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ABSTRACT 

A room temperature solid state structural transformation was observed in 3 nm 

ZnS nanoparticles in methanol following the addition of water (Zhang et al., 

Nature, 424, 1025, 2003). Experimental wide angle x-ray scattering (WAXS), x-ray 

absorption near edge structure (XANES) and extended x-ray absorption fine 

structure (EXAFS) spectroscopy measurements show a large increase in 

crystallinity associated with water addition, in agreement with molecular dynamics 

(MD) predictions. Here we perform first-shell EXAFS and pair distribution 

function (PDF) analysis and whole-nanoparticle calculations of WAXS, EXAFS 

and XANES to compare structural data with the MD predictions. The predicted 

WAXS patterns give excellent agreement with data, while the predicted EXAFS 

and XANES spectra give poor agreement. Relative to WAXS, XANES and EXAFS 

spectra contain additional structural information related to the distribution of 

disorder. The discrepancy between the x-ray diffraction and x-ray absorption 

results indicates that structural disorder is partitioned between interior and 

surface regions more strongly than predicted in the MD simulations.  
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I. INTRODUCTION 

The importance of nanoparticles in current research and technology is growing 

because basic materials properties can be affected by small size [1,2]. Two principal 

effects have been demonstrated. In semiconducting nanoparticles, when particle size 

approaches, or is smaller than, the excitonic Bohr radius, confinement causes an 

opening of the band gap. In addition, when the surface area is large and surface energy 

becomes a significant contributor to the total energy, modifications or inversions in 

polymorph stability have been observed in several systems [3,4]. These considerations 

imply that phase stability may be sensitive to the surface environment. Because 

different polymorphs often posses substantially altered electronic structures [5], 

environment-driven transformations may dramatically modify nanomaterial properties. 

We have confirmed experimentally that the ZnS nanoparticle structure changes in 

response to ligand interactions [6, 7]. At room temperature and pressure, macroscopic 

ZnS is a wide bandgap semiconductor that occurs as the cubic (zinc blende) sphalerite 

structure in which Zn and S are tetrahedrally coordinated. At high temperature, ZnS 

adopts the hexagonal wurtzite structure. However, wurtzite is encountered at relatively 

low temperature in nanocrystalline ZnS [Error! Reference source not found.], 

probably because of a surface energy-controlled change in phase stability. 3 nm ZnS 

nanoparticles prepared in anhydrous methanol are highly distorted. Water binding, 

methanol desorption [6], and aggregation [7] can lead to structural changes at room 

temperature, reversible in the last two cases. The observation of reversible transitions 

establishes that ZnS nanoparticles are not kinetically trapped in a metastable structure. 

Analysis of the relationships between phase stability and the surface environment 

requires in situ methods that can probe structure. Extended x-ray absorption fine 

structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopies 
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offer element-specific sensitivity to coordination, oxidation state and near-neighbour 

geometry. Many groups have studied the structure and lattice dynamics of nanoparticles 

with EXAFS [9,10,11,12,13,14]. For example, EXAFS work on carefully characterized 

nanoparticle systems has revealed structural variations due to synthesis conditions and 

the nature of the surface ligand. With careful choice of system, the technique has been 

made quite surface sensitive. However, EXAFS analyses are generally limited to the 

first-shell in nanoparticles, and structural disorder can complicate bond-length analysis 

[15,16]. Wide-angle x-ray scattering (WAXS) with high-energy x-rays gives diffraction 

data to high momentum transfer (here, Qmax = 22 Å-1), with accurate solvent background 

subtraction. Fourier analysis of the WAXS data provides the real-space pair distribution 

function (PDF). PDF analysis is not yet widely used in nanoscale systems, yet provides 

a view of longer-range correlations [17,18]. Applied to powder samples, both these 

experimental methods yield average structural information that do not precisely reveal 

the specific modifications that arise due to small particle size. Hence, complementary 

theoretical structural studies are of value.  

Molecular modelling is a particularly valuable tool for investigating the surface 

and interior structure of nanocrystalline materials. No experimental approach can 

presently determine the surface structure of nanoparticles, and the only information on 

the surface geometries comes from theory [19,20,21]. These details are important for 

determining surface energy, and hence phase stability. While the concept of excess 

quantities (such as surface free energy) offers a convenient continuum thermodynamical 

framework for prediction of the phase stability of small particles, it is incomplete, 

neglecting specific atomic geometry and chemical interactions. Nanoparticles typically 

are larger than can be conveniently handed by ab initio quantum chemistry methods. 

Hence, classical molecular dynamics simulations (MD) are an effective compromise 

between speed and accuracy, and have been used to predict surface reconstruction, 

surface energy, and polymorph stability in both bulk and nanoscale solids [22,23,24,25]. 
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In this paper we explore the structural states of ZnS nanoparticles that undergo a 

surface environment-driven structural transformation by predicting spectra using MD 

simulations and comparing them with data from three in situ characterization methods. 

This work used the published ZnS MD potentials of Wright [22]. These were chosen 

because they were able to successfully describe bulk ZnS properties, including the 

structure of terminated bulk ZnS [23, 24]. We extracted model-independent physical 

parameters from the EXAFS data and directly compared them to the MD nanoparticle 

structure simulations. In addition, we used the MD structures as starting points for 

whole-nanoparticle calculations of experimental spectra. The x-ray absorption 

calculations were performed with the multiple-scattering code FEFF 8.2 [26,27], which 

has been widely used for EXAFS and XANES analysis of bulk and nanoscale systems 

[31,32,33]. We conclude that the approach involving integration of whole nanoparticle 

predictions and simulations can be applied to other small-scale systems to improve 

understanding of structural heterogeneity.  

II. METHODS 

A. Experimental methods 

1. ZnS nanoparticle synthesis and handling 

In order to study the effect of surface environment on nanoparticle structure, we 

synthesized 3 nm sphalerite structure ZnS in anhydrous methanol by drop-wise addition 

of 1M ZnCl2 to 1M Na2S under a N2 atmosphere at room temperature. The details of the 

synthesis method and initial characterization results were reported previously [6]. After 

synthesis, two 2 mL aliquots were taken from the suspension, and 100 µL H2O was 

added to one of these. Both were sonicated for 30 minutes, and stored overnight. In situ 

WAXS, XANES and EXAFS data obtained from portions of these samples indicate a 

dramatic increase in crystallinity following water addition.  
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A portion of the as-synthesized ZnS nanoparticle suspension in methanol was 

rapidly dried, by vacuum pumping down to 10-6 Torr at room temperature, producing a 

fine powder. XRD analysis showed no evidence for structural change associated with 

rapid drying [6]. The nanoparticles were handled in a nitrogen atmosphere and analyzed 

by WAXS and EXAFS.  

In a separate experiment, 3 nm ZnS nanoparticles were rapidly vacuum dried, as 

above. A portion of the dry powder was transferred to another vacuum chamber for 

methanol desorption. A quadrupole mass spectrometer was used to observe the partial 

pressures of water and methanol during sample heating, above a base pressure of < 1 x 

10-8 Torr. After observing substantial methanol evolution at 50 ˚C, the sample was held 

at this temperature for 24 hours. At the end of this period, the partial pressure of 

methanol had fallen back to its initial value. Both degassed and non-degassed powders 

were pressed into indium foil (in a dry nitrogen atmosphere) and loaded into another 

UHV chamber for S K edge EXAFS spectroscopy.  

Pure synthetic bulk wurtzite (hexagonal) and sphalerite (cubic) ZnS were used as 

reference materials for all EXAFS experiments. The former was synthesized by high 

temperature treatment of sphalerite, and both were shown to be pure phase by XRD.  

2. XANES and EXAFS spectroscopy 

Zn K edge x-ray absorption spectroscopy was performed on beamline 4-ID-D at 

the Advanced Photon Source (APS), Argonne, in transmission mode. The photon 

energy was calibrated before the experiment with Zn foil. Reference powders were 

brushed onto sticky tape, and layered to achieve an edge jump of approximately unity. 

Nanoparticle samples, dry or as a paste in methanol, were mounted in a sample holder 

between Kapton® membranes, and compression sealed with a Teflon gasket. Samples 

– 5 – 



 

were re-prepared until the correct edge jump was obtained. EXAFS data was collected 

at room temperature, to k = 18 Å-1, with constant k-step, and 1-3 scans were averaged. A 

finer energy step close to the edge was used during acquisition of XANES data. S K 

edge EXAFS were acquired on the DCM beamline at the University of Wisconsin – 

Madison Synchrotron Radiation Center. Total electron yield (TEY) and fluorescent 

(FY) yield signals were collected from samples pressed into indium foil. Only the TEY 

data were analyzed due to better signal quality. Further details on the analysis can be 

found in Ref. 6.  

3. Wide-angle X-ray scattering 

WAXS patterns of ZnS nanoparticles, dry, or as suspensions in methanol, were 

acquired on beamline 11-ID-C at the APS at 115.2368 keV (λ = 0.10759 Å). Wet 

samples were prepared to ensure a constant ZnS density, using Kapton® membranes as 

entrance and exit windows, diameter 7 mm, beam path 6.5 mm. The WAXS pattern of a 

methanol blank sample (for nanoparticle suspensions) or Kapton® (for nanoparticle 

powders) was used for background subtraction. All patterns were acquired over a range 

of diffraction vector Q = 0.3 – 35 Å-1. 2-5 scans were averaged.  

B. Theoretical Calculations and Data Analysis 

1. Molecular dynamics simulations 

Details of the MD simulations may be found elsewhere [6, 25]. Briefly, ZnS was 

described using a shell model with a Buckingham form of the pair-wise interatomic 

potential, plus an angle-bending form of the three-body interaction between nearest 

neighbor S-Zn-S atoms [22]. The short range Zn-O and S-H interactions also assume a 

Buckingham potential function, obtained from fits to first principles calculations for the 

aqueous Zn [28] and gas phase H2S [29], respectively. The shell model of water showed 
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best compatibility with the ZnS potentials [30]. Methanol is a weakly polar solvent 

compared to water. Hence the interactions between methanol and ZnS are expected to 

be much weaker than between water and ZnS. We therefore performed MD simulations 

of ZnS nanoparticles in vacuum for comparison with experimental data in methanol. A 

spherical model ZnS nanoparticle was prepared with the ideal ZnS sphalerite structure. 

Surface atoms were removed to achieve charge neutrality, choosing highly underbonded 

atoms preferentially. The molecular dynamics simulations were run to minimize the 

total energy of the resulting model nanoparticle in a canonical assemble at 300 K using 

a Nose-Hoover algorithm, or (optionally, at large times) a Gaussian algorithm, with a 

time step of 0.5 fs for no less than 100 ps.  

 Fig. 1 shows the energetic state diagram of the MD simulations. The initial 

structure was a 1, 2, 2.5, 3 or 5 nm diameter spherical model nanoparticle sphalerite or 

wurtzite. The structure was dynamically relaxed either in vacuum, or with 1, 3 or 5 

molecules of water / nm2 on the surface. In all simulated XRD patterns, structural 

relaxation caused loss of peak intensity relative to the initial (unrelaxed) structure. The 

simulated patterns for relaxed 3 nm ZnS nanoparticles are in closest agreement with 

experimental XRD patterns. 

The experimentally observed structural transition corresponds to the dashed 

pathway in Fig. 1. We attempted MD simulations of the experimental transition by 

adding water to the relaxed vacuum structure, but no transformation was observed. 

Within the time of the MD simulations, the structure was unable to find an accessible 

transition state.  

2. WAXS spectroscopy 
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Experimental WAXS patterns were analyzed using specially written routines in 

IGOR-PRO, with a procedure following Refs 34, 35, 36 and 37, which is briefly 

reviewed here. We account for the detector deadtime (τ = 2.77 µs) that causes the 

detected count rate, Id, to lie below the true rate, I, as: 

    Id =
1
τ

1− e− Iτ( ).      (1) 

After deadtime correction, the solvent or empty cell pattern is subtracted from the 

sample pattern. The background subtraction procedure is shown in Fig. 2. The 

experimental structure factor, S(Q), is then obtained from: 

    S(Q) =
I Q( )
f 2 Q( )

,     (2) 

where f 2 Q( )  is the stoichiometric average of the atomic scattering factors, fi , 

obtained from tabulated theoretical calculations [38]. A fit of f 2 Q( )  to the data in the 

region 10 – 35 Å-1 provides data normalization (Fig. 2). We neglect the effects of 

Compton scattering and sample absorption, which are less than 5 % for this experiment 

[34]. The reduced structure factor, S(Q) −1, is related to the real-space pair distribution 

function (PDF), or G(r), by the Fourier sine transform: 

   G(r ) =
2
π

Q[S(Q) − 1]
0

∞

∫ sin(Qr)dQ     (3) 

We include a Lanczos window function when performing this transform. For 

comparisons, theoretically calculated spectra (see below) were treated identically to 

experimental data.  

Theoretical calculations of WAXS intensity were derived from the atomic 

coordinates of MD nanoparticle simulations. The same, MD frame-averaged atomic 
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coordinates were used for WAXS and XAS calculations (below). WAXS spectra were 

calculated using the Debye equation [39]: 

   I(Q) = fi fj

sin Qrij( )
Qrijj

∑
i

∑ exp −
σ 2Q2

2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ,   (4) 

where exp −σ 2Q2 2[ ] is the Debye-Waller (DW) thermal factor, and σ 2  is the 

atomic mean square displacement (MSD). Thermal motion reduces WAXS intensity, 

and a single average value of the MSD was obtained from a fit of the theoretical 

patterns to the appropriate data. Thermal damping of EXAFS is associated with the 

mean square relative displacement (MSRD) of atom pairs. MSD and MSRD are not 

identical because in MSRD the vibrations of an absorbing atom and its neighbors are 

correlated, particularly at low frequencies [40]. Hence, the MSRD is less than a sum of 

individual atom MSDs.  

3. EXAFS spectroscopy 

i. Standard analysis 

The EXAFS signal, χ(k) was extracted using AUTOBK [42], and analyzed in 

FEFFIT [43] using Zn-X (X = S, Zn, O) scattering phase and amplitude functions 

calculated in FEFF 8.2 [26]. Individual scans were aligned before averaging using the 

first derivative of the reference Zn foil spectrum. The data were k3-weighted for analysis 

in the range k = 2.5 – 11 Å-1, and R = 1.2 – 2.8 Å (single shell fits) or R = 1.5 – 4.5 Å 

(three shell fits). The data were truncated because inclusion of higher-k data introduced 

a low-R shoulder in the first peak of the Fourier transform.  

We extracted physical parameters from the EXAFS data that can be compared to 

the real-space MD predictions. The amplitude reduction factor, So
2, was fit to data from 

– 9 – 



 

the sphalerite reference and fixed for all subsequent analyses. Because it is impossible 

to determine the absolute energy of the excited photoelectron, the threshold position, Eo, 

is determined during EXAFS analysis by fitting. In order to achieve good agreement 

with the experimental spectra, E0, was allowed to vary for every nanoparticle sample 

studied. This may reflect real electronic differences among the samples, but such 

observations are difficult to interpret quantitatively. 

ii. Asymmetric bond-length distributions 

In addition to standard EXAFS analysis, we performed fits of explicit asymmetric 

first-shell bond-length distributions. X-ray diffraction data and MD simulations indicate 

that the nanoparticles contain internal strain and have a wider bond length distribution 

than present in bulk ZnS. Asymmetric bond length distributions are commonly analyzed 

with the cumulant expansion of the EXAFS equation, but without uniquely defining a 

real-space distribution. To allow comparison with real-space structures derived from 

MD, we consider the generalized EXAFS equation: 

  χ(k) =
NSo

2F(k)
k

g(r)
r20

∞

∫ e−2r λ (k ) sin(2kr +ϕ(k))dr    (5) 

where N is the coordination number, So
2 is the amplitude reduction factor, F(k) is 

the photoelectron backscattering amplitude, ϕ (k) is the phase shift due to the atomic 

potentials, r is the bond length, and k is the photoelectron wavevector. A convenient 

form of the pair distribution function, g(r), is given by Yang et al. (Model II, Ref. 16) 

  g(r) =
1

D2 (ro ,s,δ)Γ(s +1)
r 2

δ
r − ro

δ
⎛ 
⎝ 

⎞ 
⎠ 

s

e− ((r −ro )) δ ,  r ≥ ro  (6a) 

  g(r) = 0 ,       r ‹ ro  (6b) 
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where ro is the shortest bond length, and the parameters s and δ define the shape 

of the distribution. Γ(s+1) is the gamma function and D2 can be found from the 

expression: 

  Dn = δ n ηn +
n!

m! n − m( )!
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ η n− m( ) s + j( )

j =1

m

∏
m =1

n

∑
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ,  η =
ro

δ
.  (7) 

This expression differs slightly from that published previously. A simple 

expression for the EXAFS equation is obtained upon integration: 

  χ(k) =
NSo

2F(k)
kro

2 Ac(k)e−2ro λ (k ) sin(2kro +ϕ(k ) +ϕc ).   (8) 

Expressions for the amplitude and phase correction factors, Ac(k) and ϕc (k)  are 

given in Ref. 16.  

All stages of the first shell fits were performed using routines written in the 

analysis program IGOR-PRO, using the same Zn-S scattering phase and amplitude 

functions as above for the standard analysis. To obtain the real-space first shell bond 

length distribution, the modified EXAFS expression (Eqn. 8) was fit to the back-

transformed k3-weighted data in the ranges r = 1.2 - 2.6 Å and k = 2.5 – 11 Å-1.  

As a check of the analysis, the more usual EXAFS equation [15], including the 

first four cumulants, was fit to the data. We compared the best-fit values of the 

cumulants (C1 etc.) from the standard analysis to the cumulants obtained from the 

moments of the best-fit real-space distribution. For g(r) given in (Eqn. 6), the 

relationships between the moments of the distribution and the cumulants are: 

  C1 = r = D3 D2 ;  C2 = r 2 − r 2 = D4 D2 − D3
2( ) D2

2 ;  (9a) 

  C3 = r3 − 3 r 2 r + 2 r 3 = D5D2
2 −3D4D3D2 + 2D3

3( ) D2
3 ; etc.  (9b) 
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The cumulants derived from the standard and non-standard analyses agree to 

within 10 – 20%. For this analysis, the amplitude reduction factor, So
2, and the energy 

threshold position, Eo, were fit to data from the sphalerite reference and were fixed for 

all subsequent analyses.  

iii. Whole-nanoparticle EXAFS calculations 

To determine whether the MD simulations reproduce the EXAFS data, we 

calculated whole-nanoparticle EXAFS spectra, using the same MD atomic coordinates 

as for WAXS and XANES calculations. In contrast to whole-particle XANES 

calculations described below, we made a single calculation of transferable scattering 

potentials, and used the CFAVERAGE card in FEFF [27].  

The effects of thermal vibrations on EXAFS are dependent on the particular 

photoelectron scattering path. The correlated Debye model built into the FEFF code 

calculates the contribution on a path-by-path basis [47]. We tested a procedure in which 

thermal disorder parameters were obtained by fits to the EXAFS data and used as inputs 

for subsequent whole-nanoparticle EXAFS and XANES calculations. However, the 

correlated Debye model is not accurate for bulk ZnS, even in the single scattering 

regime. We attempted to fit to bulk sphalerite and wurtzite data within R = 4.5 Å of the 

EXAFS transform (approximately corresponding to Zn0-S1, Zn0-Zn2, and Zn0-S3 shells), 

using three SS paths, varying a single Debye temperature, Θd, So
2 and Eo, and bond 

lengths, at 300 K, and fixing the coordination numbers at known values. The simulated 

EXAFS were a poor match to the data, over-estimating the contribution from Zn-Zn 

paths. The results were similar whether paths from sphalerite or wurtzite theoretical 

calculations were used. Inclusion of 3-leg multiple scattering paths had no effect on the 

fit.  
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 In contrast, a good fit to the data was obtained when the first three shells were 

given independent Debye temperatures (see Fig 8). To a good approximation, the best-

fit Debye temperatures of the second and third shells are equal, and this is assumed in 

the calculations below. To obtain whole-particle EXAFS spectra, we performed three 

calculations. It was essential that each calculation averaged the EXAFS from every Zn 

atom in the nanoparticle because every site is unique. The desired EXAFS interference 

function, χ(k), was obtained from: 

χ(k) = χ{Zn0 → S3
MS | θD

2} − χ{Zn0 → S1
SS | θD

2} + χ{Zn0 → S1
SS | θD

1 }   (10) 

where, for example, χ{Zn0 − S3
MS |θ D

2 } indicates the total contribution for the first three 

shells (single and multiple scattering) calculated using the second shell Debye 

temperature θ D
2  (note that θ D

2  = θ D
3 ). 

In an alternative approach, MD simulations have been used to combine a 

statistically significant number of individual thermal configurations of periodic bulk 

materials [45] or hydrated ions [46]. However, this is impractical for a 3 nm 

nanoparticle containing > 700 atoms. 

4. XANES spectroscopy 

We used frame-averaged atomic coordinates generated by MD simulations of 

3 nm ZnS nanoparticles to calculate whole-nanoparticle Zn K XANES that can be 

compared to the data. Provided x-ray absorption theory is adequate for this system, such 

calculations provide a new and stringent test of MD structure predictions. Unlike 

calculations of bulk crystalline materials, no atomic sites in nanoparticles are truly 

equivalent. We therefore calculated whole-nanoparticle Zn K XANES considering 

every Zn site independently (i.e. we calculated the scattering potentials for each site 

individually). We normalized the calculated XANES spectra and aligned them to a 
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common Fermi energy before averaging. Because of the time consuming nature of this 

calculation, the only MD structure considered is that associated with water binding. We 

also calculated whole-nanoparticle Zn K XANES for the initial (unrelaxed) spherical 

3 nm sphalerite crystallite by calculating the potentials for each concentric shell of Zn 

atoms. Previous work has shown that the calculation on Zn K XANES in ZnS converges 

within a cluster radius of 10 Å [33], which we use as the cluster radius in the 

calculations performed here.  

i. Scattering potentials 

XANES calculations are very sensitive to the nature of the atomic scattering 

potentials. The self-consistent approach of FEFF 8 has been shown to be accurate for 

ZnS. Published data and simulations for the compounds ZnSO4 and ZnO [31] indicate 

FEFF is also suitable for calculating the scattering potentials associated with S-O and 

Zn-O bonds. Adjustment of the interstitial potential as recommended in the FEFF 

manual [27] resulted in better agreement in peak positions between theoretical and 

experimental Zn K XANES of ZnS.  

ii. Exchange-correlation potential 

The exchange-correlation potential affects the energy spacing of XAS lineshape 

features, and incorporates the finite range of the photoelectron [48]. Previous work has 

shown the Hedin-Lundqvist local density exchange approximation to simulate all the 

major absorption edges of ZnS well [33]. In this work, we consider near-edge Zn K 

absorption only, and, in agreement with Ref. 49, have found Dirac-Hara to be superior 

at this edge (the comparison is shown in Fig. 8).  

To approximately include a thermal contribution for the calculation of XANES, 

we adjusted by hand θ D , and added uniform broadening, until the calculated XANES 
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gave good agreement to data from the reference compounds. The best results of this 

procedure are shown in Fig. 8, and the calculation parameters are given in Table 2. A 

study of the thermal contributions to the XANES and EXAFS of ZnS will be the topic 

of a future manuscript.  

III. RESULTS 

A. WAXS Analysis 

As shown in Fig. 3 (and Ref. 6), the addition of water to a suspension of uncoated 

3 nm ZnS nanoparticles causes a profound change in the diffraction pattern. The 

splitting and sharpening of diffraction peaks in the structure factor, S(Q), show a 

reduction of structural disorder within the nanoparticles following water addition. The 

structure of hydrated nanoparticles more closely approaches that of bulk sphalerite, as 

seen from the appearance of the 220 and 311 diffraction peaks. From UV absorption 

measurements and TEM imaging, there is no coarsening of the nanoparticles following 

water addition [6]. Small angle x-ray scattering confirms this conclusion, and 

additionally indicates that the aggregation state is unchanged [50]. No x-ray scattering 

signal from water was observed in the real-space or reciprocal-space WAXS patterns 

[51].  

Fig. 3 also shows that there is a very good agreement between experimental X-ray 

scatting data, including the real-space pair distribution function (PDF), and theoretical 

patterns based on the results of MD simulations. In view of the data, and the predictions 

of the MD simulations, we conclude that the structural transformation is a consequence 

of water binding to the nanoparticle surface. Experiments are presently ongoing to 

understand the nature of the water-nanoparticle interaction.  
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For harmonic (thermal or static) disorder, a single, equilibrium real-space bond 

length generates a Gaussian peak shape in the PDF (implying a Gaussian distribution of 

bond lengths), plus finite-data termination ripples [52]. The Gaussian fits to the first 

shell of the WAXS PDF give Rmethanol = 2.316 Å, Rwater = 2.329 Å. The standard 

deviation of the Gaussian fits to PDF data is ∂(R) ≈ 0.001 Å. Thus, the relative 

difference in the Zn-S bond lengths in methanol-coated nanoparticles and water-coated 

ZnS nanoparticles is 0.013 Å. However, it is probable that the real distribution of bond 

lengths in one or both materials is non-Gaussian. The presence of non-Gaussian bond 

length disorder is suggested by quality of fit for the methanol-coated nanoparticles, as 

measured by the statistic χ2, which is ten-times worse than for the water-coated 

nanoparticles. These observations suggest a real structural difference between the 

methanol- and water-coated particles. However, from the present PDF analysis, we 

cannot distinguish whether it arises due to difference in the average bond length or from 

differences in the details of the asymmetry of the bond length distribution.  

B. EXAFS analysis 

Experimental Zn K-edge EXAFS data and first shell fits for the nanoparticle and 

bulk samples are shown in Fig. 4. The fit results are summarized in Table 1. 

Nanoparticles that are in methanol or rapidly dried appear to have greater bond length 

disorder (MSRD) and asymmetry (C3) and appear to have lower first shell coordination 

than water-coated nanoparticles. Due to the correlation between MSRD and 

coordination number, the results in Table 1 are likely to reflect an overall increase in 

disorder and not a decrease in coordination. 

The EXAFS fits included the possibility of non-Gaussian disorder and gave Zn-S 

bond lengths Rmethanol = 2.349 Å, Rwater = 2.348 Å. The bond length error estimated by 

the fitting code was ∂(R) ≈ 0.01 Å. These bond lengths differ from that obtained from 

– 16 – 



 

those obtained from the PDFs by 0.020 Å for Rmethanol and 0.026 Å for Rwater. This 

discrepancy may be due to the neglect of non-Gaussian disorder in the PDF analysis or 

to systematic errors [15]. For the reference sphalerite sample, the EXAFS fits give 

Rsphalerite = 2.347 Å. Thus, EXAFS data do not confirm the bond length contraction for 

methanol-coated nanoparticles, and there is no evidence for bond length contraction in 

the nanoparticles relative to bulk material.  

Studies on tetrahedrally-coordinated semiconductor nanoparticles have found that 

the first shell bond length may be modified [9,10,11] or unchanged [12,13,14] with 

respect to the bulk material. Rockenburger et al. concluded that the nature of the surface 

ligand determined the direction of bond length changes [9]. Covalently attached ligands 

caused an expansion, while ligands that were non-specifically bound via ionic ligands 

led to bond length contraction. Bond length contraction is often taken to indicate the 

presence of an internal excess (Gibbs) pressure, resulting from surface relaxation and 

reconstruction. However, isotropic strain models are inadequate. A many-shell PDF 

analysis of nanocrystalline diamond showed no simple relationship between the distance 

shifts of the first 8 shells (most shells showed contraction, but one showed expansion) 

[18]. Similarly, Carter et al. report a first shell contraction and a second shell expansion 

from EXAFS analysis of CdSe [11]. In general, small particle size and the presence of 

bond-bending disorder prevents meaningful structure analysis of second and higher 

shells in EXAFS data from nanoparticles.  

First shell analysis alone is thus insufficient to describe the structural 

modifications found in small particles. However, it is a clear test of the predictions of 

MD simulations. If all testable aspects of the MD predictions agree with experimental 

data, additional structural details may be taken with more confidence from the 

simulations. As described in the Methods, we fitted explicit real-space bond-length 

distributions to the bulk and nanoparticle EXAFS data. Fig. 5 shows the comparison 
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between the fitted bond-length distributions and the MD predictions of the nanoparticle 

Zn-S bond length in vacuum and with surface water. The MD simulations predict a 

bond length contraction for the nanoparticle in vacuum. By contrast, the experimental 

real-space data from EXAFS do not show any significant contraction in the structure of 

nanoparticles in methanol relative to nanoparticles in water. This conclusion is not 

affected by the neglect of thermal motion in the generation of the MD bond-length 

distribution.  

We have assumed that simulated structures of nanoparticles in vacuum can be 

compared to experimentally observed structures from nanoparticles in methanol. The 

discrepancy between the experimental and predicted bond-length distributions (Fig. 5) 

may indicate that this assumption is not valid. We attempted to determine whether 

neglect of methanol in the simulations would lead to a significant change in the 

structure prediction. It was not possible to do this by obtaining the PDF from isolated 

nanoparticles in vacuum. Consequently, we used two alternative datasets to investigate 

the effect of methanol on Zn-S bond lengths. 

First, we examined ZnS nanoparticles that were rapidly vacuum dried and 

measured in dry nitrogen at room temperature. These particles are anticipated to have 

surfaces coated with residual methanol and/or nitrogen. The WAXS pattern from this 

sample is very similar to the pattern from the suspension in methanol (Fig. 6), indicating 

no significant change in the Zn-S bond length associated with methanol removal.  

Second, we acquired S K edge EXAFS spectra on ZnS nanoparticles synthesized 

in methanol, after room temperature vacuum drying, and after methanol desorption at 50 

˚C and 2 x 10-6 Torr. As shown in Fig. 7, there is a significant change in the EXAFS 

transform associated with methanol desorption (this is a reversible effect, [6]). Thus, 

structural effects clearly do occur when methanol is removed. This implies that 
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methanol-ZnS interactions are significant in stabilizing nanoparticle structure. Although 

we cannot fully explain the relative contributions of disorder, coordination number 

changes, and asymmetry to the spectrum in Fig. 7, there was no evidence of first-shell 

bond-length contraction. In summary, the absence of bond length changes upon 

methanol removal support our decision to neglect surface methanol in MD simulations 

as a first approximation.  

C. Whole-nanoparticle XAS calculations 

Further evaluation of the structures predicted by MD are made by performing 

whole-nanoparticle calculations of XAS spectra. To compare experimental and 

theoretical XAS spectra it is important to consider thermal broadening. This is 

accomplished semi-empirically (see Methods). The results of the EXAFS and XANES 

calculations and the experimental data for the bulk reference materials are given in Fig. 

8.  

1. Pure sphalerite structure model nanoparticle 

Fig. 9 shows the whole-nanoparticle calculations of Zn K-edge XANES and 

EXAFS (the transform is shown). In the EXAFS transform, the calculated spectrum of 

the initial (unrelaxed) 3 nm nanoparticle is indistinguishable from the calculated bulk 

sphalerite spectrum. By contrast, the XANES spectrum of the initial (unrelaxed) 

nanoparticle shows significant broadening with respect to the bulk. The model 

calculations for the unrelaxed particle therefore indicate that EXAFS is not sensitive to 

particle size (for 3 nm particles) in the absence of disorder, while XANES is apparently 

sensitive to particle size. As discussed below, both EXAFS and XANES are sensitive to 

disorder.  
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The calculated EXAFS transform for the unrelaxed nanoparticle gives relatively 

poor agreement to the experimental data for the water-coated nanoparticle, particularly 

in over-estimating the second shell contribution. This is apparent when the curve 

predicted for 3 nm undistorted sphalerite is compared to the experimental curve shown 

in the inset to Fig. 9. This indicates that there is disorder in the nanoparticles, 

particularly bond-bending disorder [13], which reduces the second shell contribution to 

the EXAFS transform. In apparent contradiction, the same unrelaxed nanoparticle gives 

relatively good agreement with the experimental water-coated nanoparticle data in the 

XANES spectrum.  

2. MD simulations of nanoparticle structure 

We calculated the EXAFS transforms for the MD-predicted water-coated and 

uncoated nanoparticle structures. The MD simulations reproduce the experimental trend 

toward higher crystallinity with water adsorption, as indicated by enhancement of the 

second shell contribution following water-binding (arrow, Fig. 9). However, the 

magnitude of the calculated EXAFS signal for both water-coated and uncoated 

nanoparticles is significantly lower than that observed in the experimental data (inset to 

Fig. 9). It is notable that the calculated XANES for the water-coated nanoparticle shows 

extreme lineshape broadening and is in very poor agreement with experimental data.  

IV. DISCUSSION 

MD energy minimization accurately predicts the general effect of water binding 

on the structure of 3 nm ZnS nanoparticles, and gives very good quantitative agreement 

with WAXS data. However, EXAFS and XANES calculations for the same MD 

structures show much less agreement with the corresponding experimental data. In 

particular, the EXAFS and XANES calculations indicate the presence of excess 
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structural disorder in the MD simulations. Therefore, either the XAS measurements are 

sensitive to structural characteristics absent from the MD structures, or the theory used 

for whole-nanoparticle EXAFS and XANES simulation is inadequate.  

In the case of XANES, which gave poorest agreement, an important ingredient is 

missing from the theory. The neglect of a potential step (work function) at the surface of 

the nanoparticles means that low energy photoelectrons are not confined within the 

nanoparticle close to the absorption threshold. Surface potential barriers have been 

included in energy electron diffraction theory [53]. Long range multiple scattering is 

well known to be very important in determining accurate lineshape in the near edge 

region [48]. Inclusion of a surface barrier that confines the low energy scattered 

photoelectrons would reinforce scattering and interference close to absorption edge. If 

this was taken into consideration, the XANES of a model undistorted nanoparticle 

would show less lineshape broadening, thus much less dependence on size (Fig. 9).  

In contrast to XANES calculations, the whole nanoparticle EXAFS calculations 

only require consideration of the three nearest neighbor shells, and consequently are 

much less sensitive to the confining surface. The EXAFS calculations based on the MD 

simulations did reproduce some important features of the experimental data. For 

example, in both theory and experiment, only the first shell contribution was observed 

in the room temperature EXAFS transform for nanoparticles without water binding. 

This results from extensive cancellation of scattered photoelectron contributions due to 

strong disorder [54]. However, some important discrepancies are clear. The simulated 

EXAFS amplitudes were considerably lower than observed, indicating that the MD 

simulations predict too much disorder.  

Fig. 7 shows that methanol desorption may increase internal distortion. The 

associated reduction in the first shell S-Zn peak height brings the experimental data 
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closer to the peak heights predicted for nanoparticles in vacuum. However, even in the 

presence of water, EXAFS calculations indicate that the MD structures are too distorted 

(Fig. 9). This could be a consequence of the limited number of water molecules used in 

the simulation (86 water molecules for ~ 190 Zn and ~ 190 S surface atoms). Increasing 

the water coverage may improve the agreement with the experimental data.  

It is surprising that a structure obtained from MD simulations can give good 

agreement with experimental WAXS data, yet poor agreement with experimental 

EXAFS data. This implies that certain details of the structure have only a weak 

influence on WAXS but strongly affect the EXAFS signal. As described below, we 

infer that, in contrast to WAXS, EXAFS is sensitive to the distribution of static 

disorder.  

To demonstrate this point, a spherical 2.5 nm nanoparticle cut from a perfect 

sphalerite lattice was subjected to random atomic displacements, with the magnitudes of 

the displacements satisfying a Gaussian atomic position probability distribution function 

(consistent with harmonic vibrations [40]). In three runs, all atoms could be moved with 

equal probability; in three further runs, atoms farther from the center underwent larger 

displacements. The final total mean squared displacements (MSD), summed over the 

whole particle, and relative to the initial structure, are the same in every run 

(∑ui
2 ≈ 0.032Å2), and the displacements themselves sum to zero (∑ui ≈ 0 ). The MSD 

was chosen to give Zn-S bond length distributions similar in width to the MD 

nanoparticle simulation in vacuum. The resulting theoretical WAXS and EXAFS 

spectra are given in Figs. 10 a & b. In contrast to previous calculations of EXAFS, only 

first shell contributions are considered. The Q-weighted WAXS structure factors for all 

runs are indistinguishable, while clear differences between all k3-weighted EXAFS 

spectra are seen. Furthermore, the amplitudes of the EXAFS spectra are systematically 
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lower for model nanoparticles subject to uniform compared to surface-weighted atomic 

displacements.  

Applying the observation that more non-uniform disorder gives stronger EXAFS 

intensity (and vice versa), the combined WAXS and EXAFS results suggest that the 

disorder within the model nanoparticles should be more partitioned than predicted in the 

MD. That is, better agreement with the nanoparticle EXAFS data would be obtained if 

there were greater disorder (or reconstruction) at the surface and more periodicity in the 

interior. This would lead to better agreement in the real-space RDFs obtained from bond 

length fitting (Fig. 5) and in the theoretical and experimental whole-nanoparticle 

EXAFS transforms (Fig. 9). An atomic rearrangement that achieved this would 

maintain good agreement with the WAXS data if the overall structural disorder (relative 

to perfect sphalerite) were unchanged. This conclusion is in agreement with other 

groups who have proposed that surface reconstruction leads to a core-shell geometry 

within nanoparticles [18].  

WAXS and EXAFS interference functions are similar in origin, and both may be 

expressed as a sum of interference terms over atom pairs. For WAXS every pair 

contributes, while for each absorber atom in EXAFS only short range near-neighbors 

contribute due to the finite mean free path of the photoelectron. The near-neighbor 

contribution can be isolated from WAXS data by back-transforming the first-shell peak 

in the real-space PDF. As expected, when plotted with Q3-weighting, Fig 10 c shows 

that this partial structure factor shows a similar sensitivity to the distribution of disorder 

and to the particular set of atom coordinates as the first shell EXAFS spectrum (Fig 10 

b). Data quality precludes such a treatment of the experimental WAXS data in this case.  

V. CONCLUSIONS 
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MD simulations are used to investigate nanoparticle structure, producing specific 

predictions about interior and surface structure that would be a natural starting point for 

subsequent calculations of electronic properties and reactivity. However, validation of 

MD structures is essential before such predictions can be used with confidence. As 

theoretical methods to simulate x-ray absorption spectroscopies are now readily 

available, it is attractive to use them as complementary structural analyses to x-ray 

diffraction. Combined whole-particle EXAFS and WAXS studies are a more stringent 

test of nanoparticle structure predictions than WAXS alone, although we conclude that 

further theory development is required for multiple scattering calculations of XANES 

for nanoscale systems. XANES calculations suffer excessive broadening of fine 

structure due to the absence of a confining surface potential barrier, but this does not 

affect EXAFS calculations. Furthermore, as a sum of local measurements, EXAFS is 

more sensitive than WAXS to the distribution of static disorder (unless WAXS data is 

treated unconventionally). As a consequence, EXAFS data could provide additional 

constraints for structure analysis.  

Molecular dynamics simulations predict that the binding of water to ZnS 

nanoparticle surface produces a significant increase in crystallinity. Experimental 

WAXS, EXAFS and XANES firmly corroborate this trend. By combining EXAFS and 

WAXS data and MD simulations, we conclude that structural disorder is strongly 

partitioned between interior and surface regions.  
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 sphalerite nano ZnS 

in MeOH 

nano ZnS 

+ H2O 

nano ZnS 

DRY 

ΔE ( eV) 0.33 0.0 0.26 0.51 

CN [4] 3.6 4.0 3.3 

R (Å) 2.347 2.349 2.348 2.354 

MSRD2 (10-3 Å2) 5.1 7.0 6.8 7.8 

C3 (10-4 Å2) [0] 3.0 2.3 2.7 

χ2 944 10900 3181 848 

Table 1.  
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EXAFS Parameters 

 ΘD1 / K ΘD2 / K ΘD3 / K 
Sphalerite 433.1 262.0 264.2 

Wurtzite 476.0 246.5 285.2 

XANES Parameters 
  ΘD / K 200 

Rscf / Å 4 Rfms / Å 10 

lscf / Å 2 lfms / Å 2 

ΔEF / eV 3.0 ΔEi / eV 0.0 

 

Table 2.  
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Figure 1. Energetic state diagram for the molecular dynamics simulations 

performed in this work. Spherical model nanoparticles cut from a sphalerite 

lattice were dynamically relaxed with or without surface water. The experimental 

transition pathway is shown by the dashed line. EA is the (unknown) activation 

energy; EW is enthalpy of water binding and lattice rearrangement. From MD 

simulations, Ew ~ 500 kJ/mol H2O at 3 H2O/nm2 ZnS surface coverage [6].  

Figure 2. Solvent and window background subtraction from in situ wide angle X-

ray scattering data from a suspension of ZnS nanoparticles in methanol. All 

spectra at the same scale, but resulting sample data and fitted atomic form 

factors have been displaced for clarity.  

Figure 3. Wide angle X-ray scattering observation of the water-driven structural 

transition. Q-range = 0.3 – 22 Å-1. Experimental data (dotted lines) are 

compared with theoretical curves derived from MD simulation (solid lines). Top: 

Structure factor, S(Q); Bottom: pair distribution function, G(r). Curves are 

displaced for clarity.  

Figure 4. Experimental Zn K-edge X-ray absorption spectra from bulk and 

nanocrystalline ZnS. a) k3-weighted EXAFS spectra; b) magnitude of the 

Fourier transform, including fit to first shell (data = symbols, fit = line); c) back-

transformation of first shell and fit (data = symbols, fit = line). d) XANES spectra. 

Key to spectra: 1. Wurtzite reference. 2. Sphalerite reference. 3. Nanocrystalline 

ZnS in methanol following addition of water. 4. Nanocrystalline ZnS in methanol 

without additional water.  
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Figure 5. Nanoparticle Zn-S partial radial distribution functions (Zn-S RDF) with 

and without surface water from fits to Zn K-edge EXAFS data, compared with 

RDFs from structures predicted by MD simulation. The curves have been 

displaced for clarity. The thermal motion of MD atoms was not considered. 

Inset: The nanoparticle RDFs and the bulk sphalerite (Sph) RDF superimposed 

at the same scale. 

Figure 6. Wide angle X-ray scattering data from 3 nm ZnS nanoparticles 

suspended in methanol and the powder obtained from rapidly drying the 

suspension at room temperature. The data from the dry powder is higher quality 

than from the suspension. However, there is no detectable structural 

consequence of drying. The dry powder data were acquired and treated 

identically to the data in Fig. 1. 

Figure 7. S K-edge EXAFS transforms from powders of 3 nm ZnS nanoparticles 

in vacuum, before and after thermal desorption of methanol. The reduction in 

the first shell (S-Zn) peak height indicates that methanol desorption increases 

structural disorder. 

Figure 8. Theoretical calculations of room temperature Zn K EXAFS (left) and 

XANES (right) from bulk wurtzite and sphalerite reference compounds, including 

the effects of thermal disorder. The EXAFS calculations include only the three 

nearest neighbor shells. The best fit EXAFS Debye Temperatures, and the 

parameters for the XANES calculations are given in Table 2. The Hedin-

Lundqvist (H-L) exchange potential gives better results than the Dirac-Hara (D-
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H) potential for Zn K XANES calculations for bulk sphalerite and wurtzite 

(comparison for wurtzite not shown). 

Figure 9. Left: Simulated Zn K-edge EXAFS transforms for bulk sphalerite and 

nanoparticle model structures: initial (unrelaxed) 3 nm sphalerite model 

nanoparticle; MD relaxed water-coated nanoparticle; and MD relaxed uncoated 

nanoparticle. The whole-nanoparticle EXAFS calculations included contributions 

from the first three shells only, with Debye Temperatures: Θ1 = 430 K, 

Θ2 = Θ3 = 260 K. Inset: Simulated EXAFS transform for MD relaxed water-

coated nanoparticle superimposed against experimental water-coated EXAFS 

transform.   

Right: Experimental Zn K-edge XANES spectrum for water-coated ZnS 

nanoparticles (solid curve) compared with simulated XANES spectra for bulk 

sphalerite (top curve). Plus simulated whole-nanoparticle XANES spectra for 

model nanoparticles structures: initial (unrelaxed) 3 nm sphalerite model 

nanoparticle; and MD relaxed water-coated nanoparticle. The parameters for 

the XANES calculations are given in Table 2. 

Figure 10. Theoretical calculations of WAXS and Zn K-edge EXAFS spectra for 

six spherical 2.5 nm model ZnS nanoparticles, subjected to random atomic 

displacements that add static disorder, until the sum of the mean squared 

displacements (relative to the initial perfect structure) reached 0.032 ± 0.001 Å2 

in every case. For three model nanoparticles, the disorder was applied 

uniformly; for the remaining three it was applied non-uniformly (surface-
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weighted). In a), the Q-weighted WAXS spectra are indistinguishable, while in 

b), each k3-weighted first-shell EXAFS spectrum is distinct. In particular, the 

amplitudes of the EXAFS oscillations are systematically lower for uniform vs. 

non-uniform disorder. In c) we plot the Q3-weighted WAXS structure factor of 

the first-shell only, obtained by applying the inverse sine transform to the first-

shell peak in the real-space radial distribution function associated with a). These 

spectra show a similar sensitivity to the distribution of disorder as the EXAFS 

spectra in b).  

Table 1. Fit results from Zn K edge EXAFS of ZnS bulk (sphalerite) and 

nanoparticles in methanol, after the addition of water, or dried. Fit ranges: 

k = 2.5-12 Å-1; r = 1.2-2.8 Å. So
2 = 0.96 was obtained from a fit to the sphalerite 

reference. Values in square brackets were held constant during the fit. Errors: 

∂(CN) ≈ 0.5;  ∂(R) ≈ 0.01 Å;  ∂(MSRD) ≈ 1.6 x 10-3 Å2;  ∂(C3) ≈ 2 x 10-4 Å2. 

Table 2. Zn K-edge EXAFS parameters: the best fit values of Debye 

temperature, ΘD3, to the first three shells of sphalerite and wurtzite (fit given in 

Fig. 8), using the Hedin-Lundqvist exchange potential. Zn K-edge XANES 

parameters: ΘD is the Debye temperature; Rscf (Rfms ) is the cluster radius for 

the self-consistent muffin-tin potential (full multiple scattering) calculation; lscf 

(Ifms) is the maximum angular momentum contribution for the self-consistent 

muffin-tin potential (full multiple scattering) calculation. ΔEF is the Fermi energy 

shift. ΔEi is a constant broadening contribution. We used the Dirac-Hara 

exchange potential plus the INTERSTITIAL card, as detailed in the FEFF 

manual [29].  
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