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Risky actions: Why and how to estimate variability in motor 
performance

John M. Franchaka,*, Christina M. Hospodarb, Karen E. Adolphb

aDepartment of Psychology, University of California, Riverside, United States of America

bDepartment of Psychology, New York University, United States of America

Abstract

We describe the difficulties of measuring variability in performance, a critical but largely ignored 

problem in studies of risk perception. The problem seems intractable if a large number of 

successful and unsuccessful trials are infeasible. We offer a solution based on estimates of 

task-specific variability pooled across the sample. Using a dataset of adult performance in 

throwing and walking tasks, we show that mischaracterizing the slope leads to unacceptably 

large errors in estimates of performance levels that undermine analyses of risk perception. 

We introduce a “pooled-slope” solution that approximates estimates of individual variability in 

performance and outperforms arbitrary assumptions about performance variability within and 

across tasks. We discuss the advantages of objectively measuring performance based on the rate 

of successful attempts—modeled via psychometric functions—for improving comparisons of risk 

across participants, tasks, and studies.
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1. Introduction

Risk perception is critical for action planning across the lifespan—a baby deciding whether 

to step off the couch, a teen deciding when to cross a busy street, or an elderly person 

deciding if they can walk over slanting ground. But how do you know if an action is 

safe or risky, easy or difficult? Actors—like the researchers observing them—estimate risk 

based on the likelihood of successful performance combined with the penalty for errors 

(versus rewards for success). This paper focuses on how the likelihood of successful versus 

failed performance relates to risk: The lower the probability of success, the greater the 

difficulty and potential risk. Because bodies and skills vary widely, motor performance 

varies widely—even among people of the same age performing the same task (Franchak, 

2019; Ishak et al., 2014; O’Neal et al., 2016; Warren & Whang, 1987; Wilmut & Barnett, 

2011). Thus, researchers must measure performance for each participant rather than assume 

it a priori. That is, to denote people’s decisions as “accurate,” “cautious,” “reckless,” and 

so on, researchers must know the likelihood of success for a particular person attempting a 

particular action.

1.1. A psychophysical approach to motor performance

Optimally, researchers parametrically vary environmental units to determine the actual 

success level for each participant in each task (e.g., smaller to larger couch heights for each 

baby, slower to faster traffic flows for each teen, shallower to steeper slants for each elderly 

person). A psychophysical approach to modeling motor performance facilitates comparisons 

across parametric task variations because it reduces performance over repeated trials to two 

parameters. The threshold parameter reflects the environmental unit where the likelihood 

of success is 50 %. And the slope parameter reflects performance variability—that is, how 

rapidly the likelihood of success decreases from ~100 % (nearly always safe) to ~0 % 

(nearly always risky) with change in environmental units (Franchak, Adolph, 2014a).

Fig. 1A and B show examples of two infants’ attempts to walk over bridges varying in 

width. Of course, narrower bridges were riskier (babies were more likely to fall) and 

wider bridges were safer (babies were more likely to succeed). The psychometric functions 

quantify the likelihood of success across all possible environmental units by specifying 

the bridge widths where each infant’s success rate approached 0 % and 100 %. Thus, the 

difference in thresholds for baby A (16.8 cm) and baby B (22.0 cm) shows that baby A could 

walk over narrower bridges than baby B, meaning that a 22 cm bridge was more difficult for 

baby B than for baby A.

However, motor performance is a continuous measure such that each bridge width (including 

interpolated widths that were not tested) is associated with its own likelihood of success for 

each participant. The larger slope (flatter curve) for baby A reflects more gradual change in 

the likelihood of success across bridge widths, and the smaller slope (steeper curve) for baby 

B reflects more rapid changes in the likelihood of success. These differences in performance 

variability mean that the more variable baby A achieved 75 % success at 2.1 cm larger 

than their threshold, whereas the more consistent infant B achieved 75 % success at only 

0.2 cm larger than their threshold. Thus, accurate estimation of motor performance (and by 
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extension, risk level) across parametric variations in a task requires robust estimates of both 

the threshold and the slope.

1.2. The importance of accurate estimates of performance variability for comparing risk 
across tasks, people, and sessions

Researchers—like everyone else—frequently make crude, a priori assumptions about risk. 

Walking over a wider bridge is safer than walking over a narrow one (Kretch, Adolph, 

2013b), descending from a high platform is safer than stepping over a low drop-off (Kretch, 

Adolph, 2013a), walking through a wide doorway is safer than squeezing through a narrow 

one (Comalli et al., 2013; Franchak, 2019, 2020; Franchak, Adolph, 2014b; Wilmut & 

Barnett, 2011), crossing a street is safer when the time gap between cars is longer (O’Neal 

et al., 2016; Plumert et al., 2007), and so on. Albeit true, such simple a priori assumptions 

about relative difficulty (narrower bridges and doorways are generally more difficult than 

wider bridges and doorways, etc.) is not the same thing as quantifying the likelihood of 

success. The latter requires empirical measurement of motor performance.

To quantify performance, researchers frequently compare people’s abilities based on 

psychophysical estimates of their thresholds. For example, some 14-month-old babies can 

safely walk over a 12-cm wide bridge, whereas other 14-month-olds display thresholds of 

30 cm (Kretch, Adolph, 2013b). Some 18-month-olds can safely walk down 28-cm high 

drop-offs, whereas other 18-month-olds display thresholds of 2 cm (Karasik et al., 2016; 

Kretch, Adolph, 2013a). Some 18-month-olds can walk down 40° ramps, whereas other 18-

month-olds display thresholds of 12° (Tamis-LeMonda et al., 2008). Individual differences 

in participants’ abilities within a task mean that participants have different likelihoods of 

success given the same environmental challenge.

However, environmental units like bridge widths, drop-off heights, and ramp degrees vary 

continuously meaning motor performance also varies continuously. A common strategy 

for comparing performance at multiple environmental units is to center each participant’s 

data around their threshold and then compare performance at units smaller or larger than 

the threshold (Adolph, 1995; Franchak & Adolph, 2012; Kretch, Adolph, 2013a, 2013b; 

Plumert, 1995). However, this strategy lacks precision if individual slope estimates differ, as 

in infants A and B in Fig. 1. In other words, bridge widths 5 cm narrower than threshold, 

drop-offs 5 cm higher than threshold, and ramps 5° steeper than threshold entail very 

different difficulties for participants with flatter or steeper psychometric functions. Thus, to 

compare performance across units relative to threshold, researchers require accurate slope 

estimates.

Moreover, when environmental units differ across tasks (as in centimeters of bridge width 

versus degrees of slant) or hold different functional meanings (as in centimeters of bridge 

width versus centimeters of drop-off height), cross-task comparisons are so compromised 

as to be nearly meaningless. That is, there is no reason to assume that walking over a 

bridge 5 cm narrower than threshold is just as difficult as walking down a ramp 5° steeper 

than threshold or even over a drop-off 5 cm higher than threshold. Cross-task comparisons 

would be feasible if performance were equated based on a unit-less metric such as standard 

deviations from threshold (like a Z-score). However, as in within-task comparisons of 
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performance, cross-task comparisons using such a unit-less metric require accurate slope 

estimates.

1.3. Challenges in estimating performance variability

A well-known maxim in psychophysics is that estimating a slope parameter is more 

challenging than estimating a threshold parameter (Wichmann, Hill, 2001a, 2001b). The 

challenge arises for several related reasons. First and foremost, slope estimates require more 

trials than threshold estimates because the same threshold can result from an infinite number 

of slopes (imagine a family of psychometric functions centered around a single threshold). 

And the more variable the performance, the more trials are needed per participant. Because 

thresholds vary widely among individuals, researchers use adaptive methods, such as 

staircase procedures (Cornsweet, 1962; Kingdom & Prins, 2010), to minimize the number 

of trials to estimate threshold and to place trials where they will be maximally informative 

(Franchak, Adolph, 2014a). The more trials needed to estimate the threshold, the fewer trials 

are left to fine-tune the slope estimate. Thus, some studies in visual psychophysics collect 

hundreds or thousands of trials per participant per task to ensure robust slope estimates (e.g., 

Strother & Kubovy, 2006).

Second, each trial comes at a cost. Immense numbers of trials are feasible in psychophysical 

studies of adult visual perception, where each trial lasts only a few seconds and a seated 

observer responds with a mere button press. But not so for many studies of motor action. 

Walking through doorways (Franchak, 2020; Franchak, Adolph, 2014b; Wagman & Malek, 

2007; Yasuda et al., 2014) or stepping over barriers (Comalli et al., 2017; Snapp-Childs 

& Bingham, 2009) require more effort and time than a button press. And trials are even 

more costly in tasks like swinging on monkey bars (Cole et al., 2013), leaping over gaps 

(Day et al., 2015), and climbing up rock walls (Hacques et al., 2021). The cost per trial is 

exaggerated in infants and children, who become fussy and noncompliant, requiring many 

easy trials to stay motivated. And the cost is greater for participants who tire quickly, such as 

infants and elderly people. The higher the cost, the fewer trials can be collected in total.

Third, trials must be informative to fit the psychometric function. That is, each participant 

must contribute both successful and unsuccessful trials along the inflection of the curve. 

Trials far on the tails of the curve are less informative because researchers can assume ~100 

% success on easy trials such as a 100-cm wide bridge, 0-cm high drop-off, or a 0° slope 

and they can assume ~0 % success for a 1-cm wide bridge, 200-cm high drop-off, and 70° 

ramp. Collecting data along the inflection of the curve is more informative, but only if there 

are enough trials to accurately estimate the performance level. With only 1 trial, the outcome 

can be either 0 % or 100 %, with 2 trials, the outcome can be 0 %, 50 %, or 100 %, and so 

on. With many trials at a unit, it is possible to precisely measure how small variations in an 

environmental unit result in subtle differences in performance. In some cases, the researcher 

can present multiple trials at a unit and ask participants to attempt each one (Franchak, 2017; 

Hospodar et al., 2023; Labinger et al., 2018).

However, in many cases, eliciting multiple attempts at a difficult environmental unit is 

not possible due to participant compliance or safety. For example, elderly adults were 

reluctant to fall from a narrow ledge, despite the presence of a spotter, so participants 
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refused to attempt to walk over ledges where they thought they would fall—resulting in 

many successes and few or no failures (Comalli et al., 2013). Babies become frustrated when 

attempting difficult or impossible increments such as walking over narrow bridges (Fig. 1), 

down steep ramps, over high drop-offs, or under low barriers, resulting in too few trials at 

difficult performance levels, and some babies never attempt increments where they will fail 

(Franchak & Adolph, 2012; Kretch, Adolph, 2013a; Rachwani et al., 2022; Tamis-LeMonda 

et al., 2008). The consequence of insufficient numbers of unsuccessful trials are poor 

psychometric fits that mischaracterize the variability. Fig. 1C shows an example where the 

baby contributed only one unsuccessful trial—leading to an uncertain estimate of the slope 

that may not characterize the infant’s true performance variability. Both the smaller (black 

line) and larger slope (dashed gray line) are potential fits, but more data would be needed to 

differentiate the possibilities. As a consequence, lack of trials at difficult risk levels makes it 

challenging to estimate the slope.

1.4. Current study

We present a new psychophysical method for estimating performance variability that meets 

the challenges inherent in comparing physical risk across tasks with different units or 

functional meanings, across participants with different performance variability due to skill 

differences, and across sessions with different performance variability due to learning or 

development. We tested the effectiveness of our method for dealing with the additional 

problems introduced by small numbers of imbalanced trials as is typical in studies with 

infants, children, and elderly adults or in tasks where motor performance is especially costly.

We used an existing dataset of adults throwing a beanbag through doorways and walking 

sideways through doorways of varying widths (Hospodar et al., 2023). Although doorway 

width was measured in the same units (cm) in both tasks, throwing a beanbag and 

walking through doorways have different functional meanings in terms of difficulty and 

risk. Thus, comparisons across tasks should be based on performance level in % success 

rather than absolute environmental units, but this would require accurate estimates of 

the slope. Critically, each participant contributed a relatively large number of trials (75 

per task) with multiple trials at easy and difficult environmental units. Thus, we treated 

the individual fits to each participant’s 75 trials of data as the “ground truth” estimates 

for performance variability in each task. We then tested how alternative estimates of 

performance variability compare to the ground truth estimates. Based on individual slope 

estimates from psychometric functions fit through each participant’s data in each task, the 

prior work revealed differences in performance variability across participants within each 

task, and showed that performance variability across participants was greater for throwing 

compared with walking.

The throwing/walking dataset was ideally suited to address four related aims. First, we 

tested whether differences in performance variability lead to differences in the robustness 

of slope estimates. More trials are needed to estimate the slope of a psychometric function 

when variability is larger (curve is flatter) than when it is smaller (curve is steeper). Thus, 

we compared the size of the confidence intervals around slope estimates in the throwing 

task to the confidence intervals in the walking task while keeping the number of trials 
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constant across tasks. We predicted larger confidence intervals (indicating inconsistent slope 

estimates) for throwing than for walking.

Second, we tested the consequences of misrepresenting performance variability (slope 

estimates), an issue that arises when researchers assume risk level a priori rather than 

measure it empirically. Thus, we calculated a new metric, a “performance estimation error 

score,” that reveals errors in performance estimation (estimated % success) at every point 

along the psychometric function. Specifically, we compared the ground truth slope estimates 

(based on individual participant fits using all 75 trials) in the throwing and walking tasks 

with the misrepresented slope estimates researchers would obtain if they assumed identical 

performance variability across the two tasks—as is typical in risk-perception research (e.g., 

Franchak, 2020; Franchak et al., 2012; Plumert, 1995; Yasuda et al., 2014). We predicted 

that misrepresented slopes would lead to unacceptably large performance estimation error 

scores.

Third, we tested whether data pooled across participants in a task can replace individual 

estimates of performance variability in studies where participants cannot contribute a 

sufficient number of trials to estimate individual slopes. Thus, we calculated a “pooled 

slope” estimate for each task by normalizing each participant’s data to their threshold and 

then fitting a psychometric function to the pooled data. We compared the pooled slope 

to the individual ground truth slope estimates and to the misrepresented slope estimates. 

We predicted that the pooled slope provides acceptable estimates of performance for most 

individual participants.

Finally, we tested whether the pooled slope is robust for use with datasets where participants 

contribute only a small number of imbalanced trials, as is common in studies with 

participants who are loath to fail (e.g., infants, children, and elderly adults). Thus, we 

simulated such cases by “degrading” the original data to varying degrees to approximate 

small, imbalanced datasets that lack data at difficult environmental units. Then we compared 

the performance estimation error (relative to ground-truth risk estimates) in individual fits 

versus the pooled slope for degraded datasets. We predicted that the pooled slope would 

provide performance estimation errors less than or equal to errors from individual slope 

estimates when fitting psychometric functions under the degraded conditions.

2. Method

All analyses in this paper were based on a dataset openly shared on Databrary 

(databrary.org/volume/1448) and described in Hospodar et al. (2023). The processed 

data and code to reproduce our analyses are available on OSF (DOI: 10.17605/OSF.IO/

WNCBK).

2.1. Procedure for throwing/walking dataset

Thirty participants (18 women, 12 men) aged M = 25.7 years participated in the throwing 

and walking tasks. Each participant contributed 75 trials to each task, split approximately 

evenly between successful and unsuccessful trials, with trials blocked between the two tasks 

and task order counterbalanced. Participants stood 1.5 m from a doorway that could be 
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adjusted in width from 0 to 74 cm. On each trial, doorway width was determined by an 

adaptive psychophysical procedure, where width was increased or decreased depending on 

the participant’s success on the previous trial. The procedure was tailored to individual 

participant’s responses so as to minimize the total number of trials while placing trials along 

the inflection of the psychometric function to be maximally informative.

The edges of the doorway were lined with small bells that jingled if touched. In the throwing 

task, participants attempted to throw a beanbag through the doorway without the beanbag 

touching the edges of the doorway. On successful throws, the beanbag passed through 

the doorway without ringing the bells. In the walking task, participants attempted to walk 

sideways through the doorway without touching the sides of the doorway. On successful 

walks, the participant passed through the doorway without ringing the bells.

2.2. Individual threshold and slope estimates in the throwing/walking dataset

Using the quickpsy package in R (Linares & López-Moliner, 2016), Hospodar et al. (2023) 

fit cumulative normal psychometric functions to the success rates for each participant in 

each task by estimating parameters for the threshold and the slope. Here, we treated the 

individual psychometric functions as the “ground truth” dataset because they contained 

a sufficient number of trials (75) to robustly estimate the threshold and slope for each 

participant. For each participant and task, Hospodar et al. (2023) calculated the success rate 

as the percent of successful attempts at each doorway width. The success rate estimates 

the performance level for that participant for a particular doorway width—a success rate 

of 0 % indicates the action is impossibly difficult and thus riskier, whereas a success rate 

of 100 % indicates the action is a “sure thing” and thus safer. Each symbol in Fig. 2A 

shows the success rate for walking (in blue) and throwing (in orange) for each participant. 

The solid lines in Fig. 2A show the psychometric functions, the white squares show the 

threshold estimates (the doorway width where likelihood of success was 50 %), and the 

flatness or steepness of the curves show the slope estimates (the change in likelihood of 

success with each change in doorway width relative to threshold). Thus, thresholds denote 

the doorway width where the likelihood of success is 50 %, whereas slopes denote how 

rapidly performance changes for doorways smaller or larger than threshold.

Overall, thresholds for throwing ranged from 14.2 cm to 27.1 cm (M = 19.2), and thresholds 

for walking ranged from 29.4 cm to 39.5 cm (M = 34.3). That is, participants could throw 

beanbags through much narrower doorways than they could walk through, but thresholds 

varied widely within tasks based on participants’ body size and throwing ability. Overall, 

slopes for throwing ranged from 4.0 cm to 20.9 cm (M = 7.64 cm), and slopes for walking 

ranged from 0.27 cm to 7.56 cm (M = 2.08 cm). That is, performance changed rapidly 

around the threshold for the walking task, but performance varied more gradually around the 

threshold for the throwing task because throwing was less consistently successful. Note that 

slope estimates of a cumulative Gaussian function are in the same units as the threshold (in 

this case, centimeters).
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3. Results

We report four related sets of results. First, we show that task-specific differences in 

performance variability lead to differences in the robustness of slope estimates. Second, we 

show that misrepresentation of performance variability leads to large errors in performance 

estimation within tasks. Third, we show that pooled slopes provide an acceptable estimate 

of performance level when used in place of individual psychometric functions. Finally, we 

show that pooled slopes more accurately estimate performance compared with individual 

slope estimates when the total number of trials or number of unsuccessful trials is small.

3.1. Task-specific differences in performance variability lead to differences in accuracy of 
slope estimates

With the throwing/walking dataset, we empirically demonstrated a well-known problem 

in psychophysics—that more trials are needed to estimate the slope when variability is 

larger (as in throwing) compared to when it is smaller (as in walking). We conducted 1000 

parametric bootstraps for each participant’s data in each task and then refit the psychometric 

functions to derive 95 % confidence intervals for the slope estimates. Small confidence 

intervals denote robust slope estimates across parametric variations in the data whereas large 

confidence intervals indicate inconsistent slope estimates.

Fig. 2B shows the size of the 95 % confidence intervals for the slope estimate for each 

participant, ordered by the size of the confidence intervals for the throwing task. One 

participant’s (#9) slope in the throwing task could not be reliably estimated in the majority 

of simulations and so was omitted. Greater variability in the throwing task resulted in larger 

confidence intervals for throwing (M = 5.22 cm) compared with walking (M = 1.03 cm) 

even though each task had the same number of trials. The problem of large confidence 

intervals (hence, poor slope estimates) is compounded in cases where fewer trials are 

available, as we describe in the final section of the results.

3.2. Misrepresented performance variability leads to large errors in estimates of 
performance level

Accurate estimates of performance variability—slope parameters—are critical to 

characterize the likelihood of success. So we tested the consequences of misrepresenting 

performance variability as occurs when researchers assume equal variability across tasks. 

(Note, the same consequences arise if researchers assume that variability is constant across 

people or across sessions, or if researchers do not measure variability at all.) Thus, to test the 

accuracy of performance estimates when assuming that the variability of one task is equal to 

that of another, we swapped slope estimates for throwing and walking, where differences in 

performance variability were large.

Fig. 3A–B illustrates the consequences of misrepresenting performance variability for one 

participant (#4 in Fig. 2A). The participant’s ground-truth slopes (in gold) show the success 

rate for doorways larger and smaller than the participant’s throwing and walking thresholds. 

The “swapped slope” estimate (in purple) for the throwing task (Fig. 3A) was the ground-

truth slope for the walking task, and vice versa for the walking task. We calculated a 
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“performance estimation error” to quantify the size of the deviations (in performance-level 

units of % success) between the true success rate in the ground-truth slope model and the 

success rate in the swapped-slope model. The deviations from the swapped-slope model 

(vertical purple lines) to the ground-truth slope model show the size of the errors in 

estimating performance at a few exemplar units (1, 3, and 5 cm larger than threshold). 

The longer the line, the larger the error.

Fig. 3C shows the range in performance estimation errors for each participant (thin purple 

lines) across doorway widths. Because the cumulative normal psychometric function is 

symmetrical around the threshold, the figure shows only positive values up to 5 cm larger 

than threshold. Exemplar participant #4 is shown in Fig. 3C with a thick purple line; circles 

indicate the example points at 1, 3, and 5 cm from Fig. 3A–B. Although a few participants 

had similar slopes for the two tasks (and thus small performance estimation errors when the 

slopes were swapped), most did not. The average performance estimation errors (thick black 

lines) are identical for throwing and walking because the slopes were swapped between 

tasks. The average performance estimation error was smallest at 0.5 cm from threshold 

(10.5 % error) and largest at 2.5 cm from threshold (26.1 %). Thus, a large error in 

misrepresenting the slope parameter results in large errors in estimations of participants’ 

performance levels at units smaller and larger than threshold.

3.3. Pooled slopes provide acceptable estimates of performance level

Robust estimates of the slope are precluded when performance variability is large and/or the 

total number of trials or number of unsuccessful trials are small. Thus, we present a new 

procedure to estimate a “pooled slope” for each task, and we tested whether the pooled slope 

estimate can be used in lieu of individual slope estimates.

The pooled slope combines data across participants in a task. However, because participants 

had a wide range of thresholds for walking and throwing (Fig. 2A), as is typical in many 

motor tasks, we first centered each participant’s environmental units (doorway width) to 

their thresholds. Note, threshold estimates based on a smaller number of trials are often 

robust even when slope estimates are not (Wichmann, Hill, 2001a). Thus, we centered 

each participant’s data by subtracting their threshold from each doorway width such that 0 

on the x-axis of Fig. 4A denotes success rate at threshold (50 %). Values smaller than 0 

denote increasingly risky doorway widths with a lower likelihood of success; values larger 

than 0 indicate increasingly safe doorway widths with a higher likelihood of success. With 

each participant’s data centered to a common performance scale, we pooled data across 

participants in each task. The symbol size in Fig. 4A denotes the number of trials at each 

unit pooled across participants. The adaptive procedure used to choose doorway widths 

resulted in more frequent trials near threshold compared with trials at units more distant 

from threshold.

Next, we fit a psychometric function to the pooled data for each task. As with individual 

psychometric functions, we fit a cumulative normal psychometric function by estimating the 

threshold and slope using the quickpsy package (Linares & López-Moliner, 2016). The solid 

lines in Fig. 4A show the pooled psychometric functions for each task. The resulting pooled 

slopes (7.6 cm for the throwing task and 2.4 cm for the walking task) can now be considered 
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as a replacement for individual slope estimates. Fig. 4B–C visualizes the goodness of fit 

by plotting ground-truth individual slope psychometric functions against the pooled slope 

psychometric functions.

As with the swapped-slope estimates, we calculated performance estimation errors for the 

pooled slope estimates. Fig. 3A–B shows the performance estimation error for throwing and 

walking for the pooled slope (in teal) relative to exemplar participant #4’s individual ground-

truth slope estimates (in gold). The vertical teal lines show the size of the performance 

estimation error at 1, 3, and 5 cm. Each line is shorter for the pooled slope compared with 

the swapped-slope estimate, indicating that the pooled slope is a better estimate. That is, 

pooled-slope estimates of performance were closer to ground truth compared with swapped 

slope estimates.

Fig. 3D shows the performance estimation error from pooled slope estimates for each 

participant in each task. Compared to the swapped slopes in Fig. 3C, the average 

performance estimation errors for pooled slope estimates were less severe (thick black lines). 

For throwing, the mean pooled slope errors were smallest at 0.5 cm from threshold (0.9 %) 

and largest at 5 cm from threshold (6.1 %). For walking, the mean pooled slope errors were 

smallest at 5 cm from threshold (3.4 %) and largest at 2 cm from threshold (10.5 %). Put 

differently, the largest averaged error from pooled slope estimates was equal to the smallest 

averaged error from misrepresenting the slope (10.5 %), showing that pooled slope estimates 

are preferable to arbitrary slope estimates.

The pooled slope procedure provides a good estimate because each participant’s data is 

centered to a common performance scale (cm relative to threshold) before data are pooled. 

To illustrate the advantage of centering the data, we created an “uncentered aggregate” 

for each task by simply calculating the percent of successful trials at each environmental 

unit across participants. Supplemental Fig. 1A shows the resulting fits when data are 

aggregated without centering data to a common performance scale. Because participants 

have varying thresholds in each task, the simple aggregate fits in Supplemental Fig. 1A 

result in much larger estimates of performance variability—a slope of 12.2 cm for the 

throwing task (compared with a pooled slope of 7.6 cm) and a slope of 4.5 cm for the 

walking task (compared with a pooled slope of 2.4 cm). This overestimation happens 

because between-participant variability in thresholds is (erroneously) being counted in the 

estimate of within-participant performance variability. As expected, performance estimation 

errors for the uncentered aggregate fits were larger compared to those for the pooled 

slope procedure (Supplemental Fig. 1B). Across performance levels ±5 cm from threshold, 

performance estimation errors for the uncentered aggregate fits averaged M = 20.6 % for the 

throwing task and M = 12.5 % for the walking task. In contrast, pooled slopes performance 

estimation errors averaged only M = 7.4 % for the throwing task and M = 3.6 % for the 

walking task across the same performance levels.

3.4. Pooled slopes provide better estimates of performance than individual slope 
estimates for small numbers of imbalanced trials

Although individual slope estimates are preferable given sufficient data, many test situations 

allow only a small number of trials and/or a small number of unsuccessful trials. In 
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particular, infants, children, and elderly people can tolerate only a small number of trials 

and they sometimes refuse to attempt actions where they will be unsuccessful such as 

walking over impossibly narrow bridges (Kretch, Adolph, 2013b) or over impossibly narrow 

ledges (Comalli et al., 2013). Even with healthy, young, compliant adults, some tasks 

(e.g., arm-leaping on monkey bars), are so arduous or costly that only a small number of 

trials with a small number of unsuccessful trials are possible (Cole et al., 2013). Thus, we 

tested whether the pooled slope can provide more accurate estimates than individual slope 

estimates.

We created infant-inspired datasets by degrading the throwing/walking data in a series of 

simulations. For each participant in each task, we randomly selected 20 of their 75 trials 

under three conditions of imbalance: 15 successful and 5 unsuccessful trials, 17 successful 

and 3 unsuccessful trials, and 19 successful and 1 unsuccessful trial. Hence, we kept the 

total number of trials constant (20) but varied the number of unsuccessful trials. For each 

participant, task, and imbalanced-trial condition, we simulated 1000 datasets.

For each simulated dataset, we compared the performance estimation errors of individual 

slope estimates compared with curves that used pooled slope estimates with individual 

threshold fits. Fig. 5 shows the average performance estimation error across simulations 

and participants for each method (individual slopes in brown, pooled slopes in teal). We 

used 95 % confidence intervals to compare which estimate was most accurate. For example, 

at 0.5 cm from threshold in the walking task in Fig. 5 (leftmost highlighted points), the 

performance estimation error was 24.5 % for individual slopes compared with 16.0 % for 

pooled slope estimates and the 95 % confidence intervals did not overlap. The highlighting 

shows cases where the pooled slope estimate outperformed the individual slope estimate 

(non-overlapping confidence intervals where the pooled slope model had smaller errors 

than the individual slope model) and unshaded areas show where the confidence intervals 

overlapped.

Individual slope estimates never outperformed pooled slope estimates (confidence intervals 

always overlapped when performance estimation error was lower for individual slopes 

compared to pooled slope estimates). The pooled slope estimates were most effective in 

reducing performance estimation errors in the more variable throwing task for performance 

levels close to threshold when there were only 3 or 1 unsuccessful trials (Fig. 5). The pooled 

slope estimates were comparable to individual slope estimates for most performance levels 

in the walking task regardless of the number of unsuccessful trials, and for the simulations 

with 5 unsuccessful trials in the throwing task (Fig. 5).

4. Discussion

Using an existing dataset from Hospodar et al. (2023), we showed that performance 

variability critically influences physical risk because of its influence on the likelihood 

of successful action. We described a psychophysical procedure to accurately measure 

performance variability. Hospodar et al. (2023) found that variability of throwing beanbags 

through doorways exceeded variability for walking through doorways. Consequently, we 
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found here that slope parameter estimates for the more variable throwing task were less 

robust given the same, relatively large number of trials (75) as the less variable walking task.

Most importantly, we presented a new “pooled slope” procedure that aggregates data across 

participants in a task. The pooled slope provides acceptable estimates of performance 

variability (relative to ground truth), whereas a priori assumptions about performance 

variability (e.g., that two tasks are equally variable) can lead to gross mischaracterization 

of risk levels. Pooled slopes better approximate performance variability compared to 

using uncentered, aggregate data (i.e., success rates at each absolute environmental unit 

calculated across participants). Moreover, the pooled slope procedure mitigates the pitfalls 

of estimating slope parameters in datasets with too few trials. Pooled slope estimates also 

outperform individual slope estimates when analyzing datasets that contain only a few 

unsuccessful trials, such as when studying performance in infants and elderly people (e.g., 

Comalli et al., 2013; Kretch, Adolph, 2013a).

4.1. From motor performance to risk perception

Of note, the current results focused exclusively on motor performance—whether participants 

successfully or unsuccessfully performed the target action—rather than on perceptual 

judgments. However, we argue that researchers must objectively measure performance to 

study risk perception—that is, whether participants accurately perceive actions as safe or 

risky where the likelihood of success is known. Imagine the difficulty of studying luminance 

perception without being able to manipulate or measure the actual luminance of different 

stimuli! In such a case, results could not be compared across tasks, participants, or sessions.

Studies of risk perception typically manipulate a single environmental dimension that 

presumably increases or decreases risk: Narrower doorways increase the risk of entrapment, 

steeper ramps increase the risk of falling, faster traffic flows increase the risk of collision, 

and so on (Adolph, 1995; Franchak, 2019; Franchak & Adolph, 2012; O’Neal et al., 

2016; Plumert et al., 2007; Tamis-LeMonda et al., 2008). However, possibilities for action 

depend on the fit between actor and environment (Gibson, 1979; Warren, 1984; Warren & 

Whang, 1987), and the affordance fit cannot be reduced to only a single parameter. For 

example, Hospodar et al. (2023) showed that success at throwing beanbags and walking 

through doorways depends on both threshold and slope parameters; comparisons based only 

on doorway width are necessarily imprecise. By analyzing performance level rather than 

doorway width, we can better equate performance (and thus risk) across participants and 

tasks, and better yet, the focus is on performance rather than one of its many constituent 

dimensions, such as doorway width. That is, tests of risk perception should be based on 

performance level in combination with the reward/penalty that results from success/failure, 

not on doorway width or any other environmental dimension.

4.2. Performance variability and cross-task comparisons

The importance of performance variability in determining risk level means that comparisons 

among tasks and studies is more fraught than previously acknowledged. For example, 

Yasuda et al. (2014) and Franchak and Somoano (2018) separately tested whether practice 

walking through doorways varying in width improves subsequent risk perception. Practice 
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trials in each study were based on metric doorway size relative to threshold without 

accounting for performance variability. Thus, the actual performance level of those practice 

trials (which depends on each participant’s performance variability) was unknown and might 

not have been equivalent. Consequently, the accuracy of participants’ perceptual judgments 

may have differed due to unequal practice, but readers would have no way of knowing that.

We suggest that studying risk perception in the language of performance level (% success) 

is the way forward to allow researchers to compare participants, tasks, sessions, and 

experiments. The advantage of performance level is that it can describe a wide range 

of motor tasks using a single metric that abstracts across the multiple actor-environment 

dimensions that influence performance. Not all metrics have these properties. For example, 

“pi numbers” relate an environmental dimension (e.g., doorway width) to a body dimension 

(e.g., shoulder width) as a ratio (Warren & Whang, 1987). However, pi numbers can only 

account for two dimensions, one about the actor and one about the environment, when 

other factors might matter (e.g., walking speed, lateral sway of the shoulders). Moreover, pi 

numbers from one task are not comparable to pi numbers from another task. Whereas the 

pi number for walking through doorways is 1.3 when relating shoulder width to doorway 

width, the pi number for walking under barriers is 1.00 to 1.04 when relating participant 

height to barrier height (Franchak et al., 2012; Stefanucci & Geuss, 2010; van der Meer, 

1997). Pi numbers do not equate success rates across tasks like doorway passage and 

overhead clearance, but performance level in % success allows for meaningful comparisons. 

Moreover, pi numbers may not be comparable across age groups (older and younger adults) 

or skill levels (gymnasts and regular folk), even within the same task (Konczak et al., 1992). 

But if performance were measured in % success units, performance levels could be equated.

However, these advantages can only be realized if researchers can accurately model 

performance. Prior work showed that a psychophysical curve fitting approach with threshold 

and slope parameters provides advantages beyond approximating performance into a single 

critical point, such as the smallest possible doorway (Franchak, Adolph, 2014a). Here, we 

extend that work to show that researchers have different options for estimating thresholds 

and slopes depending on the amount of data. In situations where many successful and 

unsuccessful trials can be collected around the threshold, researchers can fit individual 

psychometric functions to each participant’s data (as in Fig. 2A). However, in situations 

where such trials are too costly or few, researchers are better off fitting individual 

thresholds and pooling data across participants to estimate a pooled slope (as in Fig. 

4A). Bootstrapped refitting procedures to estimate confidence intervals (as in Fig. 2B) 

for each parameter can help researchers to understand the precision of their estimates to 

guide their decisions about the quality of individual versus pooled slopes (Wichmann, Hill, 

2001b). User-friendly packages for psychophysical curve fitting, such as quickpsy in R 

(Linares & López-Moliner, 2016), make these approaches tractable for researchers who 

are unfamiliar with psychophysical methods. Our shared analysis scripts (DOI: 10.17605/

OSF.IO/WNCBK) describe each procedure reported in our results.
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5. Conclusions

Risk perception is a central phenomenon in studies of motor development (Adolph, 2019), 

injury prevention (Plumert & Kearney, 2014), and decision making (Dekker & Nardini, 

2016). In the laboratory, risk levels in computerized tasks are dictated by the researcher 

who programmed the experiment (Levy et al., 2010). But physical risk levels in most 

real-world tasks are beyond the researcher’s control because motor performance depends 

on body-environment relations (Gibson, 1979). Researchers cannot yet model those factors 

a priori—even in tasks as simple as throwing a bean bag or walking through a doorway. 

So, we must measure the motor performance of a particular person in a particular task. 

Improvements in estimating motor performance, such as the pooled slope estimate presented 

here, allow for better comparisons of risk across people, tasks, sessions, and studies. Such 

comparisons allow researchers to better understand how motor performance interacts with 

penalties and rewards as people weigh their motor decisions, and to test safety interventions 

based on risk perception and physical risk.
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Fig. 1. 
Examples of psychometric functions for data from three infants walking over bridges in 

Kretch and Adolph (2013b). Each graph shows the percentage of successful trials (y-axis) 

at various bridge widths (x-axis). Symbol size is scaled to the number of trials collected at 

each bridge width. Gray lines are the individual psychometric functions. (A) Good curve 

fit with relatively large slope (flatter function). (B) Good curve fit with relatively smaller 

slope (steeper function). Red reference lines show the thresholds (environmental unit with 

50 % success rate). Difference between thresholds and 75 % success rate illustrate that 

performance depends on the size of each infant’s slope. When the slope is large as in (A), 

the difference is 2.1 cm, but when the slope is small as in (B), the difference is only 0.2 

cm. (C) Dataset with only a single failure leading to an uncertain slope—both smaller (i.e., 

black line) and larger (i.e., gray dashed line) slope estimates are possible fits to the data. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
Data from the throwing/walking task in Hospodar et al. (2023). (A) Individual psychometric 

functions fit to each participant’s data in the throwing (orange) and walking (blue) tasks. 

Symbols show the percent of successful trials (y-axis) at each doorway width (x-axis). White 

squares indicate the threshold estimates. (B) Relation between performance variability and 

robustness of slope estimates. Each bar indicates the size of the 95 % confidence interval for 

the slope parameter for each participant in each task calculated from bootstrap resampling. 

Confidence intervals were larger (worse) for throwing compared to walking. Points to the 

right of the bar graphs indicate group-level means with ±1 SE error bars. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 3. 
Performance estimation error (calculated as the absolute difference in percent success 

compared to ground truth estimates). (A) Throwing and (B) walking. One participant’s 

(#4) percent success (y-axis) at different cm from threshold (x-axis) for the ground truth 

psychometric function (gold line), the swapped slope psychometric function (purple line), 

and the pooled slope psychometric function (teal line). The length of the dashed lines 

in (A) and (B) at 1, 3, and 5 cm show examples of performance estimation error for 

swapped slopes and pooled slopes. In each case, performance estimation error was larger 

for swapped slopes than for pooled slopes. (C) Each participant’s performance estimation 

error for throwing and walking for the swapped slope estimates (thin purple lines). (D) Each 

participant’s performance estimation error for throwing and walking for the pooled slope 

estimates (thin teal lines). White circles and thick purple or teal lines denote the performance 

estimation error from exemplar participant #4 in (A) and (B). Black lines indicate the mean 

performance estimation error across participants. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Pooled slopes for each task. (A) Each participant’s data were centered based on their 

individual thresholds for each task and then rounded to integer units. Each symbol reflects 

the percent of successful trials in the pooled data after pooling across participants; symbol 

size was scaled to the number of trials. A single psychometric function in each condition 

yielded a pooled slope used in subsequent analyses. (B) Pooled slopes (orange and blue 

curves) relative to each participant’s psychometric function for throwing and walking 

(gray curves). Participants’ data were ordered from smallest to largest ground truth slope 

parameter (i.e., gray curves). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Performance estimation errors for pooled slopes and ground-truth estimates in infant-

inspired datasets with a small number of trials and unsuccessful trials. Average performance 

estimation error of individual fits to degraded data (brown points) compared with pooled-

slope estimations (teal points) with 95 % confidence intervals. Each panel shows a different 

degraded dataset pulling n = 20 random trials from each participant’s data in each task: 

15 successful and 5 unsuccessful trials (left), 17 successful and 3 unsuccessful trials 

(center), and 19 successful and 1 unsuccessful trial (right). Yellow shading denotes cases 

where the pooled slope outperformed individual psychometric functions (non-overlapping 

confidence intervals). In every non-shaded case, the pooled slope was comparable to 

individual psychometric functions (overlapping confidence intervals). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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