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ABSTRACT OF THE THESIS 

 

Partial correlation and partial cross-correlation as multivariate measures of EEG connectivity  

by 

Xueying Dai 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2021 

Associate Professor Beth Lopour, Chair 

 

 

Electroencephalography (EEG) is an accessible technique that records neuronal 

oscillatory activity from the scalp. Functional connectivity (FC) analysis through different 

metrics can be applied to EEG signals to obtain an in-depth understanding of the brain 

mechanisms. The resulting functional connectivity network (FCN) is of great interest because it 

has the potential to serve as a biomarker in brain diseases. However, one unsolved issue is that 

volume conduction (VC) in the EEG system may lead to spurious connectivity and yield 

inconsistent FCNs across studies. In order to interpret FCNs with confidence, there is a need to 

develop connectivity metrics that are immune to VC. VC is the spreading of the electric field 

through the scalp collected by multiple electrodes simultaneously. Multivariate metrics have 

been reported to be insensitive to VC by means of removing the effect of confounding variables 
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when it quantifies the relationship between two variables. Here, we propose a new multivariate 

metrics Partial Cross-Correlation (PCC), aiming to reduce the effect of VC in the FCNs.  

We assessed partial correlation (PC) and PCC as multivariate metrics to construct FCNs 

by applying these metrics to simulated data and human EEG. The simulated data were generated 

by the Kuramoto model and Rössler model, two models that represent brain dynamics. The 

human data consisted of routine EEG studies from 240 healthy infants, aged 0-2 years old. The 

results are compared to FCNs from other well-established bivariate methods, cross-correlation 

(CC) and adjusted cross-correlation (ACC). Results show that PC, PCC, and ACC excluding 

values at zero lag (ACC-e) are all valid choices for the EEG system. PC performs the best 

against volume conduction among all the metrics in both simulated and human EEG. PCC is 

similarly insensitive to volume conduction, but it is 100-times slower to calculate compared to 

PC. ACC-e is the only bivariate metric that can work against volume conduction. It is also the 

most computationally efficient one, yet with the highest false-negative rate. Overall, we 

recommend using PC or ACC-e as reliable metrics against volume conduction. 
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Chapter 1 Introduction 

1.1 Electroencephalography (EEG) and its Functional Connectivity Network 

 Electroencephalography (EEG) is a recording technique to measure the oscillations of 

brain electrical signals by electrodes from the scalp. It provides an insight into the post-synaptic 

activity of neurons primarily in the cerebral cortex, and it exhibits unique temporal and spatial 

characteristics that change with sleep stages (Borbely et al., 1981), tasks (Fitzgibbon et al., 

2004), and diseases (Briels et al., 2020). Because it is a low-cost and non-invasive method with 

high temporal resolution compared to functional magnetic resonance imaging (fMRI) and 

positron emission tomography (PET), EEG is used in a wide range of clinical applications, 

including anesthesia monitoring (Jameson & Sloan, 2006), epilepsy diagnosis (S. J. M. Smith, 

2005) and sleep studies (Vakulin et al., 2016).  

EEG signals are also used to gain insight into the mechanisms of brain function. In 

particular, they are used to study interactions between distinct regions in the brain, which can 

help and uncover the large-scale functional architecture of the brain. One way to quantify these 

interactions is by using Functional Connectivity (FC) analysis, which is a statistical measure of 

the relationship between neural signals collected from discrete brain regions. There are several 

analytical measures that can be used for FC analysis, including coherence, correlation, 

dependence, and causality in the time and frequency domains. Functional connectivity networks 

(FCNs) constructed though FC metrics can be represented mathematically as graphs with nodes 

(electrodes) and edges (connectivity values between electrodes), and the network properties can 

be analyzed with graph theory (GT) measures, such as the degree, clustering coefficient, and 

small-worldness.  
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FCN is of great interest because it has the potential to provide diagnostic information in 

brain diseases (Nunez et al., 2015; Sunwoo et al., 2017; Wang et al., 2017) and mental or neural 

disorders (Imperatori et al., 2019; Kiiski et al., 2020; Zhang et al., 2021). It can also reveal 

underlying mechanisms in brain functions as a complement to structural connectivity 

(Babaeeghazvini et al., 2021). For example,  Righi et al. (2014) found that the average linear 

coherence between frontal and temporoparietal regions at 12 months of age was significantly 

lower in infants who later met the criteria for autism spectrum disorder (ASD) than infants who 

did not, while three out of five cognitive characteristics failed to identify the difference between 

the groups at one year of age. 

However, one challenge associated with this approach is that FCN studies using different 

connectivity measures sometimes have no consensus between them. For example, Michelini et 

al. (2019) reported that connectivity networks constructed through the imaginary part of 

coherence was significantly higher in the theta, alpha, and beta bands in adolescents and adults 

with attention deficit hyperactivity disorder (ADHD) compared to the control group. However, 

another ADHD study using the weighted phase lag index (wPLI) as the connectivity measure 

reported the opposite result (Kiiski et al., 2020). This implies the need for careful consideration 

when applying and interpreting functional connectivity.  

1.2 Multivariate Methods Against Volume Conduction 

One confounding factor that can contribute to inconsistent FCN results using EEG is the 

spurious connectivity stemming from volume conduction (VC) (Bastos & Schoffelen, 2016). VC 

is the spreading of the electric field of a neural source in biological tissues that is measured by 

multiple electrodes simultaneously. Bivariate measurements such as cross-correlation and 

coherence may yield false interactions between electrodes when volume conduction is present in 
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the system. Several studies have reported connectivity methods to reduce the effect of volume 

conduction in simulated and human EEG systems, such as adjusted cross-correlation (ACC) and 

coherence (Chu et al., 2012), phase lag index (PLI, Ruiz-Gómez et al., 2019) and multivariate 

metrics (Haufe et al., 2013). Chu et al. (2012) reported that removing values at zero lag in cross-

correlation measurements eliminated spurious values caused by volume conduction without 

excessively affecting the functional networks in a forward model simulation. PLI is another 

measure that is less sensitive to volume conduction by discarding phase difference between two 

signals that center around zero mode 𝜋𝜋 (Stam et al., 2007). 

Multivariate metrics apply a different tactic to overcome the influence of VC by 

controlling and removing the effect of shared factors when calculating the relationship between 

two variables (Haufe et al., 2013; Jalili & Knyazeva, 2011a; Paula et al., 2020; Sakkalis, 2011). 

For instance, Omidvarnia et al. (2014) reported that partial directed coherence applied on the 

orthogonal parts of the signals “removed common components akin to volume conduction.” 

Partial correlation (PC), by its definition, should be effective at minimizing the impact of VC. If 

the signal from two independent sensors, X and Y, are affected by a confounding variable Z, the 

bivariate correlation between X and Y will be spuriously high. In contrast, when calculating PC 

between X and Y while controlling the effect of Z, it will correct for the variance between X and 

Z and Y and Z, and produce a low or close-to-zero PC value (Cohen, 2014). Other direct 

multivariate metrics like Granger causality (GC) and directed transfer function (DTF) are also 

considered by some to be effective against volume conduction, although controversy still exists 

in whether these measurements of connectivity provide an accurate solution to the problem 

(Brunner et al., 2016). Here, we are specifically interested in partial correlation (PC) as a 
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promising FCN measurement for EEG because it is easy to compute and apply to both 

broadband and band-specific signals.  

1.3 Motivation 

 Recent EEG studies have found that FCNs constructed through partial correlation are 

different from FCNs calculated by bivariate correlation in terms of network properties, such as 

clustering coefficient, small-worldness, and modularity index (Jalili & Knyazeva, 2011b). Partial 

correlation can more accurately reveal the direct connections between brain regions, but as a 

consequence, it is less effective at measuring indirect connections; therefore, it could serve as a 

complementary measurement to correlation measurement (Jalili & Knyazeva et al., 2011a). In 

fMRI, research has identified the difference in FCNs using partial and bivariate metrics 

(Agastinose Ronicko et al., 2020; Ryali et al., 2012; Sun et al., 2004). However, only a single 

study has compared partial and bivariate correlation in EEG. Hence, there is a need to understand 

how the metrics work under systems with various degrees of coupling and volume conduction in 

both simulated and human EEG to interpret future results with more confidence.  

In this study, we assess PC and a newly proposed partial cross-correlation (PCC) as 

multivariate metrics to construct FCNs. We applied these metrics to simulated data and human 

EEG. The simulation data were generated by the Kuramoto model and Rössler model. A detailed 

description can be found in Chapter 3. The human data used in this study consisted of routine 

EEG studies from 240 healthy infants, aged 0-2 years old. For both the simulated and human 

data, the results for the two multivariate partial correlation metrics were compared to FCNs from 

three well-established bivariate methods: cross-correlation (CC), adjusted cross-correlation 

including values at zero lag (ACC-i), and adjusted cross-correlation excluding values at zero lag 

(ACC-e).  
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The paper is organized as follows: Chapter 2 first describes the applied functional 

connectivity metrics, including four existing methods and one novel method, as mentioned in the 

previous paragraph. Then, detailed information on the simulated data and human data is 

discussed in Chapters 3 and 4. We then describe the procedure for processing the data and 

deriving the FCNs in Chapter5. Chapters 6 report results from the simulation model and human 

data, respectively. Chapter 7 discusses and concludes the paper. 
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Chapter 2 Connectivity Metrics 

2.1 Bivariate Measurements 

2.1.1 Cross-Correlation (CC) 

Cross-correlation (CC) measures the amplitude-based correlation as a function of time 

displacement between two time series signals. When the two signals are the same, it is also called 

autocorrelation. It is a simple way to calculate functional connectivity that has been applied to 

EEG, fMRI, and Near-infrared spectroscopy (Hyde & Jesmanowicz, 2012; Kumagai et al., 2017; 

Lu et al., 2010). The cross-correlation value between signals 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) at time lag 𝜏𝜏 can be 

expressed as 

𝑟𝑟𝑥𝑥𝑥𝑥(𝜏𝜏) = 1
𝑁𝑁−|𝜏𝜏|

∑ (𝑥𝑥(𝑡𝑡 + 𝜏𝜏) − 𝑥̅𝑥) (𝑦𝑦(𝑡𝑡) − 𝑦𝑦�) 𝑁𝑁−𝜏𝜏
𝑡𝑡=1 , 

where 𝑁𝑁 is the signal length, 𝑥̅𝑥 and 𝑦𝑦� are the averages of the signals. The values of 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) 

are zero-padded when 𝑡𝑡 is out of range. Within a pre-defined range of time lag 𝜏𝜏, the maximum of 

the absolute value is considered the coupling strength between two signals. Our study set the 

maximum time shift to be either a lead or lag of 200 milliseconds, based on the expected temporal 

properties of physiological effects (Chu et al., 2012). Given this, the coupling strength between 

𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡) measured by cross-correlation can be calculated by: 

𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥𝜏𝜏�𝑟𝑟𝑥𝑥𝑥𝑥(𝜏𝜏)�, 𝜏𝜏 ∈ [−200𝑚𝑚𝑚𝑚, 200𝑚𝑚𝑚𝑚]. 

2.1.2 Adjusted Cross-Correlations (ACC) 

Adjusted cross-correlation is a modified version of CC proposed by (Kramer et al., 

2009).The 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 is adjusted by the Fisher transformation and autocorrelation of the signal, so the 

values of the coupling strength are closer to a standard normal distribution. ACC can be expressed 

as: 
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𝐴𝐴𝐴𝐴𝐶𝐶𝑥𝑥𝑥𝑥  =  𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹

(𝑣𝑣𝑣𝑣𝑣𝑣� �𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹 �)1/2, 

where 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹  is the Fisher transformation of 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥  

𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹 = 1
2
𝑙𝑙𝑙𝑙 1+𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥

1−𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥
, 

𝑣𝑣𝑣𝑣𝑣𝑣� �𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹 � accounts for the effect of autocorrelation on the cross-correlation value 

𝑣𝑣𝑣𝑣𝑣𝑣� �𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹 � = 1
𝑁𝑁−𝜏𝜏𝑚𝑚

∑ 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝐹𝐹 (𝜏𝜏)𝐶𝐶𝐶𝐶𝑦𝑦𝑦𝑦𝐹𝐹 (𝜏𝜏)𝑁𝑁
𝜏𝜏=−𝑁𝑁 , 

and 𝜏𝜏𝑚𝑚  is the lag time corresponding to the maximal cross-correlation value. Perfectly 

synchronous activity in two EEG channels can occur due to the volume conduction of an 

underlying neural source. Hence, maximal cross-correlation at 𝜏𝜏𝑚𝑚 = 0  is an indicator that the 

coupling strengths are possibly driven by volume conduction. We tested the effect of including 

(ACC-i) and excluding (ACC-e) coupling strengths at zero lag in simulated and human data as a 

means of reducing the impact of volume conduction.  

2.2 Multivariate Measurements 

2.2.1 Partial Correlation (PC) 

Partial correlation (PC) is a multivariate method that can be used to construct functional 

networks. PC calculates the correlation between two variables while accounting for the effects of 

other variables, and it can be calculated by taking the inverse of the covariance matrix. Specifically, 

for a set of variables 𝒚𝒚 = 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑚𝑚 , the precision matrix 𝚸𝚸  is defined as the inverse of 

covariance matrix 𝚺𝚺:  

𝚸𝚸 = 𝚺𝚺−1. 

Then the PC between 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗, which controls for the effects of all other variables that are not 𝑦𝑦𝑖𝑖 

and 𝑦𝑦𝑗𝑗, is defined as the following equation: 
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𝑟𝑟�𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗�𝒚𝒚−(𝒊𝒊,𝒋𝒋)� =   − 𝑝𝑝𝑖𝑖𝑖𝑖
�𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗𝑗𝑗

 , 

where 𝑝𝑝𝑖𝑖𝑖𝑖 is the corresponding element in the precision matrix 𝚺𝚺. In our analysis, we use first-order 

partial correlation 𝑟𝑟�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗�𝑦𝑦𝑘𝑘�, which is the correlation value between 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 controlling for a 

single variable 𝑦𝑦𝑘𝑘(𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗) . In an 𝑚𝑚 -node system, each pair of variables has 𝑚𝑚 − 3  first-order 

partial correlation values and one bivariate correlation, i.e., the Pearson correlation 𝑟𝑟𝑝𝑝(𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗). The 

minimal value among these 𝑛𝑛 − 2  values is considered the coupling coefficient measured by 

partial correlation:  

𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘�𝑟𝑟�𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗�𝑦𝑦𝑘𝑘�, 𝑟𝑟𝑝𝑝(𝑦𝑦𝑖𝑖,𝑦𝑦𝑗𝑗)� ,𝑘𝑘 ≠ 𝑖𝑖, 𝑗𝑗 

2.2.2 Partial Cross-Correlation (PCC) 

Partial Cross-correlation (PCC) combines the ideas of first-order partial correlation and 

cross-correlation. The PCC coefficient between 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 at time lag 𝜏𝜏 can be expressed as: 

𝑟𝑟 �𝑦𝑦𝑖𝑖(𝑡𝑡),𝑦𝑦𝚥𝚥� (𝑡𝑡)�𝒚𝒚−(𝒊𝒊,𝒋𝒋)(𝒕𝒕)� =   − 𝑝𝑝𝑖𝑖𝑖𝑖
�𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗𝑗𝑗

, 

where 𝑦𝑦𝚥𝚥� (𝑡𝑡)  =  𝑦𝑦𝑗𝑗(𝑡𝑡 + τ), 𝑡𝑡 =  1,2, …𝑁𝑁. When calculating the PCC between any variable pair, 

𝑦𝑦𝑗𝑗(𝑡𝑡) is time-shifted by time lag 𝜏𝜏 before calculating the covariance matrix and partial 

correlation value. Similar to section 2.1.1, the maximum time shift is either a lead or lag of 200 

milliseconds to account for physiological effects. At each time shift, the minimum value among 

all first-order partial correlations and the bivariate correlation is considered the coupling 

strength. The procedure was repeated for every time lag. Then the maximum absolute value 

across time lags was considered the coupling strength 𝑃𝑃𝑃𝑃𝐶𝐶𝑖𝑖𝑖𝑖 of the variable pair derived by 

partial cross-correlation. 
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Chapter 3 Simulated EEG Data 

In this Chapter, we utilized the Kuramoto and Rössler models to generate simulated 

networks. We created simulated data with the same sampling rate and length as the human data 

used in this study (Chapter 4). Functional connectivity measurements were applied to the simulated 

data to verify that they could recover the true connections in the networks. We also introduced 

various degrees of volume conduction to the simulated data to assess the impact on each 

measurement. 

3.1 The Kuramoto Model 

3.1.1 The Kuramoto Model 

The Kuramoto model consists of globally coupled oscillators, describing phase 

relationships similar to neural sources in the human cortex. It has been applied to validate new 

methods in neuroscience, especially in EEG (Cumin & Unsworth, 2007; Ibáñez-Molina & Iglesias-

Parro, 2016; Schmidt et al., 2014). The phase evolution of an 𝑀𝑀-oscillator system can be described 

as:  

d𝜃𝜃𝑖𝑖
dt

= 𝜔𝜔𝑖𝑖 +
K
M
� sin�𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖� + 𝛿𝛿𝑖𝑖

M

j=1

, 𝑖𝑖 = 1 …𝑀𝑀, 

where 𝜃𝜃𝑖𝑖 is the phase of oscillator 𝑖𝑖, 𝜔𝜔𝑖𝑖 is the intrinsic angular frequency, 𝐾𝐾 denotes the coupling 

coefficient, and 𝛿𝛿𝑖𝑖 is the random noise (Kuramoto, 1984). 𝛿𝛿𝑖𝑖 is selected from a standard normal 

distribution. For each oscillator, the phase dynamics are defined by its natural frequency as well 

as the average phase of all other 𝑀𝑀− 1 oscillators. The overall synchrony of the system can be 

quantified by the phase coherence parameter 𝜙𝜙: 
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𝜙𝜙(t) = �
1
M
� eiθi(t)
M

j=1

�, 

where 𝜙𝜙(t) can be averaged across time to produce a single value 𝜙𝜙. The 𝜙𝜙 value is between zero 

and one, where zero denotes equally distributed oscillator phases around the unit circle, and one 

consists of perfect phase coupling. The theoretical value of 𝜙𝜙 has a mathematical relationship with 

K under the assumption that the number of oscillators 𝑀𝑀 → ∞: 

 𝜙𝜙 =  �

0,𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�1 −
𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐾𝐾

,𝐾𝐾 ≥ 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
. 

The formula to calculate 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  depends on the distribution of natural frequencies. When ωi  is 

picked from a Lorentzian distribution,  

𝑓𝑓(ω)  =
γ

π[γ2 + (ω−ω0)2], 

where γ is the half-width at half-maximum in the probability distribution function and the critical 

coupling strength 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝛾𝛾. When the coupling strength of the system 𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the oscillators 

in the system become unsynchronized, resulting in  𝜙𝜙 =  0 . When 𝐾𝐾 ≥ 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , a subset of the 

oscillators will become synchronized, with the number of oscillators synchronized proportional to 

𝐾𝐾, resulting in a larger 𝜙𝜙 value.  

Linear mixing is introduced to the oscillators to model volume conduction under the 

assumption that all underlying sources are oriented normal to the cortical surface and contribute 

equally to the electrodes (Ahmadi et al., 2019; Peraza et al., 2012). For an 𝑀𝑀-oscillator system, the 

corresponding 𝑀𝑀-channel EEG signal was generated by incorporating various degrees of linear 

mixing. The EEG signal Vi(t) for channel i was calculated using the following equation: 
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Vi(t) =
1

2i0 + 1
� Oj(t)
j=i+i0

j=i−i0

,  𝑖𝑖  =  1…  𝑀𝑀 

where 2i0 + 1 is the number of oscillators contributing to each EEG channel. In neighboring EEG 

channels, the number of shared oscillators is 2i0, resulting in a system with stronger influence due 

to volume conduction as 𝑖𝑖0 increases. Oj(t) is the amplitude of oscillator 𝑗𝑗 and is expressed by the 

following equation: 

Oj(t) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�θi(t)�,  𝑗𝑗  =  1…  𝑁𝑁. 

Note that for simplicity, we set 𝐴𝐴  =  1 for all oscillators.  

3.1.2 Model Simulation 

We performed simulations using the Kuramoto model with 𝑁𝑁 = 19  oscillators. The 

intrinsic frequencies of the oscillators were randomly selected from a Lorentzian Distribution with 

ω0 = 4𝜋𝜋, and 𝛾𝛾 = 2𝜋𝜋. This corresponds to an angular frequency of [2π, 6π] 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, which is an 

ordinary frequency of 1Hz to 3Hz to approximate the delta band of an EEG signal. The sampling 

frequency was chosen to be 200 Hz to match the human data. We generated 10-second segments 

of data, and the first eight seconds of each segment were discarded to remove the initial transients 

in the system. Only the final two seconds were retained for further analysis. To measure the 

performance of the different connectivity metrics, we varied the coupling strength 𝐾𝐾 from zero to 

30 with a step size of one. We also introduced different levels of linear mixing when generating 

simulated EEG signals. Specifically, we chose i0 in the range of zero to three to model different 

levels of volume conduction.  

For each pair of 𝐾𝐾 and i0 values, five trials were completed. In each trial, we first produced 

simulated data with 120 two-second epochs. Each epoch was demeaned and divided by the 

standard deviation before calculating the functional connectivity values as described in chapters 
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2.1-2.2. To calculate an overall degree of synchronization per pair of K and i0  values, the 

functional connectivity matrices were first averaged across trials and then averaged across channel 

pairs to produce a single value. In this thesis, we use the terms degree of synchronization and mean 

connectivity interchangeably.  

3.2 The Rössler Oscillator 

3.2.1 The Rössler Oscillator 

The Rössler model has also been used to simulate EEG for the purposes of validating 

functional connectivity methods. The equations for an 𝑀𝑀-attractor Rössler model are given by: 

⎩
⎪
⎨

⎪
⎧
𝑋𝑋𝚥̇𝚥 = −𝜔𝜔𝑗𝑗𝑌𝑌𝑗𝑗 − 𝑍𝑍𝑗𝑗 + ��𝜀𝜀𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑗𝑗�

𝑖𝑖≠𝑗𝑗

� + 𝜎𝜎𝛿𝛿𝑗𝑗

𝑌𝑌𝚥̇𝚥 = −𝜔𝜔𝑗𝑗𝑋𝑋𝑗𝑗 − 𝛼𝛼𝑌𝑌𝑗𝑗                                                
𝑍𝑍𝚥̇𝚥 = 𝑏𝑏 + �𝑋𝑋𝑗𝑗 − 𝑐𝑐�𝑍𝑍𝑗𝑗                                            

, 𝑗𝑗 =  1 …𝑀𝑀. 

When parameters 𝛼𝛼, 𝑏𝑏 and 𝑐𝑐 are properly chosen, the attractors in the system will oscillate. Eight 

6-node networks were used to mimic various connectivity levels and structures based on (Al-

Khassaweneh et al., 2016; Shahsavari Baboukani et al., 2019), as shown in Figure 1. Network 1 to 

8 have increasing connectivity levels. Network 1 in Fig 1(a) has the lowest synchronization, while 

network 8 in Figure 1(h) has the highest one. Networks 3, 4, and 5 should have similar degrees of 

synchrony, but network 3 has a single common source (node 1) for all connections, which may 

lead to the presence of spurious indirect connections in bivariate connectivity networks. 

3.2.2 Model simulation 

In the simulation, we set 𝑎𝑎 = 0.35, 𝑏𝑏 = 0.2, 𝑐𝑐 = 10, 𝜎𝜎 = 1.5, 𝛿𝛿𝑗𝑗  were randomly selected 

from the standard normal distribution, and the Rössler attractors will exhibit chaotic dynamics. 

The connections between oscillators can be modified by 𝜀𝜀𝑖𝑖𝑖𝑖, where 𝜀𝜀𝑖𝑖𝑖𝑖 = 0.5 when oscillator 𝑖𝑖 and 
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𝑗𝑗 are coupled, and 𝜀𝜀𝑖𝑖𝑖𝑖 = 0 otherwise.  

We ran 100 iterations of the model simulation for each of the eight network configurations. 

The sampling frequency was set to 200 Hz to be consistent with the human data. Similar to the 

Kuramoto model, we created simulated data with 120 two-second epochs in each iteration. Each 

two-second epoch was demeaned and divided by its standard deviation before analysis.  

 

 

(c) Network 3 (d) Network 4

(a) Network 1 (b) Network 2

(e) Network 5 (f) Network 6

(g) Network 7 (h) Network 8
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Figure 1 Network Configuration of the Rössler Model derived from Al-Khassaweneh et al. 
(2016) and Shahsavari Baboukani et al. (2019). The degree of synchronization increases from 
Network 1 to 8. 
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Chapter 4 Human EEG Data 

4.1 Subject Information 

EEG data were collected at the Children’s Hospital of Orange County (CHOC), and the 

Institutional Review Board at CHOC approved its use for this study. Retrospective data from 240 

subjects aged 0-24 months were included in the dataset. All subjects were full term (gestational 

age>38 weeks) with no known neurological disorders. The infants were evenly separated into eight 

age groups of 30 infants in three-month intervals, i.e., Group A is subjects from 0-3 months old, 

Group B is 3-6 months old, Group C is 6-9 months old, Group D is 9-12 months old, Group E is 

12-15 months old, Group F is 15-18 months old, Group G is 18-21 months old, and Group H is 

21-24 months old. 

EEG recordings consisted of routine clinical recordings lasting one to two hours, 

containing a mix of wakefulness and sleep. All EEG recordings were interpreted as normal by a 

board-certified pediatric epileptologist. Manual EEG sleep staging was performed by a registered 

polysomnographic technologist using the American Academy of Sleep Medicine (AASM) 

guidelines. For the subjects in Group A, who were all less than three months old, EEG segments 

were categorized as wakefulness (W), active sleep (AS), and quiet sleep (QS). For subjects in 

Group B to H, EEG segments were categorized as wakefulness (W), stage 1 (N1), stage 2 (N2), 

stage 3 (N3), and rapid eye movement (REM).  

4.2 EEG Acquisition and Preprocessing 

EEG recordings (Nihon Kohden EEG acquisition system) were acquired at a sampling 

frequency of 200 Hz, with the exception of a single recording which was acquired at 500 Hz and 

downsampled to 200 Hz prior to analysis. Nineteen electrodes were placed according to the 

international 10-20 system in locations Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
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T5, T6, Fz, Cz, and Pz. Data were bandpass filtered from 0.5-55 Hz and re-referenced to the 

common average before analysis. Artifacts were identified by applying an automatic extreme value 

detection algorithm, which was the same as prior studies (Durka et al., 2003; Moretti et al., 2003; 

R. J. Smith et al., 2021). Data were then divided into two-second non-overlapping time windows 

for each subject, and windows containing artifacts or mixed state (e.g., contained both N2 and 

wakefulness) were excluded. 120 two-second epochs were randomly selected for each subject in 

each brain state (wakefulness, N2 sleep), separately. Whenever subjects had fewer than 120 epochs 

of a particular brain state, they were excluded from analysis for that state. Due to the limited 

number of subjects, sleep stages N1, N3 and REM were excluded from the connectivity analysis. 
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Chapter 5 Functional Connectivity Networks 

5.1 Significance Testing 

Significance testing is an important step to exclude spurious connections when calculating 

FCNs. Before significance testing, the connection strengths between channels were calculated 

using the methods described in chapters 2.1-2.2. The results were stored in 𝑀𝑀 × 𝑀𝑀 × 𝑒𝑒 connection 

strength matrices for an M-node system with 𝑒𝑒 epochs. Time-shuffled data were used to obtain a 

threshold of significance for each connection pair. The threshold value was the 95th percentile of 

the surrogate data distribution generated using either 1000 iterations of time-shuffled epochs for 

bivariate measurements, or 400 iterations for multivariate measurements. The threshold values 

were stored in 𝑀𝑀 × 𝑀𝑀 matrices. An adjacency matrix represents the significant connections in a 

dataset by binarizing the connection strength matrix, where a connection was considered 

significant, and the corresponding element was set to one if the connection strength was greater 

than the threshold, zero otherwise. For adjusted cross-correlation, we also considered an additional 

approach where the connection was only considered significant and set to one when the connection 

strength was above the threshold, and it had a lag time 𝜏𝜏𝑚𝑚 ≠ 0. The binarized adjacency matrix 

was averaged across the third dimension (the epochs) to obtain the functional connectivity matrix, 

representing the percentage of epochs in which significant connections occurred. There was one 

functional connectivity matrix for each subject, brain state, and connectivity method (cross-

correlation, adjusted cross-correlation including or excluding values at zero lag, partial correlation, 

and partial cross-correlation).  
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5.2 Functional Connectivity Head Map for Human EEG 

  

 To visualize the connectivity results for each method, the connectivity matrices were first 

averaged across subjects in the same age group to produce one matrix per age group and brain 

state. Then a threshold was applied to these values to convert the averaged connectivity matrices 

into sparse matrices. This threshold was the top 15% of connectivity values across all age groups 

in a brain state. Thus, the number of connections for each group may vary based on the overall 

strength of the average network relative to the other age groups. Finally, the functional connectivity 

networks were plotted based on the sparse matrices for each connectivity method, age group, and 

brain state.  

  

Figure 2 Summary of the functional connectivity analysis, and the related terms. 
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Chapter 6 Results 

6.1 The Kuramoto Model 

 The Kuramoto model is a well-established method to simulate brain dynamics. (Nguyen et 

al., 2020) reported to successfully model and predict features in EEG by the Kuramoto model. 

Although the Kuramoto model is phase-based, amplitude-based connectivity metrics, such as 

cross-correlation (Ahmadi et al., 2019), amplitude envelope correlation (Ruiz-Gómez, Gómez, et 

al., 2019) and S-estimator (Shahsavari Baboukani et al., 2019), have previously been successfully 

applied to Kuramoto systems. Furthermore, this model includes a method to easily incorporate 

volume conduction. Hence, we select the Kuramoto model to generate simulated data and see how 

volume conduction will impact each measurement. 

6.1.1 Comparison between connectivity methods 

 For the simulated EEG based on the Kuramoto model, Figure 3 shows the average degree 

of synchronization measured by different connectivity metrics as a function of coupling strength 

K and degree of volume conduction i0 . The phase coherence 𝜙𝜙  is considered the true level of 

synchronization, and it ranges from 0.2 to 0.8 as K increases (Figure 3A). Based on our settings, 

the critical value of the system 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝛾𝛾 = 4𝜋𝜋. Theoretically, a system with infinite oscillators 

will remain uncoupled when 𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖, increase sharply at 𝐾𝐾 = 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and continuously increase 

while 𝐾𝐾 > 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Due to the limited number of oscillators used in our study, we observe a smoother 

transition in the phase coherence value, which was also reported in (Shahsavari Baboukani et al., 

2019). 



 

19 
 

  

 The partial correlation metric systematically underestimates the connection strengths, as 

the curve at i0 = 0  starts around 0.05 and is maximum at 0.26 when (Figure 3B). When i0 

increases, the offset between curves is the lowest in partial correlation compared to all other 

metrics. For 𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the biggest difference occurs when increasing from i0 = 0 to i0 = 1. The 

degree of synchronization exhibits a smaller difference between i0 values when 𝐾𝐾 > 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. When 

𝐾𝐾 > 2𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the curves for i0 = 2  and i0 = 3  almost overlap with each other. Thus, the partial 

correlation appears to be minimally impacted by volume conduction, especially for 𝐾𝐾 > 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Note that the transition around 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is not evident in i0 > 0 , which indicates that partial 

correlation is insensitive to volume conduction at the expense of sensitivity to systemic changes. 

Figure 3 The mean connectivity value of the Kuramoto Model measured by (A) phase 
coherence, (B) partial correlation, (c) partial cross-correlation, (d) cross-correlation, (e) adjusted 
cross-correlation including values at zero lag, and (f) adjusted cross-correlation excluding values 
at zero lag. 
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 The partial cross-correlation method performs similarly to partial correlation in that it is 

not very sensitive to volume conduction. The degree of synchronization associated with this metric 

is higher than partial correlation and lower than adjusted cross-correlation (Figure 3C).  

 The results of cross-correlation (Figure 3D) and adjusted cross-correlation including values 

at zero lag (Figure 3E) are comparable when i0 > 0. The degree of synchronization measured by 

these two metrics is the closest match to the value of 𝜙𝜙. However, significant increases in mean 

connectivity occur as i0 increases, showing that there is a trade-off between measuring the true 

level of synchrony and the sensitivity to volume conduction. The performances of the original 

(Figure 3D) and adjusted cross-correlation (Figure 3E) are notably different for i0 = 0. A possible 

reason is that when taking the maximum correlation value across time lags, the distribution of the 

connection strength values deviates farther from a normal distribution (Kramer et al., 2009), and 

the significance testing is less able to distinguish between coupled and uncoupled connections, 

especially when the linear mixing in the system is low. Contrary to the original cross-correlation, 

adjusted cross-correlation accounts for the fact that the maximum values are skewed and corrects 

the value by the autocorrelation to generate results that are more normally distributed. This 

primarily affects the results for i0 = 0, and thus, there is a considerable difference between the 

results for i0 = 0 and i0 = 1.  

 The impact of excluding connectivity values that are maximal at zero time lag can be 

inferred by comparing Figures 3E and 3F. It is expected that by excluding a subset of statistically 

significant connectivity values from the adjacency matrix, the estimated degree of synchronization 

will be decreased for all K and i0 values. Consistent with this, we find lower mean connectivity 

for ACC-e (Figure 3F) compared to the same analysis with those connections included (Figure 3E). 

The difference is especially significant for large K and i0 values. The effects of volume conduction 
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on partial correlation and ACC-e are comparable, although the former is a multivariate measure 

and the latter a bivariate measure. This suggests that multivariate methods are not required to 

counteract volume conduction in the system. Also, ACC-e works better for widespread volume 

conduction (i0 = 3) compared to partial correlation because ACC-e reveals the transition in the 

system at different K levels, whereas the degree of synchronization revealed by partial correlation 

has a small, almost constant slope. It is the opposite case when i0 = 0. The results reported here 

illustrate the importance of understanding the system properties for choosing the most appropriate 

metric for functional connectivity, as the coupling strength and degree of volume conduction 

significantly affect the results.  

  

 To understand the connectivity patterns underlying these results, connectivity matrices 

averaged across five data sets at different K and i0 values are shown in Figures 4 and 5, where x 

and y axis corresponds to the electrode index. In Figure 4, i0 is set to 0, and K equals 5, 15, and 

Figure 4 Connectivity Matrices of Kuramoto model data with i set to 0, and (A) K=5, (B) K = 
15, (C) K = 25 
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25, respectively, for each row. All metrics successfully demonstrate the expected increase in 

connectivity strength as K increases, which causes more oscillators to be coupled. Among them, 

ACC-i and ACC-e have the lowest connectivity values, which aligns with the results in Figure 3. 

  

 In order to compare the effect of linear mixing on each connectivity method, we also show 

the results for i0 equals 0, 1, 2, and 3, with K fixed at 10 (Figure 5). Recall that the number of 

oscillators linearly contributing to the simulated EEG signal equals 2i0  Thus, an increase in i0 

simulates a spatially increasing component of volume conduction. The width of the diagonal red-

yellow stripe (or blue stripe for ACC-e) represents the spatial spread of increased connectivity due 

to volume conduction, and it increases as i0 increases for all measurements. CC, ACC-i, and ACC-

Figure 5 Connectivity Matrices of Kuramoto model data with K set to 10, and (A) i=0, (B) i = 1, 
(C) i = 2, and (D) i = 3. 
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e (Figure 5 A-C) have the same diagonal width, although ACC-e has overall lower connectivity 

values. Moreover, note that the removal of connections at zero lag in ACC-e is a quite stringent 

criterion, especially when i0 = 3. It omits some true connections, which causes the lighter blue 

stripe near the main diagonal. PC has the least amount of spread of all the methods and the highest 

contrast between the diagonal and background (Figure 5D). The diagonal width of PCC is similar 

to those of CC and ACC when i0 ≠ 3 , and is comparable to PC when i0 = 3 , although the 

connection pairs off the main diagonal have higher values compared to PC. This result shows that 

PCC combines aspects of both PC and CC.  

6.2 The Rössler Model 

 The Rössler model is a non-linear chaotic system that represents a basic coupling 

mechanism of neurological signals (Lainscsek et al., 2013). This low-dimensional and tunable 

system can provide insight into how each connectivity method handles direct and indirect 

connections.  
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6.2.1 Comparison between connectivity methods 

  

 Connectivity matrices were averaged across 100 iterations for each method and network 

configuration (Figure 6). All metrics except ACC-e recover the true connections in the networks. 

This result may seem to suggest that ACC-e is an invalid metric in the Rössler model, but the 

reason the connectivity values are so low is that the simulated systems are truly coupled at zero 

lag. In networks 4-8, over 98% of the statistically significant connections happen at zero lag (see 

Appendix A). Hence, excluding values at zero lag will remove most of the connections. 
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Figure 6 Connectivity Matrices of the Rössler model for network 3-8 (A-E). The most right 
column shows the actual connections.  
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However, in real EEG signals, the true connections frequently occur at non-zero lags, so ACC-e 

will still be a valid measure for that data. Again, it shows the importance of understanding the 

system under examination in order to choose the best metric. 

 In general, from network 1 to network 8, the connectivity values increase as the number 

of connections increases, as expected. One exception to this is that the connectivity values of 

direct connections in network 3 are higher than those in network 4 for all metrics. This is 

expected because network 3 has one shared confounding variable for all nodes (Node 1), while 

the confounding variable in network 4 is different for each pair of nodes. However, note that 

none of the connectivity methods produce spurious connections between nodes that are driven by 

a common source. For example, in Network 3, because Node 1 is connected to both Nodes 2 and 

3, we might expect that the bivariate connectivity methods would report a connection between 

Nodes 2 and 3, but this does not occur for any of the methods.  
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Figure 7 Mean connectivity value in (A) the direct connections and (B) other connections for Network 1-
8 using connectivity metrics CC, ACC-i, PC and PCC 
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 Therefore, to examine the impact of the indirect connections on each connectivity method 

in greater detail, we separately quantified the average connectivity values in the direct connections 

compared to all other connections in each iteration (Figure 7). Direct connections are node pairs 

with 𝜀𝜀𝑖𝑖𝑖𝑖 = 0.5, and all other connections are 𝜀𝜀𝑖𝑖𝑖𝑖 = 0. Here, we exclude the results from ACC-e 

because its values are all close to zero. PC shows the best distinction between direct connections 

(high connectivity values) and indirect connections (low connectivity values) in most networks. 

The mean direct connectivity values of ACC-i were significantly smaller than CC in all cases (p 

<0.05). The values of PCC were similar to those of PC and ACC-i, which was also true for the 

Kuramoto model. 

 For the non-direct connections (including both indirect and unconnected nodes), the mean 

connectivity values are surprisingly consistent in the four metrics, fluctuating around 0.05 (Figure 

7B). This could be related to the 95% threshold in the significance testing. The threshold values 

for significant connections are chosen as the 95% threshold in a null distribution, where the 

alternate hypothesis is that there is a temporal relationship between the signals from the two 

electrodes. Therefore, there is a 5% chance of false positive in the significance testing, and this 

approximately matches the 0.05 connectivity values for the indirect or uncoupled connections. 

Therefore, these low values indicate that each connectivity method is correctly determining these 

nodes to be uncoupled. 

6.3 Human EEG data 

6.3.1 Comparison between connectivity method 

 We compared functional connectivity head maps for each connectivity metric and age 

group in the same brain state. Generally, the frontal and occipital connections were stronger than 
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connections in the other brain regions during sleep stage N2 (or QS for Group A) (Figure 8). 

This feature was evident for all connectivity measurements, except for ACC-e in Group A. 

Missing connections in the occipital lobe in Group A could be caused by the overall weaker 

connectivity values in that group compared to the other age groups. When we applied group-

specific thresholds, the same pattern of strong frontal and occipital connections emerged in group 

A as well. Similar results during wakefulness are shown in the Appendix B. 

 

 FCNs measured by CC and ACC-i are similar (Figure 8 (a), (b)), and both metrics show 

insufficiency in identifying true connections. For example, both metrics show intrahemispheric 

connections between the frontal and temporal lobes in Group A. Those connections are not 

present for any of the multivariate metrics nor ACC-e. Also, it is expected that infants at 0-3 

months have overall lower connectivity values, as is shown in the results of multivariate 

Figure 8 Functional Connectivity Networks in sleep stage N2, constructed by (a) CC, (b) ACC-i, 
(c) ACC-e, (d) PC, and (e) PCC. The column from left to right corresponds to group A to H. 
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measurements and ACC-e. Those evidence suggests that FCNs constructed by CC and ACC-i 

produce spurious connections, possibly caused by volume conduction. Another example is that 

CC and ACC-i recognize all connections between F4, T5, and O1 as significant in Group D, 

whereas the other three metrics only recognize connections between F4-T5 and T5-O1 (Figure 

8). It indicates that the correlation between O1 and F4 could be driven by the confounding 

variable T5; note that the multivariate metrics and ACC-e successfully eliminate the effect from 

it and recover the actual connection. These results show the need for methods such as ACC-e or 

multivariate measurements to avoid misleading results. 

 The effect of including and excluding values at zero lag can be seen by comparing Figure 

8(b) and 8(c). First, the amplitude of the average connectivity decreases by 50% when excluding 

values at zero lag. It is consistent with the results in the simulation study that ACC-e 

systematically underestimates the connectivity values in the system. Also, the edge densities (i.e., 

the ratio between the number of existing edges and all possible edges) in Group B and C are 

higher for ACC-e than ACC-i, while those in other groups are lower for ACC-e than ACC-i. The 

decrease in edge density from ACC-i to ACC-e is expected, and it holds for all other groups. 

Groups B and C may exhibit the opposite trend because the abnormal intrahemispheric 

connections between the frontal and temporal lobes in Group A increases the overall threshold in 

ACC-i. As groups B and C have lower average connectivity values, more connections are 

excluded for those two groups, causing an overall decrease in the edge density.  

 FCNs measured by PC have higher connectivity values compared to all other metrics. 

The head maps are characterized by strong short-range connections between the outermost 

electrodes. The connectivity values of PC are very high, especially for connection between Fp1 

and Fp2. The value is close to or equal to one, meaning that all epochs of all the subjects in an 
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age group measure the connection to be significant. This is similar to the results for the Rössler 

model, in which PC had the highest distinction between true connections and background noise. 
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Chapter 7 Discussion 

Using both simulated and human EEG data, we compared the functional connectivity 

networks calculated by bivariate and multivariate metrics, including a new method based on 

partial cross-correlation. The results from the Rössler model and human EEG share several key 

features. In both cases, multivariate metrics have larger connectivity values compared to 

bivariate metrics. This can be explained by the simulation results in the Rössler model. What we 

find in the Rössler model is that the average connectivity values in the direct connections are 

higher for multivariate metrics than the bivariate metrics, while the mean values of indirect and 

uncoupled connections are similar in all measurements. This is likely because the null 

distribution of connection strength based on surrogate data used for significance testing also 

accounts for the effect of volume conduction in bivariate metrics. Systems with a stronger 

influence from volume conduction will also have higher threshold values (Shahbazi Forooz and 

Ewald, 2010). 

 The simulation results from the Kuramoto model contradict the Rössler model and human 

EEG data in several ways. For example, the multivariate metrics and ACC-e underestimate the 

true coupling strengths in the system, whereas the results from cross-correlation and ACC-I 

coincide with the actual degree of synchrony. This may be because the oscillators in the 

Kuramoto model were all weakly coupled, while the Rössler model and real EEG data contained 

stronger connections (Hale et al., 2012; Lainscsek et al., 2013). Multivariate measures consider 

the correlation between two variables while eliminating the confounding effect from other 

similar variables. Hence, if oscillators are globally coupled, the multivariate correlation will 

decrease when accounting for the similarity in other variables. Although the results from the 

Kuramoto model differ from the real EEG data, the results from the Kuramoto model provide 
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valuable information, especially when comparing the adjusted cross-correlation including and 

excluding values at zero lag. The performance of ACC-e is more comparable to that of the 

multivariate metrics than the other bivariate metrics. It indicates that the adjusted cross-

correlation produces a valid connectivity network when zero lag connections are excluded, and 

significance testing is applied to each epoch (Chu et al., 2012). In a real EEG system, coupling 

strength affected by volume conduction has a synchronous phase relationship, while true 

coupling could happen at zero phase lag as well (Vinck et al., 2011). Hence, we expect that 

ACC-e has a higher false-negative rate in detecting significant connections and is even more 

stringent than multivariate metrics.  

 Limitations of the study can be addressed in the future. First, linear mixing of the signal 

is a naïve method to model volume conduction because it only considers relationships at zero 

phase lag in the signal propagation. However, volume conduction involves a more complex 

situation related to the isotropic conductivities and the shape of the brain (Huiskamp et al., 

1999). Thus, applying a forward model to the simulated data while considering all these factors 

may provide more insight than the linear mixing method (Vermaas et al., 2020). Moreover, the 

signal-to-noise ratio was reported to affect the results of connectivity measurements (Silfverhuth 

et al., 2012), but we have not included this as a parameter in our simulations. Consequently, the 

simulation parameters should be considered carefully in order to most closely resemble the 

human EEG signals.  

 In this thesis, we compare functional connectivity networks constructed from bivariate 

and multivariate metrics. We also propose a new metric, the partial cross-correlation. The results 

show that PC, PCC, and ACC-e are all valid choices for EEG systems. ACC-e is the most 

computationally efficient one, but it has the highest false-negative rate. For PC, we have 
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implemented the first-order calculation, and it has been shown to provide the best performance 

against volume conduction in both simulated and human EEG. A possible improvement is to 

implement a higher-order PC that yields more precise results but also increases the computation 

time (Liu et al., 2016). PCC is the most time-consuming method, 1000 times slower than ACC 

and 100 times slower than PC. The distribution of connection strength shares similar properties 

with cross-correlation, while the functional connectivity networks are comparable to those of 

partial correlation. Overall, no distinct advantages of PCC were found over the other metrics.  
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Appendix A The ratio of connections that happen at zero lag. 

Network % of connections happen at 

zero lag 

% of above threshold 

connections have zero lag 

1 12.1 65.0 

2 21.9 80.9 

3 31.3 90.6 

4 41.3 99.4 

5 40.2 98.6 

6 46.5 99.4 

7 62.6 99.96 

8 84.3 100 
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Appendix B Functional Connectivity Networks during wakefulness 
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