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ABSTRACT OF THE DISSERTATION 

 

Modeling, characterization and computational image processing for fiber-

coupled imaging 

 

by 

 

Nojan Motamedi 

Doctor of Philosophy in Electrical Engineering (Photonics)  

University of California, San Diego, 2016  

Professor Vitaliy Lomakin, Chair 

Professor Joseph E. Ford, Co-Chair 

 
High-contrast imaging Fiber Bundles (FB) have been used in recent years to 

integrate high resolution, compact and wide field-of-view imagers into small volumes. 

Imaging fiber bundles are composed of arrays of individual high-contrast optical fibers 

that are fused together to form a uniform and reliable image-transfer medium. 

Monocentric lenses have been designed to demonstrate superior diffraction-limited 
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performance in the visible spectrum with few optical elements which enables 

integration of robust imagers into a small volume. However the curved image plane 

formed by these lenses can not be detected with conventional flat image sensors. 

Additional optical elements can be introduced to flatten the image plane but it would 

lead to the complexity of the system design and loss of compactness. One can instead 

take advantage of imaging fiber bundles to overcome this limitation. FBs can be 

milled and polished to form a curved input facet and a flat output facet to map the 

spherical image plane onto the flat image sensor plane. Proper understanding of 

imaging fiber bundles performance is therefore crucial for designing a low cross-talk 

image-transfer medium. 

In this dissertation the Rigorous Coupled Wave Analysis (RCWA) method is 

used for 2D (1D+propagation) modeling of deep periodic dielectric gratings (straight 

imaging fiber bundles) and a numerical method is presented to efficiently calculate the 

electromagnetic beam transmission through the arrays of fibers. The Scanning 

Electron Microscope (SEM) image of the straight FB cross-section is captured and 

processed to extract the actual core boundaries. The measured core boundaries are 

then used for 3D (2D+propagation) modal analysis of fiber bundles. The effect of 

irregularity is also investigated in both 2D and 3D models and it is shown to improve 

the light confinement and image transfer fidelity in optical fiber bundles.  The straight 

fiber bundles with various pitches are then experimentally characterized to measure 

the performance under different illumination conditions. A performance metric is used 

to quantify cross-talk in fiber bundles and demonstrate the poor performance in the 
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fibers with core pitches of only a few wavelengths of the guided light. The 

experimental measurements are then compared to numerical modeling results and are 

shown to be in good agreement. The numerical and experimental modeling is followed 

by an experimental measurement of a fiber-coupled imager (FCI) in order to restore 

the lost resolution due to problems associated with fiber-sensor coupling. The Point 

Spread Function (PSF) of the strongly shift-variant FCI is first measured as a function 

of input location with sub pixel spatial resolution. Various computational image 

reconstruction methods are then used to recover the captured image resolution to that 

of the fiber bundle pitch. 



 1 

 
 

 

 Introduction Chapter 1

The design of conventional imaging systems with wide field-of-view typically 

requires multiple number of optical elements to flatten the image plane and minimize 

aberrations in the detected image. Flat image sensors are available in these scenarios 

to capture the image, however this will lead to a bulky system that is not compact. To 

overcome the compactness problem, one can instead take advantage of monocentric 

lenses, in which fewer number of optical elements are required to form the high 

quality image. The image plane is not flat in these cases and a curved image sensor 

with proper radius of curvature is needed for capturing the image. The current 

semiconductor technology is mature for planar fabrication processes, yet little progress 

has been made for non-planar realization. The available curved image sensors either 

have large radius of curvature or more importantly have low resolution. One can use 
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imaging fiber bundles, an array of high-index-contrast optical fibers, which are fused 

together to form an image transfer medium. Imaging Fiber bundles were initially used 

for image transfer and illumination applications. Nowadays they are used for various 

applications including endoscopy, optical coherence tomography, illumination, optical 

switching and optical inspection. Recently they have been used along with 

monocentric lenses to transfer the image formed on the curved image plane onto the 

flat image sensor plane. Straight and tapered (curved) fiber bundles can be milled and 

polished to form a high quality and optically flat surface that minimizes light 

scattering. This enables the realization of monocentric lens imaging using high 

resolution imaging fiber bundles. 

The underlying assumption in utilizing imaging fiber bundles for fiber-coupled 

imaging applications is that the cross-talk between individual fibers is negligible 

otherwise a blurred image will be detected by the image sensor. Proper analysis and 

design of imaging fiber bundles is therefore crucial for these applications. In this 

 
Figure 1-1 Comparison of the conventional wide-field-of-view fish eye lens 
and the monocentric fiber-coupled imager with comparable performance. 

≡
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dissertation the numerical electromagnetic modeling of fiber bundles is investigated 

both in 2D and 3D. The effect of fiber’s structural parameters including the size, shape 

and complex refractive index of core, cladding and absorbing material as well as the 

impact of irregularity between fibers is studied. The numerical modeling is followed 

by experimental characterization of imaging fiber bundles with various pitches. At the 

end a fiber-coupled image sensor is characterized to measure its Point Spread Function 

(PSF) as a function of input probe location. The PSF map is then used to restore the 

captured image in the region of interest.  

Chapter 2 discusses the 2D (1D periodic + propagation) numerical analysis of 

imaging fiber bundles. Rigorous Coupled Wave Analysis (RCWA) is used to model 

the imaging fiber bundle as a 2D grating with 1D periodicity. An analytical method is 

presented for computing the problem of an electromagnetic beam transmission 

through deep periodic dielectric gratings. In this method the incident beam is 

decomposed into the plane waves spectrum, transmission coefficients corresponding 

to each such plane wave are found via RCWA, and the transmitted beam is calculated 

via inverse Fourier integral. To make the approach efficient for deep gratings the fast 

variations of the transmission coefficients versus spatial frequency are calculated 

analytically by casting the summations and integrals in a form that has explicit rapidly 

varying exponential terms. The presented formulation allows computing the 

transmitted beam with a smaller number of samples independent of the grating depth.  

Chapter 3 discusses the electromagnetic modeling of imaging fiber bundles in 

3D (2D + propagation) along with experimental characterizations to quantify the 
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cross-talk between fibers for various pitches. Scanning Electron Microscope (SEM) 

images of fiber bundles cross-section are taken to measure the physical parameters and 

verify the variations of irregular fibers due to the fabrication process. A modal 

analysis tool is developed to include irregularities in the fiber core shapes and provide 

results in agreement with experimental measurements. The modeling demonstrates 

that the irregular fibers significantly outperform a perfectly regular "ideal" array. 

Using this method, fiber bundles are designed that can provide high contrast with core 

pitches of only a few wavelengths of the guided light. It is shown that structural 

modifications of the commercially available fiber bundle can reduce the core pitch by 

60% for higher resolution image relay. 

Chapter 4 is dedicated to the characterization of a fiber-coupled image (FCI) 

sensor in a limited region of interest followed by image restoration of the blurred 

captured image. These type of imagers suffer from defects and fiber-sensor 

misalignment which would introduce defects and moiré pattern as well as image blur 

and loss of resolution due to the unwanted gap between fiber bundle and the image 

sensor. The PSF map of the strongly shift-variant FCI is measured as a function of 

input location in order to recover the lost resolution up to the fiber pitch with 

computational image processing techniques. 
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 Rigorous Coupled Wave Analysis of Chapter 2

Deep 2D Fiber Bundles 

2-1 Introduction 

An efficient method for computing the problem of an electromagnetic beam 

transmission through deep periodic dielectric gratings is presented in this chapter. In 

this method the beam is decomposed into a spectrum of plane waves, transmission 

coefficients corresponding to each such plane wave are found via Rigorous Coupled 

Wave Analysis, and the transmitted beam is calculated via inverse Fourier integral. To 

make the approach efficient for deep gratings the fast variations of the transmission 

coefficients versus spatial frequency are accounted for analytically by casting the 

summations and integrals in a form that has explicit rapidly varying exponential terms. 



 

 

6 

The resulting formulation allows computing the transmitted beam with a small number 

of samples independent of the grating depth.  

Dielectric gratings are used in numerous applications. One example is 

"imaging fiber bundle", an array of parallel dielectric fibers, where each fiber is a high 

index multimode waveguide surrounded by a lower index cladding (Figure 2-1). 

Such fiber bundles (FB) provide a non-imaging transfer of the spatial distribution of 

light between two surfaces, with applications such as endoscopic imaging [1,2] 

and image sensing of a curved input surface [3] to name but a few. The ability to 

efficiently and accurately model such structures is becoming increasingly important. 

This is especially true as applications emerge with the spatial period of the fiber 

structure and the image sensor being on the order of a few microns [4-6]. Accurate and 

efficient modeling of the spatial resolution of the FB is complicated due to the energy 

transfer between its modes [7-9] as the extended guided modes interfere strongly as 

the depth of grating increases. 

Often, the fibers in the bundle can be considered periodic or periodic with 

multiple fibers per period. The excitation may be a plane wave, but more often the 

excitation is a beam or a spatially modulated image. When the bundle is considered to 

be periodic, the computational problem is one having a periodic geometry with an 

aperiodic excitation. Several methods can be adapted to numerically model such deep 

gratings [9-13]. One possible approach is to use coupled mode analysis [14,15] but it 

makes approximations in terms of neglecting the propagating spectrum. Another 

approach is the Fourier decomposition of the incident field  [16], in which the incident 
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field is decomposed into a spectrum of plane waves. For each such plane wave the 

problem becomes completely periodic. The transmitted diffraction orders can be 

calculated for each wavenumber using a periodic solver, e.g. Rigorous Coupled Wave 

Analysis (RCWA) [17,18]. Transmitted output field is then calculated by taking the 

inverse Fourier transform of the transmitted field for each diffraction order. However, 

using this approach becomes complicated for very deep gratings. The difficulties arise 

from the fact that the transmitted diffraction orders have fast phase variations in their 

wavenumber dependence, which are associated with the large propagation range.  

 
Figure 2-1 Schematic of the problem: deep periodic structure illuminated with 
arbitrary incident beam. 
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Fourier decomposition of the incident field has been used along with Rigorous 

Coupled Wave Analysis [16] to analyze the scattering of a confined beam off a 

periodic structure. In this method, the incident beam is decomposed into a spectrum of 

plane waves, the transmission coefficients corresponding to these plane waves are 

calculated using the Floquet theorem via RCWA, and the final transmitted beam is 

computed from the inverse Fourier integral. However, such an approach results in a 

large computational cost for very deep gratings. In this paper we propose an 

alternative method, using the analytic property of Bloch waves propagation in the 

grating region to compute the transmitted field with a much smaller number of 

samples in deep gratings. This computationally efficient method requires keeping 

track of individual Bloch waves created at the input facet of the grating. The method 

neglects the insignificant multiple internal scattering of Bloch waves in the grating 

region. The resulting Bloch wave excitation coefficients and the corresponding 

components in the transmitted field vary slowly as a function of the angle (or 

wavenumber). Using the slow variation property, we developed a semi-analytical 

method that computes the transmitted field using FFTs with a much smaller number of 

samples. This number of samples is nearly independent of the grating depth. The result 

is a major computational speed up, which enables fast computations of the transmitted 

fields in very deep gratings. The paper is organized as follows. Section 2 provides 

problem statement. Section 3 presents the numerical formulation describing all the 

steps for efficiently computing the transmitted beam. Section 4 presents numerical 
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results supporting the numerical formulation. Section 5 summarizes and discusses the 

findings. 

2-2 Problem Statement 

Consider a grating composed of a dielectric material with a complex 

permittivity that is periodic in the x direction with period   (Figure 2-1). Each period 

can comprise only a single fiber or multiple fibers, typically with a random position. 

The grating depth (d) is much greater than the period or the wavelength with typical 

values of tens of thousand of wavelength. A TE-polarized optical beam with the 

electric field in the y-direction is incident on the grating from the top. The incident 

beam is coupled into a set of guided modes of the grating. The set of guided modes 

propagate through the structure and are coupled into the transmitted beam propagating 

downwards. 

The considered structure is periodic but the exciting beam is aperiodic. The 

beam, however, can be decomposed into a continuum of plane waves via Fourier 

transform. For each such plane wave both the excitation and the structure are periodic. 

For such a periodic problems the Floquet theorem can be used to represent the solution 

in terms of a discrete set of plane waves. Furthermore, the rigorous coupled wave 

analysis (RCWA) can be used to find the coefficients of the scattered plane waves, 

excited (Bloch) waves in the grating, and the transmitted field. This RCWA solution 

can be further simplified by utilizing the fact the grating is very deep and neglecting 

the multiple bounces of the grating Bloch waves between the entrance and exit 
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interfaces. As a result, the problem is reduced into three parts: coupling into the 

grating at the entrance interface, propagating from the entrance to the exit interface, 

and coupling out of the grating at the exit interface. Once the coefficients of each 

plane wave corresponding to the incident beam decomposition are found the resulting 

transmitted beam is calculated via Fourier transform. The following important 

components need to be addressed to allow efficiently solving this numerical problem: 

(i) computing the coupling (scattering, reflection, transmission) coefficients, (ii) 

calculating the Bloch waves, and (iii) computing the Fourier decomposition integral 

for the transmitted beam with a small number of samples even at very large 

propagating distances. These aspects are addressed in the next section. 

 

2-3 Formulation 

2-3-1 Global RCWA Formulation 

The electric field of the incident beam at the entrance interface can be 

represented via a continuous Fourier decomposition 

 
  
Ein(x) = 1

2π
Ê in(kx )e− jkxx dkx∫ ,  (1) 

where 

 
  
Ê in(kx ) = Ein(x)e jkxx dkx∫ ,   (2) 
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represents coefficients of the incident beam’s plane wave spectrum. Once the plane 

wave spectrum of the incident wave is known the Floquet theorem can be applied to 

calculate the scattered fields (reflected and transmitted) via diffraction coefficients for 

the periodic structure. The diffraction coefficients are found by matching the electric 

and magnetic fields at input and output interfaces using a set of forward and backward 

Bloch waves for the grating region. We start with a summary of the general RCWA 

procedure [17],[18] and simplify it to account for the decoupling between the entrance 

and exit interfaces due to the large depth of the structure. The periodic permittivity is 

first expanded via the Fourier series 

 
  
ε(x) = εm exp j

2πm
Λ

⎛
⎝⎜

⎞
⎠⎟m

∑ ,  (3) 

where 
  
εm = Λ−1 ε(x)exp − jx 2πm Λ( )Λ

∫ dx  is the Fourier series coefficient of the 

complex permittivity and Λ is the period of the grating. Using the Floquet theorem the 

fields in regions I and II are written as 

 

  

E I ,y (x, z) = Ein,y (x, z)+ Ri exp − j kxi x − kI ,zi z( )⎡
⎣

⎤
⎦

i
∑

E II ,y (x, z) = Ti exp − j kxi x − kII ,zi z − d( )⎡⎣ ⎤⎦{ }
i
∑ ,

  (4) 

where  Ri  is the reflection coefficient in region I and  Ti  is the transmission 

coefficients in region II,  
  
kx ,i = kx − iK , K = 2π

Λ
.  The wavenumbers   

kI ,zi  and   
kII ,zi  are 

given by 
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kl ,zi =
+k0 nl

2 − (kxi / k0 )2⎡⎣ ⎤⎦
1/2

k0nl > kxi

− jk0 (kxi / k0 )2 − nl
2⎡⎣ ⎤⎦

1/2
k0nl < kxi

⎧
⎨
⎪

⎩⎪
, l = I , II .  (5) 

The electric and magnetic fields inside the grating region can be written using a set of 

forward and backward Bloch waves 

 

  

E gy = wi,m cm
+ exp −k0qmz( ) + cm

− exp k0qm z − d( )⎡⎣ ⎤⎦{ }
m
∑ exp − jkxix( )

i
∑

H gy = − j ε0 µ0( ) vi,m −cm
+ exp −k0qmz( ) + cm

− exp k0qm z − d( )⎡⎣ ⎤⎦{ }
m
∑ exp − jkxix( )

i
∑ ,

 (6) 

where  qm  and   
wi,m  are the square root of the eigenvalues with a positive real part and 

the   (i,m)  element of the eigenvector matrix  W  of matrix    A= (kxi k0 )2 − E  for the 

 TE  polarization. E  is the Toeplitz permittivity matrix with its   (i,m)  element being 

  ε i−m.  The quantity   
vi,m = qmwi,m  is the   (i,m)  element of the matrix product  V =WQ , 

where  Q  is a diagonal matrix with elements   qm.  The coefficients  cm
+  and  cm

−  are the 

amplitudes of the forward and backward Bloch waves yet to be determined within the 

grating region. The summations over the diffraction order index  i  is over an infinite 

set of positive and negative integers and the summation over Bloch wave index  m  is 

over an infinite set of positive integers. These infinite summations are truncated to 

finite numbers for a numerical implementation. Using equation sets (4) and (6) one 

can match the electric and magnetic fields at input and output interfaces to obtain the 

following system of equations 
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δ i0 + Ri = wi,m cm
+ + cm

− exp −k0qmd( ){ }
m
∑

j δ i0 cos θ( )nI − kI ,zi / k0( )Ri
⎡
⎣

⎤
⎦ = vi,m cm

+ − cm
− exp −k0qmd( ){ }

m
∑ ,

  (7) 

 

  

wi,m cm
+ exp −k0qmd( ) + cm

−{ }
m
∑ = Ti

vi,m cm
+ exp −k0qmd( )− cm

−{ }
m
∑ = j kII ,zi k0( )Ti ,

  (8) 

where   δ i0  is the Kronecker delta function. Equations (7) and (8) can be solved 

simultaneously to calculate the scattered diffraction orders, which is the complete 

rigorous solution of the plane wave scattering from the periodic structure known as 

RCWA. We refer to this complete solution as Global RCWA (G-RCWA) in the rest of 

the paper.  

2-3-2 Forward RCWA Formulation 

The coupling between the forward and backward waves can be weak, e.g. due 

to losses, scattering, or weak reflections at the interfaces, as in the case of deep 

transmissive gratings or imaging fiber bundles [[4]-[6]].  In this case, the equation sets 

(7) and (8) are decoupled and may be solved separately, which is equivalent to 

neglecting the coupling between the forward and backward Bloch waves with 

coefficients  cm
+  and  cm

− . The result is a two-step solution procedure for calculating the 

diffraction coefficients, which we refer to as Forward RCWA (F-RCWA). In the first 
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step of F-RCWA, the input single-interface scattering coefficients  cm
+ , are found via 

the following equation set [Eq. (7) by neglecting ] 

 

  

δ i0 + Ri = wi,mcm
+

m=1
∑

j δ i0 cos θ( )nI − kII ,zi k0( )Ri
⎡
⎣

⎤
⎦ = vi,mcm

+

m
∑ .

  (9) 

In the second step, the first interface’s transmission coefficients  cm
+  are already 

known and give the amplitudes of the forward Bloch waves, which serve as an 

excitation for the second interface after propagating through the depth of grating. The 

scattering problem at the second interface is described by Eq. (8) with the known 

value of  cm
+ , from which the amplitudes of the transmitted diffraction orders  Ti  are 

found for a given  kx . Once the transmission diffraction coefficients are found the 

output field may be written as 

 
  
ET (x) = Ê in(kx )Ti(kx )e− jkx,ix dkx∫

i
∑ ,  (10) 

where 
  
Ti(kx )  is the transmitted diffraction order versus the wavenumber calculated in 

Eq. (8). The inverse Fourier integral may be evaluated directly via Discrete Fourier 

Transform (DFT). Fast Fourier Transform (FFT) can be used if the number of samples 

is chosen as a product of prime numbers. Therefore, one can rewrite Eq. (10) as 

 
  
ET (x) = Ê in(kx )Ti(kx )e− jkx,ix

n
∑

i
∑ ,  (11) 

cm
−
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where 
  
kx ,i = kx − iK  is the same as before with   kx = n2π Lx  and  Lx  is the extent of 

calculations in  x  direction. If approached based on the Nyquist sampling criteria 

directly, the solution of Eq. (11) requires a very large number of samples for a very 

deep grating due to the fast phase variations of  
Ti  as a function of  kx . These fast 

variations are due to the propagation factor   exp(−k0qmd)  in Eq. (8) associated with the 

imaginary part of  qm  and the long-range propagation of the Bloch waves. The 

transmission coefficient  
Ti  is determined by the contribution of all Bloch waves and 

therefore, it is impossible to smooth its wavenumber dependence, due to its rapid 

variations and the large number of samples requirement.  

2-3-3 Semi-analytical Approach 

The effect of the rapid variations associated with the factor   exp(−k0qmd)  can 

be accounted for analytically if 
  
Ti(kx )  is written as a sum of partial transmission 

coefficient contributions corresponding to individual Bloch waves 

 
   
Ti(kx ) = !Ti,m(kx )

m
∑ e−k0qm (kx )d .   (12) 

Here, 
   
!Ti,m  are the partial transmission coefficients determined by modifying Eq. (8)  

  

   

wi,mcm
+ + wi, ′m

!cm, ′m
−

′m
∑ = !Ti,m(kx )

vi,mcm
+ − vi, ′m

!cm, ′m
−

′m
∑ = j (kII ,zi k0 ) !Ti,m(kx ),

  (13) 
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where 
   
!cm, ′m
−  are the modified Bloch wave reflection coefficients of the second 

interface as a response to the  cm
+  Bloch wave excitation. An important feature of Eq. 

(13) as compared to Eq. (8) is that the set of Eq. (13) does not have the factor 

  exp(−k0qmd) , i.e. 
   
!Ti,m and  qm  are independent of the grating depth. As a result, the 

variations of 
   
!Ti,m  and  qm  with respect to the wavenumber  kx  (angle) only depend on 

the wavelength and the permittivities, and therefore, are on a much slower scale than 

the variations of 
  
Ti(kx ) . However propagation of the Bloch waves form the input to 

the output interface in a deep grating still introduces fast phase variations in the 

summation terms of Eq. (12) explicitly via the factor   exp(−k0qmd) . For this reason the 

accurate calculation of Eq. (11) would still require dense sampling if evaluated 

directly and purely numerically. However, one can use the fact that the factor 

  exp(−k0qmd)  is known analytically to reduce the integral sampling rate and make it 

independent of the grating depth. To this end, one can substitute Eq. (12) into Eq. (10) 

to rewrite the transmitted field as 

 
   
ET (x) = Ê in(kx ) !Ti,m(kx )e−k0qm (kx )de− jkx ,ix dkx∫

m
∑

i
∑ .   (14) 

The summation in Eq. (14) can be taken only over the propagating Bloch 

waves while the integrand is negligible for cutoff (decaying) Bloch waves. For 

propagating modes the integrand has two components, including the amplitude 

   
Ê in(kx ) !Ti,m(kx )  that is slowly varying function of  kx  and the exponential 
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  exp(−k0qmd)  that is rapidly varying for large propagation distances. However, in 

comparison to 
  
exp(− jkx ,ix) , the exponential power related to  qm  is a much slowly 

varying function of  kx . Therefore, one can tabulate the amplitude 
   
Ê in(kx ) !Ti,m(kx )  and 

the eigenvalues  qm  at a coarse set of  kx  samples, sufficient to resolve their behavior, 

e.g. by local interpolation. The tabulated values can further be used to calculate the 

Fourier integral in Eq. (14). To this end, the Fourier integral in Eq. (14) can be 

represented via a discrete sum of integrals 

 

   

ET (x) = 1
Δkx

Ê in(kx ) !Ti,m(kx )eφi ,m ,n kx( )e− jkx,ix dkxn
kxn

kxn+1

∫
n
∑

m
∑

i
∑ ,   (15) 

with 
  
φi,m,n(kx ) = −k0qm(kx )d. First order Taylor expansion of the phase term can be 

used to evaluate the fast integrand   e
φi ,m ,n kx( )  in Eq. (15) analytically. 

 

  

Ii,m,n =
1
Δkx

eφi ,m ,n kx( ) dkx
kxn

kxn+1

∫ = 1
Δkx

e
φi ,m ,n (kxn )+ ′φi ,m ,n (kxn ).(kx−kxn )⎡⎣ ⎤⎦ dkx

kxn

kxn+1

∫ = eφi ,m ,n kxn( ) e ′φi ,m ,n (kxn )Δkx −1
Δkx ′φi,m,n(kxn )

.   

  (16) 

Here   
Ii,m,n  is the result of piecewise analytical inverse Fourier integral. This 

way the fast integrand is computed accurately to the first order between the sampling 

points of the coarse table. The analytical evaluation of the fast integral also makes the 

calculations independent of the grating depth or propagation distance d, such that there 
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is no need for taking larger number of samples for deeper gratings. Substituting Eq. 

(16) into Eq. (15) yields 

 
   
ET (x) = Ê in(kx )e− jkx,ix !Ti,m,n Ii,m,n

m
∑

n
∑

i
∑ .  (17) 

The DFT summation over n in Eq. (17) is the most time consuming part of the 

calculations. Comparing Eq. (17) with Eq. (11) one should note that the summation 

over the Bloch waves  in Eq. (17) is already taken in Eq. (11). However, the 

inverse DFT summation in Eq. (11) is taken over a much larger number of samples 

compared to the same calculation in Eq. (17). The novelty in using Eq. (17) relies in 

taking the piecewise inverse Fourier transform analytically before summing up the 

contribution of the Bloch waves as opposed to Eq. (11). In other words, the scattering 

coefficients 
   
!Ti,m  are weighted by   

Ii,m,n  before calculating the inverse DFT, which was 

performed by using the FFT algorithm. Since   
Ii,m,n  coefficients are calculated 

analytically from a simple function, the summation   (m)  is computed rapidly as 

compared to overall computation time.  

2-4 Numerical Analysis and Results 

We start with verifying that the F-RCWA approach compares well to the G-

RCWA one. To that end, a straight grating (waveguide array) of 1.5 µm period and 1 

cm depth was analyzed at a wavelength of 550 nm with the F-RCWA and G-RCWA 

solutions. The grating depth corresponded to 18,200 wavelengths and depth-period 

(m)
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ratio was 12,133. Schott’s imaging fiber bundle’s (FB) material [[19],[20]] was used 

to make the comparisons more realistic. The FB consisted of 30% cladding with 

refractive index of 1.48 and 70% core with refractive index of 1.81. 

Figure 2-2(a) shows the total transmitted power calculated by G-RCWA and F-

RCWA versus incident angle when the medium in region II is vacuum. Total 

transmitted power was calculated by summing up the transmitted diffraction orders.  

The rapid fluctuations of the transmitted power can be observed in both 

calculated methods due to the fast variations of the exponential terms describing the 

 
Figure 2-2 Transmitted power calculated through G-RCWA and F-RWA 
when coupling out to (a) vacuum and (b) index matched material with 
refractive index 1.6; (c),(d) normalized transmitted intensity corresponding to 
(a) and (b) respectively. 
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Bloch waves propagation through the grating. Figure 2-2(b) shows the transmitted 

power when an index matching oil with refractive index of 1.6 was used in region II 

similar to what was used in the experiment. The index matching oil reduces the 

amplitude of multiple reflections and the scattering of the field at the output interface. 

The transmitted beam was also calculated in both non-matched and matched cases as 

shown in Figure 2-2(c) and Figure 2-2(d), respectively. Although the variations in the 

transmitted diffraction orders and power are high in the non-matched case, the 

transmitted intensity profiles are very similar when the sampling is dense enough for 

both cases. This agreement shows that the F-RCWA approach is sufficiently accurate. 

We proceed with the analysis of validity of the semi-analytical approach of 

Sec. 3.3. The same waveguide parameters were used to analyze the F-RCWA solution 

using both the proposed semi-analytical and direct DFT approaches. Medium II was 

chosen to be vacuum. Although the negligible multiple reflections are disregarded in 

the forward solution, the problem of fast phase variations still exists and requires a 

large number of samples for the direct solution.  

Figure 2-3(a) shows the transmission efficiency of the zeroth diffraction order 

calculated with F-RCWA. The rapid variations of the individual diffraction orders 

versus the incident angle are due to the fast phase variations of the propagating Bloch 

waves. Accurate calculation of the output field would then require a large number of 

samples in the Fourier domain to be able to follow these rapid variations. However, 

the phase term   −k0qmd  and the amplitude term 
   
!Ti,m  in Eq. (15) are slowly varying 
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functions of  kx  as seen in Figure 2-3(b) and Figure 2-3(c), which show the phase and 

amplitude of the first two Bloch waves.  

Yet, for a large propagation distance, the exponential summation of the 

involving phases yields the rapidly varying transmission coefficients as a function of 

wavenumber (or angle).  One can take advantage of the knowledge of these smooth 

 
Figure 2-3 Fast variation of 0th diffraction order with incident angle calculated 
with F-RCWA, (b), (c) slowly varying phase and amplitude as functions of 
angle. 
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functions by using Eq. (15) and Eq. (16) to analytically calculate the rapidly varying 

integrand with much smaller number of samples. 

Figure 2-4 compares the semi-analytical and direct FFT approaches using F-

RCWA solution as well as the G-RCWA solution for the transmitted output intensity. 

The same 1 cm long waveguide array is considered and the incident wave is a 

Gaussian beam with a   1 e  beam radius of   0.8µm  and normal angle of incidence. 

Medium II was index matched to the refractive index of the fiber core. For this case 

2,389 Fourier domain Mk( )  samples are sufficient to represent both the incident field’s 

spectrum and the variations of the Bloch eigenmodes of the waveguide array. This 

number of samples is enough to calculate the output field properly using the proposed 

semi-analytical approach of Eq. (17). However, if the conventional direct inverse 

(FFT) approach is used one has to increase the number of samples in the Fourier 

domain from 2,389 to 286,515 (a factor of 120 for the given examples) in order to 

calculate the transmitted field properly. Using the proposed method one can calculate 

the output field efficiently and accurately with a much smaller (sparser) number of 

samples compared to the conventional direct inverse FFT method. One can clearly 

note the excellent matching between the efficient semi-analytic approach with 2,389 

points compared to the direct FFT approach with 286,515 points. 
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In order to quantify the efficiency of the proposed method, Normalized Root 

Mean Square Error (NRMSE) of the output intensity was calculated versus the depth 

of the same waveguide array through F-RCWA. The error is defined as  

  

  

NRMSE =
(I1 − I2 )2 dx

L∫
I1

2 dx
L∫

  (18) 

where   I1  is the accurate solution calculated with G-RCWA,   I2  is the solution 

with semi-analytic and direct F-RCWA methods for smaller number of samples, and 

 L  is the integration range. Figure 2-5 shows the calculated normalized RMSE through 

direct IFFT and the proposed semi-analytic approach. The error is then calculated with 

respect to the accurate field in the ±10 µm range (i.e. L = 20 µm) for all depths of the 

waveguide array. As the depth of grating is increased a larger number of samples is 

required to achieve the same level of accuracy. The reason for that, as described 

before, is the faster variation of the transmitted diffraction orders and propagating 

 
Figure 2-4 Transmitted field after 1cm of propagation through the waveguide 
array calculated with F-RCWA.  
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Bloch waves with spatial frequency (angle), which requires a larger number of 

samples to calculate the field properly. For the same number of samples, the proposed 

semi-analytic approach yields a more accurate result as it calculates the inverse 

Fourier transform peace-wise analytically. 

 
Figure 2-5 Normalized RMSE for F-RCWA calculated with direct IFFT and 
proposed semi analytic integration. 
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can note that the computation time for the proposed method is nearly independent of 

the grating depth. The slight increase of the computational time for deeper gratings in 

the proposed method is due to the fact that in this case higher order Bloch waves 

contribute more to the output beam and hence a slightly greater number of samples is 

required. The proposed method is much faster than both direct G-RCWA and direct F-

RCWA methods.  

 
Figure 2-6 Computation time for 2% NRMSE error using this work, F-RCWA 
and G-RCWA methods 
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Table 2-1 Improvement in computation parameters compared with G-RCWA. 

Depth (um) 100 550 1000 5500 10000 

Improvement in 
Computation Time 5x 8.5x 10.7x 30.2x 33x 

Improvement in  
# of Samples 4.1x 7.5x 8.5x 22x 25.1x 

 

Finally, Figure 2-7 shows the normalized intensity of a 1D periodic waveguide 

array calculated with the proposed method. The waveguide core and cladding 

refractive indices are 1.554 and 1.550 and the widths are 3.5 µm and 5 µm 

respectively. The incident wave is a Gaussian beam with   1/ e  beam width of 3 µm at a 

wavelength of 633 nm and normal angle of incidence. We note that that the intensity 

profile at each height was calculated using the same Bloch eigenmodes and 

eigenvectors. As the Gaussian beam propagates through the waveguide, it couples into 

the adjacent waveguides and the diffraction pattern of the waveguide array is 

observed.  

 
Figure 2-7 Intensity pattern of a 1D periodic waveguide array 
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2-5 Conclusions 

An efficient numerical method was proposed to calculate the transmission of 

an electromagnetic beam through a deep periodic dielectric grating. The incident beam 

was decomposed into its Fourier spectrum of plane waves and the propagating Bloch 

waves for the periodic grating region were calculated for each plane wave component 

using RCWA. The RCWA solution was simplified by considering the forward 

propagating contributions and it was shown that there is an insignificant difference 

between the F-RCWA and G-RCWA solutions for deep gratings. As the depth of 

grating increases the variation of the transmission coefficients becomes faster as a 

function of spatial frequency, and therefore a larger number of samples is required for 

accuracy. Individual treatment of the propagating Bloch waves enabled us to calculate 

the inverse Fourier transform semi-analytically using both analytical integration of 

individual Bloch waves and FFT. The advantage was using the FFT to maintain the 

speed while accounting for the fast phase variations through analytical integration to 

maintain the accuracy of calculations with a smaller number of samples. It was shown 

that the presented formulations lead to accurate and efficient calculation of the output 

field. 
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 Analysis of 3D Straight Fiber Chapter 3

Bundles 

3-1 Introduction 

High-contrast imaging Fiber Bundles (FB) are characterized and modeled for 

wide-angle and high-resolution imaging applications. Scanning Electron Microscope 

(SEM) images of fiber bundles cross-section are taken to measure physical parameters 

and verify the variations of irregular fibers due to the fabrication process. Modal 

analysis tools are developed that include irregularities in the fiber core shapes and 

provide results in agreement with experimental measurements. The modeling 

demonstrates that the irregular fibers significantly outperform a perfectly regular 

"ideal" array. Using this method, fiber bundles are designed that can provide high 

contrast with core pitches of only a few wavelengths of the guided light. Structural 
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modifications of the commercially available fiber bundle can reduce the core pitch by 

60% for higher resolution image relay. 

Imagers with curved focal planes have been shown to be superior in terms of 

performance compared to the conventional planar focal plane imagers due to the lower 

aberration and simpler design with fewer number of optical elements [1]. Realization 

of curved focal planes is however challenging due to the fabrication difficulties 

associated with non-planar surfaces. Although different groups have successfully 

demonstrated curved focal planes [2-4] and stretchable electronics [5-7] have been 

known as a potential solution to the challenging problem of curved focal plane 

fabrication, they either have large radius of curvature or more importantly have low 

resolution. Little attention has been paid to the curved image sensors and the 

characteristics of the curved focal planes are far from the flat image sensors. 

Alternatively imaging fiber bundles can be shaped into a curved focal plane using 

micro grinding. Imaging Fiber Bundles have been used in numerous applications 

including illumination, tomography and endoscopy [8-11]. Recently high-resolution 

imaging FBs have been used for compact wide-angle and high-resolution imaging 

applications [12-14] where the curved image plane is mapped onto the flat sensor-

plane or a secondary flat image-plane using the FBs. The motivation of using FBs is to 

make the conventional imagers more robust and compact by taking advantage of 

monocentric lenses with curved image planes. Figure 3-1(a) shows the fiber-coupled 

imager’s cross-section cut along the fiber length. Image captured by the monocentric 

lens is formed on the curved side of FB. The image is then relayed to the image sensor 
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through the straight FB. Modeling, characterization, and optimization of these straight 

fiber bundles have gained interest for integrated imaging applications. Tapered and 

non-straight imaging FBs have also been used in the fiber-coupled imagers to achieve 

better system integration [15]. The focus of this work is on straight fiber bundles. 

Figure 3-1(b) shows the SEM image of the fiber-coupled imager’s cross-section 

showing the FB along with the image sensor. 

 

 
Figure 3-1 (a) Fiber-coupled image sensor cut along the fibers and (b) its 
SEM cross-section. 

Fiber coupled imagers resolution is limited by the FB pitch, as state of the art 

image sensors are able to oversample and resolve individual fibers. Furthermore, in 

order to avoid the moiré pattern associated with fiber coupled imagers [16] proper 
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design of finer FBs is required. Finer pitches of FB may be fabricated by tapering 

them further. However, the performance of FBs in terms of transmitting an image with 

a low cross-talk at a fixed wavelength would also diminish. Poor impulse response of 

the FB would result in image blur and decreases the image resolution in this type of 

imagers. 

A set of straight FBs with different spatial resolutions (pitch) varying from 2.5 

µm to 1.0 µm are characterized experimentally by placing them on a USAF resolution 

chart and evaluating the transmitted image using broadband illumination. Impulse 

response measurements are also taken by focusing a coherent 612 nm laser light onto 

the core of a 2.5 µm fiber bundle under various angles of incidence to evaluate the 

light confinement. 

Modal analysis has been used to analyze the core-to-core coupling of imaging 

fibers [17,18] for a lower index contrast fiber bundles (Δn: 0.05). The effect of 

disorder was studied in [17] for fiber bundles with 3.2 µm and 4.5 µm pitches using 

coupled mode theory and by considering only the fundamental mode of the fibers.  In 

this paper, entire guided modes of a 5x5 regular array of fibers are calculated 

numerically for a higher index contrast (Δn: 0.33) and finer pitches (1.5 µm) of fiber 

bundle.  A Gaussian beam is propagated through the fiber bundle by calculating the 

overlap integral of incident field and each guided mode. The effect of number of 

calculated modes and number of fibers in the simulation window is studied for more 

efficient modeling. An engineered irregularity is then introduced into the model to 

analyze its effect on the confinement of guided modes and impulse response of fiber 
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bundle. Mode width diameter is calculated for each guided mode in both regular and 

irregular fiber bundles to demonstrate higher confinement of irregular fibers. The 

modified model is then used to improve the performance of the fiber bundles for 

higher spatial resolutions. SEM cross-section image of the FB is introduced into the 

model to evaluate the performance of the actual fiber bundle for various pitches. 

3-2 Imaging Fiber Bundles 

Various pitches of FBs may be fabricated by tapering and drawing them from 

an initially larger pitch. Fabrication process starts by drawing an individual fiber up to 

a certain width, cutting and stacking the individual drawn fibers, and redrawing them 

again. This process is repeated until desired length and pitch of the fiber bundle is 

reached. Schott’s imaging FBs [19] are used throughout this paper for qualitative and 

quantitative analysis. Figure 3-2(a) shows the scaling of 10 mm long FBs with pitches 

from 2.5 µm to 1.0 µm. While the number of fibers does not change in each FB, its 

diameter decreases with the pitch. Schematic of fiber bundle cross-section, as shown 

in Figure 3-2(b), consists of a high index core, cladding, and extramural absorber 

material with real part refractive indices of 1.81, 1.48, and 1.54, respectively. The 

extramural absorber material is used for partial elimination of the background noise 

associated with radiation modes and cross talk between the fibers. Figure 3-2(c) is the 

optical microscope image of the 2.5 µm pitch fiber bundle. Extramural absorber 

material cannot be differentiated from cladding due to a lower refractive index 

contrast between the cladding and absorber. 
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(a) 

    
(b)    (c) 

Figure 3-2 (a) Scaling of imaging fiber bundles with different pitches. (b) 
Schematic of the 5-sided FB cross-section. (c) 76X-magnification optical 
microscope image of the   FB 

Figures Figure 3-3(a) and Figure 3-3(b) show the Scanning Electron 

Microscope (SEM) image of Schott’s FB cross-section with 2.5 µm pitch at 5000x and 

15000x magnification. An SEM image of 1.0 µm pitch fiber bundle’s cross-section 

was taken at 5000x and 12500x for comparison. Scaling and physical structure of the 

1.0 µm pitch fiber bundle with 2.5x higher magnification [Figure 3-3(d)] is similar to 

that of the 2.5 µm pitch fiber bundle. 
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(a)         (b) 

  
(c)         (d) 

Figure 3-3 (a), (b) SEM image of 5-sided FB with a pitch of   at 15,000x and 
5,000x magnifications; (c), (d) pitch of   at 5,000x and 12,500x 
magnifications. 

SEM images of various pitches of fiber bundles were converted to black and 

white images [Figure 3-4(a)] for measurement and modeling purposes. The 2.5 µm 

and 1.0 µm pitch fiber bundles of Figure 3-2(a) were used for taking SEM data. The 

core area (white regions) percentage with respect to the total area of FB’s cross section 

was measured as a metric to ensure that the FB’s structure is preserved for the 2.5 µm 

and 1.0 µm pitches. Three different SEM images were taken for each bundle pitch and 

the average core area was measured to be 69.3% and 69.1% for the 2.5 µm and 1.0 µm 

bundles, respectively. The measured core area percentages verify insignificant 

2.5$μm#

0.4$μm$
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variation during the drawing process. The 69.1% and 69.3% core areas are close to the 

nominal core area of FB and are referred as 70% core area in the rest of the paper. 

    
(a) (b) 

Figure 3-4 (a) Conversion of SEM image to black (cladding and absorber 
regions) and white (core region). (b) Core boundaries obtained from the SEM 
image of 5-sided FB with a pitch of   2.5µm  (White boundaries from side 1 
and red boundaries from side 2 after 10mm fiber drawing). 

In order to ensure that FB preserves its structure i.e. the core and cladding’s 

shape, width and scaling, an SEM image of a particular irregular area was taken from 

both input and output facets of a 10 mm long fiber bundle. Core boundaries locations 

of the fiber bundle were extracted from the black and white image of the FB cross-

section at both facets. Otsu’s thresholding method [20] was used to extract the black 

and white (binary) image from the gray scale SEM image. The boundaries of black 

and white regions were registered as core boundaries. The core boundaries of both 

facets were then superimposed for comparison. Because the image of the output facet 

is a mirrored image of the same area on the input facet of FB, one of the SEM images 

also has to be flipped in order to be directly comparable. Figure 3-4(b) shows the 

superimposed images of the FB’s core boundaries. The flipped image of the core 

boundaries from the output facet (red lines) coincides well with the core boundaries 
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from input facet (white lines) after 10 mm of fiber bundle drawing with negligible 

variation in the size, shape and location of individual fibers. This also validates the 

assumption of straight fiber bundle for modeling purposes. 

 

3-3 Characterization of FB 

Three types of measurements are taken for qualitative and quantitative 

characterization of fiber bundles. Different pitches of fiber bundles are placed on top 

of a resolution chart with bottom wide-angle white light illumination. The cross talk of 

transmitted images is compared. Then a 612 nm He-Ne laser is focused on the center 

of a 2.5 µm fiber bundle and the output intensity profile is recorded for different 

angles of incidence. Finally, a collimated white light source is used to assess the cross-

talk width in various pitches of fiber bundles and for different angles of incidence. 

3-3-1 Qualitative Characterization 

Fiber bundles with various pitches were placed on top of a USAF resolution 

chart as shown in Figure 3-5. An index matching oil with refractive index of 1.6 was 

used between the FB and resolution chart to minimize scattering of light and the gap 

between resolution chart and fiber bundles.  
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Figure 3-5 Qualitative examination of scaling effect on the performance of 
FBs, (a) different pitches of fiber bundles on top of the resolution chart, (b) 
20X magnification image passed through the 1cm long FB, (c) the same 
image as in (b) but saturated to magnify the cross-talk between the fiber cores. 

Figure 3-5(a) shows different pitches of the FBs ranging from 1.0 µm to 2.5 

µm. As described in the previous section, finer pitches are fabricated by drawing the 

same array of fibers and they all have the same 10 mm length. Figure 3-5(b) shows the 

20x magnification image from the finest set of bars on the resolution chart under the 

same lighting conditions. The numerical aperture of the capturing microscope 

(Keyence VHX-1000) for this experiment was 0.48 with working distance of 25 mm. 

The width of one line in the six elements of groups 6 and 7 on the resolution chart 

varies from 7.81 µm to 4.38 µm and 3.91 µm to 2.19 µm, respectively. A partially 

collimated white light was used for all pitches. The individual fibers may be seen in 

2.5$µm 2$µm 1.5$µm 1.25$µm 1$µm

2.5$µm 2$µm 1.5$µm 1.25$µm 1$µm

2.5$µm 2$µm 1.5$µm 1$µm

(a)

(b)

(c)

100 um 100 um 100 um 100 um 100 um

100 um 100 um 100 um 100 um 100 um

1.25$µm



 

 

41 

the 2.5 µm, 2.0 µm and even the 1.5 µm pitch fiber bundles. Finer pitches of FBs are 

ideal for imaging applications if each individual fiber maintains the spatial properties 

of the image with minimized cross talk between adjacent fibers. However, scaling 

down the bundle pitch would lead to a thinner cladding width at a fixed wavelength. 

Since the field decays exponentially outside the core region, a thinner cladding at a 

fixed wavelength would lead to a stronger field at the core-cladding interface of the 

adjacent fibers, thus increasing the cross-talk between individual fibers. This explains 

why the 1.25 µm and 1.0 µm fibers do not maintain the same image quality as larger 

fiber pitches. Similar results were observed with higher numerical aperture objective 

(NA 0.9) and the lower confinement of fiber bundles at finer pitches will be confirmed 

in our quantitative experiment in section 3-3-3. Figure 3-5(c) shows the saturated 

image in the same region as in Figure 3-5(b), where the exposure time was increased 

so that the aforementioned cross-talk is more visible. 

3-3-2 Quantitative Characterization, Impulse Response 

FBs are shift-variant optical elements and therefore the linear shift-invariant 

(LSI) analysis cannot be applied. However, the optical impulse response 

measurements can give us an intuition about the performance of the fiber bundles for  
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image-transmitting applications. The transmission of a 2.5 µm pitch fiber bundle was 

measured by focusing a collimated He-Ne laser on the core of fiber bundle using a 

microscope objective with numerical aperture (NA) of 0.42. The transmitted image 

was then captured using an optical microscope with NA of 0.48 on the other side of 

fiber bundle. The He-Ne laser operated at a wavelength of 612 nm. The measured spot 

size (airy disk diameter) of the launched beam was 2.1 µm which is close to the 

theoretical diffraction-limited spot size of the microscope objective (1.8 µm). Figure 

3-6(b) shows the saturated image of the focused laser light on the center of a fiber core 

with a white-light background to show the fiber bundle grid. The intensity profile of 

the beam in the back end of the fiber bundle in Figure 3-6(c) shows no cross-talk to 

 
       (a) 

   
            (b)     (c) 

Figure 3-6 (a) Schematic of impulse response measurement, (b) saturated 
focused laser light with white light background to illuminate the fiber grid, 
and (c) focused laser light on the center of the fiber core.   
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the adjacent cores. The fiber bundle was then tilted for illumination at larger angles of 

incidence. 

 
(a) 

 
(b) 

Figure 3-7 Impulse response measurement at different angles of incidence, (a) 
2D output intensity profile and (b) normalized X (blue) and Y (green) 
intensity cross-section centered at peak. 

Figure 3-7 shows the fiber bundle’s transmitted image for different angles of 

incidence. The exposure time was increased from 0.1 ms to 0.5 ms for larger angles of 

incidence. Figure 3-7(b) is the corresponding X and Y plot of intensity for each angle 

of incidence with the center being the peak intensity. All figures are normalized by 

considering the exposure times and peak-intensity values. As the angle of incidence 

increases the transmitted intensity and power decreases due to low input and output 

coupling of light from the fiber bundle. Limited numerical aperture of the capturing 

objective would decrease the accuracy of calculations at larger angles of incidence. 

Because of the diffraction limit (1.8 µm) of the focusing objective, finer pitches of 

fiber bundles cannot be characterized using this measurement technique. Moreover 

FBs are highly shift-variant optical elements, such that the measurement setup is 

highly sensitive to vibrations and the results could not be regenerated reliably. 
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Although this type of measurement demonstrates the confinement of 2.5 µm pitch 

fiber bundle an alternative measurement technique is required to characterize the 

cross-talk of fiber bundles at finer pitches. 

3-3-3 Quantitative Characterization, Slant-Edge 

Measurement 

For more quantitative characterization of cross-talk in the fiber bundles an 

alternative measurement technique was used.  The schematic of measurement setup is 

shown in Figure 3-8(a), where a bright white led light source was placed against a 500 

µm pinhole.  An achromat lens was then placed at the distance equivalent to the lens 

focal length to create a collimated white light. The white led light source was used in 

order to measure the average cross-talk value for all visible wavelengths as opposed to 

single wavelength characterization. FBs were placed on top of USAF resolution chart  

and were illuminated by the collimated white light at three angles of incidence: 0°, 

22.5° and 45°. A high numerical aperture objective with NA of 0.9 was used to 

capture the transmitted image off the output surface of fiber bundles. Figure 3-8(b) 

shows the transmitted image of an edge through a 10 mm long fiber bundle with a 

pitch of 2.5 µm at normal incidence. In order to be able to measure the cross-talk 

between individual fibers, the transmitted light was examined near the edge. Cross talk 

was quantified by first averaging the intensity of the transmitted image in the direction  
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parallel to the edge over 500 pixels in the image which is equivalent to physical length 

of 33 µm. This would compensate for fiber bundle’s defects and random variations in 

size and location as well as the intensity variations of the collimated light source. The 

averaged intensity was then plotted in the direction normal to the edge [Figure 3-8(c)]. 

What appears in the background of the raw averaged data in blue curve is in fact the 

effect of misalignment of fibers in each column (parallel to the edge) and the intensity 

fluctuation within each fiber.  

 
(a) 

     
           (b)                (c) 

Figure 3-8 Schematics of the measurement setup: collimated white light           
incident on the FB on top of USAF resolution chart, (b) transmitted image of 
the edge through the FB at normal incidence, (c) averaged intensity plot in the 
direction normal to the edge. 
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A smoothing spline curve fitting [21] was applied to the averaged data to get a 

smoother transition from the bright to dark region (red curve) as well as eliminating 

the intensity fluctuations between fiber bundles due to their shift-variant property. The 

smoothing parameter was chosen such that the transition is smooth for calculating the 

intensity transition width from 80% to 10% of the peak. The same smoothing 

parameter (10-4) was chosen to smoothen all measured data consistently. The cross-

talk width varies depending on the value of smoothing parameter but the consistency 

of measurements is preserved for a constant value of smoothing parameter. This 

metric was used for measuring the cross-talk between individual fibers at all pitches. 

It is important to characterize the FBs for different angles of incidence in 

imaging applications, where a conventional lens is used to focus a cone of light on the 

image plane, which in this case is the FB’s input facet. Figure 3-9(a) shows the 

transmitted image off a 10 mm long fiber bundle with 2.5 µm pitch at three different 

angles.  

All of the images were taken under the same lighting conditions but the 

exposure time was increased from 3.2 s to 16 s for higher angles of incidence. The 

intensity plots were normalized to the intensity of normal incidence image. At normal 

incidence, the overlap between the incident field and the lowest order modes of the 

individual fibers are high. As a result, the transmitted light through each fiber bundle 

appears as a combination of the first few lower-order modes. Since the lower-order 

modes of a multimode fiber are more confined, the transmitted light intensity is also 
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higher at the center of the core and decays rapidly as it gets off the center. This would 

make the fiber bundle strongly shift variant at normal incidence. In the experimentally 

demonstrated fiber-coupled imager [12] the transmitted image of the fiber will be 

sampled directly by an image sensor, which is shift variant itself. Therefore in the 

cases where FB’s pitch is comparable with the image sensor pitch a moiré pattern will 

be observed [16,22-24].  It has been shown that the moiré pattern can be reduced by 

proper image processing [16,22-24]. 

As the angle of incidence increases, higher-order modes of the fibers are 

excited as well as the lower-order modes. Since higher-order modes are less confined 

the transmitted light through the fiber bundle would be less shift-variant. The 

transmitted intensity and power decreases by increasing the angle of incidence due to 

lower coupling into and from the fiber bundle. The absorber material also reduces the 

 
(a) 

 
(b) 

Figure 3-9 (a) Transmitted image through 2.5 µm pitch fiber bundle at 
different angles of incidence and (b) their average intensity plot in the 
direction normal to the edge.  
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transmitted power due to stronger field in the absorber at higher angles of incidence. 

These measurements are in agreement with the impulse response measurement. 

However, the slant edge measurement can be repeated reliably and for all pitches, and 

therefore it is a more suitable experiment for fiber bundle characterization. Figure 

Figure 3-9(b) shows the intensity plot of the transmitted image of the edge through the 

fiber bundle in the direction normal to the edge for three different angles of incidence. 

Table 3-1 Cross talk width (µm) of different pitches of FBs for various 
incident angles 

  Pitch /θinc  -45° -22° 0° 22° 45° 

1 µm 53.9 28.2 23.7 29.9 52.3 

1.25 µm 29.2 21.2 21.8 20.7 33.9 

1.5 µm 18.8 10.1 5.1 11.7 21.4 

2 µm 16.4 4.7 2.5 6 13 

2.5 µm 5.5 3.9 2.1 3.8 5.1 

 

Table 3-1 shows the cross-talk width of different pitches of FBs for different 

angles of incidence. Due to shift-variant property of the fiber bundles and smoothing 

curve fitting that was applied to the measured intensity, the measured cross-talk width 

is larger than the fiber pitch. The cross-talk width consistently increases for greater 

angles of incidence and finer pitches of fiber bundle. The positive and negative angles 

of incidence show the same degree of cross-talk, but the cross-talk width is highly 

affected by the fiber bundle pitch. As the fiber bundle pitch decreases at the same 

wavelength, the decaying field in the cladding region gets stronger at the core-
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cladding interface of the adjacent fiber leading to stronger cross-talk between fibers 

after a certain threshold is reached. The measured cross-talk is in agreement with the 

qualitative measurements presented in section 3-A, where in both cases the finer 

pitches of the fiber bundles show poor performance. In order to improve the 

performance of FBs at finer pitches one has to either increase the refractive index 

contrast between the core and cladding [25], which raises fabrication complications, or 

increase the cladding thickness to further suppress the field decay in the cladding 

region. The details of performance improvement of the FBs are discussed in the 

subsequent section. 

3-4 Modeling of Imaging Fiber Bundles 

The pitch of fiber bundles varies from 1.0 µm to 2.5 µm (~ 2-5 λ) while the 

length is on the order of millimeters (~ 104 λ). Full-scale rigorous modeling of the FBs 

is, therefore, extremely hard due to the large aspect ratio and overall size. Although 

two-dimensional modeling of fiber bundles [26,27] (1D periodicity + propagation) 

provides an intuition of the scaling effect and cross-talk, it may be inaccurate for 

quantitative 3D modeling of realistic fiber bundles. Here we use an approach in which 

the modes of a finite size array of waveguides are calculated using the cross section of 

the actual fiber bundles. This is achieved by introducing the SEM cross-section images 

of the FB into the model. The overlap integral between the incident beam and each of 

the guided modes is calculated to get the coupling coefficients. These coefficients are 

then used to calculate the transmitted beam at any length. 
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3-4-1 Formulation 

The transmitted field at a desired propagation length inside the fiber bundle 

can be computed via modal superposition: 

 
  
ET (x, y, z) ≈ cmEm(x, y)e− jk0neff ,mz

m
∑   (3-1) 

where   Em(x, y)  is the mth electric field mode profile of the fiber bundle,   
neff ,m  is the 

 mth  mode effective index (  
k0neff ,m is the corresponding modal wavenumber), and  cm  is 

the coupling coefficient to the mth mode. The modes are global in the sense that they 

include the coupling between all the (finite number of) fibers considered in the model. 

The summation in Eq. (1) is taken over the guided modes considering that for the 

long-range propagation studied here, the modal cross-talk is dominated by the 

coupling between the guided modes, while all radiation/leaky modes are scattered out 

and are diminishing at the output plane. 

The guided modes of the fiber bundle can be found numerically using a Finite 

Element Method (FEM) or Finite Difference Method. Here, the modes are found via 

FEM. The modal coefficients  cm  are found by approximating the field at the incidence 

plane by the incident field, which assumes that the coupling of the incident beam into 

the fiber bundle is strong. This assumption is justified by the fact that we can often use 

a matching material. Additionally, a complete 2D (1D cross-section) analysis 

demonstrates that the propagation confinement results obtained with and without this 

assumption are similar. To this end, the incident field is expanded as [28]: 
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Einc = cmEm

m
∑ (x, y)   (3-2) 

One can further multiply both sides of Eq. (3-2) by the complex conjugate of 

the nth magnetic field mode profile   Hn
*  and integrate the resulted power: 

 
  

Einc × Hn
∗( ).ez dx dy∫∫ = cmEm × Hn

∗

m
∑⎛⎝⎜

⎞
⎠⎟

.ez dx dy∫∫   (3-3) 

where  ez  is the unit vector in the propagation direction  z . Using the mode 

orthogonality, the coefficients of the overlap integral can be written as: 

 
  
cm =

Einc × Hm
∗( ).ez dx dy∫∫

Em × Hm
∗( ).ez dx dy∫∫

  (3-4) 

The integrals in Eq. (3) are calculated numerically based on the FEM solutions 

for the modes. With the coefficients in Eq. (3), the transmitted field is found via Eq. 

(1). 

3-4-2 Analysis of Computation Parameters 

Modal analysis of high contrast fiber bundles may be time consuming and the 

computation time scales quadratically with the number of fibers. Therefore, proper 

choice of the number of calculated modes and the number of fibers kept in the 

computation domain is important. Depending on the illumination angular spectrum a 

lower number of modes may be used to calculate the propagated beam. 
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Root Mean Square Error (RMSE) of normalized intensity of a 1.5 µm pitch 

fiber bundle after 0.5 mm propagation was calculated with different number of modes 

in a 5x5 array of fibers with 70% core area. RMSE was calculated from the following: 

 
  
RMSE = Iexact − Iapr .( )∫∫   (3-5) 

where Iexact is the exact normalized output intensity calculated using all the guided 

modes and Iapr. is the normalized output intensity calculated using fewer number of 

guided modes approximation. The incident field is a Gaussian beam with a radius of 

0.5 µm at a wavelength of 612 nm. The input Gaussian beam radius was chosen such 

that it mostly excites a single fiber at the input facet of the fiber bundle even for tilted 

inputs. The cross-talk observed at the output is then strictly due to the coupling 

between fibers during propagation of light. For larger beam width, the coupling to the 

adjacent cores may occur because of the input coupling. Propagation length of 0.5 mm 

is long enough for observing the cross-talk in the 1.5 µm pitch fiber array. 

Figure 3-10(a) shows the RMS error versus the number of modes for various 

angles of incidence. Small variation in the RMS error for smaller angles of incidence 

indicates that a smaller number of modes may be calculated for these cases. As the 

angle of incidence increases a larger number of modes is required to achieve the same 

error. Figure 3-10(b) and Figure 3-10(c) show the transmitted beam at a distance of 

0.5 mm for a normally incident Gaussian beam calculated with all (678) guided modes  

and with only the lowest 3 guided modes; a good agreement is obtained between these 

cases. On the other hand for the 30 degrees of incidence case [Figure 3-10(d) and 
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Figure 3-10(e)], a good agreement is obtained only with a larger number (169) of 

modes. Therefore, fewer number of modes may be calculated depending on the 

launching condition and parameters of the fiber bundle. 

 
Figure 3-10 RMSE for 5x5 array of fibers with 70% core area with 1.5 µm 
pitch, impact of number of calculated modes kept in calculations for different 
angles of incidence. (a) RMS error vs. the number of modes; (b) the 
transmitted field for normal incidence with all of the 678 modes and (c) with 
only 3 modes; (d) the transmitted field for 30° incidence with all the modes 
and (e) with 169 modes. 
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 Furthermore, to verify the effects of the number of fibers on the results, a 

larger array of fibers was modeled using the same modeling method. The binary image  

of 70% core area fiber bundle (from SEM measurement) was numerically eroded to 

50% core area using the methods described in [29,30]. Figure 3-11(a) and Figure 

3-11(b) show a 9x9 array of the 1.5 µm pitch FB at the propagation distance of 0.5 

mm for 70% and 50% core areas. The 70% core area FB shows a significant cross-talk 

and the intensity distributions of arrays with a different number of fibers differ due to 

the large field spread and finite size of the computational domain. On the other hand 

the intensity distribution of the well-confined 50% core area fiber bundle is identical 

to that of the 5x5 array. One should note that as far as imaging applications are 

concerned, a confined impulse response is the most important characteristic of an 

imaging FB. Once the impulse response is not confined within one fiber, the image 

detected by the image sensor is blurred and the intensity distribution of the cross-talk 

is less important. The number of guided modes scales up with the number of fibers 

and the run time scales up quadratically with the number of fibers. As long as the 

confinement of fibers is the goal of modeling, a smaller number of fibers and modes 

may be calculated for modeling depending on the illumination conditions. In the 

following numerical analysis we used 5x5 arrays to assess confinement and kept the 

number of included modes sufficiently large for accurate results. 
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3-4-3 Introducing Irregularity in the Model 

Due to lower refractive index contrast between core and extramural absorber, 

the actual size of the absorber material cannot be measured from the SEM image and 

the absorber material was excluded from the model. The modes of the waveguide 

array were calculated at a wavelength of 612 nm. Figure 3-12(a) shows the transmitted 

beam intensity from a perfectly regular 1.5 µm pitch waveguide array with core width 

of 84% fiber pitch after 500 µm propagation. Red five-sided geometries represent the 

fiber bundle core boundaries and the background material is the same as fiber’s 

cladding. The incident field is a Gaussian beam with beam radius of 0.5 µm and 

wavelength of 612 nm launched into the central fiber at [0,0]. 

Transmitted beam is not confined in the launched core due to thinner cladding 

width at the fixed wavelength, which makes the decay of field weaker, thus increasing 

      
                        (a)          (b) 

Figure 3-11 Impulse response of a 9x9 array of fibers with   1.5µm .itch for (a) 
70% core area and (b) 50% core area.  
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the cross-talk between the fibers. Moreover, perfectly identical fiber cores have a 

relatively weak confinement due to the strong coupling between them. The effect of 

fiber bundle disorder was then studied to show that it would significantly increase the 

field confinement [31]. In order to accurately model imaging fiber bundles effects of 

disorder were verified numerically by introducing an irregular array of fibers. Each of 

the fibers core width in the 2x2 fiber array [Figure 3-2(b)] were reduced by 1% of the 

largest (original) core width in the clockwise direction starting from the upper left 

fiber. The rest of the fibers in the array were repeated from this disordered 2x2 array. 

Starting from the upper left fiber, the core widths are 84%, 83%, 82% and 81% of the 

pitch respectively.  

Figure 3-12(b) shows the transmitted intensity in the irregular fiber array. 

Because the central core width is different from its neighbors, the coupling to these 

fibers is also weaker, which leads to a lower cross-talk. 

The mode width  (σ )  of each guided mode is calculated for the entire modes of 

both regular and irregular fiber bundles using second moment method [32]: 

 
  
σ 2 = (x − x0 )2 I(x, y)dx dy

−∞

+∞

∫   (3-6) 

where   x0  is the center of the mode: 

 
  
x0 = xI(x, y)dx dy

−∞

+∞

∫   (3-7) 

Figure 3-12(c) and Figure 3-12(d) show the mode width count versus mode 

width for both the regular and irregular fiber bundles. All of the guided modes in the 



 

 

57 

regular fiber bundle have widths greater than 6 µm while in the irregular fiber bundle 

the modes (33 count) have widths as low as 3.5 µm. Therefore, it is evident that 

introducing fabrication or engineered irregularities into fiber bundle is crucial for 

proper modeling and higher confinement. 

 
     (a)                                                                   (b) 

    
   (c)                                                               (d) 

Figure 3-12 Impulse response of a 9x9 array of fibers with   1.5µm .itch for (a) 
70% core area and (b) 50% core area.  
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3-4-4 Modeling and Improvement of the Actual FB Cross-

Section 

An SEM image of the 2.5 µm pitch fiber bundle cross-section [Figure 3-3(b)] 

was used to model the performance of an actual fiber bundle. Figure 3-13(a) shows the  

corresponding normalized transmitted intensity. The transmitted beam is well confined 

 
  (a)               (b) 

 
(c) 

Figure 3-13 Normalized transmitted intensity in (a) SEM cross section of 2.5 
µm pitch fiber bundle with 70% core area, (b) same scaled cross section used 
for 1.5 µm pitch and (c) numerically eroded to 50% core area with 1.5 µm 
pitch.  

Normalized Output Intensity : |Ex|2 + |Ey|2, Z:500.0 µm

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a.u.) Normalized Output Intensity : |Ex|2 + |Ey|2, Z:500.0 µm

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a.u.)

Normalized Output Intensity : |Ex|2 + |Ey|2, Z:500.0 µm

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a.u.)



 

 

59 

within the launching core and it is in agreement with the measurement in Figure 

3-6(c). The fibers irregularity associated with FB fabrication process improves the 

performance of fiber bundles in terms of cross-talk. However, when the same fiber 

bundle structure is scaled down from 2.5 µm pitch to 1.5 µm the irregularity is not 

sufficient to get the same confined optical impulse response. 

Instead, the modes of each fiber are more extended along the cladding leading 

to a higher cross-talk between fibers as seen in Figure 3-13(b). One way to overcome 

this limitation is to increase the core-cladding refractive index contrast. However, 

increasing the refractive index contrast further would introduce fabrication challenges. 

An alternative way to increase the FB resolution is increasing the cladding 

thickness so that modal field becomes weaker across the cladding, thus reducing the 

cross-talk. In order to verify this point, the same fiber array of Figure 3-13(b) was 

numerically eroded from 70% to 50% core area. Figure 3-13(c) shows the normåalized 

transmitted intensity of the 1.5 µm pitch fiber bundle with a 50% core area. The 

impulse response of the 1.5 µm pitch fiber bundle is well confined within the launch 

core. Therefore, a higher resolution in a fiber bundle may be achieved by increasing 

the cladding, at the cost of loosing the light collection and increasing shift-variance of 

the FBs.  

Angled illumination of the 2.5 µm pitch and 5 mm long fiber bundle with the 

same structure also shows high confinement as shown numerically and experimentally 

in Figure 3-14(a) and Figure 3-14(b), respectively. 
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3-5 Conclusions 

High resolutions imaging FBs were characterized using coherent and 

incoherent excitations. The characterization included both measurement and numerical 

simulation. The measurements consisted of qualitative analysis of the image 

transported through different pitches of FBs, impulse response characterization of a 

2.5 µm pitch fiber bundle and finally quantitative analysis of the cross-talk with 

incoherent collimated white light illumination. 

Modal analysis was used to model the extremely deep FBs. The numerical 

investigation shows a relatively small number of modes and guiding cores can be used 

for efficient modeling of the fiber bundles as a guide for fabrication of high resolution 

imaging fiber bundles. As the fiber bundle’s pitch scales down from 2.5 µm to 1.0 µm 

the performance of FBs gets worse at the same wavelength. This is explained by a 

lower confinement and larger extension of guided modes into cladding. This effect 

 
Figure 3-14 Comparison of normalized intensity of (a) measured intensity and 
(b) the numerical model of the 2.5 µm pitch fiber bundle for 30° angle of 
incidence after 5 mm propagation. 
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limits the resolution of the commercially available fiber bundle with NA = 1 to 2.5 

µm. We proposed increasing the resolution of the fiber bundle by reducing the fill 

fraction of the fiber cores. Introducing disorder into the fiber bundle was shown to be 

crucial for improving the confinement and image resolution. One has to note that 

fabrication-induced disorder should be differentiated from engineered disorder. An 

engineered disorder may be introduced by simply choosing the initial fibers to have 

different core areas before the drawing process. Although the uncontrolled fabrication-

induced disorder randomly varies the final shape of these fibers, the engineered 

disorder preserves its nature as the core area of individual fibers remains constant. 

Optimization of imaging fiber bundles using engineered and uncontrolled disorder is 

the topic of further investigation. 
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 Image Restoration in Fiber-Chapter 4

Coupled Imagers 

 

4-1 Introduction 

Fiber coupled image sensors are capable of high-resolution conformal image 

transfer, including mapping of the spherical image surface of a monocentric wide-

angle lens to one or more flat focal plane sensors. However, image resolution is lost 

due to fiber bundle defects, moiré from lateral fiber-sensor misalignment, and blur due 

to the non-zero gap between fiber bundle and the image sensor. In this chapter we 

investigate whether sub-pixel impulse response characterization of the strongly shift-

variant impulse response can be used with existing image processing techniques to 

recover the resolution otherwise lost in image transfer. We show that the sub-micron 
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impulse response is experimentally repeatable, and can be used to recover image data 

and reveal fine features of the input surface structure of a 2.5 µm pitch fiber bundle. 

Some optical systems require a non-planar image sensor, which is 

incompatible with the high-performance (large pixel count, low noise and sensitivity) 

focal planes fabricated with conventional CMOS processing. One example is the 

curved image surface formed by a wide-field "monocentric" lens [1], which requires a 

far deeper curvature than can be achieved by elastic deformation of a continuous 

CMOS focal plane die [2], and requires more spatial resolution than can be achieved 

with a spatially segmented CMOS sensor structure [3]. However, optical fiber bundles 

(a dense array of small, high index contrast multimode fiber cores with low index 

contrast cladding) can transfer the image from the curved focal plane to the flat image 

sensor plane [1,4]. A fiber-coupled (FC) image sensor consists of a quasi-periodic 

fiber bundle (created by glass stretching, stacking, and re-stretching) bonded directly 

to the face of a perfectly periodic image sensor. The fiber pitch is typically around 2.5 

µm, and with appropriate design may be reduced to 2 µm or less [5,6]. The input field 

of view in a fiber-coupled monocentric lens imager achievable with a spherical-planar 

fiber bundle can be increased from approximately 50˚ with a single straight fiber 

bundle, to over 124˚ with a single tapered fiber bundle, where the fibers are curved 

towards the spherical input surface [7]. However, the high spatial resolution of the 

fiber bundles can be significantly reduced due to light transmission across any gap 

between the planar surface of the fiber bundle and the image sensor. This gap is 

typically several microns, which is comparable to the fiber pitch. Fiber defects and 
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micron-size particles also appear as artifacts in the captured raw image. In addition, 

the variation in alignment between the image sensor and fiber bundle with different 

pitches introduces a moiré pattern to the sensor response, independent of the captured 

scene. The moiré pattern can be partially compensated through flat-field calibration 

[8] but the lost resolution due to fiber-sensor gap and misalignment is not reversible 

with simple image calibration. 

Various methods have been used to restore the image that was distorted by a 

stationary scattering medium. Turbid lens imaging for examples uses the transmission 

matrix of the scattering medium and wavefront shaping by exploiting spatial light 

modulators as well as angular spectrum decomposition to restore the image to the 

resolution limited by the numerical aperture (NA) of the imaging system [9]. This 

method and other similar methods [10-12] require a relatively complex 

characterization setup and the illuminating light source is primarily limited to a 

coherent one. Some methods require interferometric detection of the scattered image 

[9-11,13-15].  Incoherent light source and wavefront shaping [16] has also been used 

to restore the image off the scattering medium, but a spatial light modulator has to be 

used to reshape the scattering medium’s wavefront. 

The impulse response of a FC image sensor is strongly space variant due to 

irregularity and modal effect of individual fibers, and due to the irregular relative 

position between the individual fiber cores and the individual pixels of the image 

sensor. However, the impulse response should be constant.  Therefore a sufficiently 

precise 2-D raster scan of the point spread function (PSF) with incoherent illumination 
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may provide the information needed to recover the lost resolution from the blurred 

lower resolution detected image. The advantages of this method are that it is not 

limited to monochromatic or coherent light, no wavefront shaping device is needed to 

characterize the imager or reconstruct the blurred image, and once the FC imager 

response is known it can be used to recover the lost information up to the fiber bundle 

pitch without adding complex elements to the system. 

Because the system is not linear shift invariant (LSI), the use of shift-variant 

image restoration methods is essential. The signal to noise ratio (SNR) and the 

accuracy and repeatability of the PSF characterization are the limiting factors for 

faithful reconstruction of the image captured by a FC imager [17]. If the SNR of the 

imager is low, then both the input image and the characterized PSF are noisy, leading 

to inaccuracy in the image reconstructed by solving the inverse problem. If the PSF 

response changes, the characterization data is not accurate, further degrading the 

reconstructed image. In this paper, we characterize a fiber coupled image sensor, 

where light is transferred by a high spatial resolution (2.5 µm pitch) imaging fiber 

bundle to an attached (1.12 µm pitch) CMOS focal plane, and demonstrate 

reconstruction of the input image limited by the fiber bundle pitch. 

The paper is organized as follows. Section 2 describes the characterization of 

the fiber-coupled image sensor, investigating SNR and repeatability of the highly 

shift-variant impulse response, and characterizing the response of a sub-pixel raster 

scan over a small region of interest of the sensor. We then consider the strongly shift-

variant PSF data and show that LSI reconstruction methods such as deconvolution 
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cannot be applied for image restoration. In Section 3, we apply and compare several 

established linear and nonlinear shift-variant image reconstruction techniques on the 

sensed image data, showing that the processed image appears to reveal features of the 

fiber bundle not visible in the raw images. In Section 4, looking at images processed 

by the Iterative Expectation Maximization method, we confirm that the revealed fiber 

structure corresponds to the input fiber bundle itself, shown by microscopic inspection 

of the corresponding area at the input facet of FC sensor. Section 5 provides 

conclusions. 

 

4-2 PSF Characterization of Highly Shift-Variant 

FC Imager 

The resolution of imaging fiber bundles is limited by the refractive index 

contrast between the core and cladding of the fiber. As and example, refractive index 

of 1.81 and 1.48 is achieved for the core and cladding, respectively, with high 

performance (numerical aperture 1.0) 24AS fiber faceplate material provided by 

Schott Fiber Optics [18]. This limits the fiber bundle pitch to 2.5 µm for 70% fiber 

core fill factor (the ratio between the core area to the total area of the fiber bundle), 

where the cross-talk between fibers is still negligible. The fill factor can be further 

reduced to increase the fiber resolution while maintaining negligible cross-talk [5]. 

State of the art image sensors used in compact cameras have pixel pitches as low as 
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one micron. Figure 4-1(a) shows the OmniVision’s 13351 monochrome image sensor, 

which has a 1.12 µm pixel. Attaching a 2.5 µm pitch fiber bundle to the 1.12 µm pitch 

image sensor [Figure 4-1(b)] limits the overall resolution of the imager to 2.5 µm. The 

schematic of the fiber bundle cross-section is shown in Figure 4-1(c) where the sensor 

grid (black rectangles) oversamples the straight fiber bundle (blue rectangles). The 

blue highlights represent fiber core area in the fiber bundle with 70% fill factor. 

Figure 4-1(d) shows an example of the impulse response in a 12x12 pixel 

region of the bare monochrome image sensor in Figure 4-1(a), without fiber bundle or 

Bayer color filters. The impulse response was captured by placing a 25 µm pinhole in 

contact with the white LED light source at a long distance (2 meters) away from the 

image sensor. Absorptive color filters were used to narrow this light spectrum. A 50x 

microscope objective with NA of 0.55 was used to focus the light down to a pixel. 

While most of the energy is confined within one pixel of the image sensor, some 

background energy is detected in the adjacent pixels. This occurs due to the tail of 

energy in the Airy pattern of the optical probe that is created at the focus of the 

diffraction-limited microscope objective. The diameter of the diffraction limited spot 

size near the center of visible range at a wavelength of 550 nm is 1.22 µm, slightly 

larger than the sensor’s 1.12 µm pitch. 
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Figure 4-1(e) and Figure 4-1(f) show two representative samples of the PSF 

from the fiber-coupled image sensor [Figure 4-1(b)]. The best achievable PSF [Fig. 

1(e)] is limited by the 2.5 µm fiber bundle and adhesive gap, which, as observed, 

yields a PSF restricted to an area of approximately 2x2 sensor pixels. When the 

illuminating point is positioned on the center of fiber, most of the energy is confined 

within the 2.1 µm width of the fiber core, which is close to twice the image sensor 

pitch (2.24 µm). Therefore, we expect the FC imager’s PSF to be confined within a 

 
Figure 4-1 (a) OmniVision 13351 bare monochrome image sensor, (b) fiber 
coupled image sensor with 2.5 mm long fiber bundle attached, (c) schematic 
of the fiber bundle on top of the image sensor. A 12x12 pixels wide impulse 
response of (d) 1.12 µm pitch bare sensor, (e) FC image sensor with 2.5 µm 
pitch fiber attached to 1.12 µm pitch sensor with good fiber-sensor alignment 
and (f) same as (e) but with bad fiber-sensor alignment. (g) Schematics of the 
FC image sensor along the length of fiber bundle including the image sensor. 
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2x2 pixels wide region at its best, consistent with observation. The PSF shape is 

highly shift-variant and nonuniform within this area due to the irregularity in fiber 

core shape, misalignment between fiber and the 2x2 pixels wide area and the modal 

effect of light transmission thought the fiber bundle. In the case where the input PSF  

lands on the fiber cladding or absorber material (used in the fiber bundle for 

elimination of background light), light is spread into more than one fiber and the 

detected PSF might spread wider than the 2x2 pixels limit [Figure 4-1(f)]. This strong 

variation of PSF along with the micron size gap between the backside of fiber bundle 

and the image sensor are the limiting factors of the resolution in FC imagers. In this 

case, shift-invariant image restoration methods such as deconvolution may not be 

applied to recover the lost data. However, if the shift-variant PSF map is known as a 

function of input location, then one can use shift-variant image restoration methods to 

recover the lost resolution. 

The schematics of the FC image sensor cross section along the fiber bundle 

length is shown in Figure 4-1(g). The incident beam is focused on the surface of the 

fiber bundle on plane A. The resolution at this plane is limited by the performance of 

the system lens and it is considered to be linear shift-invariant, at least for a small field 

of view. The light is then coupled to the fiber bundle at plane B. The efficiency of 

coupling is determined by the location and angular spectrum of the incident beam, the 

surface roughness of the fiber bundle and the number of modes supported by each 

fiber. A multimode fiber with sufficiently large number of modes provides a more 

accurate sample of the incident beam. The coupled light then propagates to plane C. If 
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the cross-talk between fibers is low and the variation of fibers along the propagation 

direction is small, the propagation has little effect on the shape and intensity of the 

signal. The use of absorbing material in fiber bundle structure for cross-talk 

suppression usually leads to uniform attenuation of the signal [5].  The light emitted 

from the planar surface of the fiber bundle is transmitted into the epoxy layer at plane 

D. Note that while it is possible in principle to bond the fiber bundle directly to the 

surface of a CMOS sensor die, a few micron thick layer of UV-cured adhesive 

accommodates the differential thermal expansion of the glass and silicon. In cross-

sections of such bonded fiber coupled sensors, we have achieved adhesive thicknesses 

ranging from 1.8 µm to 5 µm. The thicker the epoxy layer, the more blur in the image 

detected by the image sensor at plane E. The blur can be increased by misalignment 

between the center of the fiber core and the center of the pixel's active photodiode 

area. Therefore, the detected image at plane E is also not shift-invariant compared with 

the incident image at plane A. 

The SNR of the overall imager and the repeatability of the PSF 

characterization determine the extent to which the lost data can be restored. Second 

order parameters such as sensor nonlinearity would also limit the accuracy of 

restoration process, but these effects are typically weaker and are not addressed here. 

An additional underlying assumption here is that PSF does not change over time either 

due to random mechanical stress or with environmental parameters such as 

temperature. For operation over a range of temperatures there will be thermal 

expansion, and the PSF will require characterization at several temperatures, to allow 
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generation of an interpolated PSF for the specific (measured) operating temperature, 

as was done for moiré compensation in [8]. 

The SNR of the imager can be estimated by selecting a flat region in the 

captured image and using the following estimation [19]: 

 SNR = 20 log10
µ I
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where Ii is the input image selected at a flat region, N is the number of samples 

(pixels), and µI is calculated from 

 µ I =
1
N

Ii
i=1

N

∑ . (9) 

The SNR of the bare sensor, without fiber coupling, was estimated to be 35.3 

dB at 10 ms integration time. The SNR of the FC imager would be much smaller if the 

RAW image is used directly without any calibration. Because the fiber bundle is 

strongly shift-variant, the standard deviation of the flat-field would be relatively large 

using Eq. (8).  Instead, one can first calibrate the detected RAW image using the 

average of multiple flat-fields to compensate for the imperfect fill factor of the fiber 

bundle (70% core area in our case) and then apply the above equation to estimate the 

SNR of the FC imager. Using this calibration method, the SNR of the fiber-coupled 

imager was estimated to be 32.8 dB. The process of attaching the fiber bundle to the 

same image sensor thus reduces the SNR of the imager by 2.5 dB. A similar 2.4 dB 
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decline of SNR was observed using a 1 ms exposure time. This SNR estimate is used 

later for image reconstruction. 

 
Figure 4-2 Schematic of the automated PSF characterization setup 

Figure 4-2 shows the schematic of the PSF characterization setup.  A 25 µm 

pinhole in contact with a white LED light source was used as the optical probe. An 

apochromatic microscope objective with NA of 0.55 was used to focus the optical 

impulse on the FC imager. Three broadband color filters were used to evaluate the 

effect of wavelength on the PSF and its repeatability. Hoya’s 25A, X1 and 80A filters 

were used for red, green, and blue colors, respectively. It was also experimentally 

verified that PSFs captured by coherent (laser) light sources are highly variable and 

also limit the image reconstruction to a single wavelength. Incoherent light was used 

for the experimental results presented here. A 2.5 µm pitch and 2.5 mm long fiber 

bundle is attached to the bare monochrome image sensor without a color filter array.  

The FC image sensor is mounted on a computer-controlled Dali E-2100 piezo stage, 

which is used to capture the 2D PSF map on a limited area of the sensor. The position 

Light	source	

Microscope	objec1ve	
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Image	Sensor	
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can be varied with 20 nm steps, well below the 2.5 µm fiber or 1.12 µm image sensor 

pitches, or the 0.8 µm thickness of the low index cladding between fiber cores. 

To verify the repeatability of the experiment the optical probe was scanned 

horizontally, and the resulting PSF was recorded as a function of the input location. 

The piezo stage was moved by 0.4 µm steps over a 10 µm range, and one PSF was 

captured at each step. An average of ten scans was taken to smooth out the random 

PSF variations (e.g. due to sensor noise). To avoid the piezo actuator hysteresis one 

can either reset the piezo’s voltage to zero volts at the end of each X or Y scan, or use 

the position feedback to compensate for its inherent nonlinearity. Here we reset the 

voltage to zero volts and nonlinearly compensated the input voltage to linearize the 

position output. It is important to know the spacing between the sample points and 

convenient to have a constant spacing between them, otherwise the correlation 

between each captured PSF and the input probe location would be unknown.  

Figure 4-3(a) and Figure 4-3(b) show the intensity value of two specific 

(grayed diagonal) pixels, along the scan line (color arrow) and off the scan line, 

respectively, for the light source with blue color filter. Here five 1D scans are 

compared, each being the average of ten horizontal scans. As one can see the 

measured average pixel values are fairly repeatable for various pixel locations. Similar 

trends were observed using the green color filter data in Figure 4-3(c) and Figure 

4-3(d). Although the probe’s 0.4 µm step size is lower than sensor’s 1.12 µm pitch, the 

variation of pixel values is sensitive to submicron movements of the probe. This 
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strong shift-variance occurs because of light coupling to various modes of the fiber 

bundle, which carry different amounts of power as they propagate through the bundle.  

A higher degree of repeatability is observed for blue and green color filters compared 

with the red color filter [Figure 4-3(e) and Figure 4-3(f)]. Stronger variations of the 

pixel values along the scan line result from longer transmitted wavelengths of the red 

color filter, larger diffraction-limited spot size, and further extension of guided modes 

 
Figure 4-3 Repeatability of PSF measurements for average of ten 1D 
horizontal scans (color arrow) of the FC imager with blue color filter: (a) for a 
pixel located on the scan line (b) for a pixel located off the scan line. (c)-(f) 
same as in (a) and (b) repeated for green and red color filters, respectively. 
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in the fiber bundle. The guided modes are more confined at shorter wavelengths and 

therefore less sensitive to the exact location of the input probe, which is approximately 

1-1.3 µm wide in diameter.  Likewise, the PSF repeatability of the white light is 

affected by the upper wavelength range of the LED source and therefore limits the 

accuracy of the measurements. The green color filter data is fairly repeatable and lies 

in the middle of visible range. From this point on we used this light source for both 2D 

PSF characterization of the imager, as well as capturing the resolution chart image for 

restoration. Similar results may be achieved with the blue color filter or any other light 

source that yields a repeatable PSF measurement. The repeatability curves in Figure 

4-3(a-f) were measured by replacing the color filters and repeating the same line scan 

over the identical path. Therefore, the resulting curves may also be considered as the 

spectral response of the FC imager at a particular region of interest. 

Having verified the repeatability of the measured data, the complete PSF data 

was captured as a function of input probe location. The shift-variant PSF map of the 

imager was captured as a function of input probe position by nonlinearly driving the 

piezo stage. Each line scan was followed by setting the Piezzo voltage to zero volts to 

avoid hysteresis. An area of 24x24 pixels wide (26.88 x 26.88 µm2) was characterized 

using a step size of half the sensor pixel pitch (0.56 µm). The total number of PSFs is 

47x47=2,209. The submicron step size is useful, as the fiber bundle cladding and 

absorber have comparable widths and the captured PSF is thus sensitive to these half-

pixel-pitch displacements. 
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Figure 4-4(a) and Figure 4-4(b) show the variation of the peak intensity (single pixel)  

and the integrated power of the entire 47x47 PSF region as a function of input probe 

location, respectively.  Both peak intensity and integrated power vary strongly with  

 
Figure 4-4 (a) Global peak intensity variation vs. input probe location 
(b) Total PSF power variation vs. input probe location. 
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probe position. If the optical probe lands on the fiber core, the maximum intensity and 

power is transmitted. If the probe lands on the fiber cladding, light coupling is reduced 

and divided into multiple fiber cores.  Finally landing the optical probe on the absorber 

material minimizes both transmitted intensity and detected power. The relative 

position of fiber cores and sensor pixels also contributes to stronger shift-variance of 

fiber coupled imagers. 

In this case, linear shift-invariant assumption is not even remotely accurate, so 

shift-invariant restoration methods such as deconvolution cannot be applied for image 

reconstruction purposes. However, one can lexicographically order each of the 

captured PSFs into a column vector and form a PSF matrix H with each column 

representing one PSF and each row representing the position of input probe. The 

detected blurred image g can then be related to the original image f through the 

following equation: 

 g = Hf . (10) 

For simplicity, the detected 24x24 pixel image was bilinearly interpolated to 

match the input probe’s 47x47 map. This way H becomes a 2209x2209 square matrix, 

and f and g are both 2209x1 column vectors. The characterized PSF matrix is shown in 

Figure 4-5. For a shift-invariant and sensor limited imager, H would become a 

diagonal matrix and Eq. (10) could be solved via deconvolution. However, in a fiber-

coupled imager the individual fibers carry the input scene energy through multiple 

modes, which vary in shape and coupling coefficient. The modal effect of light 

transmission along with the imperfect fill factor of the fiber bundle (70%) results in 
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the shift-variant PSF matrix H that is not necessarily diagonal. In order to restore the 

lost resolution one has to use shift-variant image restoration methods. In the following 

section, we discuss several of these methods, and compare the image reconstructed 

using linear and nonlinear restoration methods. 

 
Figure 4-5 Experimentally characterized shift-variant PSF matrix (a.u.) for 
2209 input probe locations. 
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formulations are discussed in the first part and the reconstruction results are compared 

in the second part of this section. 

4-3-1 Formulation 

The PSF matrix H in Eq. (10) is ill-conditioned, and typically has zero 

determinant. Therefore, direct inversion of this matrix is not practical. However, one 

can use a generalized form of the inverse of H, or pseudo inverse of H to find the 

original image f. The Moore-Penrose pseudoinverse [20] is a well-known example: 

 f = H +g , (11) 

where H+ is the pseudoinverse of H.  Although the pseudoinverse matrix can exist and 

be unique, it usually yields a poor solution for f in Eq. (10). Instead one can solve the 

following non-negative least squares problem [21]: 

 arg min
f̂ >0

||Hf̂ − g ||2
2{ } , (12) 

where 𝑓 is the estimated restored image by solving Eq. (12) and ||.||2 signifies the L2 or 

Euclidean norm. The least squares solution yields decent results for cases where the 

noise is insignificant. However, no prior information of the noise is used in the 

mathematical model given by Eq. (10), so in the presence of noise the result of 

reconstruction becomes less accurate. To improve the reconstruction result one may 

introduce the noise into the model: 

 g = Hf +n , (13) 
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where n is the noise vector, and it is generally assumed to be additive Gaussian with 

zero mean. One way of solving Eq. (13) is to use Linear Minimum Mean Square Error 

(LMMSE) method to find the estimated solution by minimizing the error term 

𝜖 = 𝑓 − 𝑓.  The LMMSE solution is then found by solving the following [22,23]: 

 arg min
f̂
E εTε{ } = E Tr εTε( ){ } , (14) 

where E{.} and Tr denote the expected value operator and trace of a matrix, 

respectively. The solution requires knowledge of the autocorrelation matrix of the true 

image f, while in practice only the detected blurred image g is known. Another 

shortcoming of the linear restoration methods is the presence of negative pixel values 

in the reconstructed image. One way to overcome this limitation of the linear methods 

is to solve them iteratively. Tikhonov regularization [24,25] is widely used to solve 

Eq. (10) by introducing a regularization parameter and calculating the Euclidian norm 

of the solution or solving: 

 arg min
f̂

||Hf̂ − g ||2
2 +λ 2 ||Cf̂ ||2

2{ } . (15) 

Here C and λ are the regularization matrix and regularization parameter, respectively. 

Most common choices of C are the simple identity matrix, a diagonal weighting 

matrix or the first and second derivative operators [26]. Typical choices of the 

regularization parameter are the L-curve [27] and generalized cross validation [28] 

methods. The identity regularization matrix and L-curve method are used in this work. 

The solution to the above equation can be found in the following closed form: 
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f̂ = HTH +λ 2CTC( )−1HTg

. (16) 

To overcome the negative pixel values problem, one can nonlinearly solve the 

optimization problem given by Eq. (15) in an iterative fashion, by calculating the 

residual error at each iteration step. Non-negativity is achieved by imposing negative 

pixel values to be zero at each iteration step. This gives us the well-known Iterative 

Constrained Tikhonov-Miller (ICTM) restoration [25,29,30]. The minimum of the 

Tikhonov regularization functional in Eq. (15) is found by using the method of 

conjugate gradient [31]. The conjugate gradient direction dk at kth step is calculated 

from: 

 dk = rk +α kd k−1 , (17) 

where rk is the steepest descent direction given by: 

 rk = HTH +λ 2CTC( ) f̂ −HTg , (18) 

and α k = rk
2

2
/ rk−1

2

2
. The subsequent iteration is obtained by calculating the 

following non-negative projection, where the negative image values are clipped to 

zero: 

 f̂ k+1 =max(0, f̂ k +β kd k ) . (19) 

Without the non-negativity condition, fk+1 minimizes the Tikhonov functional 

in Eq. (15). Here the coefficient βk is the optimal step size and its proper choice 

improves the convergence speed. Various methods can be used to find the optimal step 
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size. Some examples are the standard step size of the conjugate gradient method 

without the non-negative projection, the golden selection rule or first order Taylor 

expansion of Eq. (19) with respect to βk [31,32]. Here we used the conjugate gradients 

method step size for constrained adaptive restoration. The explicit expression for 

optimal βk is given by [30,33]: 

 β k =
rk( )T dk

Hdk

2

2
+λ 2 Cdk

2

2 . (20) 

The ICTM restoration yields converging non-negative result at the expense of 

more numerical complexity and lower computational efficiency. The iteration can stop 

when a threshold of relative error is reached.  We used 1% relative error in this work, 

where it is defined as: 

 Err = f k+1 − f k
2
/ f k

2
. (21) 

Instead of using the L2 norm regularization factor, one can introduce prior 

knowledge of the input scene sparsity by modifying the regularization term in Eq. (15)

. Cao et al. [34] used the L1 norm regularization to incorporate sparsity and solved the 

following optimization problem using Expectation Maximization (EM) [35]: 

 min ||Hf̂ − g ||2
2 +γ || f̂ ||1{ } .  (22) 

The non-negative projection is used at each iteration step to impose non-

negativity. We will show that nonlinear restoration methods such as ICTM or non-

negative expectation maximization are sufficient to restore the image to fiber-limited 
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resolution. In the following section we will compare the discussed methods for our 

image restoration application. 

4-3-2 Experimental Restoration Results for Various 

Methods 

The FC output image suffers from fiber artifacts as well as moiré pattern due to 

misalignment between the irregular fiber bundle and the image sensor with different 

pitches. Although flat-field calibration can partially compensate for fiber artifacts and 

the unavoidable moiré pattern, the lost resolution cannot be restored using this 

method. Figure 4-6(a) shows the detected RAW image by the FC imager in the 24x24 

pixels region of characterization. The USAF resolution chart image was relayed 

through the microscope objective onto the FC sensor. As will be shown later, the fiber 

bundle is attached to the image sensor with a small tilt angle of ~5° between the 

pseudo-periodic fiber array and the image sensor array, resulting in the apparent 

sampling of the captured image to be tilted as well. The bilinearly interpolated RAW 

 
Figure 4-6 (a) Raw low-resolution image (b) High resolution image from 
bilinear interpolation of RAW image (c) Flat- field calibrated image. 
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image (47x47 pixels) and the result of flat-field calibration are displayed in Figure 

4-6(b) and Figure 4-6(c), respectively. Although the flat-field calibrated image is 

visually smoother, the lost resolution in the blurred image is not recovered. 

Once the FC imager is characterized in the region of interest, this information 

can be used along with the discussed image restoration methods to recover the lost 

resolution. Figure 4-7 compares various image restoration methods for Figure 4-6(a), 

starting from the worst. The trivial Pseudo-inverse restoration [Figure 4-7(a)] results 

in a completely distorted reconstructed image due to the large condition number 

(~1019) of the PSF matrix H. The least squares solution in Figure 4-7(b) poorly reveals 

the vertical bars of the resolution chart due to low SNR of the imager and excluding 

the noise from image restoration calculations. We introduced a Gaussian noise with 

zero mean into the restoration model and solved Eq. (14) to get the LMMSE estimate 

of the image [Figure 4-7(c)]. One problem with LMMSE is that prior knowledge of 

the true image’s covariance matrix is needed. Here the detected image g was used 

instead. Another shortcoming with LMMSE and other linear restoration methods is the 

negative pixel values encountered after restoration.  
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Figure 4-7 Results of image restoration using the experimentally characterized 
PSF matrix H: (a) Pseudo-inverse restoration, (b) non negative least squares 
restoration, (c) Linear Minimum Mean Square Error reconstruction with SNR 
28 dB, (d) Tikhonov restoration and ignoring negative values, (e) Iterative 
Constrained Tikhonov-Miller restoration (<1% relative error), (f) Iterative EM 
restoration (<1% relative error). 

To avoid the requirement for prior knowledge of the true image one can use 

the well-known Tikhonov restoration, in which a regularization parameter is used to 

enable image restoration from the ill-conditioned PSF matrix. The result of Tikhonov 

restoration is shown in Figure 4-7(d). The negative values were clipped to zero, 

however, further improvement may be achieved with ICTM method [Figure 4-7(e)] 

where the non-negative image is restored iteratively.  Alternatively one can introduce 

sparsity as a prior knowledge and use expectation maximization to restore the blurred 

image iteratively as shown in Figure 4-7(f). Both ICTM and EM produce non-negative 

images that converge to 1% relative error defined by Eq. (21) within a few iterations. 

EM method is used for subsequent restoration of images. 
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4-4 Restoration to Fiber Resolution  

A closer look at Figure 4-7(d-f) reveals what appears to be the fiber bundle 

structure, meaning that the image could be restored to that of fiber pitch resolution.  

Further improvement of the image resolution beyond the fiber pitch (close to the 

image sensor pitch) was not possible due to the low SNR of the imager and variations 

in the captured PSF. 

In a similar experiment the USAF resolution chart was placed in contact with 

the FC image sensor. An index matching oil with refractive index of 1.6 was used in 

between to minimize scattering and image blur due to an unwanted gap. EM method 

was used to recover the lost resolution from the experimental PSF matrix H. Figure 

4-8 shows the detected blurred RAW images on the top row and the result of iterative 

EM restoration on the bottom. Elements 5 and 6 of group 7 in the resolution chart 

were used to evaluate the performance of the FC imager and the experimental image 

reconstruction. Both input and restored images were gamma corrected with a 

coefficient of 1.4 for better visual appearance.  A clear improvement in the resolution 

of the detected image is observed and the fiber bundle structure is once again 

observable in all of the restored images. The dark spots in the bottom right image 

reveal the cladding and absorber regions of the fiber bundle that are approximately of 

the size of less than a micron. 
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Figure 4-8 Reconstruction results for USAF res-chart in contact with FC 
imager. Top row: RAW detected images and bottom row: processed images 
using iterative EM method. 

To verify that the observed fiber structures are not artifacts of the restoration 

process, a hexagonal aperture was imaged onto to the FC image sensor and a 

microscope image of the input facet of FC sensor was captured while it was closed 

down near the region of characterization [Figure 4-9(a)]. One can observe the irregular 

array of fibers with yellow cores and dark cladding and absorber regions. The fiber 

core boundaries in the region of interest (the red square in Figure 4-9(c)) were 

extracted from the microscope image by simple image processing. This process 

consists of converting the captured image to black and white, and registering the 

transition between black region and white regions as core boundaries. The same image 

was simultaneously captured by the FC image sensor [Figure 4-9(b)]. As one can see, 

individual fibers are not visible in the unprocessed RAW image; transmission through 

the adhesive gap between the output fiber bundle face and active sensing area has 

blurred the fiber structure. The captured image from the FC image sensor in the region  
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of interest [Figure 4-9(d)] was processed using the EM restoration. The processed 

image [Figure 4-9(f)] clearly reveals details of the fiber bundle structure that is 

normally not detectable in the RAW image. Extracted core boundaries from the 

microscope image were then superimposed onto the processed image of FC sensor 

[Figure 4-9(g)]. The excellent match between the extracted core boundaries and the 

 
Figure 4-9 (a) Fiber bundle image captured by the microscope objective, (b) 
flat-field RAW image simultaneously captured by the FC image sensor, 
(c),(d) cropped region of interest from (a) and (b), respectively, (e)  contour of 
core boundaries at the region of interest, (f) processed RAW image from FC 
image sensor at the same region, (g) contour of core boundaries superimposed 
on top of processed  image of FC sensor. 
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fiber structure from the restored image confirms that with proper characterization and 

image processing, the blurred image in the FC imager can be restored up to the fiber 

pitch. 

4-5 Conclusions 

Fiber coupled imagers have strongly shift-variant impulse response due to the 

imperfect fill factor of the fiber bundle as well as the difference between the irregular 

fiber bundle pitch and the image sensor pitch. The misalignment between the fiber 

cores and individual pixels also contributes to the strong shift-variance. This strong 

shift-variance along with the inevitable spacing between the fiber bundle and the 

image sensor introduces image blur and loss of resolution. We experimentally 

characterized a region of interest in the FC image sensor to restore this loss of 

resolution. The measured PSF map was obtained by 2D scanning of the FC imager 

with a diffraction-limited microscope objective. Various shift-variant image 

restoration methods were compared to retrieve the lost resolution. Using iterative and 

nonlinear image restoration methods such as ICTM and EM, we were able to recover 

the lost resolution up to the fiber pitch. We also verified that the extracted fiber core 

boundaries from the microscope image match the fiber bundle structure that was 

obtained by proper image processing. Prior knowledge or control of environmental 

parameters may affect the quality of image restoration in these types of imagers. 

Further resolution improvement may be achieved, provided the PSF characterization is 

accurately repeatable and the FC imager has sufficiently high SNR.  
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 Conclusion and Discussion Chapter 5

Imaging fiber bundles and fiber-coupled image sensors were investigated in 

this thesis both numerically and experimentally. The main focus was on the specific 

application of fiber bundles for fiber-coupled imaging, in which, imaging fiber 

bundles are used to transform the curved image plane to the flat image sensor plane. 

The numerical modeling along with experimental characterizations helped us identify 

the factors affecting the cross-talk between fibers and enhance the resolution limit of 

the current imaging fiber bundles. A computational image processing approach was 

used at the end to further improve the resolution of the fiber-coupled imager with 

proper characterization of its space-variant impulse response. 

The imaging fiber bundles were first treated as a 2D pseudo periodic grating 

and solved with RCWA. It was shown that an efficient numerical method can be used 

by modify the conventional RCWA solution in order to calculate the transmission of 

an electromagnetic beam through a deep dielectric grating. In this method the incident 



 

 

98 

beam was decomposed into its Fourier spectrum of plane waves and the propagating 

Bloch waves for the periodic grating region were calculated for each plane wave 

component using RCWA. The RCWA solution was simplified analytically by only 

considering the forward propagating Bloch waves and it was shown that there is an 

insignificant difference between the Global RCWA and Forward RCWA solutions for 

deep gratings. The variation of transmission coefficients with spatial frequency 

becomes faster as the grating depth increases, and therefore a larger number of 

samples is required for accuracy. Individual treatment of the propagating Bloch waves 

enabled us to calculate the inverse Fourier transform semi-analytically using both 

analytical integration of individual Bloch waves and FFT. The advantage was using 

the FFT to maintain the speed while accounting for the fast phase variations through 

analytical integration to maintain the accuracy of calculations with a smaller number 

of samples. It was shown that the presented formulations lead to accurate and efficient 

calculation of the output field. 

Although efficient 2D modeling gives an insight into the performance of fiber 

bundles, it is not accurate enough to fully represent the 3D pseudo periodic imaging 

fiber bundles. Modal analysis was used for accurate 3D modeling of the extremely 

deep fiber bundles. The numerical investigation showed that a relatively small number 

of modes and guiding cores can be used for efficient modeling of the fiber bundles as 

a guide for fabrication of low cross-talk and high resolution imaging fiber bundles. As 

the fiber bundle’s pitch scales down from 2.5 µm to 1.0 µm the performance of fiber 

bundles gets worse at the operating wavelength. This is explained by a lower 
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confinement and larger extension of guided modes into the cladding. This limits the 

resolution of the commercially available fiber bundle with numerical aperture of 1.0 to 

2.5 µm. Using this numerical method, it was shown that reducing the fill fraction of 

the fiber cores increases the resolution of the fiber bundle. The numerical analysis also 

verified that introducing disorder or irregularity into the fiber bundle is crucial for 

improving the confinement and image resolution in fiber-coupled imagers. The 

accuracy of numerical modeling may be improved by using the actual fiber core 

boundaries in the model, which may be extracted by proper processing of the optical 

microscope or scanning electron microscope image of the fiber bundle cross-section. 

The numerical modeling results were followed by experimental validation 

through characterization of fiber bundles. High resolutions fiber bundles were 

characterized using coherent and incoherent excitations. The measurements consisted 

of qualitative analysis of the image transported through different pitches of fiber 

bundles, impulse response characterization of a 2.5 µm pitch fiber bundle and finally 

quantitative analysis of the cross-talk with incoherent illumination. A good agreement 

was observed between the characterized impulse response of the fiber bundle and the 

numerical modeling results. 

A methodology was proposed for improving the resolution of imaging fiber 

bundles, however, the fabrication difficulties associated with high index contrast 

multimode fibers limits the physical extent to which the performance may be 

enhanced. At this point, further improvement of the fiber bundle performance is only 
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feasible by computational processing of the image captured by the fiber coupled image 

sensor.  

The impulse response of fiber coupled imagers is strongly shift-variant due to 

the imperfect fill factor of the fiber bundle as well as the difference between the 

irregular fiber bundle pitch and the image sensor pitch. The misalignment between the 

fiber cores and individual pixels also contributes to this strong shift-variance. This 

strong shift-variance along with the unavoidable spacing between the fiber bundle and 

the image sensor introduces image blur and loss of resolution. A region of interest in 

the fiber coupled image sensor was experimentally characterized to restore this loss of 

resolution. The PSF map was measured by 2D scanning of the fiber-coupled imager 

using a diffraction-limited microscope objective. Various shift-variant image 

restoration methods were then compared for retrieving the lost resolution. The 

resolution of the imager was recovered up to the fiber pitch using iterative and 

nonlinear image restoration methods such as ICTM and EM. It was also verified that 

the extracted fiber core boundaries from the microscope image match the fiber bundle 

structure that was obtained by proper image processing.  

Coupled mode theory may be used for electromagnetic analysis of a larger 

array of fibers with less computational cost. However if the fibers are closely spaced, 

the modes of individual fibers vary in shape and the effective propagation indices vary 

in value, which may lead to inaccurate calculation of the coupled modes. Optimization 

of imaging fiber bundles using engineered and uncontrolled disorder is also a topic of 

further investigation. Further resolution improvement beyond the variation of physical 
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parameters may be achieved by computational image processing, provided the PSF 

characterization of the imager is accurately repeatable and the fiber-coupled imager 

has sufficiently high SNR. 




