
UC San Diego
Technical Reports

Title
Query Set Specification Language (QSSL)

Permalink
https://escholarship.org/uc/item/96j8c2p6

Authors
Petropoulos, Michalis
Deutsch, Alin
Papakonstantinou, Yannis

Publication Date
2003-03-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96j8c2p6
https://escholarship.org
http://www.cdlib.org/


 

1 

Query Set Specification Language (QSSL) 

Michalis Petropoulos     Alin Deutsch     Yannis Papakonstantinou 
University of California, San Diego 

{mpetropo,deutsch,yannis}@cs.ucsd.edu 
 

 

Abstract 
Applications require access to multiple 

information sources and the data of other 

applications. WSDL-based web services are 

becoming a popular way of making information 

sources available on the web and, hence, to 

applications that need to consume them – often via 

data integration systems that combine the data of 

multiple sources. We argue that the function signature 

paradigm that is used today by web services cannot 

capture the query capabilities provided by structurally 

rich and functionally powerful information sources, 

such as relational databases. We propose the Query 

Set Specification Language (QSSL) that allows the 

concise description of sets of parameterized XPath 

queries. A QSS is embedded in a WSDL specification 

to form a specialized type of web services, called 

Data Services. Data Services connect the calls that 

the source accepts with the underlying schema. QSSL 

will be enhanced to describe subsets of XQuery 

expressions beyond XPath ones. 

1 Introduction 
Web Services Description Language (WSDL)  [5] 

provides an XML format for describing functions 

offered via web services. The function signatures 

typically have fixed numbers of input and output 

parameters. However, the “function” paradigm is not 

adequate when the software components behind the 

web services are databases. One typically associates 

one function with each parameterized query but this is 

problematic since databases often allow a large or 

even infinite set of parameterized queries over their 

schema. For example, the administrator of a product 

catalog database may want to allow any query that 

selects products by a combination of selection 

conditions on the product’s attributes. Assuming the 

product has, say, 10 attributes, it is obviously 

impractical to specify 2
10

 function signatures.1 

In addition, the function paradigm does not state 

explicitly either the relationship between the input 

parameters and the output or the semantic 

                                                           
1 In the particular example one can resolve the issue simply 

by allowing some input parameters to be null. This 

situation is generalized by QSS to capture multiple 

function signatures in just one WSDL operation  [5]. 

connections the available functions have with each 

other and with the underlying database. We classify 

such web services as functional and we argue that 

they are inappropriate for exporting structurally rich 

and functionally powerful information sources, such 

as relational and emerging XML databases. 

We present a WSDL extension that enables Data 

Services, which overcome the shortcomings of 

functional web services. A data service exports the 

XML Schema  [7] of an XML view. The data service 

also provides a set of parameterized queries that can 

be executed against the view. Hence the relationship 

between the input and output parameters is explicit, 

since the input corresponds to a query and the output 

to its result. Note that the view typically (but not 

necessarily) corresponds to a part of the underlying 

database. 

The Query Set Specification Language (QSSL) is 

a WSDL extension that, given an underlying 

database, allows the concise and semantically 

meaningful description of set of parameterized 

queries. The set may be very large or even infinite, 

since powerful information sources (such as relational 

databases) support a large number of parameterized 

queries. Consequently, QSSL must be able to 

describe sets of parameterized queries without 

requiring exhaustive enumeration of them. 

QSSL concisely describes sets of tree pattern 

(subset of XPath) queries. We plan to extend to 

subsets of XQuery. It lends itself to a compact and 

intuitive visual notation that forms the basis of an 

under-development GUI that allows the specification 

of QSSs.  

WSDL

Input Message Type

Output Message Type

Output Message

Input Message

QSSX

Data XML Schema

XML

TPX

Data
Service

AgentData
Source

Data

XML Schema

 
Figure 1 Data Service Architecture 

Figure 1 shows the architecture of a data service 

published by a data source with a given data XML 

Schema. The query capabilities exported by a data 



 

2 

service are published as a WSDL specification  [5] 

that provides an agent with the means to formulate 

valid and acceptable queries and to be aware of the 

structure of the result. Notice that we translate QSSs 

into XML Schemas and we are thus compatible with 

the WSDL specification. The data service receives an 

input message from the agent and replies with an 

output message or a fault. The input message is a tree 

pattern (TP) query (subset of XPath), defined in 

Section 2, expressed in the TPX XML format, and the 

output message is an XML tree. The set of acceptable 

tree pattern queries (i.e., the set of acceptable input 

messages) is a Query Set Specification (QSS), 

defined in Section 2. A QSS describes the possibly 

infinite set of parameterized queries that are 

acceptable. The QSS is translated into an XML 

Schema (QSSX) describing the acceptable TPX 

messages. 

1.1 Example 

The running example is based on the XML 

Schema in Figure 2a that describes the structure of an 

airline database holding information about flights. 

The schema describes the flights carried out by one or 

more airline companies, where each flight has an 

origin and destination (from and to elements) and is 

scheduled at least once per week. In turn, each flight 

has one or more legs with a code, an origin and a 

destination and optionally the type of the aircraft 

used. Note that the schema of the actual airline 

database may be “richer” but we focus on the part 

that the database administrator exposes. 

The database administrator allows queries that are 

having any combination of the following conditions: 

• The name of the airline company is specified 

• The origin and destination of one or more flights 

is optionally specified 

• A day of the week is specified 

• The origin of zero or more legs is optionally 

specified 

• The destination of zero or more legs is optionally 

specified.  

• The aircraft used for zero or more legs is 

optionally specified. 

Notice that one may also specify combinations of 

origin, destination, and aircraft for legs. For the sake 

of the example, we also allow one to check whether a 

flight has a leg (existential condition). 

The queries may return “airline” or “flight” 

elements. 

This document presents the process of exporting 

such query capabilities using a data service. More 

specifically, Section 2 defines the query language and 

the query set specification language, and shows how 

QSSL accommodates recursive schemas. Section 3 

describes the XML syntax of TP queries and QSSs. 

Section 4 presents possible QSSL extensions and 

related work is discussed in Section 5. 

2 Specifying Queries and Query Sets 
We consider data services that support queries 

defined by a class of XPath expressions consisting of 

node tests, navigation along the child axis ‘/’ and the 

descendant axis ‘//’, and predicates denoted by ‘[]’. 

The established convention for representing this class 

of XPath expressions is to use tree pattern (TP) 

queries [2, 14]. We believe that support for tree 

pattern queries is a minimum data service 

requirement, since tree patterns are widely used in 

current applications, and since they are crucial 

building blocks of more expressive query languages 

such as XQuery  [4]. Moreover, tree pattens provide 

an excellent visual paradigm which enables graphical 

user interfaces for constructing applications that 

produce and consume data services. For example, the 

XPath expression  

flights/airline[name=‘Delta’]/flight[from= 
‘JFK’][to=‘LAX’][day=‘MON’][leg[to=‘LAS’]] 

is represented by the tree pattern query in Figure 2b. 

The arrow pointing to the flight element node 

denotes the result node of the tree pattern query. 

flights

airline

flight

name

from

to

day

leg

aircraft

to

from

code

+

*

+

?

+

(a) Data XML Schema               

flights

airline

flight

name =‘Delta’

from

to =‘LAX’

=‘JFK’

day =‘MON’

leg

to =‘LAS’

(b) Tree Pattern Query
 

f7

f8

f9

f6

f5

f4

f3

f2

f1

flights

airline

flight

name=#1

from

to =#3

=#2

day=#4

leg

aircraft

to

from

=#6

=#5

=#7

+

?

*

?

?

?

code

(c) Query Set Specification   
(d) Productions

flights

airline

f3f2 +

f1

namef2 =#1

flight

f6f4 f5?

f3

*

from

to

f4

=#3

=#2

dayf5 =#4

leg

f9f7 f8 ??

f6

?

fromf7 =#5

tof8 =#6

aircraftf9 =#7

 

Figure 2 Airline Example 



 

3 

2.1 Query Set Specifications 

We define a data service by specifying the set of 

tree pattern queries it supports. First, we introduce 

parameterized tree patterns (PTPs), which are TP 

queries where the constants are replaced with 

parameters. A PTP query specifies an infinite set of 

TP queries, each TP corresponding to a parameter 

instantiation. A data service exports a possibly 

infinite set of such parameterized tree pattern queries. 

This set is succinctly encoded using a Query Set 

Specification (QSS).  

Definition 1 (Query Set Specification). A QSS is a 

5-tuple <F, Σ, P, S, R>, where: 

• F is a finite set called the tree fragment names. 

• Σ is a finite set, disjoint from F, called the 

element node names. 

• P is a finite set of productions of general form 

f→tf1, …, tfn where f∈F is a tree fragment name 

and each tfi is a tree fragment. A tree fragment is 

a labeled tree consisting of: 

� Element nodes with labels from Σ. Leaf 

element nodes may be additionally labeled 

with a parameterized equality predicate of 

the form =#i, where #i is a parameter and i 

is an integer. 

� Tree fragment nodes n labeled with a name 

name(n)∈F and an occurrence constraint 

occ(n)∈{1, ?, +, *}. Tree fragment nodes 

can only appear as leaf nodes of a tree 

fragment. We often omit the occurrence 

constraint ‘1’. 

� Edges e either of child type, denoted by 

straight lines, or of descendant type, denoted 

by dashed lines. 

• S∈F is the start tree fragment name. 

• R∈Σ is a set called result node names.               ■ 

Example. The QSS describing the airline data service 

from our motivating example is A=<F, Σ, P, S, R>, 

where F={f1,…, f9}, Σ={flights, airline, name, 

flight, from, to, day, leg, aircraft}, P is the 

set of productions shown in Figure 2d, S=f1 and 

R={airline, flight}. ■ 

A compact visual representation of this QSS is 

given in Figure 2c, where tree fragments are depicted 

by shaded boxes with occurrence constraints to their 

right. This visual representation is the basis of our 

under-development GUI for specifying QSSs by 

displaying the XML schema and using drag-and-drop 

actions. 

Given the similarity between QSSs and extended 

context-free grammars  [1], we define the set of 

parameterized tree pattern queries described by a 

QSS analogously to the language generated by a 

grammar. A QSS defines the set of PTPs whose result 

node is in R and whose pattern is yielded by a 

sequence of derivation steps starting from the start 

fragment name S. At any step, given a tree fragment 

node n, the derivation step replaces n with the tree 

fragments on the right hand side of a production that 

has n on the left hand side. Depending on the 

occurrence constraint labeling n, the derivation step 

might replace it more than once or not at all. More 

specifically, if occ(n)=1, then n is replaced with the 

corresponding tree fragments exactly once, and they 

all become children of n’s parent. If occ(n)=?, then n 

is nondeterministically either deleted or relabeled 

with occ(n)=1 before replacement. If occ(n)=+, then 

for a nondeterministically chosen k≥1, n is replaced 

with k copies of n, all siblings, with occurrence labels 

set to 1. If occ(n)=*, then n is labeled 

nondeterministically with occ(n)=? or occ(n)=+ first. 

The parameters introduced in every step are freshly 

renamed such that their name is unique across the tree 

fragment obtained so far. 

A TP query is accepted by a QSS A if and only if 

it corresponds to an instantiation of the parameters of 

a PTP query from the set defined by A. We denote 

with TP(A) the set of TP queries accepted by A. 

Example. Figure 3 shows the sequence of derivations 

steps, denoted by the ⇒ symbol, that obtains the 

corresponding PTP query pq of the TP query q in 

Figure 2b. Note how the third derivation step replaces 

f4 with the corresponding tree fragments, and how the 

fourth derivation step deletes f7 and f9. After the final 

derivation step, the node labeled with the flight 

result node name is chosen, thus forming a PTP query 

pq. When pq’s parameters [#1,#2,#3,#4,#5] are 

instantiated with the constants [‘Delta’, ‘JFK’, 

‘LAX’, ‘MON’, ‘LAS’], we obtain the TP query q 

from Figure 2b. Therefore, q is accepted by A. ■ 

When the XML Schema is recursive, it describes 

flights

airline

f3f2

f1

flight

f6f4 f5
from to =#3=#2 day=#4

leg

to =#6

⇒ flights

airline

name=#1
flight

⇒ flights

airline

name=#1

from to =#3=#2 day=#4
leg

flight

⇒ flights

airline

name=#1

⇒

+

? *

f9f7 f8 ?? ?

Figure 3 Example Derivation



 

4 

documents of arbitrary depth. On these documents, 

there are TP queries of arbitrary pattern height with 

non-empty answer and it makes sense to export them 

in a data service.  

Despite its fixed size (determined by the XML 

schema), a QSS can specify such arbitrarily deep TP 

queries. 

Example. The recursive XML Schema in Figure 3a 

captures the structure of a family tree. Figure 4b 

shows a TP query that returns the persons found at 

any depth that are named “Kevin” and were born in 

“NY” such that at least one of his descendants is 

married to a person also named “Kevin” and also 

born in “NY”. Recall that the dotted lines in Figure 

3b denote descendant edges. 

familyTree

person

spouse

name

name

children

person

?

(a) Recursive

XML Schema

?

place

place

*

     (b) Tree Pattern Query

familyTree

person

name

children

person

place

=‘Kevin’

spouse

name

place

=‘Kevin’

=‘NY’

=‘NY’

spouse

 

f8

f7

f6

f5

f4

f3

f2

f1

?

?

?

?

?

(c) Query Set Specification

familyTree

person

spouse

name

name

children

f2

place

place

=#1

=#2

=#3

=#4

?

*

     
(d) Productions

familyTree

f2

f1

person

f5f3 f4 ??

f2

?

name

place

f3

=#2

=#1

spouse

f8f6 f7 ??

f5

?

namef6
=#3

f7

childrenf8

f4

place=#4

f2 *

 

Figure 3 Family Tree Recursive Example 

A QSS that accepts, among others, the 

corresponding PTP query of the TP query in Figure 

3b is shown in Figure 3c. Note the last node, labeled 

with the tree fragment name f2, representing the 

recursion in the schema. Formally, the above QSS is 

defined as B=<F, Σ, P, S, R>, where F={f1,…, f8}, 

Σ={familyTree, person, name, place, spouse, 

children}, P is the set of productions shown in 

Figure 3d, S=f1 and R={person}. Note how the 

recursion in productions f2, f5 and f8 allows for 

derivations of arbitrary length. It is easy to see that 

the PTP query corresponding to the TP query in 

Figure 4b is obtained by a sequence of derivation 

steps using the production associated to f2 twice. ■ 

2.2 Reasoning about Data Services 

Aside from facilitating the development of 

applications that are clients of the data service, QSSs 

allow reasoning about data services. Below are 

examples of data service properties we would like to 

verify. 

• Membership of a query in a data service. The 

most basic problem is to check if a client TP 

query q is accepted by a data service described 

by QSS A, i.e. q∈TP(A). 

• Subsumption of data services: given services 

described by QSSs A1 and A2, check if TP(A1) ⊆ 

TP(A2). 

• Totality of a data service: does the data service 

described by QSS A accept all possible TP 

queries? 

• Overlap of data services: given services 

described by QSSs A1 and A2, check if TP(A1) ∩ 

TP(A2) ≠ ∅. 

Of course, revisiting the analogy between QSSs 

and extended context-free grammars, we could reduce 

these problems to decision problems on grammars. 

However, while the membership problem can be 

solved in this way, the other problems in the list 

reduce to well-known problems that are undecidable 

even for standard context-free grammars. Fortunately, 

it turns out that a QSS can be translated to an 

equivalent top-down nondeterministic unranked tree 

automaton  [3] (the translation is straightforward and 

omitted due to space limitations). QSSs therefore 

describe regular tree languages, for which all 

problems listed above are decidable  [3].2 

A practically important question is whether a 

client query can be answered using a finite subset of 

the queries described by a QSS. This is related to the 

problem of answering queries using limited query 

capabilities  [18]. 

3 WSDL and XML Syntax 
Our proposal for specifying data services is 

compatible with the standard Web Service 

Specification Language WSDL  [5] in the sense that 

any QSS can be translated into a WSDL 

specification. 

In general, a WSDL specification describes the 

format of the messages that a service sends or 

receives3 using element declarations and type 

                                                           
2 This observation should not come as a surprise given the 

similar result stating that DTDs, who look strikingly 

similar to extended context-free grammars, actually 

describe regular tree languages  [17]. 
3 A WSDL specifies many additional communication 

details: synchronicity, how sets of messages are grouped 

into one operation, etc., all of which are orthogonal to 

our proposal. 



 

5 

definitions drawn from the XML Schema type system 

 [7]. A WSDL specification describing a data service 

restricts a general WSDL specification in several 

ways, since the communication between the agent and 

the data service is always synchronous and is carried 

out in a request/response fashion  [16]. The input 

message represents the query received from the 

service, and the output message the result sent from 

the service. Both message types are described using 

the XML Schema type system.  

A QSS can be automatically translated into a 

WSDL specification using the well-known fact that 

XML Schemas describe regular tree languages 

themselves. We omit the details of the translation 

algorithm, but illustrate on an example. This example 

makes a convincing case for presenting users with a 

concise and visually intuitive representation such as a 

QSS instead of the less readable XML syntax of the 

WSDL. 

Example. Appendix A shows the WSDL 

specification of the QSS from Figure 2c. The schemas 

that describe the input and the output messages of the 

data service are imported in the beginning of the 

specification. The first schema describes the 

parameterized queries supported by the data service. 

A QSS is expressed in XML Schema format (QSSX) 

in order to be contained in a WSDL specification. 

QSSX is an XML Schema that acceptable TPX 

queries conform to. The QSSX syntax for the QSS in 

Figure 2c is shown in Appendix B. The second 

schema reveals the structure of the underlying 

database and presents a choice group consisting of the 

result node names in the result node names set of a 

QSS. Appendix C shows the XML Schema for the 

QSS in Figure 2c. As in the case of QSS and QSSX 

syntax, TP queries need to be expressible in XML 

format in order to be contained in messages described 

by a WSDL specification. The XML syntax of TP 

queries, called TPX, is a subset of XQueryX  [12], the 

XML syntax of XQuery. The TPX query equivalent 

to the TP query in Figure 2b is given in Appendix D. 

The XML Schema that defines the TPX language is 

presented in Appendix E. ■ 

4 QSSL Extensions 
In the future, QSSL will be enhanced to describe 

subsets of XQuery expressions beyond XPath ones, 

as well as additional constraints that restrict the co-

occurrence of tree fragments. 

In Figure 3c, for example, the QSS only indicates 

that a parameterized equality predicate on the name 

and on the birth place of a person can optionally be 

part of an acceptable PTP query. The QSS does not 

have the ability to succinctly express that these two 

predicates are mutually exclusive, or express that at 

least one of them must be part of an acceptable PTP 

query. It can achieve the desired effect by explicitly 

listing all acceptable combinations but this beats the 

purpose of QSSL. 

In order to express these constraints, QSS can be 

enriched with a set of replacement constrains 

including atLeast, atMost and xor. 

For example, atLeast(1,{f3, f4}) expresses that in a 

derivation at least one of f3 and f4 must be replaced. 

xor({f3, f4},{ f6, f7}) expresses that either the 

parameterized predicates on the name and on the 

place of a person or on the name and on the place of a 

spouse are part of an acceptable PTP query, but not 

both. 

5 Related Work 
In the past, the database community has 

conducted research on the related problems of 

answering queries using views  [9], capability-based 

query rewriting [8, 18] and computation of query 

capabilities  [19]. Assuming a source exporting a 

relational view with n attributes,  [9] describes query 

capabilities as binding patterns. Each binding pattern 

attaches a b (bound) or an f (free) adornment on each 

attribute of the exported view. Adornment b means 

that a value for the attribute is required in a query, 

while f means that a value is optional.  [19] enriches 

the set of adornment adding u, where a value for an 

attribute is not permitted, c[s], where a value for an 

attribute is required and must be chosen from the set 

of constants s, and o[s], where a value in s is optional. 

Note that each binding pattern defines a query 

template. Query capabilities described as binding 

patterns are characterized as negative, because they 

restrict the set of all possible queries against the 

exported view. Wrappers exporting binding patterns 

are called thin, because of their limited functionality 

to execute the input query against the underlying 

source. 

 [11] described sets of queries using the 

expansions of a Datalog program.  [18] generalized 

 [11] to describing sets of parameterized queries and 

showed that Datalog is not enough to cover even all 

yes/no conjunctive queries over a schema. It 

consequently showed that the RQDL extension can 

describe large sets, such as the set of all conjunctive 

queries over a schema. QSSL and data services also 

attempt to describe the abilities of sources that 

support large sets of queries and aim to fuel the 

research of the problem considered in [8, 9, 18, 19] 

for the XML data model and the XQuery language 

 [4]. 

On the industrial level, the effort is focused on 

turning relational database systems to web services 

providers by exporting data definition and 



 

6 

manipulation operations via web services. These 

operations are either fixed or parameterized queries 

expressed in SQL or SQL/XML  [6], stored 

procedures, or functions. Typically, a web service 

exporting a fixed query takes as input the name of the 

database operation, and possibly a parameter 

instantiation, and outputs either an XML document or 

a serialized object in a given programming language. 

No schema information of the underlying database is 

given, either for the input or the output. A list of 

systems implementing this architecture includes 

IBM’s Document Access Definition Extension 

(DADx) for DB2  [10], Oracle’s Database Web 

Services specification  [13], Microsoft’s SQL Server 

2000 Web Services Toolkit  [21] and BEA’s 

WebLogic Workshop  [20]. There is also an effort on 

consuming web services within the SQL query 

language, thus integrating relational data with web 

services. 

The W3C Web Services Description Working 

Group  [16] describes usage scenarios that focus on 

various types of communication using messages and 

demonstrate how they can be carried out using web 

services. The technical issues focus on the direction 

of communication, i.e., request-response, solicit-

response or one-way, whether a web service is 

synchronous or asynchronous and whether it supports 

conversations, rather than what query capabilities a 

database exports. 

Finally, a preliminary and restricted version of 

QSSL appears in  [15] supporting the generation of 

web-based query forms and reports for semistructured 

data. Only finite sets of parameterized queries can be 

encoded no formal semantics is given, and there is 

not an algorithm that translates a QSS to an XML 

Schema. 

References 
[1] J. Albert, D. Giammarresi, D. Wood: Normal 

Form Algorithms for Extended Context-Free 

Grammars, Theoretical Computer Science 267, 

pp. 35-47, 2001. 

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, 

D. Srivastava: Minimization of tree pattern 

queries, ACM SIGMOD, 2001. 

[3] A. Brüggemann-Klein, M. Murata, and D. Wood: 

Regular Tree and Regular Hedge Languages over 

Unranked Alphabets: Version 1, April 3, 2001, 

Technical Report HKUST-TCSC-2001-0, The 

Hong Kong University of Science and 

Technology, 2001.  

[4] D. Chamberlin et al.: XQuery 1.0: An XML 

Query Language, W3C Working Draft, 2002.  

http://www.w3.org/TR/xquery/ 

[5] R. Chinnici et al.: Web Services Description 

Language (WSDL) v. 1.2, W3C Working Draft, 

2003. 

http://www.w3.org/TR/wsdl12/ 

[6] A. Eisenberg, J. Melton: SQL/XML is Making 

Good Progress, SIGMOD Record 31(2), 2002. 

[7] D. C. Fallside: XML Schema Part 0: Primer, 

W3C Recommendation, 2001.  

http://www.w3.org/TR/xmlschema-0/ 

[8] L. M. Haas, D. Kossmann, E. L. Wimmers, J. 

Yang: Optimizing Queries Across Diverse Data 

Sources, VLDB, 1997. 

[9] A. Y. Halevy: Answering Queries Using Views: 

A Survey, VLDB Journal 10(4): 270-294, 2001. 

[10] G. Hutchison: DB2 and Web Services: The Big 

Picture, January 2003.  

http://www7b.software.ibm.com/dmdd/zones/we

bservices/ 

[11] A. Y. Levy, A. Rajaraman, J. D. Ullman: 

Answering Queries Using Limited External 

Processors, PODS, 1996. 

[12] A. Malhotra et al.: XML Syntax for XQuery 1.0 

(XQueryX), W3C Working Draft 7 June 2001.  

http://www.w3.org/TR/xqueryx 

[13] K. Mensah, E. Rohwedder: Oracle9i Database 

Web Services, White Paper, November 2002.  

http://otn.oracle.com/tech/webservices/htdocs/d

bwebservices/Database_Web_Services.pdf 

[14] G. Miklau, D. Suciu: Containment and 

Equivalence for an XPath Fragment, PODS, 

2002. 

[15] Y. Papakonstantinou, M. Petropoulos, V. 

Vassalos: QURSED: Querying and Reporting 

Semistructured Data, ACM SIGMOD, 2002. 

[16] W. Sadiq et al.: Web Service Description Usage 

Scenarios, W3C Working Draft, 2002.  

http://www.w3.org/TR/ws-desc-usecases/ 

[17] L. Segoufin, V. Vianu: Validating Streaming 

XML Documents, PODS, 2002. 

[18] V. Vassalos, Y. Papakonstantinou: Describing 

and Using Query Capabilities of Heterogeneous 

Sources, VLDB, 1997. 

[19] R. Yerneni, C. Li, H. Garcia-Molina, J. Ullman: 

Computing Capabilities of Mediators, ACM 

SIGMOD, 1999. 

[20] BEA WebLogic Workshop  

http://www.bea.com/framework.jsp?CNT=index

.htm&FP=/content/products/workshop/ 

[21] Microsoft SQL Server 2000 Web Services 

Toolkit  

http://www.microsoft.com/sql/techinfo/xml/defa

ult.asp 

 



 

7 

Appendix 

A. WSDL Specification of a Data Service 
<?xml version="1.0" encoding="UTF-8"?> 
<definitions name="FlightsService" 
    targetNamespace="http://airline.wsdl/flights/" 
    xmlns="http://schemas.xmlsoap.org/wsdl/" 
    xmlns:tns="http://airline.wsdl/flights/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
    xmlns:xsd1="http://airlineQSSX/" 
    xmlns:xsd2="http://airlineSchema/"> 
 
    <import location="airlineQSSX.xsd" namespace="http://airlineQSSX/"/> 
    <import location="airlineSchema.xsd" namespace="http://airlineSchema/"/> 
 
    <message name="queryFlightsRequest"> 
        <part name="query" type="xsd1:query"/> 
    </message> 
    <message name="resultFlightsResponse"> 
        <part name="result" type="xsd2:result"/> 
    </message> 
 
    <portType name="FlightsPortType"> 
        <operation name="queryFlights" variety="Input-Output"> 
            <input message="tns:queryFlightsRequest" name="queryFlightsRequest"/> 
            <output message="tns:resultFlightsResponse" name="resultFlightsResponse"/> 
        </operation> 
    </portType> 
</definitions> 

B. QSSX Syntax 
<?xml version = "1.0" encoding = "UTF-8"?> 
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" 
            targetNamespace="http://airlineQSSX/" 
            xmlns:qssx = "http://airlineQSSX/"> 
 
  <xsd:annotation> 
    <xsd:documentation>The root element of a TPX query</xsd:documentation> 
  </xsd:annotation> 
  <xsd:element name = "query"> 
    <xsd:complexType> 
      <xsd:sequence> 
        <xsd:group ref = "qssx:f1"/> 
      </xsd:sequence> 
    </xsd:complexType> 
  </xsd:element> 
 
  <xsd:annotation> 
    <xsd:documentation> 
      The following element groups correspond to the productions of Figure 4d 
    </xsd:documentation> 
  </xsd:annotation> 
 
  <xsd:group name = "f1"> 
    <xsd:sequence> 
      <xsd:element name = "step"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name = "identifier" fixed = "flights"/> 
            <xsd:choice> 
              <xsd:sequence> 
                <xsd:annotation> 
                  <xsd:documentation> 
                    The airline element is chosen as the result node 
                  </xsd:documentation> 
                </xsd:annotation> 
                <xsd:element name = "predicatedExpr"> 
                  <xsd:complexType> 
                    <xsd:sequence> 
                      <xsd:element name = "identifier" fixed = "airline"/> 
                      <xsd:group ref = "qssx:f2"/> 
                      <xsd:element name = "predicate" maxOccurs = "unbounded"> 
                        <xsd:complexType> 
                          <xsd:sequence> 
                            <xsd:group ref = "qssx:f3"/> 



 

8 

                          </xsd:sequence> 
                        </xsd:complexType> 
                      </xsd:element> 
                    </xsd:sequence> 
                    <xsd:attribute name="axis" use="required" type="xsd:string" fixed = "CHILD"/> 
                  </xsd:complexType> 
                </xsd:element> 
              </xsd:sequence> 
              <xsd:sequence> 
                <xsd:annotation> 
                  <xsd:documentation> 
                    The flight element is chosen as the result node 
                  </xsd:documentation> 
                </xsd:annotation> 
                <xsd:element name = "step"> 
                  <xsd:complexType> 
                    <xsd:sequence> 
                      <xsd:element name = "predicatedExpr"> 
                        <xsd:complexType> 
                          <xsd:sequence> 
                            <xsd:element name = "identifier" fixed = "airline"/> 
                            <xsd:group ref = "qssx:f2"/> 
                          </xsd:sequence> 
                        </xsd:complexType> 
                      </xsd:element> 
                      <xsd:group ref = "qssx:f3" maxOccurs = "unbounded"/> 
                    </xsd:sequence> 
                    <xsd:attribute name="axis" use="required" type="xsd:string" fixed = "CHILD"/> 
                  </xsd:complexType> 
                </xsd:element> 
              </xsd:sequence> 
            </xsd:choice> 
          </xsd:sequence> 
          <xsd:attribute name = "axis" use = "required" type = "xsd:string" fixed = "CHILD"/> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:sequence> 
  </xsd:group> 
 
  <xsd:group name = "f2"> 
    <xsd:sequence> 
      <xsd:element name = "predicate"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name = "function"> 
              <xsd:complexType> 
                <xsd:sequence> 
                  <xsd:element name = "identifier" fixed = "name"/> 
                  <xsd:element name = "constant" type = "xsd:string"/> 
                </xsd:sequence> 
                <xsd:attribute name="name" fixed="EQUAL"/> 
              </xsd:complexType> 
            </xsd:element> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:sequence> 
  </xsd:group> 
 
  <xsd:group name = "f3"> 
    <xsd:sequence> 
      <xsd:element name = "predicatedExpr"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name = "identifier" fixed = "flight"/> 
            <xsd:group ref = "qssx:f4" minOccurs = "0"/> 
            <xsd:group ref = "qssx:f5"/> 
            <xsd:group ref = "qssx:f6" minOccurs = "0" maxOccurs = "unbounded"/> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:sequence> 
  </xsd:group> 
 
  <xsd:group name = "f4"> 
    <xsd:annotation> 



 

9 

      <xsd:documentation> 
        Similar to f2 element group 
      </xsd:documentation> 
    </xsd:annotation> 
    ... 
  </xsd:group> 
 
  <xsd:group name = "f5"> 
    <xsd:annotation> 
      <xsd:documentation> 
        Similar to f2 element group 
      </xsd:documentation> 
    </xsd:annotation> 
    ... 
  </xsd:group> 
 
  <xsd:annotation> 
    <xsd:documentation> 
      A choice appears in group f6, because leg element might appear as an identifier 
      if groups f7, f8 and f9 are not replaced, or as a pedicated expression otherwise 
    </xsd:documentation> 
  </xsd:annotation> 
  <xsd:group name = "f6"> 
    <xsd:sequence> 
      <xsd:element name = "predicate"> 
        <xsd:complexType> 
          <xsd:choice> 
            <xsd:element name = "identifier" fixed = "leg"/> 
            <xsd:sequence> 
              <xsd:element name = "predicatedExpr"> 
                <xsd:complexType> 
                  <xsd:sequence> 
                    <xsd:element name = "identifier" fixed = "leg"/> 
                    <xsd:group ref = "qssx:f7" minOccurs = "0"/> 
                    <xsd:group ref = "qssx:f8" minOccurs = "0"/> 
                    <xsd:group ref = "qssx:f9" minOccurs = "0"/> 
                  </xsd:sequence> 
                </xsd:complexType> 
              </xsd:element> 
            </xsd:sequence> 
          </xsd:choice> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:sequence> 
  </xsd:group> 
 
  <xsd:group name = "f7"> 
    <xsd:annotation> 
      <xsd:documentation> 
        Similar to f2 element group 
      </xsd:documentation> 
    </xsd:annotation> 
    ... 
  </xsd:group> 
 
  <xsd:group name = "f8"> 
    <xsd:annotation> 
      <xsd:documentation> 
        Similar to f2 element group 
      </xsd:documentation> 
    </xsd:annotation> 
    ... 
  </xsd:group> 
 
  <xsd:group name = "f9"> 
    <xsd:annotation> 
      <xsd:documentation> 
        Similar to f2 element group 
      </xsd:documentation> 
    </xsd:annotation> 
    ... 
  </xsd:group> 
</xsd:schema> 
 



 

10 

C. Result XML Schema 
<?xml version = "1.0" encoding = "UTF-8"?> 
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" 
            targetNamespace="http://airlineSchema/"> 
  <xsd:element name = "result"> 
    <xsd:complexType> 
      <xsd:choice> 
        <xsd:element ref = "airline"/> 
        <xsd:element ref = "flight"/> 
      </xsd:sequence> 
    </xsd:complexType> 
  </xsd:element> 
 
  <xsd:element name = "airline"> 
    <xsd:annotation> 
      <xsd:documentation> 
        Element declaration as it appears in the data XML Schema 
      </xsd:documentation> 
    </xsd:annotation> 
  </xsd:element> 
 
  <xsd:element name = "flight">...</xsd:element> 
 
  <xsd:element name = "leg">...</xsd:element> 
</xsd:schema> 

D. TPX Query 
<query xmlns = "http://www.db.ucsd.edu/tpx"> 
  <step axis = "CHILD"> 
    <identifier>flights</identifier> 
    <step axis = "CHILD"> 
      <predicatedExpr> 
        <identifier>airline</identifier> 
        <predicate> 
          <function name = "EQUALS"> 
            <identifier>name</identifier> 
            <constant datatype = "CHARSTRING">Delta</constant> 
          </function> 
        </predicate> 
      </predicatedExpr> 
      <predicatedExpr> 
        <identifier>flight</identifier> 
        <predicate> 
          <function name = "EQUALS"> 
            <identifier>from</identifier> 
            <constant datatype = "CHARSTRING">JFK</constant> 
          </function> 
        </predicate> 
        <predicate> 
          <function name = "EQUALS"> 
            <identifier>to</identifier> 
            <constant datatype = "CHARSTRING">LAX</constant> 
          </function> 
        </predicate> 
        <predicate> 
          <function name = "EQUALS"> 
            <identifier>day</identifier> 
            <constant datatype = "CHARSTRING">MON</constant> 
          </function> 
        </predicate> 
        <predicate> 
          <predicatedExpr> 
            <identifier>leg</identifier> 
            <predicate> 
              <function name = "EQUALS"> 
                <identifier>to</identifier> 
                <constant datatype = "CHARSTRING">LAS</constant> 
              </function> 
            </predicate> 
          </predicatedExpr> 
        </predicate> 
      </predicatedExpr> 
    </step> 
  </step> 
</query> 



 

11 

E. XML Schema for TPX Syntax 
<?xml version = "1.0" encoding = "UTF-8"?> 
<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" 
            targetNamespace = "http://www.db.ucsd.edu/tpx"> 
    <xsd:group name = "expression"> 
        <xsd:choice> 
            <xsd:element ref = "constant"/> 
            <xsd:element ref = "function"/> 
            <xsd:element ref = "predicatedExpr"/> 
            <xsd:element ref = "step"/> 
            <xsd:element ref = "identifier"/> 
        </xsd:choice> 
    </xsd:group> 
    <xsd:element name = "query"> 
        <xsd:complexType> 
            <xsd:sequence> 
                <xsd:group ref = "expression"/> 
            </xsd:sequence> 
        </xsd:complexType> 
    </xsd:element> 
    <xsd:element name = "predicatedExpr"> 
        <xsd:complexType> 
            <xsd:sequence> 
                <xsd:group ref = "expression"/> 
                <xsd:element ref = "predicate" maxOccurs = "unbounded"/> 
            </xsd:sequence> 
        </xsd:complexType> 
    </xsd:element> 
    <xsd:element name = "predicate"> 
        <xsd:complexType> 
            <xsd:sequence> 
                <xsd:group ref = "expression"/> 
            </xsd:sequence> 
        </xsd:complexType> 
    </xsd:element> 
    <xsd:element name = "identifier" type = "xsd:string"/> 
    <xsd:element name = "constant"> 
        <xsd:complexType> 
            <xsd:simpleContent> 
                <xsd:extension base = "xsd:string"> 
                    <xsd:attribute name = "datatype" type = "xsd:string"/> 
                </xsd:extension> 
            </xsd:simpleContent> 
        </xsd:complexType> 
    </xsd:element> 
    <xsd:element name = "function"> 
        <xsd:complexType> 
            <xsd:choice minOccurs = "0" maxOccurs = "unbounded"> 
                <xsd:group ref = "expression"/> 
            </xsd:choice> 
            <xsd:attribute name = "name" use = "required" type = "xsd:string" fixed = "EQUAL"/> 
        </xsd:complexType> 
    </xsd:element> 
    <xsd:element name = "step"> 
        <xsd:complexType> 
            <xsd:sequence> 
                <xsd:group ref = "expression"/> 
                <xsd:group ref = "expression"/> 
            </xsd:sequence> 
            <xsd:attribute name = "axis" use = "required"> 
                <xsd:simpleType> 
                    <xsd:restriction base = "xsd:NMTOKEN"> 
                        <xsd:enumeration value = "CHILD"/> 
                        <xsd:enumeration value = "DESCENDANT"/> 
                        <xsd:enumeration value = "SLASHSLASH"/> 
                    </xsd:restriction> 
                </xsd:simpleType> 
            </xsd:attribute> 
        </xsd:complexType> 
    </xsd:element> 
</xsd:schema> 




