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Rivera2, Priyanka Agarwal2, Frank Duong2, Bryan Angara2, David Hickok, Zhenqiu Liu2, 
Neil A. Bhowmick2,+

1Mie University Hospital, Nephro-Urologic Surgery and Andrology, Tsu, Mie, Japan.

2Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048 USA

Abstract

Heterogeneous prostatic carcinoma associated fibroblasts (CAF) contribute to tumor progression 

and resistance to androgen signaling deprivation therapy (ADT). CAF subjected to extended 

passaging, compared to low passage CAF, were found to lose tumor expansion potential and 

heterogeneity. Cell surface endoglin (CD105), known to be expressed on proliferative endothelia 

and mesenchymal stem cells, was diminished in high passage CAF. RNA-sequencing revealed 

SFRP1 to be distinctly expressed by tumor-inductive CAF, which was further demonstrated to 

occur in a CD105-dependent manner. Moreover, ADT resulted in further expansion of the CD105+ 

fibroblastic population and downstream SFRP1 in 3-dimensional cultures and patient derived 

xenograft tissues. In patients, CD105+ fibroblasts were found to circumscribe epithelia with 

neuroendocrine differentiation. CAF-derived SFRP1, driven by CD105 signaling, was necessary 

and sufficient to induce prostate cancer neuroendocrine differentiation in a paracrine manner. A 

partially humanized CD105 neutralizing antibody, TRC105, inhibited fibroblastic SFRP1 

expression and epithelial neuroendocrine differentiation. In a novel synthetic lethality paradigm, 

we found that simultaneously targeting the epithelia and its microenvironment with ADT and 

TRC105, respectively, reduced castrate resistant tumor progression, in a model where either ADT 

or TRC105 alone had little effect.
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Introduction

Prostate cancer (PCa) is a heterogeneous disease that results in the second highest cancer 

mortality in men. The standard of care for recurrent PCa is the disruption of androgen 

signaling. The eventual development of resistance to androgen signaling deprivation therapy 

(ADT) has no curative approach. We had previously identified transforming growth factor-

beta (TGF-ß) signaling in fibroblasts as a determinant for prostate epithelial plasticity [1]. 

From the early steps of PCa initiation, the associated stromal fibroblastic cells begin to co-

evolve with cancer progression and is predictive of recurrent disease and survival [2]. The 

tumor-inductive properties of cancer-associated fibroblasts (CAF) were originally coined as 

those that could convert non-tumorigenic epithelia to tumors and not simply based on 

proximity to cancer epithelia [3–5]. Additionally, prostatic CAF are attributed to tumor 

progression and therapeutic resistance to ADT [6, 7]. It is known that heterogeneous 

epithelial cell populations contribute to variable responses to treatments [8]. Whereas, the 

heterogeneity in the stromal fibroblastic cells is a concept less studied, especially in the 

context of resistance to therapy. Through a series of tissue recombination xenografts, we 

previously demonstrated the requirement of a heterogeneous mixture of mouse stromal 

fibroblasts with intact and deficient TGF-β signaling to induce the initial transformation of 

benign epithelia into malignant lesions [9]. However, better understanding of the 

heterogeneous human prostatic fibroblast populations that support the expansion of 

established tumors and contribute to recurrent disease is needed.

Histologically similar fibroblastic cells that circumscribe the glandular epithelia of the 

prostate vary biologically. At a simplistic level, cell surface proteins can be used to 

differentiate fibroblastic cells much like distinct populations of histologically similar 

immune cells were distinguished over thirty years ago. Furthermore, the function of these 

surface proteins can be cell type specific [10]. Mesenchymal stem cell proteins have 

emerged as markers for CAF in some tissues [11]. Among these markers, endoglin (CD105) 

was identified in both normal associated fibroblasts (NAF) and CAF. Interestingly, extended 

culture of tumor-inductive CAF, can result in the loss of their inductive capacity through a 

change in fibroblastic heterogeneity [12]. We exploited the fact that culturing CAF can 

diminish its tumorigenic potential as a tool to explore the consequence of stromal 

heterogeneity and paracrine determinants of tumor progression. Fibroblastic population drift 

resulting from culturing primary fibroblasts was revealed to diminish the CD105 population 

and ensuing effects of tumorigenesis. CD105 is a TGF-ß type III receptor that functions in 

promoting bone morphogenic protein (BMP) signaling and antagonizing TGF-ß signaling. 

CD105 is found on proliferating endothelial cells in development and tumorigenesis [13]. 

We hypothesized that the CD105+ CAF population critically mediates prostatic tumor 

epithelial differentiation and castrate resistance in a paracrine manner.

Therapeutics for late stage PCa target the androgen axis by blocking androgen synthesis or 

the androgen receptor. The phase III PREVAIL trial demonstrated that enzalutamide, a direct 

androgen receptor inhibitor, improved overall survival by 2 months in castration resistant 

prostate cancer (CRPC) patients who have not yet received chemotherapy [14]. Despite the 

initial efficacy of ADT many patients develop CRPC with the acquisition of neuroendocrine 
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features by the cancer epithelia [15]. This paradox is a striking concept since de novo 
neuroendocrine PCa accounts for < 1% of patients, yet 10–15% of patients develop tumors 

having neuroendocrine features following ADT as a treatment-emergent adaptive response 

[16]. The role of CAF on neuroendocrine differentiation has not been reported. Interestingly, 

multiple paracrine factors have been demonstrated to support resistance to ADT, including 

IL-6, Wnt ligands, and IGF-1 [6, 17, 18]. Here, we identify a stromal CD105-expressing 

population in CAF that can mediate neuroendocrine differentiation and CRPC in a paracrine 

fashion. We further show that CD105 is highly druggable and can serve as a target 

complementing ADT to restore castrate sensitivity.

Results

Stromal heterogeneity is observed in human PCa specimens

Prostatic fibroblast populations directly from prostatectomy tissues were studied to 

determine heterogeneity of associated fibroblasts. Once we characterized these tissues as 

cancer or benign with H&E staining, we dissociated and depleted them for EpCAM+ 

epithelia and CD45+ lymphocytes by magnetic separation. FACS analysis was performed to 

distinguish for previously established mesenchymal stem cell surface markers (CD90, 

CD105, CD117, and Stro-1) within the remaining fibroblastic population of four patients. 

Fig 1A illustrates the distribution of the cell surface markers, based on the most abundant 

marker per population, color coded according to the termed dominant marker, with the co-

expressed markers indicated, adding to the diversity of the individual populations. Similar to 

what has been reported in the past, we found CD90+ fibroblastic cells in the PCa tissues to 

be nearly double than that found in benign tissues [19, 20]. There was no statistical 

difference in benign and PCa in the CD105-dominant population. Expression of CD105 was 

further validated in 79 PCa and 16 benign tissues by immune-localization in a tissue array. 

In benign prostate tissues, CD105 immunohistochemical staining was primarily restricted to 

endothelial cells (Fig 1B). In PCa however, CD105 was primarily detected in the endothelia 

and heterogeneously expressed in stromal fibroblastic cells. We could not establish a 

correlation of Gleason grade to the expression of stromal fibroblastic CD105. Interestingly, 

staining for a neuroendocrine marker, chromogranin A, revealed its expression 

circumscribed by CD105+ fibroblasts (Figs 1C and Supplementary Figure S1). In the subset 

of 6 tissues that were positive for neuroendocrine differentiation, assessed by chromogranin 

A staining, stromal CD105 was also expressed in 83% of these same tissues; receiver 

operating characteristic (ROC) analysis provided an area under the curve (AUC) of 0.751 (p 

= 0.0026, Fig 1D). The treatment status of these patients was not known. Next, we used the 

R2 analysis platform to calculate the correlation coefficient between CD105 to a panel of 

nine neuroendocrine genes in a transcriptomic analysis of 545 PCa patient tissues (Figure 

1E, R = 0.703 (p = 1.4×10−73) [21–23]. Taken together, the stromal fibroblastic CD105 

population in tissues and primary cells was significantly associated with epithelial 

neuroendocrine differentiation (5).
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Cellular heterogeneity in carcinoma associated fibroblasts determine its tumor supportive 
property.

We next sought to confirm our finding from prostatectomy tissues with cultured CAFs and 

NAFs. Primary CAF cultures generated from prostatectomy tissues can promote the 

expansion of established tumor epithelia [5, 24]. However, routine culturing of primary 

prostate CAF can lead to its loss of tumor promoting potential. To characterize this 

observation, we compared primary cultured NAF, low passage CAF (3–7 passages) and high 

passage CAF (CAFHiP, > 8 passages) using FACS for CD90, CD105, CD117, and Stro-1. 

There was an overall statistical difference in the composition between NAF, CAF and 

CAFHiP populations (Fig 2A, p = 0.03). Interestingly, the most abundant fibroblastic 

population in NAF and CAF was the CD90+/CD105+ population compared to the CAFHiP (p 

= 0.03 and p = 0.06, respectively). In agreement with previous studies that prostatic 

fibroblasts can induce epithelial cell expansion [5], the xenografts with human CWR22Rv1 

(22Rv1) PCa epithelia alone resulted in negligible tumors compared to tissue recombinant 

grafts with stromal fibroblastic cells (Fig 2B). Interestingly, there was no statistical 

difference between tissue recombinants using NAF and CAF in the progression of the 

established tumor epithelia, although the CAF provided a distinct growth advantage to non-

tumorigenic BPH1 epithelia over NAF under similar conditions (data not shown). 

Regardless, tissue recombinants of 22Rv1 and CAFHiP resulted in tumor volumes larger than 

22Rv1 epithelia alone (p < 0.05) but, significantly smaller than recombinants associated with 

NAF or CAF (p < 0.001 and p < 0.0001 respectively). Epithelial proliferation, as determined 

by Ki67 epithelial localization, was found to be greatest to least abundant in CAF > CAFHiP 

> NAF – associated recombinants (Fig 2C, D). However, CAFHiP-associated tumors had the 

lowest expression of survivin, compared to NAF or CAF recombinant tumors (Fig 2C, E). 

CAF-associated tumors were found to have significantly greater Ki67-expressing epithelia 

and reduced TUNEL staining, compared to NAF- or CAFHiP- associated tumors. This 

corroborated the concept of population drift, resulting from extended culturing of primary 

cells.

Secreted frizzled related protein 1 expression is elevated in CAF stromal cell populations

To identify the differences in paracrine mediators among the three stromal cell types, we 

performed RNA-sequencing and segregated the genes based on their expression pattern. We 

first compared CAF to CAFHiP, as shown in the volcano plot comprised of the top 200 

differentially regulated genes (Fig 3A). The top significantly upregulated genes were 

ependymin related 1 (EPDR1), lysyl oxidase (LOX), follistatin (FST), and SFRP1. 

Differential gene expression among CAF, CAFHiP, and NAF was analyzed based on the 

combined ranked ratios of CAF/CAFHiP and CAF/NAF. Candidate paracrine mediators (33 

secreted genes, by gene ontology analysis from the top 200 differentially regulated genes) 

were plotted in a heatmap, revealing 9 genes expressed in both NAF and CAF, but not found 

in the CAFHiP (Fig 3B). Of the top significantly upregulated genes, only SFRP1 was co-

expressed in both CAF and NAF populations. Presumably, paracrine mediators in the NAF 

and CAF, not expressed in CAFHiP, enabled the observed tumor expansion in Fig 2B. 

Therefore, the 9 genes common to NAF and CAF populations drew our attention as potential 

CD105-associated mediators of tumorigenicity.
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Stromal CD105 mediated SFRP1 induced PCa neuroendocrine differentiation

Next, a unique primary CAF line was identified to be spontaneously enriched in CD105 

(CAFCD105en, 99% of the population) compared to primary CAF samples from other 

patients (56% ± 10), that maintained its high CD105 expression through passaging. A set of 

CAF-related genes based on previous studies and our RNA-sequencing data were assessed 

in NAF, CAF and the CAFCD105en cells. MMP-1, MMP-3, Cox-2, tenascin C (TNC), and 

secreted frizzled related protein 1 (SFRP1) were elevated in CAF more than 20-fold 

compared to NAF (Fig 4A). The expression of SFRP1 and TNC was further elevated in 

CAFCD105en compared to either NAF or CAF (p < 0.001). However, two-way ANOVA of 

the entire gene expression panel suggested that the CAF and CAFCD105en to be statistically 

similar. Notably, the traditional tumor-associated fibroblastic markers of alpha-smooth 

muscle actin, fibroblast activating protein (FAP), and IL-6 were not higher in the cultured 

CAF or CAFCD105en compared to NAF.

With the goal of identifying a neuroendocrine differentiation promoting paracrine factor, we 

directly tested if CD105 expression affected SFRP1 expression using a CD105 neutralizing 

antibody, TRC105. TRC105 blocked human CD105-mediated BMP2 activity without 

affecting TGF-ß signaling (Supplementary Figure S2) [25]. The low SFRP1 expression in 

22RV1 was not affected by TRC105, however TRC105 significantly downregulated SFRP1 

in CAFCD105en (p < 0.0001) (Fig 4B). Furthermore, the knockdown of CD105 in 

CAFCD105en by siRNA also resulted in decreased SFRP1 expression (Supplementary Figure 

S3). SFRP1 genes expression was found to be co-expressed with thrombospondin 1 

(THBS1), platelet derived growth factor 1 (PDGFC), tectonic family member 1 (TCTN1), 

and zinc finger protein 449 (ZFN449), based on TCGA gene association query 

(Supplementary Figure S3)[26]. Of the four SFRP1 regulated genes, PDGFC, sonic 

hedgehog (target of TCTN1), and THBS1 are associated with tumor neuroendocrine 

differentiation. There was further evidence of the role of SFRP1 in neuroendocrine 

differentiation of PCa in the TCGA, where SFRP1 gene amplification was associated with 

neuroendocrine differentiation (Supplementary Figure S3). To test the role of SFRP1 on 

epithelial neuroendocrine differentiation more comprehensively, we treated cultured 22Rv1 

with recombinant SFRP1 to find a significant induction of 9 PCa neuroendocrine 

differentiation genes [15] in a dose dependent manner (p < 0.001; Fig 4C). However, the 

same doses of SFRP1 had no effect on epithelial proliferation (Supplementary Figure S3). 

To further confirm the neuroendocrine response of stromal derived SFRP1 on epithelia, we 

knocked down SFRP1 by 10-fold using siRNA in CAFCD105en and used this conditioned 

medium to treat 22Rv1. The knockdown of SFRP1 significantly decreased the 

neuroendocrine differentiation gene panel without affecting proliferation, compared to 

control transfected CAFCD105en cells (p < 0.0001; Fig 4D and Supplementary Figure S3). To 

further confirm this mechanism in an alternative cell line, we treated C4–2B cells with 

enzalutamide in the presence of conditioned media from wild type mouse fibroblasts or 

CRISPR/Cas9 CD105-knockout mouse fibroblasts to measure the expression of the 

neuroendocrine differentiation gene panel (p < 0.0001, Fig 4E, Supplemental Figure S3). 

After confirming this mechanism at the transcriptional level, 22Rv1 were again treated with 

conditioned medium from CAF nucleofected with siRNA against SFRP1 compared to 

scramble control, which resulted in elevated mTOR phosphorylation (Ser 2448, associated 
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with mTORC1 activation) (Fig 4F) [27, 28]. Furthermore, 22Rv1 were treated with 

combinations of recombinant SFRP1 and/or an mTOR inhibitor, rapamycin. The SFRP1-

induced neuroendocrine gene panel was restored to near control levels with the addition of 

rapamycin, in support of the role of SFRP1 in neuroendocrine differentiation via mTOR 

signaling, in the absence of any effect on epithelial cell viability (p value < 0.0001, Fig 4G, 

Supplemental Figure S3). Fibroblast-derived SFRP1 was necessary and sufficient for 

epithelial neuroendocrine differentiation.

ADT induces neuroendocrine differentiation in a stromal CD105 dependent manner

To better understand the regulation of CD105 in both fibroblasts and epithelia, we generated 

3D co-cultures with human 22Rv1 and mouse wild type prostatic fibroblasts. As patients can 

develop neuroendocrine prostate cancer when undergoing ADT, we used enzalutamide to 

reproduce this physiological state. Treatment with enzalutamide resulted in a three-fold 

increase in CD105 cell surface expression in epithelial and fibroblastic populations by FACS 

analysis, compared to vehicle (Fig 5A). To test the effect of ADT and CD105 inhibition 

directly on epithelial cells, we treated 22Rv1, C4–2B, or PC3 monolayer cultures with 

enzalutamide in the presence or absence of TRC105. Ki-67 expression was measured by 

FACS. We found that enzalutamide effectively downregulated the proliferation of AR 

expressing 22Rv1 and C4–2B cells (p < 0.01, Fig 5B). The administration of TRC105 had 

little proliferative effect in the presence or absence of enzalutamide treatment of 22Rv1 or 

C4–2B cells. Further determination of epithelial cell viability by MTT assay confirmed 

reduced viability of the cells with enzalutamide treatment (Supplementary Figure S4). 

TRC105 did not impact cell viability. The PC3 cells, with no androgen receptor expression, 

were predictably insensitive to either enzalutamide in the presence or absence of TRC105. In 

light of the observed epithelial proliferation with enzalutamide, we tested epithelial prostate 

specific androgen (PSA) expression by real-time PCR in co-cultured 22Rv1 or C4–2B with 

wild type mouse fibroblasts in the presence of enzalutamide. The co-cultured Rv1 

demonstrated elevated PSA expression with enzalutamide in a dose dependent manner 

(p<0.05, Fig 5C). Whereas, PSA expression was significantly decreased in co-cultured C4–

2B cells given enzalutamide (p < 0.05, Supplemental Figure S4). In line with elevated PSA 

expression by 22Rv1 when co-cultured with wild type fibroblasts, in 3D co-cultures of the 

same cells, enzalutamide caused a doubling of epithelial proliferation when normalized to 

vehicle control, (p < 0.01, Fig 5D). We utilized the species differences to target the epithelia 

with the human-specific CD105 neutralizing antibody, TRC105, or fibroblasts with the 

mouse-specific CD105 neutralizing antibody, M1043 [25]. At the dose used for this study (1 

μg/ml), we found no cross-species reactivity of the two antibodies or alterations of TGF-ß 

signaling (Supplementary Figure S2). The co-cultures were treated with enzalutamide in the 

presence or absence of TRC105 and/or M1043. The resultant changes in epithelial 

proliferation were quantitated by FACS analysis for Ki67 expression of EpCAM+ cells. 

Treatment with either M1043 or TRC105 alone did not change epithelial proliferation 

compared to IgG control. However, combining enzalutamide with both M1043 and TRC105 

reduced epithelial proliferation, compared to enzalutamide alone (p < 0.01). In support of 

fibroblastic expression of CD105 eliciting the dominant effect, M1043 (in the absence of 

TRC105) with enzalutamide resulted in a significant increase in epithelial cell death, 

measured by EpCAM+/annexin V staining, compared to control or enzalutamide (p < 0.01, 
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Fig 5E). Thus, CD105+ fibroblastic population is consequential to castrate resistance due to 

cell-specific effects on epithelial proliferation and death in the context of ADT.

Next, we attempted to validate the associated increase in CD105 following ADT using PCa 

patient-derived xenograft (PDX) models. Treatment-naïve PCa tissues were grafted in the 

subrenal capsule and allowed to vascularize for one week before treatment with either 

vehicle or enzalutamide for 4 days (Fig 5F). The grafts were harvested and evaluated for the 

expression of CD105, SFRP1, and chromogranin A. As before, CD105 was predominantly 

immune-localized on the vascular endothelia in the absence of enzalutamide treatment (Fig 

5G). However, enzalutamide treatment resulted in the upregulation of CD105 immuno-

localization in both epithelial and CAF populations with SFRP1 upregulation in the PDX 

tissues. Double immunohistochemical staining indicated CD105+ fibroblasts proximal to 

chromogranin A+ epithelial cells in the enzalutamide treated mice, compared to vehicle 

treated mice (Supplementary Figure S5). Together, the data suggested that blocking the 

androgen axis was associated with elevated CD105 expression and PCa neuroendocrine 

differentiation.

Antagonizing CD105 can sensitize PCa to androgen targeted therapy

To determine if antagonizing CD105 sensitizes CRPC to ADT, we utilized an orthotopic 

castrate resistant tissue recombinant model comprised of human CAF and 22Rv1. The 

tumors were expanded for 3 weeks prior to castrating the mice. A subset of mice was also 

treated with enzalutamide, in the presence or absence of TRC105 for an additional 3 weeks 

to mimic secondary treatment after castration equivalent therapies have failed. Notably, 

TRC105, a human specific CD105 antagonist, does not impact host vascularization of the 

xenografts. Castrated mice had reduced tumor volumes compared to controls (p < 0.001; Fig 

6A). Histologic measure of mitosis by phosphorylated-histone H3 was unchanged, however 

castration resulted in an expected increase in TUNEL staining (p < 0.0001; Fig 6B–C). In 

this CRPC xenograft model, the castrated mice given enzalutamide had tumor volumes and 

histologic measures of cell turnover statistically comparable to control intact mice. Mice 

treated with TRC105 alone had tumors smaller than vehicle (p < 0.05), with no notable 

changes in histology, proliferation, or cell death, compared to control. As patients on 

enzalutamide are normally at a castrate state, we combined castration with enzalutamide and 

compared the tumors to that generated following the addition of TRC105. We found 

substantially reduced tumor size with the addition of TRC105 compared to either control or 

castrated-enzalutamide treatment alone (p < 0.001 and < 0.01, respectively). Castrated mice 

given TRC105 resulted in the smallest tumor volume compared to control (p < 0.0001), with 

tumors too small to section for reliable histologic analysis. The marked chromogranin A 

staining associated with ADT (castrated mice given enzalutamide), was reduced by the 

added administration of TRC105 (p value <0.0001). Together, blocking the androgen axis 

was associated with increased CD105 contributing to neuroendocrine differentiation of PCa 

via fibroblasts derived paracrine SFRP1 (Fig 7).
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Discussion

This study identifies the role of the CD105+ fibroblastic population in the heterogeneous 

stroma initiating a novel paracrine SFRP1 signaling axis critical to castrate resistant prostate 

cancer. We used a recognized change of the loss of tumor potentiation resulting from 

extended culturing of primary CAF to identify a mechanism for paracrine PCa 

differentiation. For the first time, we identified that CD105/BMP signaling is up regulated in 

response to ADT using mouse models. We found that stromal CD105 expression was 

associated with prostatic epithelial neuroendocrine differentiation in patient tissues and a 

mechanistic role for SFRP1 in the process (Fig 7). Ultimately, we discovered that combining 

androgen targeted therapy with a CD105 neutralizing antibody dramatically reduced 

neuroendocrine differentiation and resultant tumor size in a model of therapy resistant 

disease.

Stromal-epithelial interactions have defined organ development and cancer progression. We 

identified a sub-population of stromal fibroblastic cells that regulate androgen sensitivity of 

PCa epithelia. Previous studies have demonstrated the importance of CD105 in PCa 

progression [29]. However, the explicit decrease of CD105 in the CAFHiP cells initiated 

further interrogation of CD105 as it was similarly expressed in both NAF and CAF as well 

as fibroblasts from benign and PCa tissues. Validation of this culturing-associated population 

drift in CAFHiP also included reduction of the CD90+ population, reported to be a hallmark 

of tumor inductive CAF [19, 20]. FACS analysis enabled examination of the stromal 

population makeup on a per-cell basis, not just a total change in expression (Figs 1, 2). 

FACS analysis of benign and PCa tissues supported the previous reports regarding elevated 

CD90+ fibroblastic populations in CAF [19, 20]. There is precedence for tumor associated 

stromal cells to be derived from proliferative endothelia supporting breast cancer 

progression [30, 31]. The identification of the samples that exhibited neuroendocrine 

features and adjacent CD105+ fibroblasts directed us to further examine the role of CD105 

in the context of ADT.

The biologic heterogeneity of advanced PCa is attributed to its resistance to ADT [32]. 

Although not mutually exclusive, therapeutic resistance can be a result of a population of 

cells that are selected by the attrition of sensitive ones or through an active acquisition of 

adaptive features [33].These models are based on cell-autonomous mechanisms of 

resistance. Although NAF and CAF were originally coined for their respective lack of or 

capacity to initiate tumorigenesis [3–5], when combined with established cancer epithelia, 

we found their shared ability to promote expansion of 22Rv1 cells (Fig 2). We used a 

recognized decrease in tumorigenicity by extended culturing of CAF to identify the nature of 

the drift in fibroblastic populations. Specific up regulation of the CD105+ fibroblastic 

population in response to ADT mediated neuroendocrine differentiation of PCa epithelia in a 

paracrine manner downstream of SFRP1 (Fig 3, 4). SFRP1, originally recognized to 

antagonize Wnt ligands, has previously been associated with epithelial branching 

morphogenesis in the prostate [34, 35]. SFRPs, have more recently been shown to play a 

role in promoting Wnt diffusion and correlated with tumor progression [36–38]. Importantly, 

SFRP1 and SFRP2 are also reported to have Wnt-independent effects [39], and the capacity 

to inhibit androgen receptor transcriptional activity [40, 41]. The ability for recombinant 

Kato et al. Page 8

Oncogene. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SFRP1 to induce neuroendocrine features in PCa cells, inclusive of aurora kinase, n-myc, 

and secretogranin-3, supported its Wnt-promoting activity (Fig 4). Stromal CD105 

expression was associated with prostatic epithelial neuroendocrine differentiation, in patient 

tissues as well as the PDXs when administered ADT (Figs 1, 5). Consequently, we found 

that combining ADT with TRC105 dramatically reduced tumor size in a model of ADT 

resistant disease (Fig 6). The acute changes in the PDX model correlated with the longer-

term tissue recombinant xenograft model (6 weeks). These findings go beyond the known 

association of elevated vascular CD105 with poor PCa prognosis, in providing a mechanism 

for the paracrine mediated fibroblast CD105-SFRP1 response to ADT [42]. Although, we 

focus on stromal SFRP1 eliciting neuroendocrine differentiation on prostatic epithelia, other 

differentially expressed genes found in our sequencing analysis in CAF vs NAF or CAFHiP 

may also play roles as has been demonstrated by IGFBP2 [43]. The genes in our circus plot 

(PDGF, TCTN1, ZNF449 and THBS) are reported to be co-expressed with SFRP1 and 

known to be involved in neuroendocrine differentiation (Supplemental Figure S2) [44, 45]. 

However, there is no claim that these genes are necessary or sufficient to induce 

neuroendocrine differentiation like SFRP1. The relation of the other genes in the circus plot 

to CD105 is yet to be determined. Our current work provides the foundation for subsequent 

studies to provide a well-rounded understanding of prostatic neuroendocrine differentiation.

The strategy to combine ADT and CD105 antagonism is an example of synthetic lethality. 

We identified a mechanism for paracrine-mediated CRPC and addressed a means for its 

therapeutic resolution. Since ADT promoted CD105 expression in both fibroblastic and 

epithelial cells (Fig 5), the cells are more susceptible to its antagonism. The roll of CD105 in 

fibroblasts and epithelia are likely quite different, as the epithelia do not respond to ADT by 

expressing SFRP1 nor was the epithelia able to develop resistance on its own. We do 

acknowledge the potential for CD105 effects outside of the scope of this study. Notably, 

elevated PSA expression in 2D co-cultures of 22Rv1 with wild type fibroblasts treated with 

enzalutamide corresponded with elevated proliferation in 3D co-cultures of 22Rv1 and wild 

type fibroblasts treated with enzalutamide. A similar phenomenon has been seen in patients, 

where PSA flares result from enzalutamide treatment [46]. As demonstrated in our 3D co-

cultures, inhibition of both stromal and epithelial CD105 was necessary to suppress the 

proliferative effects of ADT on prostate cancer epithelia. However, TRC105 had little direct 

effect on the proliferation or viability of mono-cultured PCa epithelia in the presence or 

absence of enzalutamide (Figs 5 and Supplemental Figure S2), much like the lack of the 

progression-free survival change in CRPC patients given single agent TRC105 [47]. Overall 

these findings support the idea that simultaneous targeting of both stromal and epithelial cell 

compartments with TRC105 and ADT may provide a better therapeutic option for CRPC 

patients, however its clinical validation is required.

Materials and Methods

Cell culture and reagents

Primary fibroblasts were grown out of prostatectomy specimens from Cedars-Sinai Medical 

Center or the Greater Los Angeles Veterans Affairs under respective Institutional Review 

Boards [9, 48]. The designation of NAF and CAF were determined by tissue recombination 
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with BPH1 non-tumorigenic prostatic epithelia [3–5]. Mouse primary fibroblasts were 

grown out of prostate specimens using the same method as human fibroblasts. Conditioned 

media was generated by plating NAF or CAF at a density to reach confluence at the end of 

72 hours, at which time the cultured media, centrifuged, and supernatant used fresh or stored 

at −80°C [7, 48]. Target cells were treated with 50% conditioned media in combination with 

50% control media. Viability assays were done using MTT reagent (M6494, Life 

Technologies) was used as directed.

Generation of CD105 knockout mouse fibroblasts

293T cells were transfected at a confluence of 70% using BioT (Bioland, CA), Cas9 vector 

(52962, Addgene), pCMV-dR8.91 (8455, Addgene), pCMV-VSVG (8454, Addgene) 

following the BioT protocol per manufacturer’s protocol with a 9:1 ratio of Delta 8.9 to 

VSVg. 24h after transfection the medium was replaced with only 50% of the volume and 

virus was collected after 48h and 72h and filtered with a sterile 0.45uM sterile syringe filter. 

Target wild-type mouse fibroblasts were seeded in 6 well plates at 200,000 cells/well. Virus 

was added with Polybrene (5 ug/mL, Sigma, MA) to the cell suspension at different ratios 

for a total of 2mL 1:1, 1:5, 1:10, 1:100, 1:1,000 and an uninfected control. 48h after 

infection, virus was replaced with 2ml of fresh medium. Selection was performed using 

blasticidin (5ug/mL). The well which had a 10% infection ratio was selected to ensure one 

infection per cell.

Once the mouse fibroblasts stably expressed CAS9, an IDT gblock was designed with the 

sequence: 

AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACG

ATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATT

AGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAA

AATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTT

CTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGxxxxxxxxxxxxxxxxxxxxGTT

TTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAG

TGGCACCGAGTCGGTGCTT, where the xxx were replaced by the sgRNA sequence: 

GGTTCGCGCGGGGATCCGAA. Fibroblasts were transfected with the gblock using the 

IDT reverse transfection protocol (IDT, Illinois). Single cell clones were selected, grown out, 

and verified with FACS.

3D organotypic co-culture—A modified version of the 3D organotypic co-culture 

system was generated in collagen matrix gels were prepared by mixing five volumes of rat 

tail collagen I with two volumes of matrigel (NCI), one volume of 10x DMEM medium (GE 

Healthcare Life Sciences), and one volume of FBS (Atlanta Biologicals), 22Rv1 and 

primary mouse prostatic fibroblasts were combined in a 1:3 ratio [49]. Nylon squares were 

coated with collagen and placed on metal grids in a 6-well plate. Gel plugs (150 μl) were 

transferred onto the nylon squares, media was added to the level of the nylon mesh and 

incubated at 37°C with 2% O2. The cells were expanded in the matrix for 72 hours, to be 

subsequently dissociated with collagenase and dispase for FACS analysis.
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FACS analysis—FACS experiments were performed with eBiosciences antibodies: anti-

human Stro-1-FITC (340105), anti-human CD90-PE (12-0909-42), anti-human CD105-APC 

(17-1057-41), anti-mouse CD105-APC (17-1051-82), anti-human CD117- PE-Cy5 

(15-1178-41), anti-human Ki67-PECy7 (25-5699-41), anti-human EpCAM-FITC 

(53-8326-41), and anti-human EpCAM-PE (12-9326-41); and BD antibody: anti-human 

Annexin V (BD 556422). EpCAM (130-061-101, Miltenyi Biotec) and CD45 (130-045-801, 

Miltenyi Biotec) beads were used to negatively select for epithelial and immune cells, 

respectively, prior to FACS. BD LSRII was used to collect the data for analysis using FlowJo 

software v10.3. EpCAM+ cells were gated for measuring epithelial CD105, AnnexinV, or 

Ki67 expression in 3D co-cultures.

Animal studies—Male beige/SCID mice (Envigo), 6–8 or 10–12 weeks old, were used for 

sub-renal capsule or prostatic orthotopic grafting, respectively, as previously described [3, 

18]. In accordance with institutional animal care and use committee approval, 2×105 22Rv1 

cells and 6×105 stromal cells were suspended in 20 μL type I collagen to be grafted into the 

subrenal capsule of mice, randomized with equal numbers to each treatment group without 

blinding, castrated after seven days and sacrificed 21 days after castration. For orthotopic 

xenografts, mice were castrated after three weeks, they were treated 3 times weekly with 

enzalutamide (1 mg/mouse oral gavage) and/or TRC105 (50 μg/mouse i.v.) and sacrificed 21 

days after castration. Tumor volume was calculated using the modified ellipsoid formula 

volume3 = π/6 × (width)2 × length. For PDX models, prostatectomy tissues were 

xenografted into the sub-renal capsules and mice were treated after one week with 

enzalutamide.

Statistical analysis

FACS comparisons were normalized with arcsine square root transformation and then 

followed with ANOVA analysis. After log transformation, a student’s t test was used to 

compare fibroblastic populations. Relative expression within each group of FACS data was 

plotted with Prism (GraphPad software) v6.07 using the pie or donut chart features.

For the RNA-seq data, raw sequencer data was processed using Illumina’s RTA and 

CASAVA pipeline software, which includes image analysis, base calling, and sequence 

quality scoring. Moreover, we analyzed the RNA-seq data with our transcriptome analysis 

pipeline, which uses the Tophat software package for performing gapped alignments against 

the reference genome, DESeq for detecting differential gene expression. The log-fold change 

and a noise filter of minimum number (2) of FPKM for a gene were used to identify 

differentiated genes. The complete data set was uploaded in the GEO repository, accession # 

GSE99744. For the volcano plot, the top 200 genes among the RNA-sequencing data 

comparing CAFHiP and CAF groups were analyzed using the grouped volcano plot feature 

with Prism. For the heat map, we pulled out the top 33 secreted genes among RNA-

sequencing data, ratio values were generated for CAF/CAFHiP and CAF/NAF gene values. 

Next, the ratio values were ranked for each ratio value among all the genes analyzed, with 

the highest value having a rank of 1. The ranks of CAF/CAFHiP and CAF/NAF ratio values 

were summed. The sum values of the two ranks were then ranked. The lowest sum value had 

the lowest rank, which inversely correlated with the most significant gene expression. 
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MATLAB was used for heatmap creation with gene-wise hierarchical clustering. Average 

linkage and Euclidean distances were calculated un-supervised. Two-way ANOVA analysis 

over all genes indicated statistically significant variations in expression patterns.

cBioPortal was used to check SFRP1 mutation, deletion, and amplification frequency and 

correlations across publicly available data sets generated by the TCGA Research Network: 

http://cancergenome.nih.gov/ as described previously (Cerami et al., 2012; Gao et al., 2013). 

Multiple comparisons for in vitro data were evaluated with one-way or two-way analysis of 

variance (ANOVA). The tumor data was analyzed using one-way ANOVA for multiple 

comparisons. Results were expressed as individual data points or as the mean ± S.D. p 

values of less than 0.05 were considered statistically significant. Relative expression within 

each group of FACS data was plotted with Prism software using the pie or donut chart 

features. The concordance of stromal CD105 population and epithelial chromogranin A 

expression was measured with receiver operating characteristic (ROC) curve and the area 

under the ROC curve (AUC). The p value for AUC (c-statistic) was determined with Mann–

Whitney U test. All calculations were performed with ROC package in R. Multiple 

comparisons for in vitro data were evaluated with one-way or two-way analysis of variance 

(ANOVA). The tumor data was analyzed using one-way ANOVA for multiple comparisons.

Additional Materials and Methods can be found in the electronic supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Stromal CD105 expression is associated with neuroendocrine differentiation of the 
adjacent epithelia.
(A) Donut charts show a representative patient stromal makeup from benign or cancer 

prostatectomy tissue. The relative percent is indicated for the stromal populations based on 

FACS, n = 4. The dominant population, determined by the marker of greatest intensity per 

cell, are colored with shades of: blue (CD105), gold (CD90), red (CD117), purple (Stro-1). 

The double, triple, and quadruple stained cell populations are shown as lighter shades among 

their dominant population. Gray indicates negative staining for CD105, CD90, CD117, and 

Stro-1. (B) Immunohistochemical staining of CD105 (brown) from representative core 

sections of tissue arrays counterstained with hematoxylin. Arrow heads indicate CD105-

positive blood vessels and arrows indicate CD105-positive stromal fibroblast staining, n=94. 

Scale bar represents 100 μm. (C) Representative serial sections from tissue cores stained for 
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CD105 and chromogranin A, counterstained with hematoxylin, n = 39 paired tissues. A 

pseudo-colored overlay is shown to emphasize the localization of CD105 positive (blue) 

staining relative to chromogranin A positive staining (magenta). Scale bar represents 100 

μm. (D) Waterfall plot indicates relative expression of epithelial chromogranin A (orange 

bars) and those that had co-expression of stromal CD105 (hatched orange and blue bars) on 

a graded scale of 0–5, where 5 was the greatest staining in paired cores, n = 39. (E) Scatter 

plot of the canonical correlation based on the R2 analysis platform between the 

neuroendocrine gene panel (AURKA, SCG3, MYCN, CGA, CGB, ENO2, NKX2.2, 

FOXA2) and CD105.
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Figure 2. Stromal heterogeneity dictates tumor progression.
(A) Pie charts illustrate the relative ratio of the indicated stromal fibroblastic populations 

based on cell surface expression of the indicated markers: CD90+/CD105+ (blue), CD90+/

Stro-1+ (purple), CD90+/CD117+ (red), and CD90− (green), n > 3. ANOVA analysis 

demonstrates NAF, CAF, and CAFHiP have distinct populations (p < 0.03). (B) Scatter plot 

indicates individual tumor volume (log transformed) for tissue recombinant tumors made up 

of 22Rv1 epithelia with the indicated fibroblastic populations. n > 4. (C) Histology for 

representative recombinant tumor sections of 22Rv1 with the indicated fibroblastic 

populations are shown. H&E staining shows tumor morphology (scale bar represents 64 

μm). Ki67 and TUNEL immune-localization, with hematoxylin nuclear counterstain (scale 

bar represents 32 μm), is shown, n > 5. (D) The scatter plot shows quantitation of percent 

Kato et al. Page 18

Oncogene. Author manuscript; available in PMC 2020 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression for Ki67 immunohistochemical staining, n > 8. (E) The scatter plot shows 

quantitation of the number of TUNEL positive nuclei per field by immunohistochemical 

staining, n > 5. For all, error bars are mean +/− SD, and p values of less than 0.05 were 

considered statistically significant (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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Figure 3. Differential gene expression in NAF, CAF, and CAFHiP stromal fibroblasts.
(A) The top 200 differentially expressed genes identified by RNA sequencing were plotted 

in a volcano chart to compare the ratio of CAFHiP to CAF. The effect size ratio was set to 1 

indicating less effect below this threshold. Genes in the upper right quadrant (red) are 

considered significant with an effect greater than 1. Genes in the upper left quadrant (green) 

were considered significant with less effect. (B) Among the top 200 differentially expressed 

genes, 33 coded for secreted proteins, illustrated in the heat map following log 

transformation. The labels above the gene names highlight expression in NAF, CAF, and 

CAFHiP.
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Figure 4. Androgen axis inhibition mediates paracrine SFRP1-mediated neuroendocrine 
differentiation.
(A) Relative mRNA expression for the indicated genes is graphed for NAF (white), CAF 

(gray), and CAFCD105en (black) as mean +/− SD, n = 3. Primer sequences are listed in 

Supplementary Table S1. (B) Bar graph shows relative SFRP1 mRNA expression in human 

22Rv1 and CAFCD105en regulated by TRC105 compared to IgG (control) treatment, n > 3. 

(C) Heat map shows the relative expression for the neuroendocrine gene panel in 22Rv1 

cells, normalized to GAPDH, when treated with 0, 0.01, 0.1, and 1 μg/ml SFRP1, n = 3. 

Gradient scale from 2.5-fold increase (yellow) to 0.5-fold decrease (purple) indicates gene 

expression changes compared to control. (D) Heat map shows the relative expression for the 

neuroendocrine gene panel in 22Rv1 cells, normalized to β-actin, when treated with 

enzalutamide in combination with conditioned media from CAF nucleofected with scramble 

or siRNA against SFRP1, n = 3. Gradient scale from 1-fold increase (yellow) to 0.1-fold 

decrease (red) indicates gene expression changes compared to scramble control. (E) Heat 

map shows the relative expression for the neuroendocrine gene panel in C4–2B cells, 

normalized to β-actin, when treated with enzalutamide in combination with conditioned 

media from wild type fibroblasts or CD105 knockout fibroblasts, n=3. Gradient scale from 

1-fold increase (red) to 0.1-fold decrease (blue) indicates gene expression changes compared 

to wild type conditioned media. (F) Immunoblot shows 22Rv1 cell protein expression for 

phosphorylated-mTOR and β-actin as the loading control, treated with control media or 

CAF-nucleofected with scramble or siRNA against SFRP1 as indicated for 72 hours. The 
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ratio of phospho-mTOR/β-actin is shown. (G) Bar graph shows the relative gene expression 

for the indicated neuroendocrine differentiation genes in 22Rv1 cells treated with rapamycin 

(1 μM) and/or SFRP1 (0.1 ug/mL) for 72 hours, n = 3. * indicates significant gene 

expression compared to control. For all, error bars are mean +/− SD, and p values of less 

than 0.05 were considered statistically significant (**P<0.01, ***P<0.001, ****P<0.0001).
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Figure 5. Antagonizing the androgen axis increases CD105 with elevated neuroendocrine 
differentiation.
(A) CD105 expression in human epithelial (22Rv1) and wild-type mouse prostatic 

fibroblastic cells in a 3D co-culture model is regulated by enzalutamide treatment, as 

determined by FACS analysis, n = 3. (B) Epithelial proliferation of prostatic epithelia 

22Rv1, C4–2B, and PC3 was determined by FACS analysis for Ki67+ cells in the presence 

and absence of TRC105 (1 ug/mL) and enzalutamide (5 μM), n = 3. (C) Epithelial PSA 

expression is shown from a 2D co-culture of 22Rv1 with wild-type mouse prostatic 

fibroblasts after a 16 hour treatment with indicated enzalutamide doses in hypoxia, n=3. (D) 

Epithelial proliferation of human 22Rv1, in a 3D co-culture model with mouse prostatic 

fibroblasts, were analyzed for double EpCAM+ and Ki67+ expression by FACS. The cultures 

were treated with TRC105, M1043, and/or enzalutamide for 72 hrs, n > 3. (E) Epithelial cell 
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death of human 22Rv1, in a 3D co-culture model with mouse prostatic fibroblasts, were 

measured for double EpCAM+ and Annexin V+ expression by FACS. The cultures were 

treated with M1043 and/or enzalutamide for 72 hrs, n = 3. (F) In a PDX model, the mice 

were xenografted with untreated human prostatectomy tissue under the renal capsules. 

Tissues grew for one week and then the mice were treated with either vehicle or 

enzalutamide for 4 days. (G) Immunohistochemical localization of CD105, SFRP1, or 

Chromogranin A in benign or PCa tissues were counterstained with hematoxylin. Red letters 

were used to highlight positive staining in blood vessels (v), epithelia (e), and stroma (s), n > 

5. Scale bar represents 100 μm. For all, error bars are mean +/− SD, and p values of less than 

0.05 were considered statistically significant (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001).
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Figure 6. Antagonizing the androgen axis and CD105 reduced tumor growth and neuroendocrine 
differentiation.
(A) Mice were orthotopically grafted with tissue recombinants of 22Rv1 and CAF. The mice 

were castrated, treated with TRC105, and/or enzalutamide. Bar graph shows tumor volumes 

normalized to castrated (Cx) mice. (B) H&E staining was followed by immune-localization 

for phosphorylated-histoneH3 (P-HisH3), TUNEL, and chromogranin A (CHGA). Scale bar 

represents 32 μm. (C) The scatter plots show the mitotic (PHis-H3), cell death (TUNEL), 

and chromogranin A positive staining indexes, mean +/− SD, n > 5. For all, error bars are 

mean +/− SD, and p values of less than 0.05 were considered statistically significant 

(*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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Figure 7. Antagonizing the androgen axis increases CD105 and SFRP1 expression with elevated 
neuroendocrine differentiation.
Diagram shows the evolution of prostate cancer stroma and epithelia. Castrate sensitive 

prostate cancer epithelia (blue top layer of cells) and stromal fibroblasts (bottom elongated 

layer of gray and CD105+ red cells) are both initially heterogeneous. After treatment with 

ADT, the epithelia and stroma express more CD105 (red). ADT induces SFRP1 secretion by 

fibroblasts that signal to the adjacent epithelia to induce neuroendocrine differentiation. The 

combined treatment with ADT and CD105 inhibition via TRC105 resulted in SFRP1 

downregulation and reduced epithelial neuroendocrine differentiation in promoting castrate 

sensitivity.
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