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ABSTRACT OF THE DISSERTATION 

 

Probing Interaction of Genome and Methylome by Targeted Bisulfite Sequencing 

 

by 

 

Nongluk Plongthongkum 

Doctor of Philosophy in Bioengineering 

University of California, San Diego, 2014 

Professor Kun Zhang, Chair 

 

 

DNA methylation at CpG dinucleotides in mammalian cells is recognized as an 

epigenetic mechanism that plays a major role in mammalian development via gene 

expression regulation. Techniques in DNA methylation profiling have been advancing in 

the past decades. I have developed the second-generation of bisulfite padlock probe 

(BSPP) method, which does not require multiple steps of standard library preparation. 

This method is high-throughput and more scalable for quantification of DNA methylation 

at single-base resolution. The library-free method greatly reduces sample-preparation 
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time and cost and is also compatible with automation. These developments have fulfilled 

the key requirements of a DNA methylation assay, including cost effectiveness, 

minimum sample input requirements, accuracy, and throughput. I have performed this 

technique to compare with other assays performed by different research groups for locus-

specific DNA methylation analysis on the same samples set. BSPP assay showed a high 

correlation with other assays that have highest accuracy and is at the top with other 

assays based on the throughput. Genetic variants have an impact on local DNA 

methylation patterns by influencing methyltransferase recognition sequences or altering 

the DNA binding affinity of cis-regulatory proteins. To study this interaction, I have 

characterized CpG methylation state of 96 individuals from 22 nuclear pedigrees 

consisting of 52 parent-child trios using BSPP. I used the DMR330k probe set to quantify 

DNA methylation level at a set of 411,800 CpGs. Next, I have employed three 

independent approaches, including mid-parent offspring (MPO), methylation quantitative 

trait loci (mQTL), and allele-specific methylation (ASM) analysis, to investigate the 

influence of genetic polymorphisms on DNA methylation variation. MPO analysis 

identified 10,593 heritable CpG sites, among which 70.1% were SNPs that present in 

CpG sites. With mQTL analysis, 49.9% of heritable CpG sites were identified where 

regulation occurred in a distal cis-regulatory manner while ASM analysis was only able 

to identify 5% of heritable CpGs. This finding suggested that mQTL analysis do not 

identify all the cis-regulartory SNPs associated with heritable CpG methylation, and 

ASM analysis has even less power. I have extensively proved that in addition to 

regulating the mean of DNA methylation, genetic polymorphisms are also associated 

with the variability of DNA methylation levels. I have identified hundreds of CpG 
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clusters in human genome for which the degree of DNA methylation variability was 

associated with genetic polymorphisms. This finding supported the previous studies 

showing that genetic variants have the influence on phenotypic plasticity such as gene 

expression or DNA methylation.  
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CHAPTER 1 INTRODUCTION 

1.1 Basic of DNA methylation 

 DNA methylation, most commonly recognized as 5-methylcytosine (5mC), is a 

key epigenetic mark that has essential roles in cellular processes including gene 

transcriptional regulation, genomic imprinting, embryonic development, X-chromosome 

inactivation, and disease susceptibility or development. DNA methylation can be created 

and erased dynamically but can also be stably maintained through cell divisions. Whole 

genome maps of 5mC have revealed intriguing patterns in human and mouse such as cell 

state dependent occurrences of 5mC in contexts other than canonical CpGs and in 

partially-methylated domains (PMDs), and conserved regions depleted of 5mCs across 

mouse and human species. The commonly known DNA methyl-transferases (DNMTs), 

which are well known for depositing methyl-groups on cytosine to yield 5mC in CpG 

contexts (Figure 1.1), have been shown to deposit methyl-groups at non-CpG sites [1]. 

Generation and maintenance of non-CpG methylation appears to be tightly regulated, for 

such modifications are enriched in specific cell types, such as pluripotent cells and neural 

progenitors as well as in adolescent and adult cortex tissues [2-6]. By contrast, partially-

methylated domains (PMDs) have been found predominantly in non-pluripotent cells and 

non-cortex tissue types [2, 4, 7]. These PMDs have been associated with low 

transcription rates, lamina-associated domains and late-replicating domains. Next, 

different classes of methylation depleted regions named unmethylated regions (UMRs), 

DNA methylation valleys (DMVs) and DNA methylation canyons have been defined [7-

9]. These regions tend to be conserved across cell types and across mouse and human 

species. Both methylation valleys and canyons tend to be marked with H3K4me3 or	
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H3K27me3 or both that can each lead to active, inactive, or poised transcriptional states 

respectively[7, 9, 10]. Strikingly, these regions cover most genes important for 

embryonic development [10].  

 In addition to DNMTs, a class of enzymes has been recently described to produce 

epigenetic modifications such as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 

(5fC) and 5-carboxylcytosine (5caC) in mammalian cells. These newly identified writers 

are members of the ten-eleven translocation (TET) proteins and can sequentially oxidize 

5mC to form 5hmC, 5fC and 5caC, respectively (Figure 1.1). These cytosine 

modifications will be referred to as 5mC oxidation derivatives from here on. Some 

reviews have suggested that 5mC oxidation derivatives may exist as demethylation 

intermediates and that their presence may be related to the development and maintenance 

of methylation-free regulatory regions in mammalian genomes [11, 12]. The presence of 

5mC at major satellites and other transposable elements (TEs) has been reported to be 

necessary for genome stability [11] while depletion of 5mC in a small number of TEs are 

tissue-specific and may lead to enhancer functions [13]. 5hmC has been detected at short 

interspersed nuclear elements (SINEs) and long terminal repeats (LTRs) [14-17], whereas 

5fC and 5caC have been identified at major satellites [16]. These findings point to 

potential 5mC turnover at these regions. However, further investigation is required to 

determine the exact function of these DNA modifications. Proteins that preferentially 

bind to 5hmC, 5fC, or 5caC have been recently identified [18, 19] and are suggested to be 

the readers that connect these rare DNA modifications to phenotypic consequences. 

These exciting discoveries on DNA modifications were only possible with the 
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advancement of techniques for characterizing these modifications as well as with the 

development of computational approaches for interpreting increasingly large datasets.   

1.2 Measurement of DNA methylation 

Techniques in DNA methylation measurement have been tremendously 

developed. A variety of methods has been advanced and optimized to measure DNA 

methylation at genome-wide scale or at specific regions of the genome. The four key 

requirements for 5mC measurement are improving accuracy, reducing sample input, 

increasing throughput, and lowering cost.  The advancement of DNA methylation 

detection by chemical treatment with sodium bisulfite and sequencing-based method 

(bisulfite sequencing, BS-seq) has been very active because next-generation sequencing 

is becoming more affordable and can provide quantification in the form of digital counts, 

enabling merging of data from different batches or sequencing run of sequencing 

libraries, as well as for data from independent studies. With ordinary DNA sequencing 

method, unmethylated cytosine and methylated cytosine can not be distinguished. In 

addition, DNA methylation signal is erased after DNA amplification. Therefore DNA 

treatment by sodium bisulfite is used to convert unmethylated cytosine into uracil by 

sulfonation, deamination, and desulfonation procedures (Figure 1.2). After polymerase 

chain reaction, unmethylated cytosine is readout as thymine while methylated cytosine 

that resists conversion is unchanged. Quantification of 5mC at individual position is the 

ratio of methylated cytosines over total cytosines called. The majority of sequencing-

based methods could be subcategorized as whole-genome methods, non-targeted 

enrichment methods, and targeted enrichment methods (Table 1.1). The whole-genome 

methods provide the pattern of DNA methylation across the whole genome except the 
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methylation at repetitive regions, as the reads originating from repeats are assigned to 

multiple genomic regions and discarded.  Non-targeted enrichment and targeted 

enrichment methods provide DNA methylation at specific subset of CpG sites in the 

genome based on custom design or the enrichment approaches. The low-input 

improvement to as low as 100pg or in single cell level allows the assays applicable for 

detecting DNA methylation in rare cell types, such as primordial germ cells and oocytes. 

Whole-genome bisulfite sequencing (WGBS) has been considered as a ‘gold 

standard method’ in DNA methylation profiling, as it can profile DNA methylation at 

every single cytosine at single-base resolution across the entire genome. The basic 

procedures of WGBS method are fragmentation of gDNA followed by addition of 

adaptor, bisulfite treatment, and amplification. WGBS libraries could also be prepared 

using transposase-based library construction or tagmentation-WGBS (T-WGBS; also 

known as Tn5mC-Seq) [20, 21]. This assay uses a hyperactive Tn5 transposase derivative 

to fragment double-strand DNA and to append methylated adaptors in a single steps. 

Another method for whole-genome methylation sequencing is post-bisulfite adaptor 

tagging (PBAT) [22]. This method generates bisulfite sequencing library from bisulfite-

converted single-strand DNA with two rounds of random priming with primers 

containing four random nucleotides on the 3’ end. Generation of sequencing library after 

bisulfite-treatment reduces the loss of adaptor-ligated DNA as a consequence of DNA 

damage during bisulfite treatment. A recent developed DNA SMART (Switching 

Mechanism at 5’ End of RNA Template) technology [23] uses template-switching 

approach to generate complementary strand DNA from single strand DNA template and 
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directly add adaptors to DNA without adaptor ligation and clean up steps of the regular 

shortgun library preparation.  

Although DNA sequencing cost has dramatically reduced, whole genome 

sequencing is still difficult to apply for many studies based on human genome and large 

cohort study. To reduce sequencing cost, selection or enrichment of DNA fragments 

containing a high level of CpGs is performed before bisulfite sequencing library 

construction. Reduced representation bisulfite sequencing (RRBS) method has similar 

procedures to WGBS, but it takes the advantage of methylation-insensitive restriction 

enzymes such as MspI to fragment and enrich for CpG-rich sequences that are 

predominantly in CGIs. This allows coverage approximately 10% of total CpGs [24]. 

Double-digestion such as MspI and ApeKI [25] or MspI and TaqI increases CpG 

coverage up to 20% of CpGs. Modification of RRBS methods such as lacer-capture 

micro-dissection (LCM-RRBS) [26] or multiplexing RRBS (mRRBS) [24] and single cell 

RRBS (scRRBS) [27] have been successfully used to profile DNA methylation on input 

as low as 1 ng and in a single cell, respectively. Although RRBS shares similar features 

of WGBS method, the coverage by RRBS method is limited to only CpG-rich region. 

The low-CpG density region that exist in enhancer and intronic regions are not 

adequately covered by this method [25-28]. Other assays have used methylation 

restriction enzyme sequencing (MRE-seq), methylation immunoprecipitation sequencing 

(MeDIP-seq) and methyl-CpG-binding domain protein sequencing (MBD-seq) to enrich 

for methylated DNA fragments. The techniques using methylation-sensitive enzymes 

could be coupled with sequencing in the MRE-seq protocol [29]. The advantage of 

MeDIP-seq is it can quantify 5mC level at a large fraction of repeats than other 
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sequencing-based method [29, 30], and it can capture ~90% of total CpG coverage with 

17-18 Gb of sequencing [31]. There are several technical caveats related to the methods 

using methylation enrichment. For instance, they quantify methylation as the relative 

abundance of 5mC in genomic window of various sizes not in single-base resolution. 

Copy number variation can cause the bias, so control experiment is required to normalize 

the difference of copy number at the genomic level. 

5mC at specific genomic regions could be selectively quantified by targeted 

methylation sequencing. These approaches have to be carried out using PCR 

amplification, ligation capture, bisulfite padlock probe (BSPP) capture, or liquid 

hybridization capture. The challenge of PCR-based method is being able to multiplex 

PCR amplification of hundreds to thousand of targets simultaneously without introducing 

cross-reactions of the PCR primers. Raindance microdroplet PCR technology enables 

PCR amplification of singleplex in emulsion droplets as high as 20,000 targets [32]. 

However, DNA input requirement is proportional to the number of targets as each droplet 

requires multiple copies of genomic template. Another targeted bisulfite sequencing 

method is ligation capture. This approach enriches DNA targeted fragments by annealing 

designed oligonucleotides to enzymatically digested DNA followed by ligation with 

common adaptor for amplification. The two notable ligation capture methods are 

methylation target capture and ligation (mTACL) [33] and bisulfite patch PCR [34]. In 

the BSPP method [35, 36], the genomic target regions are captured by padlock probes. A 

padlock probe contains two short capture sequences that are linked by a common linker 

sequence. BSPP are designed to be complementary to bisulfite-converted DNA and the 

CpG(s) to be analyzed are between the two annealing sequences. BSPP method has high 
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flexibility and scalability in selecting target region at various sizes. Hundreds to hundreds 

of thousands of probes can be pooled into a single capture reaction. The set of 330,000 

probes can consistently capture more than 500,000 CpG sites [35]. Liquid hybridization 

capture capture-based bisulfite sequencing (a), which has been successfully used in exom 

capture and sequencing, was recently adopted for targeted bisulfite sequencing [37, 38]. 

For this approach, a sequencing library generated by shotgun library preparation could be 

enriched by hybridization to the designed biotinylated oligonucleotides, bisulfite 

converted, and amplified. To allow this method to be applicable for low DNA input, 

targeted fragments can be enriched from a post-amplified WGBS library with custom 

biotinylated oligonucleotides complement to post-conversion DNA [39]. 

 Array-based assays have been widely adopted for use in many studies because of 

theirs features of low costs, ease of use and high throughput. The comprehensive high-

throughput arrays for relative methylation (CHARM) [40] and the Illumina Infinium bead 

chips [41] are the two arrays widely used. CHARM chips do not provide single-base 

resolution but can be coupled with any methylation enrichment protocol. The flexibility 

of CHARM array is that users can design custom array for specific purpose. This feature 

allow for quantification of non-CpG methylation and repetitive regions.  The Illumina 

Infinium 450K BeadChips is a comprehensive array that can interrogate more than 

450,000 methylation sites at single-base resolution. A small fraction of non-CpG 

methylation included in 450K BeadChips. Microarrays have been coupled with MeDIP or 

MDB (mCIP-chip, MeDIP-chip, MeDIP-on-RepArray, MDB-chip) to specifically target 

promoters and repeat regions [42-44]. Cross hybridization in array-based assays remains 

a primary source of bias.  
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1.3 Padlock probe technology 

  Padlock probes are single strand DNA molecule with total length approximately 

80-100 nucleotides, consisting of two target-complementary sequences of 20-nucleotide 

long located at both 5’- and 3’-end and connected by a 40-nucleotide long common  

linker sequences. Padlock probes were firstly reported by Neilson M. in 1994 [45]. Once 

hybridized to the DNA target, two ends of the target-complementary segments are 

brought adjacent to each other without the gap between and sealed by DNA ligation 

resulting in circularized probes. The captured molecules are amplified and sequenced 

using amplification primers annealing to the sequences on common linker sequences. 

Several features of padlock probe allowed it to be used in many applications for genomic 

studies. Capture with padlock probe is highly specific as ligation of the two end of target-

complementary segments would occur only when they hybridize to the targeted 

sequences, and ligation is unlikely to allow for any mismatches at the ligation junction. 

With this feature, padlock probes of different targets can be pooled to capture in the same 

reaction with low chance of cross-reactions compared to PCR reaction with many pairs of 

disjointed primers. Padlock probes could also be designed to uncover the genomic 

sequences of regions residing in the gap between the two capturing arms. After 

hybridization, the open gap is filled by DNA polymerase and circularized by DNA ligase. 

Padlock probes have been adopted in a wide-range of genetic investigations, including 

genotyping, exome re-sequencing, gene expression studies, and in situ hybridization [46-

54]. Bisulfite padlock probe was modified from padlock probe as the target-

complementary segment or capturing arms were designed to be complementary to 

bisulfite-converted sequences. The very first generation of bisulfite padlock probes 
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(BSPP) [36] have been used for chromosome-wide DNA methylation quantification of 

~66,000 CpG sites within 2,020 CpG islands on human chromosome 12 and 20 using 

~33,000 BSPPs [36]. BSPPs have also been used to capture DNA methylation on 

promoters and gene bodies using pools of ~10,000 BSPPs [55]. The most recent 

improvement to BSPPs [35] have increased coverage of the human genome with 

~330,000 probes that cover genomic locations known to contain differentially methylated 

regions (DMR) or differentially methylated sites (DMSs), transcriptional repressor CTCF 

binding sites, DNase I-hypersensitive regions, all micro RNA genes and all promoters.  

 In the next several chapters, I will cover the development of targeted methylation 

analysis method using bisulfite padlock probe (BSPP) to characterize DNA methylation 

status at informative loci of human genome. Chapter 3 focuses on the extensive 

validation of the performance of BSPP for locus-specific DNA methylation analysis. In 

chapter 4, I apply the DMR330k probe set on 96 samples from 22 nuclear pedigrees to 

investigate the regulation of variability of DNA methylation by genetic polymorphisms.  
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Figure 1.1 A biochemically pathway for modification of cytosine. 5-methylcytosine 
(5mC) is methylated by DNA methyltransferase (DNMT) enzymes, and can be oxidized 
sequentially to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) by ten-eleven translocation (TET) family enzymes. (Adapted 
from Kohli RM and Zhang Y, Nature 2013, [56]) 
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Figure 1.2 Bisulfite conversion procedures. Treatment DNA with sodium bisulfite 
converted unmethylated cytosine into uracil by the sequential reactions, sulphonation, 
deamination and desulphonation. 5mC or 5hmC resist to bisulfite treatment and remain 
intact. 
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Table 1.1 Overview of 5-methylcytosine (5mC) quantification methods. (Adapted from 
Plongthongkum N, Diep DH, and Zhang K, 2014, [57]) 
 

DNA 
modification 

Measuremen
t 

Non-targeted 
enrichment 

Targeted 
enrichment 

Whole genome Arrays 

5mC Absolute 
(single base) 

RRBS, 
mRRBS, LCM-
RRBS or 
scRRBS 

Microdroplet 
bisulfite PCR, 
Bisulfite Patch 
PCR, mTACL, 
BSPP, LHC-BS 
(pre- and post-
conversion) or 
RSMA 

WGBS, T-
WGBS or 
PBAT 

Infinium 
BeadChip 

Relative 
(peak) 

MRE-seq, 
MeDIP-seq, 
MBD-seq or 
MethylCap-seq 

  CHARM or 
MeKL-
ChIP 
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CHAPTER 2 LIBRARY-FREE METHYLATION SEQUENCING WITH 

BISULFITE PADLOCK PROBES 

2.1 Abstract 

 Targeted quantification of DNA methylation allows for interrogation of the most 

informative loci across many samples quickly and cost-effectively. Here we report 

improved bisulfite padlock probes (BSPPs) with a design algorithm to generate efficient 

padlock probes, a library-free protocol that dramatically reduces sample-preparation cost 

and time and is compatible with automation, and an efficient bioinformatics pipeline to 

accurately obtain both methylation levels and genotypes from sequencing of bisulfite-

converted DNA. 

2.2 Introduction 

 We have previously developed bisulfite padlock probes for the specific and 

parallel digital quantification of DNA methylation [1]. Recently, we enhanced BSPPs for 

improved flexibility and multiplexing capability. These improvements have contributed 

to recent findings in mouse and human pluripotent stem cells [2-5]. 

 First, target selection and probe design is crucial for BSPPs. To aid in the design 

of efficient padlock probes for bisulfite analysis, we developed a program called 

ppDesigner. It accepts as input the genome of any organism, a user's list of arbitrary 

targets and user-desired probe constraints matching requirements of the experimental 

protocol. It in silico 'bisulfite-converts' the genome (that is, it changes all cytosines to 

thymines) and outputs padlock probes to cover the chosen targets while avoiding CpGs 

on the capturing arms that could be methylated and not converted to be recognized as 
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thymine. ppDesigner uses a back-propagation neural network to predict probe efficiency 

(Figure 2.1). We had previously trained this network using data from probes for exomic 

targets [6] based on seven properties. Using bisulfite capture data from the first BSPPs 

[1], we refined the network with two additional factors. ppDesigner can explain ~50% of 

the variance in capturing efficiency for genomic DNA and ~20% of the variance in 

capturing efficiency for bisulfite-converted DNA; additional variation could be due to 

factors such as variability in oligonucleotide synthesis and sample DNA quality. 

ppDesigner is extremely flexible and has been used to design a variety of genomic and 

bisulfite probes for Homo sapiens [2, 3], Mus musculus [4] and Drosophila melanogaster 

[7].  

 Key requirements for methylation analysis of large sample sizes include low cost, 

simple workflow and automation compatibility. As the cost of DNA sequencing has 

rapidly decreased, sample processing has become a bottleneck in terms of cost and 

throughput. A complicated workflow increases variability between samples and reduces 

power in large-scale studies. To address these issues, we extended a 'library-free' protocol 

[8] to multiplexed BSPP capture (Figure 2.2). This method eliminates five steps from 

Illumina's library-construction protocol such that multiplexed libraries can be generated 

from DNA in only four steps (Table 2.1). Using multiplexed primers with 6–base pair 

(bp) barcodes, we have routinely generated libraries for 96 samples in 96-well plates and 

sequenced all at once in a single Illumina HiSeq flowcell. Additionally we designed 

barcodes to process 384 samples per batch. As sample-specific barcodes were added, 

barcoded libraries can be pooled for size selection, which is the most time consuming, 

contamination-prone and error-prone step if performed individually. The protocol is 



	
  
	
  

 
 

21 

compatible with the use of multichannel pipettes or liquid-handling devices. It 

dramatically reduced experimental cost and time, and improved reproducibility and read 

mapping rates (Table 2.1 and 2.1). For large sample sizes, the library preparation cost 

(including probes) with our protocol was comparable to that of the restricted-

representation bisulfite sequencing and whole-genome bisulfite sequencing protocols, 

and the sequencing cost was much lower than that of whole-genome bisulfite sequencing 

owing to targeting of CpG sites of interest. Restricted-representation bisulfite sequencing 

is more cost-effective than BSPPs, but the former lacks BSPPs' flexibility in selecting 

specific sites or regions. 

 Another bottleneck in sequencing of bisulfite-converted DNA is a lack of 

computational tools to efficiently analyze sequencing data generated from hundreds of 

samples. To overcome this issue, we developed an analysis pipeline for read mapping and 

methylation quantification, called bisReadMapper (Figure 2.3). In previous padlock 

probe studies, reads had been mapped only against target regions owing to the 

computational requirements of sequence alignment [1]. In contrast, we designed 

bisReadMapper to map to the full genome sequence, allowing processing of data from 

both targeted and whole-genome sequencing of bisulfite-converted DNA. 

bisReadMapper also determines the origin strand of the read based on base composition 

and maps reads as if they were fully bisulfite-converted to a fully bisulfite-converted 

genome sequence, allowing mapping of both bi- and unidirectional bisulfite libraries in 

an unbiased manner. Another feature is the capability to call single-nucleotide 

polymorphisms (SNPs) from sequences of bisulfite-converted DNA; this feature not only 

allows for analysis of allele-specific methylation [9] but also allows accurate sample 
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tracking in large-scale experiments. Finally, bisReadMapper can call methylation levels 

at both CpG and non-CpG sites. 

2.3 Materials and Methods 

2.3.1 Bisulfite padlock probe production 

2.3.1.1 Oligonucleotides from Agilent (Long oligonucleotides of 150 nucleotides (nt)) 

 Libraries of oligonucleotides (~150 nt) were synthesized by ink-jet printing on 

programmable microarrays (Agilent Technologies) and released to form a combined 

library of 330,000 oligonucleotides. The oligonucleotides were amplified by PCR in 96 

reactions (100 µl each) with 0.02 nM template oligonucleotide, 400 nM each of 

pAP1V61U primer and AP2V6 primer (Supplementary Table 2), and 50 µl of KAPA 

SYBG fast Universal 2x qPCR Master Mix (Kapabiosystems) at 95 ºC for 30 s, 15-16 

cycles of 95 ºC for 3 s; 55 ºC for 30 s; and 60 ºC for 20 s, and 60 ºC for 2 min. The 

amplified amplicons were purified by ethanol precipitation and re-purified with Qiaquick 

PCR purification columns (Qiagen). Approximately 20 µg of the purified amplicons were 

digested with 50 units of Lambda Exonuclease (5U/µl; New England Biolabs (NEB)) at 

37 ºC for 1 h in lambda exonuclease reaction buffer. The resulting single-strand 

amplicons were purified with Qiaquick PCR purification column. Approximately 5-8 µg 

of single strand amplicons were subsequently digested with 5 units USER (1U/µl, NEB) 

at 37 ºC for 1 h. The digested DNAs were annealed to 5.88 uM RE-DpnII-V6 guide oligo 

(Supplementary Table 2) and denatured at 94 ºC for 2 min decreased the temperature to 

37 ºC and incubated at 37 ºC for 3 min. The mixture was digested with 50 units DpnII 

(10U/ul, NEB) in NEBuffer DpnII at 37 ºC for 2 h. Then the mixture was further digested 
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with 5 units USER at 37 ºC for 2 h followed by enzyme inactivation at 75 ºC for 20 min. 

The USER/DpnII digested DNAs were purified with Qiaquick PCR purification column. 

The single-strand 102 nucleotide probes were purified with 6% denaturing PAGE (6% 

TB-urea 2D gel; Invitrogen). 

2.3.1.2 Oligonucleotide from LC Sciences (Short version of oligonucleotides of 100 

nucleotides (nt)) 

The oligonucleotides (100nt) were synthesized by the programmable microarray 

platform (LC Sciences) and released to form the mix of 4,000 oligoucleotides. The 

oligonuclotides were amplified by two-step PCR in 200 l reacton with 1nM template 

oligonucleotides, 400 nM each of eMIP_CA1_F primer and eMIP_CA1_R primer 

(supplementary Table 3) and 100 l of KAPA SYBG fast Universal qPCRMaster Mix at 

95 ºC for 30 s, 5 cycles of 95 ºC for 5 s; 52 ºC for 1 min; and 72 ºC for 30 s, 10-12 cycles 

of 95 ºC for 5 s; 60 ºC for 30 s; and 72 ºC for 30sec, and 72 ºC for 2 min. The amplified 

amplicons were purified with Qiaquick PCR purification columns and re-amplified by 

each of eMIP_CA1_F primer and eMIP_CA1_R primer and 50 l of KAPA SYBG fast 

Universal qPCRMaster Mix at 95 ºC for 30 s, 13-15 cycles of 95 ºC for 5 s; 60 ºC for 30 

sec; and 72 ºC for 30 s, and 72 ºC for 2 min. The amplified amplicons were purified by 

ethanol precipitation and re-purified with Qiaquick PCR purification columns as 

described above. Approximately 4 

inactivated at 80 ºC for 20 min. Then the reaction was incubated with 100 units of 

–DNAs were purified by 



	
  
	
  

 
 

24 

Qiaquick PCR purification column. The probe size approximately 70 nucleotides were 

purified in 6% denaturing PAGE (6% TB-urea 2D gel). 

2.3.2 Sample preparation and capture  

Genomic DNA was extracted using the AllPrep DNA/RNA Mini kit (Qiagen) and 

bisulfite converted with the EZ-96 DNA methylation Gold kit (Zymoresearch) in 96-well 

plate. Normalized amount of padlock probes, 200ng of bisulfite converted gDNA, and 4.2 

nM oligo suppressor were mixed in 25ul 1x Ampligase Buffer (Epicentre) in 96-well 

plate, denatured at 95 ºC for 10 min, gradually lowered the temperature at 0.02 ºC/s to 55 

ºC in a thermocycler, and hybridized at 55 ºC for 20 h. 2.5ul of SLN mix (100 uM dNTP, 

2U/ul AmpliTaq Stoffel Fragment (ABI) and 0.5 U/ul Ampligase (Epicentre) in 1x 

Ampligase buffer) was added to the reaction for gap-filling reaction. For circularization, 

the reactions were incubated at 55 ºC for 20 h, followed by enzyme inactivation at 94 ºC 

for 2 min. To digest linear DNA after circularization, 2 µl of exonuclease mix (10 U/µl 

exonuclease I and 100 U/µl exonuclease III, USB) was added to the reactions, and the 

reactions were incubated at 37 ºC for 2 h then inactivated at 94 ºC for 2 min. 

2.3.3 Capture circles amplification (Library-free BSPP protocol) 

circularized DNA was amplified and barcoded in 100 µl reactions with 400 

nM each of AmpF6.3Sol primer (Supplementary Table 2) and AmpR6.3 indexing primer 

(Supplementary Table 3), 0.4x SYBR Green I (Invitrogen), and 50 µl Phusion High-

Fidelity 2x Master Mix (NEB) at 98 ºC for 30 s, 5 cycles of 98 ºC for 10 s; 58 ºC for 20 s; 

and 72 ºC for 20 s, 9-12 cycles of 98 ºC for 10 s; and 72 ºC for 20 s, and 72 ºC for 3 min.  

2.3.3.1 Capture circles amplification (Probe from LC Sciences)  
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circularized DNA was amplified in 100 CP-

2-FA primer and CP-2-RA primer (Supplementary Table 3), and 50 l KAPA SYBG fast 

Universal qPCRMaster Mix at 98 ºC for 30 s, 5 cycles of 98 ºC for 10 s; 52 ºC for 30 s; 

and 72 ºC for 30 s, and 15 cycles of 98 ºC for 10 s; 60 ºC for 30 s; and 72 ºC for 30 s, and 

72 ºC for 3 min. The amplified amplicons with the corresponding expected size 

approximately 260 bp were purified with 6% PAGE (6% 5-well gel, Invitrogen) and 

-purified amplicons were re-

primers to enable SE sequencing for both ends of the amplicons, CP-2-FA.IndSol primer 

and CP-2-RA.Sol primer or Switch.CP-2-FA and Switch.CP-2-

KAPA SYBG fast Universal qPCRMaster Mix at 98 ºC for 30 s, 4 cycles of 98 ºC for 10 

s; 54 ºC for 30 s; and 72 ºC for 30 s, and 72 ºC for 3 min. 

2.3.3.2 Capture circles amplification (N2-adapter BSPP protocol)  

The captured DNA library was amplified as previously described (1). Briefly, 8-

10 µl of capture reaction mix was amplified by PCR in 100 µl reactions with 400 nM 

each of AmpF6.3NH2 primer and AmpR6.3NH2 primer (Supplementary Table 2), 0.4x 

SYBR Green I (Invitrogen), and 50 µl Phusion High-Fidelity 2x Master Mix (NEB) at 98 

ºC for 30 seconds, 13-20 cycles of 98 ºC for 10 seconds; 58 ºC for 20 seconds; and 72 ºC 

for 20 seconds, and 72 ºC for 3 minutes. Amplicons were purifed with 6% TBE PAGE 

gel (Invitrogen) and sequenced on Illumina Genome Analyzer IIx. 

2.3.4 Bisulfite sequencing library construction  

300 ng of each capture amplicon was digested at 37 ºC for one hour in 5 units of 

MmeI (NEB) in NEBuffer 4 and 75 µM S-Adenosylmethionine (NEB). Digested 
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products were purified with one Qiaquick PCR purification column each. Adaptor 

ligation was carried out with 20 µL of digested product, 0.5 µM adaptor mix per 1 ng 

digested product, 1x Quick Ligase buffer (NEB), and 2 µl of Quick T4 DNA ligase 

(NEB), and incubated at room temperature for 15 minutes. The adaptor mix was prepared 

ahead of time by mixing 20 µM PE_t_N2 and 20 uM PE_b_A (Supplementary Table 2) 

in equimolar ratio and then incubating at 94 ºC for 3 min; temperature was gradually 

lowered at 0.1 ºC/s to 20 ºC in a thermocycler. Adaptor ligated products were purified 

with 0.7x volume AMPure beads (Agencourt) and purified using Qiagen Qiaquick 

columns into 40 µL of elution buffer. A quarter of the eluted DNA for each sample was 

amplified and barcoded in 100 µl reactions with 200 nM PCR_F (Supplementary Table 

2) and 200 nM of barcoded PCR_R.N2.IndX primers (Supplementary Table 3), 0.2x 

SYBR Green I, and 50 µl Phusion High-Fidelity 2x Master Mix (NEB), at 98 ºC for 30 s, 

cycled 9-12 times at 98 ºC for 10 s; 64 ºC for 20 s; and 72 ºC for 30 s, and finally 72 ºC 

for 2 min. Amplicons were purifed with 6% TBE PAGE gel (Invitrogen) and sequenced 

on Illumina Genome Analyzer IIx. 

2.3.5 Bisulfite read mapping and data analysis  

Bisulfite converted data was processed as previously described. Reference 

genome is computationally converted by changing all C’s to T’s on Watson and Crick 

strands separately. FASTQ reads are encoded by 1) predicting the mapping orientation, 2) 

converting all predicted forward mapping reads by changing all C's to T's and converting 

all predicted reverse complementary mapping reads by changing all G's to A's, the 

original reads are maintained. The bisulfite reads are then mapped to the converted 

reference separately using SOAP2Align (http://soap.genomics.org.cn/soapaligner.html) 
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with the parameters r=0, v=2 (one mismatch per 40bp sequenced), Paired-End: m=0, x = 

400. Alignment files are then combined, and one alignment per read was selected. 

Original C calls were placed back into the alignment information. Alignments are then 

converted to pileup format using SamTools (http://samtools.sourceforge.net/). Raw SNPs 

and methylation frequency files were computed from pileup counts. Methylation 

frequencies and SNPs were called using a method described previously.  

2.4 Results 

 To test our assay, we generated a genome-scale probe set based on our previous 

results and new information about differential methylation [1, 10-12]. We targeted our 

new design for evaluation of methylation at genomic locations known to contain 

differentially methylated regions or differentially methylated sites (DMSs) [10-13], 

transcriptional repressor CTCF binding sites and DNase I–hypersensitive regions. We 

also targeted all microRNA genes and all promoters for human US National Center for 

Biotechnology Information reference sequence (RefSeq) genes. Using ppDesigner, we 

designed ~330,000 padlock probes that covered 140,749 non-overlapping regions with a 

total size of 34 megabases. We performed capturing experiments and end-sequencing, 

and found that these probes were slightly more specific (~96% on-target) and uniform 

than previous probes [1] (Figure 2.4). To improve uniformity, we normalized the 

experimental capturing performance of these probes using subsetting and suppressor 

oligonucleotides as described previously [1]. We could characterize roughly 500,000 

CpG sites with ~4 gigabases of sequencing reads, and additional sites became callable 

with deeper sequencing (Figure 2.5 and 2.6). 
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 We used these probes to analyze H1 embryonic stem cells (H1 ESCs), PGP1 

fibroblasts and two technical replicates of PGP1 fibroblast–derived induced pluripotent 

stem cells (PGP1-iPSCs). For each sample, we sequenced on average ~3.66 gigabases 

and measured methylation for an average of 480,904 CpG sites. To assess whether these 

data could be used to identify potential epigenetic regulation of transcription, we used the 

genomic regions enrichment of annotations tool [14] to predict the cis-regulatory 

potential of regions around captured CpG sites. In total, the padlock probes captured CpG 

sites in regions predicted to regulate 98% of RefSeq genes (Figure 2.7). 

 The data generated with BSPPs accurately represented the methylation status of 

the target regions. Methylation levels for the two technical replicates of PGP1-iPSCs 

were consistent both within a single batch and between separate batches (Pearson's 

correlation coefficient R = 0.97–0.98, (Figure 2.8a,b). Additionally, when we compared 

methylation levels between technical replicates, no CpG site was different by a Fisher 

Exact Test with Benjamini-Hochberg multiple testing correction (false discovery rate = 

0.01, n = 439,090). In comparison, large fractions of sites were differentially methylated 

owing to either the process of nuclear reprogramming (27.9% DMSs between PGP1-

iPSCs and PGP1 fibroblasts) or the difference in cell type (31.3% DMSs between PGP1 

fibroblasts and H1 ESCs) with the same criteria (false discovery rate = 0.01, n = 444,111 

and 359,290, respectively). Our BSPP results with H1 ESCs were consistent with the 

published whole-genome sequencing of bisulfite-converted DNA12(Pearson's correlation 

coefficient R = 0.95, (Figure 2.9). 

 Our assay has very low technical variability. We performed the assay on over 150 

samples in 96-well plates; the yield for each was similar (Figure 2.10). Approximately 

http://www.nature.com/nmeth/journal/v9/n3/full/nmeth.1871.html#ref12
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10% of CpG sites were targeted separately on each strand, allowing low-quality datasets 

with poor correlation between these built-in technical replicates to be identified (Figure 

2.8c-e). As our BSPP assay measures absolute methylation, no normalization is necessary 

as long as the internal replicates are consistent. Therefore, many datasets, even those 

generated in different laboratories, can be directly compared without batch effects, which 

is important for case-control studies on large samples or for meta-analyses. Additionally, 

the SNP-calling feature of bisReadMapper allowed us to characterize roughly 20,000 

SNPs for each sample with an accuracy of 96% or better. This allowed us to 

unambiguously track samples, which is crucial for projects involving large sample sizes. 

 Our library-free BSPP method is flexible for different study designs. Whereas our 

genome-scale probe set allows global profiling on thousands of samples, a focused assay 

is often necessary to follow up on tens to hundreds of candidate regions identified in 

genome-scale scanning. Such an assay needs to be customizable to different genomic 

targets, scalable to a very large sample size (1,000–100,000 samples), and inexpensive. 

To additionally test the flexibility, we designed a second set of 3,918 probes to evaluate 

the methylation state 1 kbp upstream and downstream of 120 genomic regions previously 

known and confirmed by BSPP to carry aberrant methylation in induced pluripotent stem 

cells [15]. We acquired the oligonucleotides from a second vendor (LC Sciences). Even 

with shorter capturing sequences (40 bp total for capturing arms rather than 50 bp on 

average (Figure 2.11), and a 100-fold smaller target size, an average of 56% of mappable 

bases were on-target, equivalent to an enrichment factor of ~6,500. With the data from 

three cell lines (H1 ESCs, PGP1 fibroblasts and PGP1-iPSCs) we identified regions of 

aberrant methylation in induced pluripotent stem cells (Figure 2.12) and demonstrated 
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that aberrant methylation continues further upstream and downstream than observed 

previously. This analysis demonstrated that a focused probe set can be used to validate 

specific regions of interest identified in global scanning using either our genome-wide 

probe set or other methods. 

 This method can be implemented to aid in identifying the effects of DNA 

methylation in any organism by using the computational tools at http://genome-

tech.ucsd.edu/public/Gen2_BSPP/. 

 Chapter 2, in full, is a reprint of the material as it appears in Nature Methods 2012 

Vol. 9. Dinh Diep, Nongluk Plongthongkum, Athurva Gore, Ho-Lim Fung, Robert 

Shoemaker and Kun Zhang. “Library-free methylation sequencing with bisulfite padlock 

probe.” Nature Methods 9(3), (2012): 270-272.  The dissertation author was the primary 

investigator and co-author of this paper.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://genome-tech.ucsd.edu/public/Gen2_BSPP/
http://genome-tech.ucsd.edu/public/Gen2_BSPP/
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Figure 2.1 Schematic for the probe design software (ppDesigner).  The neural network 
model utilizes the target length, target GC content, binding arm melting temperature, 
binding arm length, local single-stranded folding energy of the target, and the 
dinucleotides present at the extension site and ligation site during probe capture.  
Example probes can be found in Figure 2.11. 
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Figure 2.2 Library-free BSPP protocol. Each padlock probe has a common linker 
sequence flanked by two target-specific capturing arms (red) that anneal to bisulfite 
converted genomic DNA. The 3’ end is extended and ligated with the 5’ end to form 
circularized DNA. After removal of linear DNA, all circularized captured targets are 
PCR-amplified with barcoded primers and directly sequenced with an Illumina 
sequencing platform (GA II(x) or HiSeq). Amplicon size is 363bp, which includes 
captured target (180bp), capturing arms (55bp), and amplification primers and adapters 
(128bp). The inserts can be read through with paired-end 120-bp sequencing reads.  
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Figure 2.3 Schematic for bisulfite sequencing data analysis pipeline (bisReadMapper) 
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Figure 2.4 Comparison of probe capture efficiencies between the DMR220K, LC4K 
probe sets and the previously published CGI30K set. The first three plots were generated 
from data without subsetting or suppressor oligos to allow for a direct comparison of 
probe design. 
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Figure 2.5 Scatter plot of number of characterized CpG sites versus mappable 
sequencing data for the DMR330K probe set. Variability in sequencing quality of 
individual sequencing runs is responsible for the different number of CpG sites 
characterized with similar sequencing effort. 
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Figure 2.6 Number of CpG sites called per sample as a function of sequencing effort. 
The horizontal dash line represents 4Gbps of sequences per library that we routinely 
generate. 
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Figure 2.7 Captured CpG sites were tested for potential regulatory interactions with 
genes by GREAT (http://great.stanford.edu). (A) Most CpG sites were interacting with 1-
2 genes. (B) Distance of CpG sites to the transcriptional start sites (TSS) of the predicted 
regulating genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://great.stanford.edu/
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Figure 2.8 Accuracy of digital quantification by BSPP. (a,b) Within batch and between 
batch comparison of the methylation levels obtained at 10x depth from multiple capture 
reactions of the same sample (PGP1iPS). The Pearson’s correlation coefficient R for 
within one batch is 0.98 (N=405,508), and for different batch is 0.97 (N=117,186). (c,d,e) 
Within sample comparison of methylation levels obtained from different probes capturing 
the same CpG site on different strands at 10x depth within one capture reaction. The 
Pearson’s correlation coefficient R was 0.96 (N=44,361), 0.96 (N=55,965), and 0.97 
(N=29,884) for PGP1iPS, PGP1F, and H1 respectively. 
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Figure 2.9 Comparison between BSPP and whole genome bisulfite sequencing (WGBS). 
We compared two H1 ESC datasets, using sites with at least 10x read depth in each. The 
Pearson’s correlation coefficient R was 0.9477 (N=135,300). (Note that the sequencing 
experiments were performed on separate cultures of H1 from two different labs.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N = 135,300  r = 0.9477 
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Figure 2.10 Variation in amount of sequencing data obtained per sample in a multiplexed 
BSPP capture experiment.  48 whole blood samples were captured and sequenced in one 
batch using the library-free BSPP method. There is little variation between samples in the 
amount of generated sequencing data. 
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Figure 2.11 Example padlock probes ordered from a) Agilent’s oligonucleotide synthesis 
service and b) LC Sciences’ oligonucleotide synthesis service. 
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Figure 2.12 UCSC Genome Browser view showing an example of aberrant iPSC-specific 
methylation after reprogramming of PGP1 fibroblasts into iPS cells.  Circles represent a 
location with measurable methylation state, with black indicating unmethylated and gold 
indicating methylated.  The Agilent 330K probe set identified a small intronic region 
containing aberrant methylation in the iPS cells that are not present in either the fibroblast 
progenitors or a control hESC line.  The LC Sciences 4K probe set was designed to 
characterize the methylation state upstream and downstream of this region. This focused 
assay revealed that the abnormal methylation also extended into the exonic region of 
GRM7. 
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Table 2.1 Comparison of bisulfite sequencing methods.  The number of enzymatic 
reactions, number of purifications, cost per sample, and mapping rates for first-generation 
padlock probes, second-generation library-free padlock probes, reduced representation 
bisulfite sequencing (RRBS), and whole genome bisulfite sequencing (WGBS) are 
shown. 
 

 Published 
BSPP  

Library-free 
BSPP RRBS WGBS 

Enzymatic reactions 10 3 4 3 
Purification 6 1 3 3 
Size-selection 2 11 1 1 
Cost per sample $71.151 $37.862 $28.15 $31.10 
Mapping rate 44% 87% 27%3 N.D. 
Genome coverage 
obtained at 10x 
depth 

<0.1% 
 

0.6%-1% 
 

~1%3 76-96%4 

Sequencing (Gbps) 0.5 4.0 1.4 70.0 
Sequencing cost per 
sample5 

$24.38 $195.00 $68.25 $3412.50 

1Unlike other methods, in the library-free BSPP protocol size selection is typically 
performed on 48-96 pooled libraries. 
2 Includes the cost of ordering 400,000 synthesized probes from LC Sciences and 
reagents for preparing probes, bisulfite conversion, capture, and sequencing library 
preparation. Estimates assume that 10,000 samples will be processed. 
3Estimated from: Gu et. al., Nat Methods 2010; 7(2):133-136. 
4 Adapted from: Beck et. al., Nat Biotechnol 2010;28:1026-1028. 
5 Assumes sequencing using an Illumina HiSeq to generate 300 Gbps of sequencing data, 
with cost of $4920 for a flowcell, $6815 for sequencing reagents, and $2890 for service 
fee. ($48.75 per Gbps) 
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Table 2.2 Representative cost per sample for oligonucleotide synthesis, sequencing 
library construction, and Illumina sequencing. 
 

Expected number of samples to 
be processed 

Probe set sizes 
4,000 40,000 400,000 

10 $134.57 $872.04 $9,298.78 
100 $35.57 $129.54 $1,131.28 
1000 $25.67 $55.29 $314.53 
10000 $24.68 $47.86 $232.86 
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Table 2.3 Primer sequences used for padlock probe production, padlock capture, 
sequencing library construction, and Illumina sequencing. 
 

Primer name Primer sequences 
Primers used with Agilent Probes 
pAP1V61U 5’-G*G*G*TCATATCGGTCACTGTU-3’ 
AP2V6 5’-/5Phos/CACGGGTAGTGTGTATCCTG-3’ 
RE-DpnII-V6 5’-GTGTATCCTGATC-3’ 

AmpF6.4Sol 
5’-
AATGATACGGCGACCACCGAGATCTACACCACTCTCAGATGT
TATCGAGGTCCGAC-3’ 

AmpF6.3NH2 5’-/5AmMC6/CAGATGTTATCGAGGTCCGAC-3’ 
AmpR6.3NH2 5’-/5AmMC6/GGAACGATGAGCCTCCAAC-3’ 

PCR_F 
5’-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC
GACG CTCTTC-3’ 

PE_t_N2 5’-ACACTCTTTCCCT ACACGACGCTCTTCCGA TCTN*N-3’ 
PE_b_A 5’-/5Phos/AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3’ 
SolSeq6.3.3 (Read1) 5’-TACACCACTCTCAGATGTTATCGAGGTCCGAC -3’ 
SolSeqV6.3.2r(Read2) 5’-GCTAGGAACGATGAGCCTCCAAC-3’ 
AmpR6.3IndSeq(IndexRead
) 5’-GTTGGAGGCTCATCGTTCCTAGC-3’ 

Primers used with LC Sciences Probes 
eMIP_CA1_F 5’- TGCCTAGGACCGGATCAACT-3’ 
eMIP_CA1_R 5’- GAGCTTCGGTTCACGCAATG-3’ 
CP-2-FA 5’-GCACGATCCGACGGTAGTGT-3’ 
CP-2-RA 5’-CCGTAATCGGGAAGCTGAAG-3’ 

CA-2-FA.Indx7Sol 
5’-
CAAGCAGAAGACGGCATACGAGATGATCTGCGGTCTGCCATC
CGACGGTAGTGT-3’ 

CA-2-FA.Indx45Sol 
5’-
CAAGCAGAAGACGGCATACGAGATCGTAGTCGGTCTGCCATC
CGACGGTAGTGT-3’ 

CA-2-FA.Indx76Sol 
5’-
CAAGCAGAAGACGGCATACGAGATAATAGGCGGTCTGCCAT
CCGACGGTAGTGT-3’ 

CA-2-RA.Sol 
5’- 
AATGATACGGCGACCACCGAGATCTACACGCCTATCGGGAAG
CTGAAG-3’ 

Switch.CA-2-FA.Sol 
5’- 
AATGATACGGCGACCACCGAGATCTACACGCCTATCCGACGG
TAGTGT-3’ 

Switch.CA-2-RA.Ind7Sol 
5’- 
CAAGCAGAAGACGGCATACGAGATGATCTGCGGTCTGCCATC
GGGAAGCTGAAG-3’ 

Switch.CA-2-RA.Ind45Sol 
5’- 
CAAGCAGAAGACGGCATACGAGATCGTAGTCGGTCTGCCATC
GGGAAGCTGAAG-3’ 
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Table 2.3 Primer sequences used for padlock probe production, padlock capture, 
sequencing library construction, and Illumina sequencing, continued. 
 

Primer name Primer sequences 

Switch.CA-2-RA.Ind76Sol 
5’- 
CAAGCAGAAGACGGCATACGAGATAATAGGCGGTCTGCCAT
CGGGAAGCTGAAG-3’ 

CP-2-SeqRead1.x (Read1) 5’-TACACGCCTATCGGGAAGCTGAAG-3’ 
CP-2-IndSeq.x (IndexRead) 5’-ACACTACCGTCGGATGGCAGACCG-3’ 
CP-2-SeqRead1.y (Read1) 5’-TACACGCCTATCCGACGGTAGTGT-3’ 
CP-2-IndSeq.y (IndexRead) 5’-CTTCAGCTTCCCGATGGCAGACCG-3’ 

 
* Indicates a phosphorothioate bond 
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CHAPTER 3  QUANTITATIVE COMPARISON OF DNA METHYLATION 

BIOMARKER ASSAY  

3.1 Abstract 

 I have participated in the BLUEPRINT Biomarker Benchmark project with the 

major goal of comparing techniques for quantification of DNA methylation biomarkers at 

specific loci using the same reference samples set. The performances of the assays were 

evaluated based on accuracy, specificity, flexibility, robustness, and cost structure. I have 

performed targeted bisulfite sequencing using bisulfite padlock probe (BSPP) to capture 

1,072 assigned CpG sites in 32 samples with various characteristics. The raw data were 

reported and further analyzed by the bioinformatics team of the project for comparison 

with other quantitative assays performed by different expert groups. The assays 

performed included bisulfite pyrosequencing, Epityper, MethylLight, RainDrop bisulfite 

sequencing, and Infinium 450k bead array. The preliminary report from the comparison 

showed that bisulfite pyrosequencing and amplicon bisulfite sequencing assays had the 

highest correlation with the consensus measurements, and BSPP method had a good 

performance on average with many correlation coefficients, r, greater than 0.9 when 

compared with other assays, including the bisulfite pyrosequencing and amplicon 

bisulfite sequencing assays. In addition, BSPP method showed a higher throughput 

compared to other assays for assaying hundreds to thousands of genomic regions. This 

suggested that BSPP method has high potential for use in clinical diagnostics although 

the power, cost, and workflow remain to be evaluated. 
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3.2 Introduction 

 The potential of DNA methylation as a clinical biomarker has become 

increasingly accepted in recent years [1]. DNA methylation biomarker detection is 

promising in personalized medicine via molecular diagnostics and prognostics. To detect 

DNA methylation markers related to pathological status at specific loci, a broad range of 

assays has been developed. To be adopted to routine clinical diagnostics, an assay needs 

to be more accurate, sensitive, affordable, and robust. However, no systematic technology 

comparison has yet been performed that included more than 2-3 different assays or 

accounted for the importance of inter-laboratory robustness. Compared to gene 

expression signatures, which are already been used in routine diagnostic in the clinic, 

DNA methylation is more promising to be implemented as a part of clinical workflows. 

DNA is more stable than RNA, therefore detection DNA methylation in various types of 

samples such as blood plasma, FFPE material, or other body fluid is possible. The 

available techniques that have been widely used to determine DNA methylation at 

genome scale such as whole-genome bisulfite sequencing (WGBS), reduced 

representation bisulfite sequencing (RRBS), or array-based assays, tend to be costly, 

labor-intensive, and impractical in the clinic. The goal of the BLUEPRINT Biomarker 

Benchmark project is to systematically compare established and emerging assays for 

locus-specific DNA methylation quantification in terms of their accuracy, sensitivity and 

specificity; their inter-laboratory consistency and robustness; their flexibility and ease of 

use; and their sample throughput and cost structure. To that end, a set of 32 reference 

samples has been established and analyzed for candidate biomarker loci with various 

characteristics. Aliquots of these reference samples were provided to experts in the field 
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of DNA methylation biomarker development from around the world, who then measured 

locus-specific DNA methylation levels in these samples using their favorite assay(s). All 

data were cross-compared and analyzed against a standard reference by the project 

bioinformatics team, in order to derive assay-specific performance profiles. Partial of 

detailed results have been reported back to all participating labs, the remaining data 

analysis of some aspects are in progress, and the anonymized results will be presented in 

a joint publication. 

 In summary, this technology comparison will provide researchers, clinicians and 

regulatory agencies with quantitative data on the comparative performance of various 

DNA methylation assays and with confidence in developing and validating DNA 

methylation biomarkers for use in clinical diagnostics. 

  
3.3 Materials and Methods 

3.3.1 Padlock probes design 

 We modified our previous padlock probes design to contain a synthetic unique 

molecular identifier (UMI) tag consisting of ten random bases (Figure 4.1). We used 

ppDesigner to obtain bisulfite probes on both Watson and Crick strands for a target 

region up to 500 bp upstream and downstream of each CpG site. The algorithm applied 

by ppDesigner was used to generate padlock probes [2, 3]. The capture sequences were 

restricted to 25 to 30 bp, and not more than 54 bp in total length per probe. We selected 

one probe per strand that covers the target CpG sites with a fill-in size between 200-280 

bp. We designed a total of 2,029 padlock probes with capture sequences containing 

between 0-6 CpG sites and an average of ~ 0.79 CpG per capture sequence. During probe 
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assembly, we enumerated both methylated and unmethylated versions of the CpG sites 

within capture sequences, ending up with multiple probes per target. We obtained 4,400 

uniquely assembled oligonucleotides that we then made 2-3 replicates of to fill 12,000 

positions on a chip from CustomArray Inc. 

3.3.2 Padlock probes library preparation 

  The oligonucleotides were prepared as described in 2.3.1.1 with some minor 

modifications. We have purchased synthetic oligonucleotides from a different vendor 

(CustomArray, Inc).  

3.3.3 Sample preparation and BSPP capture 

 I performed bisulfite conversion and BSPP capture as described in 2.3.2 with 

minor modifications. I carried out bisulfite conversion on 500ng each of DNA sample 

using EZ-96 DNA Methylation Lightning MagPrep (Zymoresearch) following the 

protocol from manufacturer. We then measured bisulfite converted DNA with Qubit 

ssDNA assay, and also calculated recovery rate. Approximately 150ng of bisulfite treated 

DNA was mixed with BSPP in 1X AmpLigase buffer (Epicentre) in total volume 20µl . I 

overlaid the mixture reaction with 40µl mineral oil to prevent evaporation during padlock 

probe capture. The reaction was incubated on the thermocycler with the following 

thermocyling program; 95 C for 30s, cool down to 54 C at 0.02 C/s, hold at 55 C for 

20hr. We then added 2µl of KLN solution mix to the capture reaction (KLN: 20% v/v 

Hemo KlenTaq (NEB), 0.5U/µl AmpLigase (Epicentre); 100uM dNTP, 1X AmpLigase 

buffer) and continued to incubate at 55 C for 20hr to fill the gap between the capturing 

arms and to ligate resulting in circularized DNA. I denatured the DNA by heating at 94 C 

for 2 min. I digested bisulfite converted DNA and free BSPP in the mixture by adding 
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1µl  each of Exonuclease I (Epicentre) and Exonuclease III (Epicentre) and incubated at 

37 C for 2hr. We inactivated exonuclease enzymes by incubation at 94 C for 5min and 

stored captured DNA at 4 C or performed amplification immediately.  

3.3.4 Amplification and sequencing library construction 

 I firstly amplified captured DNA in a small volume of 25µl to monitor the number 

of cycle to amplify and to verify if the capture work. 2.5µl of circularized DNA was 

added to 1X KAPA SYBR Fast qPCR Master Mix with 200nM each of AmpF6.4.Sol and 

AmpR6.3.Index primers in total volume 25µl and incubated the reaction at 98 C for 30s, 

8 cycles of 98 C for 10s, 58 C for 20, 72 C for 20s, 15 cycles of 98 C for 10s, 72 C for 

20, and 72 C for 3min. I verified 3µl of PCR product in 6% TBE gel. Once I got the 

optimal cycle number and obtained the right expected amplicon size between (375bp-

480bp), I continued to perform PCR in a larger volume of 100 µl. I amplified the rest of 

captured DNA by adding 10µl of circularized DNA in total 50µl reaction with 200nM 

each of AmpF6.4.Sol and AmpR6.3.Index primer, 1X KAPA SYBR Fast qPCR Master 

Mix in duplicates, and incubated on thermocycler as the thermocycling program above. I 

pooled 100µl of PCR product, purified with 0.8 volume of AMPure bead, eluted with 

60µl EB buffer, and verify 3µl in 6% TBE gel. I determined concentration of each library 

by PAGE quantification. I combined each library in the same pool with equimolar ratio 

and performed PAGE-size selection by cutting the smear between 475bp -500bp. I 

resuspended sequencing libraries with approximately 20µl nuclease-free water and 

performed qPCR to quantified concentration of the pooled libraries. I ran our libraries in 

Illumina MiSeq run (PE, 250bp + 6bp + 250bp) with SolSeq6.3.3 (Read1), 

SolSeqV6.3.2r (Read2), and AmpR6.3IndSeq (IndexRead) primers. 
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3.3.5 Bioinformatics analysis 

 We first extracted the UMI from the first 10 bases of read 1 to label both reads in 

the PE reads generated from sequencing. Then read 1 and read 2 were analyzed 

separately and in parallel. First, we trimmed the ends of the reads to remove adaptor 

sequences using fastq-mcf [4]. Second, the trimmed reads were analyzed using the 

BisReadMapper pipeline to align the reads to the genome with BWA [5]. Next, an in-

house script was used to apply clonal removal using the UMI tags. Samtools version 1.18 

was used to generate bam and pileup files. We used a second in-house script to extract 

methylation values at CpG sites from the pileup and generating the methylation 

frequency files. Finally, we merge the methylation frequency files for read 1 and read 2 

together. However, for each CpG site on each strand, we kept only the data from the read 

with the higher coverage or read 1 if the coverages are equal. The data were reported to 

the BLUEPRINT project team for analysis to compare the performance of the assays. 

3.4 Results 

 To verify the performance of BSPP method for measuring DNA methylation 

biomarker, we have designed the new set of bisulfite padlock probe (BSPP) containing 

4,400 unique probes to cover CpG sites on both strands of gDNA in 16 mandatory loci, 

32 recommended loci and 1,024 optional loci. Those targeted loci were on promotor CpG 

islands, DNase hypersensitive sites, gene regulatory elements, exonic regions, intronic 

region, intergenic regions, and repeats. I have performed library-free BSPP capture on 32 

DNA samples (6 of human colon tumor, 6 of human normal colon tissue, 4 of human 

leukemia cell line, 6 of artificially methylated human DNA, 6 of pooled human cancer 

and normal blood cell, and 4 of human colon cancer cell line xenograph.) All 32 samples 
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were included to assess for accuracy, sensitivity, specificity and robustness of the assay. I 

have performed the first experiment on control DNA and used the sequencing results to 

inform me of the efficiencies of each probe. There were 566 probes that had zero capture 

product and others with very low capture products. I have re-synthesized the 566 probes 

with zero capture product and 823 probes with 1-91 capture product and pooled the two 

subsets to the first probe pool by varying ratio of the probes in the pool to normalize the 

capture efficiency of the high efficiency and low efficiency probes.  

 I then have applied the normalized probe set on the 32 reference samples. I was 

able to capture 14 mandatory CpGs, 28 recommended CpGs, and 928 optional CpGs in 

average across all 32 samples, which accounts for 89% of total targeted CpGs (Table 

3.1). This suggested the robustness of our assay to be able to capture almost of the 

assigned CpG targets. The quality of the data was determined by calculating the 

correlation of DNA methylation values between Watson and Crick strand. The majority 

of the samples showed highly correlation with Pearson’s correlation coefficient R more 

than 0.9 (Table 3.1). In addition, the four samples of formalin fixed paraffin embedded 

(FFPE) tissue samples also showed a high correlation as well, which suggested that our 

assay is good enough to be applied for the difficult sample such as FFPE tissue samples. 

We noticed that the six samples contain in vitro methylated DNA spiked into 

unmethylated whole genome amplified (WGA) DNA (sample BP17-22, Table 3.1) had 

very low correlation with Pearson’ correlation R less than 0.4. This was possible that 

probes predominantly captured an unmethylated WGA DNA that existed in a large 

fraction and caused poor correlation as all methylation values were zero or extremely 

low.   



	
   56 

 The assay comparison was performed by the bioinformatics team of the 

BLUEPRINT Biomarker Benchmark project and the preliminary results of all assays in 

terms of accuracy and consistency, between assays and between the labs performing the 

same assay, were shared to all participants. Bisulfite pyrosequencing method and 

amplicon bisulfite sequencing showed the best performance based on the similarity of 

DNA methylation level to the consensus measurement. However, there were variations 

between different groups, and the number of measured CpG sites was also varied for low 

(~50% of assigned targets) to high (>90% of assigned targets). It’s possible that the high 

correlation observed in bisulfite pyrosequencing and amplicon bisulfite sequencing 

assays was the consequence of overabundance of these types of assays in the study. BSPP 

method was among the good assays and showed a high correlation to bisulfite 

pyrosequencing and amplicon bisulfite sequencing assays with Pearson’s correlation 

coefficient greater than 0.9 (Figure 3.2). The noticeable performance of BSPP assay is the 

throughput as it can assess as high as 89% of the targeted CpGs in all samples (Table 

3.1). 

3.5 Conclusions 

 In conclusion, we have applied BSPP capture on a set of 32 DNA samples 

prepared from fresh frozen tissue and FFPE tissue of human normal tissue and tumor 

tissue. In addition, small amount of human cancer DNA were spiked in human normal 

blood cell DNA to test for the power of the assay for detecting DNA methylation 

signature of rare molecules in the DNA pool. The targeted CpG sites on different 

genomic locations with different characteristics were assigned. I have optimized the 

capture assay using two rounds of captures and sequencing to adjust the probe ratio for 
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those probes with zero capture products and low efficiency. The performance profiles of 

all assays were compared based on the accuracy of the measurement to the consensus 

methylation values, and the measurement consistency between the assays or between the 

labs. In average, bisulfite pyrosequencing assay showed the best performance based on 

agreement with the consensus, although this may be due to the over-representation of 

these types of assays in the study. BSPP method was classified in a good assay group 

based on criteria above and showed a high correlation with other assays that agreed well 

with consensus. Meaning that a high level of accuracy can be achieved with BSPP and in 

a very high throughput manner. This study showed that targeted BSPP capture has a high 

potential as the assay to be used in the clinic for methylation marker detection based on 

accuracy and throughput. 

 Chapter 3, in full, is the study that was performed as a part of BLUEPRINT 

Biomarker Benchmark project. The current status of this project is in the progress of 

analyzing additional data to assess the power of each assay and to validate the workflow 

and cost structure. The consortium paper will be released after all validations are 

finished. I acknowledge Dinh H. Diep for contribution in this work in part of padlock 

probe design and data processing. I was a primary author and performed BSPP assay. 
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Figure 3.1 Schematic of padlock probe design 

 

 

	
  
	
  

 

Figure 3.2 Similarity and differences between assays. BSPP assay was assigned as  
EnrichmentBS_2. 
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Table 3.1 Watson and crick strand correlation at the same CpG site and number of 
captured CpGs. 
 
SampleID fr_N Correlation #Mandator

y(1x) 
#Recomme
nded (1x) 

#Optional 
(1x) 

Fraction 
target 

BP1  2,321  0.885  14   27   906  86% 
BP2  2,433  0.942  14   29   916  88% 
BP3  2,128  0.910  14   28   904  86% 
BP4  1,344  0.944  14   25   901  86% 
BP5  2,933  0.919  12   28   943  90% 
BP6  2,595  0.949  14   29   933  89% 
BP7  2,874  0.908  15   29   945  90% 
BP8  3,145  0.945  12   29   928  88% 
BP9  2,832  0.875  14   30   948  91% 
BP10  2,438  0.931  13   27   915  87% 
BP11  2,209  0.909  14   28   940  90% 
BP12  1,859  0.939  13   27   921  88% 
BP13  3,226  0.959  14   29   937  89% 
BP14  2,800  0.905  14   28   935  89% 
BP15  1,621  0.967  12   25   896  85% 
BP16  2,009  0.824  13   27   926  88% 
BP17  3,502  0.294  14   28   932  89% 
BP18  3,625  0.323  15   29   945  90% 
BP19  2,843  0.187  14   27   913  87% 
BP20  3,718  0.389  15   29   949  91% 
BP21  3,477  0.309  14   28   954  91% 
BP22  3,176  0.128  15   30   949  91% 
BP23  3,333  0.941  15   29   941  90% 
BP24  2,930  0.904  15   29   935  89% 
BP25  2,623  0.959  13   28   935  89% 
BP26  2,475  0.961  15   29   939  90% 
BP27  2,592  0.966  14   29   925  88% 
BP28  2,133  0.953  13   26   918  87% 
BP29  2,400  0.944  15   30   936  90% 
BP30  3,429  0.960  14   30   954  91% 
BP31  814  0.917  14   28   872  83% 
BP32  1,234  0.932  14   30   889  85% 
Average  0.806   14   28   928  89% 
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CHAPTER 4 CHARACTERIZATION OF GENOME-METHYLOME 

INTERACTIONS IN 22 NUCLEAR PEDIGREES 

4.1 Abstract 

Genetic polymorphisms can shape the global landscape of DNA methylation, by either 

changing substrates for DNA methyltransferases or altering the DNA binding affinity of 

cis-regulatory proteins. The interactions between CpG methylation and genetic 

polymorphisms have been previously investigated by methylation quantitative trait loci 

(mQTL) and allele-specific methylation (ASM) analysis. However, it remains unclear 

whether these approaches can effectively and comprehensively identify all genetic 

variants that contribute to the inter-individual variation of DNA methylation levels. Here 

we used three independent approaches to systematically investigate the influence of 

genetic polymorphisms on variability in DNA methylation by characterizing the 

methylation state of 96 whole blood samples in 52 parent-child trios from 22 nuclear 

pedigrees. We performed targeted bisulfite sequencing with padlock probes to quantify 

the absolute DNA methylation levels at a set of 411,800 CpG sites in the human genome. 

With mid-parent offspring (MPO) analysis, we identified 10,593 CpG sites that exhibited 

heritable methylation patterns, among which 70.1% were SNPs directly present in 

methylated CpG dinucleotides. We determined the mQTL analysis identified 49.9% of 

heritable CpG sites for which regulation occurred in a distal cis-regulatory manner, and 

that ASM analysis was only able to identify 5%. Finally, we identified hundreds of 

clusters in the human genome for which the degree of variation of CpG methylation, as 

opposed to whether or not CpG sites were methylated, was associated with genetic 

polymorphisms, supporting a recent hypothesis on the genetic influence of phenotypic	
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plasticity. These results show that cis-regulatory SNPs identified by mQTL do not 

comprise the full extent of heritable CpG methylation, and that ASM appears overall 

unreliable. Overall, the extent of genome-methylome interactions is well beyond what is 

detectible with the commonly used mQTL and ASM approaches, and is likely to include 

effects on plasticity. 
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4.2 Introduction 

 DNA methylation represents an important layer of epigenetic regulation on the 

transcriptional activity of the human genome and plays a crucial role in genomic 

imprinting, embryonic development and determination of cell type. Accumulating 

evidence suggests that DNA methylation patterns, rather than being similar within 

members of the same species, vary from one individual to another [1-3] due to both 

genetic and environmental factors [4, 5]. This variability could potentially explain why 

certain phenotypic outcomes manifest differently across individuals of the same species, 

including in terms of the susceptibility to and treatability of many human diseases [6, 7]. 

 With the recent advances in DNA methylation assays, a growing number of 

studies have identified a genetic contribution to inter-individual variation in DNA 

methylomes. One type of study relies on methylation quantitative trait locus (mQTL) 

mapping, which identifies genomic polymorphisms associated with variation of CpG 

methylation in a cis-regulatory manner [8-11]. An alternative approach involves 

characterizing allele-specific methylation, in which a change in a specific polymorphism 

leads to the direct loss or gain of DNA methylation [2, 3, 12-15]. While an increasingly 

large number of associations between SNPs and CpG sites have been reported in these 

recent efforts, it remains unclear whether mQTL and ASM analyses are truly uncovering 

the full extent of genome-methylome interactions. In this study, we performed targeted 

bisulfite sequencing on human whole blood samples from 96 individuals representing 22 

nuclear pedigrees, and took advantage of the parent-child trios using mid-parent offspring 

(MPO) analysis to fully uncover genome-methylome interactions.  We then performed 



	
   64 

mQTL and ASM analysis on the same samples, and investigated the capability of each 

method to identify the genetic contribution to inter-sample methylation variability. 

4.3 Materials and Methods 

4.3.1 Sample collection 

 Genomic DNAs from the 96 individuals of 22 pedigrees were extracted from 

whole blood previously collected as part of an on-going genetic study of schizophrenia 

under the IRB approvals by Utrecht and UCLA. Written consents were obtained from all 

donors. All personal identifiers were removed and replaced by alpha numerical codes for 

sample tracking.  The information that is available to us as researchers include age, 

gender and family relationships.  

 4.3.2 Targeted bisulfite sequencing with padlock probes 

 Bisulfite padlock probe design, production and sequencing were previously 

described[16, 17]. Briefly, genomic DNA was extracted from peripheral blood of 22 

pedigrees, and approximately 1 µg of genomic DNA was bisulfite converted with EZ-96 

Zymo DNA Methylation-Gold kit (Zymo Research). Approximately 250ng of bisulfite 

converted genomic DNAs were mixed with normalized amount of genome-wide scale 

padlock probes and oligo suppressors. The padlock probes were annealed to bisulfite 

converted genomic DNA. The gap between two ends of padlock probes was filled and 

ligated with AmpliTaq DNA polymerase, Stoffel fragment (Life Technologies) and 

Ampligase (Epicentre), respectively resulting in circularized DNA. The bisulfite 

sequencing libraries were generated by library-free BSPP protocol as described[17]. 

Briefly, two-thirds of the circularized DNA of each captured reaction were directly 
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amplified and barcoded with adapter primers compatible with Illumina sequencer. The 

bisulfite sequencing libraries were purified with AMPure XP magnetic beads 

(Agencourt), pooled in equimolar ratios, size selected at the size approximately 375bp 

with 6% TBE polyacrylamide gel (Life Technologies), and sequenced by Illumina 

HiSeq2000 and GAIIx sequencers. 

4.3.3 DNA methylation data 

 The pooled libraries were firstly sequenced with Illumina HiSeq2000 sequencer 

(100bp, paired-end reads). Additional sequencings were performed for those samples 

with number of reads less than 22 millions (53 samples) on the same sequencing libraries 

with Illumina HiSeq2000 and GAIIx sequencers. Bisulfite sequencing data were 

processed as described[13, 17]. Briefly, adapter sequences (27bp from 5’ end) were 

trimmed from bisulfite reads prior to mapping. In bisulfite sequencing reads, all cytosines 

were replaced by thymines and mapped to the in silico bisulfite converted human genome 

sequences (hg19) with all cytosines converted to thymines on both strands by 

bisReadMapper[17]. Absolute DNA methylation level at each CpG site with minimum 

10X depth coverage in each sample was calculated at level from 0-1. Summary statistics 

for sequencing read mapping for all samples sample were reported in Supplementary file 

7. The quality of the data was assessed by comparing DNA methylation levels at the 

same CpG sites captured and measured independently on the two strands, which can be 

treated as internal technical replicates.  

4.3.4 Mid-parent offspring analysis 

 Mid-parent offspring (MPO) analysis was performed by mid-parent offspring 

regression[18] to estimate the heritability of DNA methylation at each CpG site. DNA 
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methylation level of the offspring in each trio was compared against the mean DNA 

methylation level of the parents. In total, 76,408 autosomal variable CpGs (minimum 

standard deviation of 0.1) shared in at least 80% of subjects were analyzed. The slope of 

the fitted line was used to estimate the heritability (h2) of each CpG site. CpG sites with 

h2 greater than 0.2 in a minimum sample size (number of trio) of 10 were defined as 

heritable CpGs. The Benjamini-Hochberg method was used to correct for multiple testing 

errors. 

4.3.5 Methylation quantitative trait loci 

 Methylation quantitative trait loci (mQTL) analysis was performed by PLINK[19] 

to determine the association between DNA methylation level of variable CpG sites as 

described above and SNP genotypes called from methylation data (15,450 SNPs) of 96 

subjects or imputed autosomal SNP genotypes (5,257,772 SNPs) of 57 subjects generated 

by Illumina SNP array (550K) and Affymetrix SNP array. SNP genotypes with a minor 

allele frequency (MAF) of at least 0.05 and with a Hardy-Weinberg Equilibrium (HWE) 

p-value > 0.001 were included in this analysis. Mendel error rates in each nuclear family 

with the full trio were calculated by PLINK (Table 4.S6) We used least square linear 

regression, and the corresponding p-values were calculated for each CpG-SNP 

association pair within 1Mb. FDR was calculated by Benjamini-Hochberg multiple 

correction method to assess the significance of the CpG-SNP association. To deal with 

family structure, QFAM analysis was performed. 10,000 permutations were performed 

and p-value was empirically calculated as the fraction of permuted data test-statistic is 

larger than the non-permuted data test statistic. Additional analyses were performed on 

subsets of imputed SNPs including 618,580 index SNPs present on Illumina 1M SNP 
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array. The SNPs that showed strong correlation with DNA methylation were extracted 

and annotated significant QTL as cis if the SNP lay within 1 Mbs of the CpG site. 

4.3.6 SNP imputation 

 Array genotype data of 96 subjects of this study were generated on two different 

array platforms, 23 individuals on Illumina SNP array (550K) and 73 individuals on 

Affymetrix SNP array by Wellcome Trust Case Control Consortium 2 (WTCCC2). After 

removing poor quality genotyping, there were SNP data of 57 subjects in this study (11 

individuals on Illumina SNP array and 46 individual on Affymetrix SNP array). There 

were 150K of SNP overlapping between the two platforms, so imputation was performed 

on the two data sets independently. For Illumina SNP data, SNP genotype data from 

unrelated individuals were phased with Beagle[20] then imputed with Minimac[21] with 

the 1000 Genomes Project reference[22]. After post-imputation quality control, there 

were total imputed 8,064,119 SNPs (MAF of 0.01, r2 of 0.3). For Affymetrix data set, the 

SNP genotypes of 43 individuals were imputed with SNP data genotyped on Affymetrix 

SNP array, including 268 pairs, 236 trios, and 926 unrelated individuals. All Mendel 

inconsistencies were set to missing before phased with Beagle to take into account family 

structure. Then Minimac was used for imputation. There were 8,022,142 SNPs after the 

post-imputation quality control. Approximately 7,800,000 overlapping SNPs between the 

two imputed data sets were merged by including only well imputed SNPs on the two data 

sets. SNPs with MAF > 0.05 and HWE >0.001 were extracted, and there were 5,257,772 

imputed SNPs remained in this study. 

4.3.7 Allele-specific methylation 
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 Allele-specific methylation (ASM) analysis was performed as described[13]. 

Briefly, we generated the 2 X 2 contingency table where the two columns containing the 

two alleles and the two rows containing the counts of methylated and un-methylated 

cytosines at CpG site(s) on the read containing heterozygous SNP(s). The p-value at each 

CpG site was calculated by Fisher’s exact test. We identified ASM if the p-value was less 

than 0.001 and the methylation frequency between the two alleles was greater than 0.2.  

4.3.8 Genomic region annotation 

 Genomic features of CpG sites were assigned using bedtools[23] according to 

genomic annotation structure described by Bikikova et al, 2011[24]. The enrichment of 

CpG sites from different analyses was calculated as the ratio between significant CpG 

sites from each analysis and CpG sites included in the analysis.  

4.3.9 Variation-SNP and variably mathylated regions 

 We identified vSNPs and VMRs by performing association tests. Linear 

regression was performed on the variance of DNA methylation at each CpG site among 

individuals and the three genotype groups (AA, AB, BB) within 1Mb distance. The t-

score of each CpG-SNP pair was calculated, and the false discovery rate was calculated 

by using different cutoff values for the test statistic values. To deal with the high rate of 

false positive signals, we required at least five adjacent CpG sites with maximal spacing 

200 bp between CpGs showing consistent association for VMRs. We then grouped the 

overlapping or adjacent VMRs into clusters. We note that VMRs associated with 

different vSNPs could be partially overlapping, so they could be grouped into the same 

cluster.  
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4.4 Results 

 We characterized DNA methylation levels in genomic DNA from the peripheral 

blood of 96 individuals in 22 nuclear pedigrees of European ancestry, each including one 

proband with schizophrenia, two unaffected parents and one or two unaffected siblings (a 

total of 52 trios of two parents and one child). We measured CpG methylation at single 

base resolution using ~330,000 bisulfite padlock probes capturing a pre-selected subset of 

genomic regions, including promoters, enhancers, DNase I hypersensitive sites and other 

regions known to be variable among different cell types [17]. Note that, like other 

bisulfite-based methods, 5-methylcytosine and 5-hydroxymethylcytosine are 

indistinguishable with this assay.  In addition, several recent works have shown that 

variation in cell composition is a confounding factor[25-27]. In this study, we did not 

correct for cell composition due to the lack of reference data from pure cell populations, 

and treated the average methylation of all cells in whole blood as a quantitative trait. On 

average, we obtained methylation measurements for ~500,000 CpG sites per sample. A 

total of 411,800 autosomal CpG sites (and 5,133 on sex chromosomes) had valid 

methylation measurements in at least 80% of samples. We filtered out CpG sites showing 

low variability among samples (“static CpG sites”), and focused all further analysis on a 

subset of 76,408 autosomal variable CpG sites (those with standard deviation of 

methylation levels of highly variable autosomal CpG sit

showed a clustering pattern consistent with the family structure (Figure 4.S1). While 

several samples came from individuals with schizophrenia, the sample size here was too 

small to perform any significant association tests between disease state and either genetic 
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or methylation factors; thus, we focused on treating methylation itself as a quantitative 

trait and investigating its relation to individual genetic variants. 

MPO identifies CpG sites known to have heritable methylation patterns using trio 

information 

 In order to obtain an independent list of CpG sites where variability in DNA 

methylation was known to be related to genetic factors, we performed mid-parent 

offspring (MPO) analysis [18], which analyzes the correlation between the mean 

methylation level at each CpG site in each parent pair and the methylation level at the 

same CpG sites in the child (Figure 4.1a).  This family-based analysis of each trio 

allowed identification of any potential heritable methylation patterns irrespective of the 

type and frequency of genetic variants (i.e. SNPs, indels, structural genomic variation) or 

the method of regulation.  We identified CpG sites as heritable by requiring a heritability 

(h2) value greater than 0.2 in a minimum of available data in ten trios with a FDR cutoff 

of 0.05 (with Benjamini-Hochberg correction). 

 We identified a total of 10,593 CpG sites that possessed variable methylation 

directly correlated with genetic pedigree (Supplementary file 1), accounting for ~13.9% 

of all variable CpG sites. This result suggests, based on the samples in this study, that 

genetic factors account for over ten percent of inter-sample DNA methylation variability 

in human blood. Further analysis revealed that 70% (7,424) of these CpG sites in fact 

showed variable methylation due to their containing a family-specific SNP at exactly the 

same locus. This result indicates that the majority of heritable CpG methylation patterns 

are due to genetic polymorphisms directly altering the substrates of DNA 

methyltransferases (“SNP-CpGs”), whereas other cis- or trans- regulatory effects account 
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for only a small fraction (3,169, ~30%) of heritable CpG methylation (“non-SNP CpGs”) 

(Figure 4.2a).  Non-SNP CpG sites that localized close by appeared to share similar 

methylation patterns within individuals of the same family, suggesting that one genetic 

variant or haplotype could be affecting multiple CpG sites (Supplementary file 2, Figure 

4.1b-c).  Heritable CpG sites were not enriched for any particular genomic region, as they 

showed a similar distribution across the genome as all variable CpG sites (Table 4.S1). 

However, moderate enrichment in gene body and intergenic regions was observed over 

all characterized CpGs. (Table 4.S1) 

mQTL finds associations between SNPs and CpG sites in a population without trio 

information 

 While it is possible to identify heritability in DNA methylation through MPO 

analysis, for a majority of cases, parent-child trio data is unavailable.  In order to 

determine what fraction of genome-methylome interactions could be identified at a 

population level when pedigree information was not present, we treated each CpG site as 

a methylation quantitative trait locus (mQTL), and analyzed the effects on methylation 

levels of common SNPs or other genetic variants in linkage disequilibrium (LD) with the 

index SNPs. We sought to perform an analysis using SNP genotypes determined by 

multiple platforms in order to identify the optimal strategy for identifying genomic 

contributions to methylation. In some cases, performing additional experiments to obtain 

sample genotypes is cost-prohibitive; we therefore first utilized the bisulfite sequencing 

data itself to call genomic SNPs using a previously described method[17].   We obtained 

genotypes at 15,450 SNP sites after requiring genotypes to be called at putative SNP sites 

in at least 75% of subjects. Because these SNPs were called only in the captured regions, 
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SNP density was low compared to the whole genome.  In order to also perform a more 

comprehensive mQTL mapping using additional SNPs, we derived SNPs of 57 subjects, 

a subset of the 96 samples passing quality control of SNP genotyping, using both 

Affymetrix and Illumina SNP arrays. To avoid platform-specific technical differences, 

we performed imputation using SNP data from the 1,000 Genomes Project[22], and 

obtained genotypes for ~5 million SNPs per sample. 

 We performed mQTL regression analysis using PLINK with QFAM familial 

dependence correction [19] between the DNA methylation level of each variable CpG 

site and the genotypes of SNPs located up to 1 Mb upstream and downstream.  Using 

SNP calls from the bisulfite sequencing data, we identified 7,593 CpG-SNP cis-

associations at <5% FDR (Supplementary file 3), consisting of 4,253 CpG sites 

associated with 3,842 SNPs. With the ~5 million genome-wide SNPs, we identified a 

total of 644,773 CpG-SNP cis-associations at <5% FDR (Supplementary file 4), 

consisting of 9,783 CpGs associated with 412,382 SNPs. As in the MPO analysis, a 

majority of CpG-SNP interactions were due to genetic mutations directly at the CpG site 

(66.7% and 70.5%, respectively, Figure 4.2b, 4.2c). 

 Generally, the majority of cis-regulatory SNPs were located very close to their 

associated CpG sites in both SNP data sets. For the SNPs called from bisulfite 

sequencing reads, 47.6% of the CpG-SNP associations were within 2kb (Table 4.S2, 

Figure 4.S2a), and only 15.2% of associations were further away than 100kb (Table 4.S2, 

Figure 4.S2b, 4.S2e).  For the SNPs called using genome-wide arrays that more 

uniformly capture the LD blocks in the human genome, over 64.9% of CpG-SNP 

associations were within 100kb (Table 4.S3, Figure 4.S2f), with the strongest 
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associations mostly within 2kb (Table 4.S3, Figure 4.S2c). The identified additional 

enrichment of short-range CpG-SNP associations in the bisulfite sequencing SNP data 

appeared to be partially due to sampling bias, because SNPs were called only in captured 

regions and thus tended to locate very close to CpG sites (Figure 4.S2a, 4.S2e); it appears 

that to fully characterize long-range CpG-SNP interactions, SNP genotyping is required. 

However, bisREAD SNPs can be called directly from methylation sequencing data, 

whereas SNP genotyping experiments involve extra experimental cost. Additionally, 

even though the number of bisREAD SNPs used in our analysis was ~340 fold less than 

the genome-wide SNPs, it was still possible to identify half of the long-distance non-SNP 

CpG interactions. Therefore, in cases where SNP genotyping experiments are difficult to 

perform due to either limited biological material or budgetary constraints, SNPs called 

from bisulfite sequencing data can still be used to capture a reasonable fraction of cis-

regulatory interactions, with the caveat that long distance interactions will be under-

represented.   

 Finally, in order to ensure that CpG-SNP interactions were not being missed due 

to excessive penalties from multiple testing correction in the 5 million SNP case, we 

additionally performed mQTL analysis using a subset containing 618,580 SNPs in unique 

LD blocks. The number of CpG-SNP associations decreased to 67,781 (at FDR <5%), 

indicating that multiple testing penalties were not having a large impact on statistical 

testing in this case (as a similar fraction of CpG-SNP interactions out of total putative 

interactions were identified as true in each case). 
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ASM finds associations between SNPs and CpGs in single samples 

 We next used a third strategy to examine the attempt to discern the influence of 

genetic variation on DNA methylation levels by analyzing allele-specific methylation 

(ASM). Unlike the MPO and mQTL analysis methods, which utilize information from 

multiple samples together, ASM examines genome-methylome interactions in one sample 

at a time. Using this recently developed computational procedure [13], we identified an 

average of 2,266 variable CpG sites per individual that exhibited significant difference in 

allelic methylation based on genomic factors (methylation difference >0.2).  Consistent 

with previous observations [12, 13, 28], most ASM events were due to SNPs present 

directly at CpG sites, (69.7%-92.5%, average 86.4%), with non-SNP CpG sites 

representing a very small fraction of putative genome-methylome interaction (Figure 

4.S3a, 4.S3b).  Additionally, the majority of detected ASM events were present in only a 

small fraction of subjects (Table 4.S4). After combining all overlapping ASM events, we 

identified 10,927 and 14,809 ASM events at non-SNP CpGs and SNP-CpGs respectively 

(Figure 4.2d). We observed a modest enrichment of ASM on non-SNP CpGs in gene 

body and intergenic regions (Table 4.S5, Figure 4.S3c, 4.S3d).  

The efficacy of mQTL and ASM in identifying genome-methylome interaction 

 While the genomic cis-regulated CpG sites identified by MPO appear to be truly 

heritable through the use of trio information, it remained unclear to what extent mQTL 

and ASM analyses were characterizing true genome-methylome interactions.  We thus 

next compared the three analyses to determine the efficacy of mQTL and ASM analysis. 

 While, as expected, most SNP-CpG sites identified by mQTL were true positive 

sites showing heritable CpG methylation (85.3%, Figure 4.S4a), surprisingly, only 49.9% 
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of non-SNP CpGs identified by mQTL analysis were found heritable by MPO analysis 

(Figure 4.3a), indicating that only half of non-SNP CpG sites identified by mQTL 

mapping are truly heritable. mQTL also failed to identify 54.6% of true heritable non-

SNP CpGs (Figure 4.3a), indicating that for non-SNP CpGs, in addition to having a high 

false positive rate, mQTL analysis also appears to have a high false negative rate as well. 

This discrepancy could be due to a number of reasons, including lack of statistical power 

due to limited sample size, presence of long-range cis-interactions at a distance of over 1 

megabase and/or trans-interactions [29], and the effects of other common or rare alleles 

not in LD with the SNPs tested. In addition, some marginally significant sites might be 

included or excluded due to the specific choices of p-value cut-offs for each of the two 

methods. In fact, when we plotted the mQTL association signals for heritable and non-

heritable CpG sites separately, the majority of CpGs most strongly associated with SNPs 

(low p-value) were heritable CpGs (Figure 4.3b, Figure 4.S4b). Non-heritable CpGs in 

general showed weaker association signals, especially for longer-range cis-interactions 

(Figure 4.3c, Figure 4.S4c). It is possible that heritable CpG sites not identified by mQTL 

analysis could be regulated by other genetic mechanisms.  

 In contrast to the mQTL analysis, only very small fractions of CpG sites that 

seemed to exhibit ASM in at least one sample were found to be heritable (5.6% for non-

SNP CpGs, 32.6% for SNP-CpGs) (Table 4.S4). One possibility is that calls made by 

ASM contain a high number of false positive CpG-SNP interactions. However, when we 

restricted our analysis to the CpG sites that exhibited consistent ASM patterns in two or 

more individuals, the fractions of sites overlapping with heritable CpGs increased only 

moderately, and remained far from the 49.9% or 85.3% overlap observed between mQTL 
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calls and heritable CpGs. These calls could be explained by a number of possibilities, 

including non-genetic parent-of-origin effects (including but not limited to imprinting), 

random allelic drift [30], environmental factors, potentially higher false positive rates, or 

higher sensitivity than MPO in detecting allelic differences. Overall, however, ASM 

appears to have very low specificity in identifying CpG sites regulated by genetic 

variants. 

Genetic polymorphisms affect the degree of variability in DNA methylation 

 Recently, it was proposed that genetic variants might be regulating the level of 

variability in molecular phenotypes such as CpG methylation rather than just regulating 

the exact methylation state[31, 32]. Under this hypothesis, a particular allele of a SNP is 

associated with highly variable methylation patterns across multiple individuals (Figure 

4.4b) as opposed to being associated with a consistent increase or decrease in mean 

methylation level (Figure 4.4a). To determine if variation-SNPs (vSNPs) were present in 

this data set, we performed a regression analysis on the variance of DNA methylation at 

each CpG site and the genotypes of nearby SNPs (within 1Mb). A major technical 

challenge is that there are only three genotypes for each SNP, and hence the sample size 

for each regression is limited to three; this could potentially result in a very high false 

positive rate. To counteract this, we required that a candidate vSNP had a consistent 

effect on at least five adjacent CpG sites. The false positive rate was estimated to be 

~10% by applying the same procedure to randomly permuted methylation data. 

 A total of 1,058 genomically-linked variably methylated regions (VMRs) were 

identified, with many SNPs associated with the variance of multiple nearby CpG sites 

(Supplementary file 5, Figure 4.4a, 4.4b). These nearby sites were further grouped into 
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383 VMR clusters (Supplementary file 4.6) by combining multiple VMRs that were 

within 100kb.  The majority of VMR clusters (316 clusters, 82.5%) were located within 1 

Mb of a set of 438 genes. The largest VMR cluster involved 53 variable CpG sites in a 

38kb region covering GNAS, which is a well documented imprinted gene that has a 

highly complex expression pattern from both strands[33, 34]. Two other large VMR 

clusters overlapped with the HoxA gene cluster and protocadherin gamma gene cluster, 

both of which contain multiple functionally related and co-regulated genes and 

pseudogenes. 

 While the full functional consequences of such variable methylation remain 

largely unknown, we note that very recently four SNPs were found to be associated with 

rheumatoid arthritis and variance of methylation [26]. In order to test whether the 

observed VMR clusters could translate into genotype-specific variation at the gene 

expression level, we examined the top 10 VMR clusters and their respective genes in an 

array-based whole blood gene expression data set of 240 independent subjects [35]. Nine 

of the genes within the top ten VMR clusters were expressed at detectable levels (Table 

1). Even though the effect sizes were small, we observed three genes (GNAS, PEG3, and 

PCDHGA5) from different VMR clusters all showing genotype-specific differences 

contributing to variance at the gene expression level.  

4.5 Discussion 

 In the recent years, association mapping of molecular phenotypes such as gene 

expression, DNA methylation, or chromatin accessibility as quantitative traits (eQTL, 

mQTL, dsQTL) has revealed how genetic variants contribute to inter-individual 

variability and provided additional insights into the modulation of disease susceptibility 
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[1, 18, 36-39].  The recent technical advances in low-cost genome-wide DNA 

methylation assays (such as the Illumina 450k methylation array [24], RRBS [40], and 

BSPP [17] have catalyzed a new wave of epigenome-wide association studies aiming to 

characterize the contribution of both genetic and environmental factors to disease 

susceptibility [4, 41], with encouraging progress already in sight [26, 42-44]. However, 

while new analysis techniques have connected genetic variants, CpG methylation, and 

disease phenotypes, it remains unclear to what extent we should expect interaction to 

occur between genetic variation and the variability of DNA methylation, what fraction of 

interactions are able to be captured with current approaches, and what strategy we should 

use to efficiently capture these interactions. 

 In this study, we revealed that a large extent of genome-methylome interaction is 

completely missed by current analysis methods. By comparing the results from mQTL 

analysis to MPO analysis, which is guaranteed to find heritable methylation patterns, in 

22 nuclear pedigrees, we demonstrated that a large fraction of heritable traits affecting 

CpG methylation remain hard or impossible to detect with the most widely used analysis 

method. However, we hypothesize that trans-regulation might account for the majority of 

heritable CpG sites not detectible by conventional mQTL analysis. While the anti-

correlation of promoter DNA methylation and gene expression has been observed for 

many years, the exact mechanistic explanation behind DNA methylation regulating gene 

expression has yet to be firmly established. More recent observations of positive 

correlation between gene-body methylation and gene expression have added additional 

confusion to the functional role of DNA methylation [16, 45-47]. Stadler et al. recently 

demonstrated that binding of protein factors to DNA can lead to local reduction of DNA 
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methylation[48], providing the first direct evidence that DNA methylation in general is a 

passive mark for protein-DNA binding. A corollary of this observation is that a DNA 

binding protein (such as a transcription factor) for which the expression is an eQTL (i.e. 

regulated by a genetic variant) can affect DNA methylation levels in hundreds to 

thousands of its binding regions genome-wide. As such, a single functional variant might 

regulate many mQTLs, mostly in trans, mediated by its primary effect on a single 

transcription factor. Connecting these mQTLs to functional variants therefore cannot be 

accomplished by simple association tests using nearby CpGs and SNPs. Additional 

information on the transcriptional factors and their direct regulating genes would be 

required, such as that becoming increasingly available through large-scale ChIP-Seq and 

DHS mapping efforts like the ENCODE project [49]. A coherent statistical framework 

for association testing that incorporates the information of protein-DNA binding from 

genome-wide assays would also be necessary to fully explore genome-methylome 

interactions. 

 We also provided a practical assessment on the sensitivity of mQTL mapping at 

various SNP densities, showing that using over a large number of SNPs can improve the 

level of statistical significance with diminishing gains in detecting additional SNP-

associated CpG sites. On the other hand, for projects based on bisulfite sequencing, the 

SNP genotypes called from the sequencing reads alone can be used to recover a 

reasonable fraction of associated CpG sites. As bisulfite sequencing is being widely 

adopted and algorithms for SNP calling from bisulfite data are being optimized [50], 

using the smaller number of obtained SNPs could represent an economical option for 
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large-scale EWAS studies, with the understanding that a denser SNP map would still be 

necessary to recover the majority of long-range regulatory effects. 

 We additionally characterized the ability of ASM to identify heritable methylation 

patterns.  While we found many CpG sites that both exhibited allele-specific methylation 

in different individuals and showed heritable methylation patterns across all the 

pedigrees, the majority of CpG sites identified in our ASM analysis could not be 

explained by consistent effects of cis-regulatory variants across multiple individuals. We 

reason that ASM analysis is more susceptible to many non-genetic factors, including 

parent-of-origin effects, random allelic drift, and technical artifacts, and hence might not 

be appropriate as a primary approach for identifying methylation traits regulated by 

genetic variants.  Population level analysis such as mQTL or MPO (if trio information is 

available) appears to be necessary to accurately characterize genomic effects on 

methylation patterns. 

 Finally, we provide evidence supporting a recently proposed hypothesis that 

genetic variants can regulate not only the mean but also the variation of molecular 

phenotypes such as CpG methylation or gene expression. This is not unexpected, as gene 

regulatory networks are connected through both positive and negative feedback [51, 52]. 

Reduction of negative feedback has been shown to increase the variability in both 

prokaryotic and eukaryotic organisms [53, 54], lending mechanistic support to the idea 

that genetic variants affecting the strength of negative regulation could result in a 

difference in variability for the components involved in a molecular network. Feinberg 

and colleagues have proposed that epigenetic variability provides a mechanism for 

selectable phenotypic variation [32], and provided examples of variable DNA 
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methylation and its role in cancer [31] and rheumatoid arthritis [26]. Although the full 

extent of variable DNA methylation, as well as its phenotypic consequences, remain to be 

further characterized with larger cohorts of genetically unrelated individuals, the 

observation of hundreds of VMRs in the 22 nuclear pedigrees analyzed here suggests that 

the inherent variability of CpG methylation, and possibly other molecular phenotypes, is 

likely to play a broad role in human biology and disease. 

 Chapter 4, in full, is a reprint of the material as it appears in PLoS One 2014. 

Vol9. Nongluk Plongthongkum, Kristel R. van Eijk, Simone de Jong, Tina Wang, Jae 

Hoon Sul, Marco P.M. Boks, Rene S. Kahn, Ho-Lim Fung, Roel A. Ophoff, and Kun 

Zhang. Characterization of Genome-Methylome Interactions in 22 Nuclear Pedigrees. 

PLoS One 9(7), (2014):e99313. The dissertation author was the primary investigator and 

author of this paper. 
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Figure 4.1 Identification of heritable CpG methylation by mid-parent offspring (MPO) 
analysis. (a) An example of mid-parent offspring regression of DNA methylation at the 
CpG site chr1:146549909. (b,c) DNA methylation level of heritable CpG at 
chr1:146549909 and the adjacent heritable CpGs on the same cluster exhibiting 
consistent pattern of DNA methylation between parents and their offspring on the two 
trios from the same family 
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Figure 4.2 Fraction of non-SNP CpGs and SNP-CpG identified in MPO, mQTL, and 
ASM analysis. (a) Pie chart showing the number of heritable non-SNP CpGs and 
heritable SNP-CpGs. (b, c) Pie charts showing the fraction of mQTL associated non-SNP 
CpG and SNP-CpGs from mQTL analysis using bisREAD SNP data and 5M imputed 
SNP array data, respectively. (d) Pie chart showing the fraction of non-SNP CpG ASM 
and SNP-CpG ASM exist in at least one subject. 
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Figure 4.3 Mapping of CpG sites identified in MPO and mQTL analyses. (a) Venn 
diagrams showing overlap between non-SNP CpG sites significant in mQTL on 
5,257,772 imputed SNPs and heritable CpGs. (b, c) Distribution of heritable CpGs and 
non-heritable CpGs and associated SNP pair distance within 500kb and their 
corresponding p-values from mQTL analysis on imputed SNPs. 
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Figure 4.4 Genotype effects on the mean and variance of DNA methylation (a) Heatmap 
and line plot showing the association between rs4950357 SNP and the mean methylation 
of heritable CpGs cluster on chromosome 1 (chr1: 146548425-146555855). (b) The 
association of rs2833839 vSNP and the variance of methylation on VMR 
(chr21:34405506-34405661). 
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Figure 4.S1 Hierarchical clustering of high variable CpGs. 
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Figure 4.S2 Manhattan and density plots showing the distribution of associated CpG and 
SNP pairs across all chromosomes between CpG and SNP pair of 0-2kb (left) and 100kb-
1Mb (right) of mQTL analysis using bisREAD SNP data (a, b) and 5M imputed SNP data 
(c, d), respectively. Distribution of CpG and SNP associations and their corresponding 
absolute distances of mQTL analysis using bisREAD SNP data (e) and 5M imputed SNP 
data (f), respectively. 
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Figure 4.S3 Examples of ASM events and regional annotation of CpG associated with 
ASM. (a, b) Example of allele specific DNA methylation of non-SNP CpG and SNP-
CpG, respectively. (b) The presence of T SNP on CpG sites disrupted DNA methylation 
of that allele. (c, d) Pie charts showing the distribution of non-SNP CpG ASM and SNP-
CpG ASM, respectively, in different regions. 
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Figure 4.S4 (a) Venn diagrams showing overlap between SNP-CpG significant in mQTL 
and MPO analyses (based on the 5M imputed SNPs). (b, c) Distribution of heritable CpG 
and non- heritable CpGs, respectively, and SNP pair in mQTL analysis within 500kb and 
their corresponding p-values. 
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Table 4.1 The top 10 VMR clusters and their associated genes. The genes in bold text 
expressed at detectible level in whole blood and were selected for association testing.  
 

Number of 
variable CpGs 

in VMR 
clusters 

VMR cluster coordinates                               Associated genes 

53 chr20:57426730-57464571 GNAS, GNAS-AS1 
49 chr8:144358566-144371985 GLI4, ZNF696 
47 chr7:27143370-27184750 HOXA2, HOXA3, HOXA5, HOXA6, 

HOXA-AS3 
44 chr5:140718989-140863492 PCDHGA1,PCDHGA2,PCDHGA3, 

PCDHGA4, 
PCDHGA5,PCDHGA6,PCDHGA7, 
PCDHGA8, 
PCDHGA11,PCDHGB1,PCDHGB2, 
PCDHGB3, 
PCDHGB4,PCDHGB7,PCDHGB8P, 
PCDHGC3, 
PCDHGC4 

41 chr20:32255315-32255936 ACTL10,NECAB3 
35 chr5:135415001-135416725 VTRNA2-1 
28 chr19:57349099-57352134 MIMT1, PEG3, ZIM2 
26 chr8:145162974-145164623 KIAA1875, MAF1 
26 chr11:7110142-7110456 RBMXL2 
24 chr1:205818899-205819600 PM20D1 
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Table 4.S1 Distribution of of heritable CpG sites based on genomic regions (percentage) 

Methylation data TSS15
00 

TSS20
0 5' UTR First 

exon 
Gene 
body 3' UTR Interge

nic 
heritable non-SNP 
CpGs 9.39 2.59 15.71 5.48 42.85 5.60 18.37 

heritable SNP-CpGs 5.91 0.92 12.64 3.47 53.77 5.72 17.58 
variable CpGs (min 
STD 0.1) 10.98 1.74 13.85 5.77 44.72 5.59 17.34 

all characterized 
CpGs 12.15 4.30 15.43 8.77 40.24 5.52 13.60 

 

 

 

Table 4.S2 Distribution of CpG and SNP associations at different distance between CpG 
and SNP pairs (bisREAD SNPs). 

Distance of CpG and SNP Number of associations % of total number of 
associations 

0-2kb 1,071 47.6 
0-10kb 1,331 59.2 
10-20kb 142 6.3 
20-30kb 102 4.5 
30-40kb 84 3.7 
40-50kb 51 2.3 
0-100kb 1,907 84.8 
0-150kb 1,986 88.3 

100kb-1Mb 341 15.2 
150kb-1Mb 262 11.7 
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Table 4.S3 Distribution of CpG and SNP associations at difference distance between 
CpG and SNP pairs (5M imputed SNPs) 

Distance of CpG and SNP Number of associations % of total number of 
associations 

0-2kb 9,325 6.4 
0-10kb 29,052 20.1 
10-20kb 15,648 10.8 
20-30kb 11,512 8.0 
30-40kb 8,669 6.0 
40-50kb 7,003 4.8 
0-100kb 93,960 64.9 
0-150kb 105,711 73.0 

100kb-1Mb 50,820 35.1 
150kb-1Mb 39,069 27.0 

 

Table 4.S4 Number of non-SNP CpG showing ASM shared by multiple individuals and 
the overlap with heritable CpGs 

# of 
subjects 

# of ASM 
CpGs 

# of ASM 
CpGs found 

heritable 

% of ASM 
CpGs found 

heritable 

# of ASM 
CpGs found 

variable 

% of ASM 
CpGs found 
heritable & 

variable 
1 6,079 97 1.60 1745 5.56 
2 2,005 65 3.24 775 8.39 
3 918 43 4.68 385 11.17 
4 458 41 8.95 208 19.71 
5 297 29 9.76 148 19.59 
6 216 23 10.65 114 20.18 
7 148 26 17.57 84 30.95 
8 104 23 22.12 58 39.66 
9 91 24 26.37 56 42.86 
10 70 22 31.43 49 44.90 
11 56 19 33.93 39 48.72 
12 39 11 28.21 27 40.74 
13 37 10 27.03 24 41.67 
14 43 17 39.53 28 60.71 
15 35 11 31.43 26 42.31 
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Table 4.S5 Genomic region annotation of CpG ASM (percentage) 

Methylation data TSS150
0 TSS200 5' UTR First 

exon 
Gene 
body 3' UTR Interge

nic 
Non-SNP CpG ASM 10.08 1.46 14.89 4.51 41.25 5.33 22.48 
SNP-CpG ASM 6.19 1.09 12.45 2.75 54.01 5.56 17.95 
all captured CpGs 12.2 4.6 15.8 9.0 38.8 5.3 14.3 
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Table 4.S6 Mendel error rates of SNP genotypes 

bisREAD SNPs Mendel error rate 

Family IDs CHLD N Mendel error 
rate 

FAM1 2 890 0.058 
FAM2 2 1944 0.126 
FAM3 3 390 0.025 
FAM4 2 616 0.040 
FAM5 3 429 0.028 
FAM6 2 345 0.022 
FAM7 3 701 0.045 
FAM8 3 848 0.055 
FAM9 2 437 0.028 
FAM10 2 204 0.013 
FAM11 2 342 0.022 
FAM12 3 396 0.026 
FAM13 3 562 0.036 
FAM14 3 1000 0.065 
FAM15 2 431 0.028 
FAM16 2 645 0.042 
FAM17 2 300 0.019 
FAM18 2 835 0.054 
FAM19 3 466 0.030 
FAM20 2 281 0.018 
FAM21 2 233 0.015 
FAM22 2 785 0.051 

 
5M Imputed SNPs Mendel error rate 

Family IDs CHLD N Mendel error 
rate 

FAM6 1 293 5.573E-05 
FAM18 1 161 3.062E-05 
FAM11 1 115 2.187E-05 
FAM12 2 800 1.522E-04 
FAM5 1 3013 5.731E-04 
FAM1 2 7631 1.451E-03 

 
CHLD: number of offspring in each family, N: number of Mendel error in each family 
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CHAPTER 5 CONCLUSIONS 

  The goals of this dissertation are (1) to develop a high accuracy and throughput 

method for targeted quantification of DNA methylation, (2) to validate the performance 

of the improved bisulfite padlock probe (BSPP) method to be implement in clinical 

diagnostics for quantification of locus-specific DNA methylation biomarker, and (3) to 

investigate the influence of genetic polymorphisms on variability of DNA methylation. In 

chapter 2 of this dissertation, I described the improvement of BSPP method. Zhang’s lab 

firstly have developed a program called ppDesigner to design a high efficient bisulfite 

padlock probes. To validate the assay, we used ppDesigner to design a genome-scale 

probe set containing ~330,000 probes to capture selective CpG sites on human genome. I 

used this probe set that we have normalized the probe efficiency by subsetting and using 

suppressor oligonucleotides to analyze H1 embryonic stem cells (H1 ESCs) and PGP1 

fibroblast. With this probe set, I was able to capture ~480,904 CpG sites on average. I 

have demonstrated that the data generated by BSPPs accurately represented the 

methylation status of the selective targets. There were the consistencies of methylation 

data within the same batch and between different batches (Pearson’s correlation 

coefficient R = 0.97-0.98) and also between the technical replicates. I also showed that 

H1 ESC methylation data generated by BSPPs were consistent with the published whole-

genome bisulfite sequencing (WGBS) data (Pearson’s correlation coefficient R = 0.95). 

Another improvement of BSPP is the implement of library-free approach by skipping the 

regular steps of shotgun library preparation. I used multiplexed primers with 6-base pair 

(bp) barcodes to directly amplify the captured DNA. This feature allowed me to routinely 

generate 96 individual libraries and sequenced all in the same sequencing run. Zhang’s 
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lab has also built the bioinformatics pipeline for read mapping and methylation 

quantification, called bisReadMapper.  The pipeline is compatible to data generated by 

targeted and whole-genome bisulfite sequencing. I was also able to call SNPs 

simultaneously with methylation mapping, which allowed me to be able to track the 

samples, which is useful for projects handling large sample sizes. 

 In chapter 3, I extensively validated the performance of our BSPP developed in 

chapter 2 for implementing in clinical diagnostic for routinely methylation biomarker 

analysis. I have performed BSPP capture in parallel with other research groups that 

performed their assays for comparison on the same sample set. The study was designed to 

asses the values of the assays, including accuracy, sensitivity, specificity, throughput, 

easy workflow, and cost. From the 1st report of the technology comparison, I have shown 

that BSPP is among the assays that had a good performance in average based on accuracy 

and consistency to other assays.  BSPP has also showed a high throughput, which is a 

strength feature of this assay.  

 In chapter 4, my aim is to investigate the regulation of DNA methylation level by 

genetic variances. I applied the DMR330k probe set as described in chapter 2 to 

characterize DNA methylation status of 96 samples from 22 nuclear pedigrees consisting 

of 52 trios. In this study, I took the advantage of the samples with family structure to 

assess the full extend of heritable CpG sites by mid-parent offspring (MPO) analysis. We 

have identified 10,593 heritable CpG sites, and we found that 70% of the heritable CpGs 

were the SNPs that present on CpG sites. I have used the two independent approaches 

including methylation quantitative trait loci (mQTL) and allele-specific DNA 

methylation (ASM) analysis to identify the cis-regulatory SNPs associated with heritable 
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CpGs. I have demonstrated that cis-regulatory SNPs identified by mQTL analysis 

accounted for only roughly half of the heritable CpG methylation, whereas ASM analysis 

was only able to identify 5% of cis-regulatory SNPs. These results showed that the full 

extend of cis-regulatory SNPs associated with heritable CpGs was not able to identified 

by mQTL analysis, and ASM analysis is far less powerful than mQTL analysis. Finally, I 

have identified SNPs associated with the variance of multiple nearby CpG sites. This 

finding supported the recently purposed hypothesis by Feinberg’s group that genetic 

variants are not only associated with the mean but also the variance of molecular 

phenotypes such as DNA methylation or gene expression. Overall, in this chapter, I have 

shown that the extent of genome-methylome interactions is well beyond what is 

detectible with the commonly used mQTL and ASM analysis 

 In summary, I have developed targeted bisulfite sequencing technique or BSPP 

that has a high accuracy and throughput and is scalable to be applied in a wide-range of 

applications. Using BSPPs I can characterize DNA methylation status in genome-wide 

scale or in small target sizes for a board-range of applications such as methylation 

biomarker detection or detection of DNA methylation aberration at selective regions. I 

also used BSPPs to characterize the effects of genetic polymorphisms on the mean and 

variability of DNA methylation.  
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