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On Secrecy Metrics for Physical Layer Security
over Quasi-Static Fading Channels

Biao He,Member, IEEE Xiangyun ZhouMember, IEEEA. Lee Swindlehurstfellow, IEEE

Abstract—Theoretical studies on physical layer security often
adopt the secrecy outage probability as the performance met
for wireless communications over quasi-static fading chamels.
The secrecy outage probability has two limitations from a
practical point of view: a) it does not give any insight into
the eavesdropper's decodability of confidential messagesh)
it cannot characterize the amount of information leakage to
the eavesdropper when an outage occurs. Motivated by the
limitations of the secrecy outage probability, we propose hree
new secrecy metrics for secure transmissions over quasiasic
fading channels. The first metric establishes a link betweethe
concept of secrecy outage and the decodability of messagedtee
eavesdropper. The second metric provides an error-probaltity-
based secrecy metric which is typically used for the practial
implementation of secure wireless systems. The third mefri
characterizes how much or how fast the confidential informaibn
is leaked to the eavesdropper. We show that the proposed secy
metrics collectively give a more comprehensive understariag
of physical layer security over fading channels and enable
one to appropriately design secure communication systemsiti
different views on how secrecy is measured.

Index Terms—Physical layer security, secrecy outage probabil-
ity, secure transmission design, quasi-static fading charel.
. INTRODUCTION
A. Background and Motivation

eavesdropper vanishes. It guarantees that the eavesdsoppe
optimal attack is to guess the message at random, and hence
the eavesdropper’s decoding error probabilfy, asymptot-
ically goes to 1. In his seminal work [5], Wyner introduced
the wiretap channel, and addressed the tradeoff between the
information rate achieved by the intended receiver and the
level of ignorance at the eavesdropper. This result was late
extended to the broadcast channel with confidential message
[6] and the Gaussian wiretap channel [7].

More recently, physical layer security over wireless fadin
channels has been extensively studied, e.g., [8—12]. lticpar
ular, practical scenarios involving imperfect or no knasige
about the eavesdropper’s instantaneous channel statenafo
tion (CSI) has drawn an increasing amount of attention, e.g.
see [13] and references therein. The secrecy performance in
such scenarios is often characterized by either ergodiesgc
capacity [8] or secrecy outage probability [11,12]. For a
system in which the encoded messages can span sufficient
channel realizations to capture the ergodic features of the
fading channel, the ergodic secrecy capacity charactetize
capacity limit subject to the constraint of classical imh@tion-
theoretic secrecy. For transmission over quasi-statiénéad
channels where classical information-theoretic secrsayoit

N unprecedented amount of private and sensitive inforlways achievable, the (classical) secrecy outage prbbabi

mation is transmitted over wireless channels as a resiijt measures the probability of failing to achieve claskica
of the ubiquitous wireless devices adopted in modern lifsxformation-theoretic secrecy. With either the ergodicreey
Security issues associated with wireless communications ccapacity or the secrecy outage probability as the secrecy
sequently have become critical due to the unchangeable opegiric, many researchers have studied secure transmission
nature of the wireless medium. As a complement to traditiondesigns and/or secrecy enhancements, e.g., [14-18].
cryptographic techniques, physical layer security hasnbee Classical secrecy outage probability has two major lim-

proposed for ensuring secure wireless communications
exploiting the characteristics of wireless channels [2SBjan-
non [4] introduced the notion of information-theoretic sy,

ibgtions in evaluating the secrecy performance of wireless
systems.
a) Classical secrecy outage probability does not give any

which does not rely on assumptions about the computationalinsight into the eavesdropper’s ability to decode the con-

abilities of the eavesdropper. Classical informatiorstietic

secrecy requires that the amount of information leakage to the
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1n this paper, we use the term “classical information-te&iorsecrecy” to
refer to Shannon’s perfect secrecy, strong secrecy, an#t e&aecy, which
will be described later in Section II-A.

fidential messages. The eavesdropper’s decodability is an
intuitive measure of security in real-world communication
systems when classical information-theoretic secrecy is
not always achievable, and error-probability-based sgcre
metrics are often adopted to quantify secrecy performance
in the literature, e.g., [19-21] focusing on infinite-lemgt
code design, [22-24] investigating finite-length coding
schemes, [25] utilizing probabilistic ciphering, [26] &+
tigating secure network coding, and [27] studying secrecy
with compressive sensing. A general secrecy requirement
for the eavesdropper’'s decoding error probability can be
given asP, > ¢, where( < ¢ < 1 denotes the minimum
acceptable value a?.. In contrast, classical secrecy outage
probability reflects only an extremely stringent requireine
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on P, for ¢ — 1, i.e., requiringe — 1, since classical
information-theoretic secrecy guarantdés— 1.

The amount of information leakage to the eavesdrop-
per cannot be characterized. When classical information-

theoretic secrecy is not achievable, some information will2)

be leaked to the eavesdropper. Different secure trans-
mission designs that lead to the same secrecy outage
probability may actually result in very different amounts
of information leakage. Consequently, it is important to
know how much or how fast the confidential information

takes into account the level of secrecy measured by equiv-
ocation, and hence establishes a link between the concept
of secrecy outage and the decodability of messages at the
eavesdropper.

An asymptotic lower bound on the eavesdropper’s decod-
ing error probability is proposed. This proposed metric
provides adirect link to error-probability-based secrecy
metrics that are often used for the practical implementa-
tion of security in wireless systems operating over fading
channels.

is leaked to the eavesdropper to obtain a finer view of the3)
secrecy performance. However, the classical outage-based
approach is not able to evaluate the amount of information
leakage when a secrecy outage occurs.

A metric evaluating the average information leakage
rate is proposed. This proposed secrecy metric gives an
answer to the important question of how much or how
fast the confidential information is leaked to the eaves-

It is worth mentioning that, apart from the two above men-  dropper when classical information-theoretic secrecy is
tioned limitations, the classical secrecy outage prokgilzlso not achieved.
has a severe limitation in evaluating the secrecy perfoomariVe note that both the generalized secrecy outage prolyabilit
of systems with finite-length coding schemes. Since claksi@nd the asymptotic lower bound on the eavesdropper's de-
information-theoretic secrecy cannot be achieved by amly ccoding error probability give insights into the eavesdrengp
ing scheme with a finite-length codeword, the classicalesger ability to decode the confidential messages. In comparieggth
outage probability based on the classical informatiorotaic  two metrics, we highlight that the asymptotic lower bound on
secrecy cannot be adopted in the studies focusing on finitee eavesdropper’s decoding error probability providesoaem
length coding schemes. Thus, it is of significant importaneéirect bridge to the error-probability-based secrecy iotr
to examine secrecy metrics specifically for wireless systerlthough the eavesdropper’s decoding error probabilitynca
with finite-length codes, although such a study is beyond the exactly characterized, the asymptotic lower bound gves
scope of this paper. worst-case estimation of the eavesdropper’s decodahity
the other hand, the generalized secrecy outage probaisility
extended from the classical secrecy outage probabilitpcele
existing studies on secrecy outage probability can beyeasil
As previously discussed, the classical information-tB&or extended to the generalized secrecy outage probability.
secrecy is not always achievable for transmissions ovesigua To jllustrate the use of the newly proposed secrecy metrics,
static fading channels, and we cannot ensure that the eavgg-evaluate the secrecy performance of an example wireless
dropper’s decoding error probability always goes to 1. Thgstem with fixed-rate wiretap codes. We show that the pro-
classical secrecy outage probability, which is the secregysed secrecy metrics can provide a more comprehensive and
metric for quasi-static fading channels, in fact has litoias n-depth understanding of the secrecy performance ovérdad
in evaluating the secrecy performance of wireless systemghannels. Moreover, we investigate the impact of the new
This motivates us to propose new secrecy metrics for wiselesecrecy metrics on the transmission design. We find that the
transmissions focusing on quasi-static fading channetsis newly proposed secrecy metrics lead to very different opitim
paper. The classical secrecy outage probability is based @sign parameters that optimize the secrecy performance of
the concept of classical information-theoretic secrecp Qne system, compared with the optimal design minimizing
the other hand, our proposed secrecy metrics are basedf classical secrecy outage probability. We also find that
another regime of interest in physical layer security, Ngmeapplying the optimal design that minimizes the secrecygeita
the partial secrecy regime. The partial secrecy of a systegjopability can result in a large secrecy loss, if the actual
is often evaluated using the equivocation, which refleces tQystem requires a low decodability at the eavesdroppenand/
level at which the eavesdropper is confused. The study ®fiow information leakage rate.
equivocation for secrecy can be found as early as Wyner'st is worth mentioning that this work is solely motivated
pioneering work for the wiretap channel [5]. Similarly, €2r py the limitations of the classical secrecy outage proitgbil
and Korner [6] used the normalized equivocation to quantifrom a more practical point of view. Our proposed new
partial secrecy for the broadcast channel with confidentigbcrecy metrics based on the concept of partial secrecy o no
information. Importantly, the equivocation is closelyateld jmply that the secrecy metrics based on classical infoonati
to the decoding error probability [5,28,29]. Thereforealev theoretic secrecy are inappropriate from the information-
uating the secrecy performance on the basis of equivocati@@oretic perspective. We acknowledge the importance of
can reflect the decodability of confidential messages at thﬁquiring classical information-theoretic secrecy fosaarch
eavesdropper. on information-theoretic security. Meanwhile, we notite t
Specifically, we propose three new secrecy metrics: large gap between the requirement of information-theoreti
1) Extended from the classical definition of secrecy outagegcurity and the condition of practical secrecy. We hopé tha
a generalized formulation of secrecy outage probabilithe newly proposed secrecy metrics can enable contrilaition
is proposed. The generalized secrecy outage probabilitat bridge the gap between theory and practice in physical

B. Our Approach and Contribution



layer security. term “classical information-theoretic secrecy” to refersuch
The remainder of the paper is organized as follows.regime in this paper. For simplicity, we also do not exgiici

Section 1l provides background information on classicalenote the assumption af — oo for the discussions in the

information-theoretic secrecy and partial secrecy. 8actil rest of this paper.

introduces the three new secrecy metrics for wirelessinegsms  The requirement of no information leakage to Eve in fact

sions over fading channels. Section IV illustrates the dske® guarantees the highest possible decoding error probahilit

newly proposed metrics by evaluating the secrecy perfocmarEve. As explained in [2, Remark 3.1], consider that mes-

of an example wireless system with fixed-rate wiretap codesges are uniformly taken from a sizé€ set[1,2, -, K],

Section V demonstrates the impact of the new secrecy metrigsd Eve minimizes her decoding error probabili; by

on system design, and finally Section VI concludes the papperforming maximum-likelihood decoding. The condition of

no information leakage ensures that Eve can only guess the
[1. PRELIMINARIES original message, and the probability of error under maximu

Consider the basic wiretap-channel system shown in Figjelihood decoding isP. = . Therefore, from the decod-
ure 1. A transmitter, Alice, sends confidential informatiorfPility point of view, classical information-theoreticcsecy
M, to an intended receiver, Bob, in the presence of &iarantees > £=L. Furthermore, when t.he entropy C_>f the
eavesdropper, Eve. The source is stationary and ergodec. ThesSage Is very large so th&t — oo, classical information-
confidential information)/, is encoded into a-vector x». theoretic secrecy actually guarantees thatasymptotically
The received vectors at Bob and Eve are denoted byand 90€s to 1,

z", respectively. The entropy of the source information and lim P, > lim K-1 -1 )
the residual uncertainty for the message at the eavesdroppe K—o0 K—o0

are denoted by/ (M) and H(M | Z™), respectively. In practice, the secrecy requirement on the decodability of

messages at Eve can be generally writterPa% ¢ for some

e. Depending on the application, the value cofanges from

0 to 1, which falls outside the classical information-thetar
M [ e B " L4 secrecy regime.

B. Partial Secrecy

Partial secrecy is often quantified by the equivocationctvhi
indicates the level at which Eve is confused. In this paper,
Eve we specifically consider the fractional equivocation, whis
defined as [7]

ZTL

_H@1|Zm)

A=—mon )

Fig. 1: Basic wiretap channel.
Note that evaluating security on the basis of equivocatson i
related to the conventional requirement on the decodgluifit
A. Classical Information-Theoretic Secrecy messages at Eve [5]. Although there is no one-to-one relatio

As mentioned before, classical information-theoretic s&€tween the equivocation and the error probability, tigitdr
crecy implies that the amount of information leakage to tr"d upper bounds of the decoding error probability can be
eavesdropper vanishes, and guarantees that the eavesdsopfierived from the equivocation [28, 29).
optimal attack is to guess the message at random. Fron¥Vhen studying secrecy, we particularly want to ensure that
Shannon’s definition, perfect secrecy requires statistiie- the decoding error probability at the eavesdropper is ftarge

pendence between the original message and Eve's observafiean a certain level. Thus, it is desirable to have the decpdi
which is given by error probability at Eve lower bounded by the equivocation.

. Still consider the general case where messages are unjforml

H(M | Z") = H(M) or, equivalently I(M;Z") =0. (1) taken from a sizek set [1,2,---, K], which achieves the
Since Shannon’s definition of perfect secrecy is not conv@laximal entropy over an alphabet of sie Then, the entropy
nient to be used for further analysis, current researchnoft@f the message is given b/ (M) = log, (k). From Fano's
investigates strong secrecy or weak secrecy. Strong secréequality [28, Chapter 2.10], we have
requires asymptotic statistical independence of the ngessa "
and Eve’s observation as the codeword length goes to infinity HM | 27%) < h(Pe) + Pelog, (K), )
i.e., lim, . [(M;Z") = 0. Weak secrecy requires that th%hereh(x) = —zlogy(z) — (1 — z)logy(1 — ), 0 <z < 1.
rate of information leaked to the eavesdropper vanishes, i'This inequality can be weakened to -
lim,, 00 %I(M; Z™) = 0. Since strong secrecy, weak secrecy
and Shannon’s perfect secrecy all belong to the classical P> HM|z")-1_ 1 (5)
information-theoretic secrecy regime, for simplicity weeuthe €= log, (K) - log, (K)’



When the entropy of the message is very large suchkhat B. New Secrecy Metrics

o0, we can further derive (5) as From (7), we note thatA is a random quantity deter-

mined by the instantaneous channel gains and the transmissi
rate. Since the instantaneous knowledge of Eve’s channel is
unknown, we cannot directly characterize the instantameou
secrecy performance of the transmissions. Consequently, a
meaningful system characterization relies on studying the
IIl. NEW SECRECYMETRICS FORWIRELESS distribution of A, which measures the long-term performance
TRANSMISSIONS of the system with time-varying channel realizations. Ie th

following, we investigate the distribution oA from three

Consider the basic wiretap-channel system as introducedai§pects to propose three secrecy metrics.
the previous section. We now assume that the messages are ) .
transmitted over quasi-static fading channels. Bob and Evel) Generalized Secrecy Outage Probability:
perfectly know their own CSI, but Eve’s instantaneous CSI [gXtending the classical definition of secrecy outage proba-
not available at the legitimate side. For wireless transiois Pllity: We propose a generalized definition of secrecy oetag
in such a system, classical information-theoretic seciiscy ProPability, given by
not always achievable, and the secrecy outage probalslity i
commonly used to measure the secrecy performance. From
the classical information-theoretic secrecy perspectihe

clgssmal def|.n|t|.on of secrecy outage probab_lhty tredts tdenotes the minimum acceptable value of the fractionahMequi
failure of achievingclassical information-theoretic secreag ocation

a secrecy outage. Thus, the classical secrecy outage [iiybab™ ~_. . . L .
y g y ge fitb Since the fractional equivocation is related to the deagdin

is applicable only for the system which has an extremel . ) :
stringent requirement on Eve’s decoding error probat;)ili'flrmr probability, the generalized secrecy outage prdibabi

c 1, but cannot handie the general requirement on Evek FERTENE % SR W SRl SEE P e
decoding error probability) < e < 1. In addition, the outage- q y
based secrecy metric cannot evaluate how much or how f

¢ confidential messages (by choosing different values of
the confidential information is leaked to Eve.

. The classical secrecy outage probability is defined as
. : o P (A < 1), and hence is a special case of the new secrec
Unlike classcial secrecy outage probability, we study the( <1), . P : y
. O outage metric. Apart from the discussion above, anothertavay
secrecy performance of wireless communications from the : -
. . . o understand the generalized secrecy outage probabilitybean
partial secrecy perspective. For wireless transmissioes o

fading channels, the fractional equivocatiak, is a random described as follows. From (3), the information leakag@rat

. §<M¥Z Ny _ . .
guantity due to the fading properties of the channel. This, vtv0 Eve can be written a HWM) 1 — A. The information

start from the derivation ofA for a given fading realization. leakage ratio quantifies the percentage of transmitted conf

The distribution of A can be obtained according to thedentlal information leaked to the eavesdropper. As sudh, th

C . lized secrecy outage probability,: = P (A < 0) =
distribution of the channel gains. After that, three news genera : I
metrics are proposed base?d on the distributiom\of o P(1— A >1-46), actually characterizes the probability that

the information leakage ratio is larger than a certain value
1-6.
A. Fractional Equivocation for a Given Fading Realization ~ In fact, we can also explain the generalized secrecy outage
) _ L _ _ _\}:Jrobability as an extension of partial secrecy in the Gaunssi

A given fading realization of the wireless channel is €qUiVshannel to the fading channel. Partial secrecy was original
alr?nt tol the f(nr(])n-?egrgdecil) Gaussian W|][etaph channel [Bly)0sed and investigated in the Gaussian channel in some of
T.e value of the fractional equivocation or the Gaussqge pioneering studies of physical layer security, e.g=7[5It
vwretap char_mel actually de_‘pends on the coding "_’md traH_srrHst also been adopted in evaluating the secrecy performance
sion strategles_, and there is no general expression abtﬂEI'C"“of finite-length codes in the Gaussian channel, e.g., [22,30
for all scenarios. However, an upper bound Ancan beé 311 | is worth mentioning that a secrecy metric similarte t

easily derived following closely from [7, Theorem 1] and [9yonerajized secrecy outage probability was adopted in, [32]
Corollary 2]. The maximum achievable fractional equivomat which focused on analyzing the performance of finite-length

for a given fading realization of the wireless channel isegiv codes in the fading channel. In [32], a secrecy metric was

1
i >A— lim ———— =A.
e R AT A

Thus, P, is asymptotically lower bounded hsx.

pout=P (A < 6), (8)

whereP () denotes the probability measure afid< 6 < 1

by adopted that quantifies the probability of Eve’s decodirrgrer
it C.<C,—R being less than a given threshold, a result that was motivate
A= (éb ~C)/R, i G _R< C, <Gy @) by thg fact that finit(_a—length codes cannot guarantge Eve’s

0, it C,<C., decoding error rate will approach 1. The secrecy metric & [3

is based on the partial secrecy metric adopted in [31] fotefini
where C;, and C. denote Bob and Eve’s channel capacitiedength codes in the Gaussian channel. The fact that [32] also
respectively, andR = % denotes the secrecy rate foradopts a partial secrecy metric further shows that classica
transmission. secrecy outage probability has a severe limitation in eatalg



the secrecy performance of wireless systems with finitgtlen and
codes. Ce = logy (1 +7e), (13)

2) Average Fractional Equivocation — Asymptotic I'OV\'elrespectively, wherey, and ~. denote the instantaneous re-

Bound on Eavesdropper's Decoding Error Probability: ceived signal-to-noise ratios (SNRs) at Bob and Eve, respec

Taking the average of the fractional equivocation, we Cqfely The instantaneous received SNRs at Bob and Eve have
derive the (long-term) average value of the fractional eoui exponential distributions, given by

cation, given by -
A =E{A}, () Fo(m) = 7éexp <—E) (14)
b

whereE{-} denotes the expectation operation. Note that the B
average fractional equivocation takes the average of theesa and

of fractional equivocation over all fading realizationsn& Fro (Ye) = é exp (_E) , (15)

the fading varies slowly compared with one symbol time in e

guasi-static fading channels, it takes a relatively lomggtito respectively, wherey, and ., denote the average received
experience a sufficient number of fading realizations dytire  SNRs at Bob and Eve, respectively.

transmissions. Thus, to be rigorous, we detin@s the [ong-  We consider the widely-adopted wiretap code [5] for mes-
term) average fractional equivocation. As discussed earligage transmissions. There are two rate parameters, namely,
in (6), Eve's decoding error probability for a given fadinghe codeword transmission rat&;, = @ and the con-
realization is asymptotically lower bounded by the fragéb fiqential information rateR, = 200 A length . wiretap
equivocation. Thus, the average fractional equivocatiin, .qde is constructed by generatitzﬁRb codewordse™ (w, v),
actually gives an asymptotic lower bound on the overgllere v — 1,2,---,2"R andy = 1,2,.-. 27 (Bo=Rs),
decoding error probability at Eve, i.&, > A.

e

For each message index, we randomly selectv from
3) Average Information Leakage Rate: {1,2,--,2n(E=E) 1 with uniform probability and transmit
With knowledge of message transmission rAte- w we the codeword:™(w,v). In addition, we consider fixed-rate

can further derive the average information leakage ratengi transmissiorf, where the transmission rates, i.&, and R,

by are fixed over time.
I Z) Bob and Eve are assumed to perfectly know their own
e _]E{ n }_]E{(l — AR} (10) channels. Hence(;, and C. are known at Bob and Eve,

The average information leakage rate tells how fast the ifespectively. Alice has statistic_al knowledge Of,B(_)b ane’&v
formation is leaked to the eavesdropper. Note that the traggannels, but does not know either BO*? or Eve’s msjtantameou
mission rateR cannot be simply taken out of the expectatio SI. We further assume that Bob provides a one-bit feedback

in (10), sinceR can be a variable parameter (e.g., adaptiv@-bOUt his ch_an.nel quality to Alice in or(_jer to avoid unneces-
rate transmission) and its distribution may be correlatétti w SarY transmissions [12,16]. The one-bit feedback enables a

the distribution ofA. However, when a fixed-rate transmissioﬁm'Off transmission scheme to guarantee Fhat the tranEmiss
scheme is adopted, (10) can be simplified as takes plaf:e only Wher.Rl7 < Cp. In adq_|t|0n, the on-.oﬁ_
) transmission scheme incurs a probability of transmission,
R, =E{(1-A)R}=(1-A)R. (11) given by

Remark 1:The proposed secrecy metrics in this section, 2Ry 1
i.e., (8), (9) and (10), are general and can be applied to px =P (Rp < Cp) = exp <— = ) (16)
evaluate the performance of any coding and transmission
strategy under any system model (e.g., signal-antenna ltir my,
antenna systems). A specific scenario is studied as an egampl
in the next section, wherein the expressions for the prapose To characterize the secrecy performance of wireless trans-

secrecy metrics are further derived in terms of transmissiglissions over the fading channel, we start from the invastig
rates and channel statistics. tion on a given fading realization of the channel.

Proposition 1: For a given fading realization of the wireless
channel, the maximum achievable fractional equivocatam f
the wiretap code withR, < C, and Ry < R, is given by

Secrecy Performance Evaluation

IV. WIRELESSTRANSMISSIONS WITHFIXED-RATE
WIRETAP CODES. AN EXAMPLE

A. System Model 1, @f C. < Ry, — Ry
We consider the system where a transmitter, Alice, wants>™ = (()Rb —Ce)/Rs , :; gb ;}gf <Ce<R, (17)
) b > Le-

to send confidential information to an intended receivet),Bo
in the present of an eavesdropper, Eve, over a quasi-static Proof: The proof follows closely from [9, Corollary 2]

Rayleigh fading channel. Alice, Bob and Eve are assumggd the steps in [7, Section Il1] with &) = R,,. =
to have a single antenna each. The instantaneous channel "
capacities at Bob and Eve are given by 2Fixed-rate transmissions are often adopted to reduce rsystenplexity.

In practice, applications like video streaming in multirizedpplications often
Cy = logy(1 + ) (12) require fixed-rate transmission.



Note that A in (17) actually gives an upper bound orwhich captures how fast on average information is leaked to
the achievable fractional equivocation for the wiretap e&sodEve. Note that the derivation d®;, in (22) does not depend
which is achieved by an ideal coding scheme with infiniten the probability of transmissiopy, which indicates that
codeword length. It is worth mentioning that it is also of?;, actually characterizes how fast on average the information
significant importance to obtain the lower bound of the frads leaked to the eavesdropper when a message transmission
tional equivocation when investigating the performanceaofoccurs.

specific code, e.g., [22,30] which study finite-length LDPC

codes. The secrecy performance guaranteed by a given cedenumerical Results

can be characterized by the lower bound on the fractional

equivocation.
From (13), we can further derive (17) as 1
0=1
1 s if Ye < 2RbiRS -1 509 :::2i8§
A= %jlﬂ:), if 2Re—Re _ 1 <~ < 2R E - P
0, if 28 — 1 < ~,. i:s 08f ///
(18) g 7
Now, we are ready to evaluate the secrecy performance & ov e T
wireless transmissions over fading channels from theidistr § T T
tion of A, which can be derived according to the distributiol £ o6F T
of 7. given in (15). ;? T T
< 051 e _- -
1) Generalized Secrecy Outage Probability: 2 e
The generalized secrecy outage probability is given by § oal 77
pout: P(A < 9)

=P (2Rb —-1< ’Ye) 4+ P (2Rb_Rs —1<v< ol _ 1) 0'30 o_‘1 o_‘z 0.‘3 o.‘4 o.‘5 o.‘e 0.‘7 0.‘8 0.‘9 1

Confidential information rate, Ry
Rp—log,y(1+7e) “R.
P (# Mttt 1 < Ye < 2 —1 Fig. 2: Generalized secrecy outage probability versus denfial
N information rate. Results are shown for networks with défe
= o (_ 2Ry —0R,s _ 1> (19) requirements on the fractional equivocatigh,= 1,0.8,0.6. The

<4

other parameters arg, = 1 andv. = 1.

Ve

where0 < 6 < 1. . .
For the extreme case @f— 1. we have We first compare the generalized secrecy outage proba-

oRs—R. _ 1 bilities subject to different requirements on the fractibn
pout(@ = 1) = exp (_7> . (20) equivocation. Figure 2 plotgoy versus s with different

e values off. Note that the case af = 1 represents classical
We note that (20) is exactly the same as [12, Eq. (88ecrecy outage probability. As shown in the figure, for défe
which gives the classical secrecy outage probability oéless levels of secrecy requirements measured in terms of the

transmissions with fixed-rate wiretap codes. fractional equivocation or the decodability of messagdsvat,

2) Average Fractional Equivocation — Asymptotic Lowef® fransmission has different secrecy outage performance
Bound on Eavesdropper's Decoding Error Probability: We flnq .t.hat t.he difference in the geperal]zeq secrecy outage
The average fractional equivocation is given by probablhues increases as the confidential informatiote ra
~ increases.

A=E{A} We then present the secrecy performance measured by the
M fe 21 Ry —logy (14.) average fractional equivocation, which gives an asymptoti
= Of% (%)d%+/szR51(T)f% (Ye)dve  Jower bound on Eve's decoding error probability. Figure 3

€

1 1 oRs oR—R. plots_ A versqus._As shown in the figure,_ the_av_erage
=1- exp <—) (Ei <— )—Ei <— >) , (21) fractional equivocation decreases as the confidentiafrimde
Ryln2 e e tion rate increases and/or the average received SNR at Eve
whereEi(z) = [ €'/t dt denotes the exponential inte-increases. We note that the average fractional equivatatio
gral function. As mentioned before, the average fractionat Eve is not extremely high even when the confidential
equivocation actually gives an asymptotic lower bound an tlinformation rate is very small. We also note that the average
eavesdropper’s decoding error probability. fractional equivocation is non-zero even when the confiden-
3) Average Information Leakage Rate: tial information rate approaches the total transmissiae ra

Since a fixed-rate transmission scheme is adopted, thegaverd® = 1%s). These observations indicate that the quality of the

information leakage rate can be derived from (11), given b)ywreless channel itself plays an mportant role in deteingn
B the secrecy performance of the wireless system.

Ry =(1-A)R;s Next, we illustrate the secrecy performance measured by

1 1 [ 2% [ 2R R the average information leakage rate. Figure 4 plttsversus
=—exp|—||Ei|- —Ei (- , (22) . ; :
n2 Fe R,. As the figure shows, the average information leakage rate

Ve

€



rate is the same as the total codeword rakg, = R..
This is equivalent to using an ordinary code instead of the
wiretap code for transmission. As shown in Figure 5(a), the
secrecy performance measured by the classical secreayeouta
probability @ = 1) is not related to Eve’s channel condition,
since it is always equal to 1. However, we know that the de-
codability of messages at the receiver is related to theraan
condition. Intuitively, with an improvement in Eve’s chain
quality, the probability of error at Eve should decrease), e
secrecy performance should become worse. Therefore, we see
that the secrecy performance cannot be properly charaeteri
by the classical secrecy outage probability. In contrast, w
) find that the change of the secrecy performance with Eve’s
0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ channel quality can be appropriately quantified by all three
0 01 02 Cgfﬁdm&; mtf)imgfm:-g 08 09 1 of the newly proposed secrecy metrics. In Figure 5(a), the
' generalized secrecy outage probabili#dy=f 0.8) increases as
Fig. 3: Average fractional equivocation (asymptotic lovseund on  the average SNR at Eve increases. In Figure 5(b), the average

the decoding error probability at Eve) versus confidentitdimation g5 ¢tional equivocation decreases as the average SNR at Eve
rate. Results are shown for networks with different avenageived

SNRs at Eveq. — 1,2. The other parameter &, — 1 increases. In Figure 5(c), the average information leakatge
' increases as the average SNR at Eve increases. This simple

example of transmission with an ordinary code shows that the

o
o
a

o
o
T

Average fractional equivocation, A
o
(42
(5]

o o N

] o w o 'S o

A w A » O w»
T T T

o
N}

0.9 \ \ \ \ \ \ \ \ \ newly proposed secrecy metrics are able to reveal infoomati
0 - about the secrecy performance that cannot be captured by the
& s classical secrecy outage probability.
5 07 F /,/ —
i 061 ] V. IMPACT ON SYSTEM DESIGNS
é os | | In this section, we examine the significance of the newly
5 proposed secrecy metrics from the perspective of a system
§ 047 ‘,./" 1 designer, by answering the following questions:
‘_g 03l /,/’" | Q1) Do the newly proposed secrecy metrics lead to different
E] ,,-"" system designs that optimize the secrecy performance,
5 o2y ] compared with the optimal design parameters minimizing
01rf L 1 the classical secrecy outage probability?
o " ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Q2) Does applying the optimal transmission design based
0 01 02 03 04 05 06 07 08 09 1 on the classical secrecy outage probability result in a

Confidential information rate, Ry

large secrecy loss, if the actual system requires a low
decodability at the eavesdropper or a low information
Fig. 4: Average information leakage rate versus confideimiar- leakage rate?
r";i‘te'ﬁ/rééaée’\-jRRseZ?'tEsv a_re_sfllogvnTLOer gtehtgvrorgsravr‘gge‘:'fgre_’“{age As illustrated by the numerical results later in Section V-D
e = L, 2. P bT the answers to both Q1 and Q2 are yes, which shows that the
newly proposed secrecy metrics have impact on the system
design, and the impact is significant. The fact that the answe
to Q1 is yes implies that system designers cannot adopt
does not reacl; even whenk, goes toRR, = 1. This implies the opFimaI desi.gn. based on the classical secrecy outage
that the information is not all leaked to the eavesdroppenevprObab'“ty to optimize the secrecy performance measused b
hF newly proposed secrecy metrics. The fact that the answer

when we use an ordinary code instead of the wiretap code Ig ) e . . :
transmission. This observation once again confirms that t eQZ is yes indicates that adopting the optimal design based

on the classical secrecy outage probability would lead to a
large secrecy loss when the secrecy performance is measured
gy the newly proposed secrecy metrics.

increases as the confidential information rate increaseéfonn
the average received SNR at Eve increases. We notethat

wireless channel itself can provide a certain level of sgcre
for the transmission.

Finally, we show that the secrecy performance of wirele
systems sometimes cannot be appropriately characterized b _
the classical secrecy outage probability, while on the roth®- Problem Formulation
hand can be quantified by the newly purposed secrecy metricsWe still consider the system with fixed-rate wiretap codes
In Figure 5, we evaluate the secrecy performance usingiclagtescribed in the previous section. We optimize the secrecy
cal secrecy outage probability and the newly proposed sgcr@erformance of the wireless system subject to a throughput
metrics for systems with different channel quality for EWe constraint; > I', wheren denotes the throughput of confiden-
consider an extreme case where the confidential informatital message transmission afidlenotes its minimum required
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Fig. 5: Secrecy performance versus Eve’s channel qualéguRs are shown for the transmission with = R, = 1. (a) Generalized secrecy
outage probability versus average received SNR at Eve.\(b)afye fractional equivocation versus average receive® SiNEve. (c) Average
information leakage rate versus average received SNR at Eve

value. The controllable parameters to design are the wpiretd@. Optimal Rate Parameters

code ratesR;, and R,. Taking into account the probability of . .

transmission given in (16), the throughput of the confidanti we dﬁn?teRs’m‘“ a.md Romax @S the squtlons. ofr to
—=— )z =T with Rs min < Rsmax- The optimal so-

message transmission is given by D e "
oy 1 lutions to Problems 1, 2 and 3 are summarized in Propositions
b
n = pxRs = exp (— ) R;.

_ (23) 3.4 and 5, respectively, as follows.
Vo Proposition 3: The optimal rate parameters minimizing the

We specifically formulate three problems for the systen@ieneralized secrecy outage probability are given as fstlow

with different secrecy metrics as follows: r
Problem 1:Minimize the generalized secrecy outage proba- R}, = log, (1 — % mR_*) (31)
bility s1
< 9Ry—0R, _ 1) (24) and
min Pout=exp| —— |, 24
L o e Rs,min y if Rs,min > Rso
st. n>I,Ry, >R >0. (25)  =<{ R, if Rymin < Rso < R max (32)
Problem 2:Maximize the average fractional equivocation Rsmax ;1 Rsmax < Rso,
_ 1 1 9Ry 9R—R. where R, is the solution ofz to
e At () 2) (22 ‘
sy 4ls S n € e €
' 7 7 6 — o 33)

stn>T,R, > Ry > 0. (27) Czln2) (1-wn (L))

Proof: See Appendix B. |
Proposition 4: The optimal rate parameters maximizing the
average fractional equivocation are given as follows:

r
R, =1 1—9,In—
b2 ng( %HRZQ)

is obtained by numerically solving the following

Problem 3:Minimize the average information leakage rate

. 1 1 ) 2Rb ) 2Rb7Rs
i (e () (2 om

stn>T,R, >R, > 0. (29)

(34)

B. Feasibility of the Constraint

The required throughput constraint is not feasible wien
is larger than the maximum achievable throughput Ryr >
R, > 0. We find that the three problems have the same feasible 1 1—,In L 1 — 4L
constraint region, which is given by the following propasit min —(Ei|{-——2|-Ei|————2 ], (35)

Proposition 2: The feasible range of the throughput con-  ° x( ( Te ) ( Ve2” >>

and R,
problem:

straint is given by St Ry min < = < Ry max- (36)
Wo (7p)
Vi 27wz —1 : i
0<T < Wo(7b) exp [ — T 27 7 (30) Proof._See Appendlx C. =
In2 Yo Proposition 5: The optimal rate parameters minimizing the
o average information leakage rate are given as follows:
where W (-) denotes the principal branch of the Lambert W

function.

Proof: See Appendix A. m (37)

. _ r
Ry = logy (1 — Y In R—:B)



and R}, is obtained by numerically solving the following
problem:

1—"InL 1—4Ink
min  Bi| —— e} g2 M) (3g)
r Ye '7621

S.t. Rs,min <z< Rs,max- (39)

w
&

w

I
a

N

Proof: The proof follows closely from the proof of
Proposition 4 in Appendix C. |
Remark 2:The numerical optimization problems for ob-
taining R}, and R}; in Propositions 4 and 5 can be easily
solved by either a simple brute-force search or technigies |
the golden section search [33].

=
o

=

o
3

Optimal confidential information rate, R},

!

D. Numerical Results 0 02 04 06 08 1 12 14 16

! !

o

. . . . Minimum required throughput, I’
In this subsection, we present numerical results for a wirc-

less system withy, = 10 dB and. = 10 dB to demonstrate
the impact of the new secrecy metrics on system designs. THig 7: For generalized secrecy outage probability: opticoafiden-
feasible range of the throughput constraindis. I' < 1.569 tial information rate versus minimum required throughpResults
s . e PURTVE T hown for networks with different requirements on tleetional
which is obtained by Proposition 2. Specifically, we can flngIre Showr -
.. . ! uivocation,f = 1,0.8,0.6. The other parameters atg = 10 dB
the answer to Q1 by examining Figures 6 and 7 and we cg%,y—e — 10 dB. P e

find the answer to Q2 by examining Figures 8, 9 and 10.

35 —_ ‘ ‘ ‘ I determined by the throughput constraint. The observations

' above illustrate that the optimal transmission designs/arg
different when we use different secrecy metrics to evaluate
secrecy performance.

Next, we focus on the optimal transmission rates that min-
imize the generalized secrecy outage probabilities suljec
different requirements on the fractional equivocatiomure 7
plots R, versusl for different values of). As shown in the
figure, the optimal transmission rates minimizing the secre
outage probability are different if the required valuegddre
different. We find that the optimal confidential informaticte
R}, increases as the level of required fractional equivocation
decreases. The observations from Figures 6 and 7 confirm that

1k
'S
Ryl
SV
\
7

Optimal confidential information rate, R,

o o0z 04 06 08 1 12 1a 16 the answer to Q1 is yes: the newly proposed secrecy metrics
Minimum required throughput, T lead to very different system design choices that optintiee t
secrecy performance.
Fig. 6: For different secrecy metrics: optimal confideniidibrmation In the following, we answer the second question listed at

rate versus minimum required throughput. The other paremsi@tre the beginning of this section using Figures 8, 9 and 10. From
¢ =1, =10 dB andv. = 10 dB. the analytical results, we have obtained three differeht-so

tions of the optimal design paramete(®;,, R%,) is optimal

We first compare the transmission rates that optimize tis; minimizing the generalized secrecy outage probability

secrecy performance of the system measured by diﬁer?@it;;?, *,) is optimal for maximizing the average fractional

secrecy metrics. Figure 6 plots the optimal com_‘idential '%quivocation(Rg?,,R;‘g) is optimal for minimizing the average
formation rate Z{ versus the throughput constraifit The  ihtormation leakage rate. We collectively consider alletar
values of Ry, R;, and R, are obtained by Propositions 3, 44esign solutions and study their performance for all three
and. 5, respectlvely. The pptlmal .codeword transmissioe raéecrecy metrics. Specifically, Figure 8 plpts:, Figure 9 plots
R} is not shown in the figure, since the optimal codeworg’ and Figure 10 plots?;, achieved by the different design
transmission rate is equal t; = log, (1 — % 1n RL) for  strategies. As shown in the figures, transmission iith and
all three problems, and the differences betweef), R;, R:; minimizes the secrecy outage probability, but leads to a
and R}, are determined by the differences betwdef, R}, considerable loss if the practical secrecy requiremert &nt
and R,. As depicted in the figure, the values &f,, R, sure a high fractional equivocation (decoding error praligb
and R}, are clearly different from each other. We note thait Eve) or a low information leakage rate. Similarly, trans-
1 = Ri, = R} if and only if the throughput constraint is mission with R}, and R}, maximizes the average fractional
very stringent, in which case the transmission rates aedlyot equivocation, but incurs a considerable loss if the prattic
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Minimum required throughput, I’ Minimum required throughput, I’

Fig. 8: Secrecy outage probability versus minimum requiredugh- Fig. 10: Average information leakage rate versus minimuquired
put. The other parameters afe= 1, 7, = 10 dB and+. = 10 dB.  throughput. The other parameters ére 1, v, = 10 dB and+y. = 10

dB.
. VI. CONCLUSION AND FUTURE WORK
\ TRz b=t To address the practical limitations of using classicategc
< 09 — - Ry = R R.= Ry outage probability as a metric for secrecy, we proposecethre
g o8r \ 1 new metrics for physical layer security over quasi-statitirfig
?;5 07} '\,\ 1 channels. Specifically, the generalized secrecy outagleapro
£ o6l NN | bility establishes a link between the concept of secrecugeit
Ef N and the decodability of messages at the eavesdropper. The
% 03¢ J .~ 1 asymptotic lower bound on the eavesdropper’s decoding erro
‘§ 04f s 1 probability provides a direct error-probability-basedrsey
= o3} \\,\\\ | metric. The average information leakage rate characterize
= ozt T~ how fast the confidential information is leaked to the eaves-
3 B : dropper when classical information-theoretic secrecy a¢ n
S -7 ] achieved. We evaluated the performance of an example wire-
A e : t less system with fixed-rate wiretap codes using the proposed

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Minimum required throughput, T secrecy metrics. We showed that the new secrecy metrics

provide a more comprehensive understanding of physical

layer security over fading channels. We also found that the
Fig. 9: Average fractional equivocation (asymptotic loweund on  new secrecy metrics can give insights on the secrecy per-
the decoding error probability at Eve) versus minimum rezfli formance of wireless transmissions that sometimes carmot b
throughput. The other parameters ére 1, v, = 10 dB andy. = 10 ; i~
dB. captured by classical secrecy outage probability. Funtioee,

we examined the significance of the newly proposed secrecy

metrics from the perspective of a system designer. We found

that applying the optimal transmission design minimizing

the classical secrecy outage probability can result in gelar
secrecy requirement is to have a low secrecy outage prayabisecrecy loss, if the actual system requires a low decotiabili
or a low information leakage rate. Finally, transmissiornthwi at the eavesdropper or a low information leakage rate. The
R;, and R}; minimizes the average information leakage rateiew secrecy metrics enable appropriate transmission resig
but incurs a large loss if the practical secrecy requiremefor systems with different secrecy requirements. We hope
is to maintain a low secrecy outage probability or a higthat this work can help bridge the gap between theory and
fractional equivocation. The observations from Figure€98, practice in physical layer security by inspiring more fgur
and 10 show that it is important to design the system wistudies adopting and building on the newly proposed secrecy
the appropriate secrecy metric. It is also confirmed that theetrics. Besides, as mentioned previously in Section ItA, i
answer to Q2 is yes: applying the transmission design basedf importance to investigate secrecy metrics for wirgles
on the classical secrecy outage probability can result argel systems with finite-length coding schemes, since the dailssi
secrecy loss if the actual system requires a low decodabilinformation-theoretic secrecy cannot be achieved by finite
at the eavesdropper or a low information leakage rate. length codes. While the secrecy metrics proposed in this
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APPENDIXC
PROOF OFPROPOSITION4

work did not focus on the finite-length coding schemes, it is
also a very interesting future research direction to ingegt
appropriate secrecy metrics specifically for wireless esyst

JRTORT The feasible range ofR, for satisfying the throughput
with finite-length codes. A

constraint is given byRs min < Rs < Rgmax. FTOMm A =

. R . Rp—Rs .
APPENDIX A 1-— m exp (%) (El (— 27:) — Ei (—%)), we find
PROOF OFPROPOSITION2 that maximizingA is equivalent to minimizing
To determine the maximum achievable secrecy throughput, 1 [/ 9Rs [/ 9Ru—Rs
we first obtain the optimal rate parameters that maximize the 2 = - (El <— 5 ) — Ei <—T)> - (50)
secrecy throughput. The problem is formulated as _ ° ‘ ‘
R Given anyR,, we have
( 20 1) R (40) R Ry—R
max nN=exp|—-———— ) s, In(2 Ry oRy,—R;
Ry, R, Vi oo m) (exP <_ 7 > - <_ T )) <
st.  Ry,>R,>0. (41) 9By R Ye Ve (51)

Given any R, we find thaton/0R; is always less than 0.
Hence given anyR,, it is wise to have the minimunky, i.e.,
Ry, = R, for maximizingn. Then, the problem changes to

Hence given anyR,, it is wise to have the maximun®,
while satisfying the throughput constraint to minimiz&
in (50). Hence, we obtai?;, as in (34). Then, we rewrite
the optimization problem as (35). We find that the closedrfor

ofs _ 1
ma 1 (R = Rs) = exp <_T) Rs,  (42) solution of k¥, is mathematically intractable. We can obtain
st R.> 0. (43) *o by numerically solving the problem. This completes the

proof.

Taking the first order derivative of (R, = R,) with respect
to R, we have

_ R _ R,
OR; Vo Vo
By solving for R, in % = 0, we obtain the optimal [2]

value of R, that maximize§7, which is given by
Wo(7s)

(31
(4
(5]
(6]
(7]

RO
5 In2

Finally, substitutingR; = R into (42) completes the proof.

(45)

APPENDIXB
PROOF OFPROPOSITION3

As analyzed in Appendix A, given anf;, it is wise to have
the minimumR,, i.e., R, = R, for maximizingn. Hence, we
can obtain the feasible range Bf for satisfying the through-
put constraint by solving; in the equatiom (R, = R;) =T.

The feasible range is given by; nin < Rs < Rs max- [l

From poyt = exp (—%) we find that minimizing
Pout IS €quivalent to maximizing (10]
O, = Ry — OR;. (46)

(11]
To minimize O, in (46), it is wise to have the maximumR,
while satisfying the throughput constraint, for any givBg.

[12]
Fromn = exp lei‘l) R, >T, we have

[13]

T
Ry, < log, (1 — Y 1n R_> . 47

S

Hence, we obtaink;; as in (31). Then, we can rewrite thell4!
optimization problem as

T [15]
max log, (1 — % In R_s) —0Rs, (48)
s.t. Rs,min < Rs < Rs,max- (49) [16]
Finally, by solving for R, in the equationgg1 = 0 and

considering the feasible range Bf, we obtaian1 asin (32). 7]

This completes the proof.
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