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Despite considerable effort over the past several decades, it is unclear how an 

organism’s nervous system extracts ecologically relevant information about its 

environment. The connections between individual neurons (i.e. the structural 

connectome), and the ways in which these connections are used (i.e. the functional 

connectome), likely constrain how a nervous system performs this feat. The nematode 

Caenorhabditis elegans (C. elegans) presents a rare opportunity to study both of these 

aspects of a nervous system, since the complete structural connectome of one individual 

has been published, and recent technological advances enable scientists to record from 

a large part of its nervous system. I studied the C. elegans nervous system from both of 

these perspectives to better understand the structural features and network-level 

dynamics that allow it to extract information about the environment.  

I found that the C. elegans structural connectome, along with those of several other 

biological networks, display Rentian scaling – a power-law relationship between the 

number of nodes in a module and the number of connections to nodes in other modules. 

This indicates that these biological networks, but not other social and technological 

networks, must negotiate a trade-off between the efficiency of information transfer and 

cost to maintain connections. Thus, Rentian scaling may be a feature unique to 

information-processing networks, either because it presents an organizational principle 

used to process information, or because it indicates the existence of fundamental design 

constraints these networks share. 

 While a structural connectome constrains which neurons may communicate, a 

functional connectome can indicate which pathways of information transfer are actually 

used, with the caveat that statistical dependencies may reveal interactions that are 
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actually false positives. I recorded from most neurons in the brain of adult C. elegans, 

and characterized their inferred functional connectome using tools from graph theory. I 

found that some patterns of activity were consistently modulated in a valence- or identity-

specific manner. Moreover, these patterns could be used to identify which chemical an 

animal was experiencing. This indicates that studying the functional connectome of large-

scale neural recordings may provide a mechanistic account of how neural networks 

extract and represent information about their environment.
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1. Introduction 

Many approaches to understand how neurons in an organism’s brain extract 

information about its environment have been tried. Some studies have focused on 

individual regions of the brain, delineated based on cytoarchitectonic or functional 

properties (e.g. Brodmann area 17, or V1). These have typically looked at how single 

neurons respond to artificial stimuli with simple properties (e.g. orientation of a bar of light; 

Hubel and Wiesel, 1959), or how local circuits implement advanced computations (e.g. 

surround suppression; Adesnik et al., 2012; Nienborg et al., 2013). Other studies have 

also looked at how long-range inputs and behavioral state modulate activity across the 

brain (e.g. the role of cholinergic projections from the basal forebrain to V1; Fu et al., 

2014). While these studies have uncovered important aspects about how individual or 

small numbers of neurons represent the sensory environment, due to technical 

limitations, they have been limited to observing a subset of everything that the brain is 

doing at any given time.  

A more thorough understanding requires one to explain how the brain as a whole 

represents and extracts information from the world, and then uses this information to 

guide behavior. Ultimately, this requires an understanding of how individual neurons 

respond to arbitrary stimuli, why neurons are connected to each other in a certain way 

(i.e. the brain’s structural connectivity), and how this structural backbone is used to 

transmit and process information as it moves across the brain (i.e. its functional 

connectivity). This would allow us to predict how an organism will respond to any given 

stimulus by precisely modeling the patterns of activity that represent the environment and 
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produce behavior. To do this, we will need to understand how these patterns of activity 

embody and perform these functions.  

The hermaphrodite of the nematode Caenorhabditis elegans (C. elegans) is the 

ideal animal in which to ask these questions. Its nervous system has just 302 neurons, 

all of which are stereotyped between individuals, and the structural connectivity between 

these neurons, for at least one individual, has been previously published (White et al., 

1986; Varshney et al., 2011). Furthermore, modern technology allows scientists to record 

from a large portion of its nervous system, thereby revealing large-scale patterns of 

activity in response to different stimuli (Schrodel et al., 2013). Finally, several of its 

behaviors, such as chemotaxis towards food odorants (Bargmann et al., 1993), have 

been well-studied, which allows us to ask ecologically-relevant questions about nervous 

system function.  

In my dissertation, I focused on how the structural and functional connectivity of 

this nervous system help it extract information about its environment. I found that its 

structural connectivity prioritizes large-scale integration of information (Chapter 2), and 

that patterns of functional connectivity are modulated in a stimulus-specific manner 

(Chapter 3). First, I will describe the theoretical framework I used, how it has been applied 

to characterize several complex networks, and why it may be more informative than other 

commonly used techniques in neuroscience. 

 

1.1 Structural connectivity of complex networks 

Past studies have used a graph-theoretic framework to study the basic 

organizational principles of various networks. Graph theory is the study of mathematical 
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objects called graphs, or networks. Networks are composed of a set of elements, called 

nodes, connected by a set of connections, called edges. These edges can be binary 

(Figure 1A), which indicates the presence or absence of a connection between two nodes, 

or weighted (Figure 1B), which specifies the strength of this interaction. These edges can 

also be undirected, which implies that a pair of nodes affect each other equally, or 

directed, to show that one node in a pair can affect the other node, but not vice-versa 

(Figure 1C). Edges can also be signed, where a positive value on an edge indicates 

similarity or activation, and a negative number implies dissimilarity or suppression (Figure 

1D). Finally, nodes can interact with themselves, graphically depicted with a self-loop. 

Networks of this last variety are less commonly used (Newman, 2010).  

Networks can be mathematically represented using an adjacency matrix. For a set 

of n nodes, the entries of the n x n adjacency matrix, call it A, indicate the nature of the 

interaction or relationship between the nodes in the corresponding row and column. In 

other words, each entry, Aij, describes the edge between two nodes. 

This graph-theoretic framework was first used in sociology, but eventually made 

its way to the study of biological networks. One of the first biological networks studied 

was the C. elegans nervous system as it represented, until recently, the only example of 

a complete structural connectome in neuroscience. (A connectome is the chemical and 

electrical connectivity between neurons of a nervous system). Other commonly studied 

networks include the network of physical interactions between proteins, or transcriptional 

regulation between genes. These biological networks may be considered to be 

“information processing” networks, because they take signals from the environment and 

adapt the dynamics of and interactions between nodes to coordinate an adaptive 
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response. Some social networks, such as one composed of actors who were in the same 

movie, likely do not process information. 

In spite of this distinction, several groups have found commonalities in the 

structures of information and non-information processing networks. I will focus on a few, 

widely analyzed properties, and describe one property that seems to be unique, and 

therefore potentially important, to information processing networks.  

 

Figure 1.1 Common types of networks. Each circle represents a node (e.g. neuron) and 
each line an edge between a pair of nodes (e.g. a structural or functional interaction). 
Edges can be either absent or present (A), weighted (B, line thickness corresponds to 
weight or strength), directed (C, one-way relationship between a pair of nodes, with the 
receiver indicated by the arrowhead), or signed (D, where blue is excitatory /inducive, and 
red is inhibitory/repressive). Note that some networks can have multiple edge types (e.g. 
a signed, directed, and weighted network). The network in (A) is composed of two 
modules; neurons in the same module have the same color (i.e. yellow or purple).  
 

1.1.1 Small-worldness 

Watts and Strogatz (1998) found that the C. elegans nervous system, as well as a 

collaboration network of film actors and the electrical power grid of the Western United 

States, was a small-world network. A small-world network is characterized by densely 

connected local neighborhoods (i.e. a large clustering coefficient), yet short pathways 

linking any two nodes on average (i.e. a small characteristic path length). This indicates 

A B

C D
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that any two nodes in these three networks can quickly communicate. Watts and Strogatz 

(1998) also found that these types of networks, compared to regular or random networks, 

more quickly propagate signals, are more computationally powerful, and readily 

synchronize. This suggests that information can rapidly spread throughout the C. elegans 

nervous system, which may help it quickly react to changes in the animal’s external 

environment. However, the small-worldness property is defined relative to random 

networks, which may not be fitting reference points since they are typically formed without 

controlling for every possible graph-theoretic feature and don’t incorporate domain-

specific knowledge on how networks form (Papo et al., 2016). Furthermore, the fact that 

an energy transfer network and a social network are both small-world indicates that this 

property is not unique to information processing networks. Is there a property that can 

distinguish between information processing and non-information processing networks? 

Such a property may be relevant to how the C. elegans nervous system and other 

information processing networks perform computations. 

 

1.1.2 Rich clubs 

Many studies have carefully analyzed the structural properties of the C. elegans 

nervous system, and found that some of these properties are shared by non-information 

processing networks. Towlson et al. (2013), for instance, found that the C. elegans 

nervous system has a rich-club of eleven efficiently connected high-degree neurons, or 

hubs, mostly composed of command interneurons that strongly regulate movement. 

(Degree refers to the number of neurons connected to the neuron of interest). Therefore, 

one way in which the C. elegans nervous system integrates information is by connecting 
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neurons which themselves integrate information from many other neurons. While this may 

seem to be an organizational principle that could be useful for information processing 

networks, Colizza et al. (2006) noted that, among others, a social network of scientific 

collaborations also has a rich-club, but a network composed of interactions amongst 

proteins did not. This indicates that the presence of a rich-club is not an unique property 

of information processing networks, but is found in many types of networks.  

 

1.1.3 Motifs 

Certain types of subnetworks, called motifs, embedded within the larger network, 

may be unique to information processing networks. Milo et al. (2002) compared the 

frequencies of 3- and 4-node motifs in various networks to random networks. They found 

that information processing networks, such as the C. elegans nervous system, the genetic 

regulatory network from Escherichia coli, and a few forward logic chips, shared a couple 

of motifs that were different from those found in non-information processing networks. 

Therefore, certain network motifs may serve as the basic building blocks of computation 

in information processing networks, or indicate the presence of design constraints 

common to these types of networks. 

 

1.1.4 Modules 

Modules are sets of nodes in a network that are densely interconnected, yet 

sparsely connected to nodes in other modules (Figure 1A). Many real networks are known 

to be modular, and it is believed that nodes in a module have similar functions. For 

instance, within a metabolic network, metabolites involved in the production of pyrimidines 
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are in the same module, separate from metabolites that synthesize dissacharides 

(Ravasz et al., 2002). Some networks are hierarchically modular, wherein smaller 

modules are embedded in larger modules across different hierarchical levels; this is 

believed to offer modules the chance to evolve more-or-less independently of one 

another, and to spare the rest of the network from damage inflicted to any one module 

(Simon, 1962; Kashtan and Alon, 2005). Ravasz et al. (2002) found that the metabolic 

networks of 43 species are hierarchically modular, and that these modules closely 

correspond to known biochemical pathways. Similarly, the C. elegans nervous system 

and human brain structural and functional connectivity networks are also hierarchically 

modular (Bassett et al., 2010). However, both Ravasz et al. (2003) and Sales-Pardo et 

al. (2007) noted that some, but not all, social and technological networks are also 

hierarchically modular, which shows that this property may not be unique to information 

processing networks. Rather, hierarchical modularity may be a property of many complex 

networks.  

 

1.1.5 Rentian scaling 

The fact that some small-world networks are modular suggests that while nodes 

are segregated into specialized processing modules, there are sparse, long-range 

connections between these modules that ultimately permit efficient communication 

across the network. While both small-worldness and modularity are not unique to 

information processing networks, the pattern of these sparse, long-range, integrative 

connections could be. E.F. Rent first discovered a power-law relationship between the 

number of gates (nodes) in a logic block (module) and the number of inputs and outputs 
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to and from that logic block in electronic circuits (Landman and Russo, 1971; Lanzerotti, 

Fiorenza, and Rand, 2005). This relationship is called Rentian scaling, and the exponent 

of this power-law, called the Rent’s exponent, represents a trade-off between the 

efficiency of communication between gates and the cost of wiring an electronic circuit. 

Therefore, the presence of Rentian scaling and its exponent suggest the presence of a 

design constraint that may be unique to information processing networks. Consistently, 

Bassett et al. (2010) found that the C. elegans nervous system and structural human brain 

networks also exhibited Rentian scaling.  

Though these studies suggest that Rentian scaling may be unique to information 

processing networks, Sperry et al. (2016) noted that the London Underground, a 

transportation network, also demonstrated Rentian scaling. Nonetheless, both Bassett et 

al. (2010) and Sperry et al. (2016) used partitioning algorithms to define spatial or 

topological modules, which may bias towards the presence of Rentian scaling. In Chapter 

2, I defined functional modules, composed of nodes that share a common function, and 

found that the C. elegans nervous system, as well as several biological networks, 

displayed Rentian scaling, while social and technological networks did not. Furthermore, 

the Rent’s exponents in these networks were larger than the Rent’s exponent of the 

London Underground, yet similar to those found for electronic circuits and biological 

neural networks. Therefore, Rentian scaling may be a feature unique to information 

processing networks, or may separate these networks from non-information processing 

networks by differences in the magnitude of the Rent’s exponent. In any case, it seems 

that the C. elegans nervous system prioritizes the integration of information from 

functionally distinct neurons over costs incurred to maintain these connections. 
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1.2 Understanding neural activity 

While many other studies have focused on the structural characteristics (e.g. 

Varshney et al., 2011; Reigl et al., 2004; Bentley et al., 2016) and generative mechanisms 

(e.g. Chen et al., 2006; Kaiser and Hilgetag, 2006; Ahn et al., 2006; Perez-Escudero and 

de Polavieja, 2007; Perez-Escudero et al., 2009; Varier and Kaiser, 2011; Nicosia et al., 

2013) of the C. elegans nervous system, several groups have used its connectome to 

form hypotheses regarding the role of individual neurons in specific behaviors. Chalfie et 

al. (1985), for instance, hypothesized that the AVA, AVB, AVD, and PVC interneurons 

were involved in the nematode’s response to touch because, according to the 

connectome, they received inputs from touch cells, and sent outputs to motor neurons. 

They eliminated these neurons one at a time, and found that the AVD and PVC neurons 

were involved in touch sensitivity, while the AVA and AVB neurons were more important 

for movement in general. This example illustrates that a connectome can be suggestive 

of network function and behavior, but that one’s intuition can be inaccurate. Consistently, 

Gray et al. (2005) used the connectome to identify four pairs of neurons that could be 

involved in sensory-driven exploratory behaviors, but found that they all function under 

different environmental conditions. Work on other biological networks has also noted that 

topologically identical networks can have different functions depending on the dynamics 

of their individual nodes (e.g. Guet et al., 2002), and this may be particularly true of 

nervous systems in general, with their rich diversity of cell types (e.g. neurons, 

interneurons, glia) and chemical messengers (e.g. neurotransmitters, neuromodulators) 

(see reviews by Tremblay et al., 2016; Lee and Dan, 2012).  
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Therefore, an understanding of the C. elegans nervous system requires us to 

measure neuronal dynamics. This will contribute to our ultimate goal of being able to 

predict a nervous system’s response to an environmental signal, and to understand how 

the ensuing patterns of activity process information and produce complex behaviors. 

Though recent advances allow us to record from a large portion of a nervous system, it 

is not clear how to bridge the gap from large scale neural activity to behavior. Hence, new 

theoretical frameworks are needed. 

 

1.2.1 Measuring neural activity  

Optical reporters of C. elegans neural activity are ideal. Genetically encoded 

calcium indicators, such as those in the GCaMP family, fluoresce in response to an 

increase of intracellular calcium (Nakai et al., 2001). Neurons in C. elegans express 

voltage-gated calcium channels, and do not express voltage-gated sodium channels 

(Bargmann, 1998). Moreover, calcium seems to be the ion primarily responsible for 

neuronal depolarization (Goodman et al., 1998; Liu et al., 2018). Altogether, this indicates 

that the influx of calcium into a C. elegans neuron is a good proxy of neuronal 

depolarization. Consequently, various groups have generated transgenic animals with 

GCaMP localized in one or more neurons, and then used microscopes to record changes 

in neuronal fluorescence (and, hence, activity) in response to any number of stimuli.  

These calcium-imaging studies have revealed important aspects about C. elegans 

circuit dynamics. For instance, some groups used this technique to describe the 

responses of single neurons in response to chemical stimuli, such as odors or salt, and 

contextualized these findings with a molecular dissection of the local feedforward and 



 11 

feedback circuitry in which these neurons are embedded (e.g., Chalasani et al., 2007; 

Chalasani et al., 2010; Leinwand and Chalasani, 2013). A few groups used calcium 

imaging to describe the combinatorial code used by the C. elegans olfactory sensory 

neurons to represent different concentrations of different monomolecular odorants 

(Yoshida et al., 2012; Leinwand et al., 2015; Zaslaver et al., 2015; Hale et al., 2016). 

These studies, however, were limited to recording from just one or a few neurons at a 

time, preventing them from analyzing large-scale patterns of nervous system activity.  

 

1.2.2 Summarizing large-scale neural recordings with dimensionality reduction 

Although others have made use of recent technological and biological advances 

to record from a large number of neurons in the C. elegans nervous system at once 

(Schrodel et al., 2013), it is unclear how to make sense of this data. Neuroscientists 

studying other organisms have used dimensionality reduction techniques to simplify and 

understand multi-neuron recordings for several years now (see review by Cunningham 

and Yu, 2014). For instance, Stopfer et al. (2003) used locally linear embedding (LLE) to 

determine that populations of projection neurons in the locust antennal lobe have 

“concentration-specific trajectories on odor-specific manifolds.” Briggman et al. (2005) 

used principal components analysis (PCA) to find ensemble activity that is related to a 

leech’s decision to swim or crawl, and linear discriminant analysis (LDA) to find candidate 

decision-making neurons. Churchland et al. (2012) developed jPCA, a form of PCA that 

identifies rotations in state space, to identify surprisingly consistent rotational dynamics 

in neuronal activity in primary motor area (M1) of rhesus macaques while they perform 
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different types of arm reaches. All of these studies simplified complex, multi-neuronal 

recordings to find patterns that were not otherwise easily detectable. 

Other than LLE, LDA, PCA, and jPCA, several other dimensionality reduction 

methods have been developed to leverage time-series data (e.g. Gaussian process factor 

analysis; Yu et al., 2009), account for multiple dependent variables (e.g. demixed PCA; 

Brendel et al., 2011), and capture nonlinear relationships between latent and observed 

variables (e.g. Isomap; Tenenbaum et al., 2000). These, and many other studies using 

dimensionality reduction, are reviewed elsewhere (Cunningham and Yu, 2014). An 

alternative approach that uses dimensionality reduction is to record from many neurons 

in animals performing a task, build a network model that reproduces the same relationship 

between stimulus and behavior, verify that the experimental observations and network 

model have similar dynamics by analyzing their low-dimensional manifolds, and then 

dissect these models to study how a biological neural network could produce the 

observed experimental data (see review by Williamson et al., 2019). Therefore, 

dimensionality reduction can be leveraged as a tool to constrain network models. 

Studies of whole-brain imaging datasets in C. elegans have also used 

dimensionality reduction techniques to reveal the existence of fundamental network 

states. Kato et al. (2015) used PCA to determine that population activity in the C. elegans 

‘brain’, composed of a dense collection of neurons in the animal’s head, transitioned 

through a few low-dimensional motor command states to organize action sequences. 

Nichols et al. (2017) and Skora et al. (2018) used PCA to identify fixed-point attractors in 

putatively sleeping animals. Though these studies suggest that neural activity in the C. 

elegans brain is low-dimensional, it is important to note that these animals were all 
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physically and chemically immobilized. Instead, Scholz et al. (2018), recording from 

moving C. elegans, used PCA to show that whole-brain population activity is high-

dimensional. Similarly, in Chapter 3, I show that population activity in immobilized animals 

exposed to chemical stimuli is also high-dimensional. Hence, it seems that a low-

dimensional description of population activity, even in a relatively small nervous system, 

will be insufficient to explain a substantial portion of neural activity. 

These studies used dimensionality reduction to concisely summarize the patterns 

of activity observed in large-scale neuronal recordings. As pointed out by Cunningham 

and Yu (2014), dimensionality reduction can improve single-trial statistical power by using 

multi-neuron activity to make sense of otherwise seemingly ‘noisy’ single-neuron 

responses, reveal neural mechanisms that emerge at the level of a population of neurons 

yet may be obscure at a single-neuron level, and facilitate exploratory analyses by 

summarizing the responses of many neurons. Though powerful, these methods are just 

one way of identifying how population activity is organized.  

 

1.2.3 Characterizing functional connectivity with graph theory 

A different, arguably more mechanistic, way of representing patterns of activity 

would be to directly study the interactions between neurons using graph theory. This 

requires one to record the activity of many neurons in a nervous system and then infer, 

or directly measure, the interactions between them. This approach recognizes that 

population activity is sculpted by the interactions between individual neurons, and that the 

structure of these interactions is likely to be important to our understanding of any nervous 

system. Rather than summarize population activity in a lower-dimensional space, which 
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is likely not overtly biologically instantiated by the nervous system, modeling the activity 

as interactions between neurons may reveal pathways of neural communication by which 

information is actively processed and transformed. However, this approach is most 

powerful when one can observe a large portion of the population of interest. If one is 

unable to record from most of the neurons that can be reasonably expected to play a role 

in an experiment (which, in many cases, is theoretically the entire nervous system), they 

may detect spurious interactions between neurons due to, for instance, a common input. 

In these cases, dimensionality reduction may be a more useful starting point 

(Cunningham and Yu, 2014).  

The human neuroimaging field has used graph theory to study the functional 

connectivity of the brain for many decades now, and has found several similarities to the 

networks discussed so far. For instance, using functional magnetic resonance imaging 

(fMRI) to measure a proxy of neural activity in the brain (see review by Glover, 2011), 

Eguíluz et al. (2005) found that functional brain networks are small-world. Bassett et al. 

(2010) noted that structural brain networks, derived from another technique called 

diffusion spectrum imaging (DSI; see review by O’Donnell and Westin, 2011), are 

hierarchically modular, while others found that the same was true of functional brain 

networks (see Supekar et al., 2009, Meunier et al., 2009b). These results are consistent 

with findings in the C. elegans nervous system, and other complex networks. Finally, 

several graph-theoretic properties of the human brain’s functional network are 

dysregulated in disease, which suggests that these properties may represent important 

organizational principles in the brain (see reviews by van den Heuvel and Pol, 2010, and 

Wang et al., 2010).  
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Although fMRI allows one to record from the entire brain, it is limited by low spatial 

resolution (the basic unit, voxels, contain many cells), low temporal resolution (sampling 

rates are slow), a reliance on a blurred proxy of neural activity (the BOLD response), and 

difficulties in defining a node in the network in a principled manner (which has resulted in 

the use of wildly different parcellation schemes across studies; see review by Hallquist 

and Hillary, 2018). Fortunately, recent technological advances allow scientists to record 

from the entire brain of the nematode C. elegans and zebrafish Danio rerio (D. rerio) with 

high spatial and temporal resolution, where the use of a GCaMP indicator provides a good 

proxy of neural activity (Ahrens et al., 2012; Schrodel et al., 2013; Chen et al., 2013). 

Furthermore, neurons are naturally defined as nodes in these networks, precluding the 

use of arbitrary parcellation schemes.  

A few studies have focused on the large-scale interactions between neurons in D. 

rerio. These groups first clustered nearby neurons with similar responses to a given 

stimulus into single nodes, thereby removing redundancy in the neural code and 

producing a much smaller adjacency matrix than the one that would be formed by the 

roughly 100,000 neurons in the animal’s brain. They then used techniques from graph 

theory to describe how regions of the brain interact. Marquez-Legorreta et al. (2019) and 

Constantin et al. (2019), for instance, studied sensory responses in a zebrafish model of 

fragile X syndrome (FXS), which in humans is associated with slowed habituation to 

repeated stimulus presentation and auditory hypersensitivity. Marquez-Legorreta et al. 

(2019) found that habituation to threatening visual stimuli accompanies a loss of strong 

interactions among functionally distinct neurons across the brain of wild-type fish, and 

that mutant animals lose these interactions more slowly, yet recover them more quickly. 
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As a result, they propose that animal models of FXS habituate more slowly because they 

maintain stronger network interactions for a longer period of time. Similarly, Constantin et 

al. (2019) found that auditory-responsive brain regions in animal models of FXS were 

more strongly connected, and more easily recruited at lower volumes, than those in wild-

type animals, suggesting that auditory hypersensitivity in FXS may be partly due to 

excess transmission of auditory information throughout the brain. Vanwalleghem et al. 

(2020), on the other hand, studied the representation of water flow in healthy animals. 

They found that neurons responsive to head-to-tail water flow are most strongly 

connected to other types of flow-responsive neurons (e.g. tail-to-head water flow), 

indicating that the zebrafish brain prioritizes the detection and processing of water flow 

experienced by forward-moving animals. While these studies revealed interesting 

aspects of sensory processing in health and disease, future efforts should make sense of 

the roles of seemingly redundant neurons, and not cluster them into single nodes, 

although the computational costs of analyzing such a large adjacency matrix could be 

substantial. More importantly, while these studies focused on simpler metrics, like the 

strength of inferred interactions between brain regions, there are many graph-theoretic 

properties, and therefore ways of characterizing neural network interactions, which should 

be considered holistically to make sense of patterns of activity in the brain. 

In Chapter 3, I used tools from graph theory to find evidence of chemical-specific 

patterns of activity in the C. elegans nervous system. This suggests that a graph-theoretic 

framework can reveal how interactions across a nervous system change in response to 

environmental stimuli, and potentially provides a cellular-level mechanism of information 

processing. 
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2. Evidence of Rentian Scaling of Functional Modules in Diverse Biological 

Networks 

 

2.1 Abstract 

Biological networks have long been known to be modular, containing sets of nodes 

that are highly connected internally. Less emphasis, however, has been placed on 

understanding how intermodule connections are distributed within a network. Here, we 

borrow ideas from engineered circuit design and study Rentian scaling, which states that 

the number of external connections between nodes in different modules is related to the 

number of nodes inside the modules by a power-law relationship. We tested this property 

in a broad class of molecular networks, including protein interaction networks for six 

species and gene regulatory networks for 41 human and 25 mouse cell types. Using 

evolutionarily defined modules corresponding to known biological processes in the cell, 

we found that all networks displayed Rentian scaling with a broad range of exponents. 

We also found evidence for Rentian scaling in functional modules in the Caenorhabditis 

elegans neural network, but, interestingly, not in three different social networks, 

suggesting that this property does not inevitably emerge. To understand how such scaling 

may have arisen evolutionarily, we derived a new graph model that can generate Rentian 

networks given a target Rent exponent and a module decomposition as inputs. Overall, 

our work uncovers a new principle shared by engineered circuits and biological networks.  
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2.2 Introduction 

One approach to understand how biological networks are organized is to study 

their scaling properties. Developmental constraints often force evolution to conserve 

certain properties of networks as they change in size. By relating these properties to 

function, we can uncover new structure-function relationships. Here, we describe a new 

scaling relationship present in functional modules in diverse biological networks.  

Molecular interaction networks are highly modular, containing subsets of nodes 

(genes or proteins) that interact more strongly with each other compared to the rest of the 

network (Spirin & Mirny, 2003; Sharan, Ulitsky, & Shamir, 2007; Navlakha, Schatz, & 

Kingsford, 2009; Jiang & Singh, 2010; Davis, Yaveroglu, Malod-Dognin, Stojmirovic, & 

Przulj, 2015). These modules represent core biological processes that occur in the cell, 

such as RNA metabolism, protein methylation, or autophagy (Ashburner et al., 2000). 

Although less studied, there are also many interactions between proteins in different 

modules (Pinkert, Schultz, & Reichardt, 2010), such as pleiotropic genes that have 

multiple functions and belong to multiple modules. These together suggest there is 

substantial cross-talk between biological modules, including across modules that are 

seemingly unrelated (Stearns, 2010). Here, our goal is to uncover structure in this 

intermodule communication using theories developed from engineered circuit design.  

E. F. Rent, a scientist at IBM in the 1960s, studied the structure of computer circuits 

and found that when he plotted the number of gates (nodes) in a logical block (module) 

of the circuit versus the number of connections to or from that block, the two scaled 

according to a power law (Landman & Russo, 1971; Lanzerotti, Fiorenza, & Rand, 2005). 

This relationship, now known as Rent’s rule, was preserved across many spatial scales, 
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from very small to very large modules, indicating that interconnections can be described 

by a self-similar function (Stevens, 2009). The rule has also been shown to hold over time 

as circuits evolved to become larger (more on-board components), more energy efficient, 

and higher performing (Bakoglu, 1990; Lanzerotti et al., 2005; Bassett et al., 2010).  

The exponent of the power law relationship is called Rent’s exponent. Higher 

exponents denote random, complex wiring, though with greater logical capacity; smaller 

values denote less capacity but a more economical design that prefers short-versus long-

range connections (Christie & Stroobandt, 2000). Thus, the exponent encodes a trade-

off between the economy of design and performance complexity. In digital circuits, the 

exponent is important because it can be used to predict the total amount of wiring needed 

to realize a specific design topology (Christie & Stroobandt, 2000), and thus how 

efficiently the network is embedded in space (Bullmore & Sporns, 2012). It can also be 

used to estimate various chip layout parameters (Christie & Stroobandt, 2000). Proteins 

in molecular networks do not have fixed positions in space, and thus there is no exact 

analog of “wiring length”; however, proteins are largely partitioned into physical cellular 

compartments, and thus Rent’s exponent may provide insight into the efficiency of cross-

compartment communication. Remarkably, circuit design engineers at IBM did not 

explicitly try to optimize for Rent’s rule; it emerged naturally from the human design 

process. In molecular networks, a certain amount of independence of modules is clearly 

desired, yet the diameters of most molecular networks and signaling pathways are rather 

small, suggesting that intermodule connections are significant and useful for information 

integration (Mason & Verwoerd, 2007; Gitter, Klein-Seetharaman, Gupta, & Bar-Joseph, 

2011; Deeds, Krivine, Feret, Danos, & Fontana, 2012; Navlakha, Gitter, & Bar-Joseph, 
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2012). This tradeoff between economy and complexity could also signify how disruption 

of one biological process affects another (closely or distantly related) biological process 

(Dillin, Gottschling, & Nystrom, 2014) and how efficiently these effects propagate 

throughout the network (Navlakha, He, Faloutsos, & BarJoseph, 2014).  

In this work, we find evidence of Rentian scaling of functional modules in a diverse 

set of molecular and cellular networks, including physical protein interaction networks, 

cell-type specific gene regulatory networks, and neural circuits. In contrast to prior work 

testing Rentian scaling, which decomposed networks into topological modules using 

graph partitioning algorithms (Bassett et al., 2010; Klimm, Bassett, Carlson, & Mucha, 

2014; Bullmore & Sporns, 2012), we decomposed networks into biological modules based 

on known functional annotations of nodes. This allowed us to test whether natural 

modules designed by evolution exhibited Rentian scaling in the same way that the human 

design process naturally led to Rentian scaling of engineered circuits. We find strong 

evidence in support of Rentian scaling, even when using different definitions of biological 

module and different protein interaction data sources for defining molecular networks. In 

gene regulatory networks, we also found that Rent’s exponents in embryonic cells are 

significantly smaller than the exponents in differentiated cells, indicating that Rentian 

scaling may provide a useful network feature for understanding cellular maturation 

throughout development. We also find Rentian scaling in functional modules of the C. 

elegans neural network, but, interestingly, not in three social networks, implying that 

information processing may play a role in producing Rentian structure. Finally, to help 

explain how Rentian scaling may have emerged biologically, we derived a new 

evolutionary graph model to generate networks with a specified Rent’s exponent. Overall, 
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our work describes a new principle of how intermodule edges are distributed within 

diverse biological networks.  

 

2.3 Materials and Methods 

2.3.1 Calculating the Rent’s Exponent of a Network 

As input, we are provided an undirected network G = (V, E ) and a decomposition 

of the nodes V into k modules, M = (M1 , M2 , . . . , Mk ), where each Mi ⊂ V. An individual 

node can belong to multiple modules, and hence Mi ∩ Mj ≠ ∅, necessarily.  

To compute the Rent’s exponent p for each network (see Figure 1), we calculated 

two numbers for each module Mi: the number of nodes inside the module (ni), and the 

total number of external edges (ei) from nodes in Mi to nodes in other modules. This is 

straightforward to calculate, except in the case where modules overlap. For example, if 

node x ∈ Mi , Mj and node y ∈ Mj, and if edge (x,y) ∈ E, then for Mi, the edge is counted 

as external, but for Mj, it is internal since both x and y belong to Mj. We then plot ni versus 

ei for all i and test whether the following relationship between the two variables holds:  

e = cnp,       (2.1) 

where c is an integration constant equal to the average number of external connections 

per node.  

The significance of this relationship was tested by plotting ni versus ei for all i on a 

log-log scale, computing a regression line for the data using least squares, and then 

computing the coefficient of determination (R2) for the line. Following Bassett et al. (2010), 

we removed modules that contained more than N/2 nodes, where N equals the number 

of nodes in the network, in order to avoid the Region II boundary effects of Rentian plots, 
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where a single module contains most of the nodes in a network. We also excluded nodes 

that appeared solely in these larger modules. This Region II has been observed in 

physical and topological partitions for a network (Christie & Stroobandt, 2000), and in 

VLSI chips, it refers to the fact that there is a limited number of input-output terminals at 

the boundary of the chip (Landman & Russo, 1971; Bassett et al., 2010). Nonetheless, it 

is clear from Figures 3, 4, and 5 that a lower threshold may be needed, as there still 

appears to be a plateau or turning down of the scaling relationship for modules with a 

large number of nodes.  

 

 

Figure 2.1 Computing the Rent’s exponent of a network. (Left) The input is a network and 
a decomposition of the nodes into modules. Solid and dotted lines denote internal and 
external edges, respectively. The orange dotted line is considered an external edge for 
module A and an internal edge for module B. (Middle) Count the number of nodes in each 
module (n) and the number of external edges from nodes in that module to nodes in other 
modules (e). (Right) Plot n versus e on a log-log scale. If linear, the slope of the line is the 
Rent’s exponent.  
 
 

If the points fall on a straight line on a log-log plot, the network exhibits Rentian 

scaling, with an exponent 0< p ≤1.Thus, p=1corresponds to a random arrangement of 

external connections, with no placement optimization (i.e., no preference between inter- 
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or intramodule connections). For digital circuits with a homogeneous layout, the smaller 

the value of p, the more efficiently the network is embedded (Christie & Stroobandt, 2000; 

Bassett et al., 2010), indicating a preference of economy over complexity. In functional 

modules in molecular networks, the embedding can correspond to a diffusion distance for 

proteins to find their correct interaction partners, with smaller values of p indicating a 

preference for local interactions.  

Testing Rentian scaling requires a network to be decomposed into modules (M). 

Prior work has defined these modules using the topology of the network (Bassett et al., 

2010), for example, by recursively bipartitioning the network using graph cuts (Karypis, 

Aggarwal, Kumar, & Shekhar, 1999) and computing Rent’s exponent using modules at 

all levels in the hierarchy. However, one downside of this approach is that a graph 

clustering method needs to be selected, and this method might implicitly bias toward 

modules that display Rentian scaling. An alternative approach for networks that are 

physically embedded in space is to randomly place randomly sized “boxes” onto the 

network; each box corresponds to a module and includes all the nodes it covers (Yang, 

Bozorgzadeh, & Sarrafzadeh, 2001; Bassett et al., 2010). This is also undesirable for us 

because most proteins diffuse and do not have fixed positions in space. Here, we depart 

from both of these approaches and instead define modules biologically (instead of 

topologically), based on the known cellular function of individual nodes. Specifically, a 

biological module contains a set of genes or proteins that takes part in the same biological 

process within the cell, such as RNA metabolism, protein methylation, or autophagy. 

Assigning genes/proteins to modules is largely done independently from network 

topology, often based on a battery of experimental assays, including gene knockout 
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experiments and expression data on transcript levels in different conditions. These natural 

modules also range across many sizes, which is important to test any scaling rule. 

Critically, this approach allows us to test whether evolution-defined modules exhibit 

Rentian scaling similar to how the human design process naturally led to Rentian scaling 

of digital circuits.  

 

2.3.1.1 Network Randomization to Test Rentian Scaling 

To determine whether a network’s Rent’s exponent was not due to chance alone, for 

each network we compared its empirical Rent’s exponent with three random controls. We 

reason that any given network that follows Rent’s rule should, if randomized, have a larger 

Rent’s exponent, as found by Bassett et al. (2010). We repeated each type of 

randomization 100 times and then compared each network’s empirical and random Rent’s 

exponents using a one-sample two-tailed t-test. The controls were generated as follows:  

1. Random modules. We selected two random nodes u and v and for each listed the 

modules they do not share in common. Assuming these two lists are not empty, 

we then randomly selected one module in each list (call them mu and mv ) with 

probability proportional to the size of the module, so that larger modules were more 

likely to be randomized. We then moved u into mv and v into mu. This procedure 

ensured that module affiliations are randomized, but the distribution of module 

sizes remains the same as in the empirical network. We swapped nodes ∑ni times 

(i.e., the sum of the number of nodes in every module) and calculated Rent’s 

exponent with the new modules. We repeated this procedure 100 times and report 

the average Rent’s exponent. The edges remain unchanged for this control.  
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2. Random edges. We performed a standard edge-swapping procedure that 

preserves the degree distribution: we selected two edges (u, v) and (x, y) and 

swapped their end points to create (u, y) and (v, x), assuming neither of the new 

edges already exists. We swapped pairs of edges |E| times, where |E| is the 

number of edges in the network, and then computed Rent’s exponent. We 

repeated this procedure 100 times and report the average Rent’s exponent. The 

modules remain unchanged for this control.  

3. Random both. We first randomized the modules and then randomized the edges.  

 

In all randomization procedures, we fixed c (the average number of external 

connections per node) to the value found in the corresponding empirical network; 

otherwise, the change in slope was masked by a change in this value.  

 

2.3.1.2 Methodological Limitations 

One novelty of this study is that we use functional, not topological, modules to 

partition the networks we studied. This approach, however, comes with some limitations. 

First, graph partitioning approaches used previously (e.g., hMetis used by Bassett et al., 

2010) can be used to study modules over different scales of the topological hierarchy that 

allow one to study fractal and other forms of scaling (Song, Havlin, & Makse, 2005). We 

studied a functional hierarchy; in the Gene Ontology, we find modules that vary over one 

to two orders of magnitude, with larger modules corresponding to broader biological 

processes (e.g., cellular physiological process) and smaller sized modules corresponding 

to more specific processes (e.g., pyrimidine metabolic process). The Gene Ontology, 
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however, is not structured as a tree but rather as a directed acyclic graph, which does not 

provide clear distinctions between levels. Furthermore, there has been extensive prior 

work in developing graph partitioning methods to extract topological modules from protein 

interaction networks that can be used to predict protein function (Brohee & van Helden, 

2006; Navlakha et al., 2009; Song & Singh, 2009; Sharan et al., 2007); however, success 

largely depends on the partitioning algorithm used. Thus, it may be difficult to compare 

insights from topological and functional analyses. Second, nodes (e.g., proteins) in our 

networks do not have fixed positions in physical space, but rather diffuse more broadly in 

cellular components. These compartments do provide a coarse physical embedding of 

nodes, but the embedding is within a limited physical region as opposed to a static 

position. Thus, further work is needed to relate Rent’s exponents to typical notions of 

wiring economy and embedding when proteins can diffuse within limited physical regions. 

Third, Rentian scaling was originally developed to study nonoverlapping logic blocks 

(modules); in using functional modules, a node can be assigned to many modules, which 

may modify the interpretation of Rent’s exponent. Fourth, the networks studied here are 

binary, whereas many biological networks also have weights indicating the strength or 

the confidence of interactions.  

 

2.3.2 An Evolutionary Algorithm to Generate Rentian Networks 

Here, our goal is to derive a simple, biologically feasible graph model that could 

generate networks that display Rentian scaling. Formally, the problem is as follows:  
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Given: A set of nodes V, a decomposition of V into modules M, and a target Rent’s 

exponent p  

Find: A graph G = (V, E ) with Rent’s exponent ≈ p, computed using the modules M  

 

Our goal is to develop a generative model to define the edges connecting the given 

nodes in V . Contrary to most generative graph models (Leskovec, Kleinberg, & 

Faloutsos, 2005; Barabási & Albert, 1999; Watts & Strogatz, 1998; Vázquez, Flammini, 

Maritan, & Vespignani, 2003) and prior work in Rentian scaling (Klimm et al., 2014), our 

problem formulation includes a module decomposition as input used to compute Rent’s 

exponent. The modules are used as input so that we can use the same decomposition 

and target Rent’s exponent of any empirical network, which ensures that a solution exists 

and allows for a direct comparison between the synthetic and real networks.  

Duplication-divergence represents one common biological mechanism used to 

evolve molecular networks. Below, we describe a standard model for this process (called 

DMC) followed by our extension of this model (called DSC) that uses the same duplication 

principle but better captures Rentian properties of biological networks. We generated an 

ensemble of 100 DMC and 32 DSC networks. We generated only 32 DSC networks 

because of the time required to generate networks with an extra parameter (namely, qfav). 

We then generated 100 DSC networks for the best parameter combination for each 

species in order to better compare the DMC and DSC networks. The results we describe 

are averages over the ensemble.  
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2.3.2.1 The Duplication-Mutation with Complementarity Model (DMC) 

In this model (Vázquez et al., 2003), an existing gene (node u) duplicates to initially 

form a topologically equivalent node (v). Then their set of common interaction partners 

diverges, indicating subspecialization of the two genes. These two processes, duplication 

and divergence, are controlled by two parameters: qmod and qcon. Specifically, after each 

duplication step, each common neighbor x of u and v is retained independently by both u 

and v with probability 1 − qmod; with probability qmod, either (u, x) or (v, x) is removed, with 

equal probability. Then, with probability qcon , an edge (u, v) is added between the 

duplicates. This model has been extensively validated in terms of its ability to reproduce 

many known topological features of protein interaction networks (Middendorf, Ziv, & 

Wiggins, 2005; Navlakha & Kingsford, 2011; Navlakha, Faloutsos, & Bar-Joseph, 2015), 

yet it does not use or incorporate any module decomposition in its growth procedure.  

In each step of the model, we choose one random unconnected node (u, the “new” 

node) and a random node that already joined the network (v, the “anchor” node), and 

copy v to u by applying the DMC procedure described above. We iterated this process 

until all nodes joined the network.  

 

2.3.2.2 The Duplication-Specialization with Complementarity Model (DSC) 

To directly incorporate the module decomposition into the growth procedure, we 

created the DSC model (see Figure 2). This model differs from DMC in two ways:  

1. We introduced a module-aware parameter, qfav, used in the duplication step. With 

probability qfav, the anchor node v is selected randomly from a module in which the 

new node u lies (instead of randomly from the entire network in DMC). This is 
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motivated by the biological observation that duplicated nodes retain some 

functional association with their ancestral node (Wagner, 2001; Pereira-Leal & 

Teichmann, 2005); qfav allows us to model this variability. Due to module overlap, 

even if qfav = 1, there may still be external edges between modules.  

2. We modified the divergence procedure. If an edge to neighbor x is chosen to 

diverge, then instead of randomly selecting which edge (u, x) or (v,x) to delete, we 

deterministically delete the edge depending on which node (u or v) has fewer 

modules in common with x. In other words, if u and x have fewer modules in 

common than v and x, then edge (u,x) is deleted. This represents the specialization 

of duplicated proteins observed by Nasvall, Sun, Roth, and Andersson (2012) and 

agrees with the observation by Zinman, Zhong, and BarJoseph (2011) that 

interactions between proteins in the same module are more likely to be conserved 

than interactions between proteins in different modules. Thus, when choosing 

which edge will diverge, the DSC model takes into account the module overlap 

with the neighbor in question, whereas DMC merely flips a coin.  

 

An illustration of the DSC model is shown in Figure 2. Pseudocode of the model is 

shown in algorithm 1.  

 

 



 38 

 

Figure 2.2 Duplication-specialization with complementarity (DSC) model. (Left) To 
initialize, we connect two random nodes in each module; some nodes may be chosen 
more than once because modules overlap. (Right) Step 1: We select a “new” node u 
(green) and an “anchor” node v (blue) from which u duplicates. With probability qfav, the 
anchor node is selected from a module shared with u. Step 2: Neighbors of v are copied 
onto u. Step 3: For each common neighbor x, with probability 1 − qmod, both edges (u, x) 
and (v, x) are retained; with probability qmod, (u,x) is deleted if u and x share fewer modules 
than v and x, or vice versa. Step 4: The two duplicated nodes are connected with 
probability qcon. This procedure is repeated until all nodes join the network.  

Step 1 (qfav) Step 2 Step 3 (qmod) Step 4 (qcon)

Initialization Iteration
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Algorithm 1: DSC (M, qcon, qmod, qfav)       ____ 
  1: G = Graph() # Initialize empty graph. 
  2: for all m ∈ M do 
  3:  u = m.random_node() 
  4: v = m.random_node() 
  5: G.add_edge(u,v) # Start with dumbbell in each module. 
  6: end for 
  7: 
  8: VC = set of connected nodes 
  9: VU = set of unconnected nodes 
10: 
11: while |VU| > 0 do 
12: u = VU.pop_random_node() 
13: Mu = set of modules that u is in 
14: Mrest = set of modules that u is not in 
15: 
16: #1. Module-aware duplication. 
17: if rand() < qfav then 
18:     m = Mu.random_module() 
19: else 
20:     m = Mrest.random_module() 
21: end if 
22: mC = m ∩ VC # Set of connected nodes in m 
23: v = mC.random_node() 
24: 
25: G.copy_node(v,u) # Duplicate v to u. 
26: for all x ∈ G.neighbors(v) do 
27:     #2. Neighbor divergence. 
28:     Overlapu = number of modules shared by x and u 
29:     Overlapv = number of modules shared by x and v 
30:     if rand() < qmod then 
31:         if Overlapu < Overlapv then 
32:             G.delete_edge(u,x) 
33:         else 
34:             G.delete_edge(v,x) 
35:         end if 
36:     end if 
37: end for 
38: 
39: #3. Duplicate interaction. 
40: if rand() < qcon then 
41:     G.add_edge(v,u) 
42: end if 
43: end while 
44: return G 
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2.3.3 Data sets 

2.3.3.1 Protein interaction networks 

We downloaded protein-protein interactions (PPIs) from BioGRID version 3.4.141 

for six species: M. musculus, S. pombe, H. sapiens, A. thaliana, D. melanogaster, and S. 

cerevisiae (Stark et al., 2006). We removed all interactions that were genetic, between 

genes in different organisms, or found using AffinityCapture RNA or Protein-RNA assays. 

We annotated each protein to all significantly enriched Biological Process GO terms using 

GOTermFinder (Boyle et al., 2004). We excluded annotations that were inferred 

electronically (IEA annotations). We set a p-value cutoff of 1 to find all associated GO 

terms for each protein (Boyle et al., 2004). The items on the list of GO terms and their 

associated p-values were then supplied to REVIGO to group GO terms into semantic 

clusters, which allowed us to exclude overly redundant modules (Supek et al., 2011). We 

used three values for the semantic cutoff parameter in REVIGO—0.5, 0.7, and 0.9—in 

order to test the robustness of our analysis against modules of varying sizes and degrees 

of overlap. When we did not use REVIGO, for computing the Rent plots, we averaged the 

number of external edges for every module of the same size, as done before (Stroobandt, 

1998).  

We also analyzed Rentian scaling in PPIs from the STRING database v10, which 

collects interactions from several sources and assigns each one a confidence score 

(Szklarczyk et al., 2015). We kept only interactions that were annotated as “binding” 

(physical interactions) and had a score greater than or equal to 700 (high confidence). 

We used FlyBase version FB2016_05 to convert the protein IDs for D. melanogaster from 

the format used by STRING to one usable by GOTermFinder (Attrill et al., 2016). We used 
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bioDBnet’s db2db tool to convert the proteins IDs for H. sapiens and M. musculus from 

their Ensembl Protein ID format to Gene Symbol, which could be used in GOTermFinder 

(Mudunuri, Che, Yi, & Stephens, 2009). We also removed proteins that began with “LOC” 

and picked the first Gene Symbol when several were provided for one Ensembl Protein 

ID. We then used GOTermFinder to annotate the nodes, and REVIGO at three different 

cutoffs to reduce semantic redundancy.  

 

2.3.3.2 Social and Information Networks 

The Amazon network was described in the main text. The DBLP network 

represented scientific collaborations between authors (nodes) who have coauthored a 

paper (edges). Here, publication venues (conferences) serve as the modules 

(communities). These modules are highly overlapping (Yang & Leskovec, 2015), much 

like the PPI networks, and yet they fail to display Rentian scaling. The YouTube social 

network was taken from January 2007, where users (nodes) were connected to other 

users they were friends with (edges). Modules in this network were user-defined groups. 

For all three networks, only the top 5000 highest-quality modules were used, where each 

module was assigned a score that corresponded to an average of four goodness metrics 

that mathematically describe how module-like it was (Yang & Leskovec, 2015).  

 

2.4 Results 

First, we asked if three classes of biological networks (molecular, gene regulatory, 

and neural) and two classes of nonbiological networks (information and social) exhibit 
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Rentian scaling. Second, we evaluated the ability of two generative graph models (DMC 

and DSC) to recapitulate Rentian properties for the biological networks studied.  

 

2.4.1 Molecular Networks Demonstrate Rentian Scaling 

We collected protein-protein interaction (PPI) networks for six species from 

BioGRID (Stark et al., 2006; see section 2.3.3.1): Drosophila melanogaster (fly), Homo 

sapiens (human), Mus musculus (mouse), Arabidopsis thaliana (plant), 

Schizosaccharomyces pombe (fission yeast), and Saccharomyces cerevisiae (baker’s 

yeast). We assigned each protein in the network to modules based on the protein’s known 

annotations under the Biological Process ontology in the Gene Ontology database (GO; 

Ashburner et al., 2000). Each module represents a biological process; all proteins 

annotated to that biological process are assigned to the module. These annotations are 

largely determined using biological assays, such as gene knockout experiments, that did 

not include network topology as a criteria.  

To test Rent’s rule for modules over a range of sizes, we selected nonredundant 

GO annotations from all levels of the GO hierarchy using REVIGO (Supek, Bosnjak, 

Skunca, & Smuc, 2011). REVIGO uses a clustering algorithm to find one GO annotation 

(module) that represents many semantically similar GO annotations. Semantic similarity 

accounts for how close a pair of GO annotations is to its lowest common ancestor in the 

GO hierarchy (Schlicker, Domingues, Rahnenfuhrer, & Lengauer, 2006). A userdefined 

cutoff parameter can be used to vary the number and semantic overlap of annotations. 

The resulting sizes of modules varied by an order of magnitude, for example, from 174 to 

1803 nodes per module for M. musculus at a REVIGO cutoff of 0.7. There was also 
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significant module overlap (pleiotropy), with nodes belonging to an average of 12.5 

modules (S. pombe) to 35.8 modules (M. musculus), with the other species lying in 

between.  

We found that all six PPI networks displayed Rentian scaling—each least-squares 

regression line achieved an R2 > 0.75—with Rent’s exponents ranging from 0.591 for 

mouse to 0.860 for human (see Figure 3). This means that as modules contain more 

nodes, they have more external connections in accordance with a power law, indicating 

that a single scaling rule can capture the distribution of intermodule connections for 

modules of many sizes.  

 

 

Figure 2.3 Molecular networks exhibit Rentian scaling. Rent’s exponents for protein 
interaction networks of six species with REVIGO cutoff of 0.7. The x-axis is the log of the 
number of nodes (n), and the y-axis is the log of the number of external edges (e) from 
that module to other modules. All networks display Rentian scaling, with the Rent’s 
exponent p shown in the legend.  
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We also found a strong positive correlation between the number of edges in the 

network and the Rent’s exponent (R = 0.80, over all species), suggesting that larger 

networks tend to increase cross-module communication, as opposed to increasing 

intramodularity. Moreover, all randomized controls produced Rent’s values that were 

significantly higher than the empirical Rent’s exponent observed for the real network (see 

Table 1). Randomizing both edges and modules consistently produced networks with 

larger Rent’s exponents than randomizing either modules or edges alone (see Table 1). 

There was, however, no clear pattern when comparing Rent’s exponents when we 

randomize either edges or modules; in half the species, the former produced lower Rent’s 

exponents, whereas the opposite was true in the other species. While some of these 

differences may appear small, they are differences in log-space, and they mimic the range 

of differences observed in prior Rentian analysis of brain networks (Bassett et al., 2010).  
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2.4.1.1 Robustness to Different Module Decompositions 

We tested the robustness of this observation in two ways. First, we varied the cutoff 

parameter in REVIGO to generate module decompositions with fewer (cutoff = 0.5) and 

greater (cutoff = 0.9) numbers of modules. In both cases, we observed similar Rent’s 

exponents for each species, which continued to be significantly lower than randomized 

controls (see Table 1). Rent’s exponents generally increased as the number of modules 

increased for all species.  

Second, we assigned proteins to all modules in the entire GO Biological Process 

hierarchy (we kept semantically redundant modules) using the GoTermFinder tool (Boyle 

et al., 2004). This increased the range of module sizes to over four orders of magnitude, 

and it produced even more highly overlapping modules; for example, each node belonged 

to an average of 41.3 modules in S. pombe and 106.7 modules in M. musculus. This 

extensive amount of module overlap increased the number of cross-module connections; 

thus, all Rent’s exponents increased, but we still observed Rentian scaling over separate 

hierarchical levels of every PPI network (see Table 2 and Figure 4).  

These tests together demonstrate that Rentian scaling in PPIs is robust to different 

definitions of a module and extent of module overlap. 



 

Ta
bl

e 
2.

2 
R

en
tia

n 
Sc

al
in

g 
U

si
ng

 A
ll 

M
od

ul
es

 A
ss

ig
ne

d 
fro

m
 G

O
Te

rm
Fi

nd
er

. A
ll 

R
en

t’s
 e

xp
on

en
ts

 a
re

 s
m

al
le

r t
ha

n 
th

at
 o

f 
th

e 
ra

nd
om

iz
ed

 c
on

tro
ls

 (p
 <

 0
.0

1,
 o

ne
-s

am
pl

e 
tw

o-
ta

ile
d 

t-t
es

t).
 V

al
ue

s 
in

 p
ar

en
th

es
es

 a
re

 R
2 . 

 
 

Sp
ec

ie
s 

N
um

be
r o

f 
N

od
es

 
N

um
be

r o
f 

M
od

ul
es

 
N

um
be

r o
f 

Ed
ge

s 
R

en
t’s

 
Ex

po
ne

nt
 

R
an

do
m

 
M

od
ul

es
 

R
an

do
m

 
Ed

ge
s 

R
an

do
m

 B
ot

h 

Fl
y 

71
74

 
45

39
 

31
,9

48
 

0.
88

0 
(0

.9
3)

 
0.

88
2 

(0
.9

4)
 

0.
88

4 
(0

.9
3)

 
0.

88
6 

(0
.9

4)
 

H
um

an
 

13
,4

00
 

97
44

 
13

4,
63

8 
0.

88
7 

(0
.8

4)
 

0.
89

6 
(0

.8
7)

 
0.

89
4 

(0
.8

5)
 

0.
90

1 
(0

.8
7)

 
M

ou
se

 
41

59
 

89
71

 
76

59
 

0.
80

9 
(0

.8
8)

 
0.

82
1 

(0
.8

8)
 

0.
82

0 
(0

.8
9)

 
0.

82
6 

(0
.8

9)
 

Pl
an

t 
74

86
 

35
20

 
25

,7
15

 
0.

91
7 

(0
.9

0)
 

0.
92

7 
(0

.9
5)

 
0.

93
2 

(0
.9

2)
 

0.
93

5 
(0

.9
5)

 
Fi

ss
io

n 
ye

as
t 

24
77

 
29

42
 

82
48

 
0.

84
6 

(0
.8

0)
 

0.
88

6 
(0

.8
9)

 
0.

88
4 

(0
.8

4)
 

0.
89

8 
(0

.8
9)

 
Ba

ke
r’s

 y
ea

st
 

48
66

 
38

61
 

66
,7

49
 

0.
90

7 
(0

.8
3)

 
0.

93
4 

(0
.8

9)
 

0.
93

0 
(0

.8
6)

 
0.

94
0 

(0
.8

8)
 

47 



 48 

 

 

Figure 2.4 Rentian scaling using GOTermFinder. PPIs from six species display Rentian 
scaling, even when using overlapping modules defined by several thousand GO terms.  
 

2.4.1.2 Robustness to Different Data Sources 

Protein interaction networks are notoriously noisy and incomplete (Bader, 

Chaudhuri, Rothberg, & Chant, 2004; Huang & Bader, 2009), affecting the conclusions 

that can be drawn from their analyses. To generate an alternative set of interactions, we 

used the STRING database, which collects interactions over a broader range of data 

sources (Szklarczyk et al., 2015; see section 2.3.3.1). We considered physical “binding 

interactions” only with a confidence score greater than 700 to minimize noise. We again 

used REVIGO at three different cutoffs to define modules and found that these networks 

continued to display Rentian scaling (see Figure 5 and Table 3), further suggesting that 

Rentian scaling is a robust and conserved property of PPI networks. Of note, when the 

STRING database is used, the human PPI network has a much lower R2 value compared 
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to other species and compared to the full human PPI network (see Table 1). This 

discrepancy may be due to the substantially fewer nodes in the high-confidence STRING 

human PPI network (∼3300) versus in the full human PPI network (∼9600). This reduction 

suggests that there are many human PPIs yet to be mapped at a high-confidence level, 

leaving the network more incomplete compared to other species. It could also suggest 

that human PPI networks simply do not exhibit Rentian scaling.  

 

 

Figure 2.5 Rentian scaling using STRING. PPIs from six species display Rentian scaling, 
even when using the high-confidence networks with a score greater than or equal to 700 
from the STRING database and a REVIGO cutoff of 0.7. Note the low R2 for the Human 
network, which may be due to many missing proteins and interactions when compared to 
the BioGRID network. 
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2.4.1.3 Comparison of Rent’s Exponents Using Functional versus Topological 

Modules 

Conventional analyses have used topological modules instead of functional 

modules to derive Rent’s exponents. Here, we compared the exponents generated by the 

two approaches. To derive topological modules, we used hMetis (Bassett et al., 2010; 

Karypis et al., 1999), which recursively bipartitions the graph to minimize the number of 

edges between partitions. This procedure resulted in 11 to 13 hierarchical levels of 

partitions across the different PPI networks. The average number of nodes and external 

degrees in a partition at a given hierarchical level were plotted on a log-log scale, and the 

slope of the line was defined as the topological Rent’s exponent. The Rent’s exponents 

ranged from 0.74 to 1.04 for mouse and human, respectively, and the R2 values ranged 

from 0.25 to 0.85 for human and fission yeast, respectively (see Table 4). The Rent’s 

exponents from the topological modules were always larger than those for the functional 

modules at all REVIGO cutoff values and for every species, which implies more random 

wiring in the topological modules. Further, in five out of six networks, the fits were poorer. 

Thus, Rentian scaling in PPIs seems to be better defined using functional, not topological, 

modules.  

The differences in Rent’s exponents observed between topological modules and 

functional modules could be attributed to several factors. First, there are numerous graph-

theoretic algorithms to partition networks, and it is not clear which definition of topological 

module makes the most biological sense. While hMetis is commonly used in the Rent 

community, recent work has shown that the Markov clustering algorithm (Enright, Van 

Dongen, & Ouzounis, 2002; Brohee & van Helden, 2006) and graph-summarization-
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based approaches (Navlakha et al., 2009) produce the highest correlation between 

topological and functional modules in PPI networks useful for protein function prediction. 

These methods, however, do not return hierarchical modules, which is important in order 

to test Rentian scaling across scales. Second, PPI networks are notoriously noisy, with 

many spurious interactions and false negatives that obfuscate the true modules. Thus, 

we focused our study here on more ground-truth modules, based on known functional 

annotations. There are also some limitations in using functional modules (see section 

2.3.1.2).  

 

Table 2.4 PPIs for Six Species Using Topological Modules Display Poorer Rentian 
Scaling. All Rent’s exponents are larger and R2 fits are poorer from topological modules 
derived from hMetis (v.1.5.3) compared to those derived using functional modules (except 
for Fission Yeast, where the fit is higher with topological modules). 
 

Species REVIGO Rent Exponent R2 

Fly 0.5 0.907 0.78 
 0.7 0.882 0.77 
 0.9 0.869 0.91 

Human 0.5 0.826 0.34 
 0.7 1.039 0.25 
 0.9 0.943 0.24 

Mouse 0.5 0.679 0.98 
 0.7 0.744 0.77 
 0.9 0.915 0.87 

Plant 0.5 0.745 0.80 
 0.7 0.753 0.83 
 0.9 0.816 0.72 

Fission Yeast 0.5 0.667 0.85 
 0.7 0.844 0.85 
 0.9 0.857 0.84 

Baker’s Yeast 0.5 0.726 0.67 
 0.7 0.964 0.61 
 0.9 0.906 0.78 
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2.4.2 Analysis of Cell-Type Specific Regulatory Networks 

We collected cell-type-specific regulatory interactions for 41 human and 25 mouse 

cell lines (Neph et al., 2012; Stergachis et al., 2014) to test if Rentian scaling also appears 

in transcriptional networks. Nodes in these networks correspond to genes, and an edge 

exists between two genes if one regulates the transcription of the other. Each of the 66 

networks contained interactions that occur within only one specific cell type (e.g., fetal 

brain, hepatoblastoma, and embryonic stem cells). Using REVIGO-defined modules, we 

found that all cell-type-specific networks displayed Rentian scaling, with exponents 

ranging from 0.795 to 0.937 (mouse; see Table 5) and 0.843 to 0.921 (human; see Table 

6). The largest of the Rent’s exponents were attributed to immune and cancer cells.  

We also found that embryonic stem cells (ESCs) had significantly lower Rent’s 

exponents than differentiated cells in both species (see Figure 6). Unlike the PPI 

networks, where more interactions correlated with significantly higher Rent’s exponents, 

the opposite was true here: ESCs contained more interactions than other cell types (17, 

883 ± 3518 for ESCs versus 14, 810 ± 3522 for differentiated cells in mouse) yet had 

lower Rent’s exponents (see Figure 6). This suggests that as a cell develops and defines 

its functional identity, its Rent’s exponent increases by eliminating more intramodule 

edges than intermodule edges. Thus, one signature of cellular differentiation may be 

changes in the distribution of intermodule connections, from less to more intermodule 

cross-talk as the cell matures, an observation consistent with the balanced lineage 

specifier hypothesis (Loh & Lim, 2011).  
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Figure 2.6 Embryonic stem cells (ESCs) exhibit a lower Rent’s exponent than 
differentiated cells. The average Rent’s exponent for ESCs was lower than that of mature 
cells in both mice and humans. Bars are standard error of the mean, and circles are the 
Rent’s exponents for individual cell lines with modules defined by REVIGO at three 
cutoffs. The three different colors for the circles denote the three REVIGO cutoffs (red = 
0.5, blue = 0.7, yellow = 0.9). Differences in Rent’s exponents between ESCs and non-
ESCs in a given species are statistically significant across all REVIGO values (p < 0.01, 
two-sample two-tailed t-test) and within individual cutoffs (p < 0.01,two-sample 
Kolmogorov-Smirnov test for mouse at REVIGO values of 0.5, two-sample two-tailed t-
tests for mouse at REVIGO values of 0.7 and 0.9, and one-sample two-tailed t-tests for 
human because the latter had just one ESC line). 
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2.4.3 Analysis of Neural, Social, and Information Networks 

Next, we tested the generality of Rent’s rule when applied to topology-independent 

module decompositions of other biological (neural) and nonbiological (social, information) 

networks.  

Prior work has analyzed the Rentian properties of the C. elegans neural network 

(Bassett et al., 2010); however, here we applied a Rentian analysis based on a module 

decomposition defined by known functional annotations of neurons, as opposed to 

defining modules using a graph partitioning algorithm, as was previously done. 

Specifically, we obtained the neural network for C. elegans from WormAtlas (Varshney, 

Chen, Paniagua, Hall, & Chklovskii, 2011) and decomposed this network into eight natural 

modules, where each module contained neurons with the same function (Varshney et al., 

2011). These functions were chemosensation, mechanosensation, nociception, 

thermosensation, proprioception, sensation of oxygen, olfaction, and motion. We found 

that the network displayed Rentian scaling (R2 = 0.97), with a Rent’s exponent of 0.859 

(see Figure 7A), which was smaller than randomized controls (see Table 1). This 

exponent suggests two things. First, neural circuits have some preference for short-range 

over long-range connections, as supported by the wiring economy principle (Ramón y 

Cajal, 1899; Chklovskii, Schikorski, & Stevens, 2002; Rivera-Alba, Peng, de Polavieja, & 

Chklovskii, 2014), which states that wire is a commodity in space- and resource-

constrained neural circuits (as in digital circuits). Second, due to the relatively high 

exponent, there is some deviation from this principle, as may be expected since 

intermodule connections are needed to integrate data from multiple neural types to 

determine appropriate behavioral responses (Perez-Escudero & de Polavieja, 2007). 
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Prior work found a lower Rent’s exponent (0.74) when computed using random partitions 

in a physical placement of the neurons (Bassett et al., 2010). Thus, Rentian scaling 

appears robust, but the exponent is sensitive to the choice of module decomposition.  

We then tested Rentian scaling on three social and information networks with 

ground-truth modules (Yang and Leskovec, 2015; Mislove, Marcon, Gummadi, Druschel, 

& Bhattacharjee, 2007). In the Amazon network, products (nodes) were linked to other 

products that were purchased together (edges). The modules represented groups of at 

least three products that share a common function, ascribed using predefined product 

categories (Yang & Leskovec, 2015). The Amazon network did not display Rentian 

scaling, as the log-log regression was not a straight line (R2 = 0.11; see Figure 7B). We 

also tested the DBLP collaborations network and YouTube social groups network (see 

section 2.3.3.2), and found that neither exhibited Rentian scaling.  

 

     

Figure 2.7 The C. elegans neural network displays Rentian scaling (A), but the Amazon 
product network does not (B). The R2 for the worm neural network was 0.97; for the 
Amazon network, it was 0.11.  
 

Together, these results suggest that Rentian scaling is not an inevitable 

consequence of any network developmental process. Further, many classes of random 

networks also do not exhibit Rentian behavior (Stroobandt, 2007; Klimm et al., 2014). 

A B 
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One hypothesis, then, is that Rentian scaling may be unique to information processing 

networks (e.g., digital circuits on a computer chip or biological circuits) and is derived 

implicitly by some general growth process, which we investigate next.  

 

2.4.4 A Random Graph Model to Recapitulate Rentian Properties of Networks 

The fact that Rentian scaling is found in molecular and cellular networks of several 

species and cell types indicates that this property may be a consequence of a common 

evolutionary process. We first tested whether a popular, existing generative graph model 

(DMC) could form networks that exhibit Rentian scaling while agnostic to the module 

decomposition. Overall, we found that DMC mostly failed in generating the empirical 

Rent’s exponents of PPI networks, whereas our extended model (DSC) performed better, 

as described below. The DMC and DSC models are described in section 2.3.2.  

To test each model’s ability to generate Rentian networks, we used as input to the 

model the same set of nodes and their module decomposition from each PPI network, 

separately. The challenge was to recapitulate the Rentian properties for each PPI network 

by defining the edges. The synthetic, model-generated network “succeeded” in this regard 

if it: (A) it had a Rent’s exponent within 0.04 of the empirical value; (B) contained within 

10% of the number of edges as the empirical network; and (C) had a similar distribution 

of external edges per node as the empirical network. Attempting to lower the error rate of 

measure B resulted in an inability to match Rent’s exponents for some networks; thus, 

more model parameters may be needed for a tighter fit. We tested all combinations of the 

three model parameters (qmod, qcon, qfav) with their values ranging from 0.1 to 0.9 in 
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intervals of 0.1. We report the results for the best parameter settings for each model in 

terms of measures A and B.  

In the analysis of the ensemble, we found that the average DSC Rent’s exponents 

were closer to the empirical Rent exponents than the DMC Rent’s exponents across all 

species (see Figure 8A). In this figure, we selected the parameters that generated 

networks with the closest Rent’s exponent to the empirical while abiding by the constraint 

on number of edges. Figure 8B shows example Rentian plots with the number of external 

edges averaged over the entire ensemble (the sizes of the modules remain the same 

across the ensemble). In all six species, the DSC model produced networks with more 

similar Rent’s exponent and/or more similar number of edges as the empirical network, 

compared to DMC-grown networks. For example, when using the same set of nodes and 

module decomposition as the fly PPI network (see Table 7), there were 18,952 edges in 

the empirical network, 17,658 edges in the DSC network, and 19,289 edges in the DMC 

network. Furthermore, the DMC network had a Rent’s exponent of 0.87, which was further 

away from the DSC and empirical networks’ Rent’s exponents of 0.78 and 0.76, 

respectively.  
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Figure 2.8 The DSC model better recapitulates the Rentian properties of real PPI 
networks compared to DMC. A) Compared to DMC, the DSC model generates networks 
with Rent’s exponents closer to the empirical Rent’s exponents of five PPI networks. 
Ensembles of networks were generated for each possible parameter combination for 
each model. Bars indicate mean Rent’s exponent, and error bars represent standard 
deviations over the ensemble. We used the same nodes and module decomposition of 
each real PPI network (REVIGO cutoff of 0.7). B) Rent plots of networks generated by 
DMC and DSC (REVIGO cutoff of 0.7). Empirical data are shown in red, the DSC model 
is shown in blue, and the DMC model is shown in yellow. Each dot corresponds to one 
module. Ideal performance would be an exact overlap with the red data, indicating the 
same number of edges and the same Rent’s exponent as the PPI network. Performance 
is shown for the best parameters for each model. Overall, the DSC line is closer than 
DMC to the empirical line across all species. The Rent’s exponents (p) and fits (R2) are 
shown in boxes.  
 

B

A
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Interestingly, the parameter settings for DSC that led to successful networks may 

highlight the relative roles of duplication and divergence during evolution. For all 

parameter values that generated successful networks (as defined above), qmod = 0.64 ± 

0.09, qcon = 0.63 ± 0.23, qfav = 0.53 ± 0.26. Prior studies have determined that qmod = 0.4 

and qcon = 0.7 produce networks that closely match other topological properties of the 

yeast PPI network (Navlakha & Kingsford, 2011; Navlakha et al., 2015); these parameters 

lie roughly within the range of best parameters we found, which further validates their use 

here.  

We also found that the DSC model better reproduced the degree distribution of the 

number of external edges per node compared to DMC (see Table 7). This is a common 

metric used to evaluate the similarity between a real network and a synthetic network 

generated by a model. This measure (dubbed “homogeneity” by the Rentian community) 

is a common feature of digital circuits and suggests that the interconnect complexity of 

nodes is similar across modules of different sizes (Christie & Stroobandt, 2000). To 

quantify the similarity in degree distributions, we calculated the Kullback-Leibler (KL) 

divergence to compute the distance between homogeneity histograms, from empirical to 

DSC and from empirical to DMC. The KL distance from empirical to DSC was smaller 

than the distance from empirical to DMC in all species (e.g., 0.018 ± 0.002 versus 0.025 

± 0.003, respectively, for D. melanogaster), except for S. pombe, where the two distances 

were nearly identical. This further validates the ability of DSC to reproduce Rentian 

properties of real networks compared to DMC. There are numerous other measures used 

to establish the similarity between two networks (e.g., motifs, graphlets, random walk 

distributions, graph spectra). We do not claim that DSC is the definitive model in this 
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regard; rather, we show how a simple model based on established biological principles 

can capture a new feature (Rentian scaling) that future, more complex models should 

attempt to satisfy.  
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2.5 Discussion 

We provided evidence that the structure of several molecular and cellular networks 

studied here is Rentian. While modularity has long been an appreciated facet of molecular 

networks, we find that these networks are “more than mere modules” (Pinkert et al., 

2010), with significant structure in their intermodule connectivity. Inspired by theories 

developed from engineered digital circuits, we showed that Rentian scaling is a conserved 

property of several protein interaction networks and gene regulatory networks across 

multiple species and cell types; it also applies to functional modules in the C. elegans 

neural network but not to three social or information networks. Important to our work was 

testing this theory using module decompositions that were derived largely independently 

from network topology and instead by the underlying biology itself. This allowed us to test 

whether evolution converged onto biological modules with Rentian properties.  

This power law relationship in module interconnects may aid in other applications, 

such as for function prediction tasks (Pinkert et al., 2010) or for ranking false or missing 

interactions in the network. Rentian scaling may also be used as a feature to discriminate 

between networks, especially across time. For instance, Sperry, Telesford, Klimm, and 

Bassett (2017) found that the present-day London Underground railroad displays Rentian 

scaling, but it did not in the year 1900. We found that regulatory networks for embryonic 

stem cells displayed Rentian scaling but that Rent’s exponents significantly increased 

with cellular development. Hence, the emergence of Rentian scaling, or the increase in 

Rent’s exponent, may provide another feature of how networks develop over time 

(Leskovec et al., 2005). Rentian scaling, however, cannot be trivially explained by 

changes in network density. For the PPIs, we found a positive correlation between Rent’s 
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exponent and network density; however, this relationship did not hold when PPIs were 

taken from the STRING database (R = 0.80 and −0.05 for the full PPIs and those from 

STRING, respectively). Furthermore, in the regulatory networks, there was an inverse 

correlation between Rent’s exponent and network density (R = −0.64 and −0.26 for the 

mouse and human cell lines, respectively).  

While this scaling law was persistent, exact interpretation of the Rent’s exponent 

for an individual species may be muddled by the fact that protein interaction networks are 

still very noisy and incomplete. Although we attempted to account for this by studying 

networks derived from different data sources, it is difficult to determine whether the “true” 

Rent’s exponents for these networks are higher or lower than the values derived here. 

Erroneous edges would likely count more as intermodule edges than intramodule edges; 

thus, removing noise may lower Rent’s exponents. On the other hand, there are likely 

many missing edges between proteins in different modules, which might increase Rent’s 

exponent when mapped. Our results here can serve as a benchmark for future studies as 

these networks continue to be mapped.  

We also provided a new graph model (DSC) to generate graphs with a desired 

Rent’s exponent, given a module decomposition. This model may be useful when 

designing synthetic biocircuits (Nielsen et al., 2016) or in other engineered network design 

applications. If a module decomposition is not available, one can use common network 

partitioning algorithms (Bassett et al., 2010), though there is no guarantee that these 

modules will be relevant to actual biological modules. Thus, an important contribution of 

this study is that Rentian scaling is found in networks decomposed into functional, not 

topological, modules and that the DSC model can build networks that exhibit Rentian 
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scaling using these modules. While our algorithm requires a module decomposition as 

input, a more sophisticated generator would also assign proteins to modules during the 

growth process. How to evolve such modularity is an important problem (Kashtan & Alon, 

2005; Clune et al., 2013), but one that we do not consider here.  

There may also be multiple mechanisms that can generate networks with Rentian 

scaling. The DSC graph model under a duplication model can produce Rentian networks. 

On the other hand, neither the London Underground railroad nor digital chips likely 

evolved using a duplication model, yet both demonstrate Rentian scaling (Sperry et al., 

2017). Thus, while we posit a biological mechanism, we recognize that other mechanisms 

can produce Rentian scaling. Yet not every network growth mechanism generates 

Rentian networks. For example, the three social and information networks we studied 

likely did not evolve using a duplication model, and neither exhibited Rentian scaling. 

Thus, future work needs to better understand the theoretical basis underlying which 

mechanisms can produce Rentian networks and which cannot.  

It is possible that mechanisms that produce Rentian networks are those 

constrained by a cost-performance trade-off. Proteins, for instance, must interact with 

specific partners with cognate structural domains. Proteins can also be sequestered into 

distinct cellular compartments (e.g., the nucleus), which limits the number of proteins with 

which they may interact. Neuronal circuits, similarly, are neither completely randomly 

wired nor minimally wired (Bassett et al., 2010). A biological network, then, must 

determine its topology by balancing cost and performance. Rentian scaling might be a 

by-product of these various constraints (i.e., a spandrel— Rubinov, 2016), and not an 

evolutionary adaptation. This would be consistent with our finding that Rentian scaling is 
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absent in three social and information networks, where the cost of making edges across 

any distance within the graph is likely to be much lower than in biological networks. Future 

work needs to provide a better theoretical basis for this observation.  

Finally, how do the Rent’s exponents calculated here compare with those observed 

in digital (e.g., VLSI) circuits? Mid- and large-sized circuits, taken from circuit repositories 

from the Microelectronics Center of North Carolina and IBM-PLACE (Alpert, 1998), 

display Rentian scaling with exponents ranging from 0.449 to 0.648 (Yang et al., 2001; 

Karypis et al., 1999). Another benchmark VLSI circuit, the ISCAS89 s953, had a higher 

Rent’s exponent of 0.730 (Bassett et al., 2010). Overall, these computer circuits have 

Rent’s exponents that are typically smaller than that of the PPI networks studied here. It 

has been observed that more recent complex circuits have higher Rent values compared 

to older designs (Bassett et al., 2010). We also observed that the Rent’s exponent for the 

most complex organism studied, H. sapiens, was larger than that of the other species 

(see Table 1), though this may be coincidental.  

Overall, the fact that both evolution and the human design process produced 

Rentian circuits suggests another close correspondence between biological and 

engineered networks (Navlakha & Bar-Joseph, 2011; Del Vecchio et al., 2016).  

Chapter 2, in full, is a reprint of the material as it appears in Evidence of Rentian 

Scaling of Functional Modules in Diverse Biological Networks. How, Javier J.; Navlakha, 

Saket. Neural Computation, 2018. The dissertation author was the primary investigator 

and author of this paper. 
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3. Neural network features distinguish chemosensory stimuli in Caenorhabditis 

elegans. 

 

3.1 Abstract 

Nervous systems extract and process information from their environment to alter 

animal behavior and physiology. Despite progress in understanding how different stimuli 

are represented by changes in neuronal activity, less is known about how they affect 

broader neural network properties. We developed a framework to use graph-theoretic 

features of neural network activity and predict ecologically-relevant stimulus properties – 

namely, stimulus identity and valence. Specifically, we used the transparent nematode, 

Caenorhabditis elegans, with its small nervous system, to define neural network features 

associated with various chemosensory stimuli. We trapped animals using a microfluidic 

device and exposed their noses to chemical stimuli known to be attractive or repellent, 

while monitoring changes in neural activity in more than 40 neurons in their heads. We 

found that repellents trigger higher average neural activity across the network, and that 

the tastant salt increases neural variability. In contrast, graph-theoretic features, which 

capture patterns of interactions between neurons, are better suited to decode stimulus 

identity than measures of neural activity. Furthermore, we show that a simple machine 

learning classifier trained using graph-theoretic features alone or in combination with 

neural activity features can accurately predict stimulus identity. These results indicate that 

graph theory reveals network characteristics that are distinct from neural activity, 

confirming its utility in extracting stimulus properties from neural population data. 
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3.2 Significance Statement 

Changes in the external environment (stimuli) alter patterns of neural activity in 

animal nervous systems. A central challenge in computational neuroscience is to identify 

how stimulus properties alter interactions between neurons. We recorded neural 

activity  from C. elegans head neurons while the animal experienced various 

chemosensory stimuli. We then used a combination of activity statistics (i.e., average, 

standard deviation, frequency-based measures) and graph-theoretic features of network 

structure (e.g., modularity – the extent to which a network can be divided into independent 

clusters) to accurately predict stimulus identity. Our method is general and can be used 

across species, especially in instances when individual neural identities are unknown. 

 

3.3 Introduction 

Animals have evolved mechanisms to encode the vast array of chemical 

information in their environment. The underlying neural circuitry encoding odor and taste 

information in both vertebrates and invertebrates is thought to include both labeled lines 

and combinatorial activity patterns. Specifically, odor information is initially filtered by 

olfactory sensory neurons that are organized into specific expression zones in the 

vertebrate olfactory epithelium (Ressler et al., 1993), and into sensilla selective for 

pheromones (Kurtovic et al., 2007), food odors (Hallem and Carlson, 2006), acids (Ai et 

al., 2010), oviposition cues (Dweck et al., 2013) or toxic odors (Stensmyr et al., 2012) in 

flies. This information is relayed to specific glomeruli and then higher-order centers in the 

brain (Leinwand and Chalasani, 2011; Grabe and Sachse, 2018). Similarly, taste 

information in both flies and mice are represented by spatial patterns of neural activity, 
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likely using combinatorial coding (Smith and St John, 1999; de Brito Sanchez and Giurfa, 

2011; Ohla et al., 2019). While these studies highlight the progress made in 

understanding how chemical information is encoded in the periphery and early cortical 

areas, its processing and representation in higher brain centers is poorly understood. One 

solution to this problem is to monitor neural activity of the entire circuit in an intact nervous 

system as the animal experiences changes in its chemical environment, and to extract 

neural features that predict those changes.  

 The nematode C. elegans, with its nervous system consisting of just 302 neurons 

connected by identified chemical and electrical synapses (White et al., 1986; Cook et al., 

2019), is ideally suited to record neural activity across a large part of the network. C. 

elegans neurons express rapidly activating voltage-gated calcium channels, such that 

changes in neuronal calcium approximately correlate with neuronal depolarization (Jospin 

et al., 2002; Kerr et al., 2000; Liu et al., 2018). By monitoring neural activity using 

genetically encoded calcium indicators, we previously showed that C. elegans sensory 

neurons encode chemical stimulus concentration and identity using a combinatorial code 

(Leinwand and Chalasani, 2013; Leinwand et al., 2015). Moreover, large-scale activity 

measurements in the C. elegans nervous system are aided by two innovations – custom-

designed microfluidic devices that trap and precisely deliver chemical stimuli to adult 

animals during recording of neural activity (Chronis et al., 2007; Chalasani et al., 2007), 

and nuclear-localized genetically encoded calcium indicators that restrict fluorescent 

signals to easily resolved neuronal nuclei instead of overlapping cytoplasm (Schrodel et 

al., 2013).  
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 Previous analyses of C. elegans whole-brain imaging data used principle 

components analysis (PCA) to show that neural activity lies in a low-dimensional space 

(Kato et al., 2015; Nichols et al., 2017; Skora et al., 2018). For example, Kato et al. (2015) 

showed that the C. elegans neural network likely exists in a few global states that might 

represent locomotory commands, such as forward movement, reversals, turns, and 

others. Nichols et al. (2017) and Skora et al. (2018) revealed low-dimensional neural 

activity patterns associated with physiological and behavioral states, such as sleep and 

starvation. Critically, these approaches required having labels for neurons such that the 

same neuron can be uniquely identified across animals. However, in most model systems 

(e.g., recording from cortical neurons in a mouse), such neuron-specific labels do not 

exist, precluding the use of PCA-based approaches in this manner. Furthermore, Scholz 

et al. (2018) found evidence that neural dynamics have higher dimensionality than 

previously thought, suggesting the engagement of many neurons in driving behavior. 

Hence, even with neuron-specific labels, it is important to probe how the entire network 

cooperates to process stimuli.  

Therefore, here we ask: can we identify stimulus properties using graph-theoretic 

features of neural interactions recorded during stimulus onset or offset? Graphs are a 

natural representation to capture the pairwise interactions between nodes (or neurons) 

connected by edges (functional interactions). Graphs have been used to uncover 

structure-function relationships in physical, biological, social, and information systems 

(Müller et al., 2012; Easley and Kleinberg, 2010; Barabási, 2016). By viewing a nervous 

system as a graph, we hypothesize that we may uncover more complex patterns of 

activity than if we considered neurons as independent units. Indeed, we identified a range 
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of network features that emerge in response to chemosensory stimulation. We chose five 

chemical stimuli each at two different concentrations and monitored the responses of at 

least 40 head neurons. Head neurons in C. elegans include olfactory and gustatory 

sensory neurons, several downstream interneurons and command interneurons that 

direct locomotion, and some motor neurons (White et al., 1986). We then computed how 

two stimulus properties – a chemical’s valence (attractant or repellent) and identity (i.e., 

chemical structure) – affect neural activity across the network. We observed that activity 

statistics and graph-theoretic features were successful in discriminating between stimulus 

properties, and validated these results using machine learning classifiers. Finally, we 

found that chemical identity mostly altered the subnetwork composed of putatively 

excitatory, as opposed to inhibitory, interactions, suggesting that patterns of excitation 

define the representation of a chemical in the nematode brain. 

 

3.4 Results 

We performed whole-brain calcium imaging in 30 worms immobilized in an 

olfactory chip, a microfluidic device that permits near-instantaneous switching between 

two fluid flows (Figure 1A; Chronis et al., 2007). Each worm experienced three 21-minute 

imaging sessions: one without stimulation (“Spontaneous”, although M9 buffer is still 

present), one with buffer changes around the animal’s nose (“Buffer”, with M9 buffer), and 

one with chemical stimulation (“Stimulus”, where an odorant or tastant was diluted in M9 

buffer). Sessions with stimulation had seven pulses that lasted 30 seconds, 1 minute, or 

3 minutes (Figure 1B; modified from Albrecht and Bargmann, 2011). We exposed worms 

to one of 10 conditions: high or low concentrations of one of five chemical stimuli (Figure 
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1C). Stimuli were either innately attractive or repellent as determined by previous 

chemotaxis and drop assays (Figure 1C; Bargmann et al., 1993; Chatzigeorgiou et al., 

2013). We monitored and tracked the activity of each neuron individually within a session, 

but we did not identify that same neuron across animals or sessions (i.e., Spontaneous, 

Buffer, Stimulus). Some neural responses were locked to the onset or offset of the 

stimulus in the Buffer and Stimulus sessions, and were likely sensory or interneurons 

involved in the detection and behavioral response to chemical stimulation (Chalasani et 

al., 2007). Other neurons may be interneurons or motor neurons involved in motor 

commands (Kato et al., 2015). A median of 44, 48, and 64 neurons were active during 

Spontaneous, Buffer, and Stimulus sessions, respectively, which indicated that more 

neurons were active during Stimulus sessions than either Spontaneous or Buffer sessions 

(Figure 1D). All Stimulus sessions, however, activated similar numbers of neurons, 

regardless of stimulus identity (Figure 2). Thus, network engagement increases in 

response to stimuli, and we next sought to assess whether different stimulus properties 

can be extracted using signatures of this change. 
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Figure 3.1 Whole-brain imaging experiments and analysis. A) Schematic showing the 
experimental proto- col. Thirty stage L4 animals were picked onto a plate covered with 
OP50 24 hours before each experiment. Animals, as 1-day old young adults, were 
stimulated in an olfactory chip and their neural responses were imaged on a Zeiss 
Airyscan 880. Fluorescence traces were extracted from each video, and subsequently 
analyzed. B) Animals were imaged in three 21 minute-long sessions: Spontaneous, 
Buffer, and Stimulus. Buffer and Stimulus sessions used seven pulses of M9 buffer or 
one of 10 chemicals, respectively. C) Table showing the chemicals (attractants are 
colored yellow, repellents are violet) and concentrations tested. Three animals were 
tested per stimulus condition. %v/v refers to % vol/vol. D) The cumulative distribution 
function for the number of neurons active during Spontaneous (green), Buffer (orange), 
and Stimulus (blue) sessions shows that more neurons are active when a stimulus is 
present (p = 9.20E-6 and p = 4.61E-3 for the Spontaneous to Stimulus and Buffer to 
Stimulus comparisons, respectively, by the two-sample Kolmogorov-Smirnov test). N = 
21, 30, and 30 animals for Spontaneous, Buffer, and Stimulus sessions, respectively.  
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Figure 3.2 Chemical classes do not activate different numbers of neurons. The cumulative 
distribution of number of active neurons does not differ in a (A) valence- or (B) identity-
dependent manner. All p > 0.05, by two-sample Kolmogorov-Smirnov test. N = 21 for 
attractants and N = 9 for repellents (A), and N = 6 for each chemical stimulus (B).  
 
 

3.4.1 Stimulus valence and identity alter neural activity statistics 

We first tested if simple measures of neural activity systematically changed with 

respect to different stimulus properties. We considered two ecologically-relevant stimulus 

properties: 1) Identity (diacetyl, 2-nonanone, benzaldehyde, isoamyl alcohol, or NaCl) and 

2) Valence (attractive or repellent). We reasoned that an animal navigating its 

environment will recognize different chemicals (i.e., identity) as nutritious or toxic (i.e., 

valence). We focused on statistical measures (average and standard deviation of 

normalized neural activity) and measures that capture temporal dynamics (Fourier-based 

analysis of frequency spectra; Chalasani et al., 2010). Each cell’s activity was normalized 
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to their pre-switch values. 
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(Figures 3A, 4A), but not offset (Figures 3B, 5A). The tastant NaCl induced more variable 

neural activity than the odorants on stimulus onset but not on offset (Figures 3C,D, 4, 5), 

and there was no effect of stimulus identity on the mean activity (Figures 3C,D, 4, 5). 

While repellents decreased the average frequency with the most power on stimulus onset 

(Figures 3A, 4A), there was no difference between repellents and attractants on offset 

(Figures 3B, 5A). For stimulus identity, the offset (Figures 3D, 5B) of diacetyl and isoamyl 

alcohol slightly increased the peak frequency of neural oscillations (i.e., max of the 

frequencies with the most power in a sliding window over a 30-second period), but this 

effect was not observed on stimulus onset (Figures 3C, 4B). Finally, there was no 

significant difference for most properties in buffer trials (Figures 3, 4, 5), which indicates 

that these measures are sensitive to chemosensory stimulation. Thus, activity features 

are modulated by stimulus properties in an inconsistent manner at stimulus onset and 

offset. 



 86 

 

Figure 3.3 Stimulus valence and identity have distinct effects on neural activity. 
Repellents induce an increase in average neural activity and a decrease in the average 
frequency of the peak frequency on stimulus onset (A), with no changes on stimulus offset 
(B). On the other hand, stimulus identity affects the variability (i.e., standard deviation) of 
neural activity on stimulus onset (C), and the peak frequency on stimulus offset (D). There 
were no changes in any of the measured properties on buffer onset (A, C) or offset (B, 
D). Avg and S.D. of activity refer to average and standard deviation of neural activity. 
Power in 3rd band refers to average power in the frequency range from 0.34 - 0.47 Hz. 
Peak frequency is the frequency with the most power in a 30-second bin, and avg 
frequency is the average of the frequencies with the most power in a sliding-window bin 
covering a 30-second period. N = 21 for attractants and N = 9 for repellents (A, B). N = 6 
for each chemical stimulus (C, D). * p < 0.025, *** p < 0.0005, by likelihood ratio test on 
full and null generalized linear mixed-effects model, where the former included either 
valence or identity as a fixed effect.  
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Figure 3.4 Stimulus valence and identity have distinct effects on neural activity on 
stimulus onset. Repellents induce an increase in average neural activity and a decrease 
in the average frequency of the peak frequency on stimulus onset (A). On the other hand, 
stimulus identity affects the variability (i.e., standard deviation) of neural activity on 
stimulus onset (B). There were no changes in any of the measured properties on buffer 
onset (A, B). Avg and S.D. of activity refer to average and standard deviation of neural 
activity. Power in 1st, 2nd, 3rd, and 4th bands refer to average power in the frequency 
ranges from 0.07 - 0.2 Hz, 0.2 - 0.34 Hz, 0.34 - 0.47 Hz, and 0.47 - 0.6 Hz. Peak frequency 
is the frequency with the most power in a 30-second bin, and avg frequency and S.D. 
frequency are the average and standard deviation, respectively, of the frequencies with 
the most power in a sliding-window bin covering a 30-second period. N = 21 for attractants 
and N = 9 for repellents (A), and N = 6 for each chemical stimulus (B). * p < 0.025, *** p 
< 0.0005, by likelihood ratio test on full and null generalized linear mixed-effects model, 
where the former included either valence or identity as a fixed effect.  
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Figure 3.5 Stimulus valence and identity have distinct effects on neural activity on 
stimulus offset. Repellents effect no change in neural activity on stimulus offset (A). On 
the other hand, stimulus identity affects the peak frequency of neural activity on stimulus 
offset (B). Buffer offset affected average power in the 1st frequency band (B). Avg and 
S.D. of activity refer to average and standard deviation of neural activity. Power in 1st, 
2nd, 3rd, and 4th bands refer to average power in the frequency ranges from 0.07 - 0.2 
Hz, 0.2 - 0.34 Hz, 0.34 - 0.47 Hz, and 0.47 - 0.6 Hz. Peak frequency is the frequency with 
the most power in a 30-second bin, and avg frequency and S.D. frequency are the 
average and standard deviation, respectively, of the frequencies with the most power in 
a sliding-window bin covering a 30-second period. N = 21 for attractants and N = 9 for 
repellents (A), and N = 6 for each chemical stimulus (B). * p < 0.025, *** p < 0.0005, by 
likelihood ratio test on full and null generalized linear mixed-effects model, where the 
former included either valence or identity as a fixed effect.  
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Previous studies have shown that spontaneous activity in the nervous system of 

an immobilized worm lies in a low-dimensional PCA space (Kato et al., 2015; Nichols et 

al., 2017; Skora et al., 2018). Indeed, our analyses also suggest that, during the 

Spontaneous session, neural activity loops through a low-dimensional manifold, where 

the first three principal components (PCs) capture a median of 59% of the variance in our 

21-minute long imaging sessions (Figure 6A,C). However, we found that PCA was not 

able to infer different states during any type of stimulation – either Buffer or Stimulus 

changes – as both exhibited more complicated network dynamics than observed in an 

unstimulated worm (Figure 6B). Specifically, the first three PCs captured a median of only 

51% of the variance in stimulation sessions (Figure 6C; p = 0.002 and 4.54E-5 for 

Spontaneous to Buffer and Spontaneous to Stimulus comparisons, respectively), and 

instead of smooth trajectories through PCA space, we observed jumps between different 

regions of state space (Figure 6B). This agrees with (Scholz et al., 2018), who found that 

a non-stimulated, but moving, worm also exhibits network dynamics that cannot be easily 

explained by the first three PCs.  

 

Figure 3.6 Observed neural dynamics preclude the use of PCA. Example neural dynamics 
observed during a Spontaneous session form loops through PCA-space (A), but not 
during a Stimulus session (B). Generally, the first three principal components explain a 
larger percentage of the variance during Spontaneous sessions than during Buffer or 
Stimulus sessions (C). Kruskall-Wallis test, with Dunn-Sidak post-hoc test, ** p < 0.01, *** 
p < 0.001.  
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Thus, a different approach is needed to decode stimulus properties from network 

dynamics in the absence of neural labels, particularly if traditional dimensionality-

reduction-based methods fail to capture a significant portion of the variance. We next 

propose to use graph-theoretic features of the interactions between neurons. 

 

3.4.2 Computing graph-theoretic features of neural activity 

We next asked if different stimulus properties could be better distinguished based 

on interaction patterns between neurons, instead of activity statistics of individual 

neurons. Graph-theoretic features capture complex interactions amongst groups of 

neurons. For example, these features can quantify how well a network can be divided into 

relatively independent clusters such that neurons in a cluster mostly interact with other 

neurons in the same cluster and sparsely interact with neurons in other clusters (this 

feature is called modularity). Other features capture how quickly information can spread 

through the network such that signals in one part of the network can be received and 

processed in another part of the network (one such feature is the largest eigenvalue of 

the graph) (Rubinov and Sporns, 2010; Yang et al., 2003). Graph-theoretic features have 

been previously used to characterize activity changes in coarse brain networks (e.g., 

where nodes represent entire brain regions or large populations of neurons; reviewed by 

Rubinov and Sporns, 2010; Bassett and Sporns, 2017), but have not, to our knowledge, 

been used to analyze whole-brain activity at the single neuron level.  

To characterize interactions between neurons, we first need to infer interactions 

between neurons based on their individual activities. For example, if neuron B’s activity 

rises shortly after neuron A’s activity rises, then we may infer a functional interaction 
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between neurons A and B. Formally, to predict interactions, we computed the normalized 

mutual information (NMI; Strehl and Ghosh, 2002) between the activity vectors of every 

pair of neurons in a 30-second period around a stimulus switch (i.e., onset or offset). NMI 

measures how much information one variable contains about another variable, which in 

this context reveals a putative interaction between the activity vectors of two neurons (see 

Materials and Methods). We computed the NMI between all pairs of n neurons in a given 

worm during a 30-second period of interest (either before or after a stimulus switch). We 

focused on a 30-second period for two reasons: 1) an animal can begin to move toward 

or away from an attractant or repellent, respectively, well within 30 seconds (Albrecht and 

Bargmann, 2011; Hilliard et al., 2002), and 2) sensory neurons that detect chemical 

stimuli tend to reach their maximum response within ~10 seconds of stimulus onset 

(Chalasani et al., 2007). Thus, analyzing 30 seconds following a stimulus switch should 

be sufficient to capture the representation of ecologically-relevant information in neural 

activity (Chalasani et al., 2007; Chatzigeorgiou et al., 2013; Hilliard et al., 2002). 

We then computed a weighted graph G=(V,E), where V is the set of nodes 

(neurons) and E is the set of weighted edges (inferred functional interactions) between 

neurons. Each edge weight equals the NMI between the two neurons, which lies between 

0 and 1, where a larger number implies a stronger interaction. Pearson’s correlation (PC) 

has been previously used (Bassett et al., 2011) to generate functional connectivity 

networks with both positive and negative weights (as well as 0 for uncorrelated neurons, 

which is rare in practice); the former indicates that both neurons increase or decrease 

their activity together (e.g., excitation), and the latter implies that as one neuron increases 

its activity, the other neuron’s activity decreases (e.g., inhibition). As a group, GCaMPs 
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are known to faithfully reflect increases in a cell's internal calcium concentration, and thus 

its excitation; however, GCaMPs were not optimized to reflect a decrease in calcium 

concentration, or its hyperpolarization (e.g., see Tian et al., 2009; Akerboom et al., 2012). 

Further, many graph-theoretic analyses require that all edge weights be non-negative, 

and we found that 46.8% of edges had a negative weight when we used Pearson’s 

correlation. Thus, we did not use weights from Pearson’s correlation, though we did use 

it in separate analyses to independently study the putatively excitatory and inhibitory 

subnetworks. 

From each graph, we extracted network features that capture different interaction 

patterns at both the local and global network scales. Specifically, we focused on five 

classes of network measures, including basic structure, functional segregation, functional 

integration, centrality, and resilience (summarized in Table 1 and Rubinov and Sporns, 

2010). Basic structure refers to general aspects of the graph, such as the largest 

eigenvalue or the median weight of the network, which indicates how strongly nodes 

interact with one another. Functional segregation measures how much processing occurs 

in small groups of neurons, or modules, and encompasses the network’s modularity and 

number of modules – in a more modular network, neurons cluster into groups that strongly 

communicate with one another. Functional integration indicates how efficiently different 

groups of neurons can pass information to each other; a representative measure is the 

average shortest path distance between pairs of neurons in the network, which indicates 

how quickly, on average, information can pass between any two neurons. Centrality 

measures how important, or central, a neuron is to information transmission between 

different parts of the network and can be assessed, for example, using the average 
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betweenness centrality – the average fraction of shortest paths linking any two neurons 

that pass through a given neuron. Finally, measures of resilience to perturbations, such 

as lesions, includes the average assortativity coefficient – the average correlation 

coefficient between the degrees of any two connected neurons. 

For fair comparisons, each graph-theoretic feature was normalized to account for 

any dependence on network size (van Wijk et al., 2010). Further, to highlight changes in 

a graph-theoretic property after a stimulus switch, we used the same normalization 

scheme we used for neural activity features – in short, we divided the post-switch value 

of the feature to its pre-switch value. This was a critical normalization scheme as the 

organization of each worm’s neural network was quite variable, even in the absence of 

stimulation (Figure 7). Thus, we report how the addition or removal of a stimulus affected 

patterns of neural network activity.
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Figure 3.7 The neural networks of worms vary both within and across worms. The 
networks depicted here, for three example worms, show neurons (circles) connected by 
lines (edges); the thickness of the edges correspond to the amount of normalized mutual 
information between the two linked neurons. All networks are based on neural activity 
observed in the 30-second period between 30 seconds and 1 minute into the beginning 
of either the Spontaneous (A, C, E) or Stimulus (B, D, F) session for three worms. 
Neurons with the same color belong to the same module. Some worms have different 
numbers of modules in the absence of stimulus (A has 5 modules, B has 6 modules), 
while others have different numbers of strongly interacting neurons (C, D), and still others 
look fairly similar (E, F). All edges less than 0.2 were removed for the purpose of 
visualization.  
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Table 3.1 Definition of graph-theoretic features studied in this manuscript. The twenty-
two listed features are grouped into one of five classes: basic structure (of the adjacency 
matrix), functional segregation (measures of the decomposability of the network), 
functional integration (the potential for disparate parts of the network to communicate), 
centrality (the importance of any one neuron to network communication), and resilience 
to perturbations, such as lesions (measures of how robust the system is to disruptions at 
individual nodes).  
 
Graph Theory Feature  Description 
Basic structure 
numNodes the number of neurons that had at least one non-zero 

weight to another neuron 
numEdges the number of edges 
density the density of edges (i.e., the number of actual edges 

divided by the total possible number of edges in a fully-
connected network) 

numComponents the number of isolated subgraphs in the network 
avgWeight the average weight of the network 
medWeight the median weight of the network 
avgEigenvalue the mean of the positive eigenvalues of the adjacency 

matrix 
maxEigenvalue the largest eigenvalue of the adjacency matrix  
Functional segregation 
avgClusteringCoeff the average over all neurons of the fraction of 3-neuron 

clusters, or triangles, around each neuron 
transitivity a globally normalized version of the clustering coefficient 
avgLocalEff the mean local efficiency (i.e., the average over all 

neurons of the lengths of the shortest paths between two 
of the neuron’s neighbors) 

modularity the extent to which a network can be divided into 
clusters, or modules, of neurons with dense connections 
amongst themselves, and sparse connections to 
neurons in other clusters 

numModules the number of modules  
Functional integration 
avgShortestPath the average shortest path between all pairs of neurons in 

the network 
globalEff the global efficiency, or the average inverse shortest 

path length 
radius the smallest shortest path connecting any two neurons 
diameter the largest shortest path connecting any two neurons 
Centrality 
avgParticipationCoeff the degree to which a neuron communicates with 

neurons in different modules 
avgBetweennessCentrality the average of the fraction of shortest paths linking any 

two neurons that pass through a given neuron 
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Table 3.1 Definition of graph-theoretic features studied in this manuscript (continued). 
 
Graph Theory Feature  Description 
Resilience to perturbations 
avgDegDist the average of each neuron's degree, or sum of the edge 

weights to other neurons 
assortCoeff the correlation coefficient between the degrees of two 

connected neurons, where a negative number indicates 
neurons with a high degree are connected to neurons 
with a low degree 

avgNeighborDegree the average degree of the neighbors of a given node, 
averaged over all nodes 

 
 

3.4.3 Graph-theoretic features distinguish stimulus identity 

For each stimulus property, we tested the extent to which any graph-theoretic 

feature significantly changed in response to a stimulus switch. Overall, some network 

features showed a reliable change upon both switches (onset and offset), whereas activity 

features of neurons revealed no such reliable change. For example, the average 

betweenness centrality reliably changed with respect to stimulus valence. Repellents 

decreased the network's average betweenness centrality on both stimulus onset and 

offset, while attractants had no effect (Figures 8A,B; Table 2). Furthermore, these 

changes were not concomitant with a change in the median weight of the network (Figure 

8A,B; Table 2), which indicates that the change in average betweenness centrality is not 

simply driven by stronger or weaker interactions in one condition over another, but rather 

by differences in the patterns of interactions amongst neurons. Thus, valence modulates 

the centrality of neurons bridging disparate regions of the network. Surprisingly, these 

effects occur both at stimulus onset and offset, indicative of a fundamental signature in 

how each class of stimulus is processed in the C. elegans nervous system. 
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Stimulus identity affected several features, though there were only a few features 

- the median network weight, transitivity, and max eigenvalue - that reliably changed on 

both stimulus onset and offset (Figures 8C,D, 9, 10; Table 2). When worms were exposed 

to NaCl, the network had the largest median weight and the smallest diameter (i.e., the 

furthest distance between any two neurons). This indicates that the NaCl-induced network 

could efficiently transmit information across the network. Furthermore, this network had 

the largest transitivity (i.e., average strength of interactions between connected triplets of 

neurons) and max eigenvalue (the larger the max eigenvalue, the more easily signal 

spreads through a network), suggesting a unique combination of strong local connectivity 

and efficient global reach, which is often observed in small-world networks (Watts and 

Strogatz, 1998). Buffer sessions modulated no graph-theoretic features on buffer onset 

(Figures 8, 9, 10; Table 2); however, for stimulus identity, buffer offset did effect change 

in several graph-theoretic features, but not median weight (Figure 10; Table 2). This 

indicates that changes in median weight may require a stimulus, consistent with previous 

studies showing that stimuli drive correlated activity across multiple neurons (Kohn and 

Smith, 2005; Eggermont, 2007; Aertsen et al., 1989). Overall, stimulus properties affect 

network connectivity in a reliable manner, and these features may serve as decoding 

signatures. 
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Figure 3.8 Stimulus valence and identity have distinct effects on network features. 
Repellents consistently induce a decrease in average betweenness centrality on stimulus 
onset (A) and offset (B). Stimulus identity also affects the average betweenness centrality 
on stimulus onset (C), but not offset (D), in addition to effects on various other network 
features. There were no changes in any of the measured properties on buffer onset (A, 
C) or offset (B, D). N = 21 for attractants and N = 9 for repellents (A, B), and N = 6 for 
each chemical stimulus (C, D). * p < 0.025, ** p < 0.005, by likelihood ratio test on full and 
null generalized linear mixed-effects model, where the former included either valence or 
identity as a fixed effect.  
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Figure 3.9 Stimulus valence and identity modulate distinct network features on stimulus 
onset. All 22 graph-theoretic features on the x-axes are plotted according to stimulus 
valence (A) and identity (B), and depict results from networks computed on stimulus onset 
during Buffer and Stimulus sessions. Network features are derived from adjacency 
matrices constructed with normalized mutual information. Colored dots indicate the mean 
across 7 pulses. N = 21 for attractants and N = 9 for repellents (A), and N = 6 for each 
chemical stimulus (B). * p < 0.025, ** p < 0.005, by likelihood ratio test on full and null 
generalized linear mixed-effects model, where the former included either valence or 
identity as a fixed effect.  
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Figure 3.10 Stimulus valence and identity modulate distinct network features on stimulus 
offset. All 22 graph-theoretic features on the x-axes are plotted according to stimulus 
valence (A) and identity (B), and depict results from networks computed on stimulus offset 
during Buffer and Stimulus sessions. Network features are derived from adjacency 
matrices constructed with normalized mutual information. Colored dots indicate the mean 
across 7 pulses. N = 21 for attractants and N = 9 for repellents (A), and N = 6 for each 
chemical stimulus (B). * p < 0.025, ** p < 0.005, by likelihood ratio test on full and null 
generalized linear mixed-effects model, where the former included either valence or 
identity as a fixed effect.  
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Table 3.2 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models. Results from the likelihood ratio test applied on a full vs null model. The 
full model includes information on either Valence or Identity in addition to the null model. 
The null model includes information on animal ID and time since first pulse. The p-values 
in bold indicate a significant difference in the data’s likelihood when explained with the 
full model vs the null model; hence, the parameter (i.e., Valence or Identity) significantly 
improved model fit. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Session Pulse 
Switch 

Graph Theory Feature Valence Identity 

Buffer Onset assortCoeff 0.349 0.550 
avgBetweenCentrality 0.288 0.665 
avgClusteringCoeff 0.335 0.939 
avgDegDist 0.448 0.688 
avgEigenvalue 0.520 0.768 
avgLocalEff 0.318 0.939 
avgNeighborDeg 0.297 0.915 
avgParticipationCoeff 0.235 0.362 
avgShortestPath 0.329 0.607 
avgWeight 0.341 0.952 
density 0.530 0.649 
diameter 0.166 0.872 
globalEff 0.311 0.955 
maxEigenvalue 0.405 0.970 
medWeight 0.219 0.912 
modularity 0.034 0.918 
numComponents 0.626 0.756 
numEdges 0.297 0.270 
numModules 0.152 0.457 
numNodes 0.303 0.367 
radius 0.246 0.432 
transitivity 0.335 0.939 

Offset assortCoeff 0.930 0.904 
avgBetweenCentrality 0.940 0.866 
avgClusteringCoeff 0.307 0.032 
avgDegDist 0.979 0.840 
avgEigenvalue 0.261 0.098 
avgLocalEff 0.306 0.032 
avgNeighborDeg 0.322 0.011 
avgParticipationCoeff 0.508 0.241 
avgShortestPath 0.982 0.165 
avgWeight 0.334 0.031 
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Table 3.2 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Session Pulse 
Switch 

Graph Theory Feature Valence Identity 

Buffer Offset density  0.138 
diameter 0.239 0.146 
globalEff 0.386 0.022 
maxEigenvalue 0.370 0.015 
medWeight 0.250 0.049 
modularity 0.706 0.048 
numComponents 0.606 0.222 
numEdges 0.695 0.484 
numModules 0.311 0.084 
numNodes 0.819 0.658 
radius 0.398 0.676 
transitivity 0.307 0.032 

Stimulus Onset assortCoeff 0.486 0.002 
avgBetweenCentrality 0.013 0.003 
avgClusteringCoeff 0.154 0.005 
avgDegDist 0.808 0.008 
avgEigenvalue 0.388 0.028 
avgLocalEff 0.158 0.006 
avgNeighborDeg 0.285 0.008 
avgParticipationCoeff 0.583 0.095 
avgShortestPath 0.153 0.016 
avgWeight 0.195 0.009 
density 0.865 0.089 
diameter 0.076 0.028 
globalEff 0.259 0.020 
maxEigenvalue 0.322 0.016 
medWeight 0.079 0.003 
modularity 0.141 0.495 
numComponents 0.766 0.032 
numEdges 0.778 0.003 
numModules 0.481 0.021 
numNodes 0.733 0.003 
radius 0.405 0.242 
transitivity 0.154 0.005 

Offset assortCoeff 0.075 0.063 
avgBetweenCentrality 0.021 0.267 
avgClusteringCoeff 0.654 0.020 
avgDegDist 0.164 0.064 
avgEigenvalue 0.692 0.126 
avgLocalEff 0.649 0.022 
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Table 3.2 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models (continued). 
 

 
 

 

 

 

 

 

 

 

 

 

Graph-theoretic features quantitatively capture differences in network structures 

that emerge during stimulus presentation. To illustrate these differences more intuitively, 

we visualized how the networks changed shape before and after stimulus onset. Figure 

11 shows the network of one worm before the onset of 200 mM NaCl (Figure 11A,C), and 

during the first 30 seconds of the pulse (Figure 11B, D). In the latter, there is an increase 

in the number of strong edges (i.e., edges of weight larger than 0.2), a decrease in number 

of modules (from 7 to 5), and a decrease in the betweenness centrality of several neurons. 

More neurons are connected with the rest of the network (thereby increasing the max 

eigenvalue), and triplets of neurons are more likely to be strongly connected (i.e., a larger 

transitivity). Due to the normalization scheme employed, changes in the values of graph-

theoretic features may appear to be mild; however, as illustrated, these changes capture 

Session Pulse 
Switch 

Graph Theory Feature Valence Identity 

Stimulus Offset avgNeighborDeg 0.638 0.012 
avgParticipationCoeff 0.410 0.325 
avgShortestPath 0.158 0.196 
avgWeight 0.696 0.029 
density 0.469 0.232 
diameter 0.131 0.247 
globalEff 0.729 0.050 
maxEigenvalue 0.938 0.017 
medWeight 0.471 0.011 
modularity 0.304 0.002 
numComponents 0.056 0.041 
numEdges 0.113 0.030 
numModules 0.176 0.706 
numNodes 0.110 0.030 
radius 0.587 0.686 
transitivity 0.654 0.020 
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significant differences in connectivity patterns between neurons and may be biologically 

informative.  

 

Figure 3.11 NaCl induces a decrease in the number of modules and average 
betweenness centrality of the worm’s neural network. The networks depicted here, for 
one example worm, show neurons (circles) connected by lines (edges); the thickness of 
the edges correspond to the amount of normalized mutual information between the two 
linked neurons. Each neuron’s position is fixed across all four panels. Prior to stimulation 
with 200 mM NaCl (A, C), this worm’s functional connectivity had 7 modules (A) and fairly 
central neurons (C). During the first 30 seconds of stimulation, however, the number of 
modules dropped to 5 (B has fewer colors than A), with fewer central neurons (D has 
smaller circles than C). Note the increase in recruited neurons during (B, D), relative to 
before (A, C), stimulus. Neurons with the same color in A and B belong to the same 
module. The size of the neurons in C and D are positively correlated with their 
betweenness centrality. All edges less than 0.2 were removed for the purpose of 
visualization. Thus, isolated neurons only had weak edges to all other neurons.  
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3.4.4 Using machine learning methods to predict stimulus properties 

We used a machine learning approach to test how well neural activity features 

(Figure 3) and graph-theoretic features (Figure 8) could predict stimulus properties on the 

first stimulus pulse, when the animal has not undergone any adaptation. As before, the 

stimulus properties we considered were stimulus valence and identity. We used a logistic 

regression classifier, which is a simple and commonly used classifier that has no built-in 

assumptions about the distribution of the data. We evaluated its ability to generalize to 

unseen networks using cross-validation, followed by a permutation test to assess its 

performance against an empirically-derived chance level of accuracy (see Materials and 

Methods). We also combined graph-theoretic and neural activity features, to see if graph 

theory and neural activity provided distinct information that could collectively improve 

classification accuracy.  

The logistic regression classifier performed well on predicting stimulus identity on 

onset, but not offset (Figure 12B,D, and Table 3). In particular, accuracy was high when 

using graph-theoretic features alone (40% accuracy, chance: 20% permutation accuracy: 

16±8%, p-value = 0.004). Adding neural activity features increased the accuracy slightly 

(47% accuracy, Figure 12B). On the other hand, when training the classifier using only 

neural activity data, accuracy was far lower (17%; Fig 12B). Finally, we did not exceed 

chance accuracy when classifying attractants and repellents using either of the three 

feature sets (Figure 12A,C, and Table 3), or any of the buffer sessions except for identity 

on buffer offset (Figure 13D and Table 3). However, buffer sessions that preceded 

stimulus sessions did not show above chance accuracy (Figure 14), suggesting that the 

above-chance performance on all buffer sessions combined might be confounded by prior 
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stimulus experience. Thus, graph-theoretic features alone appear capable of 

quantitatively discriminating identity on stimulus onset, with some gain when also 

including measures of neural activity in combination. Together, these data show that the 

C. elegans neural network responding to stimulus, but not buffer, has structural 

characteristics that can be identified using graph theory with a simple machine learning 

classifier. 

 

 

 

 

 



 107 

 

Figure 3.12 Network features increase classification accuracy of stimulus identity. 
Classification accuracy achieved on the first pulse of Stimulus sessions using a Logistic 
Regression classifier trained using network features (green), neural activity features 
(orange) or both (blue). Accuracies are shown for stimulus valence and identity at 
stimulus onset (A, B) and offset (C, D), respectively. The accuracy on correlated 
subnetworks for stimulus identity at stimulus onset is shown for only network (E) or 
combined features (F). Red asterisks indicate significantly above-chance classification 
accuracy as determined with a permutation test (**p < 0.005). Black dotted lines indicate 
theoretical chance accuracy.  
 

17%

33%23%17%67%70%70%

70% 67% 73% 47%40%

Onset

Offset
0

20

40

80

60

100

0

20

40

80

60

100

Be
st

 P
os

si
bl

e 
Ac

cu
ra

cy
 (%

)

Valence Identity
A B

C

Graph Theory Activity Graph Theory + Activity Chance

D

** **

Correlated Subnetworks Only

0

20

40

80

60

100E F

40% 40%33% 30%

Positively
correlated

Positively
correlated

** **

Negatively
correlated

Negatively
correlated



 108 

 

Figure 3.13 Logistic regression classifier attains above-chance classification accuracy for 
stimulus identity on Buffer sessions. Classification accuracy achieved on the first pulse of 
Buffer sessions using a Logistic Regression classifier trained using network features 
(green), neural activity features (orange) or both (blue). Accuracies are shown for stimulus 
valence and identity at stimulus onset (A, B) and offset (C, D), respectively. Red asterisks 
indicate significantly above-chance classification accuracy as determined with a 
permutation test (*p < 0.025). Black dotted lines indicate theoretical chance accuracy.  
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Figure 3.14 Logistic regression classifier does not attain above-chance classification 
accuracy for stimulus identity on Buffer sessions in ‘naïve’ animals. Classification 
accuracy achieved on the first pulse of Buffer sessions in naïve animals using a Logistic 
Regression classifier trained using network features (green), neural activity features 
(orange) or both (blue). Accuracies are shown for stimulus valence and identity at 
stimulus onset (A, B) and offset (C, D), respectively. We do not achieve significantly 
above-chance classification accuracy, assessed with permutation testing (p > 0.05). 
Black dotted lines indicate theoretical chance accuracy. 

Onset

Offset
0

20

40

80

60

100

0

20

40

80

60

100

Be
st

 P
os

si
bl

e 
Ac

cu
ra

cy
 (%

)

Valence Identity
A B

C

Graph Theory Activity Graph Theory + Activity Chance

D

48%62%52% 14%24%14%

62%57%57% 14%29%14%



 110 

Table 3.3 Classifier results from permutation testing on full networks. Best performance 
achieved by Logistic Regression classifier on a specific classification task – namely, for 
a given session, pulse switch type, comparison, and one of three sets of features, 
correctly classify responses. The leave-one-out cross validation accuracy, the mean and 
standard deviation of the accuracies of a null distribution built using 1000 permutations of 
the labels, and the corresponding p-value, or relative position of its accuracy in the null 
distribution, are all listed. Values in bold attained significantly above-chance accuracies. 
Some tasks did not exceed chance (e.g., Valence on stimulus onset during Stimulus 
sessions with activity features), and this is indicated by a dashed line to indicate that no 
permutation testing was conducted. Accuracy on some classification tasks was higher 
when features were standardized (y = yes, n = no, y/n = same accuracy with or without 
standardization). Chance is 70% for Valence and 20% for Identity. GT = Graph Theory, 
Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 70 - - n 
Activity 70 - - n 
Comb. 70 - - n 

Identity GT 20 - - y 
Activity 17 - - y 
Comb. 13 - - y 

Offset Valence GT 73 61±7 0.074 y 
Activity 70 - - n 
Comb. 73 58±9 0.066 y 

Identity GT 33 16±8 0.021 y 
Activity 13 - - y 
Comb. 27 11±7 0.032 n 

Stimulus Onset Valence GT 70 - - y/n 
Activity 67 - - n 
Comb. 73 59±9 0.069 y 

Identity GT 40 16±8 0.004 y 
Activity 17 - - y 
Comb. 47 16±8 0.003 y 

Offset Valence GT 70 - - n 
Activity 70 - - n 
Comb. 67 - - y 

Identity GT 17 - - y 
Activity 23 15±8 0.196 y 
Comb. 33 16±8 0.038 y 
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3.4.5 Contributions of putative excitatory and inhibitory subnetworks to 

discrimination of stimulus identity 

NMI can detect non-linear interactions between two signals but is unable to 

determine the sign of the interaction. For instance, two neurons can have high NMI, yet 

they may be positively or negatively correlated. The sign of the correlation is important 

because it implies different types of interactions, both of which are biologically meaningful 

– positive correlations are thought to indicate excitation, while negative correlations may 

imply inhibition, although this is not always true (e.g., if neurons A and B each receive 

input from a common, third neuron, then A and B will be positively correlated, in spite of 

the lack of a direct interaction between them). To identify the contributions of the positively 

and negatively correlated subnetworks to discriminating stimulus identity, we computed 

adjacency matrices based on Pearson’s correlation and used the sign of those networks 

to split the NMI-based networks into two subnetworks: one composed of putatively 

excitatory interactions, and another composed of putatively inhibitory interactions. This 

enabled us to capture all non-linearities in neuronal interactions and analyze each 

subnetwork independently.  

 Unlike our results on the full network, we found no consistent differences between 

attractants and repellents on stimulus onset or offset for either the positively or negatively 

correlated subnetworks alone (Table 4). This suggests that the decrease in average 

betweenness centrality seen in the full network (Figure 8A,B) is driven by a decrease in 

the centrality of neurons that integrate both excitatory and inhibitory signals. On the other 

hand, several network features consistently changed on stimulus onset and offset for both 
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subnetworks in an identity-dependent manner (Table 4). While not all of these features 

are shared between the excitatory and inhibitory subnetworks, many, such as the network 

diameter and median weight, are. Finally, similar to the full network, there are few valence 

or identity-dependent changes on buffer onset, and a few on buffer offset (Table 5). 

Curiously, many of these identity-dependent changes are only seen in the negatively-

correlated subnetworks, which indicates that the inhibitory subnetwork may carry a 

stronger memory of past stimulus. 

 Finally, we tried to classify stimulus valence and identity using network features 

solely derived from one subnetwork at a time. We found that the network features based 

on the positively correlated subnetwork contained as much discriminatory power as 

network features based on the full network (40% accuracy for both, chance: 20% 

permutation accuracy: 14±8%, p-value = 0.003; Figure 12E,F, and Table 6), while the 

negatively correlated subnetwork’s features contained no discriminatory power (Figure 

12E,F, and Table 7). This implies that stimulus identity most strongly modulates the 

pattern of excitation, but not inhibition. Oddly, neural activity features did not change the 

discriminatory power for the positively correlated subnetwork features (Table 6), which 

suggests that the interplay of excitation and inhibition together allows the context of neural 

activity to improve accuracy.  

Overall, these additional analyses further demonstrate the value of using graph-

theoretic features to decode stimulus properties. We anticipate that other parameters 

introduced when extracting features (e.g., modifying the size of time windows, inferring 

directionality, measuring the perceived intensity of a stimulus) may provide further 

biological insight.  



 113 

Table 3.4 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on differently correlated networks. The positively 
(+) and negatively (-) correlated subnetworks are shown (columns).  Results from the 
likelihood ratio test applied on a full vs null model. The full model includes information on 
either Valence or Identity in addition to the null model. The null model includes information 
on animal ID and time since first pulse. The p-values in bold indicate a significant 
difference in the data’s likelihood when explained with the full model vs the null model; 
hence, the parameter (i.e., Valence or Identity) significantly improved model fit. The 
‘assortCoeff’ cells are empty because they had negative numbers which could not be fit 
by a gamma distribution GLME. Other cells are empty because extreme outliers 
prevented convergence. 
 

 Comparison Pulse 
Switch 

Graph Theory 
Feature 

+ - 

Valence Onset assortCoeff   
avgBetweenCentrality 0.050 0.046 
avgClusteringCoeff 0.279 0.134 
avgDegDist 0.753 0.982 
avgEigenvalue 0.365 0.068 
avgLocalEff 0.225 0.136 
avgNeighborDeg 0.328 0.269 
avgParticipationCoeff 0.891 0.006 
avgShortestPaths 0.072 0.103 
avgWeight 0.259 0.117 
density 0.754 0.979 
diameter 0.076 0.175 
globalEff 0.194 0.163 
maxEigenvalue 0.600 0.227 
medianWeight 0.142 0.046 
modularity 0.274 0.674 
numComponents 0.766 0.766 
numEdges 0.731 0.780 
numModules 0.476 0.014 
numNodes 0.733 0.733 
radius 0.669 0.330 
transitivity 0.317 0.127 

Offset assortCoeff   
avgBetweenCentrality 0.161 0.065 
avgClusteringCoeff 0.799 0.537 
avgDegDist 0.584 0.871 
avgEigenvalue 0.835 0.799 
avgLocalEff 0.756 0.881 
avgNeighborDeg 0.973 0.381 



 114 

Table 3.4 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on differently correlated networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory 
Feature 

+ - 

Valence Offset avgParticipationCoeff 0.022 0.830 
avgShortestPaths 0.334 0.139 
avgWeight 0.814 0.570 
density 0.569 0.889 
diameter 0.469 0.031 
globalEff 0.920 0.503 
maxEigenvalue 0.554 0.570 
medianWeight 0.535 0.526 
modularity 0.250 0.041 
numComponents 0.056 0.056 
numEdges 0.196 0.176 
numModules 0.213 0.482 
numNodes 0.110 0.110 
radius 0.672 0.340 
transitivity 0.924 0.513 

Identity Onset assortCoeff   
avgBetweenCentrality 0.481 0.001 
avgClusteringCoeff 0.010 0.060 
avgDegDist 0.577 0.641 
avgEigenvalue 0.017 0.020 
avgLocalEff 0.009 0.005 
avgNeighborDeg 0.066 0.002 
avgParticipationCoeff 0.001 0.204 
avgShortestPaths 0.013 0.005 
avgWeight 0.017 0.003 
density 0.549 0.661 
diameter 0.000 0.004 
globalEff 0.028 0.006 
maxEigenvalue 0.211 0.005 
medianWeight 0.008 0.001 
modularity 0.020 0.000 
numComponents 0.032 0.032 
numEdges 0.287 0.002 
numModules 0.033 0.031 
numNodes 0.003 0.003 
radius 0.470 0.166 
transitivity 0.028 0.064 

Offset assortCoeff   
avgBetweenCentrality 0.219 0.065 
avgClusteringCoeff 0.053 0.023 
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Table 3.4 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on differently correlated networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory 
Feature 

+ - 

Identity Offset avgDegDist 0.391 0.302 
avgEigenvalue 0.097 0.004 
avgLocalEff 0.034 0.008 
avgNeighborDeg 0.033 0.017 
avgParticipationCoeff 0.025 0.920 
avgShortestPaths 0.078 0.072 
avgWeight 0.046 0.013 
density 0.395 0.302 
diameter 0.044 0.042 
globalEff 0.034 0.013 
maxEigenvalue 0.034 0.008 
medianWeight 0.025 0.004 
modularity 0.192 0.018 
numComponents 0.041 0.041 
numEdges 0.020 0.062 
numModules 0.598 0.619 
numNodes 0.030 0.030 
radius 0.542 0.317 
transitivity 0.077 0.023 
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Table 3.5 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on differently correlated networks. The positively (+) 
and negatively (-) correlated subnetworks are shown (columns). Results from the 
likelihood ratio test applied on a full vs null model. The full model includes information on 
either Valence or Identity in addition to the null model. The null model includes information 
on animal ID and time since first pulse. The p-values in bold indicate a significant 
difference in the data’s likelihood when explained with the full model vs the null model; 
hence, the parameter (i.e., Valence or Identity) significantly improved model fit. The 
‘assortCoeff’ cells are empty because they had negative numbers which could not be fit 
by a gamma distribution GLME. Other cells are empty because extreme outliers 
prevented convergence. 
 

 Comparison Pulse 
Switch 

Graph Theory Feature + - 

Valence Onset assortCoeff   
avgBetweenCentrality 0.074 0.860 
avgClusteringCoeff 0.490  
avgDegDist 0.311 0.261 
avgEigenvalue 0.419 0.364 
avgLocalEff 0.394 0.532 
avgNeighborDeg 0.193 0.308 
avgParticipationCoeff 0.600 0.696 
avgShortestPaths 0.234 0.340 
avgWeight 0.392 0.385 
density 0.321 0.258 
diameter 0.626 0.698 
globalEff 0.212 0.297 
maxEigenvalue 0.511 0.715 
medianWeight 0.137 0.387 
modularity 0.048 0.857 
numComponents 0.626 0.626 
numEdges 0.113 0.705 
numModules 0.527 0.815 
numNodes 0.303 0.303 
radius 0.397 0.639 
transitivity 0.403 0.004 

Offset assortCoeff   
avgBetweenCentrality 0.056 0.695 
avgClusteringCoeff 0.344 0.205 
avgDegDist 0.178 0.054 
avgEigenvalue 0.344 0.345 
avgLocalEff 0.319 0.214 
avgNeighborDeg 0.284 0.395 
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Table 3.5 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on differently correlated networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory Feature + - 

Valence Offset avgParticipationCoeff 0.122 0.551 
avgShortestPaths 0.531 0.512 
avgWeight 0.371 0.322 
density 0.180 0.052 
diameter 0.648 0.443 
globalEff 0.297 0.483 
maxEigenvalue 0.439 0.566 
medianWeight 0.269 0.251 
modularity 0.071 0.331 
numComponents 0.606 0.606 
numEdges 0.238 0.388 
numModules 0.997 0.113 
numNodes 0.819 0.819 
radius 0.535 0.243 
transitivity 0.421 0.367 

Identity Onset assortCoeff   
avgBetweenCentrality 0.114 0.813 
avgClusteringCoeff 0.972 0.757 
avgDegDist 0.421 0.465 
avgEigenvalue 0.759 0.748 
avgLocalEff 0.952 0.124 
avgNeighborDeg 0.654 0.914 
avgParticipationCoeff 0.382 0.035 
avgShortestPaths 0.560 0.637 
avgWeight 0.933 0.902 
density 0.436 0.452 
diameter 0.813 0.508 
globalEff 0.829 0.900 
maxEigenvalue 0.698 0.844 
medianWeight 0.903 0.801 
modularity 0.087 0.779 
numComponents 0.756 0.756 
numEdges 0.099 0.978 
numModules 0.787 0.165 
numNodes 0.367 0.367 
radius 0.447 0.576 
transitivity 0.943 0.067 

Offset assortCoeff   
avgBetweenCentrality 0.455 0.775 
avgClusteringCoeff 0.049 0.022 
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Table 3.5 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on differently correlated networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory Feature + - 

Identity Offset avgDegDist 0.741 0.420 
avgEigenvalue 0.038 0.008 
avgLocalEff 0.040 0.006 
avgNeighborDeg 0.039 0.010 
avgParticipationCoeff 0.576 0.602 
avgShortestPaths 0.136 0.123 
avgWeight 0.036 0.029 
density 0.746 0.416 
diameter 0.233 0.190 
globalEff 0.035 0.016 
maxEigenvalue 0.048 0.011 
medianWeight 0.052 0.033 
modularity 0.472 0.862 
numComponents 0.222 0.222 
numEdges 0.419 0.543 
numModules 0.379 0.231 
numNodes 0.658 0.658 
radius 0.637 0.171 
transitivity 0.063 0.027 
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Table 3.6 Classifier results from permutation testing on networks with positively correlated 
neurons. Best performance achieved by Logistic Regression classifier on a specific 
classification task – namely, for a given session, pulse switch type, comparison, and one 
of three sets of features, correctly classify responses. The leave-one-out cross validation 
accuracy, the mean and standard deviation of the accuracies of a null distribution built 
using 1000 permutations of the labels, and the corresponding p-value, or relative position 
of its accuracy in the null distribution, are all listed. Values in bold attained significantly 
above-chance accuracies. Some tasks did not exceed chance (e.g., Valence on stimulus 
onset during Stimulus sessions with activity features), and this is indicated by a dashed 
line to indicate that no permutation testing was conducted. Accuracy on some 
classification tasks was higher when features were standardized (y = yes, n = no, y/n = 
same accuracy with or without standardization). Chance is 70% for Valence and 20% for 
Identity. GT = Graph Theory, Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 63 - - n 
Activity 70 - - n 
Comb. 63 - - n 

Identity GT 17 - - y 
Activity 17 - - y 
Comb. 23 16±7 0.235 y 

Offset Valence GT 67 - - y/n 
Activity 70 - - n 
Comb. 63 - - y/n 

Identity GT 23 16±8 0.236 y 
Activity 13 - - y 
Comb. 20 - - n 

Stimulus Onset Valence GT 67 - - y/n 
Activity 67 - - n 
Comb. 60 - - y/n 

Identity GT 40 14±8 0.003 n 
Activity 17 - - y 
Comb. 40 15±8 0.004 n 

Offset Valence GT 73 59±8 0.064 y 
Activity 70 - - n 
Comb. 70 - - n 

Identity GT 27 16±7 0.102 y 
Activity 23 15±8 0.196 y 
Comb. 30 16±7 0.061 y 
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Table 3.7 Classifier results from permutation testing on networks with negatively 
correlated neurons. Best performance achieved by Logistic Regression classifier on a 
specific classification task – namely, for a given session, pulse switch type, comparison, 
and one of three sets of features, correctly classify responses. The leave-one-out cross 
validation accuracy, the mean and standard deviation of the accuracies of a null 
distribution built using 1000 permutations of the labels, and the corresponding p-value, or 
relative position of its accuracy in the null distribution, are all listed. Values in bold 
attained significantly above-chance accuracies. Some tasks did not exceed chance (e.g., 
Valence on stimulus onset during Stimulus sessions with activity features), and this is 
indicated by a dashed line to indicate that no permutation testing was conducted. 
Accuracy on some classification tasks was higher when features were standardized (y = 
yes, n = no, y/n = same accuracy with or without standardization). Chance is 70% for 
Valence and 20% for Identity. GT = Graph Theory, Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 63 - - y 
Activity 70 - - n 
Comb. 63 - - y 

Identity GT 20 - - y 
Activity 17 - - y 
Comb. 20 - - y 

Offset Valence GT 63 - - n 
Activity 70 - - n 
Comb. 63 - - n 

Identity GT 23 16±7 0.234 y 
Activity 13 - - y 
Comb. 20 - - n 

Stimulus Onset Valence GT 77 60±8 0.040 y 
Activity 67 - - n 
Comb. 73 58±9 0.071 y/n 

Identity GT 33 16±8 0.034 y 
Activity 17 - - y 
Comb. 30 14±8 0.051 y/n 

Offset Valence GT 67 - - n 
Activity 70 - - n 
Comb. 70 - - y 

Identity GT 20 - - y 
Activity 23 15±8 0.196 y 
Comb. 33 16±7 0.031 y 
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3.5 Discussion 

A central challenge in neuroscience is to develop tools that can uncover how 

stimulus properties, such as valence and identity, are encoded within neural networks. 

We monitored changes in the activity of over 40 neurons in the head of C. elegans as it 

experienced diverse chemical stimuli. We found that some activity statistics, such as the 

mean and standard deviation of neural activity and Fourier-based frequency measures, 

are modulated by, yet unable to, distinguish stimulus valence and identity. We then 

extracted graph-theoretic features from time-series activity traces of neurons and found 

improved ability to predict stimulus identity. Our results suggest that some stimulus 

properties can be decoded using network features, which could be useful in instances 

where neuron labels are unknown or difficult to map across animals. 

We used normalized mutual information to generate functional connectivity 

networks from neural activity traces. In contrast, recent work has tried to infer causal 

networks from activity traces using methods such as adaptive, sparsity-constrained 

Granger causality (Sheikhattar et al., 2018), network deconvolution (Feizi et al., 2013), 

convex risk minimization (Sefer and Kingsford, 2015), and convergent cross mapping 

(Sugihara et al., 2012). Some of these methods, however, make assumptions about the 

data type and nature of causality that may not be true here; e.g., they assume spiking 

data as opposed to graded potentials, or they assume specific models of information 

spread, such as those used in epidemiology. While we used a relatively simple approach, 

our method is general and allows for any network inference algorithm to be plugged into 

our framework.  
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The median network weight, transitivity, and max eigenvalue all emerged as useful 

features for discriminating stimulus identity. This implies that neural networks likely use 

changes in strength of interactions, especially amongst local triplets of neurons, to 

facilitate widespread communication and process stimulus identity. Consistently, 

amongst the five stimuli tested, NaCl always attained the greatest increase in median 

weight, max eigenvalue, and transitivity, which may reflect its ability to use both salt and 

odor circuitry to encode sensory information (Leinwand and Chalasani, 2013). The rest 

of the chemicals induced similar increases in the max eigenvalue and transitivity of the 

nematode neural network on stimulus onset, yet had more differentiated responses on 

stimulus offset, which indicates that the initial detection of an odorant might evoke core 

changes in neural network organization, supplemented with additional chemical-specific 

changes. 

Stimulus valence, on the other hand, modulated the network’s average 

betweenness centrality. While repellents led to network activity with a smaller average 

betweenness centrality, attractants did not produce substantial changes in centrality. This 

implies that repellent information is likely processed by fewer central neurons bridging 

disparate parts of the network, while attractants may require a large number of neurons 

across the entire network. Consistently, previous studies have shown that attractants are 

typically encoded by a combination of multiple sensory neurons (Leinwand et al., 2015), 

while the onset and offset of the repellent 2-nonanone is detected by the AWB 

chemosensory neurons (Ha et al., 2010). 

 While we chose several popular graph-theoretic features to study diverse aspects 

of network organization (Rubinov and Sporns, 2010; Rubinov and Sporns, 2011), this list 
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is not exhaustive, and there may be other features that can better discriminate stimulus 

properties. We also focused on fully-connected weighted networks, as opposed to sparse 

networks by applying an arbitrary threshold to remove weak edges. Sparse network 

analysis depends on the precise threshold and might result in data that is difficult to 

interpret (van den Heuvel et al., 2017). Consistently, attempts to use three different 

proportional thresholds to filter network weights showed that different features emerged 

as significant depending on the threshold chosen (Tables 8, 9), and the ability to classify 

stimulus identity was similarly variable (Tables 10 – 12). Finally, we used a basic machine 

learning approach to quantitatively test the power of using network features to classify 

stimulus properties. While we both used sample sizes (n=30 animals) comparable with 

prior studies and adopted standard approaches to avoid over-fitting (e.g., cross-

validation, permutation testing), we nonetheless caution that building reliable machine 

learning models with relatively small datasets can be sensitive to a few data points. As it 

becomes experimentally easier to generate larger datasets with more neurons across 

many more conditions in other species, we hope our framework of using graph-theoretic 

features of network activity to understand neural function can be further improved.  
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Table 3.8 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on thresholded networks. Only the top 30%, 20%, 
or 10% of weights were kept in each network (columns). Results from the likelihood ratio 
test applied on a full vs null model. The full model includes information on either Valence 
or Identity in addition to the null model. The null model includes information on animal ID 
and time since first pulse. The p-values in bold indicate a significant difference in the 
data’s likelihood when explained with the full model vs the null model; hence, the 
parameter (i.e., Valence or Identity) significantly improved model fit. The ‘assortCoeff’ 
cells are empty because they had negative numbers which could not be fit by a gamma 
distribution GLME. Other cells are empty because extreme outliers prevented 
convergence. 
 

 
  

Comparison Pulse 
Switch 

Graph Theory Feature 30% 20% 10% 

Valence Onset assortCoeff    
avgBetweenCentrality 0.321 0.836 0.152 
avgClusteringCoeff 0.220 0.630 0.680 
avgDegDist 0.981 0.893 0.368 
avgEigenvalue 0.370 0.629 0.465 
avgLocalEff 0.234 0.640 0.674 
avgNeighborDeg 0.346 0.426 0.561 
avgParticipationCoeff 0.035 0.583 0.972 
avgShortestPaths 0.417 0.481 0.359 
avgWeight 0.352 0.414 0.596 
density 0.982 0.897 0.367 
diameter 0.238 0.491 0.199 
globalEff 0.333 0.407 0.371 
maxEigenvalue 0.494 0.595 0.732 
medianWeight 0.212 0.244 0.438 
modularity 0.136 0.216  
numComponents 0.630 0.795 0.552 
numEdges 0.838 0.246 0.811 
numModules 0.837 0.986 0.455 
numNodes 0.873 0.757 0.332 
radius 0.203 0.159 0.087 
transitivity 0.307 0.401 0.998 

Offset assortCoeff    
avgBetweenCentrality 0.201 0.711 0.865 
avgClusteringCoeff 0.259 0.346 0.504 
avgDegDist 0.506 0.622 0.626 
avgEigenvalue 0.441 0.573 0.890 
avgLocalEff 0.270 0.412 0.541 
avgNeighborDeg 0.406 0.394 0.417 
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Table 3.8 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on thresholded networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory Feature 30% 20% 10% 

Valence Offset avgParticipationCoeff 0.595 0.941 0.253 
avgShortestPaths 0.891 0.849 0.996 
avgWeight 0.403 0.457 0.527 
density 0.502 0.620 0.627 
diameter 0.595 0.574 0.785 
globalEff 0.350 0.433 0.577 
maxEigenvalue 0.360 0.408 0.457 
medianWeight 0.347 0.443 0.605 
modularity 0.743 0.449 0.872 
numComponents 0.496 0.492 0.503 
numEdges 0.673 0.029 0.884 
numModules 0.891 0.810 0.581 
numNodes 0.676 0.666 0.718 
radius 0.356 0.346 0.220 
transitivity 0.338 0.398 0.387 

Identity Onset assortCoeff    
avgBetweenCentrality 0.154 0.086 0.443 
avgClusteringCoeff 0.992 0.990 0.891 
avgDegDist 0.926 0.903 0.996 
avgEigenvalue 0.569 0.551 0.535 
avgLocalEff 0.972 0.987 0.830 
avgNeighborDeg 0.979 0.979 0.997 
avgParticipationCoeff 0.516 0.247 0.545 
avgShortestPaths 0.496 0.470 0.403 
avgWeight 0.940 0.958 0.971 
density 0.928 0.902 0.996 
diameter 0.495 0.324 0.411 
globalEff 0.881 0.936 0.941 
maxEigenvalue 0.982 0.960 0.960 
medianWeight 0.902 0.894 0.973 
modularity 0.383 0.498  
numComponents 0.885 0.730 0.930 
numEdges 0.985 0.873 0.632 
numModules 0.722 0.667 0.662 
numNodes 0.603 0.967 0.739 
radius 0.453 0.534 0.722 
transitivity 0.972 0.925 0.965 

Offset assortCoeff    
avgBetweenCentrality 0.902 0.801 0.584 
avgClusteringCoeff 0.005 0.007 0.011 
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Table 3.8 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Buffer session on thresholded networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory Feature 30% 20% 10% 

Identity Offset avgDegDist 0.536 0.225 0.027 
avgEigenvalue 0.173 0.191 0.055 
avgLocalEff 0.008 0.018 0.013 
avgNeighborDeg 0.008 0.004 0.002 
avgParticipationCoeff 0.261 0.422 0.277 
avgShortestPaths 0.165 0.129 0.031 
avgWeight 0.016 0.016 0.014 
density 0.535 0.224 0.026 
diameter 0.187 0.189 0.063 
globalEff 0.028 0.031 0.009 
maxEigenvalue 0.013 0.014 0.007 
medianWeight 0.024 0.022 0.014 
modularity 0.146 0.305 0.306 
numComponents 0.356 0.228 0.060 
numEdges 0.281 0.161 0.889 
numModules 0.027 0.559 0.217 
numNodes 0.473 0.216 0.076 
radius 0.710 0.628 0.434 
transitivity 0.009 0.009 0.012 
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Table 3.9 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on thresholded networks. Only the top 30%, 20%, 
or 10% of weights were kept in each network (columns). Results from the likelihood ratio 
test applied on a full vs null model. The full model includes information on either Valence 
or Identity in addition to the null model. The null model includes information on animal ID 
and time since first pulse. The p-values in bold indicate a significant difference in the 
data’s likelihood when explained with the full model vs the null model; hence, the 
parameter (i.e., Valence or Identity) significantly improved model fit. The ‘assortCoeff’ 
cells are empty because they had negative numbers which could not be fit by a gamma 
distribution GLME. Other cells are empty because extreme outliers prevented 
convergence. 
 

 
 

 

 

 

 

 

 

 

Comparison Pulse 
Switch 

Graph Theory 
Feature 

30% 20% 10% 

Valence Onset assortCoeff    
avgBetweenCentrality 0.009 0.114 0.814 
avgClusteringCoeff 0.275 0.400 0.582 
avgDegDist 0.631 0.978 0.954 
avgEigenvalue 0.308 0.533 0.714 
avgLocalEff 0.211 0.346 0.618 
avgNeighborDeg 0.333 0.439 0.708 
avgParticipationCoeff 0.495 0.474 0.635 
avgShortestPaths 0.159 0.216 0.327 
avgWeight 0.271 0.328 0.436 
density 0.631 0.974 0.969 
diameter 0.101 0.224 0.185 
globalEff 0.318 0.438 0.610 
maxEigenvalue 0.484 0.648 0.790 
medianWeight 0.195 0.252 0.340 
modularity 0.578 0.615 0.738 
numComponents 0.106 0.526 0.556 
numEdges 0.486 0.685 0.207 
numModules 0.342 0.534 0.669 
numNodes 0.536 0.824 0.601 
radius 0.247 0.321 0.370 
transitivity 0.397 0.545 0.633 

Offset assortCoeff    
avgBetweenCentrality 0.001 0.000 0.731 
avgClusteringCoeff 0.913 0.905 0.352 
avgDegDist 0.155 0.554 0.183 
avgEigenvalue 0.606 0.784 0.787 
avgLocalEff 0.588 0.862 0.370 
avgNeighborDeg 0.996 0.926 0.456 
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Table 3.9 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on thresholded networks (continued). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory 
Feature 

30% 20% 10% 

Valence Offset avgParticipationCoeff 0.407 0.746 0.684 
avgShortestPaths 0.132 0.096 0.294 
avgWeight 0.630 0.772 0.940 
density 0.155 0.552 0.180 
diameter 0.007 0.003 0.172 
globalEff 0.840 0.833 0.606 
maxEigenvalue 0.561 0.536 0.285 
medianWeight 0.468 0.622  
modularity 0.188 0.281 0.277 
numComponents 0.467 0.089 0.131 
numEdges 0.487 0.264 0.688 
numModules 0.236 0.179 0.851 
numNodes 0.224 0.842 0.373 
radius 0.717 0.918 0.332 
transitivity 0.768 0.552 0.297 

Identity Onset assortCoeff    
avgBetweenCentrality 0.011 0.422 0.223 
avgClusteringCoeff 0.009 0.025 0.082 
avgDegDist 0.095 0.574 0.870 
avgEigenvalue 0.017 0.042 0.206 
avgLocalEff 0.008 0.034 0.089 
avgNeighborDeg 0.019 0.034 0.080 
avgParticipationCoeff 0.045 0.000 0.003 
avgShortestPaths 0.018 0.041 0.116 
avgWeight 0.008 0.013 0.022 
density 0.095 0.576 0.870 
diameter 0.109 0.187 0.554 
globalEff 0.025 0.063 0.183 
maxEigenvalue 0.039 0.088 0.204 
medianWeight 0.005 0.011 0.021 
modularity 0.584 0.614 0.575 
numComponents 0.018 0.240 0.650 
numEdges 0.096 0.699 0.467 
numModules 0.051 0.106 0.505 
numNodes 0.047 0.387 0.722 
radius 0.162 0.171 0.312 
transitivity 0.012 0.022 0.073 

Offset assortCoeff    
avgBetweenCentrality 0.002 0.013 0.420 
avgClusteringCoeff 0.009 0.011 0.004 
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Table 3.9 Graph-theoretic results from likelikood ratio test on generalized linear mixed-
effects models for the Stimulus session on thresholded networks (continued). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Pulse 
Switch 

Graph Theory 
Feature 

30% 20% 10% 

Identity Offset avgDegDist 0.440 0.325 0.135 
avgEigenvalue 0.256 0.062 0.098 
avgLocalEff 0.017 0.019 0.006 
avgNeighborDeg 0.008 0.010 0.005 
avgParticipationCoeff 0.271 0.070 0.114 
avgShortestPaths 0.160 0.098 0.072 
avgWeight 0.019 0.023 0.035 
density 0.439 0.323 0.134 
diameter 0.129 0.040 0.067 
globalEff 0.037 0.033 0.035 
maxEigenvalue 0.009 0.008 0.009 
medianWeight 0.012 0.016 0.029 
modularity 0.118 0.089 0.609 
numComponents 0.833 0.227 0.095 
numEdges 0.829 0.248 0.620 
numModules 0.824 0.698 0.031 
numNodes 0.394 0.615 0.324 
radius 0.512 0.291 0.141 
transitivity 0.006 0.005 0.007 
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Table 3.10 Classifier results from permutation testing on networks with the top 30% of 
weights. Best performance achieved by Logistic Regression classifier on a specific 
classification task – namely, for a given session, pulse switch type, comparison, and one 
of three sets of features, correctly classify responses. The leave-one-out cross validation 
accuracy, the mean and standard deviation of the accuracies of a null distribution built 
using 1000 permutations of the labels, and the corresponding p-value, or relative position 
of its accuracy in the null distribution, are all listed. Values in bold attained significantly 
above-chance accuracies. Some tasks did not exceed chance (e.g., Valence on stimulus 
onset during Stimulus sessions with activity features), and this is indicated by a dashed 
line to indicate that no permutation testing was conducted. Accuracy on some 
classification tasks was higher when features were standardized (y = yes, n = no, y/n = 
same accuracy with or without standardization). Chance is 70% for Valence and 20% for 
Identity. GT = Graph Theory, Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 67 - - n 
Activity 67 - - y 
Comb. 70 - - n 

Identity GT 13 - - n 
Activity 17 - - y 
Comb. 23 17±8 0.265 y 

Offset Valence GT 57 - - n 
Activity 70 - - n 
Comb. 60 - - n 

Identity GT 23 15±8 0.209 y 
Activity 13 - - y 
Comb. 20 - - n 

Stimulus Onset Valence GT 73 60±8 0.065 y/n 
Activity 67 - - n 
Comb. 73 58±9 0.054 y/n 

Identity GT 47 14±8 0.001 y/n 
Activity 17 - - y 
Comb. 43 14±8 0.002 n 

Offset Valence GT 63 - - n 
Activity 70 - - n 
Comb. 67 - - y 

Identity GT 27 16±8 0.115 y 
Activity 23 15±8 0.196 y 
Comb. 37 16±8 0.022 y 
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Table 3.11 Classifier results from permutation testing on networks with the top 20% of 
weights. Best performance achieved by Logistic Regression classifier on a specific 
classification task – namely, for a given session, pulse switch type, comparison, and one 
of three sets of features, correctly classify responses. The leave-one-out cross validation 
accuracy, the mean and standard deviation of the accuracies of a null distribution built 
using 1000 permutations of the labels, and the corresponding p-value, or relative position 
of its accuracy in the null distribution, are all listed. Values in bold attained significantly 
above-chance accuracies. Some tasks did not exceed chance (e.g., Valence on stimulus 
onset during Stimulus sessions with activity features), and this is indicated by a dashed 
line to indicate that no permutation testing was conducted. Accuracy on some 
classification tasks was higher when features were standardized (y = yes, n = no, y/n = 
same accuracy with or without standardization). Chance is 70% for Valence and 20% for 
Identity. GT = Graph Theory, Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 63 - - y 
Activity 70 - - n 
Comb. 70 - - y 

Identity GT 17 - - y 
Activity 17 - - y 
Comb. 27 17±8 0.136 y 

Offset Valence GT 70 - - y 
Activity 70 - - n 
Comb. 70 - - y 

Identity GT 30 16±8 0.084 y 
Activity 13 - - y 
Comb. 23 17±8 0.249 y 

Stimulus Onset Valence GT 67 - - n 
Activity 67 - - n 
Comb. 73 58±9 0.057 y 

Identity GT 37 14±7 0.007 y/n 
Activity 17 - - y 
Comb. 27 13±7 0.071 n 

Offset Valence GT 57 - - n 
Activity 70 - - n 
Comb. 70 - - y 

Identity GT 30 16±8 0.069 y 
Activity 23 15±8 0.196 y 
Comb. 37 17±8 0.018 y 
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Table 3.12 Classifier results from permutation testing on networks with the top 10% of 
weights. Best performance achieved by Logistic Regression classifier on a specific 
classification task – namely, for a given session, pulse switch type, comparison, and one 
of three sets of features, correctly classify responses. The leave-one-out cross validation 
accuracy, the mean and standard deviation of the accuracies of a null distribution built 
using 1000 permutations of the labels, and the corresponding p-value, or relative position 
of its accuracy in the null distribution, are all listed. Values in bold attained significantly 
above-chance accuracies. Some tasks did not exceed chance (e.g., Valence on stimulus 
onset during Stimulus sessions with activity features), and this is indicated by a dashed 
line to indicate that no permutation testing was conducted. Accuracy on some 
classification tasks was higher when features were standardized (y = yes, n = no, y/n = 
same accuracy with or without standardization). Chance is 70% for Valence and 20% for 
Identity. GT = Graph Theory, Comb = Activity + Graph Theory. 
 

Session Pulse 
Switch 

Compari
son 

Features Best 
Possible 
Accurac

y (%) 

Permuta
tion 

score 
(%, 

mean±s.
d.) 

p-value Standar
dized 

Buffer Onset Valence GT 67 - - n 
Activity 70 - - n 
Comb. 67 - - n 

Identity GT 23 14±8 0.148 n 
Activity 17 - - y 
Comb. 27 17±8 0.155 y 

Offset Valence GT 57 - - y 
Activity 70 - - n 
Comb. 57 - - n 

Identity GT 13 - - n 
Activity 13 - - y 
Comb. 13 - - y 

Stimulus Onset Valence GT 60 - - n 
Activity 67 - - n 
Comb. 63 - - y 

Identity GT 23 16±8 0.215 y 
Activity 17 - - y 
Comb. 30 16±7 0.069 y 

Offset Valence GT 70 - - n 
Activity 60 - - y 
Comb. 60 - - y/n 

Identity GT 20 - - y 
Activity 23 15±8 0.196 y 
Comb. 23 16±8 0.215 y 
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3.6 Materials and Methods 

3.6.1 Whole-brain calcium imaging  

All imaging experiments were performed on a previously published strain 

(ZIM1048 lite-1(ce314)X, msmIs4; Nichols et al., 2017). We trapped 30 young adults in a 

modified olfactory chip (Chronis et al., 2007) that orients animals similarly (Schrodel et 

al., 2013). Changes in GCaMP fluorescence were monitored using a Zeiss LSM 880 

Airyscan (1.27-1.62 volumes/second) while the animal’s nose experienced buffer or one 

of five stimuli (Diacetyl 10-4 %vol/vol, 10-6  %vol/vol  (Larsch et al., 2015; Hale et al., 2016),  

benzaldehyde 10-3  %vol/vol, 10-6  %vol/vol (Leinwand et al., 2015), isoamyl alcohol 10-5 

%vol/vol, 10-7 %vol/vol (Chalasani et al., 2007; Yoshida et al., 2012), 2-nonanone 10-2 

%vol/vol, 10-4 %vol/vol (Hale et al., 2016) and NaCl at an aversive 600mM 

(Chatzigeorgiou et al., 2013) and at an attractive 200mM (Wang et al., 2016) 

concentration). For each animal, we obtained a 21-minute recording with no stimulation 

(“Spontaneous”), a second 21-minute recording with M9 buffer changes (“Buffer”) and a 

third 21-minute recording with stimuli changes (“Stimulus”). Buffer and Stimulus sessions 

were interleaved for different animals except for those experiencing 2-nonanone, when 

Buffer always preceded Stimulus. The Stimulus or Buffer pattern was adapted from 

Albrecht and Bargmann (2011). 

 

3.6.2 Data processing  

We first deconvolved the pixels using built-in Airyscan processing tools. We then 

corrected for motion using NormCorre (https://github.com/flatironinstitute/NoRMCorre) 

and extracted the raw fluorescence traces using CaImAn 
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(https://github.com/flatironinstitute/CaImAn-MATLAB) (Pnevmatikakis et al., 2013; 

Pnevmatikakis et al., 2014; Friedrich and Paninski, 2016; Pnevmatikakis et al., 2016; 

Pnevmatikakis et al., 2017; Giovannucci et al., 2019). We used multiple iterations using 

grids of decreasing size to analyze high concentration NaCl “Stimulus” trials, which had 

larger motion artefacts compared to other stimuli. Importantly, the low concentration NaCl 

“Stimulus” trials did not require this extra preprocessing step. Nine of thirty “Spontaneous” 

sessions had too much movement to correct, and were not further analyzed. To 

accurately identify all neurons in the head of the animal, we set the cutoff K, for the 

number of components to look for, to 140 (this is higher than the number of neurons 

previously detected in this strain (Nichols et al., 2017)) allowing the CaImAn algorithm to 

detect many neurons with a high signal-to-noise ratio as recommended by (Giovannucci 

et al., 2019). Hence, neurons with no change in fluorescence were not detected. Finally, 

we used custom software to manually verify that regions of interest extracted by our 

analysis pipeline qualitatively matched the video, and to eliminate non-neuronal ROIs 

(e.g., gut granules).  

 

3.6.3 Measuring statistical features of neural activity  

Each neuron’s activity trace was normalized within a session by the max 

fluorescence value reached in that 21-minute imaging session. To highlight the change 

in neural activity properties after a stimulus switch, we normalized the value of the 

property to its value pre-switch. For example, for stimulus onset, we computed the feature 

in the first 30-seconds after stimulus onset and divided by the value of the feature in the 

30-seconds prior to stimulus onset. Thus, we report how much stimulus onset or offset 
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changed the value of the feature from its pre-switch baseline to reflect how the addition 

or removal of a stimulus affected neural activity.  

All analyses of the temporal dynamics of neural activity was performed using 

Fourier transforms. We used MATLAB’s periodogram to average the power of the four 

frequency bands used in our analyses (1st band: 0.07 – 0.2 Hz, 2nd band: 0.2 – 0.33 Hz, 

3rd band: 0.33 – 0.47 Hz, 4th band: 0.47 – 0.6 Hz). We used MATLAB’s spectrogram to 

determine the max, average, and standard deviation of the frequency with the most power 

in a 30-second bin, using 10-second long sliding windows with 50% overlap. Thus, our 

measures quantified how much a switch from buffer to stimulus or stimulus to buffer 

changed activity. 

 

3.6.4 Determining functional connectivity  

For each session, every neuron's activity was normalized by the peak value it 

reached in the entire 21-minute imaging session, bounding every neuron’s activity in the 

range [0,1]. Each session generated an n x T matrix, where n is the number of neurons 

and T is the length in time of imaging. Using this matrix, we generated two adjacency 

matrices, one for the pre-switch period and one for the post-switch period. Each of these 

periods lasted 30 seconds and resulted in 28 periods of activity (each session had 7 

pulses, 2 switches per pulse, and 2 pre- and post-switch periods per switch). We made 

two types of adjacency matrices for every block: one based on the absolute value of the 

Pearson's correlation (PC), and the other based on the normalized mutual information 

(NMI) with a 0.1 bin size. The former was calculated using MATLAB's built-in corr function. 

The latter was calculated per Strehl and Ghosh (2002) as: NMI(", $) =
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MI(",$)
&entropy(")×entropy($) , where entropy(A) is the entropy of the activity of neuron A, and 

MI(A,B) is the mutual information between the activity patterns of neurons A and B. While 

many variants of NMI exist (Kvålseth, 2017), the one we used has the desirable property 

of only reaching its maximum value when the distributions of states of two neurons are 

identical. If a neuron had an entropy of 0 because all its activity during the entire 30-

second period was localized to one histogram bin (e.g., 0-0.1), then its edges to all other 

neurons were set to 0, effectively decoupling the neuron from the network; this only 

occurred for 7.3%, or 8,930 out of 123,116 cells across all imaging sessions and worms. 

We reasoned that a neuron whose activity did not appreciably change in a 30-second 

time period is not likely to be involved in processing of that stimulus. Finally, all self-loops 

were removed by setting the diagonal of the adjacency matrix to 0. 

 

3.6.5 Graph-theoretic analysis  

Graph-theoretic features were calculated using the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010; Rubinov and Sporns, 2011) on the largest connected 

component of each network. For features that produced distributions, such as local 

efficiency, we report the mean value. The degree distribution, radius, diameter, largest 

eigenvalue, and average shortest path, were all normalized by the number of neurons in 

the largest connected component. We used the Louvain community detection algorithm 

to find modules (Blondel et al., 2008). 
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3.6.6 Machine learning classification  

The logistic regression classifier was built using one of three sets of features. The 

first set was composed of graph-theoretic features. The second set (called activity 

features) included the mean and standard deviation of neural activity. The third set of 

features combined the first and second sets. All graph-theoretic features used to classify 

stimulus valence and identity came from adjacency matrices constructed using NMI. A 

logistic regression classifier was trained on these three sets of features, and built using 

Python's scikit-learn library (Pedregosa et al., 2011), with default settings and using leave-

one-out cross-validation to test generalization error. Finally, to avoid over-fitting, we used 

permutation testing (Test 1 in Ojala and Garriga, 2010) in which we randomly permutated 

the labels of the classes 1000 times and compared each classifier’s performance to its 

own null distribution. We took the relative position of the classifier’s true accuracy (trained 

on non-permutated labels) in this permutation distribution to be its p-value (Ojala and 

Garriga, 2010; Combrisson and Jerbi, 2015). This was a critical test that ensured our 

results were not merely due to chance, which is a significant yet often unappreciated issue 

in machine learning applications because theoretical chance is defined for sample sizes 

that are infinitely large (Combrisson and Jerbi, 2015). 

 

3.6.7 Statistical analyses for mixed-effects models  

Our experiments consisted of multiple measurements from the same animal, 

grouped according to three ecologically-relevant aspects of chemical stimuli. This 

repeated-measures design is often modeled using a mixed-effects model because it 

accounts for: 1) fixed-effects owed to the ecologically-relevant condition (e.g., valence), 
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and 2) random-effects due to animal variability (e.g., some animals might naturally have 

a larger modularity). Thus, we can provide a mixed-effects model with a matrix that 

contains information on the time in seconds since the first pulse, graph-theoretic features 

assessed at that pulse, and an indicator variable denoting which stimulus property the 

animal experienced (e.g., attractant or repellent). A mixed-effects model that better 

explains the data using the class indicator than without it, tested using a likelihood-ratio 

test, indicates a significant contribution from the fixed-effect to the model fit. We used 

linear mixed-effects models when the data were qualitatively normally distributed, as 

tested with a quantile-quantile plot using MATLAB's qqplot, or a generalized linear-mixed 

effects model with a response distribution modeled as a gamma distribution otherwise.  

Chapter 3, in full, is a manuscript submitted for publication. Neural network 

features distinguish chemosensory stimuli in Caenorhabditis elegans. How, Javier J.; 

Navlakha, Saket; Chalasani, Sreekanth H, 2020. The dissertation author was the primary 

investigator and author of this paper. 
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4. Conclusions 

 Altogether, I have described organizational principles of the C. elegans nervous 

system’s structural and functional connectivity that may play a role in processing 

information about the environment. 

 I first studied the structural connectivity of the C. elegans nervous system, and of 

several other complex networks, in Chapter 2. I discovered that these networks all 

demonstrate a power-law relationship between the number of nodes in a module and the 

number of edges crossing between modules. This property, called Rentian scaling, was 

unique to information processing networks, and not found in other types of networks (e.g. 

social networks). Importantly, this property was evident when I used evolutionarily-defined 

‘functional’ modules, or groups of nodes with a similar function, which suggests that 

evolution converged on Rentian scaling for different types of biological networks, similar 

to how the human design process did for integrated circuits. This indicates that 

information processing networks negotiate a trade-off between the efficiency of 

information transfer and the cost of maintaining structural connections. The C. elegans 

nervous system, in particular, seems to prioritize computational power over cost by 

integrating information over functionally distinct neurons.  

 I next inferred and characterized the functional connectivity of the C. elegans 

‘brain’ in Chapter 3. I found that chemical stimuli elicit stimulus-specific patterns of activity 

on stimulus onset and offset, but that simpler features of population activity are not as 

consistently modulated. Additionally, these graph-theoretic features help classify which 

chemical an animal is experiencing. This suggests that graph theory may be a useful 

theoretical framework in the study of large-scale neural activity. For one, it does not 
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depend on the ability to consistently identify neurons across individuals, which is not likely 

to be tractable in other species with many more neurons. Furthermore, compared to 

dimensionality reduction techniques, I argue that graph theory, by focusing on cellular 

interactions, better captures biologically plausible mechanisms of information processing 

in neural networks. Finally, this approach revealed stimulus-specific neural network 

features that could be tested with targeted, cell-specific analyses to identify their biological 

underpinnings.  

4.1 Origins and interpretation of Rentian scaling 

 While I found that the molecular networks of several species and cell types exhibit 

Rentian scaling, it has only been tested in a few biological neural networks (Bassett et 

al., 2010). Because neural networks must also negotiate a trade-off between cost and 

efficiency, I propose that neural networks in other species are also likely to demonstrate 

Rentian scaling. Indeed, a recent study found that the central brain of adult Drosophila 

melanogaster is also Rentian (Scheffer et al., 2020). Modern efforts to determine the 

structural connectivity of the mouse and larval zebrafish brains will allow us to test for the 

generality of Rentian scaling in neural networks across the animal kingdom (Oh et al., 

2014; Hildebrand et al., 2017). 

 Because Rentian scaling is found in different types of networks, it is unclear which 

generative mechanisms can give rise to it, and how these mechanisms control the value 

of the Rent’s exponent. I posit that Rentian scaling is limited to resource-constrained 

networks, and is likely to emerge via distinct mechanisms. For instance, both protein-

protein interaction networks (PPIs) and the London Underground have limited resources 

and exhibit Rentian scaling. Nonetheless, the biologically-inspired generative mechanism 
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I proposed in Chapter 2 for PPIs is not likely to be relevant for the formation of the London 

Underground. On the other hand, three social and technological networks I studied, which 

do not necessarily incur costs in maintaining connections, were not Rentian. Arguably, 

the network of scientific collaborations I considered in Chapter 2 does process information 

and does incur costs, but is perhaps not optimized by a central coordinator, as in the case 

of electronic circuits which demonstrate Rentian scaling, or refined over millennia, as 

biological networks often are; hence, it would not be Rentian because it has not been 

fine-tuned. Future work should explain why some mechanisms, but not others, produce 

networks with Rentian scaling. It would also be interesting to understand if some 

mechanisms do not at first produce Rentian networks but, if refined over time, can lead 

to Rentian scaling (as in the case of the London Underground).  

Developmental programs seem to refine the precise value of the Rent’s exponent. 

I showed, in Chapter 2, that regulatory networks in embryonic stem cells have a smaller 

Rent’s exponent than differentiated cell lines. Therefore, I hypothesize that mature 

networks will typically have larger Rent’s exponent than their undeveloped counterparts. 

To test this, one could measure the Rent’s exponent of the C. elegans nervous system in 

different larval stages, and contrast these with the exponent measured for a young adult 

in Chapter 2. Additionally, one could compute the Rent’s exponent of human children, 

teens, and adults, and see how this trade-off between cost and efficiency is renegotiated 

across time. It is important to note that the numbers of neurons and synapses changes 

over time in nervous systems (Urbán and Guillemot, 2014; Navlakha et al., 2015). Hence, 

I propose that, like regulatory networks, these added edges will be preferably laid 
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between functional modules, thereby increasing the Rent’s exponent across 

developmental time.  

A network’s Rent’s exponent describes a trade-off between the cost of wiring and 

efficiency of information transmission and integration in a network. Hence, a network with 

a larger Rent’s exponent should be more computationally powerful. One way to test this 

hypothesis would be to measure the Rent’s exponents of structural or functional brain 

networks of several human individuals, and correlate their Rent’s exponent with 

conventional intelligence measurements; an important caveat is that intelligence is 

difficult to assess. One may also expect that Rent’s exponents are sensitive to diseased 

states, which could provide new insight into the physiological processes that go awry. For 

instance, a lower Rent’s exponent in some disease, compared to healthy individuals, may 

suggest that long-range, intermodule connections are disproportionally lesioned, thereby 

impairing the ability of the nervous system to integrate information across the brain. 

Altogether, these studies would clarify the functional significance of the precise value of 

the Rent’s exponent. 

 

4.2 Towards a neural graph theory 

Graph theory has helped characterize the local and global organization of diverse 

social, informational, technological, and biological networks (Newman, 2010). It has 

allowed scientists to find striking similarities, and dissimilarities, between many natural 

and artificial networks, suggesting that there may be fundamental design constraints and 

organizational principles shared by certain types of systems. On the other hand, these 

properties may simply be evolutionary spandrels, or byproducts, of other design principles 
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shared by all of these networks (Rubinov, 2016). Furthermore, while some graph-

theoretic properties are believed to play certain roles in the transmission of information 

throughout a network, their applicability to real neural networks is currently unclear. For 

instance, the characteristic path length is the average of the shortest paths linking any 

two neurons; hence, the lower this value, the more easily any two neurons are believed 

to communicate. A low characteristic path length implies that the network efficiently 

transmits information, and is a hallmark of small-world networks. Nevertheless, there is 

no reason to believe that two neurons will, need, or should communicate via the shortest 

path that links them. Moreover, it is unclear how individual neurons would even discover 

the shortest path in the absence of some central coordinator with knowledge of the entire 

brain’s topology (Sporns, 2018). Graph theory should incorporate domain-specific 

knowledge to become a more powerful framework for the study of real neural networks.  

There are many aspects of neural network function that would help us develop a 

more neuroscience-oriented graph theory. Future work should focus on the role of non-

neuronal cells (Mu et al., 2019), build data-constrained network models (Naumann et al., 

2016; Williamson et al., 2019), study the temporal evolution of neuronal interactions and 

coordination of different forms of neuronal communication (e.g. chemical, electrical, 

neuromodulatory, excitatory, inhibitory) using multilayer and multiplex networks (see 

reviews by Kivela et al., 2014, and Aleta and Moreno, 2019), develop theories to relate 

network structure and function (see review by Curto and Morrison, 2019), potentially by 

studying control theory (Liu et al., 2011; Gu et al., 2015; Yan et al., 2017), and finally 

relate all of these in behaving animals (Venkatachalam et al., 2016; Nguyen et al., 2016; 

Nguyen et al., 2017; Scholz et al., 2018; Kim et al., 2017; Cong et al., 2017; Symvoulidis 
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et al., 2017). In the end, these efforts would help us model the biological instantiation of 

computational algorithms in the brains of animals, and mechanistically understand how 

cells in the brain produce complex, perhaps even cognitive, behaviors. We could then 

predict how an animal will respond to an arbitrary stimulus – from activity in the sensory 

periphery to behavior. The ability to describe and predict how neural activity gives rise to 

behavior would constitute a thorough understanding of the brain. 

Non-neuronal cells, such as astrocytes, are known to influence neuronal 

communication and network function (see review by Allen, 2014). Hermaphroditic C. 

elegans have 56 glia, some of which are astrocyte-like, which seem to interact with 

neurons in an evolutionarily-conserved manner (see review by Singhvi and Shaham, 

2019), and the failure to record their activity and interactions with neurons provides an 

incomplete picture of the relevant elements in neural networks. Therefore, it will be 

important to simultaneously record from both neurons and glia, as has been recently done 

in larval zebrafish (Mu et al., 2019). The incorporation of different node types, such as 

neurons and glial cells, into our graph-theoretic framework may require the development 

of bipartite graphs, or two graphs of different types of nodes (e.g. neurons and astrocytes), 

where there is a connection between pairs of nodes in different graphs if they interact 

(e.g. neurons in one graph are connected to astrocytes in the other graph that regulate 

their input or output). Projecting these graphs onto a single graph might describe neurons 

that are connected if they are regulated by the same astrocytes, or astrocytes that are 

connected if they regulate the same neurons (Newman, 2010), and thus reveal 

organizational patterns from two perspectives. 
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Data-constrained circuit models have been used to predict how functionally distinct 

neurons may be connected to produce behavior, yet may yield multiple topologies that 

can quantitatively recapitulate observed neural activity and animal behavior (e.g. 

Naumann et al., 2016). This ambiguity may be partly due to the use of fairly simple stimuli 

and behavioral outputs to study a high-dimensional system (i.e. the nervous system of 

any organism; Gao and Ganguli, 2015). One approach to address this problem may be 

to use artificial neural networks to drive network activity to unexplored states, which could 

be assessed using dimensionality reduction techniques (e.g. Bashivan et al., 2019). 

Alternatively, natural stimuli may drive the nervous system to exist in ecologically-relevant 

states, which should provide a clearer idea of how the nervous system was evolutionarily 

‘meant’ to function, as opposed to how it ‘could’ function by using artificial stimuli (Jazayeri 

and Afraz, 2017; Krakauer et al., 2017). In any case, a data-constrained network model 

could mechanistically relate ongoing neuronal dynamics and structural connectivity to 

network activity. 

The highly recurrent nature of the brain ensures that feedback circuitry is important 

to animal behavior. Neuropeptide feedback in C. elegans, for instance, regulates turning 

during olfactory behaviors (Chalasani et al., 2010) and salt chemotaxis learning (Tomioka 

et al., 2006). Neurons can, at the very least, communicate via neurotransmitters, 

neuropeptides, neuromodulators, and gap junctions, and these forms of communication 

can affect neurons over different timescales. Multilayer and multiplex networks can model 

these types of interactions to extract novel insight (see reviews by Kivela et al., 2014, 

Aleta and Moreno, 2019), but are still fairly immature. Furthermore, current GCaMP 

indicators and microscopes may be too slow to precisely model how interactions between 
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neurons change across time. Hence, future efforts should focus on developing fluorescent 

neurotransmitter-specific and voltage indicators (reviewed by Lin and Schnitzer, 2016), 

and microscopes with faster acquisition rates (reviewed by Weisenburger and Vaziri, 

2018). 

The notion that ‘form follows function’ dictates that the structure of some object is 

due, at least partly, to its function. While some have found that even a small network’s 

topology does not accurately predict its function (e.g. Guet et al., 2002), others have noted 

that there is a substantial correspondence between structural and functional connectivity 

(e.g. van den Heuvel et al., 2009a; see review by Honey et al., 2010). Consistently, some 

groups have found that control theory can be used to predict how to drive networks to 

desired states by modulating selected nodes (see reviews by Liu and Barabási, 2016; 

Lynn and Bassett, 2019), and have used it to predict novel locomotory roles for neurons 

in C. elegans (Yan et al., 2017). In any case, a theory that makes predictions about how 

structure will impact function must be experimentally tested. For instance, if a theory 

proposes that connections between certain neurons would lead to aberrant 

synchronization across the nervous system and, perhaps, epileptic symptoms, then 

experimentally adding these connections would be a strong test (Hawk and Colón-

Ramos, 2020). If our graph-theoretic analysis suggests that certain neurons are on the 

shortest paths between many neurons, and thus are central to the network (i.e. have high 

betweenness centrality), then optogenetically modulating their activity could help us test 

if neurons really need to communicate via the shortest path. By simultaneously measuring 

behavior, quantified using recent advances in computer vision (reviewed by Datta et al., 
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2019), we will be able to understand how large-scale nervous system structure and 

function give rise to behavior. 

Finally, there are fundamental limitations in using C. elegans as a model organism. 

For one, the functional roles of its neurons are not clearly delineated; for instance, some 

sensory neurons are involved in multiple sensory modalities (e.g., Kuhara et al., 2008; 

Biron et al., 2008; Leinwand and Chalasani, 2013), whereas those in other, commonly-

studied species in neuroscience can be functionally limited. Moreover, neurons in C. 

elegans typically do not have an all-or-nothing action potential like those seen in other 

species; rather, they mostly use graded or plateau potentials (Mellem et al., 2008; Liu et 

al., 2018). Finally, its 302-neuron nervous system in orders of magnitude smaller than 

that of many other commonly studied model organisms, and its behavioral repertoire may 

also be relatively limited (Stephens et al., 2008). As a result, it is unclear if and how much 

the results described in Chapter 3 extend to other model organisms, but future efforts 

should assess the generality of our approach. Studying whole-brain activity in larval 

zebrafish, with ~100,000 neurons that use action potentials, would be a natural extension 

to this work (Ahrens et al., 2012). 

In the end, interactions-based mechanistic approaches, alongside many others, 

will need to be integrated to answer how purely physical processes give rise to emergent 

phenomena, such as cognition. If one proceeds from the premise that ongoing activity in 

the nervous system, not the mere polarizations one observes in single neurons, but the 

large-scale patterns of activity and interactions between all relevant cells (e.g. neurons, 

interneurons, glia), is the physical and observable substrate of fairly abstract, and perhaps 

ill-defined, cognitive phenomena, then these aforementioned questions partly answer 
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why some, but not other, patterns of activity emerge, and how they contribute to cognition 

and behavior. It will be crucial to relate these mechanisms to behavior, measured in tasks 

designed to pinpoint subtle aspects of cognition (Bayne et al., 2019), which may be more 

feasible in species other than C. elegans. 
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