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ABSTRACT: Comprehensive monitoring of perfluoroalkyl and polyfluoroalkyl substances (PFASs) is challenging because of the
high analytical cost and an increasing number of analytes. We developed a machine learning pipeline to understand environmental
features influencing PFAS profiles in groundwater. By examining 23 public data sets (2016−2022) in California, we built a state-wide
groundwater database (25,000 observations across 4200 wells) encompassing contamination sources, weather, air quality, soil,
hydrology, and groundwater quality (PFASs and cocontaminants). We used supervised learning to prescreen total PFAS
concentrations above 70 ng/L and multilabel semisupervised learning to predict 35 individual PFAS concentrations above 2 ng/L.
Random forest with ADASYN oversampling performed the best for total PFASs (AUROC 99%). XGBoost with SMOTE
oversampling achieved the AUROC of 73−100% for individual PFAS prediction. Contamination sources and soil variables
contributed the most to accuracy. Individual PFASs were strongly correlated within each PFAS’s subfamily (i.e., short- vs long-chain
PFCAs, sulfonamides). These associations improved prediction performance using classifier chains, which predicts a PFAS based on
previously predicted species. We applied the model to reconstruct PFAS profiles in groundwater wells with missing data in previous
years. Our approach can complement monitoring programs of environmental agencies to validate previous investigation results and
prioritize sites for future PFAS sampling.
KEYWORDS: PFAS, Groundwater, Multilabel Classification, Semisupervised Learning, Pseudolabeling, Environmental Data Science

1. INTRODUCTION
Per- and polyfluoroalkyl substances (PFASs), a family of over
50001 anthropogenic contaminants, are an environmental
health concern2 due to their widespread occurrence and
persistence in the environment (e.g., groundwater,3 surface
water,4 soil,5 and precipitation6). State and national surveys
have started to study the extent of PFAS pollution and its
impact on human receptors (e.g., via drinking water). In June
2022, the U.S. Environmental Protection Agency (EPA)
modified its drinking-water health advisory level of 70 ng/L7

for combined concentrations of perfluorooctanesulfonate
(PFOS) and perfluorooctanoate (PFOA) to 0.02 and 0.004
ng/L for PFOS and PFOA, respectively, in response to
growing public concern. In March 2023, Maximum Con-
taminant Levels of 4 ng/L were proposed for PFOA and
PFOS, and a Hazard Index was proposed for a combination of
four other PFASs (perfluorobutanesulfonate (PFBS), perfluor-

ohexanesulfonate (PFHxS), perfluoronoanoic acid (PFNA),
and GenX).8

Given the rapidly evolving landscape of PFAS legislation,
there are many challenges in establishing widespread
monitoring programs. First, PFAS monitoring is costly because
it requires advanced analytical chemistry techniques, liquid
chromatography tandem mass spectrometry modified to
contain low fluoropolymer PFAS cross-contamination, and
robust QA/QC methods. In addition, standardized methods
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have been quickly evolving (e.g., DoD QSM Table B-15, EPA
533, Draft EPA 1633), adapting to include additional PFASs of
concern based on their availability as native and mass-labeled
standards. The Unregulated Contaminant Monitoring Rule 3
(UCMR3) report by the EPA9 determined concentrations of
six perfluoroalkyl acids (PFAAs; carboxylates (PFCAs) and
sulfonates (PFSAs)) in public drinking water systems and
groundwater. This effort found concerning PFAS concen-
trations (exceeding 70 ng/L, a previous health advisory level)
in California water samples, where approximately 40% of
drinking water is supplied by groundwater wells.10 UCMR5 is
currently underway and considers 35 individual PFASs
(PFCAs, PFSAs, fluorotelomer sulfonates (FTSs), sulfonamide
derivatives, chlorinated PFASs, and ether carboxylates
(PFECAs)). The inclusion of additional PFASs is important
to recognize shifts in PFAS manufacture and use (e.g., long- to
short-chain PFAAs, PFECAs), as well as polyfluorinated
transformation in the environment.11

The distribution of PFASs in groundwater is influenced by
contamination sources and environmental fate drivers, such as
hydrology,12 geochemistry, microbial transformations,11,13

weather events,6,14 and air deposition.15,16 Several studies
have reported the mechanisms of transport and fate of PFASs
from pollution sources to soil and groundwater.17,18 Recently,
PFAS air emissions have been studied using a Community
Multiscale Air Quality model to link the emission concen-
trations, deposition distances, and deposition volumes of
different PFASs.15 Moreover, some individual PFASs are
known to be used by applications and industries with common
co-occurring contaminants (i.e., chlorinated solvents, hydro-
carbons, and heavy metals), all of which can inform PFAS
monitoring strategies. As more PFAS monitoring data become
available, missing concentrations of individual PFAS that were
not included in previous monitoring efforts could be predicted
based on correlations with measured PFAS target analytes and
with environmental features. Historical PFAS profiles can also
inform us about the comprehensiveness of PFAS monitoring
policies, remediation, and PFAS source treatment.
To complement PFAS analytical efforts that cannot sample

every single well, we can leverage data science tools to predict
unmeasured PFAS data from previous years and identify
potential unmonitored PFAS hot spots. Machine learning
(ML) is an application of artificial intelligence that learns from
big data without programming explicitly. Several ML methods
have been successfully applied to predict and monitor
environmental pollutants in groundwater. Logistic regression,
random forests, and Bayesian networks are commonly used for
analytes such as heavy metals,19 nitrate,20 fluoride,21 and
PFAS.22−24 ML PFAS studies have predicted the occurrence of
PFAS in water resources. The PFAS source25 and coconta-
minants22,26 were considered the most important features for
these ML predictions. However, state-wide PFAS contami-
nation in groundwater may be too complex to be explained by
a single hydrological or geochemical model.27 PFAS flux sinks
in groundwater not only stem from sewage discharge but also
from air deposition,28 as well as infiltration of soil
contaminants25 and colloid-facilitated transport.29

Before implementing a comprehensive analysis and
prediction for PFASs in groundwater, a large environmental
data set with hundreds of validated data (PFASs and other
environmental features) is needed. Currently, many studies use
their measured data,26 and some use partially public data,22,25

all of which have considered limited environmental variables

(industrial sources, geography, hydrology, soil, and co-
contaminants). The process of self-data collection and
measurement is costly and time-consuming. While other fields
with more experience in data science have public data sets
(e.g., ImageNet30 for image classification, AlphaFold31 for
protein structure prediction, and AirNet32 for air pollution
monitoring), the environmental chemistry field for ground-
water contamination prediction lacks such data sets. PFAS and
other environmental data have been in separate data sets,
limiting analysis of trends and correlations of PFASs in context
with other environmental features in groundwater. Before
evaluating the performance of different machine learning tools
for groundwater contaminant prediction, a comprehensive
public data set is needed to validate models and seek
correlations of PFAS processes with environmental features.
We hypothesize that because PFASs can be grouped in

subfamilies, we can leverage tools that take advantage of these
subfamily groupings based on their different industrial uses,
physicochemical properties, and (bio)transformation pathways.
Multilabel classification is an ML approach that can leverage
the nature of multiple subfamilies within PFASs. These
subfamilies (carboxylic acids, sulfonates, fluorotelomers, etc.)
have a range of physicochemical characteristics (i.e., mobility
of short-chain vs long-chain) and are also related through
transformation pathways (i.e., fluorotelomers transform to
carboxylic acids). Therefore, we hypothesize that we can
leverage these relationships and use PFASs with a higher
detection frequency and inclusion in analytical lists to inform
analytes that were not measured in previous years.
The overall objective of this study is to identify how

environmental variables impact total PFAS and individual
PFAS distribution in California groundwater to complement
groundwater PFAS monitoring on a large scale. In this work,
we 1) compile an integrated groundwater PFAS data set for
California CA-PFAS-ASGWS (2016−2022) with air, water,
and soil parameters, contamination sources, and other
environmental variables, with 26 000 data points and hundreds
of features; 2) develop an ML pipeline to screen groundwater
wells for total PFAS concentration over 70 ng/L and then
predict the occurrence of 35 individual PFASs above 2 ng/L,
thus resolving the challenge of missing or unverifiable PFAS
data; and 3) apply ML to identify potential missed individual
PFAS hot spots in recent investigations and prioritize future
sampling locations in California groundwater wells.

2. METHODS
2.1. Data. 2.1.1. Data Acquisition. To construct a

comprehensive PFAS database that can better train ML
algorithms, we collected six different classes of data, including
contamination source, geospatial, and sampling date, weather
and air quality, soil, hydrology, and groundwater quality. We
collected a total of 23 data sets (12 groundwater-related data
sets from Groundwater Ambient Monitoring and Assessment
(GAMA), one PFAS data set from Geotracker, three source
data sets from the EPA, one PFAS source data set from the
Environmental Working Group (EWG), one soil data set from
the National Cooperative Soil Survey (NCSS), one weather
data set from the National Oceanic and Atmospheric
Administration (NOAA), two air quality data sets from the
EPA and Purple Air, two hydrology data sets from the
Sustainable Groundwater Management Act (SGMA) and
Global Land Data Assimilation System (GLDAS-2.1) from
the National Aeronautics and Space Administration (NASA)).
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The combined data set includes 425 columns and 26,901 rows.
Additional data source descriptions and the data dictionary can
be found in Supporting Information (SI) Table S1 and Table
S2.

2.1.2. CA-PFAS-ASGWS Data Set Preparation. After
collecting the data, we cleaned data sets by dropping non-
PFAS features with over 90% of the not available values (NAs),
outliers (top 2 percentile only for the PFASs), and errors
(invalidated observations). On the basis of PFAS measurement
wells, we merged all data sets using longitude, latitude, and the
sampling date. We first merged by the exact date, latitude, and
longitude. For wells that did not have an exact match, we used
the fuzzy matching method and tried to supplement the data
with the most adjacent data points on the same date. For the
rest of the missing data, we filled the NAs with the monthly
average value of data points within the closest radius with
available data (10, 20, 30, or 50 km). Based on the EPA report,
we classified PFAS point sources into two categories, suspected
source and confirmed source (facilities reporting PFAS
discharges). The confirmed sources included 1247 facilities

(35 different types). In the PFAS data set, we recorded the
nearest facility’s type and counted the total number of facilities
within a 1 km, 3 km, 10 km, and 50 km radius of each well
based on groundwater and aerial deposition transport
distances.15,28,33 For the soil properties, we chose to use the
mean value of all soil horizons because we lacked data on the
groundwater well depths. The final cleanup CA-PFAS-ASGWS
data set included 38 individual PFASs (Table 1), a total of 157
columns, and 26,901 rows. The distribution map of PFAS
sampling locations and the number of PFAS observations from
2016 to 2022 are shown in the SI (Figure S1 and Table S3).

2.1.3. Summary Statistics and Correlations. Summary
statistics for PFASs (Table 1) and other environmental
variables (SI Table S4) were performed to get the number
of observations, Mean, Minimum, Median, Maximum, 25th
percentile, and 75th percentile. We evaluated correlations
using the Spearman’s Rank coefficient (α = 0.05) among
individual PFASs, as well as between other environmental
variables and PFASs.

Table 1. Summary Statistics for 38 PFAS Concentrations (ng/L) in the CA-PFAS-ASGWS Data Seta

Compound n %NA Mean Min Q1 Median Q3 Max

PFBA 2198 91.83 227.27 0 3.60 7.40 19.00 112000
PFPeA 2300 91.45 648.59 0 1.90 3.80 16.00 446000
PFHxA 25538 5.07 69.40 0 2.00 2.00 5.00 616000
PFHpA 26086 3.03 16.71 0 1.80 2.00 3.10 48700
PFOA 26885 0.06 29.28 0 2.00 2.90 8.70 79000
PFNA 26112 2.93 4.28 0 1.80 2.00 2.00 19100
PFDA 25608 4.81 2.21 0 1.70 2.00 2.00 737
PFUnA 25040 6.92 2.16 0 1.70 2.00 2.00 550
PFDoA 25040 6.92 2.07 0 1.70 2.00 2.00 280
PFTrDA 25609 4.80 2.16 0 1.70 2.00 2.00 650
PFTeDA 25608 4.81 2.11 0 1.70 2.00 2.00 370
PFHxDA 220 99.18 35.66 0 0.00 0.00 2.08 5500
PFODA 145 99.46 0.69 0 0.00 0.00 0.95 4.89
3:3FTCA 36 99.87 1.83 0 0.29 2.07 2.12 9.55
5:3FTCA 36 99.87 5.74 0 0.22 2.61 3.08 50
7:3FTCA 36 99.87 2.98 0 0.37 2.04 2.12 60
4:2FTS 2261 91.60 11.69 0.00 0.00 2.00 7.70 7210
6:2FTS 2277 91.54 703.94 0.00 0.00 7.10 8.00 5180000
8:2FTS 2277 91.54 23.90 0.00 0.00 2.21 7.70 16300
10:2FTS 146 99.46 0.88 0.00 0.00 0.00 0.95 31.6
PFBS 25380 5.65 29.40 0.00 2.00 2.00 5.00 242000
PFPeS 2252 91.63 297.62 0.00 0.49 2.10 4.00 318000
PFHxS 25381 5.65 102.67 0.00 2.00 3.00 7.30 1330000
PFHpS 2314 91.40 27.71 0.00 0.00 1.90 3.70 28300
PFOS 26879 0.08 74.63 0.00 2.00 3.60 14.00 383000
PFNS 1606 94.03 1.97 0.00 0.00 1.90 3.70 140
PFDS 2294 91.47 2.02 0.00 0.00 1.80 3.20 190
FOSA 2308 91.42 8.81 0.00 0.00 1.98 3.80 4700
ETFOSE 292 98.91 6.08 0.00 0.00 0.00 3.00 430
ETFOSA 404 98.50 4.39 0.00 0.00 0.00 0.94 440
NETFOSAA 25186 6.38 2.68 0.00 1.70 2.00 3.00 650
MEFOSE 292 98.91 10.60 0.00 0.00 0.00 3.80 700
MEFOSA 425 98.42 3.00 0.00 0.00 0.00 0.92 220
NMEFOSAA 25167 6.45 2.64 0.00 1.70 2.00 3.00 710
ADONA 21637 19.57 2.14 0.00 1.70 2.00 2.00 200
HFPO−DA 21468 20.20 2.50 0.00 1.70 2.00 2.00 750
11ClPF3OUDS 21776 19.05 2.07 0.00 1.70 2.00 2.00 190
9ClPF3ONS 21774 19.06 2.05 0.00 1.70 2.00 2.00 190

an = number of observations; %NA = percentage of missing observations.
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2.1.4. Data Preprocessing to Train a Machine Learning
(ML) Model. To develop a model with the best performance,
we preprocessed the data before training and testing the
model. We dropped the variables with more than 40% of NAs.
The categorical variables were encoded by a label encoder with
a value between 0 and the number of classes to avoid high
memory consumption. The rest of the missing data were filled
in with the variable average for air quality, soil, and
cocontaminant variables or zeroes for precipitation and
snowpack. To diminish dependence on explicit geographical
parameters and enhance the model’s applicability across
various locations, we decided to exclude longitude, latitude,
county, and other direct spatial indicators from our input data.
The final number of input variables was 112.
To develop a prescreening binary classification ML

algorithm for total PFAS risk prediction, we calculated the
sum of all individual PFAS concentrations, set 70 ng/L as the
threshold for high risk, and added it as a new column in the
data set. Then, we focused on 35 individual PFASs to predict
the risk for each of them above the most stringent minimum
reporting level (2 ng/L) on individual PFASs based on UCMR
5.34 3:3 fluorotelomer carboxylic acid (FTCA), 5:3 FTCA, and
7:3 FTCA were excluded because they only had 36
observations for the entire data set compared to at least a
hundred observations for other individual PFASs.
2.2. ML Algorithms. We developed a pipeline to evaluate

the PFAS risk in California groundwater (Figure 1). First, we
prescreened wells to predict total PFASs greater than 70 ng/L.
Second, we predicted 35 individual PFASs greater than 2 ng/L
in groundwater. Because each PFAS has a different number of
observations (Table 1), we split the data set into four Classes
(SI Table S5) to avoid including NAs for each PFAS
prediction. Class 0 included a total of 14 PFASs, each of
which had more than 25,000 observations (n∼3821 wells).
Class 1 had 4 PFASs with >20,0000 observations (n∼2966
wells) each, Class 2 had 10 PFASs with >1,500 observations
(n∼925 wells) each, and Class 3 had 7 PFASs with >100
observations (n∼99 wells).

To make up for the lack of labeled data on PFASs, we
applied Semisupervised Learning,35 which improves the
performance of the model in the supervised process using
unlabeled data. Pseudolabeling36 was used in this paper to
address a common issue of data sparseness in environmental
data sets.37 Here, we first trained a classification model based
on labeled data sets to make predictions on the unlabeled
PFAS data. Then we selected trusted samples, which were
predicted accurately with a confidence exceeding 95%, and
reintroduced these samples back into the model for further
training.36

To balance the data set, the Synthetic Minority Over-
sampling Technique (SMOTE)38 and Adaptive Synthetic
(ADASYN)39 oversampling algorithms for the minority
samples were performed before training the classification
algorithm. The ML algorithms included Naive Bayes, logistic
regression, random forest, support vector classifier (SVC),
Extreme Gradient Boosting (XGBoost), categorical boosting
(CatBoost), Light Gradient Boosting Machine (lightGBM),
and TabNet. For the total PFAS risk prediction, we compared
eight binary classification ML models. For multilabel
classification, we developed 10 ML models, including seven
traditional ML algorithms with problem transformation
methods (Binary Relevance, Classifier Chain, and Lowest
Powerset) and 3 ML models using algorithm adaptation
methods. Leveraging the correlations between individual
PFASs, we predicted individual PFASs based on previously
predicted PFASs within a Class. Additional details on ML
algorithms and approaches can be found in SI Text S1.
2.3. Training, Hyperparameter Optimization, and

Evaluation. In our study, we randomly split the CA-PFAS-
ASGWS data set into an 80% training set and a 20% final test
set. In the training set, we further split the data using 80% for
model training and the remaining 20% for hyperparameter
tuning, applicable for both total and individual PFAS
prediction models. For the total PFAS prediction model, we
implemented stratified cross-validation, which involved divid-
ing the training data (inclusive of the validation set) into ten
subsets. Each iteration of the process trained the model on

Figure 1. Workflow of supervised and semisupervised Machine Learning (ML) for binary classification and multilabel classification and its
application for PFAS prediction and past PFAS profiles.
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nine subsets and validated it on the remaining one. Grid search
optimization was employed to tune the hyperparameters, and
the mean F1 score of the validation set was used to find the
best model. To improve the model performance, especially for
the PFAS lacking labels, we used pseudolabeled data and
selected the trusted labels to cotrain the best ML model. To
evaluate the performance of different models for the total
PFAS binary classification, we use frequently reported

evaluation metrics: Accuracy, Precision, Recall, F-Score, and
Area Under the Receiver Operating Characteristic curve
(AUROC), each of which can range from 0 (the lowest
performance) to 1 (the highest performance). The evaluation
for multilabel classification is more complicated than binary
classification, and thus we used evaluation metrics that have
been proposed previously.40,41 We chose to use hamming loss,
which measures the proportion of the number of incorrectly

Figure 2. PFAS mean concentration and frequency of detection between 2016 and 2022 in California groundwater wells. Panel A: Total PFAS
measurement frequency, total PFASs, perfluorinated carboxylic acids (PFCAs), fluorotelomers, perfluoroalkyl sulfonates (PFSAs), sulfonamides,
and other PFAS annual average concentrations. Panel B: Average concentration of total PFASs in different well categories. Panel C: Proportion of
the average concentration of PFAS subfamilies for each groundwater well category.

Figure 3. Heatmap of the PFAS Spearman’s Rank (p 0.05) correlation coefficient analysis in California groundwater.
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predicted labels in the total number of labels in all samples.
The smaller the hamming loss, the better the model
performance.42 We also used average precision and average
recall, where the partially correct concept is considered to
calculate the average for all the samples.43,44 We used the Exact
Match Accuracy, where the result would be considered correct
when the predicted set of labels exactly matches the true label
for each sample.45,42 We also calculated the AUROC score for
each PFAS and calculated the average AUROC for each
multilabel model (equation in SI Table S6). The development
and evaluation of ML models were coded with the sklearn,
xgboost, CatBoost, lightgbm, and PyTorch (TabNet) packages
in Python. Oversampling was performed with the imblearn
package in Python.46

3. RESULTS AND DISCUSSION
3.1. California PFAS Analysis. 3.1.1. PFAS Occurrence in

California Groundwater. From the 38 PFASs included in the
CA-PFAS-ASGWS database, PFOA and PFOS are the most
frequently reported species (95% detection in all samples),
indicating their widespread presence in California’s ground-
water. For these two species, roughly 60% of the samples were
higher than 2 ng/L, 40% and 48% of samples had
concentrations above 4 ng/L, and 2.0% and 3.1% of samples
had concentrations above 70 ng/L, for PFOA and PFOS,
respectively. Compared to the PFASs above 70 ng/L in 14% of
the Eastern United States’ groundwater wells,26 only ∼5%
exceeded this threshold in California.
The number of PFAS analytes monitored has been

increasing each year (annual PFAS concentrations, Figure S2
and Table S3). From 2016 to 2022, 17, 26, 24, 38, 35, 38, and
38 PFASs were measured in California groundwater each year,
respectively. PFCAs were the most frequently detected PFASs.
The average concentration of total PFAS in California also
increased during this time span (Figure 2A). Since 2019, the
detection frequency and average concentration of PFASs in
California groundwater have increased plausibly because of the
PFAS Action Plan47 released by the US EPA as well as the
PFAS source investigations and adjacent public drinking water
supply sampling ordered by the California Water Boards.48

The FTSs’ average concentration has increased compared to
overall PFAS frequency and the proportion of the samples
from the contamination cleanup sites (SI Figure S2). The
concentrations of FTCAs and FTSs were significantly higher
than other PFASs in 2019 and 2020 (Figure 2 and SI Figure
S3). 6:2 FTS is commonly found in sites impacted with AFFF
and therefore the cleanup data set, because it is a trans-
formation intermediate of fluorotelomer PFASs in AFFF
formulations.11,49,50

At least 18 individual PFASs were detected in each data
source between 2016 and 2022 (SI Table S3), but the PFAS
profiles varied depending on the type of groundwater well

(Figure 2). The average concentration of total PFASs from the
unknown well type was the highest, followed by the
monitoring well type. PFSAs contributed the most to the
total PFAS concentration in monitoring, unknown, and other
water supply well types. Groundwater wells in cleanup sites
comprised about 77% of the wells monitored in California
since 2018 and had detections for all 38 PFASs (in decreasing
order of frequency of detection: PFSAs > PFCAs > FTSs>
sulfonamides > other). The highest total amount of PFASs in a
given sample (2,590,829 ng/L) was found in a well measured
in 2020 within the cleanup sites. Detailed statistical analysis of
well categories and PFASs is included in SI Text S2.

3.1.2. Groundwater PFAS Correlations. We performed
correlation tests (Spearman’s Rank coefficient, α = 0.05) to
determine association between individual PFASs within PFAS
subclasses (i.e., fluorotelomers, short- vs long-chain, sulfonates,
carboxylates) and known precursor-transformation product
biotransformation pathways (i.e., fluorotelomer (bio)-
transformation into short-chain PFCAs). Statistically, signifi-
cant correlations were overall positive and generally among
PFAS subfamily species (Figure 3), indicating similar
physicochemical properties or common industrial applications.
Short-chain PFCAs had the strongest correlation coefficients
(>0.75) among each other, as well as with PFOA and PFSAs.
Similarly, the less mobile longer-chain C11−C18 PFCAs had
strong relationships with each other and with fluorotelomers
and sulfonamides. PFOS had weaker correlation coefficients,
possibly due to its high detection frequency and a lot of noise
in the data. Biotransformation pathway associations were
weakly detected in the data set. Regarding fluorotelomers,
FTCAs had higher correlation coefficients than FTS with their
expected oxidation products, short-chain PFCAs,11 but
coefficients remained weak to moderate (0.25−0.5). Interest-
ingly, N-alkyl sulfonamides (i.e., ETFOSE, MEFOSAA, etc.)
did not show a strong correlation with their expected aerobic
terminal transformation products, PFSAs, but had strong
correlations with FOSA. This is consistent with a lower extent
of biotransformation of sulfonamides in the environment to
PFSAs51 and the detection of perfluorosulfonamides in AFFF-
impacted groundwater.52,53 It is worth noting that although
FOSA is included in the analyte list, perfluorohexane
sulfonamide is not included in standard PFAS methods. This
suggests that there is a gap in PFAS profiles in groundwater.
Surprisingly, ADONA and HFPO-DA (GenX) are much more
mobile than sulfonamides, yet both were strongly correlated.
This suggests locations of simultaneous use of both subfamilies
of PFASs. Overall, the correlations encourage the development
of ML models that predict and reconstruct PFAS distribution
maps for an increasing number of analytes. No significant
negative correlations were found between PFASs.
3.2. Total PFAS ML Performance.We selected a Random

Forest algorithm using ADASYN oversampling as our best-

Table 2. Evaluation Scores for the Baseline of Different Machine Learning Models for Total PFAS Prescreeninga

GaussianNB LogReg SVM RF XGBoost CatBoost lightGBM TabNet

Accuracy 0.7110 0.7110 0.7110 0.9492 0.9359 0.9071 0.8909 0.8525
Recall 0.0022 0.0013 0.0013 0.9349 0.8344 0.7606 0.7065 0.8240
Precision 0.3359 0.1714 0.1714 0.9737 0.9321 0.8982 0.8852 0.6905
F1 score 0.0043 0.0026 0.0026 0.9644 0.8781 0.8224 0.7818 0.7514
AUROC 0.5008 0.5005 0.5005 0.9479 0.9058 0.8636 0.8362 0.8436

aGaussianNB: Gaussian Naive Bayes; LogReg: logistics regression; SVM: support vector machines; RF: random forest; XGBoost: Extreme
Gradient Boosting; CatBoost: Categorical Boosting; lightGBM: Light gradient-boosting machine.
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performing total PFAS prescreening model to determine wells
with total PFAS concentrations below or above 70 ng/L. Based
on ML model baseline performance in Table 2, and SI Figure
S4, for total PFAS prediction, random forest performed the
best, followed by the boosting algorithm (XGBoost >
CatBoost > LightGBM), and then the other traditional
algorithms (GaussianNB > LogReg > SVM) in the CA-
PFAS-ASGWS data set. The prescreening PFAS model was
robust for the total PFAS risk classification task in the CA-
PFAS-ASGWS data set, accurately predicting total PFAS with a
concentration higher than 70 ng/L in the groundwater
(AUROC = 99%, Accuracy = 96%) in the final test set. The
recall rate is up to 95%, and the precision is up to 97%.
Because there are NAs in the data set, the total PFASs
calculated could be underestimated, but to offset false negative
our criteria is more strict than using PFOA + PFOS greater
than 70 ng/L. The average accuracy achieved through 10-fold
cross-validation on the training set closely mirrored that of the
validation set (∼0.96 for both), indicating that the model did
not overfit. In the final best random forest model development,
the n_estimators was 200, the max_depth was 52, and the
max_features was 35. Tuning the hyperparameters helped to
increase the accuracy and AUROC for all the models
mentioned, and the random forest model accuracy increased
by 4.58%. The slightly increased model performance was
similar to the result from Hu et al.25

Moreover, compared with a previous model to predict PFAS
risk in California groundwater,25 our study increased the
AUROC by 10% for total PFAS prediction. Our finding is
consistent with previous PFAS studies and other types of
tabular data. Random forest has performed well for different
PFAS predictive tasks in several environmental data
sets.22,25,54,55 Borisov et al.56 proposed the traditional decision
tree ensemble ML algorithms like random forest, XGBoost,
LightGBM, and CatBoost still perform better than other
traditional ML models and deep learning models. Therefore, it
is worth comparing different decision tree ensemble
algorithms.
To balance the data, we evaluated different oversampling

and undersampling methods. The ADASYN oversampling
method improved the prescreening model’s performance the
most (increased the accuracy by 1.77% compared with the
model without oversampling on the same validation data set),
followed by SMOTE. Both methods are better than random
oversampling, which duplicates the samples. The under-
sampling methods, deleting or merging examples in the
majority of samples, did not work. SMOTE and ADASYN
oversample the data by creating synthetic data instead of
duplicating it, so these methods can overcome the overfitting
problem raised by replicating the samples.
3.3. Multilabel Semisupervised ML Performance for

Individual PFASs. In addition to the total PFAS ML model
mentioned above, we also developed multilabel classification
models with semisupervised learning algorithms to predict the
occurrence of each PFAS above 2 ng/L. Our model’s AUROC
(94%−99%) is higher than other studies (AUROC 72%−
96%)22,25,26 in the final test set. Table 3 shows the Hamming
loss, exact match accuracy, average precision, average recall,
and average AUROC for the final best models using the best
oversampling methods and best parameters for each Class. The
AUROC score for each of the PFASs is shown in SI Table S7.
Comparing all the results from different multilabel models

(SI Table S8), the classifier chain XGBoost algorithm

performed best for all the PFAS prediction Classes. The
label powerset random forest model achieved the highest exact
match accuracy in Class 0 (individual PFASs with >25,000
observations) prediction. The classifier chain random forest
model achieved the highest exact match accuracy in Class 1
(>20,000 observations) and 2 (>1,000 observations) pre-
dictions. For Class 3 (>100 observations), the AUROC of the
XGBoost, CatBoost, and LightBoost using the classifier chain
and label powerset was up to 95%. To balance the data set, the
SMOTE oversampling method performed the best for the
multilabel classification, followed by ADASYN and random
oversampling. Finally, we used the XGBoost model of the
SMOTE oversampling method as our final multilabel PFAS
model.
To further improve the model’s performance, we applied

semisupervised learning, adding more trusted unlabeled data
(missing PFAS measurements) with the labeled data to train
the model for the individual PFASs with several missing labels
(Classes 1, 2, and 3). For Classes 1 and 3, the average AUROC
improvement is less than 1%. For Class 2 PFAS, the average
AUROC increased by 2.9% (SI Table S7). The ratio of the
labeled data to the unlabeled data was around 3, 0.1, and 0.01
for Classes 1, 2, and 3, respectively.
Our results indicate both the number and quality of initial

labeled points have an impact on pseudolabeling. This result is
consistent with previous research,57,58 that pseudolabeling
works best with ∼1000 initial labeled samples (Class 2). When
the labeled data set is reduced (e.g., less than 100 points in
Class 3), the pseudolabeled performance starts to decrease. For
our Class 2 prediction, pseudolabeling can improve the model
performance when the labeled data is large enough to get a
robust prediction model, the initial unlabeled data is large
enough to offer more information for the model, and the
algorithm has enough complexity to benefit from the
additional data.57 For Class 1, the initial unlabeled data may
not be large enough to improve the model. For Class 3, the
initially labeled data set is too small, so the pseudolabeling may
not be robust (low recall). Moreover, if the labeled data set
contains outliers, the prediction for the unlabeled data may be
incorrect and further reduce the model’s performance.59

The multilabel PFAS semisupervised learning model is
robust in the CA-PFAS-ASGWS data set and can accurately
predict individual PFASs with concentrations higher than 2
ng/L efficiently. For the Class 0 to 3 predictions, the average
AUROC values were 0.938, 0.965, 0.914, and 0.952. For each
of the individual PFASs, the lowest AUROC (0.729) is for the
prediction of PFBA. For the rest of the PFASs, the AUROC
ranged from 0.908 to 1.00. By leveraging the strong
correlations of PFAS subfamilies (i.e., PFCAs, PFSAs, and
FTSs), instead of building 35 binary classification models
(below or above 2 ng/L) for each PFAS, our study used the
classifier chain set ensemble and applied XGBoost as a
classifier. Four multilabel algorithms for each data Class were

Table 3. Model Evaluation for the Semisupervised Learning
Models

Class 0 Class 1 Class 2 Class 3

Hamming loss 0.045 0.034 0.063 0.007
Exact match accuracy 0.883 0.961 0.789 0.950
Average precision 0.833 0.602 0.831 0.217
Average recall 0.839 0.604 0.815 0.219
Average AUROC 0.938 0.965 0.942 0.985
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developed using semisupervised learning to learn from the
labeled and unlabeled data. The model was used to predict the
risk of several PFAS agents in a single step.
The performance using the classifier chain was better than

the binary relevance, indicating that the PFAS concentrations
and the occurrence of PFASs were indeed related to each
other. The accuracy of the PFAS prediction can be improved
by adding the previous PFASs label as an input feature. In the
experiment, we ordered individual PFASs based on PFCA,
FTS, PFSA, sulfonamides, other PFASs subfamilies, and within
each group, based on increasing perfluoroalkyl chain length.
The AUROC of each PFAS also increased within each

prediction Class for the correlated PFASs (Figure 4 and SI
Table S7). Specifically, for the PFCAs, the prediction accuracy
for the later predicted PFCAs and FTS was higher than for the
short-chain PFCAs that were predicted first (Figure 4, Class 1
and Class 2). PFSA and its precursors, sulfonamides, also show
the same pattern (Figure 4, Class 1 and Class 2).
Although the prescreening and the multilabel semisuper-

vised learning models achieved high accuracy, there are
limitations. The model has a higher probability of predicting
data from recent years, because PFAS detection frequency and
average concentration have been increasing each year (Figure
2) and most of the data come from the cleanup data set, which

Figure 4. Model evaluation AUROC results for each PFAS in semisupervised learning models. Panel A: Class 0 includes 14 PFASs (∼3800 wells,
over 24,000 observations). Panel B: Class 1 includes PFASs (∼3000 wells, over 21,000 observations). Panel C: Class 2 includes PFASs (∼1000
wells, over 1,500 observations). Panel D: Class 3 includes PFASs (∼100 wells, over 100 observations).

Figure 5. Relative contributions of the top 20 variables sorted from the largest to smallest importance for the PFAS prescreening model.
Facility_1km, 3km, 10km, and 50km represent the number of all facilities (PFAS confirmed source and potential source) within the radius. Soil%
_0.25−0.5mm (medium sand), Soil%_0.02−0.05 mm (silt), and Soil%_0.05−2mm (all sand)61 are the gravimetric percent of particles reported on
a clay free < 2 mm base, respectively. Gradation_Uniformity is the coefficient of uniformity, calculated from the cumulative grain size distribution
curve (gradation curve) to evaluate the grading characteristics of coarse materials in the Unified Soil Classification System. Ratio_Water_Clay is
the ratio of 15 bar water percent/clay percent, calculated by (W15AD or W15FM)/CLAY_TOT, reported as grams per gram, on a <2 mm base.
Additional details on each variable are listed in the SI Table S9.
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has a high concentration of PFASs (SI Figure 2). The PFAS
profile in the cleanup sites may differ from other sites. To
improve the generalizability of the model, more data sourced
from different types of sites and some missing important
features’ information (e.g., groundwater depth) are needed.
Moreover, more data should be collected for PFASs with

roughly one hundred observations in the current data set
(Class 3).
3.4. Environmental Variables Influencing PFAS Pre-

diction in Groundwater. Overall, contamination sources had
the highest influence on total and individual PFAS prediction
(Figure 5 and Figure 6), which is consistent with a previous

Figure 6. Relative contributions of the top 18 variables for each PFAS prediction model. gm_well_category represents the well type.
Fac_Conf_type is the type of the nearest confirmed PFAS contamination facility. BTBZS is sec-butylbenzene. PBZN is n-propylbenzene. EDB is
1,2-dibromoethane. DBCP is 1,2-dibromo-3-chloropropane. TCPR123 is 1,2,3-trichloropropane. Gradation_Uniformity is the coefficient of
uniformity. Weight_%_0.02−0.05mm_Clay-Free_<2 mm represents the gravimetric percent of particles with a 0.02−0.05 mm diameter (medium
sand), reported on a clay free < 2 mm base. Ratio_15_Bar_Water_to_Clay_<2 mm is the 15 bar water percent/clay percent ratio on a < 2 mm
base. Silt_Coarse is the soil separate with a 0.02 to 0.05 mm particle size. %_Pass_2_Micron_Sieve is the cumulative gravimetric percentage of
particles with diameters < 2 μm (0.002 mm), reported on a < 3 in. base. %_Pass_20_Micron_Sieve is the cumulative gravimetric percentage of
particles with diameters < 20 μm (0.02 mm), reported on a < 3 in. base. Gradation_Curvature is a descriptive parameter calculated from the
cumulative grain size distribution curve to evaluate grading characteristics of coarse materials. %particles_d_<1mm_<75mm is the cumulative
gravimetric percentage of particles with a < 1.0 mm diameter, reported on a < 3 in. base. Additional details on each variable are shown in SI Table
S2.
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study.25 The soil particle size distribution also showed as a top
important variable for total and individual PFAS prediction.
For total PFAS risk prediction, we found that the number of

facilities/industries within 1−50 km was more important than
the type and the distance from the nearest PFAS confirmed
source. This suggests that the number of facilities using or
producing PFASs is currently underestimated. Therefore,
future PFAS investigations or regulations should be extended
to a larger group of industries to monitor PFAS releases. The
influence of the number of facilities within the largest radii (10
and 50 km), expected air emission ranges of PFASs,28 was as
important as the number of facilities within short distances (1
and 3 km), expected from PFAS infiltration into groundwater.
The weather and air quality variables (humidity, particulate
matter (PM)10, NO2, SO2, PM 2.5 in decreasing order of
influence) were as influential as soil and groundwater quality
(Figure 5 and SI Table S9). Previous research suggests PFASs
can be transported with other air pollutants and deposited to
the soil, becoming a new source that continually introduces
PFASs to the groundwater in the long term.15,18,28

Unexpectedly, only one groundwater co-contaminant (nitrate)
showed in the top variables. More research is needed to
understand the extent to which air and soil variables impact
PFAS groundwater contamination at different ranges from the
pollution source. In addition, detailed mechanistic studies of
air deposition of PFASs and its links to groundwater pollution
are needed beyond statistical associations between air pollution
and facility/industry PFAS emissions and discharge60 (SI
Figure S5 and Figure S6).
For individual PFASs, the top important variables vary based

on the number of observations for each PFAS (Figure 6). No
single type of variable was especially relevant for the prediction
of the most frequently detected PFASs (>21,000 observations,
Classes 0 and 1). For PFASs detected with less frequency,
<1000 observations (Class 2 and 3), the nearest facility type
was more important than the number of facilities within
different radii. Groundwater co-contaminants, especially
chlorinated solvents and aromatic hydrocarbons, influence
the prediction of less frequently detected PFASs, especially
FTSs and FOSA (Figure 6). Our findings suggest that PFASs
that are less frequently detected may serve as indicators of

specific pollution sources. To identify the PFAS risk and
signature from different industries, more PFAS emissions and
cocontaminant data from different industries should be
collected.
3.5. Reconstruction of Recent California PFAS

Groundwater Contamination Map. To fill in the gap in
the PFAS investigation in previous years, we applied our model
to reconstruct the PFAS contamination in California ground-
water. The probability of annual measured PFASs higher than
2 ng/L and the probability of predicted PFASs above 2 ng/L
for unmeasured wells are shown in Figure 7 and SI Figure S7.
Most of the unmeasured groundwater wells in 2019 and 2020
were found to be at low risk of PFASs. This suggests that
previous PFAS investigations covered most groundwater well
locations with PFAS contamination. However, some predicted
wells had a high risk of PFAS concentrations for 4:2 FTS
(Figure 7 Panel C), indicating a high possibility of measuring
this PFAS in some locations near Los Angeles which were not
included in the PFAS investigation plan. Locations with a high
risk PFAS detection overlap between different years and
between different PFASs, supporting our correlation analysis
that shows that individual PFASs within a subfamily tend to
cooccur. Locations with high PFAS risk were concentrated in
the San Francisco Bay Area and Southern California. The
PFAS distribution pattern is similar to the distribution of
industrial facilities (SI Figure S8), consistent with our previous
finding that the number of facilities is an important factor in
the prediction of PFASs.

4. IMPLICATIONS
Given the current lack of comprehensive large-scale environ-
mental data sets (including pollution sources, contaminant
transport and transformation-related information, and co-
contaminants), we believe that the benchmark PFAS data set
CA-PFAS-ASGWS (over 26,000 observations) will facilitate
the development of ML-based pollutant prediction methods,
not only for PFASs but also for other pollutants in the data set.
We proposed a general ML pipeline for multicontaminant
prediction using semisupervised learning, overcoming the
missing data/label problem in environmental data sets. This
approach makes it possible to predict the occurrence of

Figure 7. Reconstruction of PFAS recent maps in California groundwater. (A) The distribution map of the perfluoropentanoic acid (PFPeA)
contamination risk in all groundwater wells in 2019. (B) The distribution map of the PFPeA contamination risk in all groundwater wells in 2020.
(C) The distribution map of the 4:2 fluorotelomer sulfonate (FTS) contamination risk in all groundwater wells in 2021. Circles depict the wells
that measured PFASs. Triangles depict the prediction results by the multilabel PFAS semisupervised learning model for the unmeasured
groundwater wells. The color of the points represents the possibility of the well detecting PFASs above the notification limit (2 ng/L) during the
year (0 lowest - 1 highest), calculated by the number of samples tested or predicted above 2 ng/L divided by the number of samples at this well
during the year.

ACS ES&T Water pubs.acs.org/estwater Article

https://doi.org/10.1021/acsestwater.3c00134
ACS EST Water XXXX, XXX, XXX−XXX

J

https://pubs.acs.org/doi/suppl/10.1021/acsestwater.3c00134/suppl_file/ew3c00134_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestwater.3c00134/suppl_file/ew3c00134_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestwater.3c00134/suppl_file/ew3c00134_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestwater.3c00134/suppl_file/ew3c00134_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestwater.3c00134/suppl_file/ew3c00134_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00134?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00134?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00134?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.3c00134?fig=fig7&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.3c00134?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


contaminants lacking measured data. Our result suggests that
ML can help us to understand contaminant fate and transport
using domain knowledge from a particular field (i.e.,
contaminant physicochemical properties and transformation
pathways) and vice versa. Here, the classifier chain algorithm
accurately predicted correlated PFASs. Moreover, weather and
air quality were unexpectedly important variables influencing
groundwater PFAS prediction, which were not included in
previous studies. We suggest that PFAS flux studies in the
environment not only consider soil and water matrices but also
include air emissions and deposition.15,18,28 Applying our
algorithm to reconstruct the groundwater PFAS map in past
years, we validate that previous PFAS investigation plans have
likely covered most hot spots of PFAS contamination in
California, but there are still some underestimated PFASs (i.e.,
4:2 FTS).
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