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Summary 14	

Metabolic	engineering	is	the	science	of	rewiring	the	metabolism	of	cells	to	15	
enhance	 production	 of	 native	 metabolites	 or	 to	 endow	 cells	 with	 the	16	
ability	to	produce	new	products.	The	potential	applications	of	such	efforts		17	
are	 wide	 ranging,	 including	 the	 generation	 of	 fuels,	 chemicals,	 foods,	18	
feeds,	and	pharmaceuticals.	However,	making	cells	into	efficient	factories	19	
is	 challenging,	 because	 in	 order	 to	maximize	 growth,	 cells	 have	 evolved	20	
robust	 metabolic	 networks	 with	 hard-wired,	 tightly	 regulated	 lines	 of	21	
communication	between	molecular	pathways	that	resist	efforts	to	divert	22	
resources.	 Here,	 we	 will	 review	 the	 current	 status	 and	 challenges	 of	23	
metabolic	engineering	and	will	discuss	how	new	technologies	can	enable	24	
metabolic	 engineering	 to	 be	 scaled	 up	 to	 the	 industrial	 level,	 either	 by	25	
cutting	 off	 the	 lines	 of	 control	 for	 endogenous	 metabolism	 or	 by	26	
infiltrating	 the	 system	 with	 disruptive,	 heterologous	 pathways	 that	27	
overcome	cellular	regulation.	28	

Keywords:	 metabolic	 engineering,	 metabolism,	 regulation,	 industrial	 biotechnology,	29	
cell	factories	30	
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Introduction 32	

For	 at	 least	 8,000	 years,	 humans	 have	 harnessed	 microbes	 to	 produce	33	
fermented	 foods	 and	 beverages.	 In	more	 recent	 history,	microbes	 have	 been	34	
used	to	produce	chemicals	for	a	wide	range	of	applications.	During	World	War	35	
I,	 Chaim	 Weismann	 developed	 the	 acetone-butanol-ethanol	 fermentation	36	
process,	which	was	used	 for	~50	years	 to	produce	 acetone	 and	 is	now	being	37	
revived	 for	 production	 of	 1-butanol.	 In	 the	 1920’s,	 fermentation	 of	 the	38	
filamentous	fungus	Aspergillus	niger	was	adapted	to	generate	citric	acid,	a	food	39	
and	beverage	ingredient.	During	World	War	II,	 the	same	technology	was	used	40	
for	 industrial	 scale	 production	 of	 penicillin,	 the	 first	 pharmaceutical	 product	41	
produced	by	fermentation.		42	

The	 following	 decades	 witnessed	 a	 dramatic	 increase	 in	 the	 use	 of	43	
microorganisms	 to	 synthesize	 natural	 products	 of	 pharmaceutical	 interest,	44	
such	as	antibiotics,	cholesterol	lowering	agents,	immunosuppressors,	and	anti-45	
cancer	 drugs.	 Improved	 performance	 of	 classical	 fermentation	 processes	 for	46	
such	purposes	was	typically	achieved	through	mutagenesis	and	screening.	For	47	
antibiotics	 in	 particular,	 this	 was	 an	 extremely	 efficient	 approach,	 with	48	
penicillin	 production	 using	 Penicillium	 chrysogenum	 boosted	 by	 more	 than	49	
10,000	fold	(Thykaer	and	Nielsen,	2003).	Although	genetic	engineering	made	it	50	
possible	 to	use	a	more	directed	approach	 to	 improve	metabolism,	most	work	51	
focused	 on	 the	 development	 of	 cell	 factories	 for	 production	 of	 recombinant	52	
proteins	 for	 use	 as	 pharmaceuticals,	 and	 today,	 there	 are	 more	 than	 300	53	
biopharmaceutical	proteins	and	antibodies	on	the	market	with	sales	exceeding	54	
$100	billion	(Langer,	2012).		55	

With	the	late	1980s	and	early	1990s	came	new	insights	into	the	complex	inner	56	
workings	 of	 cellular	 metabolism,	 fueled	 by	 bioinformatics	 and	 mathematical	57	
modeling	 methods	 that	 allowed	 quantitative	 analysis.	 This	 enabled	 specific	58	
genetic	modifications	altering	cellular	metabolism	to	be	 introduced,	 such	 that	59	
fluxes	 could	 be	 directed	 towards	 the	 product	 of	 interest.	 Thus,	 the	 field	 of	60	
metabolic	 engineering	 was	 born	 (Bailey,	 1991;	 Stephanopoulos	 and	 Vallino,	61	
1991;	 Nielsen,	 2001;	 Keasling,	 2010).	 Now,	 more	 than	 twenty	 years	 later,	62	
metabolic	 engineering	 has	 been	 exploited	 not	 only	 to	 improve	 traditional	63	
microbial	 fermentation	 processes,	 but	 also	 to	 produce	 chemicals	 that	 are	64	
currently	used	as	fuels,	materials,	and	pharmaceutical	ingredients	(Table	1).		65	

Despite	the	advanced	systems	and	synthetic	biology	technologies	now	available	66	
for	 detailed	 phenotypic	 characterization	 of	 cells	 and	 genome	 editing,	67	
developing	 new	 cell	 factories	 that	 meet	 the	 economic	 requirements	 for	68	
industrial	scale	production	is	still	challenging,	typically	requiring	6-8	years	and	69	
over	 $50	million.	 The	 reason	 for	 this	 is	 inherent	 to	 the	 cells	 themselves.	 To	70	
ensure	metabolic	 homeostasis	 even	 when	 exposed	 to	 varying	 environmental	71	
conditions,	 cells	 have	 evolved	 extensive	 regulation	 and	 complex	 interactions	72	
between	 metabolic	 pathways.	 Redirecting	 carbon	 fluxes	 towards	 desired	73	
metabolites	 therefore	 requires	 modulating	 the	 lines	 of	 communication	 in	74	
endogenous	 metabolic	 pathways	 or	 infiltrating	 the	 system	 with	 disruptive	75	
signals	 that	 interfere	 with	 these	 regulatory	 mechanisms.	 At	 present,	 our	76	
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knowledge	 of	 how	 metabolism	 is	 regulated	 even	 in	 simple	 model	 cells	 is	77	
limited.	As	a	result,	engineering	a	cell	factory	involves	several	rounds	of	the	so-78	
called	 “design-build-test”	 cycle,	 in	 which	 a	 certain	 metabolic	 design	 is	79	
implemented	and	improved	through	genetic	engineering,	and	thereafter	tested.		80	

Here,	 we	 will	 discuss	 the	 principles	 and	 current	 challenges	 of	 metabolic	81	
engineering,	focusing	on	how	metabolism	can	be	engineered	for	industrial	level	82	
production	 of	 specific	 chemicals,	 either	 through	 de-regulation	 of	 endogenous	83	
metabolism	 or	 through	 insertion	 of	 heterologous	 pathways	 that	 overcome	84	
cellular	regulation.	We	will	then	discuss	how	technologies	developed	in	recent	85	
years	 can	 contribute	 to	 the	 design-build-test	 cycle,	 and	 how	 adding	 a	 fourth	86	
element	 to	 this	 cycle,	 namely	 “learn”,	 can	 improve	 the	 process.	 Based	 on	87	
implementation	 of	 specific	 metabolic	 designs,	 can	 we	 gain	 new	 knowledge	88	
about	how	metabolism	operates	and	how	it	is	regulated,	and	subsequently	use	89	
this	knowledge	for	improved	design?	90	

Challenges for Metabolic Engineering 91	

Even	 though	metabolic	 engineering	 has	 found	 applications	 in	 optimization	 of	92	
existing	processes,	much	of	 the	 current	 focus	 is	 on	 the	development	 of	 novel	93	
bioprocesses.	 In	 the	 fuel	 and	 chemical	 industry,	 there	 is	 much	 interest	 in	94	
exploiting	 the	 potential	 of	 bio-based	 production	 for	 two	 major	 reasons:	 the	95	
sustainability	factor	and	the	possibility	of	producing	new	molecules.	Bio-based	96	
production	 of	 chemicals	 allows	 for	 use	 of	 renewable	 raw-materials,	 such	 as	97	
plant-derived	 feedstocks	 like	starch,	sucrose,	cellulose	and	 lignocellulose,	 that	98	
are	more	sustainable	than	many	traditional	chemical	processes	relying	on	fossil	99	
fuels.	 Furthermore,	 replacement	 of	 traditional	 chemical	 synthesis	 with	 bio-100	
based	production	typically	results	in	reduced	environmental	footprint	in	terms	101	
of	 energy	 usage	 and	 emission.	 The	 key	 driver	 for	 the	 chemical	 industry	 is,	102	
however,	 the	production	of	 chemicals	 that	 have	 either	better	properties	 than	103	
traditional	chemicals	or	chemicals	that	can	find	new	applications.	104	

The route for development of a novel bioprocess 105	
Production	 of	 a	 so-called	 “drop-in”	 chemical	 starts	 with	 identification	 of	 the	106	
molecule	 of	 interest,	 followed	 by	 determination	 of	 whether	 there	 exists	 a	107	
metabolic	 pathway	 in	 nature	 to	 produce	 this	 molecule	 (Fig.	 1A).	 Drop-in	108	
chemicals	 are	 molecules	 produced	 by	 fermentation	 instead	 of	 from	 fossil	109	
feedstock	or	other	natural	sources	that	are	difficult	to	work	with	(such	as	rare	110	
plants).	 In	 many	 cases,	 it	 is	 possible	 to	 identify	 a	 natural	 producer	 of	 the	111	
molecule	and	this	cell	factory	can	then	be	used	for	further	improvement.	If	on	112	
the	other	hand	you	want	to	transfer	the	biosynthetic	pathway	to	a	heterologous	113	
host	 and	 if	 all	 of	 the	 enzymes	of	 the	biosynthetic	 pathway	have	not	 yet	 been	114	
identified,	 heterologous	 expression	 requires	 enzyme	 discovery	 as	 part	 of	 the	115	
metabolic	engineering	program,	as	illustrated	for	production	of	artemisinic	acid	116	
(Ro	et	al.,	2006;	Westfall	et	al.	2012;	Paddon	et	al.	2013)	and	opioids	(Galanie	et	117	
al.,	2015).	In	some	cases,	however,	it	is	difficult	to	identify	all	the	biosynthetic	118	
enzymes	 needed	 to	 produce	 a	 molecule,	 and	 this	 hinders	 pathway	119	
reconstruction	 in	 a	 heterologous	 host.	 For	 instance,	 not	 all	 the	 enzymes	120	
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involved	in	biosynthesis	of	the	anti-cancer	drug	taxol	have	yet	been	identified	121	
(Ajikumar	et	 al.,	 2010).	 Improved	 technologies	 for	DNA	and	RNA	sequencing,	122	
bioinformatics	and	structure-function	predictions	have	advanced	our	ability	to	123	
rapidly	identify	enzyme	candidates	for	a	specific	biosynthetic	pathway	that	can	124	
subsequently	be	evaluated	for	their	ability	to	reconstruct	a	complete	pathway.	125	
In	case	it	is	not	possible	to	identify	a	natural	producer,	chimeric	pathways	may	126	
have	to	be	reconstructed,	and	some	of	the	enzymes	may	have	to	be	evolved	to	127	
have	new	features.		128	

Traditionally,	natural	producers	were	developed	for	production	of	the	molecule	129	
of	 interest	through	classical	strain	 improvement.	However,	with	the	advent	of	130	
metabolic	engineering,	 the	preferred	route	 for	developing	a	novel	bio-process	131	
is	now	through	the	use	of	“platform	cell	factories”	(Fig.	1A).	Examples	include	132	
Saccharomyces	 cerevisiae,	 Escherichia	 coli,	 Aspergillus	 niger,	 Bacillus	 subtilis,	133	
Corynebacterium	 glutamicum	 and	 Chinese	 Hamster	 Ovary	 (CHO)	 cells.	 The	134	
advantage	of	using	platform	cell	factories	are	numerous:	1)	they	are	very	well	135	
characterized	 in	 terms	 of	 genetics	 and	 physiology;	 2)	 it	 is	 easier	 to	 obtain	136	
product	 approval	 by	 governmental	 organizations	 if	 they	 have	 been	 used	 for	137	
production	of	a	range	of	products	already;	3)	many	tools	for	genome	editing	are	138	
available;	 and	 4)	 many	 gene	 expression	 tools	 are	 available,	 e.g.	 plasmids,	139	
promoters	 and	 terminators.	 Each	 of	 the	 above	mentioned	 cell	 factories	 have	140	
specific	 advantages.	 For	 example,	 A.	 niger	 and	 B.	 subtilis	have	 very	 efficient	141	
protein	 secretion	 and	 are	 therefore	 widely	 used	 for	 production	 of	 industrial	142	
enzymes,	 while	 CHO	 cells	 are	 well	 suited	 for	 production	 of	 glycosylated	143	
proteins	 to	 be	 used	 as	 pharmaceuticals.	 For	 fuels	 and	 chemicals	 there	 is	 an	144	
increasing	focus	on	use	of	S.	cerevisiae	and	E.	coli	as	platform	cell	factories,	with	145	
C.	glutamicum	as	an	attractive	third	choice.	To	produce	a	molecule	of	 interest,	146	
the	biosynthetic	pathway	for	the	molecule	is	reconstructed	in	the	platform	cell	147	
factory,	 resulting	 in	 establishment	 of	 a	 proof-of-principle	 strain	 (Fig.	 1B).	148	
Generally,	 this	 strain	 can	 be	 patented	 and	 represents	 a	 key	milestone	 in	 the	149	
development	of	a	novel	bioprocess.	150	

Improving strain performance 151	
The	 road	 from	 development	 of	 a	 proof-of-principle	 strain	 to	 having	 a	 cell	152	
factory	 that	 can	be	used	 for	 commercial	 production	 is	 long	 and	arduous.	The	153	
majority	of	operational	costs	come	with	the	fermentation	process	(Caspeta	and	154	
Nielsen,	2013),	primarily	due	to	relatively	high	feedstock	costs,	and	being	cost-155	
competitive	 therefore	 translates	 to	 specific	 demands	 on	 titer	 (final	156	
concentration	in	the	fermentation	medium),	rate	(production	per	unit	of	time)	157	
and	 yield	 (units	 of	 product	 synthesized	 per	 unit	 of	 raw	material	 consumed),	158	
often	 referred	 to	 as	 titer,	 rate	 and	 yield	 (TRY)	 requirements.	 Moving	 from	 a	159	
proof-of-principle	 strain	 to	 a	 production	 strain	 that	 meets	 industrial	 TRY	160	
requirements	 is	 the	 last	 but	 most	 challenging	 part	 of	 developing	 a	 novel	161	
bioprocess	(Fig.	1A),	typically	involving	many	years	of	costly	development	time	162	
(Fig.	1B	and	1C).		163	

The	main	reason	for	the	long	development	time	is	the	need	to	go	through	many	164	
rounds	 of	 strain	 construction	 and	 subsequent	 phenotypic	 characterization.	165	
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Most	strains	used	 for	 industrial	production	require	a	 large	number	of	genetic	166	
modifications,	not	only	in	the	pathways	of	interest,	but	also	in	other	pathways	167	
in	order	to	efficiently	redirect	metabolic	flux.	For	example,	 in	the	E.	coli	strain	168	
used	 for	production	of	1,3-propanediol	 (used	 for	production	of	polymers	and	169	
solvents),	 the	 phosphotransferase	 (PTS)	 transport	 system	 for	 glucose	 uptake	170	
and	phosphorylation	was	replaced	by	a	heterologous	glucose	 transporter	and	171	
an	 additional	 hexokinase	 (Nakamura	 and	 Whited,	 2003).	 This	 was	 done	 in	172	
order	 to	 decouple	 glucose	 transport	 from	 the	 lower	 glycolysis,	 making	 it	173	
possible	to	convert	glucose	to	1,3-propanediol	with	higher	yield.	In	S.	cerevisiae,	174	
improved	 ethanol	 and	 reduced	 glycerol	 production	 could	 be	 obtained	 by	175	
engineering	 the	 glutamate	 biosynthetic	 pathway	 (Nissen	 et	 al.,	 2000).	 By	176	
replacing	 the	 NADPH-dependent	 glutamate	 dehydrogenase	 with	 a	 NADH-177	
dependent	 pathway,	 ammonia	 uptake	 became	 linked	 to	 NADH	 consumption.	178	
With	this	new	NADH	“sink,”	glycerol	production	was	reduced,	freeing	up	more	179	
carbon	for	ethanol	production.	Traditionally,	each	round	of	genetic	engineering	180	
could	only	be	done	 in	a	 serial	 fashion,	 so	 it	was	 time	consuming	 to	 introduce	181	
the	many	 genetic	modifications	 required	 for	 a	 final	 production	 strain.	 As	we	182	
will	discuss	 later,	a	number	of	new	technologies	are	 likely	 to	change	 this	and	183	
reduce	the	time	and	cost	of	strain	development.		184	

The bow-tie structure of metabolism 185	
There	 is	 a	 fundamental	biological	 reason	why	 it	 is	 often	necessary	 to	make	a	186	
large	number	of	genetic	modifications	 to	alter	 cell	metabolism.	Metabolism	 is	187	
one	of	the	conserved	features	of	all	living	cells	and	has	evolved	to	be	organized	188	
into	 a	 “bow-tie”	 structure	 (Fig.	 2A).	 This	 means	 that	 all	 carbon	 and	 energy	189	
sources	are	converted	through	central	carbon	metabolism	pathways	into	a	set	190	
of	 12	 precursor	 metabolites	 (Fig.	 2A)	 that	 are	 used	 for	 biosynthesis	 of	 all	191	
cellular	components	and	natural	products	generated	by	cells	 (Neidhardt	et	al.	192	
1990).	 This	 results	 in	 high	 flux	 of	 carbon	 through	 most	 of	 the	 precursor	193	
metabolites,	each	of	which	are	involved	in	a	large	number	of	reactions	(Nielsen,	194	
2003).	For	example,	 in	yeast,	 acetyl-CoA	 is	 involved	 in	34	compartmentalized	195	
metabolic	reactions,	besides	being	used	for	acetylation	of	macromolecules.	To	196	
balance	the	use	of	these	precursor	metabolites,	cells	have	evolved	several	levels	197	
of	 tight	 regulation,	 especially	 to	 control	 biosynthesis	 of	 amino	 acids,	 lipids,	198	
nucleotides,	 and	 carbohydrates	 needed	 for	 cell	 growth,	 homeostasis,	 and	199	
maintenance.	It	is	due	to	this	tight	regulation	that	redirecting	the	carbon	fluxes	200	
in	 central	 carbon	 metabolism	 towards	 molecules	 of	 interest	 is	 inherently	 so	201	
difficult.		202	

Regulation	of	central	carbon	metabolism	has	evolved	to	ensure	that	production	203	
of	 cellular	 components	 is	balanced	with	energy	production	and	 consumption.	204	
This	 allows	 cells	 to	 maintain	 metabolic	 homeostasis	 even	 when	 exposed	 to	205	
varying	 environmental	 and	 nutritional	 conditions.	 The	 same	 biological	 and	206	
thermodynamic	 principles	 that	 allow	 cells	 to	 be	 robust	 and	 maintain	207	
homeostasis	make	metabolic	 engineering	 challenging.	On	 the	other	hand,	 this	208	
robustness	 can	 be	 an	 advantage.	 Indeed,	 many	 industrial	 processes	 take	209	
advantage	of	cells’	ability	to	maintain	homeostasis	in	changing	and	often	harsh	210	
industrial	 conditions,	 such	 as	 stress	 imposed	 by	 high	 osmolality,	 varying	211	
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temperatures,	low	pH,	and	high	product	concentrations	that	are	often	toxic.	For	212	
these	reasons,	industry	often	prefers	robust	cell	factories	that	not	only	survive,	213	
but	 divide	 and	 produce	 the	 product	 of	 interest	 even	 under	 such	 adverse	214	
conditions.		215	

Yeast	S.	cerevisiae	has	a	proven	record	of	 large-scale	production	of	bioethanol	216	
and	is	a	favorite	organism	within	industry,	but	its	central	carbon	metabolism	is	217	
extensively	regulated	and	has	a	relatively	“flat”	structure,	with	transcriptional	218	
regulation	 alone	 involving	 102	 transcription	 factors	 (TFs),	 78%	 of	which	 are	219	
connected	by	cross-regulation	in	a	large	internal	regulatory	loop	(Österlund	et	220	
al.,	 2015).	 Like	 most	 bacteria,	 	 E.	 coli	 has	 a	 more	 hierarchical	 TF	 network	221	
structure	(Yu	and	Gerstein,	2006),	making	it	easier	to	redirect	carbon	fluxes	to	222	
overproduce	 a	 specific	 molecule	 (Chen	 et	 al.,	 2013),	 with	 two	 prominent	223	
examples	being	1,4-butanediol	 (Yim	et	al.,	2011)	and	short	alkanes	 (Choi	and	224	
Lee,	2013).	In	addition,	several	recent	studies	in	E.	coli	have	provided	detailed	225	
new	 knowledge	 of	 metabolic	 regulation,	 such	 as	 control	 of	 iron	 metabolism	226	
through	 the	 Fur	 transcriptional	 regulatory	 network	 (Seo	 et	 al.,	 2014)	 and	227	
mechanisms	of	oxidative	stress	metabolism	(Seo	et	al.,	2015).	Such	insights	will	228	
allow	for	improved	design	and	faster	development	of	cell	factories.	229	

Principles and tools for advancing metabolic engineering 230	

Platform strains 231	
Even	 though	 the	bow-tie	structure	of	metabolism	 is	a	challenge	 for	metabolic	232	
engineering,	 it	 also	 offers	 some	 features	 that	 may	 accelerate	 strain	233	
development	in	the	future.	For	instance,	imagine	that	for	one	project,	a	strain	is	234	
developed	to	convert	a	carbon	source	(e.g.	glucose)	into	a	molecule	of	interest	235	
by	efficiently	funneling	it	through	an	intermediate	molecule	(e.g.	acetyl-CoA)	at	236	
the	 center	 of	 the	 bow-tie.	 With	 additional	 smaller	 modifications,	 this	 strain	237	
could	then	become	a	platform	for	creating	other	strains	to	synthesize	products	238	
derived	 from	 that	 same	 intermediate.	 Since	 the	 hardest	 problem	 in	 strain	239	
development	is	often	deregulation	of	central	carbon	metabolism,	such	a	strain	240	
would	be	of	great	value,	as	 the	development	of	 the	new	strain	 from	that	 step	241	
onwards	would	proceed	relatively	fast.		242	

This	 concept	of	platform	strains	 (Nielsen,	2015)	 is	by	no	means	new	and	has	243	
been	 applied	 successfully	 before.	 For	 example,	 the	 Dutch	 company	 DSM,	 the	244	
largest	 producer	 of	b-lactam	 antibiotics	 in	 the	world,	 used	 one	 of	 their	 high-245	
yielding	penicillin	producing	strains	as	a	platform	strain	to	engineer	the	fungus	246	
P.	chrysogenum	 to	efficiently	produce	7-ADCA,	 from	which	cephalosporins	can	247	
be	derived.	They	achieved	this	by	extending	the	penicillin	biosynthetic	pathway	248	
with	an	expandase,	combined	with	feeding	the	cells	adipic	acid	(Crawford	et	al.,	249	
1995),	 thereby	 leveraging	 the	many	 years	 of	work	 that	went	 into	 developing	250	
efficient	 penicillin-producing	 strains	 to	 generate	 a	 new	 and	 more	 valuable	251	
product.	 Similarly,	 the	 Danish	 company	 Novozymes,	 the	 largest	 enzyme	252	
producer	 in	 the	world,	 has	 used	 strains	 of	 the	 fungus	Aspergillus	oryzae	 that	253	
have	 been	 optimized	 for	 protein	 secretion	 to	 rapidly	 develop	 efficient	254	
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production	processes	for	new	fungal	enzymes	to	be	used	in	detergents,	the	food	255	
industry,	and	the	biofuel	industry.		256	

Platform	strains	were	also	used	early	on	 in	 the	development	of	E.	coli	 strains	257	
that	 efficiently	 produce	 aromatics.	 Bio-based	 production	 of	 aromatics	 has	258	
attracted	 much	 interest	 from	 the	 chemical	 industry,	 as	 many	 molecules	 of	259	
industrial	value,	 such	as	aspartame	and	 indigo,	 can	be	derived	 from	aromatic	260	
amino	 acids	 or	 their	 intermediates.	 Reconstruction	 of	 the	E.	coli	 pathway	 for	261	
conversion	 of	 the	 amino	 acid	 tryptophan	 into	 the	 plant-derived	 dye	 indigo	262	
represented	 a	 key	milestone	 in	metabolic	 engineering	 (Murdoch	 et	 al.	 1993).	263	
Following	 this,	 there	 were	 several	 successful	 cases	 of	 engineering	 E.	 coli	264	
metabolism	 to	 overproduce	 aromatics.	 In	 one	 study,	 Liao	 and	 colleagues	265	
increased	the	supply	of	phosphoenolpyruvate	(PEP),	a	precursor	metabolite	for	266	
biosynthesis	 of	 aromatics,	 by	 either	 expressing	 a	 PEP	 synthase	 (Patnaik	 and	267	
Liao,	1994)	or	using	a	non-PTS	sugar	transport	system	(Patnaik	et	al.,	1995).		268	

Recently,	 S.	 cerevisiae	 has	 also	 been	 engineered	 for	 high-level	 production	 of	269	
aromatics	(Rodriguez	et	al.,	2015),	with	the	objective	of	producing	natural	plant	270	
products,	 such	 as	 stilbenoids	 and	 flavonoids.	 In	 these	 cases,	 one	 can	 take	271	
advantage	 of	 prior	 knowledge	 from	 plant	 engineering,	 since	 it	 is	 generally	272	
relatively	easy	to	express	plant	P450	enzymes	in	S.	cerevisiae.	Indeed,	there	are	273	
numerous	examples	of	reconstructing	complex	plant	pathways	using	aromatic	274	
amino	 acids	 as	 building	 blocks	 in	 yeast.	 These	 include	 production	 of	 the	275	
antioxidant	and	potential	drug	resveratrol	that	is	found	in	the	skin	of	grapes	(Li	276	
et	al.	2015)	and	an	the	antioxidant	naringenin	that	has	been	found	to	have	anti-277	
inflammatory	and	immune-stimulating	effects	(Koopman	et	al.,	2012).	Notably,	278	
the	recent	reconstruction	of	a	23-enzyme	pathway	to	produce	opioids	in	yeast	279	
(Galanie	et	al.,	2015)	represents	an	important	milestone	in	the	field,	as	it	shows	280	
that	even	very	 long	and	complex	pathways	can	be	successfully	 reconstructed.	281	
This	study	illustrated	another	advantage	of	using	a	platform	cell	factory:	having	282	
a	strain	with	increased	flux	towards	tyrosine,	the	precursor	for	the	biosynthetic	283	
pathway,	made	 it	 easier	 to	 identify	 good	 candidate	 enzymes	 for	 the	 pathway	284	
(Galanie	 et	 al.,	 2015).	Despite	 the	 success,	 this	 example	 clearly	 illustrate	 that	285	
obtaining	a	proof-of-principle	strain	producing	low	titers	of	the	product	is	only	286	
the	first	step	towards	establishing	a	commercial	process,	and	the	TRY	of	opiod	287	
production	needs	to	be	significantly	improved	before	microbial	production	can	288	
replace	the	current	process	with	extraction	from	plants.	289	

One	area	that	has	attracted	significant	attention	recently	is	the	development	of	290	
yeast	platform	strains	to	produce	acetyl-CoA,	as	many	chemicals	of	interest	can	291	
be	derived	 from	 this	 precursor	metabolite	 (Nielsen,	 2014;	Krivoruchko	 et	 al.,	292	
2015).	Many	commodity	chemicals	and	advanced	biofuels	must	be	produced	in	293	
large	 quantities,	 and	 using	 yeast	 as	 a	 cell	 factory	 is	 therefore	 favorable,	 as	294	
current	bioethanol	plants	could	be	retrofitted	to	produce	these	more	valuable	295	
chemicals.	However,	as	 illustrated	in	Fig.	2,	acetyl-CoA	metabolism	in	yeast	 is	296	
compartmentalized.	 In	 the	 cytosol,	 acetyl-CoA	 is	 used	 for	 lipid	 biosynthesis,	297	
either	 via	 malonyl-CoA	 for	 fatty	 acids	 or	 acetoacetyl-CoA	 for	 sterols	 via	 the	298	
mevalonate	 pathway,	 and	 is	 derived	 from	 acetate	 by	 acetyl-CoA	 synthetases	299	



Page	8	of	29	

	

(Acs).	Acetate	comes	 from	acetaldehyde,	an	 intermediate	 in	 the	conversion	of	300	
pyruvate	 to	 ethanol,	 the	key	 fermentative	 route	 for	 yeast.	On	 the	other	hand,	301	
acetyl-CoA	 in	 the	 mitochondria	 is	 formed	 from	 pyruvate	 by	 the	 pyruvate	302	
dehydrogenase	 (Pdh)	 complex,	 and	 there	 is	 no	 direct	 exchange	 of	 acetyl-CoA	303	
between	 the	 two	 compartments,	 although	 acetyl-CoA	 in	 the	 cytosol	 can	 be	304	
transported	 to	 the	 mitochondria	 via	 malate	 or	 succinate	 (Chen	 et	 al.,	 2012).	305	
Even	though	biosynthetic	pathways	can	be	reconstructed	 in	 the	mitochondria	306	
(Avalos	 et	 al.,	 2013),	 it	 is	 generally	 preferable	 to	 do	 so	 in	 the	 cytosol,	 as	 this	307	
facilitates	 export	 of	 the	 final	 product,	 which	 in	 turn	 facilitates	 isolation	 and	308	
purification	 of	 the	 desired	 compound	 and	 reduces	 the	 production	 costs	309	
dramatically.	310	

The	 biosynthesis	 of	 lipids	 is	 highly	 regulated,	 particularly	 at	 two	 enzymatic	311	
steps,	 the	conversion	of	acetyl-CoA	to	malonyl-CoA	by	acetyl-CoA	carboxylase	312	
(Acc)	 and	 the	 conversion	 of	 hydroxy-3-methyl-glutaryl-CoA	 (HMG-CoA)	 into	313	
mevalonate	 by	 HMG-CoA	 reductase	 (Hmgr).	 Acc	 is	 inactivated	 at	 the	 protein	314	
level	 by	 the	 protein	 kinase	 Snf1	 (AMPK	 in	 human)	 (Nielsen,	 2009),	 a	 global	315	
energy	 regulator	 (Usaite	 et	 al.,	 2009).	 Recently,	 it	 was	 shown	 that	 a	 mutant	316	
version	 of	 Acc	 that	 cannot	 be	 phosphorylated	 enables	 high	 flux	 towards	317	
malonyl-CoA	(Shi	et	al.,	2014).	Hmgr	is	also	regulated	at	the	protein	level,	and	is	318	
bound	to	the	ER	membrane	whilst	facing	the	cytosol.	By	sensing	ER	membrane	319	
sterol	 composition,	Hmgr	 is	 feedback	 inhibited	 by	 the	 presence	 of	 ergosterol	320	
(Nielsen,	2009).	Several	studies	have	shown	that	flux	towards	mevalonate	can	321	
be	 increased	 significantly	 through	 deregulation	 of	 Hmgr	 by	 deleting	 its	322	
membrane-binding	domain	(Donald	et	al.,	1997).		323	

The	Acs	enzyme	is	also	believed	to	be	regulated	through	phosphorylation	and	324	
acetylation,	 but	 the	 exact	 sites	 have	 not	 been	 identified.	 A	 breakthrough	 in	325	
increasing	 flux	 towards	 acetyl-CoA-derived	 products	was	 the	 expression	 of	 a	326	
mutant	version	of	Acs	from	Streptococcus	enterica	that	carries	a	point	mutation	327	
preventing	 inactivation	by	phosphorylation	(Shiba	et	al.,	2007).	Expression	of	328	
this	heterologous	Acs	is	often	combined	with	overexpression	of	ALD6	(Shiba	et	329	
al.,	 2007),	 which	 catalyzes	 the	 conversion	 of	 acetaldehyde	 to	 acetate.	 This	330	
strategy	was	recently	combined	with	blocking	of	the	glyoxylate	cycle	to	prevent	331	
transfer	of	acetyl-CoA	from	the	cytosol	to	the	mitochondria	(Chen	et	al.,	2013).	332	
However,	 the	 Acs-catalyzed	 reaction	 involves	 conversion	 of	 ATP	 to	 AMP,	 so	333	
several	studies	have	aimed	at	creating	an	energetically	more	efficient	pathway	334	
from	 pyruvate	 to	 acetyl-CoA	 in	 the	 cytosol.	 For	 example,	 some	 groups	 have	335	
heterologously	 expressed	 bacterial	 pyruvate	 formate	 lyase,	 which	 converts	336	
pyruvate	to	formate	and	acetyl-CoA	(Waks	and	Silver,	2009;	Kozak	et	al.,	2014;	337	
Zhang	 et	 al.,	 2015),	 where	 formate	 can	 subsequently	 be	 oxidized	 to	 carbon	338	
dioxide,	with	the	generation	of	NADH,	by	formate	dehydrogenase.	Alternatively,	339	
a	bacterial	Pdh	 localized	 to	 the	 cytosol	 can	directly	 generate	 acetyl-CoA	 from	340	
pyruvate	(Kozak	et	al.,	2014),	but	this	is	a	major	undertaking	as	this	enzyme	is	341	
a	multimeric	and	is	larger	than	bacterial	ribosomes.		342	

These	 studies	 teach	 the	 general	 lesson	 that	 it	 is	 often	 necessary	 to	 combine	343	
overexpression	of	specific	enzymes	with	deregulation	of	the	pathway	in	order	344	
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to	 ensure	 high	 flux	 through	 the	 pathway	 of	 interest.	 An	 alternative	 to	 de-345	
regulation	of	individual	enzymes	is	the	expression	of	a	complete	heterologous	346	
pathway,	as	illustrated	by	expression	of	the	yeast	mevalonate	pathway	in	E.	coli	347	
(Martin	 et	 al.,	 2003).	 E.	 coli	 uses	 a	 non-mevalonate	 pathway	 for	 the	348	
biosynthesis	 of	 farnesyl	 pyrophosphate,	 an	 intermediate	 of	 the	 sterol	349	
biosynthetic	 pathway	 and	 a	 precursor	 for	 biosynthesis	 of	 sesquiterpenes,	 a	350	
broad	 class	 of	 chemicals	 that	 can	 be	 used	 as	 perfumes,	 pharmaceuticals,	 and	351	
biofuels.	This	 approach	 circumvents	 the	problem	of	 the	 endogenous	pathway	352	
being	 regulated,	 resulting	 in	 a	 significant	 increase	 in	 flux	 towards	 farnesyl	353	
pyrophosphate,	 an	 intermediate	 for	 the	 anti-malarial	 drug	 artemisinic	 acid	354	
(Martin	et	al.,	2003).		355	

Genetic tools 356	
One	 of	 the	 key	 requirements	 for	 metabolic	 engineering	 is	 the	 availability	 of	357	
good	genetic	tools	for	genetic	engineering	of	the	host	cell	(Redden	et	al.,	2015;	358	
Jensen	 and	 Keasling,	 2015;	 David	 and	 Siewers,	 2015).	 As	 mentioned	 above,	359	
manipulation	 of	 metabolism	 generally	 involves	 the	 knock-out,	 introduction,	360	
and	 overexpression	 or	 mutation	 of	 more	 than	 one	 gene.	 Although	 using	361	
autonomously	 replicating	 vectors,	 such	 as	 plasmids,	 to	 introduce	 genes	 is	362	
useful	for	constructing	proof-of-principle	strains,	plasmids	tend	to	be	unstable	363	
when	 used	 in	 large-scale	 industrial	 cultivation	 that	 involves	 massive	 cell	364	
expansion.	In	the	past,	introducing	genes	into	chromosomes	was	accomplished	365	
primarily	 using	 phage	 integration	 sites	 in	 bacteria	 and	 homologous	366	
recombination	 in	 yeast.	 However,	 Clustered	 Regulatory	 Interspaced	 Short	367	
Palindromic	Repeats	(CRISPR)/CRISPR-associated	protein	Cas9-based	systems	368	
now	allow	 introduction	 of	 genes	 into	 nearly	 any	 location	 in	 the	 chromosome	369	
(Jinik	 et	 al.	 2012;	 Jakociunas	 et	 al,	 2015).	With	 the	 ability	 to	 vary	 promoter	370	
(Jensen	 and	 Hammer,	 1998;	 Redden	 and	 Alper,	 2015)	 and	 ribosome	 binding	371	
strength	(Salis	et	al.,	2009)	as	well	as	the	stability	of	the	mRNA	(Smolke	et	al.,	372	
2000;	 Pfleger	 et	 al.,	 2006)	 and	 the	 resulting	 protein,	 there	 are	 many	 levers	373	
other	than	copy	number	that	can	be	used	to	alter	enzyme	production.	Morever,	374	
in	cases	where	copy	number	limits	protein	production,	one	can	amplify	genes	375	
on	the	chromosome	to	increase	copy	number	(Tyo	et	al.,	2009).	376	

Promoters	 play	 an	 essential	 role	 in	 controlling	 biosynthetic	 pathways.	377	
Inducible	 promoters	 are	 often	 essential	 for	 pathways	 that	 produce	 toxic	378	
products,	and	several	inducible	expression	systems	are	now	available	for	use	in	379	
bacteria,	 yeasts,	 and	 other	 organisms	 (Wang	 et	 al	 2012).	 Ensuring	 that	 these	380	
promoters	have	consistent,	 tunable	control	 in	all	cells	 in	a	culture	 is	essential	381	
for	 consistent	 production	 of	 the	 desired	 molecule	 and	 for	 preventing	 non-382	
producer	 cells	 from	 taking	 over	 the	 population	 (Khlebnikov	 et	 al.,	 2001;	 Lee	383	
and	Keasling,	2005).	Promoters	that	are	constitutive,	induced	by	starvation	or	384	
upon	 entry	 into	 stationary	 phase,	 or	 quorum-sensing	 allow	 for	 inexpensive,	385	
inducer-free	 gene	 expression,	 which	 is	 particularly	 important	 in	 large-scale	386	
production	 of	 chemicals	 and	 fuels,	 where	 the	 cost	 of	 the	 inducer	 is	 an	 issue	387	
(Tsao	 et	 al	 2010).	 However,	 a	 trade-off	with	 using	 constitutive	 expression	 of	388	
pathway	 enzymes	 is	 that	 these	 often	may	 account	 for	 a	major	 fraction	 of	 the	389	
cellular	 proteome.	 Although	 small	 non-coding	 RNAs	 can	 be	 used	 to	 control	390	
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protein	 expression	 (Na	 et	 al.,	 2013),	 so	 far	 there	 have	 been	 relatively	 few	391	
implementations	of	this	approach.	392	

Production	of	most	molecules	of	 interest	often	requires	several	enzymes,	and	393	
the	 expression	 of	 the	 genes	 encoding	 these	 enzymes	 must	 be	 coordinated.		394	
There	 are	 many	 ways	 to	 coordinate	 expression	 of	 multiple	 genes:	 1)	 use	395	
different	 inducible	 promoters	 for	 each	 gene;	 2)	 use	 the	 same	 inducible	396	
promoter	for	each	gene	but	vary	the	promoter	strength	(Bakke	et	al.	2009);	3)	397	
use	 a	 non-native	 RNA	 polymerase	 or	 transcription	 factor	 to	 control	 the	398	
expression	of	more	than	one	gene	(Alper	and	Stephanopoulos,	2007);	4)	group	399	
multiple,	 related	 genes	 into	 operons	 (and	 use	 internal	 ribosomal	 entry	400	
sequences	 in	eukaryotes	 (Komar	and	Hatzoglou,	2005);	5)	vary	 the	 ribosome	401	
binding	strength	for	the	enzymes	encoded	in	the	operon	(Salis	et	al.,	2009);	6)	402	
control	 segmental	mRNA	 stability	 of	 each	 coding	 region	 (Smolke	 et	 al.,	 2000;	403	
Pfleger	 et	 al.,	 2006);	 7)	 control	 the	 stability	 of	 each	 enzyme,	 and	 8)	 spatial	404	
control	 through	 attachment	 to	 a	 protein	 scaffold	 (Dueber	 et	 al.,	 2009)	 or	405	
targeting	to	special	organelles	(Fahri	et	al.,	2011;	Avalos	et	al.,	2013).	406	

In	 all	 of	 these	 cases,	 it	 is	 desirable	 for	 the	 metabolic	 engineer	 to	 know	 the	407	
specific	activity	of	each	enzyme	in	the	pathway	in	order	to	design	promoter	or	408	
ribosome	binding	site	strength	or	the	stability	of	mRNA	or	protein	in	order	to	409	
“dial	in”	the	correct	amount	of	enzyme	in	the	pathway.		However,	as	knowledge	410	
about	 the	 activity	 of	 each	 enzyme	 in	 vivo	 is	 often	 absent,	 the	 levels	 of	 each	411	
metabolite	and	enzyme	in	the	pathway	must	be	measured	to	determine	if	there	412	
are	 any	 pathway	 bottlenecks	 and	 then	 the	 level	 of	 expression	 (or	 mRNA	 or	413	
protein	 stability)	 of	 the	 limiting	 enzyme	 must	 be	 adjusted.	 This	 can	 be	 a	414	
laborious	process.	The	development	of	dynamic	regulators	using	transcription	415	
factors	that	can	sense	intermediates	 in	the	biosynthetic	pathway	(Farmer	and	416	
Liao,	2000;	Zhang	et	al.	2012)	or	promoters	that	respond	to	stress	(Dahl,	et	al.,	417	
2013)	eliminates	the	need	to	regulate	every	step	of	 the	pathway	and	puts	the	418	
control	in	the	hands	of	the	cell.	Similarly,	gene	expression	can	be	controlled	in	419	
response	 to	 medium	 components,	 as	 illustrated	 by	 promoters	 for	 hexose	420	
transporters	 in	 yeast	 allowing	 dynamic	 regulation	 of	 gene	 expression	 in	421	
response	 to	 the	 extracellular	 glucose	 concentration,	 which	 can	 be	 used	 to	422	
downregulate	 a	 pathway	 competing	 for	 the	precursor	needed	 for	 the	desired	423	
product	(Scalcinati	et	al.,	2012).	424	

Regardless	of	how	sophisticated	the	design	tools	and	how	good	the	blueprint,	425	
there	 will	 always	 be	 “bugs”	 in	 the	 engineered	 system,	 as	 we	 do	 not	 know	426	
everything	 about	 how	 metabolism	 is	 regulated.	 For	 the	 development	 of	427	
microbial	cell	factories,	systems	biology	can	provide	debugging	routines	(Park	428	
et	al.,	2007;	Park	et	al.,	2014;	Caspeta	et	al.,	2014;	Kizer	et	al,	2008).	Through	429	
transcriptomic,	 proteomic,	 and	 metabolomic	 measurements	 combined	 with	430	
integrative	analysis,	 it	 is	possible	to	get	 insight	 into	how	the	introduction	of	a	431	
metabolic	 pathway	 impacts	 overall	 cellular	 physiology.	Often,	 expression	of	 a	432	
heterologous	metabolic	 pathway	 elicits	 a	 stress	 response	 in	 the	 host,	 due	 to	433	
protein	overproduction	or	accumulation	of	toxic	intermediates	or	end	products	434	
(Gill	et	al.,	2000;	Martin	et	al.,	2003).	These	stresses	are	reflected	in	mRNA	and	435	
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proteins	 expression	 and	 can	 therefore	 be	 identified	 using	 analysis	 of	 the	436	
transcriptome,	 proteome,	 metabolome,	 or	 fluxome.	 Information	 from	 one	 or	437	
more	of	these	techniques	can	then	be	used	to	modify	expression	of	genes	in	the	438	
metabolic	pathway	or	 in	the	host	to	 improve	titers	and/or	productivity	of	the	439	
final	product.		440	

Adaptive laboratory evolution and high-throughput screening 441	
Once	 an	 organism	 is	 constructed	 with	 a	 desired	 metabolic	 pathway,	 it	 is	442	
necessary	 to	 further	 optimize	 the	 metabolic	 pathway	 to	 increase	 the	 TRY.	443	
Besides	directed	modification	of	gene	expression,	as	described	above,	TRY	can	444	
be	 improved	 using	 adaptive	 laboratory	 evolution	 (ALE)	 (Dragotis	 and	445	
Mattanovich,	2013).	If	production	of	the	desired	chemical	is	coupled	to	growth	446	
(that	is,	when	the	cells	grow	they	must	produce	the	chemical),	then	one	can	use	447	
improvements	in	the	growth	of	the	organism	to	improve	the	production	of	the	448	
desired	 molecule.	 ALE	 is	 one	 way	 to	 select	 for	 faster	 growing	 organisms,	449	
thereby	selecting	 for	higher	production	of	 the	desired	molecule,	as	 illustrated	450	
by	 succinic	 acid	 production	 by	 yeast	 (Otero	 et	 al.,	 2013).	 In	 this	 study,	 the	451	
normal	route	for	biosynthesis	of	glycine	was	deleted,	and	an	alternative	route	452	
was	introduced	that	resulted	in	production	of	succinic	acid	as	a	by-product,	so	453	
succinic	acid	became	a	growth-coupled	metabolite.	ALE	has	also	been	shown	to	454	
be	very	efficient	 for	 improving	growth	on	non-preferred	carbon	sources,	such	455	
as	glycerol	for	E.	coli	(Ibarra	et	al.,	2002),	galactose	for	yeast	(Hong	et	al.,	2011),	456	
and	xylose	for	yeast	(Kuyper	et	al.,	2005),	as	well	as	for	improving	the	tolerance	457	
to	harsh	conditions	or	to	the	product	of	interest,	as	reviewed	recently	(Dragotis	458	
and	Mattanovich,	 2013).	 Through	 the	 use	 of	 next	 generation	 sequencing	 and	459	
systems	 biology,	 it	 is	 possible	 to	 identify	 mutations	 responsible	 for	 the	460	
desirable	 phenoptypes.	 For	 example,	 a	 single	 mutation	 in	 the	 ERG3	 gene	461	
conferred	upon	yeast	the	ability	to	grow	at	elevated	temperatures	(Caspeta	et	462	
al.,	 2014).	 In	 this	 study	 deep	 sequencing	 of	 the	 genome	 gave	 clear	 hints	 on	463	
causal	 mutations,	 but	 transcriptome	 and/or	metabolome	 analysis	 assisted	 in	464	
mapping	molecular	mechanisms	underlying	the	acquired	phenotypes.	Thus,	the	465	
mutation	was	 found	 to	 result	 in	 altered	 sterol	 composition	 (ergosterol	 in	 the	466	
yeast	membrane	was	 replaced	by	 fecosterol)	and	 this	was	associated	with	an	467	
up-regulation	 of	 sterol	 metabolism.	 This	 showed	 that	 altered	 membrane	468	
properties	due	to	changes	in	sterol	composition	allowed	for	improved	growth	469	
at	elevated	temperatures.	470	

Although	it	is	trivial	to	tie	substrate	consumption	or	stress	tolerance	to	growth,	471	
coupling	production	of	the	majority	of	small	molecules	of	commercial	interest	–	472	
such	as	fatty	acids,	diols	and	diamines,	and	short-chain	alcohols	among	others	–	473	
to	 growth	 is	 difficult.	 It	 is	 therefore	 necessary	 to	 use	 other	 screening	 or	474	
selection	methods	to	identify	improved	strains.	The	combination	of	microtiter	475	
plates	 for	 growth	 of	 strain	 libraries	 with	 gas	 and	 liquid	 chromatography	476	
techniques	is	an	option,	but	the	throughput	(102-103	variants	per	machine	per	477	
day)	fall	far	short	of	levels	necessary	for	effective	interrogation	of	large	genetic	478	
libraries.	Microfluidic	cell	sorting	offers	interesting	opportunities	for	screening	479	
of	cell	libraries,	as	demonstrated	recently	for	identification	of	yeast	strains	with	480	
improved	xylose	uptake	(Wang	et	al.,	2014),	E.	coli	strains	with	improved	lactic	481	
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acid	production	 (Wang	et	 al.,	 2014),	 and	yeast	 strains	with	 improved	protein	482	
secretion	capacity	(Huang	et	al.,	2015).		483	

In	 nature,	 the	 need	 for	 sensitive,	 specific,	 small	 molecule	 detection	 and	484	
response	 has	 been	 addressed	 in	 part	 through	 evolution	 and	 selection	 for	485	
ligand-responsive	 transcription	 factors	 and	 their	 cognate	 promoters.	486	
Transcription	 factor-promoter	pairs	are	archetypal	genetic	devices	within	 the	487	
synthetic	biology	paradigm.	Abundant	in	nature,	highly	modular,	and	capable	of	488	
being	 evolved	 or	 re-engineered,	 transcription	 factor-based	 devices	 are	 well	489	
suited	for	a	broad	range	of	applications.	While	engineered	transcription	factor-490	
based	 biosensors	 have	 been	 employed	 for	 detection	 of	 exogenous	491	
environmental	 pollutants	 (Simpson	 et	 al.,	 1998),	 this	work	 has	 only	 recently	492	
been	 explored	 in	 the	 context	 of	 metabolic	 engineering	 (Chou	 and	 Keasling,	493	
2013).	 Through	 coupling	 increased	 production	 of	 an	 intracellular	 metabolite	494	
with	 expression	 of	 fluorescent	 proteins,	 fluorescent	 activated	 cell	 sorting	495	
(FACS)	 has	 been	 used	 for	 screening	 of	 strains	 with	 improved	 phenotype.	496	
Recently,	transcription	factor-based	detection	of	small	molecules	has	been	used	497	
to	 increase	 production	 of	 adipate,	 succinate,	 and	 1-butanol	 (Dietrich	 et	 al	498	
2013).	 We	 anticipate	 a	 time	 when	 biosensors	 can	 be	 readily	 made	 for	 any	499	
desired	 product,	 allowing	 use	 of	 high-throughput	 screening	 using	 FACS	 or	500	
microfluidics	and	hereby	significantly	reduce	the	time	required	 for	 improving	501	
the	TRY.			502	

Design-Build-Test-Learn cycle 503	

As	 described	 above,	 the	 typical	 process	 for	 engineering	 metabolism,	 as	 any	504	
other	system,	involves	four	highly	interdependent	modules	(Fig.	3):	Design	(D)	505	
of	a	biological	system,	 in	this	case	metabolic	pathways	in	a	microorganism,	to	506	
produce	a	desired	molecule	and	coding	of	these	pathways	into	DNA	parts	and	507	
assembly	 instructions;	 Build	 (B)	 the	 biological	 system	 from	 DNA	 parts	 and	508	
production-relevant	microbial	chassis,	using	inputs	from	D	and	tools	developed	509	
through	 synthetic	 biology;	 Test	 (T)	 to	 determine	 if	 and	 how	 the	 engineered	510	
biological	system	from	B	carried	out	the	desired	function,	using	cell	physiology	511	
and	omics	(possibility	to	integrate	via	systems	biology	tools);	and	Learn	(L)	to	512	
glean	 information	 from	 the	 performance	 of	 engineered	 biosystems	 to	 inform	513	
decision-making	in	D,	B,	and	T.		514	

Although	 these	 steps	 are	 now	 carried	 out	 in	 the	 research	 laboratory	 and	 a	515	
single	 turn	of	 the	DBTL	 cycle	 can	 take	months	 of	work	 (Qin	 et	 al.,	 2015),	we	516	
envision	 a	 time	 when	 metabolic	 engineering	 will	 more	 closely	 resemble	517	
electronics	 engineering,	 with	 turn-around	 times	 on	 the	 order	 of	 days	 to	 a	518	
couple	 of	 weeks.	 Computer-aided	 design	 software	 for	 biology	 will	 allow	 the	519	
metabolic	 engineer	 to	 design	 a	 metabolic	 pathway	 inside	 an	 organism	 of	520	
interest,	 send	 that	 design	 to	 a	 biological	 foundry	 that	 would	 construct	 the	521	
pathway	in	the	organism	of	interest	(Chen	et	al.	2012),	and	within	a	reasonable	522	
time-frame	 send	 that	 engineered	 organism	 back	 to	 the	 engineer	 for	 scale-up	523	
and	 production.	 	 In	 order	 for	 the	 foundry	 to	 be	 able	 to	 reliably	 construct	 a	524	
functional	metabolic	pathway	inside	the	target	organism,	the	foundry	will	need	525	
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all	 of	 the	 tools	 to	 build	 the	 pathway	 (e.g.,	 robotic	 liquid	 handling	 or	526	
microfluidics	for	DNA	construction	(Shi	et	al.	2015),	genetic	control	systems	to	527	
control	 the	 genes	 of	 the	 new	metabolic	 pathway	 (Lee	 et	 al.	 2011;	 Lee	 et	 al.,	528	
2015),	 tools	 to	knockout	 competing	pathways	 inside	 the	host	 organism,	 etc.),	529	
methods	 and	 equipment	 for	 growing	 and	 assaying	 for	 the	 final	 product,	 and	530	
above	all,	machine	learning	software	to	gather	the	successes	and	failures	of	the	531	
design,	build,	and	test	processes	and	attempt	to	 learn	from	those	to	make	the	532	
design	software	more	capable	during	the	next	round.		Although	it	may	be	some	533	
time	 before	 metabolic	 engineering	 has	 the	 rapid	 turnarounds	 of	 electronics	534	
engineering,	 new	 technologies	 as	 discussed	 below	 will	 clearly	 lead	 to	 a	535	
significant	reduction	in	the	turnaround	time	in	the	DBTL	cycle.	536	

Design 537	
Current	pathway	design	is	often	treated	as	a	one-off	process,	relying	heavily	on	538	
domain	 expertise	 with	 no	 standardization.	 The	 pathway	 designer	 generally	539	
determines	what	organism	he/she	will	use	for	the	production	process	based	on	540	
the	 starting	materials	 available	 (e.g.,	 sucrose	 from	 cane,	 glucose	 from	 starch,	541	
mixed	sugars	from	cellulosic	biomass),	the	toxicity	of	the	desired	product	to	an	542	
organism,	 and	 the	processing	 conditions	necessary	 to	produce	and	purify	 the	543	
desired	 product	 (e.g.,	 high	 temperature,	 low	 pH,	 etc).	 Based	 on	 the	 choice	 of	544	
organism,	 the	 metabolic	 engineer	 is	 provided	 with	 an	 available	 set	 of	545	
intracellular	metabolites	 from	which	 to	 produce	 the	 desired	 end	 product.	 To	546	
get	 from	 the	 available	 starting	 metabolites	 inside	 the	 cell	 to	 the	 desired	547	
product,	 the	metabolic	engineer	searches	 for	enzymes	that	could	be	used	 in	a	548	
heterologous	 metabolic	 pathway;	 these	 enzymes	 can	 be	 found	 in	 online	549	
databases	 of	 pathways,	 the	 literature	 where	 metabolic	 pathways	 of	 various	550	
organisms	are	described,	 and	genome	sequence	databases	where	annotations	551	
might	 indicate	 reactions	 that	 have	 little	 to	 no	 documentation	 in	 a	 particular	552	
host.	 In	 cases	where	no	specific	enzyme	can	be	 identified,	one	may	evolve	an	553	
enzyme	to	carry	out	the	desired	reaction	(Renata	et	al.,	2015)	or	construct	an	554	
enzyme	de	novo	(Siegel	et	al.,	2010),	which	is	quite	difficult.	555	

The	 approach	 described	 above	 is	 difficult	 to	 scale,	 and	 is	 often	 inefficient	556	
because	there	is	no	ability	to	reuse	parts	or	data	from	related	designs.	For	data	557	
capture	 and	 exchange,	 there	 are	 local	 successes	 in	 the	 broader	 community,	558	
such	as	the	systems	biology	community,	where	standards	have	been	developed	559	
for	 -omics	 data	 capture,	 but	 there	 is	 little	 formalism	 around	 genotype	560	
specification,	 strain	 construction	 specification,	 and	 particularly	 formal	561	
representation	 of	 observations	 about	 data.	 Small-scale	 labs	 will	 frequently	562	
capture	these	data	on	paper	or	perhaps	a	spreadsheet	in	no	particular	format,	563	
making	 it	 extremely	 problematic	 to	 apply	 these	 results	 to	 an	 open-source	564	
production	framework.	565	

Here,	 a	 BioCAD	 software	 providing	 information	 about	 the	 starting	 materials	566	
available	and	 the	desired	product	would	be	extremely	useful	and	 this	kind	of	567	
software	 would	 identify	 a	 range	 of	 suitable	 organisms	 based	 on	 substrates	568	
available	and	process	conditions	necessary	 to	produce	and	purify	 the	desired	569	
product	 (e.g.,	 low	 pH,	 high	 temperature,	 etc).	 After	 the	 user	 selects	 the	570	
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organism,	 the	 BioCAD	 software	 would	 then	 identify	 all	 possible	 pathways	571	
between	 available	 intermediates	 in	 the	 cell	 and	 the	 final	 product,	 e.g.	 using	572	
BNICE.ch	 (Hadadi	 and	 Hatzimanikatis,	 2015).	 Furthermore,	 using	 detailed	573	
metabolic	 models,	 BioCAD	 would	 be	 able	 to	 enumerate	 different	 metabolic	574	
engineering	 targets	 that	 would	 improve	 the	 yield	 in	 the	 conversion	 of	 the	575	
substrate	 to	 the	 product.	 Here	 genome-scale	 metabolic	 models	 (GEMs)	 have	576	
shown	 to	 be	 particular	 useful	 (O’Brien	 et	 al.,	 2015;	 Lee	 and	 Kim,	 2015),	 and	577	
GEMs	have	been	developed	for	most	industrially	relevant	microorganisms	(Kim	578	
et	 al.,	 2012;	Garcia-Albornoz	and	Nielsen,	2013).	Recently,	 these	models	have	579	
been	 expanded	 to	 include	 many	 other	 key	 cellular	 processes,	 such	 as	580	
transcription	 and	 translation	 (O’Brien	 and	 Palsson,	 2015),	 allowing	 for	581	
improved	simulation	capabilities	of	these	models.	A	strength	of	these	models	is	582	
that	they	are	so-called	open-ended,	which	means	that	new	information	can	be	583	
added	 to	 the	 models	 when	 this	 is	 acquired.	 This	 was	 illustrated	 in	 a	 recent	584	
study	on	oxidative	stress	in	E.	coli,	where	several	key	pathways	were	identified	585	
to	 be	 missing	 in	 the	 GEM	 but	 when	 added	 performance	 of	 the	 model	 was	586	
improved	 (Brynhildsen	 et	 al.,	 2013).	 These	 models	 do,	 however,	 have	587	
limitations	 as	 they	 only	 provide	 stoichiometric	 constraints,	 and	 there	 have	588	
therefore	 been	 developments	 towards	 integrating	 kinetic	 information	 into	589	
GEMs,	and	the	BioCAD	software	could	also	have	the	Vmax	and	Km	values	for	all	of	590	
the	necessary	enzymes	–	as	well	as	dependencies	of	the	enzymes	for	cofactors,	591	
pH,	 temperature,	 etc.	 –	 so	 that	 promoters,	 mRNA	 stabilities,	 and	 enzyme	592	
stabilities	 could	 be	 programmed	 to	 deliver	 the	most	 appropriate	 enzyme	 for	593	
each	step	in	the	correct	amount	to	achieve	the	desired	reaction.	Once	all	design	594	
alternatives	are	evaluated,	the	best	choice	would	be	sent	for	construction.	595	

Build 596	
The	build	phase	is	the	construction	or	retrofitting	of	the	metabolic	pathway	in	597	
the	 desired	 host	 as	well	 as	 deregulating	 the	 central	 carbon	metabolism	 such	598	
that	 a	 higher	 flux	 can	 be	 directed	 towards	 the	 product	 of	 interest.	 Pathway	599	
reconstruction	includes	synthesis	of	large	DNA	constructs	containing	the	genes	600	
encoding	 the	 enzymes	 of	 the	metabolic	 pathways	 and	 the	 associated	 genetic	601	
control	 systems	 to	regulate	enzyme	production.	 	Build	also	 includes	knocking	602	
out	 genes	 or	 pathways	 that	 might	 compete	 or	 otherwise	 interfere	 with	 the	603	
functioning	of	the	heterologous	metabolic	pathway.	604	

Large	 DNA	 construction	 is	 one	 area	 that	 has	 greatly	 expanded	 over	 the	 past	605	
several	years	 (Kosuri	and	Church,	2014).	 	 It	 is	now	possible	 to	purchase	 long	606	
DNA	that	will	encode	an	entire	enzyme	or	a	series	of	enzymes	to	constitute	an	607	
entire	metabolic	pathway.		This	has	greatly	reduced	the	time	and	effort	needed	608	
to	build	metabolic	pathways,	allowing	the	metabolic	engineer	to	focus	more	on	609	
developing	the	host.		610	

In	 theory,	 any	 build	 team	 would	 have	 at	 their	 disposal	 a	 variety	 of	 host	611	
organisms	 that	 have	 different	 characteristics:	 different	 optimal	 growth	612	
temperatures,	 pH	 optima,	 abilities	 to	 tolerate	 various	 chemicals,	 abilities	 to	613	
consume	 different	 carbon	 sources	 etc.	 Ideally,	 these	 hosts	 would	 all	 be	614	
transformable	 and	 have	well-characterized	 genetic	 systems	 that	would	 allow	615	
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for	control	of	transcript	and	protein	abundance	and	timing	of	pathway	activity	616	
during	the	various	phases	of	growth.	In	reality,	this	is	rarely	the	case:	only	a	few	617	
hosts	are	known	well	enough	to	allow	rapid	and	easy	construction	of	metabolic	618	
pathways,	and	even	in	the	case	of	well-known	hosts,	the	genetic	tools	are	rarely	619	
characterized	to	the	extent	that	the	desired	level	of	the	metabolic	pathway	can	620	
be	programmed	accurately.	For	 instance,	expression	 from	a	specific	promoter	621	
may	be	context-dependent	and	therefore	vary	depending	on	what	other	genetic	622	
modifications	are	introduced	into	the	host	cell.			623	

The	 recent	 development	 of	 CRISPR/Cas9	 systems	 has	 allowed	 engineering	 of	624	
nearly	any	host	that	is	transformable	(Jinek	et	al	2012).	Modifications	of	these	625	
systems	allow	insertion	of	many	genes	into	many	target	sites	(Jakociunas	et	al.	626	
2015),	 knockout	 or	 downregulation	 of	 competing	 pathways	 (Gilbert	 et	 al.	627	
2013),	 and	 upregulation	 of	 beneficial	 pathways.	 These	 methods	 will	 likely	628	
continue	to	be	used	and	will	become	a	standard	tool	in	the	genetic	engineering	629	
toolbox.	 Furthermore,	 even	 though	 well-characterized	 promoters,	 ribosome	630	
binding	 sites,	 mRNA	 stability	 elements,	 and	 the	 like	 are	 limited,	 the	631	
development	 of	 computer	 algorithms	 to	 calculate	 native	 promoter	 and	632	
ribosome	 binding	 site	 strength	 and	 then	 to	 design	 new	 ones	 will	 greatly	633	
facilitate	 construction	 of	 metabolic	 pathways	 that	 perform	 as	 desired	 (Salis,	634	
2011).			635	

Test 636	
The	test	phase	includes	anything	that	determines	the	efficacy	of	the	Design	and	637	
Build,	 including	 but	 not	 limited	 to	 1)	 verification	 of	 Build	 success	 (i.e.,	638	
construction	 of	metabolic	 pathway,	 knockout	 of	 specific	 genes,	 integration	 of	639	
genes,	 etc.),	 2)	 growth	 and	 physiological	 characterization	 of	 the	 engineered	640	
cells,	and	3)	measurement	of	the	transcripts,	proteins,	and/or	final	products	of	641	
the	engineered	pathway,	often	at	genome-scale.	It	is	advantageous	to	use	high-642	
throughput	 methods,	 e.g.	 transcriptomics,	 proteomics,	 and	 metabolomics,	 as	643	
these	allow	 for	global	analysis	of	 cellular	metabolism.	 It	 is	difficult	 to	analyze	644	
multiple	 data	 types,	 but	GEMs	provide	 a	 good	 scaffold	 for	 analysis	 (Patil	 and	645	
Nielsen,	 2005;	 Usaite	 et	 al.,	 2009).	 High-throughput	 analysis	 allow	 for	646	
measurements	of	specific	pathway	protein	production	(Redding-Johanson	et	al.,	647	
2011),	specific	metabolite	presence	or	perturbation,	or	specific	gene	expression	648	
(Regenberg	 et	 al.,	 2009;	 Boer	 et	 al.,	 2010).	 However,	 the	 technologies	 were	649	
developed	for	low-throughput	research	and	biomarker	identification	for	small	650	
numbers	 of	 proteins	 or	 metabolites,	 and	 when	 adapted	 for	 metabolic	651	
engineering	 applications,	 they	 are	 slow	 and	 only	 allow	 analysis	 of	 a	 smaller	652	
subset	 of	 strains.	 As	 a	 result,	 they	 cannot	 be	 used	 for	 routine	 analysis	 in	 the	653	
Test	phase,	as	 this	would	be	too	costly	and	time-consuming.	The	absence	of	a	654	
comprehensive	 dataset	 for	 each	 constructed	 strain	 severely	 limits	655	
improvement	 in	 the	success	rate	of	 the	DBTL	cycle,	so	 improved	technologies	656	
for	formalizing	data	capture,	data	analysis	and	interpretation	are	needed.	657	

Learn 658	
Learning	 is	 possibly	 the	 most	 weakly	 supported	 step	 in	 current	 metabolic	659	
engineering	practice,	yet	perhaps	the	most	important	to	increasing	the	rate	of	660	
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success.	 It	 is	 typically	 nonsystematic	 and	 lacks	 statistical	 rigor,	 relying	 on	ad	661	
hoc	 observations,	 literature	 data,	 and	 intuition	 gathered	 by	 individual	662	
researchers	 responsible	 for	 the	 next	 round	 of	 pathway	 design.	 Failed	663	
experiments	 are	 often	 discarded	 or	 inaccessible	 to	 data	mining,	 and	 seen	 as	664	
uninformative,	 with	 only	 rare	 success	 selectively	 archived.	 Nonetheless,	 it	 is	665	
clear	 that	 experienced	 laboratories	 can	 more	 consistently	 produce	 target	666	
molecules	 of	 interest,	 suggesting	 an	 opportunity	 to	 formalize	 the	 learning	667	
process.		668	

One	 area	 where	 the	 DBTL	 cycle	 may	 particular	 contribute	 to	 gaining	 new	669	
biological	 insight	 is	 on	 how	 metabolism	 is	 regulated.	 We	 have	 extensive	670	
information	 about	 regulation	 of	 metabolism,	 but	 this	 is	 generally	 based	 on	671	
studies	of	one	or	a	few	regulatory	components.	A	few	systems	biological	studies	672	
have	enabled	global	mapping	of	key	regulatory	components,	e.g.	Snf1	 in	yeast	673	
(Usaite	et	al.,	2009),	but	it	is	still	a	challenge	to	integrate	this	information	into	674	
concrete	 design	 strategies.	 However,	 by	 integrating	 engineering	 design	 with	675	
available	 information	 about	 regulation,	 possibly	 combined	with	 targeted	new	676	
experiments	 to	 identify	 novel	 regulatory	 structures,	 it	 may	 be	 possible	 to	677	
significantly	advance	our	understanding	of	how	metabolism	is	regulated	at	the	678	
global	 level.	This	may	allow	 for	new	strategies,	 as	 targeting	 regulation	 can	 in	679	
some	 cases	 be	 better	 than	 simply	 over-expressing	 specific	 pathway	 enzymes.	680	
This	has	been	 illustrating	 in	 improving	galactose	uptake	 rate	by	yeast,	where	681	
over-expression	 of	 individual	 or	 combinations	 of	 enzymes	 of	 the	 Leloir	682	
pathway	did	not	improve	galactose	uptake	rate	(de	Jong	et	al.	2008),	whereas	a	683	
40%	increase	in	galactose	uptake	rate	could	be	obtained	by	engineering	of	the	684	
GAL-regulon	(Ostergaard	et	al.,	2000)	685	

Recently,	 statistical	 techniques	 such	 as	 principal	 component	 analysis	 (PCA)	686	
have	been	used	to	analyze	data	from	engineered	organisms	to	inform	the	next	687	
round	 of	 design	 (Alonso-Gutierrez	 et	 al.	 2015).	 In	 the	 past,	 data	 from	688	
proteomics	analysis	were	 too	complicated	 to	allow	one	 to	deduce	 trends	 that	689	
could	be	used	to	understand	system	limitations	and	to	reengineer	the	system,	690	
but	techniques	like	PCA	allow	the	analysis	of	small	datasets	to	reveal	patterns	691	
or	 trends	 that	 can	be	used	 to	guide	 re-design	of	 a	biological	 system.	As	more	692	
data	of	any	one	type	and	more	diverse	data	are	collected,	it	will	be	necessary	to	693	
use	more	sophisticated	data	analysis	tools,	such	as	machine	learning	algorithms	694	
(Tarca	et	al	2007).	Machine	learning	techniques	are	being	used	in	a	diverse	set	695	
of	 applications,	 but	 to	 date	 it	 has	 been	 used	 relatively	 little	 for	 metabolic	696	
engineering	 purposes.	 It	 may,	 however,	 offer	 the	 possibility	 of	 deducing	697	
patterns	and	trends	that	will	aid	in	redesign	of	biological	systems.		698	

At	this	time,	many	biological	engineering	exercises	still	do	not	collect	the	vast	699	
amounts	of	data	that	are	collected	in	other	settings,	such	as	over	the	internet.	700	
With	improvements	in	the	types	and	speed	with	which	we	can	collect	data	on	701	
engineered	systems,	we	will	soon	be	awash	in	data	and	will	need	computational	702	
methods	 to	make	 sense	 of	 it	 all.	 This	will	 allow	 us	 to	 identify	 bottlenecks	 in	703	
biosynthetic	 pathways,	 diagnose	 exactly	 why	 the	 bottlenecks	 exist,	 and	704	
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reengineer	 systems	 to	 produce	 higher	 titers,	 rates,	 and	 yields	 of	 the	 desired	705	
product	in	less	time	with	less	human	intervention.	706	

Perspectives 707	

The	 development	 of	 cell	 factories,	 which	 can	 be	 used	 for	 cost-efficient	708	
production	 of	 fuels,	 chemicals,	 foods,	 feeds	 and	 pharmaceuticals,	 requires	709	
multiple	rounds	of	the	DBTL	cycle,	often	because	we	are	missing	knowledge	of	710	
how	metabolism	is	regulated.	This	takes	time	and	is	costly.	The	main	reason	for	711	
this	is	the	extensive	robustness	of	cell	metabolism	which	is	due	to	redundancy,	712	
regulation	and	tight	interaction	of	metabolism	and	all	other	cellular	processes.	713	
Metabolism	has	evolved	to	support	cell	growth	and	maintenance,	and	when	we	714	
seek	 to	 engineer	 the	 metabolism	 such	 that	 metabolic	 fluxes	 are	 redirected	715	
towards	a	specific	metabolite,	the	regulation	within	the	cell	will	strive	to	keep	716	
homoeostasis	 and	 therefore	 counteract	 our	 engineering	 efforts.	 However,	 by	717	
formalizing	 the	 learn	 part	 of	 the	 DBTL	 cycle	 it	 will	 be	 possible	 to	 capture	718	
knowledge	 generated	 in	 different	 metabolic	 engineering	 efforts	 and	 hereby	719	
accelerate	the	process.	This	will	require	establishment	of	BioCAD	software	that	720	
can	 integrate	 knowledge	 and	 hereby	 be	 used	 as	 an	 interactive	 tool	 for	721	
improved	design	by	the	metabolic	engineer.	We	envisage	that	BioCAD	can	also	722	
hold	 information	 about	 detailed	metabolic	models	 for	 platform	 cell	 factories,	723	
information	about	promoters,	terminaters,	integration	sites,	vectors	etc.	so	the	724	
complete	 design	 process	 can	 be	 automated.	 BioCAD	 could	 also	 be	 used	 to	725	
integrate	 so-called	Big	Data,	 e.g.	where	multi-omics	data	 from	many	different	726	
strains	 are	 collected	 and	 analyzed	 in	 an	 integrative	 fashion.	 Together	 with	727	
information	 about	 transcription	 factor	 networks	 and	 protein-protein	728	
interaction	 networks,	 this	 could	 be	 used	 to	 gain	 much	 new	 insight	 into	729	
regulation	of	the	applied	cell	factory.	This	will	allow	the	metabolic	engineer	to	730	
rapidly	 test	 different	 designs	 and	 score	 these	 against	 each	 other,	 and	 hereby	731	
facilitate	 the	 design	 phase.	 With	 the	 advancement	 in	 DNA	 synthesis	 and	732	
robotics	 for	 cloning	 and	 phenotypic	 characterization,	 the	 build	 and	 test	733	
processes	may	 also	 to	 a	 large	 extend	 be	 automated,	 and	 the	 development	 of	734	
novel	 cell	 factories	 will	 develop	 similarly	 as	 seen	 in	 other	 manufacturing	735	
processes.	736	

Even	though	we	do	have	extensive	knowledge	about	yeast	and	E.	coli	 that	can	737	
be	integrated	into	a	future	BioCAD,	a	major	hindrance	for	advancement	of	the	738	
field	 is	 our	 lack	 of	 fundamental	 knowledge.	 We	 mentioned	 several	 of	 these	739	
earlier,	but	it	will	also	be	necessary	to	expand	our	current	list	of	platform	cell	740	
factories	 in	order	 to	expand	 the	possibilities	 for	biochemical	 transformations.	741	
Thus,	 not	 all	 pathways	 express	 well	 in	 yeast	 and	 E.	 coli	 and	 it	 may	 also	 be	742	
necessary	 to	 have	 cell	 factory	 platforms	 that	 can	 operate	 at	 extreme	743	
temperatures,	 extreme	 pH-values	 (high	 and	 low),	 and	 extreme	 salt	744	
concentrations.	 The	 development	 of	 solid	 knowledge	 base	 for	 such	 new	745	
platform	cell	factories	will	obviously	be	time	consuming,	but	using	the	scaffold	746	
for	 knowledge	 integration	 established	 through	 BioCAD	 it	 will	 be	 possible	 to	747	
advance	rapidly.	748	
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Table	 1.	 Success	 stories	 of	 how	metabolic	 engineering	 has	 been	 applied	 for	1076	
improvement	 of	 existing	 bioprocesses	 (lysine)	 and	 for	 development	 of	 novel	1077	
bioprocesses.		1078	

	1079	
Chemical	 Application	 Cell	Factory	 Companies	

Lysine	 Feed	additive	(>1	million	
tons/year)	

Corynebacterium	
glutamicum	

Evonik,	ADM,	
CJ,	Ajinomoto	

1,3-Propanediol	 Chemical	building	block,	used	
for	production	of	materials,	
cosmetics	and	food	
ingredients	

Escherichia	coli	 Dupont	and	
Tate&Lyle	joint	
venture	

7-ADCA	 Precursor	for	the	broad-
spectrum	antibiotic	
Cephalexin	

Penicillium	
chrysogenum	

DSM	

1,4-Butanediol	 Chemical	building	block,	e.g.	
for	production	of	Spandex	

Escherichia	coli	 Genomatica	

Artemisinic	acid	 Anti-malarial	drug	 Saccharomyces	
cerevisiae	

Sanofi	Aventis	
(process	
developed	by	
Amyris)	

Isobutanol	 Advanced	biofuel	 Saccharomyces	
cerevisiae	

Gevo,	Butamax	

	1080	

	 	1081	



Page	27	of	29	

	

	1082	

	1083	

Fig.	 1	 Development	 of	 novel	 bioprocesses.	 A.	 The	 typical	 workflow	 for	1084	
developing	a	biotech	process	for	production	of	a	new	molecule.	TRY	stands	for	1085	
titer,	rate	and	yield.	B.	With	current	technologies	development	of	a	final	strain	1086	
that	can	be	used	for	industrial	production	from	a	proof	of	principle	strain	takes	1087	
several	 years	 and	 is	 costly.	 There	 is	 a	 need	 for	 new	 technologies	 that	 can	1088	
shorten	the	development	time	and	reduce	the	costs.	C.	Example	of	time	and	cost	1089	
for	development	of	bioprocesses	for	two	molecules	that	have	been	launched	on	1090	
the	market,	the	anti-malarial	drug	artemisinin	and	the	chemical	building	block	1091	
1,3	propanediol.	1092	
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	1095	

Fig.	2	The	bow-tie	structure	of	metabolism	and	acetyl-CoA	metabolism	in	yeast.	1096	
A.	 According	 to	 the	 bow-tie	 structure	 of	 metabolism	 all	 carbon	 sources	 are	1097	
converted	 to	 12	 precursor	 metabolites	 that	 are	 used	 for	 biosynthesis	 of	 all	1098	
secreted	 metabolites.	 The	 precursor	 metabolites	 are	 also	 used	 for	 the	1099	
biosynthesis	 of	 all	 building	 blocks	 that	 are	 needed	 for	 synthesizing	1100	
macromolecules	 making	 up	 the	 biomass	 of	 the	 cell.	 The	 12	 precursor	1101	
metabolites	 are:	 glucose-6-phosphate,	 fructose-6-phosphate,	 ribose-5-1102	
phosphate,	 erythrose-4-phosphae,	 glyceraldehyde-3-phosphate,	 3-1103	
phosphoglycerate,	 phosphoenol-pyruvate,	 pyruvate,	 acetyl-CoA,	 2-1104	
oxoglutarate,	 succinyl-CoA	and	oxaloacetate.	 	B.	 Illustration	of	how	an	acetyl-1105	
CoA	over-producing	strain	can	be	used	as	a	platform	strain	for	production	of	a	1106	
range	 of	 different	 molecules.	 Acetyl-CoA	 (AcCoA)	 metabolism	 in	 yeast	 is	1107	
compartmentalized	and	there	is	no	direct	exchange	of	this	metabolite	between	1108	
the	 different	 compartments.	 AcCoA	 is	 formed	 in	 the	 mitochondria	 from	1109	
pyruvate	and	enters	the	tricarboxylic	acid	cycle	(TCA).	AcCoA	is	also	formed	in	1110	
the	 peroxisome	 from	 either	 fatty	 acids	 or	 acetate,	 and	 can	 via	 the	 glyoxylate	1111	
cycle	(GYC)	be	converted	to	malate	that	can	be	transported	to	the	mitochondria	1112	
for	oxidation.	In	order	to	ensure	efficient	secretion	of	the	product	from	the	cell	1113	
it	is	generally	preferred	to	reconstruct	the	heterologous	pathway	in	the	cytosol,	1114	
and	there	 is	 therefore	a	need	to	ensure	efficient	provision	of	cytosolic	AcCoA.	1115	
AcCoA	 in	 the	 cytosol	 is	 produced	 from	 acetate	 and	 is	 used	 for	 production	 of	1116	
acetoacetyl-CoA	(AcAcCoA),	required	for	the	biosynthesis	of	sterols	via	farnesyl	1117	
pyrophosphate	 (FPP),	 and	 production	 of	malonyl-CoA	 (MalCoA),	 required	 for	1118	
fatty	 acid	 biosynthesis.	 AcAcCoA,	 MalCoA,	 FPP	 and	 fatty	 acids	 can	 all	 be	1119	
converted	to	commercially	interesting	products.	 	1120	
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	1121	

	1122	

Fig.	3	The	Design-Build-Test-Learn	 cycle	 of	metabolic	 engineering.	 Following	1123	
identification	of	a	target	molecule,	a	regulatory	circuit	to	be	used	for	expression	1124	
and	a	suitable	host	the	biological	system	are	designed.	This	may	involve	the	use	1125	
of	mathematical	models	of	metabolism	and	BioCAD	software	designing	optimal	1126	
constructs.	Thereafter	the	pathway	is	reconstructed	in	the	build	phase	and	the	1127	
central	 carbon	metabolism	 is	 engineered	 to	 ensure	 efficient	 provision	 of	 the	1128	
precursor	 metabolite.	 The	 constructed	 strain	 is	 tested	 in	 bioreactors	 that	1129	
simulate	 industrial-like	 conditions,	 and	 following	 analysis	 of	 the	 data	 new	1130	
knowledge	is	generated.	This	 is	stored	in	the	 learn	phase	of	the	cycle	and	can	1131	
hereby	be	used	for	improved	design	in	the	next	round.	1132	
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