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by 

Yun Zhou 

 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 
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Professor Prabhakar R. Bandaru, Chair 

Professor Daniel F. Sievenpiper, Co-Chair 

 

Guiding phononic waves with low loss is attractive from both scientific and 

technological points of view, where a well-confined, robust, and unidirectional phononic 

waveguide with little reflection is desired. However, phonons are magnetically inert, 

making it challenging to implement related unidirectional/chiral transport in phononic 

systems. Reciprocal topological waveguides are proven to be capable of guiding waves 

unidirectionally over defects and disorders in electronic and photonic systems. They can 

be constructed by tuning the lattice symmetry, which is a very intriguing approach to be 

extended to guide phonon propagations.  

In this dissertation, unidirectional phononic waveguides from 2D to 3D systems, 



xvi 

 

that are mainly based on topological physics, are investigated theoretically and 

experimentally. Starting with a most fundamental 2D spring-mass theoretical model, we 

prove that pseudospins can be introduced to a phononic system by relative variations of the 

inter- and intra-unit cell spring constants. These pseudospins correspond to a pair of 

topologically protected counter-propagating edge states at the boundary of such a system, 

which are unidirectional and immune to backscattering. Next, a phononic waveguide 

constitutes of Helmholtz resonators is proposed to further improve the confinement and 

robustness of phonon propagations. We also propose a highly robust guiding principle, 

based on a line defect within a true triangular phononic lattice. Such waveguiding 

mechanism is experimentally demonstrated for surface acoustic waves (SAWs), that 

overcomes obstacles involving beam steering and lateral diffraction. Lastly, we extend the 

idea of creating a defect-line waveguide from 2D to 3D, and develop a helical waveguide 

with a screw dislocation in a hexagonal close packed (hcp) phononic crystal. Our 

simulations and measurements prove the directionality of the helical modes confined at the 

screw dislocation. 
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Chapter 1 

Introduction 

1.1 Topological Insulator 

Topology is a mathematical concept that characterize the properties of a geometric 

object that are unaffected by any continuous deformations. Topological insulator found its 

origin in the 1980s, when physicists tried to use topology to explain the quantum Hall 

effect [1,2]. They showed that electrons in such systems acquire a special phase (called a 

geometric or Berry phase, described in subsection 1.2.1.) as their wavevector changes, and 

that the properties of the system do not change for a wide range of perturbations to the 

material, such as deformations or defects, if the topology of the system doesn’t change. 

These physicists were awarded the Nobel Prize in Physics in 2016 due to their interesting 

discoveries. Their success has inspired the research with topological materials, which could 

be used in future quantum computers or in new generations of electronics and 

superconductors.  

The “topological” properties of topological insulators come from the geometry of 

their energy band structures, which can usually be characterized by topological invariants 

(see subsection 1.2.2). As suggested by its name, topological insulators behave as an 

insulating material in its interior. What makes them different from conventional insulators 

is that when two materials with different topologies are placed next to each other, 

interesting effect happens at the boundary between these materials. Electron transport can 
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be seen at the boundary, commonly called edge states [3,4]. Since this transport is enabled 

by the change in the topology at the interface of two materials, and that topology does not 

alter for a wide class of changes to the material, the edge state is considered “protected”. 

Even more remarkable is that electrons moving along these edge states must do so in one 

direction only, with no possibility of scattering back in the other direction. Therefore, 

unidirectional waveguides can be built based on topological insulators.  

The existence of the topological edge states is a consequence of the wave nature of 

the electrons, not specifically their quantum interactions. As a result, it is possible to 

construct classical wave systems [5–9] with analogous properties to their electronic 

counterparts. This opened the door to a vast range of theoretical proposals and experimental 

demonstrations. Replacing the electron with a phonon, we arrive at phononic topological 

insulators [10], which demonstrate many of the same features of electronic topological 

insulator. 

To emulate the quantum Hall effect, gyroscopic phononic crystals [11,12], where 

each lattice site is coupled with a spinning gyroscope, have been adopted to break the time 

reversal symmetry in the system. Another type of phononic topological insulators is based 

on breaking the lattice symmetry of phononic crystals, where the time reversal symmetry 

is preserved. For example, by shrinking or expanding the unit cell of a honeycomb lattice 

while retaining its C6 symmetry [13,14], or by breaking the 𝑧-directional mirror symmetry 

in bianisotropic materials [15], pseudospins may be introduced to a phononic crystal, 

where opposite pseudospins propagate in opposite directions at an interface, an analogy to 

the quantum spin Hall effect. Valley-selective topological edge states can also be found in 

a honeycomb phononic crystal with broken inversion symmetry, an analogy to the quantum 
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valley Hall effect [16–20]. Recently, defect line based topological waveguides have been 

discovered [21,22], an example of which is discussed in Chapter 4. They cannot be 

categorized into spin or valley type of topological insulators as they are not with the same 

topology. Nevertheless, they still exhibit unidirectional waveguiding with backscattering 

immunity. Topological defects [23] have also been used in 3D phononic crystals to build 

unidirectional waveguide [24–26]. A unidirectional topological waveguide can be created 

by introducing a screw dislocation in a 3D phononic topological insulator, or in a stack of 

2D phononic topological insulators. 

 

1.2 Characterization of Topological Phases 

1.2.1 Berry Phase, Berry Connection and Berry Curvature 

As briefly mentioned in the previous section, topologies for material systems are 

defined by the geometry of their energy bands. The idea of geometric phase is adopted to 

characterize the geometry of energy bands. The geometric phase usually carries 

information about the topology of a material. The geometric phase was first proposed in 

1956 by Pancharatnam [27] for the propagation of light through a sequence of polarizers 

and was later generalized by Berry for quantum mechanics [28,29]. The geometric phase 

is a universal concept that emerges in the adiabatic cyclic evolution of any state in a 

system. It can emerge due to the gradual variation (i.e. adiabatic process) of a state in other 

types of parameter spaces, including the momentum space of a periodic system, or known 

as the Brillouin zone. In such a system, the change in wavevector k (Bloch momentum) 

causes the change in the state. For any path that remains on the same band and does not 

intersect with any other band, k varies in closed loops due to the lattice periodicity, where 
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− = +, and a geometric phase is picked up. This geometric phase usually carries 

information about the topology of a material. 

Let’s consider a periodic lattice described by a general eigenvalue problem in the 

momentum space: 

𝐻(𝒌)𝜓𝑛(𝒌) = 𝜆𝑛(𝒌)𝜓𝑛(𝒌).                                    (1.1) 

where 𝜓𝑛(𝒌) is an eigenstate of 𝐻(𝒌) at each 𝒌 for the nth band. We are interested 

in the evolution of the system as 𝒌 is varied very slowly along the band in the BZ, as 

defined by a geometric phase, commonly referred to as Berry phase: 

𝜙𝑛 = ∮ 𝑑𝒌 ⋅ 𝑨𝑛(𝒌)
𝑛

,                                          (1.2) 

Here, 𝑨𝑛(𝒌) is the Berry connection, or Berry vector potential, which is defined as 

𝑨𝑛(𝒌) = 𝑖 ⟨𝜓𝑛(𝒌)|
𝜕

𝜕𝑹
|𝜓𝑛(𝒌)⟩.                              (1.3) 

For a given band, the eigenvector 𝜓𝑛(𝒌)  under the transformation 𝜓𝑛(𝒌) →

 𝑒𝑖𝜁(𝒌)𝜓𝑛(𝒌), where 𝜁(𝒌) is a smooth, single-valued function with 𝜁(𝒌end) = 𝜁(𝒌begin) +

2𝑚𝜋 ,  is still an eigenvector to 𝐻(𝒌) . The Berry connection is not invariant and it 

transforms as 𝑨𝑛(𝒌) →  𝑨𝑛(𝒌) −
𝜕

𝜕𝑹
𝜁(𝒌). The Berry phase, on the other hand, is invariant 

modulo 2π: 

∮ 𝑑𝒌 ⋅ 𝑨𝑛(𝒌)
𝑛

→ ∮ 𝑑𝒌 ⋅ 𝑨𝑛(𝒌)
𝑛

− ∮
𝜕

𝜕𝑹
𝜁(𝒌)

𝑛
𝑑𝒌 → ∮ 𝑑𝒌 ⋅ 𝑨𝑛(𝒌)

𝑛
− 2𝑚𝜋. 

Berry curvature, a term that is invariant under such  transformation, can be 

constructed by taking the curl the Berry connection:  

Ω𝑛(𝑹) = ∇𝑅 × 𝑨𝑛(𝑹).                                   (1.4) 

We can think of the Berry curvature as a magnetic field in momentum space (the 

curl of the Berry vector potential).  
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The Berry phase can be rewritten as the integral of the Berry curvature over the BZ 

using Stokes' theorem: 

𝜙𝑛 = ∫ 𝑑2𝒌 ⋅ 𝛀𝑛(𝒌)
𝐵𝑍

.                                       (1.5) 

 

1.2.2 Chern Number 

Topological invariants are defined to characterize the topology of a material [30]. 

For a topological insulator with broken time reversal symmetry, usually a non-zero Chern 

number can be obtained for the system. The Chern number of the nth band of a 2D lattice 

is simply the Berry phase over the full Brillouin zone, 

𝐶𝑛 =
1

2𝜋
∫ 𝑑2𝒌 ⋅ Ω𝑛(𝑘𝑥, 𝑘𝑦)𝐵𝑍

,                                (1.6) 

where in 2D the Berry curvature only has two terms. 

Ω𝑛(𝑘𝑥, 𝑘𝑦) =
𝜕𝐴𝑘𝑦

𝑛

𝜕𝑘𝑥
−

𝜕𝐴𝑘𝑥
𝑛

𝜕𝑘𝑦
,                                    (1.7) 

where 𝐴𝑛 is the Berry connection for the nth mode. 

𝐴𝑘𝑥

𝑛 = 𝑖 ∫𝑑2𝒓∑ 𝐸𝑛,𝒌,𝑖
∗ (𝒓)𝜖𝑖,𝑗(𝒓)𝑖,𝑗 ∙

𝜕𝐸𝑛,𝒌,𝑗(𝑟)

𝜕𝑘𝑥
,                      (1.8) 

𝐴𝑘𝑦

𝑛 = 𝑖 ∫ 𝑑2𝒓∑ 𝐸𝑛,𝒌,𝑖
∗ (𝒓)𝜖𝑖,𝑗(𝒓)𝑖,𝑗 ∙

𝜕𝐸𝑛,𝒌,𝑗(𝑟)

𝜕𝑘𝑦
.                      (1.9) 

Here, the eigen wavefunction 𝐸𝑛,𝒌,𝑗  is normalized so that 

∫𝑑2𝒓∑𝐸𝑛,𝒌,𝑖
∗ (𝒓)𝜖𝑖,𝑗(𝒓)𝐸𝑛,𝒌,𝑗(𝑟)

𝑖,𝑗

= 1. 

Chern number always takes an integer value. When the Chern number is not zero, 

the 2D system is said to topologically nontrivial. The definition of the Chern number can 

be extended to 3D in a similar manner.  
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For spin or valley type of topological insulators, on the other hand, the Chern 

number defined here is always zero, as there is no time-reversal symmetry breaking in such 

systems. In these cases, spin or valley Chern number is defined.  The spin Chern number 

is defined by replacing the eigen wavefunctions in Eq. 1.6. with those associated with a 

given spin. The valley Chern number is defined by doing the integral in Eq. 1.6 only in half 

of the Brilloin zone corresponding to K or K′. These will be discussed in detail in Chapter 

2 and Chapter 4. 

 

1.2.3 Symmetry Indicator 

There are some topological phenomena, such as topological Kagome lattices [31–

33] and topological defect-line waveguide in a triangular lattice, that cannot be categorized 

properly by the Chern number, or spin or valley Chern numbers. Such behavior can be 

further understood by the application of symmetry indicators [34]. Symmetry indicators 

provide a means of analyzing the topological behavior of periodic systems given the 

relevant rotational symmetry of the base unit cell. For a system with unit cell possessing 

𝐶𝑛 rotational symmetry the symmetry indicator is defined by the set of numbers 𝜒(𝑛) that 

count the number of rotation eigenvalues the system has at high symmetry points, minus 

those at the Γ point. The details are discussed in Chapter 4. 

 

1.3 Scope of this Thesis 

In this work we will attempt to apply the topological physics we discussed in this 

chapter to construct unidirectional and confined phononic waveguides. Our goal is to 
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understand the fundamental physics behind the phononic topological insulator, as well as 

to look for easy implementations and usage for phononic topological waveguides. 

Chapter 2 presents a theoretical study on introducing spin degree of freedom to a 

most fundamental 2D phononic system – a spring-mass system. We start from a 

honeycomb lattice with a Dirac degeneracy and apply zone folding technique to form a 

double Dirac cone, which introduce extra degree of freedoms so that phonons at the same 

energy level can be hybridized to form pseudospins. Contrasting the inter- and intra- cell 

coupling breaks the lattice symmetry while still maintains the C6 symmetry of the unit cells, 

and lifts a bandgap within which topological edges modes may appear. Band inversion 

could happen in such a system when gradually variating the couplings, and the topology of 

the system is demonstrated by the spin Chern number and the Z2 invariant. Unidirectional 

phononic modes correspond to the pseudospin-up and pseudospin-down are found at the 

interface topological trivial and non-trivial spring-mass domains. Our time-domain 

simulations reveal that these modes are robust over a range of disorders and sharp turns. 

Chapter 3 proposes the usage of Helmholtz resonators to improve the robustness of 

phononic waveguides. Since the robustness of reciprocal phononic topological insulators, 

like the one discussed in Chapter 2, are protected by their lattice symmetry, some lattice 

disorders may damage the topological edge modes. We demonstrate that modes supported 

by the Helmholtz resonator waveguide are well-confined to the waveguide, and are robust 

over frequency and location disorders. The result from simulations suggests the possibility 

of using such mechanism to confine phononic energy to a closed phononic circuit, or even 

to a small point. 
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Chapter 4 investigates a defect-line waveguide in a true triangular phononic lattice 

for surface acoustic waves. Contrast to spin or valley type of topological insulators 

mentioned above in this chapter, this defect-line waveguide has varnishing Berry curvature 

while still support unidirectional modes, as evidenced by simulations. The topology of such 

waveguide is characterized by the symmetry indicator. A on-chip surface acoustic 

waveguide is built and measured, which proves the waveguide can guide surface acoustic 

wave over sharp turns with little lateral diffraction and reflection. 

Chapter 5 is an extension of Chapter 4 to a 3D structure. Similar to the idea of 

creating a defect line, we introduce a defect line to a 3D phononic crystal – a screw 

dislocation.  Simulations show that a pair of counter-propagating modes at the dislocation 

position appear in the band gap of the 3D crystal. These modes are unidirectional, as their 

propagation direction is locked to the helicity of the screw dislocation. Samples with and 

without the screw dislocation are measured, and experimental data agrees with simulation 

results. 

Finally, chapter five concludes with a summary of the thesis along with a brief note 

on possible future applications and interesting developments in the field of phononic 

topological insulators. 
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Chapter 2  

Pseudospins in a Spring-mass System 

2.1 Introduction 

Inspired by the discovery of topological phases and edge states in electronic 

materials [35,36], the possibility of building related devices for the control of the 

propagation of light [5,37–42] and sound [12,15,43–49] is being extensively studied. The 

related device building blocks may harness three major types of topological phases 

analogous to those in condensed matter systems: quantum Hall effect (QHE) [1,2], 

quantum spin Hall effect (QSHE) [50–52], and quantum valley Hall effect 

(QVHE) [18,53–55]. The QHE has chiral edge modes, and requires an external magnetic 

field to break time reversal symmetry (TRS), which may be accomplished in acoustic and 

photonic systems by adding gyroscopic material or external circulators [11,12,37,43,44]. 

The QSHE is amenable to TRS, associated with a pair of spin-locked helical modes, and is 

obtained by introducing strong spin-orbit coupling [15,39,41,45,49]. The QVHE generates 

valley-locked chiral edge states, and exploits the valley degrees of freedom  [16,40]. 

It would of much advantage and yield insight, to consider a harmonic oscillator 

point of view, quite common in physics, for invoking topological phases. In this respect, a 

discrete spring-mass based mechanical system, may constitute a model system for 

topological structure as related to phononic materials. For instance, QHE based topological 

insulators in spring-mass lattices may be created by adding circulating gyroscopes [11,12], 
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Coriolis force [56] or varying spring tension [57]. QVHE has been realized in such systems 

by alternating the mass at A and B sites of the unit cell of a mechanical graphene-like 

lattice [16]: Fig. 2.2(a). QSHE-like phenomena has also been explored in spring-mass 

lattices, through coupled pendula [58], and a mechanical granular graphene system  [59]. 

However, many of these systems are difficult to implement in practical applications. 

In this chapter, we propose a two-dimensional (2-D) spring-mass system, 

exemplifying a QSHE topological insulator, in the acoustic domain. Various trivial and 

non-trivial band structures may be originated by varying the masses (m) and the relative 

spring constants (k) in the associated lattice. In addition to exhibiting the topological 

features that have now become familiar to practitioners in the field, we indicate a novel 

spin degree of freedom. The related pseudospins are observed, in frequency domain 

analysis as the polarization of modal displacement field of masses in one unit cell: Fig. 

2.2(a). TRS protected edge modes, incorporating the propagation of such pseudospins, are 

shown to exist. This structure may be representative of different phases of matter,  as the 

the spring constant can be view as coupling strength between unit cells in various systems. 

It can be applied as one of the possible practical designs of photonic/phononic topological 

insulators. 

A basis for creating a topological material, based on a spring-mass system, to mimic 

the QSH effect, is to create intrinsic TRS. We consider a hexagonal lattice of masses and 

springs arranged in 𝐶6  symmetry. The E  and E′  representations are each two-fold 

degenerate with the individuals being complex conjugates [34]. Consequently, a four-fold 

degeneracy   is required to satisfy TRS and may be enabled through manifesting a double 
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Dirac cone in the band structure. We achieve a four-fold degeneracy, in the band structure 

of a spring-mass constituted lattice by the zone-folding method [8]. 

 

2.2 The Spring-mass Model and Computational Methods 

We consider a hexagonal lattice with equal masses m connected by linear springs 

k, as shown in Fig. 2.1. The unit cell of this hexagonal lattice consists of 2 masses 𝑚1 =

𝑚2 = 𝑚, with lattice constants 𝑎1⃑⃑⃑⃑  and 𝑎2⃑⃑⃑⃑  (|𝑎1⃑⃑⃑⃑  | = |𝑎2⃑⃑⃑⃑ | = 𝑎). From Newton’s law, the 

governing equation Mü = F(u), where Μ is a diagonal matrix with the values of the two 

masses on its diagonal: 𝑀 = diag{𝑚1, 𝑚1,𝑚2, 𝑚2 }. 𝑢 is a vector constituted from the two 

degrees of freedom for each mass – the 𝑥 and 𝑦 direction displacements for 𝑚1 and 𝑚2: 

𝑢 = {𝑢𝑥
1, 𝑢𝑦

1 , 𝑢𝑥
2, 𝑢𝑦

2  } and 𝐹 is the force. We consider a Bloch wave solution of the type 

𝑢 = 𝑈𝑒𝑖(𝑞𝑎1𝛾1+𝑙𝑎2𝛾2−𝜔𝑡)  to the governing equation of the (𝑞, 𝑙) th unit cell, where 𝑈 =

{𝑈𝑥
1, 𝑈𝑦

1, 𝑈𝑥
2, 𝑈𝑦

2 } is the modal displacement, and 𝛾1and 𝛾2 are wave vectors. A dispersion 

relation is obtained by solving the eigenvalue problem 𝐷(𝛾1, 𝛾2)𝑈 = 𝜔2𝛭𝑈, with D as a 

dynamical matrix. 

 
Figure 2.1 Hexagonal spring-mass lattice. The spring constant 𝒌 and mass m here are uniform 

throughout the lattice. Unit cell (𝒒, 𝒍) consist of two masses 𝒎𝒒,𝒍
𝟏  and 𝒎𝒒,𝒍

𝟐 . 

 

To get the dispersion relations, we evaluate  
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                                                           𝐷𝑢 = 𝜔2𝑢,                                                      (2.1) 

where D is the dynamical matrix, and u is the displacements of the masses. 

For a two-mass unit cell shown in Fig. 2.1 𝐷 is derived to be of form 

𝐷(𝛾1, 𝛾2) =

−

[
 
 
 
 
 
 −

3

2
𝑘 0

3

4
(1 + 𝑒𝑖𝛾1)𝑘

√3

4
(1 − 𝑒𝑖𝛾1)𝑘

0 −
3

2
𝑘

√3

4
(1 − 𝑒𝑖𝛾1)𝑘 (

1

4
+

1

4
𝑒𝑖𝛾1 + 𝑒𝑖𝛾2)𝑘

3

4
(1 + 𝑒−𝑖𝛾1)𝑘

√3

4
(1 − 𝑒−𝑖𝛾1)𝑘 −

3

2
𝑘 0

√3

4
(1 − 𝑒−𝑖𝛾1)𝑘 (

1

4
+

1

4
𝑒−𝑖𝛾1 + 𝑒−𝑖𝛾2)𝑘 0 −

3

2
𝑘 ]

 
 
 
 
 
 

.        (2.2) 

The elements of D were obtained through assuming a Bloch wave solution of form 𝑢𝑞,𝑙 =

𝑈𝑒𝑖(𝑞𝑎1𝛾1+𝑙𝑎2𝛾2−𝜔𝑡) . Here 𝑈 = {𝑈𝑥
1, 𝑈𝑦

1, 𝑈𝑥
2, 𝑈𝑦

2 } is the modal displacement vector, and 

𝛾1and 𝛾2 are Bloch wave vectors. Take the mass 𝑚𝑞,𝑙
1  in unit cell (𝑞, 𝑙) for example. The 

force balance for 𝑚𝑞,𝑙
1  in 𝑥 direction can be written as, 

𝑚𝑞,𝑙
1 𝑢̈𝑞,𝑙,𝑥

1 = 𝑘 [(𝑢𝑞+1,𝑙,𝑥
2 − 𝑢𝑞,𝑙,𝑥

1 ) 𝑐𝑜𝑠
𝜋

6
𝑐𝑜𝑠

𝜋

6
+ (𝑢𝑞,𝑙,𝑦

1 − 𝑢𝑞,𝑙+1,𝑦
2 ) 𝑠𝑖𝑛

𝜋

6
𝑐𝑜𝑠

𝜋

6
+(𝑢𝑞,𝑙,𝑥

2 −

𝑢𝑞,𝑙,𝑥
1 ) 𝑐𝑜𝑠

𝜋

6
𝑐𝑜𝑠

𝜋

6
+ (𝑢𝑞,𝑙,𝑦

2 − 𝑢𝑞,𝑙,𝑦
1 ) 𝑠𝑖𝑛

𝜋

6
𝑐𝑜𝑠

𝜋

6
].                                                         (2.3) 

Substitute the Bloch solution into Eq. (2.3) we get, 

            −𝜔2𝑚𝑞,𝑙
1 𝑈𝑥

1 = −
3

2
𝑘𝑈𝑥

1 + 0𝑈𝑦
1 +

3

4
(1 + 𝑒𝑖𝛾1)𝑘𝑈𝑥

2 +
√3

4
(1 − 𝑒𝑖𝛾1)𝑘𝑈𝑦

2,          (2.4) 

which are elements of the first raw of Eq. (2.2). Other entries of 𝐷 can be obtained in a 

similar manner. 

The band structure of the hexagonal lattice in Fig. 2.2(c) exhibits a single Dirac 

cone at the Κ  ( Κ′ ) point. The frequencies are non-dimensionalized as 𝛺 =
𝜔

√
𝑘

𝑚

. 

Subsequently, we fold the first Brillouin zone (BZ) of the hexagonal lattice, twice, to form 
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a new BZ with 1/3 of its original area, as shown in Fig. 2.2(b). Consequently, the Κ (Κ′) 

point is mapped to the  Γ point at the center of the BZ, creating a double Dirac cone. The 

smaller BZ corresponds to an expanded unit cell in real space of 3 times of the original unit 

cell area, with 3× 2 = 6 masses, and lattice constant  𝑏1
⃑⃑  ⃑ and 𝑏2

⃑⃑⃑⃑  (|𝑏1
⃑⃑  ⃑ | = |𝑏2

⃑⃑⃑⃑ | = √3𝑎 = 𝑏), 

as indicated in Fig. 2.2(a). The band structure based on the expanded unit cell is plotted in 

Fig. 2.2(d), and indicates a double Dirac cone at Γ.  

 

 
Figure 2.2 Zone folding and double Dirac degeneracy. (a) Hexagonal spring-mass lattice with 

uniform spring constant 𝑘 and mass m. 𝑎1 and 𝑎2 are lattice constants of the unit cell before zone 

folding, and 𝑏1 and 𝑏2 are lattice constants of the unit cell after zone folding. (b) First Brillouin 

zone (BZ) before (big hexagon) and after (small hexagon in orange) zone folding. When looking 

at 1/12 BZ, the triangle Γ1Μ1Κ1 is first folded along the purple dashed line, then folded along the 

green dashed line. (c) Band diagram of the lattice in (a) for unit cell of 2 masses, and (d) band 

diagram of the lattice in (a) for the expanded unit cell of 6 masses. 
 

To induce a phase transition, in the topological sense, we break the spatial 

symmetry of the hexagonal lattice, through changing the spring constants of the connecting 

masses in the lattice, i.e., distinguishing the intra unit cell spring constant  k1 from the inter 
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unit-cell spring constant: 𝑘2. Such distinction still preserves the 𝐶6 symmetry of the unit 

cell. It was found that when 𝑘1 ≠ 𝑘2, the band degeneracy at the Γ point is lifted and yields 

a band gap, as indicated in Fig. 2.3(b) and (c). With 𝑘2 and 𝑚 constant, we continuously 

change the value of 𝑘1 from 𝑘1>𝑘2 to 𝑘1<𝑘2, through which the  band gap at Γ point first 

closes and then reopens. When 𝑘1=𝑘2 , there is no band gap [Fig. 2.3(a)(b) and (c)]. We 

study the modes related to this transition for (i) 𝑘1>𝑘2 and (ii) 𝑘1<𝑘2.  

 

Figure 2.3 Band gap induced by symmetry breaking. (a) Hexagonal spring-mass lattice with 

intra-cell spring 𝑘1 (black straight rods) different from inter-cell spring 𝑘2 (red straight rods). (b) 

Band diagram of hexagonal lattice with 𝑘1>𝑘2. Modal displacements at Γ are of 𝑝 symmetry for 

the lower degeneracy, and of 𝑑  symmetry for the higher degeneracy. (c) Band diagram of 

hexagonal lattice with 𝑘1 <𝑘2 . Modal displacements at Γ  are of 𝑑  symmetry for the lower 

degeneracy, and of 𝑝 symmetry for the higher degeneracy.  
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2.3 Results and Discussions 

2.3.1 Modal Displacement Fields in Hexagonal Spring-mass 

Lattices: The Case for Pseudospins 

The modal displacement and its x and y components, of the masses in the unit cell, 

at the Γ point of the 𝑘1>𝑘2 lattice are shown in Fig. 2.4(a) – (d). The labeling of the modes 

in Fig. 2.4(a) – (d) follows the nomenclature for the lower to higher band degeneracy 

corresponding to Fig. 2.3(b). The modal displacements for a given mass in 𝑝1(/𝑑1) are 

orthogonal to 𝑝2(/𝑑2), respectively. The constituent 𝑥 and 𝑦 direction displacements are 

plotted successively below. Since each mass has two degrees of freedom – the 

displacements in the x- and the y-directions, in considering the parities of modal 

displacements in Fig. 3, we consider the 𝑥- and the 𝑦-direction modal displacement fields 

separately. We find that the 𝑥/𝑦 direction displacements fields at Γ are of odd and even 

spatial parities – of the  𝑝𝑥 (/𝑝𝑦) and 𝑑𝑥2−𝑦2 (/𝑑𝑥𝑦) variety, as inferred both from the sense 

of the symmetry of the displacements and stated relationships  in the 𝐶6 character table [60]. 

For instance, the 𝑝𝑥  (/𝑝𝑦 ) character is  antisymmetric with respect to the center, even 

symmetric to the 𝑥- (/𝑦-)  axis, and odd symmetric to the 𝑦- (/𝑥-) axis, while the 𝑑𝑥2−𝑦2 

(/𝑑𝑥𝑦) parity is symmetric with repsect to the center, and even(/odd) symmetric to both  the 

𝑥 and 𝑦 axes.   
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Figure 2.4 Pseudospins. (a) 𝑝1, (b) 𝑝2 and (c) 𝑑1, (d) 𝑑2 are total modal displacements for the two 

two-fold degeneracies at Γ point when 𝑘1 ≠ 𝑘2. 𝑝1 and 𝑝2 have odd parities, while 𝑑1 and 𝑑2 have 

even parities. 𝑥 and y direction components to (a) and (b) clearly show  𝑝𝑥/𝑝𝑦 symmetry, while 

those to (c) and (d) that have 𝑑𝑥2−𝑦2 /𝑑𝑥𝑦  symmetry. (e), (f), (g) and (h) are plots of phase 

relationships between the 6 masses in one unit cell for 𝑝+, 𝑝−, 𝑑+ and 𝑑− in color map, indicating 

the polarization of wave propagation associated with pseudospin up and pseudospin down.  

 

Hybridizing the 𝑝1/𝑑1 and 𝑝2/𝑑2 modes in a symmetric and antisymmetric manner 

yields  pseudospins [8],  

                                    𝑝± = (𝑝1 ± 𝑖𝑝2)/√2 , and 𝑑± = (𝑑1 ± 𝑖𝑑2)/√2.                      (2.5) 

Fig. 2.4(e) – (h) illustrates the related phase distribution of 𝑝+, 𝑝−, 𝑑+ and 𝑑− in the range 

of – 𝜋 to 𝜋. Clearly seen from the phase relationship that harmonic wave propagation in 

𝑝+/𝑑+ and 𝑝−/𝑑− have opposite polarizations. Taking the time harmonic component 𝑒𝑖𝜔𝑡 

into consideration, due to the orthogonality of displacements in 𝑝1/𝑑1 and 𝑝2/𝑑2, each mass 
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corresponding to the hybridized mode 𝑝+/𝑑+ rotates in the one direction, while each mass 

in 𝑝−/𝑑−  rotates in the opposite direction. The incorporation of the relative motions of the 

six masses in the unit cell leads to rotation of the whole displacement field. Such rotation 

may be considered as one manifestation of a pseudo-spin. One can follow the motion in  

𝑑+   during one time period 𝑇: Fig. 2.5, indicating such clockwise orientability of the 

displacement field. 

 

Figure 2.5 Rotation of the displacement field. The spinning of modal displacement field for 𝑑+ =

(𝑑1 + 𝑖𝑑2)/√2 as a result of time domain motion of the masses during one period 𝑇. 

 

We find that for the case of 𝑘1<𝑘2, the modal displacement fields have exactly the 

same odd and even spatial parities, but 𝑑1 and 𝑑2 are now associated with the higher two 

degenerate bands, while 𝑝1 and 𝑝2 corresponds to the lower two bands (Fig. 2.3 (c)). This 

demonstrates that band inversion happens at the Γ point during the process of closing and 

reopening the band gap, and a change in topology of the band structure. Such a change has 
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been previously quantified through the spin Chern number [35], which will be studied in 

detail in the following section. 

 

2.3.2 Effective Hamiltonian, Berry Curvature, Spin Chern 

Number, and 𝒁𝟐 Invariant 

The dynamical matrix 𝐷 for 6 masses with 12 constituent modal displacements (i.e., 

𝑈 = [𝑈𝑥
1, 𝑈𝑦

1, 𝑈𝑥
2, 𝑈𝑦

2, 𝑈𝑥
3, 𝑈𝑦

3, 𝑈𝑥
4, 𝑈𝑦

4, 𝑈𝑥
5, 𝑈𝑦

5, 𝑈𝑥
6, 𝑈𝑦

6]
𝑇
) is of the form: 

D=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3

2

𝑘2

𝑚
0 −

3

4

𝑘1

𝑚

√3

4

𝑘1

𝑚
0 0 0 0 0 0 −

3

4

𝑘1

𝑚
−

√3

4

𝑘1

𝑚

0
𝑘2

𝑚
+

1

2

𝑘1

𝑚

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
0 0 0 −

𝑘2

𝑚
𝑒𝑖𝛾2 0 0 −

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚

−
3

4

𝑘1

𝑚

√3

4

𝑘1

𝑚

3

4

𝑘1

𝑚
+

3

4

𝑘2

𝑚
−

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
) 0 0 0 0 −

3

4

𝑘2

𝑚
𝑒𝑖𝛾1 −

√3

4

𝑘2

𝑚
𝑒𝑖𝛾1 0 0

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
−

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
)

1

4

𝑘2

𝑚
+

5

4

𝑘1

𝑚
0 −

𝑘1

𝑚
0 0 −

√3

4

𝑘2

𝑚
𝑒𝑖𝛾1 −

1

4

𝑘2

𝑚
𝑒𝑖𝛾1 0 0

0 0 0 0
3

4

𝑘1

𝑚
+

3

4

𝑘2

𝑚

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
) −

3

4

𝑘1

𝑚
−

√3

4

𝑘1

𝑚
0 0 −

3

4

𝑘2

𝑚
𝑒𝑖𝛾1−𝑖𝛾2

√3

4

𝑘2

𝑚
𝑒𝑖𝛾1−𝑖𝛾2

0 0 0 −
𝑘1

𝑚

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
)

1

4

𝑘2

𝑚
+

5

4

𝑘1

𝑚
−

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
0 0

√3

4

𝑘2

𝑚
𝑒𝑖𝛾1−𝑖𝛾2 −

1

4

𝑘2

𝑚
𝑒𝑖𝛾1−𝑖𝛾2

0 0 0 0 −
3

4

𝑘1

𝑚
−

√3

4

𝑘1

𝑚

3

2

𝑘2

𝑚
0 −

3

4

𝑘1

𝑚

√3

4

𝑘1

𝑚
0 0

0 −
𝑘2

𝑚
𝑒−𝑖𝛾2 0 0 −

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
0

𝑘2

𝑚
+

1

2

𝑘1

𝑚

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
0 0

0 0 −
3

4

𝑘2

𝑚
𝑒−𝑖𝛾1 −

√3

4

𝑘2

𝑚
𝑒−𝑖𝛾1 0 0 −

3

4

𝑘1

𝑚

√3

4

𝑘1

𝑚

3

4

𝑘1

𝑚
+

3

4

𝑘2

𝑚
−

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
) 0 0

0 0 −
√3

4

𝑘2

𝑚
𝑒−𝑖𝛾1 −

1

4

𝑘2

𝑚
𝑒−𝑖𝛾1 0 0

√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
−

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
)

1

4

𝑘2

𝑚
+

5

4

𝑘1

𝑚
0 −

𝑘1

𝑚

−
3

4

𝑘1

𝑚
−

√3

4

𝑘1

𝑚
0 0 −

3

4

𝑘2

𝑚
𝑒−𝑖𝛾1+𝑖𝛾2

√3

4

𝑘2

𝑚
𝑒−𝑖𝛾1+𝑖𝛾2 0 0 0 0

3

4

𝑘1

𝑚
+

3

4

𝑘2

𝑚

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
)

−
√3

4

𝑘1

𝑚
−

1

4

𝑘1

𝑚
0 0

√3

4

𝑘2

𝑚
𝑒−𝑖𝛾1+𝑖𝛾2 −

1

4

𝑘2

𝑚
𝑒−𝑖𝛾1+𝑖𝛾2 0 0 0 −

𝑘1

𝑚

√3

4
(

𝑘1

𝑚
−

𝑘2

𝑚
)

1

4

𝑘2

𝑚
+

5

4

𝑘1

𝑚 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.               

                                                                                                                                        (2.6)                                   

There are 12 bands corresponding to the 12 by 12 matrix 𝐷. To investigate the spin-

Chern number, we derive the effective Hamiltonian [36] assuming that the other 8 bands 

have negligible influence. Modal displacement vector 𝑈  can be rewritten as the 

superposition of 𝑝1, 𝑝2 , 𝑑1 , and 𝑑2: 𝑈′ = 𝑐1𝑝1 + 𝑐2𝑝2 + 𝑐3𝑑1 + 𝑐4𝑑2, where 𝑐1, 𝑐2 , 𝑐3 , 

and 𝑐4 are coefficients. Based on these assumptions, Eq. (2.1) gives, 



19 

 

 

                                        𝐷𝑈′ =

[
 
 
 
 
𝜔𝑝

2 0 0 0

0 𝜔𝑝
2 0 0

0 0 𝜔𝑑
2 0

0 0 0 𝜔𝑑
2]
 
 
 
 

𝑈′.                                        (2.7) 

From this we get the 4 by 4 effective Hamiltonian on the basis of  [𝑝1 𝑝1 𝑑1 𝑑2] as  

𝐻 = [𝑝1 𝑝2 𝑑1 𝑑2]
†𝐷[𝑝1 𝑝2 𝑑1 𝑑2].                                   (2.8) 

And the eigenvalue problem can be written as, 

𝐻 [

𝑐1

𝑐2

𝑐3

𝑐4

] =

[
 
 
 
 
𝜔𝑝

2 0 0 0

0 𝜔𝑝
2 0 0

0 0 𝜔𝑑
2 0

0 0 0 𝜔𝑑
2]
 
 
 
 

[

𝑐1

𝑐2

𝑐3

𝑐4

].                              (2.9) 

(Since 𝑝1 , 𝑝2 , 𝑑1 , and 𝑑2  are normalized and orthogonal vectors, 

[𝑝1 𝑝2 𝑑1 𝑑2]
†[𝑝1 𝑝2 𝑑1 𝑑2] = 𝐼.) Each element in 𝐻 can be approximated to the second 

order using Taylor expansion.  

For lattice with 𝑘1 < 𝑘2,  take 𝑘1 = 0.8, 𝑘2 = 1 and 𝑚 = 1. Neglect second-order 

off-diagonal terms, the effective Hamiltonian is (here 𝛾𝑥 = 𝛾1 −
1

2
𝛾2 and 𝛾𝑦 =

√3

2
𝛾2), 

[
 
 
 
 
 𝜔𝑝

2 − 0.168𝑘2(𝛾𝑥
2 +

1

3
𝛾𝑦

2) 0 0.2387𝑖𝑘2𝛾𝑦 0.2387𝑖𝑘2𝛾𝑥

0 𝜔𝑝
2 − 0.168𝑘2(

1

3
𝛾𝑥

2 + 𝛾𝑦
2) −0.2387𝑖𝑘2𝛾𝑥 0.2387𝑖𝑘2𝛾𝑦

−0.2387𝑖𝑘2𝛾𝑦 0.2387𝑖𝑘2𝛾𝑥 𝜔𝑑
2 + 0.25𝑘2(𝛾𝑥

2 +
1

3
𝛾𝑦

2) 0

−0.2387𝑖𝑘2𝛾𝑥 −0.2387𝑖𝑘2𝛾𝑦 0 𝜔𝑑
2 + 0.25𝑘2(

1

3
𝛾𝑥

2 + 𝛾𝑦
2)]

 
 
 
 
 

.   (2.10) 

Since [𝑝+ 𝑑+ 𝑝− 𝑑−]= [𝑝1 𝑝2 𝑑1 𝑑2]𝑄  , where 𝑄 =

[
 
 
 
 
 
 

1

√2
0

1

√2
0

𝑖

√2
0 −

𝑖

√2
0

0
1

√2
0

1

√2

0
𝑖

√2
0 −

𝑖

√2]
 
 
 
 
 
 

, 𝐻NT  can be 

rewritten on the basis of [𝑝+ 𝑑+ 𝑝− 𝑑−],  
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𝐻NT
𝑠 = 𝑄†𝐻NT𝑄.                                              (2.11) 

Analogous to Eq. (2.9), on the [𝑝+ 𝑑+ 𝑝− 𝑑−] basis, 

𝐻NT
𝑠

[
 
 
 
𝑐𝑝
+

𝑐𝑑
+

𝑐𝑝
−

𝑐𝑑
−]
 
 
 

=

[
 
 
 
 
𝜔+

2 0 0 0

0 𝜔+
2 0 0

0 0 𝜔−
2 0

0 0 0 𝜔−
2]
 
 
 
 

[
 
 
 
𝑐𝑝
+

𝑐𝑑
+

𝑐𝑝
−

𝑐𝑑
−]
 
 
 

.                          (2.12) 

We obtain 

𝐻NT
𝑠 =

[
 
 
 
 
𝜔𝑝

2 + 𝐹(𝛾𝑥
2 + 𝛾𝑦

2) 𝐴𝛾+ 0 0

𝐴∗𝛾− 𝜔𝑑
2 + 𝐸(𝛾𝑥

2 + 𝛾𝑦
2) 0 0

0 0 𝜔𝑝
2 + F(𝛾𝑥

2 + 𝛾𝑦
2) 𝐴𝛾−

0 0 𝐴∗𝛾+ 𝜔𝑑
2 + 𝐸(𝛾𝑥

2 + 𝛾𝑦
2)]

 
 
 
 

,   (2.13) 

where 𝛾± = 𝛾𝑦 ± 𝑖𝛾𝑥, A=0.2387𝑖𝑘2, E=
𝑘2

6
, and F=−0.1120𝑘2. 

If we set the reference energy level to be 
1

2
[𝜔𝑝

2 + 𝜔𝑑
2 + (𝐸 + 𝐹)(𝛾𝑥

2 + 𝛾𝑦
2)], Eq. 

(2.13) becomes, 

𝐻NT
𝑠 = [

𝐻+ 0
0 𝐻−

],                                             (2.14) 

with 𝐻± = [
−𝑀 + 𝐵𝛾2 𝐴𝛾±

𝐴∗𝛾∓ 𝑀 − 𝐵𝛾2], where 𝑀 =
𝜔𝑑

2−𝜔𝑝
2

2
, which is negative when 𝑘1 < 𝑘2, 

and 𝐵 =
𝐹−𝐸

2
, which is also negative. Since 𝐻𝑁𝑇

𝑠  has a similar formula as the Bernevig-

Hughes-Zhang (BHZ) model [35], the spin Chern number can be calculated from  

                         𝐶𝑆 = ±
1

2
(𝑠𝑔𝑛(𝑀) + 𝑠𝑔𝑛(𝐵)).                                (2.15) 

Since 𝑀 and  𝐵 are both negative, the spin Chern number for lattice with 𝑘1 < 𝑘2 is  ±1, 

which indicates it is topologically non-trivial. Therefore, from the topological band theory 
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[1] it would be expected that there would exist pseudospin-dependent edge modes at the 

boundary between topologically trivial and topologically nontrivial lattices. 

 

 

Figure 2.6 Band inversion at Γ. Projection of pseudo spin eigenvectors on [𝑝+ 𝑑+ 𝑝− 𝑑−] within 

the first Brillouin zone for lattice with 𝑘1 = 0.8, 𝑘2 = 1 and 𝑚 = 1. 

 

The projections of pseudo spin eigenvectors on [𝑝+ 𝑑+ 𝑝− 𝑑−] are plotted in Fig. 

2.6. From Fig. 2.6 we can see that for the degenerate bands below the band gap, 

eigenvectors on most of the Brillouin zone are p-like, except for near the Γ point, where 

the eigenvectors are d-like. On the other hand, eigenvectors for the higher bands are more 

𝑑-like near the Γ point and 𝑝-like elsewhere. The Berry curvature ℱ12(𝛾𝑥, 𝛾𝑦) [37] for each 

of the pseudo spin channels are plotted in Fig. 2.7. By integrating the Berry curvature over 

the Brillouin zone [11] , the spin Chern number can also be obtained, 

𝐶𝑠 =
1

2𝜋𝑖
∑ ∑  ℱ12(𝛾𝑥, 𝛾𝑦)𝛾𝑦𝛾𝑥

,                                   (2.16) 
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with values consistent with those previously obtained. The 𝑍2 invariant is defined as 𝑍2 =

𝑛𝑠 (mod 2), where 𝑛𝑠 =
𝐶𝑠

↑−𝐶𝑠
↓

2
 is the quantum spin Hall conductivity [1]. The calculated 

spin Chern numbers 𝐶𝑠
↑ and 𝐶𝑠

↓ give 𝑛𝑠 = 1, implying 𝑍2 is unity. 

 

Figure 2.7 Non-trivial Berry Curvature and spin Chern number for pseudo spin channels for 

a lattice with 𝑘1 = 0.8, 𝑘2 = 1 and 𝑚 = 1. 
 

Similarly, for a lattice with  𝑘1 > 𝑘2, the effective spin Hamiltonian takes the same 

form as Eq. (16), but with 𝑀 > 0, and 𝐵 < 0. According to Eq. (2.15), 𝐶𝑠=0, which proves 

that the lattice with 𝑘1 > 𝑘2  is topologically trivial. The projections of pseudo spin 

eigenvectors with 𝑘1 = 1.2 , 𝑘2 = 1 and 𝑚 = 1  are plotted in Fig. 2.8, which shows 

eigenvectors of the lower bands are more 𝑝-like, while eigenvectors to the higher bands 

tend to be 𝑑-like, as expected for an ordinary/trivial insulator. 
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Figure 2.8 Trivial bands at Γ. Projection of pseudo spin eigenvectors on [𝑝+ 𝑑+ 𝑝− 𝑑−] within 

the first Broullouin zone for lattice with 𝑘1 = 1.2, 𝑘2 = 1 and 𝑚 = 1. 

 

2.3.3 Propagating Edge Modes  

The pseudospin-dependent edge modes are vividly illustrated through simulations 

on a ribbon-shaped lattice that is periodic in one direction and of the width of one unit cell 

in the other direction: Fig. 2.9(a). Such a supercell based lattice contains both topologically 

trivial (T) and nontrivial (NT) units. The NT lattice is constituted from one row of 20 unit 

cells and cladded by two T units of 15 unit cells (we chose the number of T and NT units 

so that the band diagram is relatively scale invariant). Here, the masses in the T and NT 

lattices are in the ratio 
𝑚T

𝑚NT
=

1.315

1
, and spring constants are of the ratio 𝑘1

T: 𝑘2: 𝑘1
NT =

1.2: 1: 0.8. The inter-cell spring constant 𝑘2 is kept the same in both the T and NT units 

since it connects the two different lattices.  The spring constants and masses were chosen 

such that the T and the NT units have overlapped band gap as related to the frequency 

ranges indicated in Fig. 2.3(b) and (c). The band structure of the ribbon supper cell is 
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shown in Fig. 2.9(b) (The frequencies here are non-dimensionalized as 𝛺 =
𝜔

√
𝑘2

𝑚NT

). 

Compared to the band structures in Fig. 2.3(b) and (c), we clearly see two additional states 

appear within the bulk band gap connecting the lower bands to the higher bands, as 

illustrated by red and green lines in Fig. 2.9(b). It was noted that these two new modes 

propagate with a group velocity of the same magnitude but opposite signs, and correspond 

to the pseudospin up and pseudospin down topological edge modes. There is a mini band 

gap at the Γ point of the zoomed-in band structure in the inset of Fig. 2.9(b), due to 

breaking of 𝐶6 symmetry at the boundary of the T and the NT units. However, this mini 

band gap is much smaller compared to the bulk band gap (0.003:0.08), so the pseudospins 

are preserved, and backscattering of edge states is suppressed as shown in the time-domain 

simulations below. We plotted the modal displacement corresponding to the two additional 

states of the ribbon lattice near the Γ point (𝛾∥ = 0.1
𝜋

𝑏
, 𝑏 is the lattice constant of the 

extended unit cell) in Fig. 2.9(c). These modes are confined to the boundary between the 

T and the NT units, and decay into the bulk, indicative of edge mode-like character. The 

appearance of such modes, in the absence of any obvious spin-orbit coupling indicates 

attributes of a QSHE topological insulator. 
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Figure 2.9 Counterpropagating topological edge states. (a) Ribbon super cell consists of 20 

nontrivial unit cells cladded by 15 trivial unit cells on each end. The mases and springs are of the 

ratio
𝑚T

𝑚NT =
1.315

1
 and 𝑘1

T: 𝑘2: 𝑘1
NT = 1.2: 1: 0.8, respectively. (b) The band diagram for the ribbon 

super cell. A pair of pseudospin up and pseudospin down edge modes are found within the bulk 

band gap (red and green curves). The inset shows a mini band gap at the crossing of the two helical 

modes. Magnitude of modal displacements of the pseudospin up and pseudospin down modes near 

the right boundary at 𝛾∥ = 0.1
𝜋

𝑏
 are plotted in (c), from which we can see that they are confined at 

the edge and decay into the bulk. 

 

To verify the unidirectional propagation of the topological edge modes, we 

conducted time-domain numerical simulations on finite spring-mass lattices consists of 

both T and NT units. The governing equation for the spring-mass lattice takes the form 

𝑢̈ = 𝐴𝑢 + 𝐹(𝑡), where  𝐴𝑢  is the restoring/displacement-dependent force due to spring 

deformations, and 𝐹(𝑡) is a time-dependent excitation. We solve the equivalent ODE: 

[
𝑢̈
𝑢̇
] = 𝐴𝐴 [

𝑢̇
𝑢
] + 𝐹(𝑡) , where 𝐴𝐴 = [

0 𝐴
𝐼 0

]  (𝐼  is unitary matrix), using Runge – Kutta 

explicit time integration method (RK4) to determine the displacement 𝑢 at time 𝑡. Fixed 

boundary conditions were applied in the simulations, i.e., masses at the boundaries are 

connected to springs fixed to the wall.  



26 

 

 

 

Figure 2.10 Time domain simulation of edge wave propagation. The domain is of 24 by 24 unit 

cells. The mases and springs are of the ratio 
𝑚T

𝑚NT =
1.315

1
 and 𝑘1

T: 𝑘2: 𝑘1
NT = 1.2: 1: 0.8 

respectively. (a) Sinusoidal excitation force  𝐹 = 𝐹0𝑒
𝑖𝜔𝑡  applied on a line edge between 

topologically nontrivial and trivial spring-mass lattices. (b) and (c) are the simulation results with 

𝜔 = 𝜔𝑏 = 0.8√
𝑘2

𝑚NT (frequency within the bulk bands), and  𝜔 = 𝜔𝑔 = 1.14√
𝑘2

𝑚NT  (frequency 

within the bulk band gap). (d) is a spring-mass lattice that contains a topological edge with a sharp 

turning, and (e) simulation result on (d) with a force excitation of frequency 𝜔𝑔.  

 

Fig 2.10(a) shows the geometry of the modeled spring-mass lattice consisting of a 

NT and T unit, at the top and bottom, respectively. Initially all the masses are at rest. To 

avoid boundary reflection,  we enforced an excitation force  𝐹(𝑡) = 𝐹0𝑒
𝑖𝜔𝑡 on one of the 

masses in the NT unit close to the middle of the NT-T boundary , with frequency 𝜔 =

𝜔𝑏=0.8√
𝑘2

𝑚NT corresponding to that of the bulk (from the T/NT band structure), and 𝜔 =

𝜔𝑔 = 1.14√
𝑘2

𝑚NT
 corresponding to within the band gap, respectively (for example, a lattice 

with 𝑚NT = 1 kg,  𝑘2 = 106 N/m, 𝜔𝑏 = 800  Hz, and 𝜔𝑔 = 1140  Hz). The simulation 

results in Fig. 2.10(b) and (c) indicate the amplitude of displacement of the masses, and 

illustrate that an external force (with 𝜔 = 𝜔𝑏) will propagate into the bulk, while a force 
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(with 𝜔 = 𝜔𝑔) will only excite states that propagate at the edge of the T and NT domains. 

A sharp discontinuity turning boundary between T and NT as indicated in Fig. 2.10(d) 

demonstrates that the edge states were immune to backscattering Fig. 2.10(e).  

 

Figure 2.11 Pseudospin-dependent wave transport in a waveguide splitter. (a) Waveguide 

splitter divided into 4 parts, with top left and bottom right of nontrivial lattice, and top right and 

bottom left of trivial lattice. The cross has angle of 60o to keep the unit cells intact. An excitation 

force with frequency within the band gap can excite both pseudospin-up and pseudospin-down 

modes. Pseudospin-up modes are supported to propagate towards the right, but splits into 2 waves 

at the cross, that exit from port 1 and 2 respectively. But it is forbidden to exit from port 3, as right-

propagate pseudospin-up modes are not supported by the domain to the right of the cross. (b), (c), 

(d), (e) and (f) are snapshots of time domain simulation at 𝑡=2000𝑡0, 4000𝑡0, 6000𝑡0, 8000𝑡0 and 

10000𝑡0, where t0 is the time step of the simulation. 
 

As the indicated pseudospins are symmetrized configurations of modal 

displacement fields, they are not prone to selective and individual excitation. However, in 

another application of the T-NT unit arrangement shown in Fig. 2.11(a), it may be able to 

separate out the counter-propagating states, as broadly constructed in Fig. 2.4(e) – (h). 

With 𝐹 = 𝐹0𝑒
𝑖𝜔𝑡  it was seen that when a left-moving state (say, with positive group 

velocity) reaches the crossing, it will propagate up to port 1 and down to port 2 along the 

edges but will not propagate right to the port 3. Consequently, the trajectory of wave 
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propagation (Fig. 2.11(b) – (f)) forms a “T” shape. It was noted that the excited modes are 

sensitive to boundary conditions, that leads to high amplitude at the boundary. 

 

2.4 Conclusions 

In this chapter, we have shown that a mass-spring based lattice system may have 

attributes related to that of a topological insulator, in the presence of time reversal 

symmetry. Through varying the inter- and inter-unit cell spring constants of such a lattice, 

for a given mass, a clear and distinct variation of the band structure was seen. A 

concomitant change in the modal displacement fields, corresponding to a band inversion, 

may be generated. The deconvolution of the fields as well as their hybridization in a 

symmetric and antisymmetric manner yields a basis for the creation of pseudo-spins, 

corresponding to clockwise/counter-clockwise rotation of the modal displacement vector. 

Both pseudo spin-up and pseudo spin-down modalities, corresponding to the positive or 

negative group velocity are proposed. The existence of polarized edge states as well as 

corresponding modes was demonstrated through both frequency domain analysis and time 

domain simulations. These edge modes are topologically protected, as they are immune to 

backscattering when encountering sharp edges. Considering that harmonic oscillators 

(which are direct manifestations of spring-mass units) form the basis for many physical 

systems, ranging from acoustics to electromagnetics, this work yields a general 

foundational framework and related methodology, i.e., modulating band structure and 

constituent modes through varying the respective spring constants of the physical system.  
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This chapter is based on Quantum-spin-Hall topological insulator in a spring-mass 

system by Y. Zhou, P. R. Bandaru, and D. F. Sievenpiper, New J. Phys. 20, 123011 (2018). 

The dissertation author was the primary author of this material.  
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Chapter 3  

Acoustic Wave Confining and Channeling 

through Coupled Resonators 

3.1 Introduction 

The propagation and modulation of sound has been traditionally considered in 

terms of an acoustic impedance: 𝑍𝑎𝑐, through the product of the density (𝜌) and the velocity 

(𝑣𝑠) of the medium in which sound propagates. However, it is not easy to understand the 

confinement of sound, through a traditional Zac formulation, as there does not seem to be 

a reference to which an acoustic impedance may be compared. Moreover, the absence of a 

magnetic field in acoustic systems does not allow for confinement and related 

unidirectional/chiral transport [65], without external rotational forces [11,12,44], implying 

pseudomagnetic fields are introduced to the system [66]. While acoustic pseudospins [13–

15,47,49,58,59,67] and valley states [16,18–20,68] as related to topological surface states 

have been proposed to yield directionality, the surface dispersion and associated large 

velocity favor radiation and consequently a reduced confinement, with unclear robustness 

to disorder [69]. It may also be expected that wave-based interference phenomena with 

constructive or destructive interferences could potentially yield regions where sound is 

focused to be absent or present, respectively, and may be considered for sound 

confinement [70,71]. However, the intrinsic longitudinal/non-vectorial character of sound 

propagation is an issue. 
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An alternate strategy for sound confinement and propagation over a finite distance 

is to use resonators that are coupled. The flat band [72] related energy dispersions related 

to local resonators, would permit localization and enhance the possibility for sound 

confinement. We propose that such binding of sound at the subwavelength regime, may be 

accomplished through Helmholtz resonator (HR)-based arrangements. It has been 

previously discussed that bands and associated bandgaps could be generated through 

HRs [73–77], especially at lower energies, while the higher energy bandgaps would be 

mainly due to Bragg resonances. Patterning HRs onto acoustic topological lattices can 

render tunability of  the Bragg scattering based topological band gaps in the subwavelength 

range [78–83].  However, band gaps arising from HR related local resonances would not 

support topological interface states, and the related edge modes or localized states would 

not generally be subject to a bulk-boundary correspondence. The objective is then to extend 

the confinement over a number of HR units, the cumulative length over which sound may 

be considered to be bound. The width of the bands and band gaps could be adjusted through 

a tuning of the geometrical parameters of the HR. While it has been indicated previously 

that the coupling of a number of HRs to a waveguide would result in a sound trapping 

device [84],  or negative index acoustic metamaterials [85–87], the related propagation and 

extent of confinement was not discussed. Moreover, the ability of HR unit-based interfaces 

to confine sound was not considered, as would be indicated in this work. 
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3.2 Helmholtz Resonators Constituted Unit Cell and 

Confined Interfacial Modes 

We consider a unit cell (of lattice constant 𝑎) comprised of four HRs with differing 

resonance frequencies ( 𝑓 ), i.e., 𝑓4 > 𝑓3  > 𝑓2  > 𝑓1 : Fig. 3.1(a). The frequencies are 

normalized by 
𝑐0

𝑎
, where 𝑐0  is the velocity of sound in air. As the neck and the cavity of a 

HR have inductor- and capacitor-like characteristics, respectively, the acoustic inductance 

for the neck can be written as 𝐿 = 𝜌𝑙eff/𝐴,  and the acoustic capacitance for the cavity can 

be expressed as 𝐶 = 𝑉/𝜌𝑐0
2, where 𝜌 is density of the air, 𝑙eff is effective length of the neck 

with end correction, 𝐴 is the cross sectional area of the neck,  and 𝑉 is the cavity volume. 

The resonant frequency 𝑓 =
1

2𝜋√𝐿𝐶
 for each HR in the unit cell may be adjusted by tuning 

the geometry of the neck and the HR cavity [88,89]. Geometrical parameters of HRs are 

calibrated to yield variation in the 𝑓 of the unit cell. The corresponding band structure for 

the unit cell is shown in Fig. 3.1(b), indicating flat bands and bandgaps characteristic of 

the HRs. In addition to the length scales, the orientation of a HR would yield a variety of 

low and higher order couplings, predicated on the interaction of sound dipoles. 

Consequently, the assembly of the HR composed units would yield rich behavior involving 

both local and coupled resonances.  
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Figure 3.1 Unit cell made of Helmholtz resonators. (a) Unit cell with Helmholtz resonators 

arranged in a clockwise order (red arrow) from high resonant frequency to low resonant frequency.  

The radius of the cavities of 𝐻1, 𝐻2, 𝐻3 and 𝐻4 are 
2.2

12
𝑎, 

1.8

12
𝑎, 

1.6

12
𝑎, and 

1

12
𝑎, respectively. The 

length and the width of the necks are 
0.5

12
𝑎. 𝐻1, 𝐻2, 𝐻3 and 𝐻4 have resonant frequencies of 𝑓1 < 𝑓2 

< 𝑓3 < 𝑓4. The circular arrow represents the direction of decreasing frequency. (b) Band structure 

of the HR unit cell in (a). Individual resonant frequencies of the resonators are marked in the figure. 

Solid lines are bands in the direction of 𝛤𝛸𝛭𝛤, while dashed lines are bands in the direction of 

𝛤𝛸′𝛭𝛤.  

 

In this chapter, we consider a manifestation of the HR unit assembly for 

possibilities related to robust sound confinement. We study confinement arising from the 

resonance coupling imbedded in the unit cell. In such an arrangement there is a relative 

localization of sound in the cell, e.g., as illustrated in the top inset to Fig. 3.1(b). However, 

there is no net overall directionality, as at the interface of two identical and adjacent cells 

there are oppositely directed HRs, that also can be considered as the unit cell of the bulk. 

The unit cells are arranged so as to yield cooperative or non-cooperative resonances. The 

acoustic confinement in the former case is localized over a length scale of the resonator 

units in the cell. The subsequent channeling can be considered robust locally [90]. Herein, 

a particular direction is postulated through a specific arrangement of resonators where 

transport arises from the thermodynamically reasonable flow of energy. The spatial extent 
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of the region along which the sound is confined would also influence the extent of losses, 

where a larger (/smaller) number of cells would be involved in bounding the acoustic 

energy over a larger (/smaller) distance of propagation. 

We indicate how HR constituted unit cell arrangements can be made, to yield 

specific bands or states that can be used for acoustic energy confinement. A ribbon 

supercell of a number of the proposed HR units yields an equivalent band structure in Fig. 

3.2(a), cf., the energy dispersion for a single HR unit cell at the bottom of Fig. 1(b). When 

an interface is induced, as in right inset of Fig. 3.2(b), through placing two HR constituted 

bulk structures with unit cells arranged in opposite directions, the hybridization of the 

energy levels across the interface is expected to yield a multiplicity of two-fold states in 

the band gap across a range of frequencies, akin to edge states. The related band structure 

is indicated in Fig. 3.2(b), with the interface (the right inset) now in the middle of the 

ribbon supercell. The clockwise reduction of the frequency (in red circular arrows – at the 

top) and counter-clockwise (in white arrows- at the bottom) enhancement, along a line in 

the ribbon supercell of HR units, together give rise to edge states, originating from the 

nominal bands [91] as depicted in Fig. 3.2(b). Subsequently, the energy flow along either 

direction is enhanced through such edge state modes at the interface, based on resonance 

coupling and local confinement in the HR unit cells, as previously discussed. However, 

there is no directionality for the acoustic energy at the interface, over a distance larger than 

the considered unit cell. This may be seen through considering additionally a unit cell 

above the one depicted in Fig. 3.1(b). Here HR units 1 and 4 have on the top as well as the 

bottom HR units 2 and 3, implying a frequency dependent directionality/gradation both at 

the top and bottom with equivalent energy flow and an overall non-directionality. We noted 
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that replacing half of the unit cells, at the interface, with a sound hard boundary 

(corresponding to the continuity of velocity along the boundary), yields equivalent effects. 

Such sound confinement phenomenon is also not unique to HRs in a square lattice, as 

similar arrangement of 3 or 6 HRs in a hexagonal lattice would also yield confined edge 

states. 

 

Figure 3.2 Edge states in the bandgap. Band structure of a ribbon supercell composed of (a) HR 

unit cells with resonators arranged in only clockwise order, and of (b) HR unit cells arranged in 

opposite order forming an interface, where additional confined states are found, as highlighted in 

red and yellow. Periodic boundary conditions are applied. (c) The eigen pressure field 

corresponding to an eigenmode marked in red in (b).  

 

Due to local nature of the HR resonances, the edge states do not bridge the bands 

which helps in the confinement of sound. The edge states may then be analyzed to probe 

the dispersion and propagation of the confined sound. We will discuss next, the edge mode 

highlighted in red, in Fig. 3.2(b), which may be construed to be related to maximal 

confinement, from the large mid-gap ratio [92]. The confinement of sound related to this 

edge mode is shown through the corresponding pressure field at the bottom: Fig. 3.2(c). 
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We have observed, through extensive computational simulations, the sensitivity of the 

confinement to the orientation of the individual HR units within the unit cell. 

 

3.3 Local Confinement and Robustness 

For instance, consider a situation where the necks of the HR units are each re-

orientated in different directions, so as to face the adjacent HR, as indicated at the top inset 

to Fig. 3.3(a). The edge states associated with the related interface of the modified unit cell 

is indicated in Fig. 3.3(a), and the related pressure distribution is shown in the bottom inset 

to Fig. 3.3(a). The necks’ orientation won’t change the individual resonance frequencies 

and the band gaps, but influences the cooperative coupling of the HRs and the edge states. 

From a plot of the phase of the related eigen pressure fields in Fig. 3.3(b), it was observed 

that there was an induced phase rotation in the unit cell. It agrees with our previous 

discussion that the phase rotation direction in the unit cell with half a lattice constant shift 

has opposite phase rotation direction. The 2𝜋 phase rotation implies a rotational sound 

energy flux within the unit cell, results in the improved confinement at the interface, 

compared to the unit cell orientation in Fig. 3.2(b)/3.2(c). The degree of confinement, 

related to acoustic energy density, is monitored in the direction perpendicular to the 

interface. A distance (Lc) over which there is a decrease of the pressure amplitude by 3 dB 

was taken to be the measure of the confinement. At 𝑘 = 0.1
𝜋

𝑎
 (or 𝜆 = 20𝑎), for example, 

for the interface in Fig. 3.2(c), the Lc was recorded as ~ 0.219 a (or 0.011𝜆), while for the 

interfaces depicted in Fig. 3.3(a)/(b), a 26% increase in confinement through a decreased 

Lc of ~ 0.162 a (or 0.008 𝜆) was indicated.  
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Figure 3.3 Tuning of the confinement of the acoustic energy at the interface. (a) Band structure 

of the HR ribbon supercell, where the necks of the HR units are each re-orientated, so as to face 

the adjacent HR (top inset). The bottom inset is the eigen pressure field corresponding the edge 

state (in red). (b) Phase plot of the eigen pressure field of the edge state mode. (c) The normalized 

pressure 𝑝2 vs. the distance perpendicular to the interface (along the dashed line in the inset in (a)), 

comparing the confinement for an interface configuration, with the HRs in the unit cell all oriented 

(i) similarly – as in Fig. 2(c), or (ii) differently – as in the inset to (a), for the wavenumber k =

0.1
𝜋

𝑎
.  

 

We characterize the confinement of sound through an acoustic impedance (𝑍𝑎𝑐) 

model, where sound follows a path of minimal impedance. The ratio of the related pressure 

field to the ensuing local sound velocity (vS): 𝑍𝑎𝑐 =
𝑝

𝑣𝑠
. The related acoustic pressure field 

for an HR unit cell related interfacial wave guide, excited by a point sound source (𝑝 =

𝑝0𝑒
𝑖2𝜋𝑓𝑡 ) on the left – indicated by the * with normalized frequency of 0.3848 

(wavenumber of 0.44
𝜋

𝑎
, or 0.115 m-1) is plotted in Fig. 3.4(a), with the corresponding 

amplitudes of the pressure (p) and velocity (v) in Fig. 3.4(b).  In contrast to the rapid decay 

of the confined sound modes in the perpendicular direction, as in Fig. 3.3(c), the 𝑝 and vs 

are relatively unattenuated along the propagation direction. Standing wave-like profiles, 

for the 𝑝  and vs, through the path of propagation were indicated and subsequently 
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deconvolved so as to yield traveling wave traces. The standing waves arise from the 

boundaries (since scattering boundary conditions are used for the simulations) as well as 

from the periodic and multiple local scattering of the energy from the individual HR units 

at the interface, rationalizing the sound confinement. The spatial fast Fourier transform 

(FFT) of the pressure profile in Fig. 4 (c), indicates peaks at wavenumbers of 0± ∆k, ±2 ±

∆k, ±4 ± ∆k, ±6 ± ∆k… of 
𝜋

𝑎
, where ∆k is the Bloch wave number related to the lattice 

periodicity, and integer wavenumbers 0, ±2, ±4, …are from the modulation of the unit 

cell. Specific acoustic impedance of the interface may be estimated through simplifying 

the local multiple scattering phenomenon to a pair of counter-propagating traveling waves. 

 

Figure 3.4 Standing-wave behavior of the HR waveguide. (a) Acoustic pressure field at the 

interface of two metamaterials, constituted from oppositely arranged HR unit cells. (b) The 

magnitude of pressure and velocity along the propagating interface (red dashed line). (c) Spatial 

FFT of the pressure profile along the interface. 
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We comment further on the essential non-band bridging character of the edge states 

with the implication of reduced scattering and relative insensitivity to disorder in frequency 

and spatial arrangement. Such perturbative disorder was introduced in the unit cells at the 

interface in the ribbon supercell in Fig. 2(b), as shown in Fig. 3.5. Frequency disorder was 

introduced through enlarging (/reducing) the HR cavity radius, thus decreasing 

(/increasing) the 𝑓 . Spatial disorder was simulated by displacing the HRs from their 

original location. While the center column – corresponding to Fig. 3.5(b) indicates the type 

of disorder, the left column: Fig. 3.5(a) shows the modifications to the band structure, and 

the right column: Fig. 3.5(c) depicts the resulting acoustic pressure. The sound source is 

situated at the bottom. The top, middle, and bottom insets of Fig. 3.5(b) illustrate the cases 

of reduced frequencies, increased frequencies, and spatially displaced resonators: 𝐻1and 

𝐻2 , at the interface. It was seen that fabrication irregularities may be tolerated in the 

proposed design. From Fig. 3.5(a), it may be observed that both frequency and spatial 

disorders tend to push the edge states up or down into the bulk bands. The edge state, and 

the corresponding energy flow, is robust if the disorder is not so much as to merge the edge 

band with the bulk bands. Fig. 3.5(c) shows a driven-mode simulation of sound 

propagation through a HR unit cell constituted waveguide that includes all three types of 

disorders in Fig. 3.5(b). 
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Figure 3.5 Robustness of the HR waveguide. (a) Band structure of the ribbon supercell in Fig. 2 

(b) with frequency or location disorder at the interface. The corresponding disorders at the interface 

is shown in (b). Here, Top: interface disorder with reduced frequencies, where the radius of the 

cavities related to 𝐻1, 𝐻2 are increased by ~ 10% to 
2.4

12
𝑎, 

2

12
𝑎, respectively. Middle: interface 

disorder with increased frequencies, where the radius of 𝐻1, 𝐻2 are decreased by ~ 10% to 
2

12
𝑎, 

1.7

12
𝑎, respectively. Bottom: interface disorder with displaced 𝐻1 and 𝐻2. (c) The sound pressure 

corresponding to the indicated frequency and location disorder in (b), along the direction of wave 

propagation. A point sound source (𝑝 = 𝑝0𝑒
𝑖2𝜋𝑓𝑡 (*) is situated at the bottom. 

   

The propagation of sound in Fig. 3.4(a) is over the straight-line path, correspondent 

to the interface of adjacently placed HR units. Generally, non-collinear sound propagation 

has been challenging to implement, given that there seems to be no ideal arrangement of 

the unit cells at the turn regions. At the ends of any line, a localized state is expected which 

would be either reflected back or dissipated. Alternately, from the viewpoint of impedance 

matching, the acoustic energy would be not (/totally) reflected if the impedance at the end 

is matched (/infinitely large) with various degrees of reflection for intermediate cases. We 

observed that the reflection and transmission could be tailored through HR unit cell 

configurational changes, e.g., through re-tuning of the frequencies of the resonators at the 

tuning point, taking advantage of the robustness of the interface modes, discussed 
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previously. For instance, Fig. 3.6(a) indicates an arrangement where almost total 

stoppage/reflection was seen when the edge mode, propagating over the interface, 

encounters a 90o sharp turn. An inevitable disorder occurs in the highlighted corner region 

with detailed arrangement shown in the inset, even though the rest of the interface is intact 

and ordered. The transmission is calculated to be ~ 0.002. Alternately, a change in the 

individual HR radius (which tunes the resonator frequency) can be made where 

considerable transmission of the sound energy around a corner is accomplished: Fig. 

3.6(b). The resonance frequencies of the 𝐻1, 𝐻2 and 𝐻3 in the highlighted corner HR unit 

cell are modified to smaller values, i.e., 𝑓0.5, 𝑓1.5 and 𝑓2.5 (𝐻0.5, 𝐻1.5 and 𝐻2.5), inducing 

decreased-frequency disorder to the horizontal interface, and an increased-frequency 

disorder to the vertical interface in the 90o turn. A dramatic increase in wave transmission 

was then observed. Consequently, acoustic wave confinement around a closed path is now 

possible, as shown in Fig. 3.6(c).  

 

Figure 3.6 Acoustic closed circuit. (a) A 90o abrupt turn (see closeup of the corner in the inset) in 

the propagation path with significant energy reflection. (b) A rearrangement of the corner unit cell 

by modifying the resonant frequency of the corner HRs (see inset), yields smoother turns.  (c) 

Acoustic energy confinement in a closed circuit with corner arrangement adapted from (a). 

 

However, it is not clear as to what exactly the corner configuration ought to be for 

the continued motion of the sound current. From a consideration of the transmitted power, 
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in terms of the acoustic intensity 𝐼 = 𝑝𝑣𝑠, before and after the turn, it was noted that while 

the 𝑝 is diminished to 0.81𝑝, the 𝑣𝑠  is reduces to 0.69𝑣𝑠, which give the total transmission 

of ~ 56% – an increase of ~ 300 compared to the transmission of Fig. 3.4(d). Perhaps, the 

magnitude of the transmission may be used as an approximate measure of the suitability of 

a corner geometric configuration. Future study should focus on the further improvement of 

the transmission through computational search and related optimization of the corner 

geometry of the individual HRs. 

Moreover, while we have indicated acoustic confinement robust to possible 

disorders induced by fabrication, in reality, losses are inevitable and need to be taken into 

consideration. We considered the viscous and thermal boundary-layer induced losses due 

to acoustic energy dissipation though the narrow necks of the HRs [93–95], and found that 

the acoustic wave is well confined, i.e., a 3 dB loss is sustained for propagation over 450 

unit cells/100 wavelength.  

 

3.4 Conclusions 

We have designed a subwavelength acoustic waveguide based on HRs that has 

great confinement and is robust over lattice disorders. Taking the advantage of robustness 

of the waveguide, we are able to make sound turn sharp corners. The proposed scheme of 

HR configuration-based sound confinement can be extended to three-dimensions, where 

acoustic confinement would now be over an area. While the direction of propagation is 

based on the orientation of the sound source, the proposed scheme does not allow for 

unidirectional energy transport. Indeed, given the absence of a magnetic field, Dirac-like 

points, or nonlinearity in the structure, the propagation of the acoustic waves is yet 
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bidirectional. However, the presence of the HRs in a unit induces a local binding which 

when added together over several units may be construed as the confinement of sound. Our 

formulations also allow for an alternate viewpoint of the specific acoustic impedance in 

terms of the ratio of the driving pressure of acoustic wave propagation to the local acoustic 

velocity. A closed-path acoustic circuit suggests the possibility of confining sound waves 

to a very small region, even to a point.  

This chapter is based on Confining and channeling sound through coupled 

resonators by Y. Zhou, P. R. Bandaru, and D. F. Sievenpiper, J. Appl. Phys. 129, 095103 

(2021). The dissertation author was the primary author of this material.  
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Chapter 4  

Unidirectional Surface Acoustic 

Waveguide based on a Defect Line in a 

Triangular Lattice 

4.1 Introduction 

Surface acoustic waves (SAWs) have been appealing for applications ranging from 

precise on-chip manipulation of particles and fluids in acoustofluidics [96–105], to probing 

and controlling elementary excitations in condensed matter [106–111]. In all such 

applications, low loss SAW guiding is desired. While waveguides [112] are utilized for 

confinement and control of SAW propagation, beam steering [113] due to anisotropy of 

the piezoelectric substrate, and lateral diffraction of SAWs cause energy dissipation, 

degrading the performance. SAW filters are also key components for wireless 

devices [114,115]. As modern multi-band systems continue to shrink in size, it is becoming 

increasingly important to miniaturize such SAW components without sacrificing 

performance. A design scheme to steer the acoustic waves while suppressing 

backscattering would be of significant benefit.  

A promising method to create unidirectional and backscatter-immune SAW 

waveguides may be through non-reciprocal devices, which are based on a broken time-

reversal symmetry (TRS) and can exhibit one-way transmission of propagating waves. For 
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instance, the intrinsic TRS breaking in ferromagnetic materials may lead to non-reciprocal 

SAW propagation [116–118], due to the different absorption in the +𝑘 and −𝑘 directions. 

However, the absorption difference is usually small, and the use of magnetic materials in 

devices is usually undesirable. Another way to achieve acoustic non-reciprocity is to use 

nonlinear effects [119–122], but the manipulation of propagation direction remains 

challenging in these nonlinear systems. Topological insulators (TIs) based upon the 

quantum Hall effect [3,36] has been extended to bosons by introducing external rotational 

forces for many photonic [6,37,123–126] and mechanical/acoustic 

systems [7,11,44,46,127–130] to build non-reciprocal waveguides. However, the 

realization of non-reciprocal topologically protected modes in the technologically relevant 

case of SAW has thus far proved elusive.  

Alternately, while TIs based on lattice symmetry breaking are reciprocal and 

protected by TRS, the related principles still allow for robust and unidirectional wave 

guiding. For example, tuning the inter- and intra- cell coupling while maintaining C6v 

symmetry in honeycomb lattices [14,41,49], or breaking the 𝑧-directional mirror symmetry 

in bianisotropic materials [15,39,131], can introduce pseudospins that mimic the quantum 

spin Hall effect [50–52,132], yielding spin selective unidirectional passage. Unidirectional 

valley degree of freedom based TI (VTI) waveguides may also be constructed by breaking 

inversion symmetry in honeycomb lattices [133]. We aim to extend related ideas to on-

chip phononic devices [17,134,135]. However, due to the lattice symmetry requirement, 

most of the existing on-chip designs have utilized suspended structures for bulk acoustic 

wave or Lamb waves, and an easy corresponding extension for SAWs is still lacking. 
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In this chapter, we report a scalable, non-suspended, fully integrated, reciprocal, 

and unidirectional on-chip SAW waveguide fabricated on a lithium niobate (LiNbO3) 

platform. In our implementation, the unidirectional SAW waveguide is created by a defect 

boundary in a triangular phononic lattice. We demonstrate that while the triangular lattice 

has a vanishing Berry curvature, the intrinsic embedded phase vortices give rise to 

unidirectional wave transport. We prove that, compared to VTIs, our simpler waveguide 

structures show much better lateral confinement without sacrificing the directionality. The 

confined, robust, and unidirectional SAW routing phenomenon has been verified through 

experiments, which demonstrate that our design overcomes the limitation of beam steering 

in the substrate. The propagating SAW is capable of making sharp turns along the defect-

line waveguide (DLW) with low reflection loss. By incorporating the proposed 

waveguides, there is now a possibility of wave propagation in any chosen direction, which 

can benefit many on-chip SAW applications.   

 

4.2 Unidirectional SAW Waveguide in a Triangular 

Lattice with Zero Berry Curvature 
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Figure 4.1 The DLW for SAW. (a) Schematic of the proposed SAW DLW composed of phononic 

crystal of copper pillars arranged in a triangular lattice on a 127.68o Y-rotated X-propagating 

LiNbO3 wafer. The incident SAW in the X direction is provided by a broadband chirped IDT. (b) 

SEM image with a zoomed-in view of the fabricated SAW waveguide. The Cu pillars are 11.5 μm 

in diameter and 6.2 μm in height, with lattice constant 𝑎=24 μm, grew on a 400 nm Au seed layer 

on top of a 500 μm LiNbO3 wafer.  

 

The proposed SAW waveguide is formed by a defect line in a triangular array of 

copper pillars on 127.68o Y-rotated X-propagating LiNbO3 wafer, as shown in Fig. 4.1(a).  

The entrance and exit ports of the waveguide are aligned with the X direction of the LiNbO3 

wafer. The lattice of identical copper pillars introduces periodic modulation for SAWs, 

inducing a related dispersion and band structure (with bands and bandgaps).  Fig. 4.1(b) 

shows a scanning electron microscopy (SEM) image of the fabricated SAW waveguide, 

where the copper pillars were grown onto the LiNbO3 substrate through electrochemical 

deposition (see Methods). To study the SAW propagation, a broadband interdigital 

transducer (IDT) with a narrow aperture (see Methods) is fabricated on the same wafer 

and excites SAWs in the X direction from the entrance port. 

It has previously been observed that a Dirac degeneracy for SAW at the 𝐾 point 

occurs in a honeycomb lattice consisting of metallic pillars on LiNbO3 [136] (also shown 

in Fig. 4.2 (a) and (d)). Through differentiating one pillar from the other in the unit cell by 
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shrinking the diameter of one of the pillars in the honeycomb lattice, say pillar B, as shown 

in Fig. 4.2(b), the structure may be equated to a SAW VTI [137]. The 𝐶6𝑣 symmetry of the 

lattice is reduced to 𝐶3𝑣, which lifts the Dirac degeneracy at 𝐾 and forms a SAW bandgap, 

as shown in Fig. 4.2(e). Consequently, topologically protected valley edge states for SAWs 

are expected to be found in the bandgap formed.  Further shrinking the pillar B diameter to 

zero, the number of copper pillars in the unit cell reduces from two to one, and the 

honeycomb is transformed into a triangular lattice [21], as shown in Fig. 4.2(c). Since the 

SAW modes are supported by the mechanical resonances of the copper pillars (see 

subsection 4.8.1), reducing the number of pillars by half reduces the number of SAW 

modes by half. As shown in Fig. 4.2(f), a larger SAW bandgap then forms from 73.08 MHz 

to 88.13 MHz.  

We observed an intrinsic phase rotation for the out-of-plane displacement 𝑢𝑧 in the 

unit cell of the triangular lattice, where, in contrast to the valley TI, its Berry curvature 

vanishes. The phase distribution map of 𝑢𝑧  at the 𝐾 point of the Brillouin zone for the 

bands highlighted in red in Fig. 4.2 (d), (e) and (f) for the honeycomb lattice, the valley 

SAW TI, and triangular lattice are shown in Fig. 4.2 (g), (h) and (i), respectively. It may 

be observed that the phase shows greater uniformity close to the pillars. In the case of the 

valley SAW TI, Fig. 4.2(h), the relative position of the pillars leads to two vortices with 

opposing directions from a 2𝜋 phase rotation: one showing a counterclockwise vortex at 

the center of three pillars arranged in upwards triangles, and one showing a clockwise 

vortex at the center of three pillars arranged in downward triangles. These phase vortices 

indicate the presence of circular-polarized orbital angular momentum (OAM) and indicate 

a chiral property for 𝑢𝑧 throughout the bulk of the valley TI lattice [54,138]. The OAM 
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waves of opposite signs suggest unidirectional interfacial modes would be supported when 

the directionality is reinforced rather than opposed at a boundary or interface. The phase 

plot in Fig. 4.2(i) shows that the triangular lattice with only one pillar may still be mapped 

to an intrinsic OAM as in a topologically nontrivial valley TI, implying unidirectional 

confined edge modes would still be supported in the bandgap. However, despite the 

similarity, the triangular lattice maintains a C6v point group symmetry, while the lattice 

symmetry in a valley structure is reduced to C3v. For the valley TI, inversion symmetry 

results in ±𝜋  Berry phase accumulation around 𝐾  or 𝐾′ , as shown in Fig. 4.2(j). By 

contrast, with no TRS breaking or inversion symmetry breaking, the Berry curvature 

vanishes everywhere in the Brillouin zone for the triangular lattice (See subsection 4.8.2). 

This is illustrated in Fig. 4.2(k), where the Berry curvature is shown to be zero [139] 

around 𝐾, in clear contrast to the case of the valley structure.  

The spatial arrangement of the phase vortices suggests a gauge dependance on the 

existence of edge modes along the border. This can be likened to the topological crystalline 

insulator phases found in Kagome crystals [31–33], where the underlying symmetry is 

determined by the choice of unit cell. We can imagine the limit of a “breathing” Kagome 

unit cell as equivalent to a triangular lattice, with each lattice cite partially overlapping with 

the neighboring cells [32,140]. Unlike Kagome crystals, however, the physical realization 

given here maintains the C6v rotational symmetry for suitable choices in unit cell. Despite 

this, it can be seen (see subsection 4.8.3 and 4.8.4) that for the unit cell definitions that 

result in C3v edges along finite boundaries (as are studied here) the edge modes can be 

described by a nontrivial symmetry indicator [34] that describes the effect of the phase 

vortex. The existence of unidirectional modes is therefore a direct consequence of the real 
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space behavior of the finite crystal along certain boundaries, rather than the reciprocal 

space influence of valley-based effects. The symmetry indicator provides a direct measure 

of these real space effects, as is visually represented in the phase vortices seen in Fig. 4.2(i). 

 

Figure 4.2 Phase vortices in triangular lattices aiding SAW confinement. (a) Honeycomb 

lattice, (b) VTI with 𝑟𝐵 = 0.8𝑟𝐴 and (c) a triangular lattice of Cu pillars of 11.5 μm diameter and 

6.2 μm height on 500 μm LiNbO3 substrate. Calculated band dispersions along Γ-Κ (Κ′)-Μ-Γ 

direction for (d) the honeycomb lattice, (e) the VTI, and f the triangular lattice. Bandgaps for SAWs 

due to symmetry breaking are shaded in blue. Bulk acoustic wave bands are shaded in orange. We 

focus on bands highlighted in red dashed lines this paper. Simulated phase maps for the (g) 

honeycomb lattice, (h) VTI and (i) the triangular lattice at 𝛫. Phase plots for the VTI and the 

triangular lattice shows two vortices: one at the center of the downward triangles, and one at the 

center of the upward triangles. The upward triangles ∆ and downward triangles ∇ indicate opposite 

phase vortices. (j) Berry curvature for the triangular lattice around 𝛫 (
4

3

𝜋

𝑎
, 0). The Berry curvature 

is zero thoroughout the BZ with no accumulation around 𝛫, which shows a clear contrast to k that 

of the VTI. 

 



51 

 

 

4.3 Unidirectional SAW Edge States  

 
Figure 4.3 Unidirectional SAW modes at the DLW. (a) (top) A DLW created by shifting one 

half domain of the triangular phononic crystal of 𝑡 =
√3

3
𝑎 in the direction perpendicular to the 

waveguide. The light red color shows the positions of the pillars before the shift. A ribbon super 

cell is highlighted in blue, with a zigzag defect line in the middle and bridge defect line at the edges 

(as periodic boundary condition is applied in x direction. (bottom) The bridge defect line and zigzag 

defect line in the triangular lattice. The upward triangles ∆ and downward triangles ∇ indicate 

opposite phase vortices. (b) Band dispersions for the ribbon super cell. (c) Eigen-displacement 𝑢𝑧 

for the edge mode confined at the bridge defect line. (d) Eigen-displacement 𝑢𝑧 for the edge mode 

confined at the zigzag defect line. (e) Eigen-displacement 𝑢𝑧 for the bulk acoustic modes in the 

SAW bandgap. (f) (left) 𝑢𝑧 amplitude at the exit port of a straight zigzag DLW of 64a length 

normalized by 𝑢𝑧 amplitude at the entrance port from 65 MHz to 85 MHz. (right) 𝑢𝑧 field plots 

for the straight zigzag DLW at 66 MHz (within SAW bulk bands), 73 MHz (edge mode within 

SAW bulk bands), 76 MHz (edge mode within SAW bandgap) and 83 MHz (within SAW 

bandgap). (g) Simulated 𝑢𝑧 field for a Z-shaped zigzag DLW with an excitation of 76 MHz. (h) A 

“magic T” junction for the zigzag DLW. The “magic T” divide the domain into 4 parts with 60o, 

60o, 60oand 180o angles at the junction. The four sub-domains are denoted by the ∆  and ∇ 

respectively. The excitation is at 76 MHz at port 1. 
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We first prove, through numerical simulations, the existence of unidirectional SAW 

edge states, despite zero Berry curvature. We construct a DLW in the lattice where the 

phase on its two sides shows opposite vortices with enhanced direction of the energy flow 

at the defect line (see bottom figure in Fig. 4.3(a)). Here, a waveguide was created by 

shifting the right half domain of the triangular lattice 𝑡 =
1

√3
𝑎  in the direction 

perpendicular to the zigzag defect line, as illustrated in the top figure of Fig. 4.3(a). It can 

be observed that the domain on the left of the waveguide is truncated such that the pillars 

are arranged in downward triangles along the boundary, while along the right side of the 

waveguide the pillars are arranged in upward triangles. The phase vortices are opposite on 

the two sides, which leads to energy flux reinforced in one direction, giving rise to 

unidirectional SAW transport at the defect line.  

To find guided modes along the interface, we considered the band dispersion of a 

ribbon supercell with a zigzag defect line in the middle and a bridge defect line on the 

edges, as highlighted in the top figure of Fig. 4.3(a). Periodic boundary conditions are 

applied in both the 𝑥 direction and the direction along the waveguide, and the calculated 

band diagram is plotted in Fig. 4.3(b). The zigzag and bridge bands fall mostly into the 

SAW bandgap of the triangular lattice, with their corresponding eigen-displacement (𝑢𝑧) 

amplitude fields shown in Fig. 4.3(c) and Fig. 4.3(d), indicating the existence of the edge 

states at both the zigzag defect line and the bridge defect line. The edge mode associated 

to the zigzag defect line spans a wider frequency range (71.8 MHz to 80.18 MHz) 

compared to the edge mode confined at the bridge defect line (72.8 MHz to 76.65 MHz). 

Some bulk acoustic wave modes were observed in the SAW bandgap, as shown by the grey 

dots in the band structure. These modes decay rapidly into the bulk and do not couple to 
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the SAW modes; therefore, they can be safely ignored. Fig. 4.3(e) shows the 𝑢𝑧 of one of 

the bulk modes and related bulk wave behavior. Since these modes propagate into the bulk 

at a higher velocity, we expect them to have minor/negligible coupling with our SAW edge 

modes. Fig. 4.3(f) shows the 𝑢𝑧 amplitude at the exit port of a straight zigzag DLW of 64a 

length normalized by the 𝑢𝑧  at the entrance port. It can be observed that the SAW 

waveguide has high transmission from 73.08 MHz to 80.18 MHz, related to the edge mode. 

For frequencies below 73.08 MHz (within the SAW bulk bands), SAWs radiate throughout 

the whole surface, while for frequencies above 80.18 MHz the bandgap prohibits SAW 

propagation, leading to low transmission. In Fig. 4.3(g), a zigzag DLW with two 120-

degree sharp turns was excited at 76 MHz, demonstrating robust SAW waveguiding with 

little reflection. To verify the unidirectionality, we simulated a “magic T” junction as 

shown in Fig. 4.3(h), constituted from four DLWs that separate the domain into four parts. 

When sending a wave into port 1, the excited SAW will propagate in the direction in which 

the wave sees the upward triangles on its left and the downward triangles on its right. As 

shown in Fig. 4.3(h), the SAW excited at port 1 couples to port 2 and 3 but not port 4, as 

the waveguide connected to port 4 only supports SAW in the opposite propagation 

direction. The triangles, corresponding to the phase vortices, uniquely determine the 

direction of propagation, unlike ordinary defect modes. Consequently, it has been clearly 

indicated that edge states at the DLW are unidirectional.  
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 4.4 Confinement and Robustness of the SAW DLW  

 
Figure 4.4 Confinement and robustness of the DLW.  (a) The proposed zigzag DLW excited at 

76 MHz, with greater confinement. (b) the VTI with 𝑟𝐵 = 0.8𝑟𝐴 excited at 76 MHz, shows less 

confinement. (c) Normalized displacement distribution in y direction (the direction perpendicular 

to SAW propagation x) for the zigzag DLW compared to that of the VTI. (d) Z-shape zigzag DLW 

with only 3 rows of pillars on both sides. The inset shows a zoomed-in view. (e) A zigzag DLW 

with a shift 𝑑∥ = 0.0425𝑎 along the waveguide excited at 76 MHz. (f) Spatial FFT for 𝑢𝑧 along 

the shifted waveguide in e compared to that of a zigzag DLW at excited 77.5 MHz and 78.5 MHz. 

The SAW that travels at 77.5 MHz along the zigzag DLW is of the same wavevector as the SAW 

travels along the shifted waveguide at 78.5 MHz, indicating that the edge modes move to higher 

frequencies. (g) A zigzag DLW with a shift 𝑑⊥ = 0.05𝑎 perpendicular to the waveguide excited at 

76 MHz. (h) Spatial FFT for 𝑢𝑧 along the shifted waveguide in (g) compared to that of a zigzag 

DLW at 74.5 MHz and 75.5 MHz. The SAW that travels at 75.5 MHz is of the same wavevector 

as the SAW travels along the shifted waveguide at 74.5 MHz, indicating that the edge modes move 

to lower frequencies towards the bulk SAW bands. i A zigzag DLW with a shift 𝑑⊥ = 0.15𝑎 

perpendicular to the waveguide excited at 74.5 MHz. k Bent zigzag DLWs with a shift 𝑑30 = 0.1𝑎, 
√3

3
𝑎  (bridge DLW) and (

√3

3
+ 0.1)𝑎  in the direction of 30o towards the waveguide excited at 

76MHz, from left to right, respectively. 

 

We compare the confinement of the proposed DLW with a VTI. The displacement 

fields at 76 MHz are shown in Fig. 4.4 (a) and (b) for our DLW in contrast to a VTI (Fig. 

4.2(b)), respectively, with the displacement perpendicular to the waveguide plotted in Fig. 

4.4(c). The DLW shows a much faster decay along the in-plane orthogonal direction y, 
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with 3 dB decay in 0.264a, and 20 dB decay in 0.533a. On the other hand, the displacement 

for the VTI spreads out 5 times more, with 3 dB decay in 1.324a, and 20 dB decay in 

3.140a. The capability of confining SAW in a narrow region allows us to construct a DLW 

with fewer unit cells in the orthogonal direction. Fig. 4.4(d) demonstrates that a Z-shape 

zigzag DLW containing only three unit cells on either side of the interface still guides the 

SAW as expected. 

The waveguides we discussed above are constructed by shifting the pillars to form 

a perfect zigzag or bridge grain boundary defect line in a triangular lattice. We explored 

further the configuration of the defect line and how it affects the confinement of the SAW 

edge states. Fig. 4.4(e) shows a waveguide with the left and right domains of the zigzag 

interface both shifted in the direction parallel to the interface by 𝑑∥ = 0.0425𝑎, while Fig. 

4.4(g) illustrates a waveguide with the left and right domains of the zigzag interface both 

shifted away from the interface by 𝑑⊥ = 0.05𝑎. It can be observed that the waveguides 

still support SAW propagation and indicate the robustness of the related edge modes. 

However, from the spatial FFT for the two cases, as shown in Fig. 4.4(f) and Fig. 4.4(h), 

respectively, the edge mode is shifted to higher or lower frequencies. Fig. 4.4(i) shows the 

case with perpendicular shifting of 𝑑⊥ = 0.15𝑎, where the SAW is still guided through the 

interface, but is less confined to the waveguide. This is because shifting the two domains 

away from each other will reduce the coupling of the phase vortices at the interface and 

push the edge modes more towards the SAW bulk bands, leading to a less confined 

interfacial mode. Fig. 4.4(j) shows 120-degree bent DLWs with half of the domain shifted 

𝑑30 in the direction 30o to the zigzag interface. The field plots in Fig. 4.4(j) are for the 

cases when 𝑑30 = 0.1𝑎 ,  
√3

3
𝑎  and (

√3

3
+ 0.1)𝑎 , respectively. Similarly, as the shifting 
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distance 𝑑30 increases, the SAW also becomes less confined. Note that when 𝑑30 =
√3

3
𝑎, 

the waveguide resolves to a perfect bridge interface. As suggested by Fig. 4.3(b), the edge 

mode of a bridge interface is closer to the SAW bulk band, with slower propagation 

velocity compared to that of a zigzag interface, resulting in reduced confinement.   

 

4.5 Experimental Observation of the SAW Waveguiding 

 
Figure 4.5 Experimental demonstration of highly confined unidirectional SAW in a DLW. (a) 

Measured 𝑢𝑧 field for a Z-shaped SAW DLW. The Z shaped waveguide consists of three segments 

with 26𝑎 length for each segment, and two 120o sharp turns. The SAW was excited by a broadband 

IDT with bandwidth in the range of 35 MHz to 90 MHz. The 𝑢𝑧 is imaged by the LDV over a 

752.15 μm by 612.80 μm rectangular region. The 𝑢𝑧 field shown is at 76 MHz. (b) Comparison of 

𝑢𝑧 for point A on the waveguide and point B away (illustrated in (a)) from the waveguide over the 

frequency range of 71.5 to 80 MHz, respectively. Measured data is plotted in dots, with the moving 

average shown as a solid line.  (c) Confinement of the SAW at 76 MHz. (d) 𝑢𝑧 along the direction 

perpendicular to the propagation direction at 76 MHz for the simulation and the experiment, 

respectively. (e) (top) Simulated 𝑢𝑧  along the waveguide at 76 MHz (dashed line) and fitted 

exponential decay (solid line). (bottom) Measured 𝑢𝑧 along the three segments of the waveguide 

(illustrated in a) at 76 MHz (dashed line) and fitted exponential decay (solid line). The 𝑢𝑧 in b and 

(e) are normalized by the distance between the IDT and the entrance port of the waveguide. (f) 

Spatial FFT at 76 MHz comparing the simulation with experiment. 

 

Tightly confined SAW guiding along the proposed DLW, in close accord with the 

computational simulations of Figs. 4.3 and 4.4, was experimentally demonstrated in our 
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device, illustrated in Fig. 4.5. The out-of-plane displacement field 𝑢𝑧 was measured by a 

laser Doppler vibrometer (LDV, UHF-120, Polytec). To eliminate possible spurious mode 

interference from bulk acoustic waves, the back side of the LiNbO3 was roughened. We 

designed a chirped IDT with a wide bandwidth from 35 MHz to 90 MHz (see Methods) to 

excite the SAW and observed unidirectional edge states propagating through a Z-shaped 

interface with two 120-degree sharp turns. Fig. 4.5(a) depicts the measured out-of-plane 

SAW displacement field 𝑢𝑧  at 76 MHz where a clear surface wave confinement and 

transport along the DLW is shown. To determine the bandwidth of the edge mode, we 

compared two points on the device: point A on the waveguide and point B in the bulk of 

the triangular crystal, as shown in Fig. 4.5(a), and their 𝑢𝑧 vs. frequency, as shown in Fig. 

4.5(b). Here, the 𝑢𝑧 was normalized by the displacement directly in front of the source 

IDT. It can be clearly seen that away from the waveguide (point B) the 𝑢𝑧 goes to nearly 

zero after 74 MHz, which indicates a SAW bandgap for the triangular lattice above 74 

MHz. On the other hand, the displacement profile of point A on the waveguide shows a 

clear bandwidth up to 78.5 MHz, which proves that our edge mode exists in the bulk band 

of the SAW from 74 MHz to 78.5 MHz. We have also observed guided SAW below the 

bulk band from 72 MHz to 74 MHz (see subsection 4.8.5), as confirmed through Fig. 

4.3(a). However, these modes coexist with bulk SAW modes in the background and are 

less confined. At higher frequencies we note a reduced bandwidth than in simulation, 

owing to the band edges resulting in flat dispersion, thereby increasing their attenuation, 

and complicating direct observation. To show the confinement of the edge mode in the 

SAW bandgap, we measured the 𝑢𝑧 in the direction perpendicular to the waveguide, as 

shown in Fig. 4.5(c).  Fig. 4.5(d) shows that the measured 𝑢𝑧  agrees closely with 
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simulation at 76 MHz, and a 3dB decay within 0.509𝑎 is observed, implying that the mode 

is highly confined to the interface.  

A decay in the displacement amplitude along the waveguide was observed in both 

the simulation and the measurement (see subsection 4.8.6).  The measured 𝑢𝑧 amplitude 

for the three segments of the Z-shaped waveguide at 76 MHz is shown in the bottom figure 

of Fig. 4.5(e), with the simulation result shown in the top figure of Fig. 4.5(e). Assuming 

a very small reflection at each sharp turn (as justified by the discussion in the next 

paragraph) and fit the decay of the 𝑢𝑧  to be of the form of an exponential decay 𝐴𝑒−𝛼𝑑, 

where A is the amplitude, 𝛼 is the decay coefficient, and d is the distance the SAW travels 

along the waveguide, we find 𝛼𝑠𝑖𝑚 =0.00620/a, and 𝛼𝑒𝑥𝑝 =0.00862/a, with the fitted 

exponential curves plotted in solid lines in Fig. 4.5(e). This indicates 3dB loss at a distance 

of ~56a from the entrance port in the simulation, in comparison to ~40a in the 

measurement.  

We quantitively studied the reflection of the SAW and demonstrated there is indeed 

little reflection at the 120-degree sharp turns. We took the spatial FFT of the 𝑢𝑧 along the 

first segment of the waveguide before the first sharp turn and looked at the wavevectors, 

as shown in Fig. 4.5(f). The wavenumber components in Fig. 4.5(f) show a finite value for 

the negative wavenumber −𝑘 within the first BZ (-𝜋 to 𝜋) for both the simulation and the 

experimental results, indicating there is a small reflection at the 120-degree bends. A higher 

order component for the same wavevector outside of the first BZ is also observed. We took 

the average ratio of the displacement component for the 𝑘 and the −𝑘: 𝑟 =
𝑢𝑧,−𝑘

𝑢𝑧,𝑘
 in the 1st 

and 2nd BZ as the reflection coefficient of the SAW and obtained 𝑟𝑠𝑖𝑚 = 0.224 for the 

simulation, and 𝑟𝑒𝑥𝑝 = 0.385 for the measurement. We consider the 3 segments of the Z-
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shaped waveguide of same acoustic impedance R, so that the SAW energy flux can be 

expressed as |𝑢𝑧|
2/𝑅. Assuming all the SAW are either reflected or transmitted at the bend, 

the transmission for the Z-shaped waveguide can be estimated as 𝑡 = √1 − 𝑟2, which is 

𝑡𝑠𝑖𝑚= 0.975 for the simulation, and 𝑡𝑒𝑥𝑝= 0.923, for the measurement. The experimental 

result indicates that less than 8% of the SAW is reflected in the direction opposite to the 

incident direction by the two 120-degree bends, proving the directionality of the 

waveguide. The discrepancies between the simulation and measurement are due to 

inevitable damping in the sample (e.g., the electroplated copper pillars) and fabrication 

errors, which are difficult to be precisely simulated.  

 

4.6 Discussion 

We have developed a fully integrated on-chip topological SAW unidirectional 

waveguide, based on defect-line configurations, in a triangular phononic lattice constituted 

from metallic pillars. Different from spin or valley topological structures, the phononic 

lattice is trivial with regard to the Berry curvature. Instead, the directionality is maintained 

by the phase vortex distribution in real space. With half of the total number of pillars 

needed compared to a VTI ( 𝑟𝐵 = 0.8𝑟𝐴  ), the proposed SAW DLW shows better 

confinement by 5 times in the lateral direction. The confined SAW reduces the number of 

unit cells needed to construct the waveguide, making it possible to fit many such SAW 

waveguides on a small chip. Our experiments, in close agreement with simulation results, 

show successful SAW confinement and routing with small reflection around sharp bends 

along the propagation path. Our experiments lay the foundation for SAW direction tuning. 

To enable SAW routing along arbitrary directions, we anticipate the recently found optimal 
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cut of LiNbO3 substrate [141] can be used in place of the industry-standard 127.68o Y-

rotated X-propagating LiNbO3 used in this study. It has been indicated that the proposed 

DLW is robust in different variations, with the zigzag interface having the widest bandwidth 

and greatest confinement. Altering the defect boundary shifts the propagation frequency 

higher or lower and can be potentially used to split frequency components into different 

directions based on a small difference in the frequency. These results demonstrate the value 

of this system for further scientific investigations and device development, such as 

precision removal of cells locally from culture surface [142], multistage cell sorting, high 

pressure SAW pumping [143] and acoustic streaming [97], would be brought forth through 

application of our design. 

 

4.7 Methods 

4.7.1 Sample Preparation 

We fabricated chirped interdigital transducers (IDTs) on 500 μm thick, double-side 

polished 127.68o Y-rotated X-propagating LiNbO3 (LN, Precision Micro-Optics Inc., 

Burlington, MA, USA) for surface acoustic wave generation and propagation. Finger 

widths and finger gaps varying from 26 μm to 11 μm were selected for an operating 

frequency of 40-90 MHz (from 𝑓 = 𝑣/𝜆) to define each IDT, comprised of twenty-five 

simple finger pairs and linearly distributed gap widths. Standard UV photolithography 

(using AZ 1512 photoresist and AZ 300MIF developer, MicroChem, Westborough, MA, 

USA) was used alongside sputter deposition (Denton 18, Denton Vacuum, NJ, USA) and 

lift-off processes to fabricate the 10 nm Cr / 400 nm Au IDTs and seed layer upon the LN 

substrate [144,145] . The second layer structure with a thickness of ~15 μm for pillar 
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growth was fabricated via standard UV laser-written photolithography with alignment to 

the first layer of the IDT structure (using AZ 12XT-20PL-10 photoresist and AZ 300MIF 

developer, MicroChem, Westborough, MA, USA) (MLA 150, Heidelberg Instruments, 

Heidelberg, Germany). A dicing saw (Disco Automatic Dicing Saw 3220, Disco, Tokyo, 

Japan) was used to cut the entire wafer into small size SAW device chips. Then 6.2 μm Cu 

(copper) was electrochemically deposited on the exposed Au seed layer in an electrolyte 

environment. The second layer of the photoresist pattern was latter removed by acetone. 

 

4.7.2 Experimental Measurement 

A sinusoidal electric field with input voltage of 0.1 V and sweeping frequency from 

35-95 MHz was applied to the IDT to excite a broadband input signal into the entrance port 

of the SAW waveguide using a signal generator (WF1967 multifunction generator, NF 

Corporation, Yokohama, Japan) and amplifier (ZHL-1-2W-S+, Mini-Circuits, Brooklyn, 

NY, USA). The actual voltage, current, and power across the device were measured using 

a digital storage oscilloscope (InfiniiVision 2000 X-Series, Keysight Technologies, Santa 

Rosa, CA). The source IDT is of the aperture of 1.44𝑎 (overlapping width) and is 5.2𝑎 

away from the entrance port of the waveguide. To eliminate reflections at the boundaries 

of the device, a SAW absorber (Dragon Skin 10 Medium, Smooth-On, Inc., Macungie, PA, 

USA) is placed around the edge of the sample. The backside of the LiNbO3 wafer is 

roughened to absorb possible reflection of the bulk acoustic wave at the bottom of the wafer. 

The out-of-plane displacement magnitude and phase fields are captured by a laser Doppler 

vibrometer (LDV, UHF–120, Polytec, Waldbronn, Germany). The data presented is the 

average after 10 measurements from the LDV. 
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4.7.3 Numerical Simulation 

The eigen-mode and the driven-mode simulations were implemented using the 

commercial software COMSOL Multiphysics with the Acoustic (Acoustic-Solid 

Interaction) and Electrostatics modules, based on the finite element method. Floquet 

periodic boundaries were assigned for unit cell and supercell band diagram calculations, 

while the low-reflection boundary was imposed on the outer boundaries for the frequency 

domain driven-mode studies. A fixed boundary is always applied at the bottom of the 

LiNbO3 substrate. On the band diagrams for the unit cells, the SAW modes can be 

distinguished under the sound cone, which is formed by the slowest bulk mode dispersion. 

In the driven mode simulation, we excite the SAW by applying a sinusoidal edge load or a 

point load on the substrate. For the material properties, we used the z-cut LiNbO3 

parameters with a rotated coordinate system to get the properties for the 127.68o -degree 

Y/X-cut LiNbO3 wafers. The elastic parameters of the Cu pillars used in the calculations 

are density 𝜌 Cu = 8960 kg m−3, Young’s modulus 𝐸 Ni = 70 GPa and Poisson’s ratio 

𝜈 Cu=0.34. Note that the Young’s modulus is smaller than the conventional Young’s 

modulus for Cu, due to our specific plating process. It was also found in the literature that 

Young’s modulus can be sensitive to plating conditions [146]. 

For the Berry curvature calculation [30], the complex out-of-plane displacement 

with magnitude and phase information in the real-space domain is exported from 

COMSOL simulations for each wavevector for the integration. 
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4.8 Supplementary Information 

4.8.1 SAW Supported by Resonant Modes of Pillars 

 

Figure 4.6 Band diagram for unit cells with different pillar heights. (a) pillar with h=6.2 um. 

The inset shows the eigen modes of the 4 lowest SAW bands at K point.  (b) pillar with h=3 um, 

and (c) pillar with h=25 um. The insets show the eigen modes corresponds to 5th and 8th bands. 

 

From the inset of Fig. 4.6(a) we can see that the eigen modes of these SAW bands 

correspond to bending, expansion (pure in-plane motion) and extrusion/compression (pure 

out-of-plane motion) of the copper pillar. The 1st and 2nd SAW bands correspond to 1st 

order bending of the pillars in x/y direction. The 3rd band is for pure xy-plane expansion, 

as also discussed and demonstrated by previous sections. The 4th band represents a pure 

out-of-plane extrusion/compression, which is also the mode of interest in this paper. When 

the pillar becomes shorter, these resonances are lifted to a higher frequency, pushing the 

SAW bands into the bulk bands, as shown by Fig. 4.6(b). In the case of h=3um, there is no 

complete SAW band gap. Longer pillar on the hand would has lower resonant frequencies, 

such that more SAW bands would appear, as shown in Fig. 4.6(c). Higher order resonant 

modes such as 2nd order bending and 3rd order banding modes appears in the SAW modes 

for h=25um, as indicated by the inset. However, the out-of-plane mode of interest is now 

overlapping with other SAW modes, making it hard to observe the SAW edge states. 
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4.8.2 Vanishing of Berry Curvature 

In Fig. 4.2 we show a numerical calculation of the Berry curvature for the SAW 

unit cell that shows a zero Berry curvature. Here we prove that this is a requirement of the 

system based purely upon symmetry [147]. 

For the z-directed displacement field Bloch modes |𝑢𝑧⟩ in the Brillouin zone, we 

can define the Berry connection 

𝑨 = −𝑖⟨𝑢𝑧|𝜕𝑘|𝑢𝑧⟩,                                                  (4.1) 

and Berry curvature 

                                                      𝐹(𝒌) = ∇𝑘 × 𝑨.                                                     (4.2) 

Our system maintains the bosonic time reversal symmetry operator 𝒯: 𝒌 → −𝒌. Therefore, 

the curvature 𝐹(𝒌) is required to be an odd function of 𝒌, 

𝐹(−𝒌) = −𝐹(𝒌).                                                  (4.3) 

Note that this holds for 𝒯 obeying the relation 𝒯2 = +1, so the bosonic nature does not 

change the requirement. Likewise, in the presence of spatial inversion symmetry ℐ: 𝒓 →

−𝒓, 𝒌 → −𝒌 (in our system this is enforced by the 𝐶6𝑣 symmetry), the curvature is required 

to be an even function of 𝒌, 

𝐹(−𝒌) = 𝐹(𝒌).                                                 (4.4) 

Combining these two conditions from both 𝒯 and ℐ, we find that the curvature must 

be both even and odd for all 𝒌, which is true only for 𝐹(𝒌) = 0. So, in our system the 

curvature is required to be zero everywhere, provided it maintains time reversal and spatial 

inversion symmetry. Note, however, that the above proof is valid only for isolated bands, 

where the form of the Berry connection 𝑨 takes the form shown. If there are degeneracies 

present, the equation must be modified to the non-Abelian formulation, which implies that 
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at locations of degeneracy the Berry curvature may be non-zero but will average to zero 

numerically [139]. If the fully non-Abelian formulation is taken, however, the curvature 

will again be seen to be identically zero. 

 

4.8.3 Symmetry Indicator Analysis of the Phononic Modes 

The existence of the defect line mode can be seen visually from the behavior of the 

phase vortices: when the lattice is terminated on a finite edge with phase vortices rotating 

in the same direction on either side of the interface, a unidirectional mode can appear. 

However, such behavior can be further understood by the application of symmetry 

indicators [34].Here we first briefly cover the theory behind such methods and provide a 

simplified description of how they can be computed from simulated results, then show the 

result for our case of the SAW structure presented in the previous sections.  

Symmetry indicators provide a means of analyzing the topological behavior of 

periodic systems given the relevant rotational symmetry of the base unit cell. For a system 

with unit cell possessing 𝐶𝑛 rotational symmetry the symmetry indicator is defined by the 

set of numbers 𝜒(𝑛) that count the number of rotation eigenvalues the system has at high 

symmetry points, minus those at the Γ point. For the full details on which values are to be 

chosen, and the reasoning for the various forms, we direct the reader to reference 

papers [34,148]. The specific forms for 𝜒(𝑛) in a spin-1 system can be given as  

𝜒(6) = ([𝑀1
(2)

], [𝐾1
(3)

]),                                            (4.5) 

𝜒(4) = ([𝐾1
(2)

], [𝑀1
(4)

], [𝑀2
(4)

]),                                       (4.6) 

𝜒(3) = ([𝐾1
(3)

], [𝐾2
(3)

]),                                            (4.7) 
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 and 𝜒(2) = ([𝑋1
(2)

], [𝑌1
(2)

], [𝑀1
(2)

]).                                    (4.8) 

 Where [Π𝑝
(𝑛)

] ≡ #Π𝑝
(𝑛)

− #Γ𝑝
(𝑛)

and #Π𝑝
(𝑛)

 is the number of energy bands below a given 

bandgap with rotation eigenvalue Π𝑝
(𝑛)

= 𝑒2𝜋𝑖(𝑝−1)/𝑛, 𝑓𝑜𝑟 𝑝 = 1,2, … 𝑛. 

Computationally, for an arbitrary periodic system the approach can be broken down 

into the following steps [Liu 2021]:  

1. Simulate the phase profile of the unit cell at the relevant high symmetry points of 

the Brillouin zone (e.g., Γ, 𝐾,𝑀, 𝑋, etc.).  

2. Multiply the spatially variant phase profile by the scalar values of the eigenvalues 

of the relevant rotation operators (e.g., 𝐶6, 𝐶3, etc.), receiving one altered phase 

profile from each.  

3. Determine which eigenvalue gives the same result as that found by simply rotating 

the original phase profile by the same rotation. This determines the eigenvalue 

corresponding to that rotation operator applied to the unit cell. 

4. Using the formulas for the desired symmetry indicators given above, sum all such 

eigenvalues to determine the topological invariant for the system.  
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Figure 4.7 Phase plots at K for the eigen modes for the first four bands. Unit cell choice and 

resulting simulated z-directed phase profiles for the SAW structure, used in the symmetry indicator 

analysis. The first column are the unaltered phase profiles, the second are those with the first 

nontrivial eigenvalue applied, and the third are for the second nontrivial eigenvalue applied. Note 

that the displacement magnitude for the third band is substantially lower, indicating it is likely not 

a pure z-directed mode and can be ignored. 

 

The choice of which to calculate is set by the unit cell definition, as this sets the 

behavior at a finite edge. In our SAW system, the unit cell can be chosen to be a single 

pillar in the center of a hexagonal unit cell, resulting in 𝐶6 rotational symmetry. Such a 

choice then requires 𝜒(6), which calculate to be 𝜒(6) = (0,0) for our system and given 

bandgap. However, when the unit cell definition is shifted to the one shown in Fig. 4.7, 

with 3 partial corners, the cell becomes 𝐶3, therefore requiring 𝜒(3). The phase profiles of 

our structure for the 𝐾 point for this definition of unit cell are shown in Fig. 4.7. The first 
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two bands are degenerate and consequently have distorted phase vortices at lower-

symmetry points (see Supplementary Sec. 4). Likewise, the 3rd band is not a pure 𝑧-directed 

SAW mode (see Supplementary Sec. 4), and so does not influence the calculation here. 

However, the 4th mode, which is the one below our operating bandgap, displays the 

expected phase vortex-behavior shown in the previous sections. From the plots, we can see 

that the 𝐶3 rotation eigenvalue is 𝑒2𝜋𝑖(2/3), which (when we subtract the eigenvalues at  Γ, 

which are all unity here) results in 𝜒(3) = (−1,0). If we rotate the unit cell by 𝐶2 (thereby 

turning from a downward-pointing triangle to an upward-pointing triangle) and repeat this 

analysis, we find 𝜒(3) = (−1,+1).  

 

Figure 4.8 Zigzag defect line in a triangular lattice. Illustration of the splitting of the unit cells 

into 2 𝐶3 unit cells on either side of the finite interface. The blue and red rectangles show the two 

sides, with the overlapping region containing the interface of the otherwise infinite lattice. 

 

The above analysis shows that the shifted version of the unit cell possesses a non-

trivial topological behavior, though one protected here by the rotational symmetry of the 

system as well as the finite behavior. We stress here that the Berry curvature is still 

identically zero, as it is a gauge invariant quantity and is therefore unaffected by the spatial 

translation of the unit cell. The resulting shifted unit cell merely alters the behavior at finite 
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edges, which is not captured by the pure Berry curvature description. The existence of the 

edge mode in this case can be understood by the flipping of the signs of 𝜒(3) on either side 

of the interface, which, when tiled with a uniform hexagonal lattice causes the two 𝐶2-

related unit cells to appear (see Fig. 4.8).  

 

4.8.4 Irreps of Phononic Modes 

For the symmetry indicator calculations above, certain features of the 𝑧-directed 

phase distribution appeared to disobey the requirements of the various eigenvalues. 

Namely, the 1st -3rd modes do not appear to transform as 𝐶3. Here we show via direct 

calculation the origin of this and show how they do not alter the conclusion using a group 

theoretic analysis of the modes themselves. 

 
Figure 4.9 Projected eigenmodes of the first 4 bands of the SAW device onto the irreps of 𝐾. 

(a)-(d) are for the 1st-4th modes, respectively. 
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In Fig. 4.9, we show the results of applying the character projection technique 

[Hergert 2018] onto the complex 𝑧-directed displacement fields for the first 4 bands at the 

𝐾 point. This allows us to classify each mode into the irreducible representations (irreps) 

of the relevant little group, which for the 𝐾 point is 𝐶3𝑣. Each field shows the projected 

fields on each irrep, where the correct irrep for each can be visually checked by comparison 

to the unaltered field. By construction, each projected field will be orthogonal to each other, 

in the sense that each discretized field point will be approximately zero when the irrep of 

the field does not match that of the projector used. If they do match, the resulting projected 

fields will be approximately the same (with small differences occurring at the edges due to 

numerical artifacts). In addition, to better quantify this we also show the computed 

Frobenius norm of the field (denoted 𝛿), which will be approximately unity for the correct 

irrep, and approximately zero for all others.  

From this, we can immediately see that the first two modes are degenerate, which 

is not clear from the band structure. Likewise, we see that the 3rd band is not uniquely 

characterized by any of the three irreps, signifying that the mode is not a pure 𝑧-directed 

eigenmode. This is further corroborated by the field magnitude, which is itself ~3 orders 

of magnitude smaller than the others. We can thus ignore this mode from the resulting 

calculations, as it does not factor into the 2D symmetry indicator analysis.  
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4.8.5 Field Scans at Different Frequencies 

 

Figure 4.10 Measured 𝑢𝑧 fields at different frequencies. (a) unit cell band diagram (Fig. 2f). (b) 

Displacement vs. frequency for a point on the waveguide (point A) and a point away from the 

waveguide (point B) (Fig. 4.5(b)). (c) Measured 𝑢𝑧 at 66 MHz. (d) Measured 𝑢𝑧 at 72.875 MHz. 

(e) Measured 𝑢𝑧 at 74.25 MHz. These 3 frequencies are marked in a and b by red arrows. 

 

The measured  𝑢𝑧 fields for frequencies correspond SAW bulk band, eigen mode 

within SAW bulk band, and eigenmode in SAW bandgap are plotted in Fig. 4.10 (c), (d) 

and (e). respectively. For an excitation with a frequency in SAW bulk bands, SAW would 

propagate everywhere on the surface of the structure, as shown in Fig. 4.10(c). When the 

frequency corresponds to the edge mode falls in the SAW bandgap, only the SAW edge 

mode along the waveguide will be excited, as shown in Fig. 4.10(e). However, there is an 

overlap between the frequency range of the SAW bulk bands and SAW edge states, as 

shown by Fig. 4.10(b) (Fig. 4.5(b) in the section 4.5). In this frequency range, the SAW 

edge states would be excited together with bulk SAW, as indicated by Fig. 4.10(d). 
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4.8.6 Comparison between Confinement and Loss between 

Defect-line Waveguide and Valley TIs 

 

Figure 4.11 Confinement and decay for proposed defect-line waveguide and Valley TIs. (a) 

𝑢𝑧 for defect-line waveguide. (b) 𝑢𝑧 for Valley TI with 𝑟𝐵 = 0.6𝑟𝐴. (c) 𝑢𝑧 for Valley TI with 𝑟𝐵 =
0.7𝑟𝐴. (d) 𝑢𝑧 for Valley TI with 𝑟𝐵 = 0.8𝑟𝐴. (e) 𝑢𝑧 in the direction perpendicular to the direction 

of propagation. f. 𝑢𝑧 along the direction of propagation. 

 

The confinement and loss of the proposed waveguide and the valley TIs are 

illustrated in Fig. 4.11. Our proposed waveguide shows a better confinement compared to 

the valley TIs, as shown in Fig. 4.11(e), but is more lossy along the waveguide compared 

to the valley TIs, as shown in Fig. 4.11(f). We also noticed that the more contrast between 

the pillars in the Valley TI, the more confined the SAW is, but the more lossy it becomes. 

 

This chapter is based on On-chip unidirectional waveguiding for surface acoustic 

waves along a defect line in a triangular lattice by Y. Zhou, N. Zhang, D. J. Bisharat, R. 
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J. Davis, Z. Zhang, J. Friend, P. R Bandaru and D. F Sievenpiper, Under Submission. The 

dissertation author was the primary author of this material.  
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Chapter 5 

Helical Phononic Modes Induced by a 

Screw Dislocation 

5.1 Introduction 

Previous chapters have been focusing on 2D implementations of phononic 

topological waveguides, which also naturally brings up the question on how to build a 

topological waveguide in a 3D structure. The focus of this chapter will be on creating a 1D 

topological waveguide in a 3D phononic crystal. 

Defects are common within all forms of solid-state matter, and only recently has it 

been shown that some have technologically beneficial qualities. The most promising of 

these are those with topological features, which enforce the existence of modes that are 

immune to a wide range of scattering phenomena. Fermionic 3D topological insulators 

have been shown to have 1D edge states within screw discontinuities, which are supported 

by a weak topological index and a Burgers vector [23],or by partial dislocations at fault 

lines [149]. Researchers have often used engineered photonic or phononic structures to 

probe such defects, with recent efforts in acoustics demonstrating robust edge states from 

Weyl crystals in coupled resonators. However, in all such cases, the initial starting point is 

always a topological material, 2D or 3D, and 1D edge states are induced within the bandgap 

via an interplay of the defect and the preexisting topology. Here we show that such modes 
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can exist in a 3D phononic crystal without spin-orbit coupling that is initially trivial, where 

robust 1D edge states are induced purely by a screw dislocation. Our results reveal that 

unidirectional edge states can exist via structural helicity, without the requirements of other 

systems. 

Many attempts have been made in realizing topological phases in 3D phononic 

structures. For example, topologically protected 2D surface states associated to Weyl 

points (3D counterpart of Dirac point) are proposed and experimentally demonstrated in 

phononic Weyl crystals [150–154]. Higher order phononic topological insulators have also 

been proposed, where 0D topological corner states are realized [155]. However, realizing 

1D topological modes [156] in such systems is still challenging. 

Topological defects [23–26,157–159], on the other hand, are shown to be 

associated with one-dimensional fermionic excitations in a topological insulator. This idea 

has been applied to construct 1D topological waveguide in 3D photonic and phononic 

systems as well. However, existing designs are all based on creating a defect line in a 3D 

topological insulator, resulting in complicated 3D structures. 

We have showed in Chapter 4 that a simple 2D topological unidirectional 

waveguide can be built by shifting part of a triangular phononic lattice to form a defect line. 

Similar phenomena are also found in 2D photonic crystals. Can analogous phenomena 

occur in a 3D phononic crystal, if we are able to create a 3D shift in it? This question will 

be answered by the sections follow. 
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5.2 Helical Phononic Modes in a hcp Lattice 

We start with a 3D phononic crystal with a large band gap – a hexagonal close 

packed (hcp) crystal made with solid steel balls embedded in epoxy background material. 

Previous research has shown that 3D phononic band gap can be formed in such structure, 

which is also evidenced by our bandgap simulation in Fig. 5.1.  

 

Figure 5.1 Hcp phononic crystal with a large band gap. (a) Hcp phononic crystal made with 

steel metal balls in an epoxy background. The two colors indicate the AB stacking of the hcp crystal. 

(b) A 3D band gap in the hcp crystal. 

 

Then we introduce a screw dislocation with burger’s vector 𝑏 = 𝑐 to the hcp lattice, 

where 𝑐 being the lattice constant in the z direction, as shown by Fig. 5.2(a), and calculate 

the band diagram for the supercell, as shown by Fig. 5.2(b). A pair of linear dispersion 

with opposite group velocities are observed in the band diagram. And their eigen 

displacement fields in Fig. 5.2(c) clearly shows a rotational behavior with opposite 

chirality. Other modes in the band gap corresponds to artificial boundary or corner states 

that caused by boundary condition settings in the eigenmode simulation and are not 

important in our discussion here.   
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Figure 5.2 Helical phononic modes induced by the screw dislocation. (a) Hcp phononic crystal 

made with a screw dislocation. (b) Counter-propagating helical modes in the phononic band gap. 

(c) Eigen displacement fields corresponds to the helical modes. 

 

5.3 Directionality of the Helical Modes 

To prove the directionality of the modes we found in Section 5.2, we constructed a 

waveguide with two screw dislocations of opposite helicity connected to each other, as 

shown in Fig. 5.3(a). A point source with a frequency within the band gap is used to excite 

the wave at the bottom of the waveguide, and a perfect matching layer is attached to the 

top to eliminate reflection. The displacement along the dislocation waveguide is plotted in 

Fig. 5.3(b). Comparing the x and y displacement in the first screw, a 90-degree phase 

difference is observed, a clear suggestion that the displacement field at the dislocation is 

rotating along the waveguide. Also, we can see that little of the phononic wave in the first 

screw passes into the second screw with opposite helicity, which indicate that wave with 

one kind of helicity would keep its helicity while propagating: an indication of one-way 

propagation. 
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Figure 5.3 Unidirectional helical phononic modes. (a) Waveguide with two screw dislocations 

with opposite helicity connected. (b) Displacement along the waveguide in (a). 

 

The HCP crystal structure used as the starting material can be modeled via a general 

spinless Hamiltonian H with time-reversal symmetry following the symmetries of the space group 

(e.g., #194; point group D6h). We note that for the phononic crystal studied here, such a Hamiltonian 

must necessarily fall into the AI Cartan class [160], as the time-reversal operator T has the property 

T^2 = +1. From the topological defect classification [161], we can naively conclude that our system 

must not possess any 1D edge modes induced by defects. Hence, it is clear that our system goes 

beyond such a classification (which only considers time-reversal, particle-hole, and chiral 

symmetries), and instead the crystal structure itself becomes relevant [162]. Therefore, different 

from the 1D modes mentioned in the introduction, the unidirectional modes we observed here is 

from a pure trivial 3D crystal. 

 

5.4 Measurement Results  

We prepared samples of both a fully trivial HCP crystal and one with the same screw 

dislocation studied in simulation. The background structures were 3D printed by the material called 

Tango Black Plus layer by layer, and the solid carbon steel metal balls were popped into the printed 

matrix to assemble the samples. 
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 The measurement of the pressure field displacement amplitude shown in Fig. 5.4 was 

performed using an automated translation stage (modified 3D printer). The excitation was a 

directional speaker, which was placed at the center of the sample for all measurements. The receiver 

used was a microphone which was inserted into a metal tube 2 cm long to improve spatial resolution. 

An averaging of 16 samples was used for each datapoint, and a lock-in amplifier was used, with an 

internally generated sine wave as the input to the speaker. To reduce external noise sources, all 

measurements were performed inside an anechoic chamber. For the spatial scans shown in Fig. 5. 

4(c) and (d), the 2D stage moved the microphone 0.5 cm above the top surface of the sample. The 

measurement was repeated under the same conditions for the nontrivial sample (Fig. 5.4(c)) and 

the trivial bulk (Fig. 5.4(d)). The measurement setup is shown in Fig. 5.4(a). 

For the transmission spectra of the nontrivial sample shown in Fig. 5.4(b) (in red), we 

placed the same measurement setup with the microphone at the geometric center of the sample, at 

the vertex of the screw dislocation and took an average of 16 samples for each frequency. We 

repeated this with the microphone placed at the corner of the nontrivial sample, and again with the 

trivial bulk sample with the microphone at the geometric center. All results were then normalized 

by the measured free-space transmission (with microphone directly connected to the speaker), and 

each peak is then normalized to their respective maxima.  
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Figure 5.4 Measurement of the screw-dislocation waveguide. (a) Measurement setup. (b) 

Displacement amplitude vs. frequency at the center of the nontrivial sample compared to that at the 

center of the trivial sample and that at the corner at the nontrivial sample. (c) and (d) are the field 

scan on the top of the trivial and nontrivial samples at frequencies in the bandgap, respectively. 

 

From Fig. 5.4 (b), (c) and (d) we see that nontrivial sample shows a mode confined 

at the screw dislocation where the trivial clearly shows a bandgap. The measurement results 

align well with simulation results in Sections 5.2 and 5.3. 

 

5.5 Conclusions 

This chapter presents a 1D topological waveguide in a 3D phononic crystal, induced 

by a screw dislocation. Even though the 3D phononic crystal studied here is a simple 

conventional hcp crystal rather than a complicated 3D topological insulator, we still proved 

from numerical simulations the directionality of the modes confined at the screw 

dislocation. Our measurement results further verify the existence of these modes. This 
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waveguide can be potentially used for vibration damping and unidirectional sound 

propagation for privacy protection. 

This chapter is based on Helical phononic modes induced by a screw dislocation 

by Y. Zhou, R. Davis, L. Chen, E. Wen, P. R. Bandaru and D. F. Sievenpiper, In 

preparation. The dissertation author was the primary author of this material. 
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Chapter 6 

Discussion 

6.1 Summary 

This thesis presents an investigation into topological waveguides, in 2D and 3D 

phononic structures, from both theoretical and experimental perspectives. Our modeling, 

computations and experiments have deep scientific implications for the rapidly expanding 

field of topological materials, which has extended from electronic to phononic systems. 

A 2D theoretical model is studied in Chapter 2, where a topological waveguide is 

built in a spring-mass phononic system. This work provides many physical insights, related 

to topological interactions and pointed from the point of view of a mass-spring system. The 

idea is analogous to the quantum spin Hall effect in electronic system. Since phonons are 

spin-1, the pseudospins in are introduced by hybridizing phonons at the same energy level, 

which is achieved by the zone-folding technique. To open a non-trivial energy band gap 

and form topological edge states, we tune the lattice symmetry varying the inter- and intra- 

cell couplings while maintaining the C6 symmetry of the unit cell. Topological edge states 

propagate unidirectionally are found in such systems, that can turn sharp corners. However, 

the robustness of these modes towards lattice defects is debatable, as they are induced by 

tuning the lattice symmetry in the system. 

To construct a robust 2D waveguide, in Chapter 3 we introduce frequency 

resonators – Helmholtz resonators to the phononic system. The waveguide constructed is 
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robust over frequency and location disorders in the lattice and shows great confinement. It 

shows potential of confining phononic wave into very small region.  

Based on the theoretical studies on topological physics and phononic waveguiding 

in the previous two chapters, we build and measure a real 2D topological waveguide in 

Chapter 4, for surface acoustic waves. The waveguide built is a defect line in a triangular 

phononic lattice, which different from conventional 2D topological waveguides, has zero 

Berry curvature and is characterized by the symmetry indicator instead. This design is 

simple and effective and inspires our work on the defect-line unidirectional waveguide in 

3D phononic crystal, which is discussed in Chapter 5. 

Chapter 5 presents a unidirectional waveguide in a 3D crystal, using a similar idea 

to Chapter 4, by creating a defect line – a screw dislocation to the crystal. The existence 

have the modes are proved by both simulations and experiments, suggesting a novel way 

of guiding phonons unidirectionally in 3D structures. 

 

6.2 Potential Future Work 

The potential future work will be discussed in two aspects: further studies on 

topological physics in phononics, and potential applications of the topological phononic 

waveguides. 

We discuss in Chapter 2 a model on 2D phononic topological insulator, and in 

Chapter 3 a phononic waveguide built by resonators. Combining these two models may 

leads to robust and unidirectional phononic waveguides, which is worth being investigated. 

The theory behind the 3D defect-line topological waveguide in Chapter 5 also need to be 

studied further. The 2D defect-line waveguide in Chapter 4 is demonstrated by the 
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symmetry indicator, and we are expecting to characterize the 3D case in a similar manner. 

The existence of such defect-line waveguides also motivates us to look for more 

topological phases in phononic lattices. 

For potential applications, the extension to acoustic aspects and conductive heat 

flow, using our developed methods and designs would be very attractive. For example, the 

2D unidirectional waveguides can be adopted for surface acoustic wave applications, 

where highly directional and confined acoustic energy propagation is needed. Since heat 

conduction can also be modeled as phonon movements, the 3D unidirectional waveguide 

can also be further explored in for building 3D thermal diodes. 
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