
UC Irvine
ICS Technical Reports

Title
Specification of initial connection handling in TCP using structured Petri nets

Permalink
https://escholarship.org/uc/item/96k585bm

Author
Rose, Marshall T.

Publication Date
1984-03-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96k585bm
https://escholarship.org
http://www.cdlib.org/

Notice; This Wlaterial
may be protected
by Copyright Law
(Title 17 U.S.C.)

JSpeclfficatlon of
Initial Connection Handling in TCP

using structured Petri nets

Marshall T. Rose

Department of Infonnation and Computer Science
University of California, Irvine

Wed Aug 24 10:20:44 1983
Revised: Tue Mar 6 20:18:51 1984

Computer Mail: MRose@UCI

Technical Report Number 219

ABSTRACT

This paper uses structured Petri nets to specify how connection es
tablishment is handl^ by the DoD Transmission Control Protocol. The
purpose of this paper is to demonstrate an alternate specification tech
nique by examining its application to a portion of a protocol of reasonable
complexity.

Initially we briefly present the semantics of structured Petri nets. Fol
lowing this, a terse discussion of the problems of establishing connections
in a network takes place. This discussion centers on the use of the three-
way handshake, which is is used by TCP, as a solution for many of these
problems. Finally, the specification of the three-way handshake used in
TCP is made. The specification is presented in three sections: first, a
general set of notes concerning the nature of this particular specification is
discussed; second, the data definitions of the specification are given; and,
third, the actual nets themselves are presented.

This paper is condensed from a portion of the author's dissertation,
which is still in preparation. In the interests of brevity, some components
of the specification, such as retransmission handling, have been omitted.
Interested readers should contact the author for a more detailed paper.

C 3

/lo,

Contents

Page

1. An Overview of structured Petri nets 1

- Topology . 1
Tokens — 1

Colors 1

Enabling Predicates 2
Firing Actions 2
Transition Disciplines 2
Named nets 3

Named Subnets 4

Graphical Conventions 4

2. Connection Establishment 5

3. Specification Notes . 6

4. Specification Data Definitions 7

5. Specification Nets 9
(N-1)-interface 9

. N-interface . . 11

N-protocol 12
- N-protocol primitives ". 18

6. Evaluation ; . . . 19

Conclusions 20

1. An Overview of structured Petri nets

Struetured Petri nets are yet another augmentation to Petri nets[PETE77], and are
inspired in part by.numerical Petri nets{SYM08oA], A more informal, intuitive description
than the one presented here may be found in [MROSE83B]. The extensions found in
the Structured Petri net model include dynamic scoping, hierarchy, and concurrent and
recurrent invocation control.

Topology

A structured Petri net is a dirwted bi-partite graph populated with four types of
nodes: places, which hold tokens; transitions, which absorb and produce tokens; named
nets, which instantiate the execution of another structured Petri net; and named subnets,
which denote the substitution of another structured Petri net. Arcs starting from a place
or named net and leading to a transition are called input arcs, while arcs starting from a
transition and leading to a place, named net, or subnet are called output arcs.

Tokens

Tokens traverse the net. Unlike the tokens used in numerical Petri nets, the tokens
found in structured Petri nets are not unique. Instead, all tokens have a single attribute,
a color. All tokens of the same color are indistinguishable from each other. A color is
a conceptualism for a dynamically scoped environment. Colors are mapped to contour
blocks, which represent a part of a private resource space for each N-peer executing the
net. Hence, a contour is a binding between a particular N-peer and a given color.

Contour blocks contain bindings for variables and a static link, which is a pointer to a
previous (scoping) contour. Using colorful tokens, structured Petri nets achieve a dynamic
Scopingmechanism to determine data access. When searching for a variable in the context
of a particular token, the token's contour block is first examined. If the variable is not
present, then the previous contour (found by using the static link) is examined. This
process continues until either the binding for the variable is found or there is no previous
contour (the variable is undefined in the context of the original token).

Colors

The color attribute of a token has an ordinal value from the set of all colors. Each

N-peer has an associated color-generator, which produces new colors for the N-peer when
the generator is incremented. The generator has a current color value, which is set to the
color produced by the last increment operation. The color-generator is accessible by all
structured Petri nets executing for a particular N-peer.

In addition to the colors that may be produced by the generator, there is a special
color, the 6/anib color. Tokens with the blank color differ from other tokens in one
important way; each 6/anib foAren IS unique. The same variable within the context of
several .blank tokens may have different values, depending on which blank token is being
used to delimit the context. V

Enabling Predicates

Each transition has associated with it a enabling predicate, which specifies if that
1transition is permitted to fire. Only one. transition in a structured Petri net may fire at a
given instant. If more than one transition is enabled, then,a non-deterministic choice is
made as to which transition is actually permitted to fire.

VA transition's enabling predicate composes a single, possibly very complex, boolean
expression. The enabling predicate may reference the number of tokens present in the
places leading to the transition and the their distribution on the input arcs for the
transition. Only tokens with the same color are considered when the expression is
evaluated, but tokens of different colors may be considered separately. If more than one
color of tokens is able to satisfy the enabling predicate, a non-deterministic choice is made
as to which color is permitted to satisfy the conditions. These tokens, which are chosen to
satisfy the enabling predicate are known as eligible tokens. In addition to considering the
marking of the net, the enabling predicate is allowed to reference variables in the context
of the eligible tokens. No memory, other than those variables considered in the context of
the eligible tokens may be referenced by the enabling predicate. Further, the testing of
the enabling predicate must not promote any sort of change in state.

Firing Actions

Each transition has a^ociated with it a set of firing actions. Although several
activities occur when a transition fires, and a degree of ordered and sequential operation is
enforced during firing, the totality of a transition firing is considered to be atomic. Once
a transition begins to fire, no other transition is considered to be enabled.

A transition's firing actions compose a set of operations that perform four tasks: first,
the eligible tokens are removed from their input places, and a selection rule is consulted
to determine to the number of tokens (zero or more) that are to be placed on each output
arc; second, these tokens are introduced onto the selected output arcs, with possibly a new
context as indicated by a construction rule] third, the introduced tokens are modified in
the firing context, according to a set of manipulation rules] and, finally, the eligible tokens
are removed from the input arcs, and the introduced tokens are placed on the output
places.

lyaiisition Disciplines

There are five types of transitions used in structured Petri nets: normal transitions,
boundary transitions, split transitions, entry transitions, and exit transitions,

A normal transition is a transition which adheres exactly to the description of the
enabling predicates and firing actions de^ribed above. Other transition disciplines, which
modify these rules somewhat are described below. Although it is possible to combine the
attributes of two or more, of these types of transitions to achieve a hybrid, in the interests
of clarity, the discussion that follows considers no such possibility.

A boundary transition is viewed as allowing the passing of information from one N-peer
to another. Topologically, boundary transitions have a single output arc. The selection
rule, of a boundary: transition is constrained to introduce exactly one token on this arc,
and the construction rules are required to specify that this token have the blank color (in
violation of the rul^ presented above). The manipulation rules are required to completely
specify the variables which one N-peer communicates to the other. These variables have
their values fully copied to the introduced token. As a result, any information passed from
one N-peer to another is transferred to the latter's private resource space, ensuring that
each N-peer's resource space is private.

A split transition is viewed as a local synchronization method for N-peers. Split
transitions are allowed to violate a key tenet of the structured Petri net philosophy: they
may consider different colors when evaluating their enabling predicates. This lapse is
permitted under a very strict condition: Although different colors may be considered,
only one color at a particular input arc is considered. Topologically, split transitions have
the same number of input arcs and output arcs, and must have at least two of each. The
enabling predicate for a split transition must require the presence of one token on each
input place, the selection rule is constrained to introduce exactly one token on each output
arc, and the construction rules must specify that each introduced token on a given output
arc have the same color as the eligible token on the corresponding input arc.

: • An entry transition is viewed as the preparation that occurs prior to the call of a
procedure or function in an algoritmic language. Topologically, entry transitions have
a single output arc, which must be connected to an named net. The selection rule of a
boundary transition is constrained to introduce exactly one tpken on this arc, and the
construction rules are required to specify that the colbr generator be incremented and the
resulting current color value of the generator be used as the color of the introduced token.
The construction rules may specify Variables to be defined in the new context, and the
manipulation rules may initialize these variables. This achieves parameter-passing for the
named net.. Finally, the eligible tokens are removed and the introduce token is placed on
the named net, which causes it to be instantiated. For reasons not explained herein, all
parameters are required to be "passed by value," and the static link of the new context is
made empty.

An exit transition is viewed as the clean-up that occur after the return of a call to a
procedure or function. Topologically, exit transitions have a single input arc, which must

:be connected to an named net,. The enabling predicate for an exit transition must require
the presence of one token on its input place, and the construction rules must specify that
the color of each introduced token is set to the color of the eligible token for the entry
transition corresponding to this exit transition. As the reader might suspect, by using the
context of the eligible token, the manipulation rules may make use of a possible return
value.

Named nets

Named nets are references to other structured .Petri nets. Topologically, they are
sinular to places, ;butl are represented with a labeled square instead of circle. For

representational convenience, in addition to labeling a named net with its name, the
parameters used when the named net is invoked may appear also within the labeled
square, using the traditional-parenthesised notation.

Named nets may have more than one entry place. In this case, each entry place is
named, and the structured. Petri net which instantiates the named net must specify (in
tbe labeled square) which entry place is to be used. An named net needs only a single
exit place, although it may contain more. This is for representational convenience only. .
Multiple exit places should be thought of as leading to a single, actual exit place. As a

Turthef. enhancement, named nets may also be specified as. "single entry, zero exit" nets.
That is; once the net is instantiated, it never returns. In such cases, the named net need
not feed an .input arc. to a transition, and may be thought of as a "terminal" node.

Named Subnets

Named subnets are references to other structured Petri nets; Topologically, they are
similar to places, but are represented with a labeled square with a dashed outline instead
of a circle.

/:r.Subnets are used as a representational convenience only. Subnets never connect to
input arcs, only to output arcs. When a transition introduces a token for a named subnet,
that token is placed at the entiy place of the corresponding structured Petri net. Hence,
subnets differ from named nets because no contour is saved or restored.

Graphical Conventions '

: The convention for drawing Structured Petri nets differs somewhat from the standard
notation used for Petri nets. When drawing a transition, text appearing to the left of ,
the transition^ is interpreted as the enabling predicate for the transition. Similarly, text
appearing to the rightof the transition is interpreted as the firing actions for the t^sition.
Since the firing actions consist of three components (Election rules, construction rules,
and manipulation rules), individual components are specified by prefixed them with
their name or a short abbreviation (e.g., "sr."). As a short-hand notation, if the text
appeairing to the right of a transition is not prefixed, then the text is presumed to be the
manipulation rules for the transition.

By default, transitions use an AND input logic for eligible tokens and an AND output
logic for-introduced tokens.VUnless otherwise noted, the context of the tokens introduced
when a transition fires is identical to the context of the tokens which enabbled that
transition. For entry transitions, of course, the color generator is incremented.

For those places which feed input arcs leading to more than one transition, a "twiddle"
symbol (e.g., '~') may be used as the enabling predicate for one of the transitions. This
is a short-hand expression meaning that none of the other transitions being fed by the
place have their enabling predicates satisfied. Similarly, for those transitions with more
than one output arc, a twiddle symbol may be used as the selection rule for one of the
arcs. As expected, this is a short-hand expression meaning that none of the selection rules
associate with the other output arcs introduce any tokens.

By clever use of these conventions, the graphical representations of structured Petri
nets can be presented in a concise fashion and kept relatively free from clutter.

2. Connection Establishment

The problems found in providing reliable virtual-circuit service over a potentially
unreliable packet-switched network are discussed in great detail in. [SUNS78B]. A central
problem in this area is ensuring that a connection established between two processes in the
network becomes synchronized and remains so. Each peer of the N-protocol that provides
reliable communications to these processes must agree as to the state of the connection,
and then update that state as change occur.

A connection may be viewed as traversing through a number of states at each end.
These states trace the activity of the connection from non-existence to establishment,
then to data transfer, and finally to closing. This paper focuses on the means by which
two N-peers establish a connection. Initially, a connection may be viewed as being closed.
-When a process indicates that it is willing to accept a connection from another process,
the connection for that processenters a listening state, where the process waits for another
process to complete the connection. This is known as a "passive" open. After this point,
another process may attempt to complete the connection, by performing an "active" open.
Providing that all of the appropriate conditions are met, the connection progresses to the
established state at both ends. Alternately, both processes may try to actively open the
connection simultaneously, and the N-peers must be able to handle this situation correctly.

Connections occur betw^n two sockets in the network. A socket is a pairing between
the address for a host in the network and a local port number for that host. A connection
may be uniquely specified by listing the two sockets participating in the connection, as a
socket uniquely identifies the end-point of a particular conversation. Usually, for passive
opens, a process requests a local port number and does not specify a foreign socket. In
contrast, for active opens, a process requests both'a local port number and a foreign
socket.

Information to.be sent from one process to another is first given to the local N-peer,
which then encapsulates the information in a segment. In addition to containing the data
to be transmitted, the segment contains control information for the use of the N-peers.
For our purposes, we are interested in three control bits that can be found in the segments
that the N-peers exchange. The SYN bit indicates that an N-peer is requesting initial
synchronization. The ACK bit indicates that an N-peer is acknowledging a previously
received segment. The RST bit indicates that an N-peer is demanding that the connection
should be reset.

At soine time, a segment containing a SYN arrives. When the foreign and local sockets
specified in the segment match the socket pairing specified by a process' open, a connection
begins. To synchronize the connection, initial sequence numbers are exchanged between

The two peers. :These sequence numbers impose an ordering on the data exchanged by

the peers. Selection of the initial sequence number is a tricky business, as one must
take great care to ensure that segments floating about from instantiations of previous
connections have sequence numbers outside the range of legitimate sequence numbers.
Once both peers have selected an initial sequence number, informed the other peer of
the number, iand received an acknowledgement, the connection becomes established. H
something goes,amiss in the connection establishment, a peer sends a segment containing
a RST to the other peer. This has the effect of removing all traces of the connection, with
the appropriate information returned to the process associated with the peer receiving

^the RST. Other information may be exchanged during this synchronization, including
process data (to;be passed up only when the connection is fully established), but these
considerations are not germane to the focus of this paper.

This method of synchronization is referred to as a "three-way" handshake, as the
simplest case of its operation can.be summarized as: Process A performs a passive open.
Some time later, process B performs an active open. This results in process B's TCP
choosing an initial sequence number and sending a segment containing a SYN and the
sequence number to process A's TCP. Process A's TCP receives the segment, examines
it, chooses an initial sequence number of its own, and responds by sending a segment
containing a SYN, the sequence number, and an ACK of the incoming segment. Process
B's TCP receives the segment, examines it, and decides that the connection is established.
In addition, process B's TCP sends a segment acknowledging the incoming segment. Upon
receipt of this segment, process A's TCP also decides that the connection is established.

The three-way handshake is able to successfully deal with a large number of variations
and exceptions, including such events as simultaneous active opens, duplicate seginents,
segments from other instantiations, and half-open connections (which occur,when one
host crashes during the synchrohization ^tivity, and loses all knowledge of a connection).

. Hence, it is a good initial connection protocol for use by a reliable virtual-circuit service.

3. Specification Notes

This section provides a general explanation of the specification that follows.

First, it must be noted that the following sections do not provide a complete
specification of TCP. Only those aspects of TCP that deal with connection establishment
are examined. Further, some aspects of TCP that play a minor role in connection
establishment are abstracted to avoid unnecessary detail. Components of TCP which
are given little attention are: TCP options and option handling, urgent data handling,
windowing, user time-outs, and precedence and security/compartment considerations.
The specification presented pays varying (small) degrees of attention to these aspects of
TCP. In contrast, [TCP], theJTCP specification fully considers all of these issues in its
discussion of initial connection establishment.

Second, pur specification uses short mnemonics to represent error conditions which
may be rajsed and given to the user process. Their meanings are:

REFUSED — the connect was refused by the foreign peer

RESET — the connection was reset by the foreign peer

- ISCONN — the connection is already established

NOB UFS — insu&dent TesouTces to service request

—".no foreign socket specified in an active opcn() call

DENIED — the user process is not allowed to specify this type of open{) call

Third, the underlying (N-r)-service is pr^umed to be the DoD Internet Protocol[IP].
The discussion of the (N-l)-interface describes the type of service expected.

4. Specification Data Definitions

This section describes the data structures used by the specification. Three major
structures are explicitly used, the tcb, ipjype, and segmentJype structures.

The tcb structure contains all of the state information for a connection. In addition

to the local and foreign sockets, aU sequencing and windowing information, precedence
and security/compartment information, and so forth are all kept in this structure. In
the specification that follows, a tcb completely contains all known information about a
connection for an.N-peer. A tcb is in fact its own contour, and as a result has its own
unique color. In the next section, the reader should be able to appreciate the advantages
and disadvantages that this interpretation permits. Unlike the specification in [TCP], the

: tcb does not have its state encoded as a variable, instead, structured Petri nets are used
to denote the state of a tci.

The ipjype structure is the data type.passed to/from the (N-l)-layer. This structure
specifies the source and destination addresses, precedence and security/compartment
information, a protocol code (which for our purposes is always the code for TCP), a
time-to-live value, and a segment to be communicated. The ipjype structure is used as a
part of the (N-l)-interface definition.

The segment Jype structure is passed between N-peers as their means of communica
tion. The definition of the segmentJype follows fairly closely the definition given in the
TCP specification, with a few exceptions. Each segment has associated with it a length.
This is not kept explicitly in the segment, but instead is calculated based upon the values
of various components in the segment. In order to make this specification more clear, the
length is treated as an explicit component of a segment Jype. In addition, although the
source and destination addresses are not present in each segment, they have been made
explicit components of a segmentJype as well. Similarly, pointers to the urgent, data, and
options portions of the segimen/Jype have been abstracted somewhat.

All of the major data structures used in the specification are presented in figure 1.
Figure 1 presents these in a rough C-like syntax, and a complete description of the
semantics of these structures is not presented here.

Data Definitions

struct

};

struct

};

struct

};

struct

};

struct

}; .

struct

};

struct

>;

tcb {

socket_type
precedence.type
security-type

boolean .

sequence-type
window-type

sjwnd-type
r-wnd_type
usr-sig-type
segment-type
segment-queue

Isock, fsock;

pre;

sec;

actlve-open;

iss, Irs;

wnd;

and;

rev;

timeout;

msg, seg;

retransmit;

ip_type {
addr-type saddr, daddr;
protoc ol-type proto;
precedence-type pre;
security-type sec;

time-type ttl;
segment-type data;

saddr, daddr;

sport, dport;
ctl;

len;

seq, ack;
wnd;

up, data, options;
data.off set;

cksum;

!* not state information *!

/« not actually in the segment */

I* not actually in the segment */

segment-type {
addr-type
port-type
seg-flags-type
integer
sequence-type
window-type

seg-ptr

Integer
checksum-type

sjwnd-type {
sequence-type
window-type

r_wnd-type {
sequence.type
window-type

socket-type {
addr-type

port-type

seg-flags-type {
boolean

nna, nxt, up, wll, wl2;
wnd;

nxt, up;
wnd;

addr;

port;

nrg, ack, psh, rst, syn, fin;

Figure 1. Data Definitions

5. Specification Nets

-This section presents the actual specification itself. A series of structured Petri nets
. are presented, along with additional explanatory text.

Some conventions are used in the drawing of these nets which should be noted. First,
the graphical conventions presented earlier in this paper are followed. Our primary
motivation for this is to reduce clutter and make the nets appear more readable. As
expected, this results in the loss of some simplicity. For example, some of the transitions
presented have more than one output arc. One of these arcs may lead to a named net,
and another may not. This means that the transition also serves as an entry transition
if the selection rule for the output arc feeding the named net produces a token. Hybrid
constructs, of this sort are meant as a convenient short-hand notation.

Second, the entire specification is not composed entirely of nets. Very often, the
enabling predicate or firing actions of a transition may reference an external routine or
predicate to provide a value. These functions are assumed to be called in the current
context. An example of an enabling predicate so specified would be one that uses the
expression P/S okay, which appears throughout the specification and means "Are the
precedence and security/compartment conditions properly met?". An example of a routine

,appearing in the firing actions for a transition would be newJssQ, which generates a new
initial sequence number for a connection.

(N-l)-interface

The (N-l)-interface specification is achieved through two nets, SNDFKT and
RCVPKT.

The SNDFKT net (figure 2) lo^s the appropriate information for the (N-l)-layer
into an ipjype structure and then forks control. One fork leads to the net's exit place.
The other leads to a place which feeds one of two transitions. One transition consumes
the eligible token and does not introduce a token on.its output arc. This represents the
packet being lost by the (N-l)-layer. The other transition is a boundary transition. The
firing-actions for this transition state that the data structure known as packet crosses into
the. (N-l)rmedia.

Recall that firing actions, while indivisible, execute in an ordered fashion. Hence, the
manipulation rules, after loading each field of the ipJype structure, calls do^chksum{)
to calculate the TCF checksum for the segment and the (imaginary) IF header. This
corresponds to an interesting nuance in the TCF specification that actually includes
information not found in the TCF segment into the checksum stored in the segment. Note
that the although the selection rules for the transition introduced a token on both output
arcs, only one arc h^ construction rules and manipulation rules to execute. Since only
one set of.manipulation rules is present, .the order of execution is unimportant.

The RCVFKT net (figure 3) is instantiated to accept information from the (N-1)-
media. When a token: enters the net, it waits for a split transition to be enabled. This
transition will be enabled when a token is present on the other input arc which contains a

(N-l)-iDterface: send a packet

O eatTy{tcb,rmg)

packet lost

(1) cr: new ipJype packet
mr packet.taddr = Itock.addr

packet.daddr = fsock.addr
packet.prdto = TCPJ'ROTOCOL
packet.ttl= TCP.TIME.TOJ.IVE
packet.prc = pre
packet.eec = sec

-V: packet.data —mtg
. do-ck8um{packet)

jf

(N-1)

Figure 2. SNDPKT

bonndary: packet crosses

packet for the connection represented by the entry token. That is, control will block until
an incoming packet for the connection arrives at the other input place. Independently
of this, whenever any packet arrives, an ipJype structure is given to the N-peer by
the (N-l)-layer, and placed in a blank token by the boundaiy transition. The routine
ok^chksum{) is called to verify the checksum of the incoming packet (using the same
algorithm which checks information in both the segment and the (imaginary) IP header).
If the checksum found in the segment is incorrect, the blank token containing the ipJype
structure is dropped. Otherwise, the token, proceeds to a place to wait for the N-peer
to request the next segment. When, this split transition is enabled, the firing actions
specify that the incoming packet is copied into the entry token's variable packet, and that
seq = packet.data in the context of this token. After firing, as with all split transitions,
controliforks. The fork corresponding to the entry token exits, which returning control to
the.caller. The other,fork,, which corresponds to the blank token that was introduced by
the boundary "transition, tenninates control.

It should be noted that the topology of figure 3 does not enforce an ordering on the
incoming packets. If two packets with a correct checksum arrive before the split transition
fires, then the choice as to which packet is chosen as eligible is non-deterministic. The
Internet Protocol, which is the (N-1)-service, is datagram oriented, and may deliver
packets out of order. Figure 3 demonstrates very siinply that the order of incoming
packets is unimportant to the specification.

These two nets compose the entire (N-l)-interface specification. Conceptually, one
could view the two transition boundaries presented in these nets as being joined between

10

(N-1)-interface: receive a packet

(N-1)

O entry{tc6)
boundary: ipJype packet crosses

new segmentJype seg

ok-eksum(packet)

split: (1)

exit(«e;)

(1) ep: t2's packet b for tl's connection
mn tl.seg = tS.packet.data

Figure 3. RCVPKT

two N-peers, as these are the oniy transition boundaries in the specification.

N-interface

Only a partial N-interface specification is made. In particular, of the several calls that
processes may make upon TCP in the TCP specification, only one call, the open() call is
specified, as this is the only c^ that actually deals with connection establishment. The
form of the open0 call described here is somewhat more limited than the specification
presented in [TCP]. The specification herein permits a user process to issue an open
request only for thbse connections which are in the CLOSED state.

11

The opcn() call takes the following input parameters:

} • portJype Iport, which indicates the local port that the user process wants to use
as Its end-point in a connection.

• aocJtefJypc /jo/r, which indicates the foreign socket that the user process wants
to connect with. If this is omitted or partially given, then any foreign socket
matdiing the requirements can establish a connection.

; :r , • boolean active, Which indicates if an active or passive open should be done.

; usr-sig-type timeout, which indicates, if given, a user signal handling routine to be
: notified when a segment is not be acknowledged within a certain time limitation.

: • precedence-type pre, which indicates the.precedence level that the connection
should have.

• security-type sec, which indicates the security/compartment level that the
connection should have.

optionsJype opfions, which specifies any TCP options to be used.

When a user process issues an open() caU, an open request is issued on behalf of
the user process. This results in the OPEN net (figure 5) being instantiated, given the
parameters specified by the user process for the open () call. During the execution of
OPEN, either an error code or a connection handle is returned to the user process. If a
connection handle is returned, then an associated <c6 has been instantiated for the user
process.

N-protocol

The actions of the N-protocol for a particular connection start with figure 5, the
OPEN net, as its main structured Petri net. Before describing OPEN, it is necessary to
digress and-introduce another net, MAIN, in figure 4.

If a segment arrives for a connection that does not exist, some method for rejecting the
segment must exist. This generally requires some global knowledge of all of the connections
that are known on the local host. Since RCVPKT receives all incoming packets, and only
known connections instantiate RCVPKT to fetch packets, packets auriving for non-existent
connections will "stack-up" at the place feeding the split transition in figure 3. Clearly,
this is incorrect behavior. Hence, figure 3, although correct on a per-connection basis,
and correct as a specification of part of the (N-l)-interface, is not actually invoked by the
system. Rather, connections wishing to fetch the next packet meant for them instantiate
the MAIN net at the RCVPKT entry place.

The MAIN net (figure 4) specifies several parts of the system. When the system
starts, it instantiates MAIN at the TCP entry place. MAIN.TCP is viewed as a "single
entry, zero ejdt" net. In short, an instantiation of MAIN.TCP never returns. The TCP
entry place begins by establishing a new context containing a list of connections, which is

12

initially empty. It then proceeds to place where it can enable any of threesplit transitions.
Once any of these transitions fire, control loops back.

• If the OPEN entiy place is instantiated in MAIN, a split transition fires which checks
if the connection specified by the parameters Iporl and faok is present in the connection
list. If so, the /5C0AA error is raised and this is returned to the caller. Otherwise, a
connection handle is associated with a new connection for Iport and faok. This connection
is added to the list of known connections, and the connection handle is returned to the
caller.

.If the CLOSE entry place is instantiated in MAIN for a connection, a split transition
fires which removes the connection from the list of known connections, and flushes any
queues and releases any resources associated with the connection.

:• Independent of the instantiation of the OPEN and CLOSE entry places, if a packet
arrives for a connection that is not present in the list of known connections, a third split
transition fires, which invokes the BADSEG net to reject the segment.

The remainder of the MAIN is essentially the RCVPKT net. The RCVPKT entry
place in MAIN corresponds to the single entry place in the RCVPKT net, and the split
transition has the same enabling predicate and firing actions^. The interesting interaction,
which was the motivation for merging the RCVPKT net into main, is that the place which
supplies incoming packets to the RCVPKT control path, can also supply incoming packets
to the BADSEG control path. Since this place feeds both transitions, either may make
use of incoming packets, depending on how well their enabling predicates are satisfied.

Now that MAIN has been discussed, we can proceed with the parts of the specification
dealing with individual connections. As discussed abovie, an open request results in OPEN
being instantiated with the appropriate parameters. OPEN first checks the validity of the
request.

This check can be summarized as:

' 1. if the user process is not allowed,to access Iport, or is not allowed to use the
indicated pre and sec levels, ^en the error DENIED should be raised.

2. H flcffue is set, hut fsok is not fully specified, then the error NOPEER should be
raised.

3. If there are insufficient resources to handle this request, then the error NOBUFS
should be raised.

4. Otherwise, the request is considered valid.

If the request is not valid, the appropriate error is given to the user process and
control returns as well. Otherwise, the. MAIN net is instantiated at the OPEN entry

^ The observant reader will notice a slight deficiency in figure 4. Due to unfortun^e space limita
tions, a transition k missing immediately-after the RCVPKT entry place. Thb transition creates the
segmentitype teg which is returned..The author ^ologizes for this inconsbtency.

13

N-protocoI: connection oracle

CLOSE

entry(tc6)i
OP^N (Iportjsok)

t?/ t5

split: (7)

TCP entry

split: (4)

BADSEG

[tcb^eeg)

(1) ipJLypt packet crosses
(2) ep: ok.ck6um{packet)
(3) ep; t2's pocifcct b for tl's connection

. mr. il.seg ^i tS.packet.data
(4) ep: t3's pacibet is not for any connection known in the context of t4

cr new tcb initialized for dummy connection
(5) mr: if the connection specified by t6b Iport and fsok

b known in the context of t5, then raise ISCONN
. otherwise, jissociate a connection handle in the context of t6

.and add the connection to the Ibt in the context of t5
(6) return error or connection handle

, (7) mn>.remove tS's connection from t7's Ibt of connections
^_ flush any queues and release any resources associated with tS's connection

• ; (8): cr new Ibt of connections, initially empty

Figure 4. MAIN

place. If MAIN.OPEN returned an error, that error is given to the user process and
control returns. Otherwise, the connection handle returned by MAIN.OPEN is given to
the user process. Next, the OPEN net checks to see if the user process wanted an active
open. If so, a SYN segment is sent, and the connection enters the SYN_SENT state (by
instantiating the SYN.5ENT named net). If, instead, a passive open was requested, the
connection enters the LISTEN state. Eventually, the path taken returns and the MAIN
net is instantiated at the CLOSE entry place. When MAIN.CLOSE returns, control
returns as the'connection has now entered the CLOSED state and no longer exists.

14

boundary: (1)

t2 tl

RCVPKT

entry(tcJ)

split: (3)

exitfsejr)

r;:,.

•• :•

-••r' ;

,••.. -i;.; ;;v '

ii
.'7

• ;i

: .,i

N-protocol: open a connection

active

enitry (1)

MAIN.OPEN

(Iportjeok)

SNDSEG

{tcb,meg)

SYN^ENT

{tcb)

(1) parameters from open request
(2) sn the open request is invalid
• mr give error to user

(3) sr MAIN.OPEN returned an error
mn give error to user

(4) sn MAIN.OPEN returned a a connection handle
cr new tcb initialized from open request
mn give connection handle to user

(5) mr. 188 = newJssO
find, nxl = 188 + 1

8nd.una = tfi«

m8g.8eq = 188

rmg.ack = 0
rmg.ctl = SYN

LISTEN

(tct)

MAIN.CLOSE

(tc6)

Figure 5. OPEN

The LISTEN named net (figure 6) is used to process a connection that is in the
LISTEN state. First, RCVSEG is instantiated to await and return an incoming segment
for this connection. A RST is explicitly checked for. If present, LISTEN ignores the
segment. If an ACK is present, the segment is rejected. If a SYN is not present, the
segment is ignored. If a SYN is present, but precedence and security/compartment
considerations are not satisfied, then the segment is rejected, otherwise, the connection
enters the SYN_RGVD state, and a SYN/ACK is sent as the second part of the three-way
handshake. If more of TCP were being considered, other parts of the segment might be

15

N-protocol: LISTEN state

LISTEN

Ucb)

^^entry(tc6) (1) sr geg.etl.rstV ->(8eg.ctl.ackV seg.ctl.syn)
(2) sn ieg.ctl.ack
(3) sr. teg.cll.tyn
(4) mr. copy sport, taddr if needed

ire = seg.seq
rcv.nxt = eeg.eeq +1
queue teg. data

, queue teg. options
u ist = newJsffO

end.nxt — isB + 1

tnd.una = ist

msg.eeq = ist .
• meg.ack = rcv.nxt

meg.ctl = SYN, ACK

= RCVSEG

P/S okay

BADSEG •SNDSEG

{tab ecg) (tcb,meg)

LISTEN • 1
(tc4)

Figure 6. LISTEN

I^SYN-RCVD^
I {tcb) I

processed prior to entering the SYN_RCVD state.

The SYN_SENT named net (figure 7) is used to process a connection that is in
the SYN^ENT state. First, RCVSEG is instantiated to await and return an incoming
segment for this connection. If the segment acknowledges a segment not belonging to this
instance of this connection, the segment is rejected. Otherwise the presence of a RST
and a SYN is check^ for. If a RST is present, and this is an acknowledgement, then
the user process is informed that the connection was rejected, and control returns (to the
OPEN net). Otherwise, the connection remains in the SYNJSENT state (the segment is
ignored).. Precedence and security/compartment considerations are then checked for, if
not satisfied, the segment is rejected. If the considerations are satisfied, then a response

16

N-protocol: SYN^ENT state

([3entry(tci)

• . , : /

seg = RCVSEG
(<c6)

BADSEG

(tcb,seg)

- - - - J

(tcb)

[syn^sentI

(l) teg.cU.ack A{ieg.aek < iseV tnd.nxt < seg.ack)
{2) teg.ctl.rstv-tseg.cU.Bgn
(3) sr eeg.ctl.ack A{snd.itna < seg.ack < end.nxt) Aseg.cll.syn

mr error = RESET

(4) sr P/S okay
mr rcv.nxt = seg.seq + J

irs = seg.seq
if {seg.etl.aek) snd.una —seg.ack

(5) sr. snd.una > iss
I mr^ msg.seq = snd.nxt

msg.ack = rcv.nxt
msg.cll = ACK
queue (fata
queue eey.option*

BADSEG

{tcb,seg)

; rsYNjsent"!
I (tc6)

SNDSEG

{tcb,msg)

r- 'I

ESTAB

(tc6)

(6) sr snd.una < iss
mr msg.seq = iss

msg.ack = rcv.nxt
,m8g.ctl = SYN,ACK

queue seg.data
queue seg.options

SNDSEG

{tcb,insg)

' 'SYN_RCVD^
1 : !

Figure 7. SYN-SENT

is sent, and the connection enters either the ESTAB or SYNJRCVD state, depending on
whether our SYN has been acknowledged. Again, if more of TCP were being considered,
other parts of the segment might be processed prior to entering the new state.

Figure 7 is rather sequential in nature. This need not be the case. A single, large
switch-decision could be used to remove the sequential nature of the decisions which
lead to the net's actions. This was not done for reasons of clarity. Depending upon the
designer's interpretation of the trade-offs, the structured Petri net technique could be
used to remove nearly all of the sequential nature of this invocation.

The SYNJICVD named net (figure 8) is used to process a connection that is in
the SYNJIGVD state: First, RCVSEG is instantiated to await and return an incoming

17

segment for this connection. If the segment is outside the window, the presence of a RST
is checked for. If present, the segment is ignored; if not, a response is sent to force the
foreign peer to re-transmit a valid segment. If the segment is inside the window, the
presence of a RST is checked for. If.present, and this connection was started with an
active open(), the user process told that the connection has been refused, and control
returns.. Otherwise, the connection enters the LISTEN state. If a RST was not present,
precedence and security/compartment considerations are checked, if not acceptable, the
segment is riejected; otherwise the presence of a SYN is checked for. If present, the
segment is rejected, the connection is closed, and the user process is informed that the
connection has been reset; if not, the presence of an ACK is checked for. If not present,
the segment is ignored. If an ACK is present, a check is made to make sure that the
ACK is correctly acknowledging our SYN. If not, the segment is rejected. Otherwise the
connection enters the ESTAB state. Again, if more of TCP were being.consider^, other
parts of the segment might be processed prior to instantiating EiSTAB.

At this point, four additional named nets should be presented: BADSEG, SNDSEG,
RCVSEG, and TIMER. Due to space considerations, they are not presented in this
paper. Rather, they are shortly described here. The BADSEG net rejects a segment by
constructing a reply with RST set (but only if the segment being rejected did not have
RST set).

The SNDSEG net is used to send a segment to the other N-peer. It instantiates
SNDPKT to interact with the (N-l)-layer, and also adds the segment to a retransmission
queue. The RCVSEG net is used to get the next segment from the other N-peer. It
instantiates MAIN.RCVPKT to get the next packet for this connection, and removes from
the retransmission queue any segments that are acknowledged by the incoming segment.

The TIMER net is responsible for handling retransmission. SNDSEG and RCVSEG
call upon different entry places in TIMER to manipulate the retransmission queue for
their connection. Further, TIMER makes use of a transition with a non-zero enabling
time to model a time-out and issue repeated calls to SNDPKT to retransmit the first
segment on the retransniission queue.

N-protocoI primitives

The definitions of the predicates and routines used in the enabling predicates and
firing actions of some of the transitions in the net are presented here.

The routine do.chksum{) computes the TCP checksum for a segment and associated
packet, and stores the checksum in the segment's cksum field. Similarly, the predicate
ok.chksum[) computes the TCP checksum for a segment and associated packet, and
compares it to the value of the segment's cksum field. If the two values do not match, the
routine returns E4X5E otherwise it returns TRUE.

. The netyjasO routine ctdculates an initial sequence number for a tcb.

Thepredicate jP/5 oitay refers to theprecedence and security/compartment conditions
being satisfied.

18

N-protocol: SYNJICVD state

sr.

sn

sn

sn

outside window

feYN-RCVBl

[..Jjspy
SNDSEG

{tcb,m8g)

:syn_rcvd:

O entry(tc4)

8eg.= RCVSEG

iM

sr eeg.ctl.rst
(2) sn -tseg.ctl.T8t

mr. msg.seq = snd.nxt
msg.ack = rcv.nxt
msg.ctl = ACK
-> P/S okay
P/S okay A-tseg.ctl.syn
P/S okay Aseg.ctl.syn

inside window

.ctl.rst

BADSEG Q BADSEG

{tcb,seg) 1 (tcb seg)
LISTEN

{tcb^

error = RESET

Iexit

6YN-RCVD;

seg.ctl.ack
-t[snd.una < seq.ack < snd.nxt)
snd.una < seq.ack < snd.n^_

active-open

BADSEG

{tcb,seg)
ESTAB

mn error = REFUSED

«YN_RCVD

FiCTfe 8. SYN-RCVD

Finally, the predicates inside window and outside window check to see if a segment
is inside the vahd window for a connection, checking the segment's sequence number and
the S-wndJype structure of the teb.

6. Evaluation

This section makes an abbreviated examination of the preceding specification. In
comparison to the full specification in [TCP], several observations can be made, which
point to the advantages and weaknesses of the structured Petri net approach. In many
ways, the structured Petri net approach is less ambiguous that its natural language
counterpart. The flow of control for a particular state is more clearly defined. Despite the
use of "structured" (i.e. rigorously indented) paragraphs in (TCP], ambiguities do arise.

19

These are in-escapablel Although "structured", little hierarchy is present in [TCP], which
results in rather repetitive groups of statements throughout the specification. In contrast,
the structured Petri net specification does not suffer from these problems, as Petri nets are
used to convey the bulk of the meaning. Even so, the structured Petri specification does
make use of several predicates, functions, and procedures which are presented in natural
language. It is emphasized that the sPii technique does not seek to eliminate the use of
natural language as a part of the specification, but rather to introduce a rigorous approach
which is more capable of capturing the spirit of the protocol and is less ambiguous than
less formal methods.

A difficult problem in presenting a sp^ification is "knowing when to stop". That
is, at what point has the specification given the full functional description, and further
discussion on the specification's part is actually constraining possible implementations?
Both specifications do rather well in this regard, although [TCP] tends to do somewhat
better. In providing a less ambiguous specification, the structured Petri net approach
has taken the liberty to make several things more concrete, so as to avoid possible
mis-interpretation. It is not clear if this has crossed the line from functional specification
to implementational constraint.

Finally, a criticism made of many specification and verification efforts is the lack of
ability to properly describe the behavior of the protocol when more than one connection
is active. For the specification presented in this paper, the use of colors to represent
connections, and the clean semantics of colors in structured Petri nets, permits a natural
description of the protocol's activities. For verification purposes, if one could demonstrate
that initial connection handling, for.a single connection was handled correctly, and one
could demonstrate that the interaction between connections (i.e. colors) did not disturb,
this property, then one can prove that multiple connections are handled properly by the
specification.

Conclusions

The three-way handshake,; which is used by the Transmission Control Protocol as a
means of initial connection establishment, has been specified using structured Petri nets.
The specification-has demonstrated the ability of this technique to represent a significant
portion of a reasonably complex protocol.

The specification is not without its faults however, and these faults demonstrate
the weaknesses of the structured Petri net approach. This approach has apparently
opted to sacrifice ease of verification for power of expression. Despite their relatively
clean semantics and nice conceptual basis, structured Petri nets apparently do not lend
themselves well to existing verification techniques.

' This section is not meant to be a critique of [TCP]. Any specification made using a natural language
'approach will suffer these problems.

20

Fortunately, as a specification tool, structured Petri nets have other uses. In essence,
structured Petri nets are able to concisely present a protocol using the natural concurrency
logic found in Petri nets, and the compact data representation and manipulation
capabilities found in programming languages. This means that thespirit ofa protocol can
be easily represented using the structured Petri net approach without undue clutter.

Further research in the area of the structured Petri net approach must clearly
concentrate on its greatest weakness: the lack of verification concepts. Fortunately, the
verification of specifications using Petri nets is well understood (e.g., [BertSz]). Further,
we note that structured Petri nets bear a close resemblance to the "presentational model"
in {KELL76]. If structured Petri nets can be shown to have convenient or powerful
verification techniques applicable, then their use in protocol specification would be much
more desirable.

21

References

IBERT82] . . G.-Berthelot, R. Terrat. Petri Net Theory for the Correctness of protocols.
IEEE Transactions on Communications 12, COM-30 (December, 1982),
2476-2505.

[IP] Internet Protocol. Request for Comments 791. Appearing in Internet Proto
col Transition Workbook, Network Information Center, SRI International,
1981.

[KELL76] . R.M. Keller. Formal Verfication of Parallel Programs. Communications of
the ACM 7, 19 (July, 1976), 371-384.

[MR0SE83B] M. Rose. An Introduction to Structured Petri Nets. Technical Report
218 (October, 1983), Department of Information and Computer Science,
University of California, Irvine.

[PETE77] J.L. Peterson. Petri Nets. Computing Surveys 3, 9 (September, 1977),
224-252.

[SUNS78B] C.A. Sunshine, Y.K. Dalai. Connection Management in Transport Proto
cols. Computer Networks 16, 2 (November, 1978), 454-473.

[Symo8oa] F.J.W. Symons. Introduction to Numerical Petri Nets, a General Graphical
Model of Concurrent Processing Systems. Appearing in Communication
Protocol Modeling, C.A. Sunshine, editor, Artech House, 1981.

[TCP] Transmission Control Protocol. Request for Comments 793. Appearing in
Internet Protocol Transition Workbook, Network Information Center,. SRI
International, 1981.

22

