.  If so, it will be informative to incorporate a measure of

own-industry production levels in neighboring localities, or states, as a T component in

our cost function specification.3  Alternatively – or in combination – such spatial linkages

may be accommodated similarly to the AR1 stochastic specification used to capture

temporal inter-dependencies, through a spatial autoregressive model, as proposed in the

recent spatial econometrics literature.4

In addition to this purely spatial dimension of thick markets linkages,

agglomeration effects might arise from proximity to supplying or demanding sectors,

both in the own- and neighboring-states, implying an industrial or sectoral dimension.

                                                
3 For our analysis, we weight these activity measures by land mass to recognize that such spillovers will be
less important for a large than a small state.
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Including measures of such vertically linked sectors’ “activity levels” in the T vector,

which is similar in spirit to Bartlesman, Caballero and Lyons (1994) and Morrison and

Siegel (1999), can represent such inter-dependencies.  The activity measures may be

expressed in terms of input or output levels of the direct supplying/demanding sectors, or

weighted averages of a variety of sectors.

These externalities may also be interpreted as urbanization and localization

economies.  If firms in a particular sector find it advantageous to locate close to an area

of high population density and buying power, associated with greater demand for the

final product or perhaps infrastructure availability, one might characterize this as

urbanization economies.  If it is cost-saving to locate close to suppliers, this might be

thought of as localization economies.5  Thus, in the food processing context developed

here, urbanization economies may arise from high potential food demand levels in a state

or its close neighbors, represented by concentrations of total production (GSP) and thus

purchasing power.  And localization economies may be generated from high agricultural

intensity in a state or surrounding areas, and the resulting proximity/availability of

primary agricultural materials.

To model and measure such external cost impacts, we incorporate temporal and

spatial spillovers from own-, supplying- and demanding- sectors, in both own- and

neighboring-states, in our specification of food processing industry costs.  In the next

section we further develop such a framework for empirical implementation.

                                                                                                                                                
4 This will be elaborated further below.  See, for example, Kelejian and Prucha, and Bell and Bockstael.
5 These distinctions are common in the Urban Economics literature, as developed and overviewed by
Hoover, 1948, and O’Sullivan, 2000.
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Empirical Implementation of a Cost Model with Spatial and Industrial Spillovers

As alluded to above, accommodating temporal, spatial, and industrial linkages in a cost-

based model may be accomplished by directly representing the driving forces as factors

in the cost (and thus implicitly production) function, or by recognizing them in the

stochastic specification.  To move toward an implementable model, however, we need to

be more specific about what form these adaptations to the standard model might take.

The most common example of this is in the temporal dimension, where cost

linkages between time periods are due to input stock durability and quasi-fixity.

Incorporating temporal dependence in the structural model is often accomplished by

representing K – usually assumed to be capital, K – as a fixed input vector that is not

optimized over in the short run.  If K is the one quasi-fixed variable, the productive

contribution of K may be expressed in terms of its shadow value, ZK, and the deviation

from long run equilibrium captured by the difference between ZK and pK.  A more

explicitly dynamic model may alternatively be developed by incorporating an indicator of

adjustment costs, usually represented by the investment level ∆K=Kt-Kt-1, as in Morrison

(1985), which implicitly brings lagged variables into the cost representation.

Another way time-dependence may be recognized is to allow for autoregressive

errors in the stochastic structure, which again in effect brings lagged variables into the

estimating function.  In such a case TC = TC(•) + ut  and ut = ρut-1 + εt (where ρ is the cost

function-specific AR(1) parameter, and εt is the random or white noise period t

estimation error for TC), so substituting ut-1 =TCt-1- TC(•)t-1 incorporates lagged values of

all variables into the equation to be estimated.6

                                                
6 This adjustment may be written in matrix form for an equation system, as in Berndt (1991).
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In preliminary empirical investigation for our application, we found that allowing

for the temporal dimension was not empirically relevant for our primarily cross-sectional

dataset.  That is, shadow values for capital were not significantly different than the

corresponding market prices, and appending an AR1 process did not impact the results

substantively.  So the primary emphasis in the empirical development and estimation

below is on the spatial and industry dimensions.

It remains important to recognize the temporal dimension, however, both to

establish its impact empirically, and to motivate the symmetry of the temporal and spatial

dimensions.  One way to allow for spatial linkages is through adaptation of the stochastic

structure, similarly to the standard adjustment for temporal autocorrelation.  Such models,

as developed by Kelejian and Prucha (1999) and Bell and Bockstael (2000), provide the

basis for the spatial econometrics literature.  Spatial inter-connections are in this context

defined via lags for geographical location (say, state) at any one point in time.  If there is

only one adjoining state who’s production, cost, or other “activity” levels might affect

that of the state under consideration, this adaptation is directly analogous to the AR(1)

adjustment.  TCi,t = TC(•)i,t +  ui,t, where ui,t = ρuj,t + εi,t; and uj,t is the (unadjusted) error

term for state j at time t, (rather than for time period t-1),  and εi,t is a white-noise error.

If multiple states’ production or costs affect state i’s costs, the error structure for

state i at time t becomes ui,t = ρΣjwi,juj,t + εi,t.  Substituting, and writing this in matrix

notation, yields TC = TC(•) + ρWut + εt, where W is a weighting matrix and ut is a vector

of time-t error terms for each state that has a cost effect on state i.  So Wut reflects a

weighted sum of the uj,t from TC(•) estimation for other states (assuming wi,j = 0).
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Defining the “connecting” states, and their weights, then becomes important (and

somewhat arbitrary, as for any lag-type structure imposed on a model).  For example, the

inter-related states might be those that have a common boundary, and their weights the

amounts of state-produced commodities that cross state lines.7

A spatial externality index might also directly be included as an independent

variable in the cost function, to represent the dependence of costs in state i on activity in

geographically connected areas.  Such an externality index may be defined as the

weighted sum of all state j’s activities (aj = production, input use, or costs) related to that

of state i, Σj≠iwi,jaj,O=WAO=AW
O, so TC=TC(Y,p,t,AW

O).  Establishing the cost benefit of

adjoining states’ activity thus involves measuring the shadow value ZAO=∂TC/∂AW
O.

“Related to” in this case implies being in the same (“own”, denoted by subscript

O) industry, but in neighboring states, implying thick market impacts with only a spatial

dimension.  However, it could also, or alternatively, involve being suppliers or

demanders for the industry, implying agglomeration effects that reflect the broader notion

of externality or spillover effects from the activity of (vertically) linked sectors.

This was the motivation for including weighted sums of “aggregate activity”,

based on the share of materials received by or supplied to other industries, in a 1st-order

model of aggregate national U.S. manufacturing production by Bartlesmen, Caballero

and Lyons (1994).  In their study measures of the externalities Σjwi,jaj,d = AW
d (in our

notation), where j now denotes industry and d denotes demanding (D) or supplying (S)

sector, were imbedded into a first-differenced log-linear production function relationship

to identify their productive impact.  Morrison and Siegel (1999) incorporated analogous

                                                
7 Such linkages or spillovers might also be characterized for nations, according to their trade balances.
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measures into a cost function model of the form TC = TC(Y,p,t,AW
D,AW

S), where t, AW
D,

and AW
S are the components of the T vector.  In this context, quantifying the impacts of

supply- and demand-agglomeration spillovers involves establishing the magnitude and

significance of the shadow values ZAWD=∂TC/∂AW
D, ZAwS=∂TC/∂AW

S.

In this study we have used a combination of these spatial and industrial spillover

notions to empirically capture a web of thick market and agglomeration, or urbanization

and localization economies, across states for the U.S. food manufacturing industry.  To

accomplish this, we need to more explicitly define AW
O, AW

D, and AW
S.

The “activity” variables aj underlying the spillover variable AW
O are defined in

terms of production levels in the own (food processing) industry in neighboring states.

The weights wij that are used to obtain the weighted average give all states neighboring

state i equal weight, and all other states zero weight. This weight structure was also used

to incorporate a spatial autocorrelation adjustment.8

The supply- and demand- agglomeration effects might be expected to stem from

own-state suppliers and demanders, and so our primary agglomeration measures were

defined as (unweighted) measures of own-state agricultural production and GSP, AS and

AD.9  This is similar to the use by Bernstein (1998) of an unweighted sum of R&D capital

stocks from related industries to capture R&D spillovers.  We also, however, allowed for

industry layer linkages in neighboring states, by defining additional AW
S and AW

D

measures as weighted sums of agricultural production and GSP activity levels in states

                                                
8 Both these adjustments are often made in this literature, which has primarily focused on linkages
of government expenditures across states.  So, for example as in Case et al., W becomes a
weighting matrix for ut in the stochastic specification, and for other states’ expenditures, Et, in the
estimating model.
9 Lagged values were alternatively tried in order to accommodate possible endogeneity or overlap
between the sectors, but this had very little impact on the results.
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with joint borders, based on the weights wij used for constructing AW
O.  The

agglomeration spillovers variables were normalized by the size of the state, in terms of

land mass, to recognize that it is the intensity or density of supplier and demander

production levels that drives urbanization and localization economies.

Although in preliminary empirical investigation we found temporal adaptations

allowing for K fixity not to be empirically supported, AW
O, AS, AD, and AW

S were

significant cost-determinants for state-level food manufacturing industries.  Our final

estimation model was therefore based on a cost function of the form TC(Y,pN,pP,pM,pK,t,

DS,AW
O,AD,AS,AW

S), where Y is own-state output from the food manufacturing sector,

N,P,K and M denote non-production labor, production labor, capital, and intermediate

materials inputs, t is a time counter, DS is a vector of state dummy variables, and AW
O,

AW
S, AD, AS, represent the (weighted) activity levels of neighboring states in the same

and the agricultural sector, own-state demanders, and own-state suppliers.

The cost function is assumed to have the flexible generalized Leontief form:

1) TC(Y,pN,pP,pM,pK,t,DS,AW
O,AD,AS,AW

S) = ΣbΣS δbS pb DS + ΣbΣq αbq pb
.5 pq

.5

+ Σq δbY pbY + ΣbΣn δbn pb Tn + Σbpb(δYY Y2 + Σn δnY TnY + ΣnΣm δnm TnTm) ,

where b,q denote the variables inputs N, P, M, K, and m,n denote the external shift

factors AW
O,AD,AS,AW

S, and the trend term t.  This total cost function by definition

embodies optimal input demand for N, P, M, K, given Y and T, so Shephard’s lemma

may be used to formalize the demand equations:

2) Xb  =  ∂TC/∂pb = Σb ΣS δbS DS + Σq αqb pq
.5/pb

.5 + δbY Y + Σn δbn Tn + δYY Y
2

+ Σn δnY TnY + ΣnΣm δnm TnTm .
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Similarly, the shadow values for the arguments of the function expressed in levels – Y,

and Tm  – may be expressed as:

3) ZY = MC = ∂TC/∂Y = Σq δbY pb + Σbpb(2•δYY Y + Σn δnY Tn),

where MC is the marginal cost of Y, and

4) Zm = ∂TC/∂Tm = Σb δbm pb + Σbpb(δmY Y + Σn δnm Tn) .

Although the system of equations represented by (1) and (2) comprise the

estimation model (since MC and Zm are not observable and thus require imputation from

the cost function estimation), the full set of equations (1)-(4) provide the basis for our

measures representing the production structure.  In particular, they allow us to estimate

the cost-, output value-, and input demand-specific impacts of the spillover factors

contained in the T vector.  They also permit estimation of other cost and substitution

measures characterizing production processes and behavior, such as scale economies and

their input-specific components, and input demand substitution patterns.

In particular, we have already seen that the total cost function can be used to

estimate a range of 1st-order elasticities representing equations (2)-(4) as εTC,pb, εTC,Y,

εTC,Tm, and εTC,t, from the corresponding derivatives in terms of levels Xb, MC, Zm, and

Zt.  These elasticities represent the cost impacts of changes in input prices,output levels,

spillovers and temporal/spatial patterns.

Since the flexible functional form used for estimation embodies a full range of

cross-effects among the arguments of the cost function, second order derivatives and

elasticities may also be computed to represent the interactions among these production

determinants.  For example, the impacts of changes in external factors (or other

arguments of the function such as pb and t) on marginal as contrasted to total costs may
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be computed as εMC,Tm = ∂ln MC/∂ln Tm.  Similarly, input demand substitution patterns

can be represented by εXb,Tm = ∂ln Xb/∂ln Tm, for an external factor, or εXb,pq = ∂ln Xb /∂ln

pq for a (more standard) demand response to an input price change.  In turn, the

dependence of shadow values for components of T on any production cost determinant

may be computed, e.g. for a change in output levels, as: εZm,Y = ∂ln Zm /∂ln Y.

The broad range of production cost determinants incorporated in our cost function

specification allow many such relationships to be estimated and assessed, to gain insights

about internal and external cost impacts and drivers.  In the next section we overview our

estimates of these measures, which provide evidence about cost patterns and spillover

impacts for the U.S. food processing sector on average across states from 1986 to 1996.

Estimation and Results

The system of equations represented by (1) and (2) above was estimated using

PC-TSP systems estimation procedures (SUR) for the food processing sectors of the 48

contiguous states (data summary statistics are reported in Appendix Table A1; more

details on the data construction are in Cohen and Paul, 2001).  Allowing for

heteroskedasticity by computing standard errors using robust-White methods made no

substantive difference to the results.  Incorporating an AR1 process also had virtually no

impact on the measured indicators, even though all ρs (except for the K equation) were

significant.  This result, combined with the evidence that K could justifiably be

considered variable for these data, indicates that little information is gained from the

temporal dimension for this application.  The AR1 adaptation was therefore dropped

from the final specification (and K considered a choice variable)
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By contrast, the spatial dimension appears a key component of cost performance.

A spatial autocorrelation adaptation analogous to that described above for the TC

equation was made for each (cost and input demand) equation in the system, leading to

differerent ρs for each equation.  These estimates were primarily statistically significant,

as were the cost impacts from the spatial and industrial spillovers variables included in

the final model.  So these aspects of the model were retained for the final empirical

results (although the SAR adaptation had little impact on the measures’ magnitudes).

The estimated coefficients for the model are presented in Appendix Table A2,

with t-statistics in italics.  The state dummy variables are omitted to keep the table

manageable, but were primarily statistically significant.  The t-statistics for the remaining

coefficients indicate much statistical significance, although the cross- or interaction-terms

for the external effects are largely insignificant.  Omitting these terms, however, did not

affect the results substantively, and indicated some joint significance.  The model was

thus left fully flexible, so the significance of the complete range of elasticities, each based

on a combination of coefficients and their standard errors, could be examined.  The R2s

(all greater than 0.99) also indicate a very close fit for the equations as a system.

The shadow value and elasticity estimates indicating the total and marginal cost-

effects of changes in the external or spillover effects, and other arguments of the cost

function, are presented in Table 1.  These and all other measures are computed as

(unweighted) averages of the measures across all states, and reported with their standard

deviations, and maximum and minimum state values.  The standard errors were computed

by evaluating the elasticities at the mean values of all the variables in the model; these

estimates and the associated P-values indicate the statistical significance of the measures.
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The shadow values themselves are not very interpretable, since they are expressed

in levels rather than proportions and thus depend on the units of measurement.  Note,

however, that on average these measures are significantly negative (implying cost-

savings) for all external factors except AS – own-state agricultural (supplier) production –

for which the measure is significantly positive.  This initially surprising result, indicating

that food processing production costs are higher in heavily agricultural states, was very

robust across alternative specifications.  This was the motivation for our inclusion in the

final model of the neighboring states’ weighted agricultural production measure, AW
S,

which by contrast indicates benefits of proximity to agricultural producers.

Overall, these measures clearly indicate economies associated with thick markets

from own-industry conglomeration.  This is implied not only by the significantly negative

(cost-saving) value of ZAWO, based on the extent of food processing activity in

neighboring states, but also by the value of ZY, through its implications for scale

economies.  That is, the average value of εTC,Y = ∂ln TC/∂ln Y is significantly less than

one, suggesting that greater output may be obtained with a less than proportional increase

in costs.  With our largely cross-sectional dataset, this indicates not only that expansion

of the food processing sector in a given state implies lower average production costs, but

also that states with higher Y levels have lower unit costs of production, given all other

cost determinants represented in the function.

In terms of demand- and supply-side agglomeration economies, the measures in

Table 1 suggest some contribution of urbanization economies or demand-drivers on costs

(ZAD has both positive and negative values, although it is primarily negative).  And we

find localization economies or supply-side cost effects associated with proximity to
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agricultural producers, but diseconomies associated with what might be called “thin

markets” from being actually located in too rural a state (measured in terms of

agricultural intensity – agricultural production per square mile).  The corresponding

elasticity (proportional) measures indicate that the strongest cost-saving impact on

average is that of neighboring agricultural (supply) producers, although there is a wide

range of measured benefits depending on the state under consideration.

If one thinks of the combination of external effects analogously to a combination

of the production of different outputs, one might adapt the idea of a multiple-output

measure of scale economies to this problem to aggregate these effects.  In particular, as

developed by Baumol, Panzar and Willig (1982), multiple output scale economy measure

may simply be computed as the sum of the corresponding cost elasticities with respect to

output.  Such a measure for R outputs, Yr, would be εT CY = ( Σr  ∂ TC/∂ Y r • Y r ) /TC  =

Σr  M Cr • Y r /TC = Σr ε T CYr, and indicates the combined cost impact if all outputs increased

by 1 percent rather than if only one output changed.

If one makes a similar argument for the external effects, on average the supply-

side agglomeration effect from neighboring states, εTC,AWS, alone outweighs that from the

own state, εTC,AS, implying an overall cost-saving benefit from agricultural supply sector

externalities.  If the other measures are added, the total is even more negative, and

indicates that on average if all spillover factors were 1 percent higher, nearly a 0.9

percent drop in costs would be implied.10

                                                
10 This experiment is not fully justifiable, however, at least on average, since each of these
measures is evaluated for a particular state and time based on actual levels of external factors.
Since the measures vary widely by observation, a simple average and sum is only broadly
indicative of the actual aggregate effects.
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Our last observations for the total cost elasticities are for the εTC,t measure,

representing the time trend in food processing costs, and the εTC,pb elasticities, indicating

the input shares for this industry.  The average εTC,t measure suggests that costs are

increasing over time, which is contrary to the usual interpretation of this elasticity as a

technical change indicator.  However, there are a number of reasons we might think that

costs in this sector are rising for a given amount of measured input, including increased

food processing, quality, and diversity demanded by consumers.

In terms of input shares, we can see that intermediate materials are an even

greater proportion of total costs than in other manufacturing industries, which might be

expected for food; εTC,pM=0.82 (82 percent) on average.  Also, the share of production

workers exceeds that for non-production workers, at 0.07 versus 0.05, and the capital is

closer to the labor share than for aggregate manufacturing, at more than 8 percent.

The marginal cost elasticities also provide some insights about cost patterns, since

they indicate the difference between incremental cost effects (the MC elasticities) and

total or average cost effects (the TC elasticities).  Note in particular that increases in both

own- and supplying-industry production in neighboring states decrease marginal as well

as average costs, but they reduce marginal costs by a smaller proportion than on average.

And the supply and demand own-state effects are reversed in terms of the marginals;

greater potential demand in the state implies higher marginal costs on average, and more

agricultural intensity, or “rurality”, implies lower marginal costs.  Therefore it seems

these factors act more as fixed than marginal effects.  Marginal costs also may be

increasing over time, but not significantly either statistically or in terms of magnitude.

And intermediate materials seem to be a much larger share of marginal than total costs, at
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91 instead of 82 percent.  This is associated with increases in labor and capital costs that

are only half, and less than one-third, respectively, the implied average increases required

to accommodate higher output levels.  This again suggests these inputs may be more

associated with the existing cost base than adjusted fully on the margin.

The results discussed so far, representing cost patterns, and in particular the cost

effects of spatial and industry spillovers, are the primary focus of this study.  However, it

is also informative to explore the underlying 2nd order effects, or the input demand and

shadow value patterns associated with changes in the economic environment.

Input demand elasticities, on average across all states, are presented in Table 2.

First note that all own-elasticities (such as εN,pN for non-production labor) are negative

and statistically significant, implying appropriate (in terms of theory) demand responses

to input price changes.  Production labor seems to adjust the most in response to a change

in its price, and intermediate materials the least.

All other input response patterns indicate substitutability across factors.  Although

we will not explore these measures in depth, some of these patterns are particularly

interesting, such as the large increase in K in response to a rise in pP.  It appears that

increases in the price of production labor induce mechanization; or that in states where

production labor is the most expensive one would find the most capital-intensive food

manufacturing processes.  It also seems that materials use adapts little in response to

changes in the prices of other inputs, although again the relationship with P is the

strongest (and that with pK is both small and statistically insignificant).  If the price of

production workers increases, more intermediate materials are used, perhaps indicating
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that less care is taken to screen the incoming agricultural products so quality is

maintained by having higher throughput and likely more waste.

The other standard measures from this type of cost function analysis are the εXb,Y

and εXb,t elasticities.  The output elasticities indicate that output augmentation is

supported primarily by increases in materials use – which is consistent with the

implications from the marginal cost elasticities.11  By contrast, higher output levels seem

to be associated with a very small increase in the capital stock.  The t elasticities indicate

a fall in the use of non-production workers over time (but not significant), and only a

small increase in capital on average, although P and M demand seems on average to be

rising (significantly) by 5-6 percent per year for a given amount of output production.

This again could be consistent with more greater demand for more processed and higher

quality final food products, including increasing packaging.

The elasticities of input use with respect to changes or differences in the external

factors – the input-specific impacts of spillovers – indicate very different effects across

inputs.  For example, the cost-saving impact of having higher levels of food processing

activities in neighboring states seems to stem primarily from lower production worker

and materials use; it actually implies a greater contribution of non-production workers,

although the change in both types of labor is statistically insignificant.   The higher costs

associated with in-state agricultural production also appear to be primarily associated

with greater M use, and to a somewhat smaller extent production worker levels.  This

may suggest that food processing establishments requiring higher levels of agricultural or

other materials, and more production workers, are more likely to locate in rural areas.  In

                                                
11 These are, of course, directly related since they are inverse 2nd order elasticities; εMC,pM is based on the
∂2TC/∂Y∂pM derivative, and εM,Y is based on ∂2TC/∂pM∂Y.
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reverse, the cost-savings benefits implied by having neighboring states with high

agricultural intensity is driven by lower materials use, as well as some reduction in K, but

is associated with greater labor demand.  This perhaps indicates that firms with more

labor but less agricultural materials requirements benefit from being close, but not

directly associated with, suppliers.  And urbanization economies, or the benefits of being

close to greater demand, are associated with lower levels of all inputs.

Finally, let us move to the elasticities for the shadow values of the external

effects, presented in Table 4.  Note first that from a glance at the P-values we can see that

there is less significance (a value over .05 implies a statistically insignificant estimate) of

these elasticities than others.  The significance levels in fact indicate few cross-effects

for, and especially across, the external factors.  This is particularly true for the ZAWS

elasticities, which are all insignificant except εZAWS,pM and εZAWS,pK.  This implies that an

increase in pM significantly increases the value of having proximity to agricultural

production, and that this is true also, but to a lesser extent, for pK.  Note also that the only

spillover shadow value that does not increase (in absolute value) significantly with an

increase in pK is ZAWO, and all increase significantly with pM.

 Additional insights may be gained from the Y and t elasticity measures in this

Table.  It seems that high levels of food processing output stem from greater thick market

values associated with proximity to other food processing activity, and to neighboring

state’s agricultural activity, as exhibited by the εZAWO,Y and εZAWS,Y elasticities (although

neither are statistically significant).  The εZAS,Y estimate may be similarly interpreted,

even though it is the opposite sign, since the sign of ZAS is itself reversed.  By contrast,
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states with higher levels of food processing activity seem to reap less benefits from being

close to areas with greater purchasing power, or demand.

For the temporal dimension, both the demand-side agglomeration and thick-

market- impacts seem to have provided increasing cost-savings benefits over the time

frame of our analysis.  Whereas the disadvantages of being in a rural area also seem to be

growing, and the cost-savings from being close to suppliers to be falling.  This suggests

that over time the “draw” of both urbanization economies and own-industry thick market

effects is pushing the balance toward a spatial divergence of the food processing industry

and high agricultural intensity areas.

Concluding Remarks:

In this paper we have estimated and evaluated evidence of spatial and industrial

spillover effects across states in the U.S. food system.  Our focus is on state-level food

manufacturing activity, with thick market effects arising from neighboring states’ food

processing levels, and supply- and demand-agglomeration effects stemming from

proximity to high purchasing power areas (based on GSP), and to high agricultural-

intensity in both the own and neighboring states.

We find statistically significant cost impacts of all these spillover effects,

although the supply-effect is a combination of benefits from having neighboring states

with high agricultural levels, and costs of having high agricultural intensity in the own

state.  This latter result might be interpreted as a “thin markets” effect arising from the

disadvantages of being in too rural an area, such as low infrastructure levels (e.g.

telecommunications), and limited labor and capital pools or markets.
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Increasing returns to scale, or to being in a state with a higher level of food

processing activity, and greater processing costs over time, possibly due to increasing

levels of processing, quality, and differentiation of food products, are also evident.  And

we find differences between total and marginal cost effects that imply a greater

proportion of materials costs at the margin than for other inputs, and that both in-state

supply and demand cost impacts seem to have more a fixed effects than marginal nature.

Although these external effects are the focus of our analysis, assessment of

second-order relationships underlying these cost effects indicates that the specification is

generating reasonable (in terms of theory and intuition) representations of production

patterns.  These elasticities also imply little impact of cross-effects among the external

factors, but a significant degree of differentiation among input responses to changes in

not only the spillover measures, but also to output, time, and input price changes.

Overall, our results seem not only to be plausible, but to provide provocative

indications that empirically recognizing spillovers across space and sector generates

meaningful insights about cost and performance patterns.  The typical focus of

production and performance analysis on substitution and temporal patterns is not

sufficient to represent the spatial linkages, and the thick-market and agglomeration

effects, that seem from observed increases in spatial conglomeration and vertical and

horizontal integration and consolidation to be increasingly important performance drivers

in most industries in our “new era”.
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Table 1: Shadow Values and Total and Marginal Cost Elasticities 

measure estimate st. dev. min max st. error P-value

ZAWO -0.0884 0.035 -0.2459 -0.0444 0.028 [.002]
ZAS 0.0159 0.002 0.0101 0.0204 0.002 [.000]
ZAWS -0.0103 0.001 -0.0148 -0.0082 0.002 [.000]
ZAD -0.00013 0.00005 -0.00021 0.00004 0.00003 [.000]
ZY=MC 0.5034 0.035 0.4005 0.6316 0.014 [.000]

εTC,AWO -0.3607 0.492 -2.9159 -0.0106 0.042 [.002]
εTC,AS 0.3574 0.438 0.0338 2.6909 0.022 [.000]
εTC,AWS -0.7032 1.584 -10.8947 -0.0041 0.031 [.000]
εTC,AD -0.1889 0.413 -3.0656 0.0281 0.000 [.000]
εTC,Y 0.7401 0.109 0.5664 2.0287 0.020 [.000]
εTC,t 0.0493 0.069 0.0027 0.3961 0.001 [.000]
εTC,pN 0.0468 0.023 -0.1897 0.1535 0.001 [.000]
εTC,pP 0.0743 0.022 -0.0839 0.2177 0.002 [.000]
εTC,pM 0.8218 0.264 -1.4864 2.6222 0.004 [.000]
εTC,pK 0.0828 0.029 0.0050 0.3135 0.001 [.000]

εMC,AWO -0.0169 0.008 -0.0447 -0.0014 0.011 [.132]
εMC,AS -0.0091 0.008 -0.0497 -0.0003 0.006 [.148]
εMC,AWS -0.0180 0.026 -0.2096 -0.0006 0.010 [.073]
εMC,AD 0.0302 0.043 0.0006 0.2201 0.005 [.000]
εMC,Y -0.0164 0.017 -0.1034 -0.0005 0.005 [.001]
εMC,t 0.0002 0.000 0.0001 0.0002 0.000 [.589]
εMC,pN 0.0267 0.013 -0.0101 0.0699 0.003 [.000]
εMC,pP 0.0491 0.014 0.0126 0.1122 0.003 [.000]
εMC,pM 0.9077 0.030 0.8094 0.9890 0.006 [.000]
εMC,pK 0.0166 0.004 0.0062 0.0281 0.003 [.000]
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Table 2: Input Demand Elasticities

measure estimate st. dev. min max st. error P-value

εN,AWO 0.0119 1.204 -6.2360 7.4567 0.086 [.057]
εN,AS 0.1500 0.823 -5.3413 3.7905 0.054 [.055]
εN,AWS 0.1969 0.733 -2.3611 5.4745 0.079 [.988]
εN,AD -0.2599 1.294 -7.9681 7.4958 0.091 [.000]
εN,Y 0.4604 0.293 -0.2326 2.5414 0.051 [.000]
εN,t -0.0195 0.106 -0.8333 0.4647 0.003 [.917]
εN,pN -0.8287 2.257 -25.5648 -0.0276 0.035 [.000]
εN,pP 0.1051 0.279 0.0036 3.2112 0.034 [.506]
εN,pM 0.6246 1.707 0.0207 19.2012 0.055 [.015]
εN,pK 0.0989 0.271 0.0032 3.1523 0.037 [.566]

εP,AWO -0.3815 0.945 -8.2194 1.6036 0.051 [.000]
εP,AS 0.2378 0.305 -0.6405 1.4410 0.033 [.000]
εP,AWS 0.1451 0.701 -1.1478 6.9444 0.049 [.830]
εP,AD -0.2255 0.670 -2.7411 5.1160 0.054 [.000]
εP,Y 0.5111 0.172 0.1011 1.4253 0.031 [.000]
εP,t 0.0509 0.079 -0.0136 0.5795 0.002 [.000]
εP,pN 0.0597 0.101 0.0023 0.6530 0.020 [.506]
εP,pP -1.3494 2.252 -15.6851 -0.0499 0.039 [.000]
εP,pM 0.8223 1.371 0.0301 9.4779 0.045 [.000]
εP,pK 0.4674 0.781 0.0170 5.5853 0.035 [.003]

εM,AWO -0.4270 0.677 -5.2538 -0.0088 0.051 [.010]
εM,AS 0.4055 0.540 0.0375 3.4959 0.025 [.000]
εM,AWS -0.8997 2.057 -15.9322 -0.0041 0.036 [.000]
εM,AD -0.1941 0.579 -5.2257 -0.0042 0.024 [.003]
εM,Y 0.8468 0.151 0.5748 2.7800 0.024 [.000]
εM,t 0.0586 0.088 0.0027 0.5975 0.001 [.000]
εM,pN 0.0306 0.048 0.0013 0.3677 0.003 [.015]
εM,pP 0.0724 0.111 0.0031 0.6765 0.004 [.000]
εM,pM -0.1043 0.160 -1.0059 -0.0045 0.006 [.000]
εM,pK 0.0012 0.002 0.0000 0.0126 0.003 [.934]

εK,AWO -0.0166 0.275 -1.6464 0.9247 0.039 [.477]
εK,AS 0.1910 0.217 0.0168 1.1077 0.026 [.000]
εK,AWS -0.3419 0.846 -4.6405 -0.0027 0.037 [.020]
εK,AD -0.2346 0.594 -4.1273 0.0061 0.026 [.000]
εK,Y 0.1618 0.062 0.0459 0.4073 0.025 [.000]
εK,t 0.0182 0.022 -0.0004 0.1039 0.001 [.000]
εK,pN 0.0453 0.061 0.0021 0.2764 0.020 [.566]
εK,pP 0.3860 0.528 0.0184 2.6201 0.032 [.003]
εK,pM 0.0112 0.015 0.0005 0.0664 0.033 [.934]
εK,pK -0.4425 0.604 -2.9336 -0.0211 0.034 [.001]
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Table 3: Shadow Value Elasticities
measure estimate st. dev. min max st. error P-value

εZAWO,Y 0.0917 0.077 0.0025 0.3183 0.071 [.180]
εZAWO,t 0.0081 0.002 0.0029 0.0138 0.004 [.062]
εZAWO,AWO -0.2293 0.140 -0.6438 -0.0195 0.150 [.183]
εZAWO,AS 0.0712 0.052 0.0039 0.2742 0.084 [.407]
εZAWO,AWS -0.0425 0.049 -0.3980 -0.0016 0.046 [.350]
εZAWO,AD 0.1791 0.187 0.0059 0.7600 0.086 [.005]
εZAWO,pN 0.0266 0.076 -0.1385 0.2097 0.033 [.104]
εZAWO,pP 0.0935 0.062 -0.0399 0.2767 0.042 [.007]
εZAWO,pM 0.8717 0.161 0.4991 1.2186 0.068 [.000]
εZAWO,pK 0.0082 0.024 -0.0469 0.0638 0.023 [.459]

εZAS,Y -0.0386 0.041 -0.2509 -0.0010 0.026 [.157]
εZAS,t 0.0120 0.001 0.0097 0.0169 0.002 [.000]
εZAS,AWO -0.0519 0.026 -0.1350 -0.0039 0.059 [.392]
εZAS,AS -0.0151 0.013 -0.0890 -0.0005 0.039 [.711]
εZAS,AWS -0.0176 0.028 -0.2118 -0.0005 0.022 [.458]
εZAS,AD -7.65805D-09 8.17740D-10 -1.08155D-08 -6.20376D-09 0.023 [.104]
εZAS,pN 0.0227 0.029 -0.0820 0.1047 0.013 [.054]
εZAS,pP 0.0514 0.027 -0.0565 0.1089 0.013 [.000]
εZAS,pM 0.8855 0.061 0.7710 1.1240 0.025 [.000]
εZAS,pK 0.1486 0.020 0.0536 0.1810 0.011 [.000]

εZAWS,Y 0.0699 0.063 0.0022 0.3297 0.042 [.079]
εZAWS,t -0.0022 0.000 -0.0032 -0.0016 0.002 [.346]
εZAWS,AWO -0.0315 0.015 -0.0722 -0.0029 0.033 [.338]
εZAWS,AS 0.0160 0.012 0.0006 0.0777 0.022 [.458]
εZAWS,AWS 0.0094 0.013 0.0003 0.0930 0.016 [.563]
εZAWS,AD -3.91817D-09 4.14711D-10 -5.50797D-09 -2.75844D-09 0.018 [.303]
εZAWS,pN -0.0023 0.022 -0.0494 0.0877 0.019 [.988]
εZAWS,pP 0.0022 0.023 -0.0540 0.0889 0.020 [.828]
εZAWS,pM 0.9613 0.049 0.7712 1.0708 0.038 [.000]
εZAWS,pK 0.1423 0.016 0.1076 0.2090 0.015 [.011]

εZAD,Y -0.2330 2.003 -26.8285 13.0939 0.062 [.000]
εZAD,t 0.0144 0.060 -0.2579 1.0428 0.003 [.002]
εZAD,AWO 0.5607 2.824 -12.4289 48.6829 0.089 [.000]
εZAD,AS 0.1005 0.529 -2.3856 9.1937 0.042 [.117]
εZAD,AWS -0.1017 0.692 -12.1336 3.0770 0.034 [.325]
εZAD,AD -0.9343 7.743 -135.4718 35.7245 0.034 [.000]
εZAD,pN 0.0855 0.859 -14.5232 4.1201 0.040 [.000]
εZAD,pP 0.1343 0.681 -11.4265 3.1244 0.041 [.000]
εZAD,pM 0.6870 1.530 -6.2679 26.6105 0.088 [.000]
εZAD,pK 0.0933 0.014 0.0234 0.3393 0.022 [.000]
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Appendix Table A1: Summary Statistics

Mean St. Deviation Min Max

TC 6233.09 6154.53 164.41 37095.11
Y 9176.72 9232.43 226.38 52671.01
N 306.38 320.59 2.35 1902.40
P 513.17 529.92 10.25 3037.49
M 5334.15 5245.19 120.79 29481.90
K 1855.53 1913.74 79.77 10154.70
pN 0.8742 0.1392 0.4240 1.7177
pP 0.8835 0.1038 0.6189 1.3730
pM 0.9382 0.0447 0.8501 1.0000
pK 0.2721 0.0073 0.2573 0.2825
AW

O 9278.65 4362.12 766.16 21481.21
AD 4840202.93 7408846.59 100511.10 3.85144D+07
AS 70610.29 54263.11 2612.98 324824.44
AW

S 106906.93 144625.77 3668.58 1054409.75

AD, AS, and AW
S are normalized by land area, in terms of million square miles.  
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Appendix Table A2: Coefficient Estimates (dummies omitted, t statistics in italics)

αN,L 1.39E+01 0.67 δWS,WS -1.51E-10 -0.59
αN,M 7.89E+01 2.42 δS,S -5.44E-10 -0.37
αN,K 2.32E+01 0.57 δWO,WO 3.19E-07 1.44
αP,M 1.85E+02 4.12 δD,D 7.30E-13 6.66
αP,K 1.95E+02 3.00 δD,Y 1.10E-09 7.32
αK,M 5.56E+00 0.08 δD,WO -1.48E-09 -6.37
δN,Y 2.03E-02 6.25 δD,S -4.07E-11 -1.64
δP,Y 3.28E-02 10.01 δY,WO -3.07E-07 -1.50
δM,Y 4.91E-01 34.81 δY,S -2.15E-08 -1.44
δK,Y 3.55E-02 6.14 δY,D -2.94E-08 -0.86
δN,t -1.71E+00 -1.45 δD,WS 1.35E-11 1.03
δP,t 6.19E+00 5.24 δY,WS -2.83E-08 -1.80
δM,t 7.34E+01 9.32 δWO,WS 1.18E-08 0.96
δK,t 8.38E+00 3.37 δS,WS -8.08E-10 -0.75
δN,WS 1.31E-04 0.48 δD,t -4.06E-07 -4.79
δP,WS 7.72E-05 0.27 δY,t 2.86E-05 0.54
δM,WS -1.04E-02 -5.69 δWO,t -2.18E-04 -2.37
δK,WS -1.35E-03 -2.06 δWS,t 7.75E-06 0.95
δN,WO 7.97E-04 0.14 δS,t 6.37E-05 6.03
δP,WO -5.17E-03 -0.90 ρ 0.369797 9.50
δM,WO -7.03E-02 -2.36 ρLD 0.39307 7.73
δK,WO 7.08E-04 0.08 ρL 0.280306 5.45
δN,S 8.94E-04 1.99 ρM 0.375107 9.47
δP,S 1.41E-03 3.11 ρK 6.66E-04 0.98
δM,S 1.54E-02 7.91
δK,S 2.84E-03 3.64 R2s TC 0.9940
δN,D -2.24E-05 -3.26 LD 0.9939
δP,D -2.75E-05 -4.04 L 0.9973
δM,D -7.59E-05 -2.91 M 0.9916
δK,D -4.32E-05 -4.14 K 0.9971
δY,Y -1.49E-07 -3.34
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