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Abstract

Optical quantum emitters are a key component of quantum devices for metrology and information

processing. In particular, atomic defects in 2D materials can operate as optical quantum emitters

that overcome current limitations of conventional bulk emitters, such as yielding a high single-

photon generation rate and offering surface accessibility for excitation and photon extraction.

Here we demonstrate electrically stimulated photon emission from individual point defects in a 2D

material. Specifically, by bringing a metallic tip into close proximity to a discrete defect state in the

band gap of WS2, we induce inelastic tip-to-defect electron tunneling with an excess of transition

energy carried by the emitted photons. We gain atomic spatial control over the emission through

the position of the tip, while the spectral characteristics are highly customizable by varying the

applied tip-sample voltage. Atomically resolved emission maps of individual sulfur vacancies and

chromium substituent defects are in excellent agreement with the electron density of their respective

defect orbitals as imaged via conventional elastic scanning tunneling microscopy. Inelastic charge-

carrier injection into localized defect states of 2D materials thus provides a powerful platform for

electrically driven, broadly tunable, atomic-scale single-photon sources.
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Solid-state quantum emitters are promising building blocks for quantum technologies

such as high-precision sensing and secure communications [1]. In particular, atom-like emit-

ters embedded in a host crystal (e.g., color centers in diamond [2, 3] and silicon carbide

(SiC) [4]) combine several appealing properties; namely, spin-selective optical transitions [2],

room temperature stability [5], exceptionally long coherence times [5], and potential for scal-

ability [6]. However, the quest for the ideal on-demand single-photon emitter is still ongoing

to address several materials science and engineering challenges. This includes controlling the

mesoscopic environment to avert variability between emitters; identifying and eliminating

decoherence channels; achieving precision spatial placement; and developing high-fidelity,

scalable pumping schemes that are amenable to on-chip integration, such as electrically

driven optical emission [1].

Two-dimensional (2D) materials offer several key advantages over their bulk counterparts

as a platform for quantum photonics [1, 7], such as synthetic flexibility [8], higher photon ex-

traction efficiency [1], and tunability through external fields and choice of substrate [9]. They

also provide better control of emitter placement [10] and integration with photonic [11, 12]

and plasmonic [13] nanocavities. In particular, semiconducting transition metal dichalco-

genides (TMDs) feature unique valleytronic [14] and magneto-optical effects [15] with great

potential for customizing the photon emission. Recently, single-photon emitters have been

reported in hBN [16], WSe2 [17–21], and MoSe2 [22], while electrically driven quantum light

emitting diodes (QLEDs) have been demonstrated with WSe2 as the optically active layer in

a vertical tunneling junction [23, 24]. However, the identification of the actual atomic origin

of the emission (i.e., which defect drives what specific emission) still remains unresolved,

thus precluding the desirable control over atomic-scale placement, electrical injection, and

ultimately, the resulting photon generation.

Here, we demonstrate electrically stimulated photon emission from individual atomic

emitters in a 2D material. Specifically, we observe single-defect luminescence in monolayer

WS2 driven by electron tunneling from a metallic tip with precise atomic control over the

source of the emission (Fig. 1A). Electrons injected from the continuum of metallic tip

states into discrete defect states of the 2D material generate broad optical emission spectra,

with associated photon energies corresponding to the difference between initial (tip) and
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final (defect) electron energies in the tunneling process (Fig. 1B). The metal tip acts as a

plasmonic cavity that assists the coupling between the inelastic tunneling current and the

emitted light far-field. This allows us to control the emission spectrum through the applied

tip-sample bias voltage, while spatial control is enabled by the proportionality between the

emission rate and the electron density in the defect orbital right under the tip position.

We draw these conclusions by studying deliberately introduced sulfur vacancies and native

chromium substituent defects in monolayer WS2, for which we present spatial maps of the

photon emission rate as a function of tip position, revealing the defect orbitals with ultimate

atomic resolution on par with that obtained using conventional elastic scanning tunneling

microscopy.

We use the Au-coated tip of a scanning tunneling microscope (STM) to inject charge

carriers and mediate the coupling between optical near- and far-fields via tip plasmon modes.

This is the so-called STM luminescence [25] (STML), which has been successful in studying

metallic surfaces [26] and molecular systems [27], beating the light diffraction limit by more

than two orders of magnitude due to the extreme localization of initial and final electron

states in the tunneling process. In this context, electrofluorescence from single molecules

has been recently established through self-decoupling [28] or by introducing ultrathin in-

sulating layers [29–31] between the molecule and a noble metal substrate. Additionally,

STML has enabled vibronic spectroscopy with submolecular resolution [31, 32], imaging

molecular orbitals through photon emission maps [33, 34], studying charge and exciton

dynamics [28, 35, 36], and initiating spin-selective optical transitions [37]. STML on ITO-

supported MoSe2 has also been reported and attributed to radiative decay of the A exciton

in this material [38].

Plasmonic noble metal substrates, which are commonly employed in STML, are not

a viable option to investigate TMDs because strong hybridization quenches the intrinsic

optical emission [39]. Instead, we use epitaxial graphene grown on silicon carbide (SiC) as

a substrate, which has been shown to preserve the native TMD band structure [40, 41].

While electroluminescence from graphene has been previously observed [42], we find con-

clusive evidence to assign the optical emission in our TMD/graphene heterostructure to the

electronic states of the TMD alone.

3



We prepare our samples by growing monolayer WS2 islands on epitaxial graphene on SiC

using chemical vapor deposition [41]. The as-grown sample contains several substitutional

atomic defects, such as chromium (CrW) and molybdenum (MoW) replacing tungsten, as

well as oxygen substituting sulfur (OS) [43, 44]. Then, we selectively generate sulfur va-

cancies (VacS) by high temperature annealing in vacuum [45]. Both CrW and VacS defects

exhibit unoccupied electronic states placed a few hundred millielectronvolts below the WS2

conduction band edge [43, 45] (Fig. 2B). These gap defect states give rise to pronounced

resonances in the differential conductance (dI/dV ) spectra measured in scanning tunneling

spectroscopy (STS), which roughly yields the local density of electron state (LDOS), as

shown in Fig. 2E. Their characteristic electronic spectrum results from a combination of

crystal-field splitting, spin-orbit coupling, and electron-phonon interaction [43].

At tunneling voltages exceeding 1.5 V, we observe electron-induced photon emission on

the CrW and VacS defects, as well as on defect-free WS2 locations. The emission rate

strongly depends on the applied bias and position (e.g., on or off a defect, as well as dif-

ferent regions within the defect) where STML spectra are acquired at constant current, as

shown in Fig. 2F. Importantly, we find a clear correlation between the bias onset for photon

emission and the energy of the lowest unoccupied states observed in dI/dV . In particular,

the difference between the bias onset of VacS (2.2 V) and CrW (2.4 V) is 0.2 V, which agrees

with the energy difference of their respective defect states. Similarly, we observe STML at

negative bias polarities (hole injection), for which the emission onset scales with the energy

of the highest occupied state (see Fig. S7). The emission scales linearly with the current,

thus suggesting a single-electron process.

The extremely localized excitation by tunneling electron injection allows us to record

atomically resolved photon maps. In Fig. 3A we show the spectrally integrated photon

emission as a function of lateral tip position over a single sulfur vacancy. The subnanometer-

resolved photon maps acquired at high biases closely resemble the STM image of the in-gap

defect orbital. The emission does not correlate with the simultaneously acquired STM

topography at high bias (Fig. 3C), therefore excluding any significant effect of the slightly

varying gap distance on the spatial variation of the emission. Laterally, the defect emission
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is closely confined within ∼1 nm, concurrent with the electronic orbital dimensions (see

Fig. 3B).

The close resemblance between STM and STML maps is further supported by theory.

Indeed, photon emission in STML is mediated by the transition dipole p associated with

the tunneling electron, acting as a radiation source [46] and giving rise to an emission yield

∝ |p|2, which is in turn proportional to the elastic tunneling current measured in STM (see

details in the Supplemental Information, SI). This current alone bears a dependence on the

sampled final state, and therefore, both elastic and inelastic tunneling rates are proportional

to the electron density of states at the tip position, given by the defect orbital density |ψf|2.
Similar to the enhanced emission rate of an excited atom in a resonant cavity defined by

the Purcell factor P (ω) [47], the spectrally resolved STML rate is directly proportional to

P (ω), which for metallic tips is dominated by light-plasmon coupling and can be observed

through optical spectroscopy.

Spectrally resolved STML measurements on the sulfur vacancy defect shown in Fig. 4

reveal a broadband photon emission. The optical emission band is centered around 1.9 eV,

in good agreement with the expected plasmon frequency range of our Au tip (i.e., where

the Purcell enhancement P (ω) is maximum, see SI). We can identify two distinct regions

in the plot of the emission intensity as a function of photon energy and tunneling bias

(Fig. 4B): the high-bias, low-photon-energy corner (top left) is associated with substrate

emission from WS2 (i.e., tunneling to substrate states), while the distinct emission band at

lower bias is associated exclusively with the defect. For VacS two emission steps (marked

by white arrows in Fig. 4B) are observed, which follow a linear relation between applied

bias and photon energy. Each of these steps corresponds to the opening of a new radiative

decay channel, which we attribute to a transition from tip states at or below its Fermi level

into the two unoccupied sulfur vacancy states. Emission of a single photon associated with

a single-electron transition is the dominant lowest-order radiative process. Accordingly, the

highest allowed photon energy is given by the difference between the tip Fermi energy and

the defect state energy.

For our Au coated tungsten tips, we detect ∼ 10−7 far-field photons per electron. Ac-
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counting for all setup related losses, the intrinsic quantum efficiency of the radiative tunnel-

ing process is estimated as Y ∼ 10−4 photons per electron. It is interesting to compare this

number with the analytical result (see SI) Y ∼ (3πα/2)(d/λ)2(∆ω/ω)P (ω), where ω, λ, and

∆ω are the photon frequency, wavelength, and bandwidth, d is the tip-sample distance, and

α ≈ 1/137 is the fine-structure constant. The Purcell factor P , which scales linearly with

the density of available optical states dominated by plasmon modes in the tip cavity [48], can

be estimated by invoking electromagnetic reciprocity, asserting that the emission intensity

is strictly proportional to the enhancement in the near-field intensity under external illumi-

nation at the position of the emitting dipole. The latter depends on the precise tip-sample

morphology but is rather insensitive to the lateral position of the tip in the nonmetallic SiC

substrate under consideration and reaches plasmon-enhanced values of P ∼ 104 (see SI).

Using parameters corresponding to our experimental conditions, we then predict a photon

yield per tunneled electron Y ∼ 10−4, in good agreement with the experimental estimate.

Ultimately, the photon generation rate is limited by Coulomb blockade, which prevents

tunneling of subsequent electrons into the defect state before the previous electron drains to

the graphene substrate. The emission is thus intrinsically consisting of single photons. From

the linewidth of the vacancy state, we estimate the transient charging time of the defect to

be <100 fs, hence indicating that a 109 Hz single-photon generation rate should be attain-

able. This number may be easily increased using optimized plasmonic or optical cavities to

increase the Purcell factor and drive the emission along a desired channel (e.g., a waveguide).

In conclusion, we demonstrate electron-stimulated photon emission from individual,

atomically-defined defects in a 2D semiconductor. Atomically resolved luminescence maps

from deliberately introduced sulfur vacancy defects and native chromium substituents reveal

that the in-gap defect orbitals are the final states of the optical transition. Electrons that

tunnel inelastically from a continuum of tip states into discrete defect states can convey

their excess transition energy into plasmonic excitations in the tip nanocavity, mediating

their coupling to propagating photons. The widely tunable optical emission generated by

charge carrier injection into localized defect states in a 2D material is a powerful platform for

electrically driven single-photon emission. The single-defect / single-electron / single-photon

regime allows us to avoid averaging and environmental decoherence effects. Monochromatic

electron injection, for instance using a superconducting electrode and charge state control
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of the defect by gating, could eventually enable on-demand spin-polarized single-photon

emission in a solid-state tunneling device.
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bias V = 1.1 V) of VacS top (C) and CrW (D). (E) We probe the local density of electron states
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integrated photon emission induced by inelastic electron tunneling at constant current I = 10 nA.

Measurements in E and F were recorded at the same defect sites and with the same tip.
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Abstract
In this document we derive an analytical expression for the photon emission probability associated

with inelastic tunneling in STM and a simple estimate of its ratio relative to the elastic current. We further

provide details on sample growth and preparation, as well as the STM luminescence dependence on the

type of WS2 defect, bias polarity, tunneling current, and tip variability.
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THEORETICAL MODELLING

An expression for the electron intensity associated with elastic tunneling was �rst obtained

by Bardeen [1] in terms of the quantum current evaluated in the gap region between two conduc-
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tors, and later specialized to the tip-near-a-surface geometry that characterized STM experiments

[2]. Inelastic tunneling assisted by light emission was eventually observed in the tip-substrate

con�guration [3, 4], motivating further theoretical developments needed to model light emission

in STM [5–8]. Further experiments demonstrated the crucial role of plasmons in nanostructured

metal samples [9, 10], causing a dramatic dependence on the detailed tip-sample morphology,

which is generally unknown.

Previous observations of light emission by electron tunneling in heterostructures [11] and

their many-body theoretical analysis [12] had already indicated that the photon emission yield

was only a small fraction of the tunneling current (< 10−3), so it could be described within

�rst-order perturbation theory, in a way analogous to its elastic counterpart [1]. To �rst-order,

light emission in STM involves one quantum of excitation present in the system at any given

time (i.e., the electron transition from the initial to the �nal state, which can possibly couple

to an intermediate excitation in the medium such as a plasmon, followed by subsequent decay

into an emitted photon). Under these conditions, a full quantum treatment of both the radiation

and the generally lossy tip-sample system is fully equivalent to a semi-classical formulation in

which the initial and �nal electronic states (assuming a one-electron picture with wave functions

ψi(r) and ψf(r), and energies ~εi and ~εf , respectively) de�ne an inelastic tunneling current

j(r, t) = j(r)e−iωt + j∗(r)eiωt with

j(r) =
−ie~
2me

[ψi(r)∇ψ∗f (r)− ψ∗f (r)∇ψi(r)] , (S1)

which we can treat as a classical source at the transition frequency ω = εi − εf [3]. We only

need to describe e−iωt components and then use causality to obtain the full time dependence by

taking twice the real part of the calculated complex �eld amplitudes. Dropping the overall e−iωt

factor for simplicity, we can write the electric �eld produced by the above current in terms of the

electromagnetic 3× 3 Green tensor G(r, r′, ω) as

E(r) =
i

ω

∫
d3r′ G(r, r′, ω) · j(r′). (S2)

We further assume a local dielectric description of the system, which allows us to characterize

it through a permittivity ε(r, ω) given by the frequency-dependent permittivity of the material

present at each position r (e.g., ε = 1 in vacuum). The Green tensor then satis�es the relation
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[13]

∇×∇× G(r, r′, ω)− k2ε(r, ω)G(r, r′, ω)

= 4πk2δ(r− r′)I3,

where k = ω/c is the free-space light wave vector and I3 is the 3× 3 unit matrix.

As an illustration of the generality of this formalism, its application to transitions between

the states of a fast electron in the beam of a transmission electron microscope readily leads to a

widely used expression for the electron energy-loss probability [14]. This approach is also useful

to study the decay of excited atoms in the presence of arbitrarily shaped structures [15], where

the small size of the associated current distribution j compared with the light wavelength allows

us to condense it into a transition dipole. For STM-induced photon emission, such transition-

dipole approach also constitutes a reasonable approximation [5].

Emission and decay from a dipole

In the study of both atomic decay and STM-induced light emission we can generally exploit

the fact that the extension of the involved electronic states is small compared with the light

wavelength, thus reducing Eq. (S2) to

E(r) ≈ G(r, r0, ω) · p, (S3)

where

p =
i

ω

∫
d3r j(r) =

−e~
meω

∫
d3rψ∗f (r)∇ψi(r) (S4)

is the transition dipole moment (the rightmost expression results from inserting Eq. (S1) into the

integral and integrating one of the terms by parts) and r0 denotes to the position of the dipole

(e.g., the atom position). Incidentally, when the initial and �nal electron states are solutions

of the Schrödinger equation with the same potential, the above expression for the transition

dipole reduces to p = −e
∫
d3rψ∗f (r)ψi(r) r, although this expression might not be applicable in

STM, where the two states can even have di�erent e�ective masses. In particular, for an excited

atom in vacuum (i.e., taking G(r, r0, ω) = G0(r, r0, ω) = (k2I3 +∇⊗∇)eik|r−r
′|/|r − r′|) [13],

calculating the emitted power from the integral of the outgoing Poynting vector over a distant
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sphere centered at the atom, and dividing the result by the photon energy ~ω, we readily �nd

the photon emission rate (i.e., the atom decay rate, since there are no other decay mechanisms

in this con�guration) to be Γ0 = 4k3|p|2/3~, which agrees with the expression obtained from a

more tedious procedure involving the quantization of the electromagnetic �eld [16].

The present formalism has also been extensively used to rigorously obtain the decay and

emission rates of excited atoms near surfaces and nanostructures [15, 17]. For example, for r and

r′ near a planar surface, we can separate G = G0 + Gref as the sum of a free-space component G0
and a surface-re�ection contribution Gref , both of which admit analytical expressions in terms

of plane waves by introducing re�ection at the surface through the Fresnel coe�cients rp and rs
for p and s polarization. More precisely, using the identity

eik|r−r
′|

|r− r′| =
i

2π

∫
d2Q

kz
eiQ·(R−R

′)+ikz |z−z′|, (S5)

where R = (x, y) and kz =
√
k2 −Q2 + i0+ with Im{kz} > 0, operating with k2I3 +∇ ⊗∇

on the exponentials inside the integrand, and projecting onto the dyadic identity I3 = ê±p ⊗
ê±p + ês ⊗ ês + k̂± ⊗ k̂± de�ned in terms of polarization and propagation unit vectors ê±p =

(±kzQ−Q2ẑ)/Qk, ês = (−Qyx̂+Qxŷ)/Q, and k̂±p = (Q±kzẑ)/k with Q = (Qx, Qy), we �nd

G0(r, r′, ω) = (ik2/2π)
∫
d2Q

(
1/kz

)
eiQ·(R−R

′)+ikz |z−z′|
(
ê±p ⊗ ê±p + ês⊗ ês

)
, where upper (lower)

signs must be used for z > z′ (z < z′); likewise, taking z, z′ > 0 and the surface at z = 0, the

re�ection component becomes Gref(r, r′, ω) = (ik2/2π)
∫
d2Q

(
1/kz

)
eiQ·(R−R

′)+ikz(z+z′)
(
rpê

+
p ⊗

ê−p + rsês ⊗ ês
)
, where downward waves emanating from z′ are converted into upward waves

reaching z upon re�ection at the surface. Introducing these expressions into Eq. (S3) and taking

the atom to be placed at a distance z0 above the surface (i.e., r′ = (0, 0, z0)), we obtain the �eld

E(r, ω) = (i/2π)
∫
d2Q

(
1/kz

)
eiQ·(R−R

′)+ikzzf(Q) for z > 0, where f(Q) = k2
[
ê+p (e−iϕ0 ê+p ·

p + eiϕ0rpê
−
p · p) + ês(e

−iϕ0 + eiϕ0rs)(ês · p)
]

with ϕ0 = kzz0. In the far-�eld limit (kr �
1), this expression yields E(r, ω) → f(kR/r) ekr/r, which allows us to evaluate the emitted

power as the integral of the radial component of the Poynting vector over a distant upward

hemisphere, (c/2π)
∫
z>0

dΩr|f(kR/r)|2, from which the photon emission rate Γem is obtained
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by again dividing the result by ~ω. Finally, we �nd

Γem =
k3

~

∫ 1

0

dµ

[
(1− µ2)

∣∣1 + e2iµkz0rp
∣∣2 |pz|2 (S6)

+
1

2

(∣∣1 + e2iµkz0rs
∣∣2 + µ2

∣∣1− e2iµkz0rp
∣∣2
)

× (|px|2 + |py|2)
]
.

In the absence of a surface (rp = rs = 0), the above expression reassuringly yields Γ0/2, in-

dicating that half of the decay rate in free space is accounted for by upward photon emission

(and the other half by downward emission). In the presence of the surface, the decay rate takes a

more complicated form (obtained for example by integrating the outgoing Poynting vector over

a small sphere surrounding the dipole), expressed in terms of the �eld induced at the position of

the dipole as [15] Γdecay = Γ0 + (2/~)Im{p∗ · Gref(r0, r0, ω) · p}; for our dipole near a planar

surface, this leads to the expression

Γdecay =Γ0 +
1

~

∫ ∞

0

QdQRe

{
exp(2ikzz0)

kz
(S7)

×
[
2Q2rp|pz|2 + (k2rs − k2zrp)(|px|2 + |py|2)

]}
.

The Q > k part of this integral involves evanescent waves (i.e., an imaginary normal light wave

vector kz) that contribute to the decay through absorption (proportional to Im{rp} and Im{rs}),
for example via the emission of plasmons [18]; the Q < k part is a combination of absorption

and photon emission.

Emission and decay from a dipole near a planar surface

We �rst illustrate the application of Eq. (S6) to study the emission from a dipole on a planar

surface in the absence of a tip. We consider an out-of-plane dipole, which will later be iden-

ti�ed with the tip-sample current, as we argue above. Figure S1A shows the resulting spectra

for di�erent materials. A �rst observation is that the emission grows with photon energy, as

expected from the k3 coe�cient in front of the integral in Eq. (S6); in physical terms, the dipole

appears to be bigger in front of the photon wavelength as the energy increases, therefore un-

dergoing better coupling to radiation. A second observation is that the emission is similar in

magnitude in all cases, and in particular, the results for SiC are nearly indistinguishable when

the material supports monolayers of graphene and WS2. A third observation is that the emission

6



Photon energy (eV)

co
sq

Au

Ag

SiC

C

emitting
dipole

q
emitted
photon

substrate

A

z0

z0=0
z0=5 nm

B

Photon energy (eV)Photon energy (eV)

U
pw

ar
d 

em
is

si
on

 ra
te

 (a
rb

. u
ni

ts
)

N
or

m
al

iz
ed

 e
m

is
si

on
 a

nd
 d

ec
ay

 ra
te

s

decay Gdecay/G0

upward emission Gem/G0

Figure S1. Light emission from an out-of-plane dipole near a planar surface. (A) Spectral depen-

dence of the angle-integrated upward emission rate from a dipole oriented along the normal of Ag, Au, and

SiC surfaces. We consider two di�erent dipole-surface distances (see labels). The emission is normalized

by the dipole strength |p|2. (B) Decay and upward emission rates normalized to the emission rate in free

space for a dipole separated 2 nm from the surfaces considered in (A). (C) Angle and energy dependence of

the upward emission for zero dipole-surface distance. We further consider SiC covered with a monolayer

of graphene or with graphene an a monolayer of WS2, which produce very similar results compared with

the bare SiC surface (nearly indistinguishable curves).

rate is almost unchanged when the dipole is separated by 5 nm from the surface (note that the

results are normalized to the dipole strength |p|2), as this distance is much smaller than the light

wavelength in the spectral range under consideration.

The emission rate is only a part of the decay rate, as the latter also receives contributions

from absorption by the material [see Eq. (S7)]. At zero separation, the decay rate diverges as

a result of the unphysical 1/r Coulomb interaction at small distances in the local response ap-

proximation used here to describe the materials (i.e., we use frequency-dependence dielectric

functions). This divergence is however removed when incorporating spatial dispersion in the

response, which is in general an e�ect that becomes important only at small separations below

1 nm [19], so, for simplicity, we ignore it in this discussion. In Fig. S1B, we plot the upward emis-

sion and decay rates when the dipole is 2 nm above the surface, both of them normalized to the

emission rate in vacuum Γ0. The normalized emission rate near the material takes unity-order

values, and therefore, we conclude that the presence of the surface does not signi�cantly a�ect

the emission relative to free space, as we had already anticipated by the close resemblance of the
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results obtained for di�erent materials in Fig. S1A. At low frequencies, gold and silver produce

good screening (perfect-conductor limit), thus doubling the magnitude of the dipole (through its

image contribution) and increasing the upward emission by a factor of 4 relative to free space.

In contrast, the decay rate becomes 2-4 orders of magnitude larger than in free space, with silver

giving the lowest values among the materials under consideration because of the relatively low

losses in this noble metal. Again, the decay rate in SiC does not change signi�cantly (in log

scale) when decorating it with monolayers of graphene or WS2. The decay is thus dominated

by non-radiative contributions [parallel wave vector Q > k in Eq. (S7)]. Although this is an

inelastic contribution, it should result in a dark tunneling current, which is still smaller than

the elastic tunneling rate (see below). The radiationless absorption accompanying this process

should additionally produce local heating, which raises the interesting question of whether it

can be detected through its bolometric e�ect, or perhaps via direct charge-carrier separation.

The angular dependence of the emission (Fig. S1C) does not depart signi�cantly from the

cos2 θ distribution in free space as a function of emission angle relative to the dipole orientation.

This dependence should also change when a tip is present, although the bulk of the emission is

directed sideways, and therefore, the e�ect of the tip should not be dramatic.

Photon emission induced by tunneling into a defect in a 2D material

We now address the question of what is actually measured by recording maps of light emis-

sion in a STM while scanning a defect in a 2D material. We adopt the dipole approximation [Eqs.

(S3) and (S4)] and consider a spherical evanescent electron wave ψi(r) = Ce−κi|r−ri|/|r − ri|
emanating from the tip [2] (centered at ri, see Fig. S2), although the conclusions drawn below do

not depend on the exact details of the initial wave function, but rather on its atomic-scale origin.

Here, C is a normalization constant that depends on the detailed atomic shape and composition

of the tip, while κi gives the evanescent spill out of the initial state outside the tip, which is

determined by its binding energy relative the the vacuum threshold (see below). From the rep-

resentation of this type of wave given by Eq. (S5) combined with Eq. (S4), we �nd a transition
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       f (r)

ri ℏω

p

Figure S2. Schematic representation of the elements involved in the theoretical description of

STM-induced light emission from a defect in a 2D material. A dipole moment (downward arrow)

associated with the transition between initial and �nal electron states acts as an electromagnetic source

and producing light emission away from the tip region, assisted by coupling to tip plasmons. The ini-

tial state originates in an atomic protuberance from the tip and therefore, it can be approximated as an

spherical wave emanating from a tip position ri.

dipole

p =
−e~C
2πmeω

∫
d3rψ∗f (r)

∫
d2k‖ eik‖·(R−Ri)−κz(zi−z)

×
(
ik‖/κz + ẑ

)
,

where κz =
√
κ2i + k2‖ , we have renamed the integration variable as Q → k‖ to distinguished

the optical parallel wave vector Q (see above) from the electronic parallel wave vector k‖, and

we have used the fact that z < zi in the region near the �nal state (see Fig. S2). We now argue

that the initial electron evanescent wave has a decay length 1/κi . ~/
√

2meφ dictated by the

tip work function φ ∼ 5 eV; this leads to 1/κi . 0.1 nm, which we have to compare with the

lateral size of the 2D �nal state D ∼ 1 nm; we conclude that κiD � 1, and therefore, the largest

values of k‖ ∼ 1/D needed in the above integral to obtain a good representation of the �nal

state can be neglected in front of κi; we can thus approximate κz ≈ κi and disregard the in-plane

components of p, which then reduces to

p ≈ −2πe~C
meω

∫
dz ψ∗f (Ri, z) e−κi(zi−z) ẑ. (S8)
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As the emission is proportional to |p|2 (see Eq. (S6)), we conclude that the photon yield is

probing the �nal-state wave function at the lateral position of the atomic-scale tip: Γem ∝∣∣ ∫ dz ψf(Ri, z) e−κi(zi−z)
∣∣2.

We can obtain a more insightful result by noticing that the k‖ in-plane Fourier component

of the �nal state must decay with distance z above a plane at z = zf that is away from the

sample as exp
[
−
√
κ2f + k2‖(z − zf )

]
≈ exp(−κf (z − zf )), where κf is determined by the �nal

state energy relative to the vacuum level, and in the rightmost part of this expression we have

approximated k‖ � κf , similar to what we have done for κi in the initial state. Also, neglecting

the photon energy and applied bias potential energy relative to the binding energy of initial and

�nal states referred to vacuum, we further approximate κf ≈ κi, which allows us to work the

integral in Eq. (S8) to �nd

|p|2 =

(
2πe~C
meω

)2

d e−2κid|ψf (Ri, zf )|2,

where d = zi − zf is the tip-sample distance. The emission probability is then obtained as

4k3|p|2/3~ (see expression for Γ0 above) multiplied by the radiative Purcell factor (i.e., the ratio

of the radiative component of the local density of optical states to its value in vacuum). This

factor can be substantially enhanced due to coupling to plasmons.

We now recall that the elastic tunneling current is also proportional to
∣∣ψf(Ri, zf )

∣∣2 [2], and

therefore, both the elastic current and the inelastic photon emission rate are proportional to the

�nal state electron probability under the tip position. In more detail, specifying the Terso� and

Hamann [2] formalism to a �nal state with the characteristics considered above, we �nd the STM

elastic current to be contributed by the initial state under consideration with the matrix element

|M |2 =

(
2π~2C
me

)2

e−2κid|ψf (Ri, zf )|2.

We thus conclude that both STM and STML intensities are proportional to the defect orbital

electron probability |ψf (Ri, zf )|2 at the sample surface, and both of them are attenuated by the

same exponential factor e−2κid.
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Figure S3. Near-�eld enhancement at the tip. We illustrate this e�ect by considering a Au conical tip

(20 nm radius, 30◦ semi-angle) near a SiC surface (1 nm gap) irradiated with p-polarized light (external

�eld amplitude Eext) under 45◦ incidence relative to the tip axis. (A) Spectral dependence of the intensity

enhancement at the center of the tip-sample gap. (B) Near-�eld intensity distribution for 1.7 eV light in a

plane containing the tip axis (nearly independent on the azimuthal orientation of the incidence direction).

Results are averaged over the vertical tip extension from 1 to 2µm.

Field enhancement produced by the tip

The inelastic tunneling dipole p calculated in the previous section acts as the source of ra-

diation emission observed in STM luminescence. The calculations presented above for a dipole

emitting near a planar surface already provide a crude approximation of some of these charac-

teristics of the resulting emission rates, which were estimated to be similar to those of the dipole

in free space. However, the emitting dipole in STML sits at an electromagnetic hotspot produced

by the relatively sharp morphology of the tip – a geometry that generally gives rise to large

near-�eld enhancements in metals, mediated by plasmons that propagate on the surface of the

material.

An intuitive understanding of the enhancement produced in the emission by the presence of

the tip is provided by the reciprocity theorem [13], which states that the component of electric

�eld generated at a given position r along a direction û by a dipole sitting at r′ and oriented
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along û′ must coincide with the component of the �eld produced at r′ along the direction û′ by a

dipole sitting at r and oriented along û in the absence of magnetic and nonlinear optical e�ects

(i.e., for the standard linear response in the materials here considered). In more rigorous terms,

this is a consequence of the symmetry of the electromagnetic Green tensor, which under those

conditions satis�es G(r, r′, ω) = transpose{G(r′, r, ω)}.

A direct application of the reciprocity theorem to our STML geometry (i.e., with r′ at the tip

and r at the light detector) allows us to state that the enhancement in the emission rate from the

transition dipole of Fig. S2 along a given outgoing direction must be equal to the enhancement of

the near-electric-�eld intensity at the position of that dipole for light incident from that same di-

rection. The enhancement value is the so-called Purcell factor P (ω) [20], which also determines

the emission rate from an optical emitter (e.g., a quantum dot of a �uorescent molecule). We

calculated P (ω) = |E/Eext|2 (i.e., the ratio of local to externally incident �eld intensities, which

must be then understood as the emission enhancement through reciprocity) in Fig. S3 for a tip

of 20 nm radius and 1 nm separation from a SiC surface. The enhancement reaches 4 orders of

magnitude at energies below the gold plasmon (i.e.,< 2.5 eV, see Fig. S3A) and is highly localized

near the tip (Fig. S3B).

The spectral pro�le of the enhancement strongly depends on the detailed tip morphology.

Upon examination of several tips (see below), it is unlikely that a spectrally narrow plasmon is

supported by the tip. However, similar to the one considered in the calculations of Fig. S3, the

tip is expected to act as a collector of light that couples to propagating plasmons, which in turn

move toward to tip region, thus enhancing the �eld relative to the incident one. In this respect,

there is room for improvement of tip design in STML, for example by decorating it with in-/out-

coupling elements, such as gratings carved far from the tip region. Additionally, in W tips coated

with Au, such as those used in this study, �nite penetration of the optical �eld beyond the Au

skin depth (∼ 20 nm) can result in an increase of absorption in the low-energy region, where W

is particularly lossy. This e�ect could explain why our observed emission pro�les are peaked in

the 1−2 eV region, with Au plasmons acting only below∼ 2.5 eV and W absorption taking place

below ∼ 1 eV.
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Relative magnitude of elastic and inelastic tunneling currents

A rough estimate of the ratio of photons emitted per electron tunneled to a given �nal state ψf

is readily obtained by dividing ∆ω × (4k3|p|2/3~)P (ω) by (2π/~)|M |2, where ∆ω is the emis-

sion bandwidth. Notice that we have introduced the Purcell factor P (ω) in the emission rate to

include the near-�eld enhancement e�ect at the tip, as we discuss above. With the above approxi-

mations, the result is independent of tip position and the ratio reduces to (3πα/2)(d/λ)2(∆ω/ω),

where α ≈ 1/137 is the �ne-structure constant and λ is the emission wavelength; considering

photon emission centered around ~ω ∼ 2 eV with bandwidth ∆ω ∼ 1 eV, a tip-sample distance

d ∼ 1 nm, and a Purcell factor P ∼ 104 (see Fig. S3), we �nd a photon-to-electron overall ratio

of 10−4, in excellent agreement with our experimentally estimated yield. Incidentally, we are

neglecting in this calculation inelastic tunneling associated with nonradiative processes (i.e.,

mediated by direct material absorption), which could produce a signi�cant contribution (see Fig.

S1B), although this should not change the order of magnitude of the estimated ratio given above.

It is important to note that the elastic tunneling requires the energyE2D of the �nal 2D defect

state studied in this work to be below the Fermi level of the metallic tip Etip
F , while in STM

luminescence the photon energy ~ω compensates for the di�erence between tip and 2D states,

which must then satisfy the condition 0 < ~ω < Etip
F − E2D, thus producing a correspondingly

broad spectral emission. Obviously, the di�erence Etip
F − E2D depends on the applied potential

energy Vbias, with the onset for emission determined by the condition Vbias > E2D − E2D
F (i.e.,

the tip Fermi energy must be above the 2D defect state energy).

MONOLAYER AND BILAYERWS2 ON GR/SIC SAMPLE

Mono- and bilayer WS2 islands were grown ex-situ by chemical vapor deposition [21] on

epitaxial graphene on (6H)-SiC substrates [22]. Further details can be found in Refs. 21, 23. We

identi�ed several types of defects in as-grown samples including transition metal substitutions

and oxygen substituting for sulfur [23, 24]. Sulfur vacancies, which are absent in as-grown sam-

ples can be deliberately introduced by annealing the sample at 600 ◦C in vacuum [25].
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Figure S4. dI/dV spectroscopy of WS2 defects and substrates. A dI/dV spectroscopy on di�erent

substrates and defect locations (see legend on the right). B dI/dV spectroscopy of the two unoccupied

VacS top (red), and three CrW defect states (orange).

STM/STS AND CO-TIP NC-AFM MEASUREMENTS

All scanning probe measurements were conducted at low-temperature (T ≈ 6 K) and ultra-

high vacuum (p ≈ 10−10 mbar). Scanning tunneling microscopy (STM) images were recorded

using constant-current feedback. Scanning tunneling spectroscopy (STS) spectra were performed

in constant-height mode with a 5 mV lock-in amplitude. The bias was applied to the sample.

For the noncontact atomic force microscopy (nc-AFM) measurements a qPlus [26] quartz-

crystal cantilever was employed (resonance frequency f0 ≈ 30 kHz, spring constant k ≈
1800 N/m, quality factor Q ≈ 30, 000, and oscillation amplitude A ≈ 1 Å). The metallic tip

was functionalized with a CO molecule for enhanced resolution [27, 28].

In Fig. S4, dI/dV spectra at di�erent sample locations are shown: Mono- and bilayer epitax-

ial graphene on SiC (light gray), mono- and bilayer WS2 on Gr(2ML)/SiC (black and dark gray),

a sulfur vacancy (VacS) and chromium substituent (CrW) in WS2(1ML)/Gr(2ML)/SiC. VacS fea-

tures two unoccupied defect states in the band gap [25] and CrW three defect states close to the

conduction band minimum [23].
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STM LUMINESCENCE

For the STML measurements we used constant-current STM feedback to drive a constant

electron �ux at varying tunneling biases at a speci�c location on the sample. The emitted light

was collimated using a high numerical aperture, achromatic lens close to the tunneling junc-

tion. Outside the vacuum chamber the light was refocused into an optical �ber to guide it to a

point detector or spectrometer. A photon multiplier tube (Hamamatsu, H7421-50) and a grating

spectrometer (Princeton Instruments, SpectraPro 2300i) with a thermoelectrically-cooled charge

coupled device photon detector (Andor, Newton) were used. The STML spetra were measured

using a 150 grooves per millimeter grating and were not corrected for the wavelength dependent

detection e�ciency.

Optical spectra at di�erent sites

The STM luminescence is speci�c to which atomic site electrons are injected. In Fig. S5 the

STML spectra recorded on VacS top, CrW, non-defective WS2(1ML), WS2(2ML), Gr(1ML)/SiC and

Au(111) are shown. The spectra positions (except for the Au surface) were located within a few

100 nm away from each other and were measured with the exact same tip (including the Au).

The two defects VacS top and CrW introduce an additional emission band at tunneling biases

below the WS2 bulk emission. The steps in the defect emission (white arrows) can be explained

by the discrete defect states, which are the �nal states of the inelastic electron tunneling process.

On both WS2(1ML) and WS2(2ML) only emission at higher tunneling biases is observed (top left

corner in Fig. S5F,J), which correspond to inelastic electron tunneling into the WS2 conduction

band. Also for Gr/SiC and Au(111) STML is observed. The detected photons have energies lower

or equal to the injected electron energy. We associate the isoelectronic transitions where the

photon energy equals the electron energy (inclined dashed lines in Fig. S5K,L) to inelastic tran-

sitions to unoccupied states at the Fermi level.

STML photon maps of VacS and CrW

In Fig. S6 the spectrally integrated photon maps of VacS top and CrW at di�erent biases are

shown. The shape and spatial extent of the STML map resemble their respective in-gap defect
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Figure S5. Spectrally-resolved STML emission at di�erent sites. A-L STML emission spectrum at

di�erent tunneling biases recorded on a VacS top (A,D), a CrW (B,E), 1ML WS2 (C,F), 2ML WS2 (G,J), 1ML

graphene on SiC (H,K) and Au(111) (I,L) using the same tip. The arrows in D and E indicate the calculated

maximum photon energy from transitions involving the unoccupied defect states shown in Fig. S4B as �nal

states. The inclined dashed lines in K and L indicate the isoenergetic line where the photon energy and

the electron energy are equal. At sample biases smaller than indicated by the horizontal dash-dotted no

spectra were recorded because no emission was observed.
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Figure S6. VacS top and CrW photon maps. A-C Spectrally integrated photon maps of VacS top at

3.3 V (A), 2.9 V (B) and 2.5 V (C). D Spectrally integrated photon emission across VacS top as a function of

tunneling bias. D Spectrally integrated photon emission across CrW as a function of tunneling bias. F-H

Photon maps of CrW at 3.5 V (F), 3.1 V (G) and 2.7 V (H). The photon maps of VacS top and CrW resemble

their respective defect orbitals.

orbitals.

STML at negative sample bias

STML is also observed at negative sample bias. In Fig. S7 the spectrally integrated photon

emission across VacS top and CrW for positive and negative tunneling biases is compared. The

bias onset of STML emission depends on the tunneling polarity. At negative biases electrons

from occupied states in the sample tunnel inelastically to unoccupied tip states. CrW does not

feature any occupied defect states in the band gap, hence no additional defect emission band

is observed at negative bias (Fig. S7D). For VacS the case is not so simple because tip-induced

band bending pulls the lowest unoccupied defect state below the substrate Fermi level at biases

exceeding −1.2 V [25]. Therefore, the defect becomes negatively charged (Vac−S ) in the vicinity

of the tip. Accordingly, STML for VacS at negative bias (Fig. S7C) is likely related to inelastic

tunneling events out of the populated (formerly unoccupied) defect states.
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Figure S7. Photon emission vs position at negative bias. A-D Spectrally integrated photon maps

of a VacS top (A,C) and a CrW defect (B,D) at positive (A,B) and negative (C,D) sample bias. STML is

observed for both bias polarities. Note that the sulfur vacancy gets negatively charged at high negative

sample bias because tip-induced band bending populates the formerly unoccupied defect state close to the

Fermi energy.

STML current dependence

The photon counts follow a linear relation as a function of tunneling current at least up to

50 nA. The linear dependence between injected electrons and emitted photons suggest a single-

electron excitation process. No saturation behavior or current-dependent change in emission

spectrum was observed like reported for other systems [29]. The extrinsic emission yield (de-

tected photons per tunneling electron, ηexp) is a product of the intrinsic quantum e�ciency η0 of
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Figure S8. Photon counts vs tunneling current. A-I The �rst two columns display the photon counts

as a function of tunneling current for di�erent biases. The linear relation (linear �ts indicated by dashed

black lines) between photon counts and injected electrons suggests a single electron process. In the last

column the extrinsic emission yield obtained from the slope of the linear �t is plotted as a function of

sample bias. This relation resembles the counts vs bias traces (Fig. 2F in the main manuscript) since they

were recorded at constant current. The intrinsic quantum yield of the inelastic tunneling process can be

obtained by accounting for setup related losses.

the radiative tunneling process, the tip-mediated coupling e�ciency κtip from the tunnel junction

into the far-�eld (plasmon enhancement) and the detection e�ciency of the optical setup κsetup.

ηexp = η0κtipκsetup (S9)

The setup detection e�ciency is about 10−3, which accounts for the solid angle of collection,

optical losses (�ber coupling, mirrors, lenses) and the detector quantum e�ciency. At larger tun-
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neling biases of about 3.5 V, on the order of 10−7 photons per electron are detected in the far �eld.

Hence the intrinsic quantum e�ciency times the tip enhancement is estimated as 10−4 using a

standard Au coated W tip. As discussed in the next section, the tip shape has a decisive impact

on the brightness and spectral shape of the emission. Here we rely on stochastic tip changes by

nanometer deep indentations into a Au surface. The plasmonic coupling of the quantum emitter

might be easily enhanced by choosing a more optimized plasmonic or optical cavity.

TIP PREPARATION

For the STM/STS and STM luminescence measurements we used an etched tungsten tip wire.

Inside the STM the tip was sharpened by �eld emission at high biases (100 V) and nanometer

mechanical pokes into a Au(111) surface. This procedure serves two purposes: (i) to form an

atomically-sharp tip apex for tunneling and (ii) a mesoscopic Au coating of the tip for plasmonic

�eld enhancement.

A representative STM tip was analyzed using scanning electron microscopy (SEM) and

energy-dispersive X-ray spectroscopy (EDX). We used the ZEISS Ultra 55 FESEM equipped with

an Bruker X-ray energy dispersive spectrometer for elemental mapping. As seen in Fig. S9 the

tip apex becomes morphologically less de�ned on the sub-micron scale after �eld emission and

nano-indentations into the Au surface. However, the W tip wire is clearly coated with a Au �lm

at the very apex of the tip, which results in a plasmonic enhancement e�ect.

We also compared etched tungsten tips to etched silver tips. Like for the W tips, we used �eld

emission and surface pokes in Au to sharpen the Ag tip. The bulk tip materials has essentially

no e�ect on the STM luminescence spectrum as seen in Fig. S10. The STML spectra on Au(111)

are very similar for both the W and Ag tips. This suggests that only the mesoscopic tip shape

and material (Au in both cases) matters for the spectral emission properties.

The shape of the tip, however, has a decisive e�ect on the STML emission spectrum. While

after small pokes (≈1 nm approach from the tunneling set-point) at zero bias the STML spectrum

is only marginally changed (Fig. S11A), the spectrum changes shape when 2.5 V are applied dur-

ing the pokes (Fig. S11B). The emission intensity can be dramatically changed but also di�erent
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Figure S9. STM tip analysis. A,B SEM images of a representative etched W tip after �eld emission and

indentations into a Au surface. C,D SEM close-up on the tip apex. E,F Corresponding EDX elemental

analysis at the same position. The tip apex is coated with Au.

spectral ranges become enhanced. In Fig. S12 a series of STML spectra are shown after consec-

utive big pokes (> 1 nm approach from the tunneling set-point) at zero bias. The spectrum is

considerably modi�ed after each poke, both in intensity and spectral shape. This shows that the

spectral transfer function that modulates the STM luminescence is dominated by the mesoscopic

tip shape. It also hints at the potential for spectral enhancement by tailoring the nanocavity

formed by the tip and substrate.
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